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ABSTRACT

Understanding and modeling the plastic deformation of body-centered cubic (BCC) metals remains

a central challenge in materials science due to the complex nature of BCC dislocation mechanisms.

This dissertation applied a physics-informed approach in crystal plasticity modeling for BCC

metals by addressing three core challenges: experimental-model calibration consistency, dislocation

mobility formulation, and constitutive model completeness.

The first study investigates the reliability of using surface-based measurements for calibrating

crystal plasticity models for bulk materials. Plastic deformation behavior is most conveniently

assessed by characterization on a surface, but whether such observations are representative of bulk

properties is uncertain. Motivated by reported inconsistencies in slip resistance probed at different

depths, we investigated (i) whether the average slip family activity is affected by the presence of a

surface and (ii) how the kinematic nature of available slip families influences a potential surface

effect. The slip family activity as a function of distance from the surface was extracted from

full-field crystal plasticity simulations of random polycrystalline hexagonal close-packed (HCP)

and BCC metals as examples of mixed in contrast to universally-high numbers of slip systems per

family. Under certain conditions, a deviation from bulk slip activity is observed up to about two

grains from the surface. For the easiest (least slip-resistant) family, a surface effect of decreasing

activity with depth emerges if the number of slip systems falls below about six. For harder families,

slip activity always increases with depth. These phenomena are explained on the basis of varying

constraints with depth in connection with the kinematic properties of slip families in the material.

The second study develops a generalized mobility law for dislocations in BCC metals based on

the kink-pair mechanism. Dislocation mobility laws are key to dislocation-density-based crystal

plasticity modeling. For dislocations following the kink-pair mechanism, however, existing for-

mulations are often restricted to specific regimes due to the complex interplay between stochastic

kink-pair nucleation and lateral kink migration. In this study, the average dislocation velocity

under the kink-pair mechanism is formulated as a function of five variables: kink-pair nucleation

rate, kink migration velocity, dislocation segment length, critical kink-pair width, and kink height.



Through probabilistic cellular automaton simulations, the propagation of conceptual dislocation

segments is tracked across a wide range of conditions, and their average velocities are systemat-

ically fit using a hyperbolic tangent function. The resulting full-range formulation remains valid

for arbitrary combinations of the five variables, and is therefore compatible with a wide variety of

underlying kinetic laws. Comparisons with established models demonstrate the consistency and

robustness of the new formulation, making it suitable for diverse material systems in which the

kink-pair mechanism governs dislocation motion.

The third study presents a comprehensive constitutive model that explicitly differentiates be-

tween edge and screw dislocation populations. The model incorporates distinct mobility laws

for each dislocation character, reflecting the fundamental differences in their motion mechanisms:

screw dislocations move via a thermally activated kink-pair process, while edge dislocations glide

more readily with lower thermal sensitivity. In addition, separate density evolution laws are

developed for edge and screw dislocations, accounting for processes such as dipole formation, an-

nihilation, and interaction-driven hardening. The model includes physically motivated mechanisms

such as cross-slip for screws and climb for edges, which further enrich the fidelity of dislocation

evolution under complex loading conditions. Implemented within the DAMASK simulation plat-

form, the model is built with a modular structure that allows each mechanism to be activated or

deactivated independently. This design enables systematic investigations into the role and interplay

of individual features, supporting both predictive simulations and fundamental studies of BCC

deformation behavior.

Collectively, this work lays the foundation for a robust and extensible framework for modeling

the plastic behavior of BCC metals. It provides a deeper understanding of the microstructural

mechanisms governing deformation and offers practical tools for predictive simulation of advanced

metal systems under varied thermomechanical conditions.
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CHAPTER 1

INTRODUCTION

1.1 Dislocation-mediated plasticity in metals

Dislocations are line defects in crystalline materials that play a central role in plastic deformation.

Figure 1.1 shows a schematic representation of a dislocation line (AB, dashed red line), around

which the crystal lattice is distorted. The magnitude and direction of this distortion is described

by the Burgers vector 𝒃, shown as red arrows. Depending on the relative orientation between

the dislocation line and its Burgers vector, dislocations are classified as screw (parallel), edge

(perpendicular), or mixed (intermediate angles). In the illustrated example, the dislocation is a pure

screw at A, pure edge at B, and mixed in between where there is curvature.

In crystalline metals, plastic deformation proceeds predominantly through the motion of dis-

locations, rather than by uniform shear of atomic planes. For an ideal, defect-free crystal, the

critical stress required to initiate plastic deformation [30] is several orders of magnitude higher

than what is observed experimentally for normal metals. This discrepancy led to the theory of

dislocation-mediated plasticity in metals [53, 84, 62].

In Fig. 1.1, the lattice distortion expands through the motion of dislocation line AB, a process

known as slip. From this perspective, a dislocation can also be defined as the boundary of a slipped

area. The crystallographic plane (ABC) along which the dislocation line moves is termed as the

slip plane, and the slip direction is defined by the Burgers vector. Together, the slip plane and

slip direction constitute a slip system. Figure 1.2 illustrate the common slip systems (grouped into

slip families based on symmetry) in the hexagonal close-paced (HCP) lattice. The critical stress

required to initiate plastic deformation in real metals with defects is thus translated to the stress

required to move dislocations in a slip system, i.e. the slip resistance, which is much lower than

the stress to shear an atomic plane uniformly.

The connection between dislocation motion and continuum plasticity was established by the

Orowan equation [53]:

¤𝛾 = 𝜌𝑏�̄�, (1.1)
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Figure 1.1 Schematic of a dislocation line (dashed red) exhibiting screw, mixed, and edge character
from A to B [17]. The Burgers vector 𝒃, shown in red arrows, remains constant along the dislocation.

Figure 1.2 Four common slip families in the hexagonal close-paced (HCP) lattice, where slip
systems that are crystallographically equivalent are grouped together. The slip plane in each slip
family is shaded, and the slip direction is indicaded by an arrow.
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where ¤𝛾 is the plastic shear strain rate, 𝜌 is the dislocation density, 𝑏 is the magnitude of the

Burgers vector, and �̄� is the average velocity of dislocations. Understanding of dislocation theory

and quantifying related physical quantities (e.g., the slip resistance) are essential for modeling

crystal plasticity in a physically meaningful and reliable manner.

1.2 Crystal plasticity finite element modeling

1.2.1 Background

Crystal plasticity modeling is a mesoscale, continuum-level computational approach used to

predict the plastic behavior of crystalline materials by explicitly accounting for crystallographic

anisotropy and the slip of dislocations as the dominant deformation mechanism [61, 89]. Early

models of crystal plasticity [70, 85] relied on simplified boundary conditions, assuming uniform

stress or strain across the grains (crystals in a polycrystalline material). Although these approaches

offered initial insights, their homogenizing assumptions limit the ability to resolve microscale

phenomena such as texture evolution, local field fluctuations, and strain localization.

To overcome these limitations, the crystal plasticity finite element method (CPFEM) was

developed by integrating crystal plasticity formulations with the finite element method [59, 67].

This extension enables the resolution of micromechanical interactions within and across grains

under complex internal and external boundary conditions (see Fig. 1.3). CPFEM is thus a powerful

tool for implementing comprehensive theories of plasticity that incorporate underlying deformation

mechanisms and support the development of physically based predictive models for advanced

engineering applications [99, 3, 102].

A CPFEM framework that is closely related to this dissertation is the Düsseldorf Advanced Ma-

terial Simulation Toolkit (DAMASK) [68], an open-source, unified, multi-physics crystal plasticity

simulation package. DAMASK employs a numerically efficient spectral method to solve the me-

chanical boundary value problem of static equilibrium, offering both robustness and computational

efficiency for complex simulations [72, 78].

In this dissertation, DAMASK is used in two studies: the investigation of surface effects on slip

activity presented in Chapter 2, and the development of a comprehensive dislocation-density-based
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Figure 1.3 Schematic presentation of the conceptual ingredients in crystal plasticity finite element
simulations [67].

model described Chapter 4, for which a dedicated module was developed and integrated into the

DAMASK framework.

1.2.2 Finite strain framework

CPFEM is typically formulated within a finite strain framework to account for the large defor-

mations experienced in plastically deforming crystals. This section summarizes the formulation

implemented in DAMASK [68], which underlies the modeling work in both Chapter 2 and Chap-

ter 4. Additional background and theoretical context are drawn from Roters et al. [69].

Consider an infinite number material points in a deformable body or continuum. As illustrated

in Fig. 1.4, the body transforms from the undeformed (reference) configurationB0 into the deformed

(current) state B. The total deformation gradient is given by

F =
𝜕y
𝜕x

, (1.2)
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Figure 1.4 Deformable body occupying region B0 in the reference configuration and region B in
the current configuration [69]. The positions of material points are denoted by x and y in both
configurations, respectively.

Figure 1.5 Illustration of the intermediate configurations resulting from the multiplicative decom-
position of the deformation gradient [68].

where x and y are position vectors of material points in the undeformed and deformed configurations,

respectively. The deformation gradient undergoes a multiplicative decomposition:

F = FeFiFp, (1.3)

where the undeformed configuration is mapped to the deformed configuration in three steps (see

Fig. 1.5):

1. The inelastic, lattice-preserving Fp maps to the plastic configuration, which comprises a

rotation as well as the flow of material;
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2. The inelastic, lattice-distorting Fi accommodate stress-free strains (eigenstrains), such as

thermal expansion or crack opening [79], mapping further to the intermediate configuration;

3. The elastic deformation gradient Fe maps from the inelastic to the deformed configuration,

corresponding to elastic stretching of the lattice.

Classical multiplicative decomposition can be made up by F = FeFp, which is termed as elastoplastic

decomposition. The consideration of Fi is beneficial when stress-free strains are involved. For

example, when mimicking the effect of a surface through the introduction of a slice of soft,

dilatational material, as further demonstrated in Chapter 2.

The two inelastic deformation gradients evolve at rates

¤Fp = LpFp, (1.4a)

¤Fi = LiFi, (1.4b)

governed by the velocity gradients Lp and Li that are driven by the Mandel stresses

Mp = Fi
T Fi S, (1.5a)

Mi = det
{
Fi

−1} Fi S Fi
T, (1.5b)

where both Mandel stresses are mappings of the second Piola–Kirchhoff stress

S = C :
1
2

Fi
T
(
Fe

T Fe − I
)

Fi, (1.6)

which follows Hooke’s law, and C is the fourth-order elastic tensor.

The plastic velocity gradient Lp (see Eq. (1.4a)) results from deformation slip occurring across

all considered slip systems, indexed by 𝛼. It is calculated by:

Lp = ¤𝛾𝛼m𝛼 ⊗ n𝛼, (1.7)

where ¤𝛾𝛼 is the shear rate on slip system 𝛼, m𝛼 is the unit vector along the slip direction, and n𝛼

is the unit vector normal to the slip plane (implicit summation over repeated indices). Additional
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contributions to Lp beyond slip, such as twinning or phase transformations, can also be modeled

but are not considered in this dissertation.

This kinematic framework provides the foundation for developing constitutive laws, which link

the internal slip activity to external mechanical conditions.

1.3 Constitutive laws

Whereas the kinematic description (Eq. (1.7)) accounts for how slip on various crystallographic

systems contributes to the overall deformation, it does not specify the extent of slip that occurs

under given external stimuli. This essential link is provided by the constitutive laws, which provide

material-specific relations between the mechanical conditions (e.g., the applied stress state) and

the resulting deformation slip. In the context of crystal plasticity, constitutive laws govern the

evolution of shear rate on each slip system as a function of resolved shear stress (the projection of

the applied stress onto a slip system), temperature, and internal microstructural variables. These

laws are responsible for capturing key aspects of plastic behavior such as flow (plastic deformation),

strain hardening, rate sensitivity, and thermal activation [69]. CPFEM offers a robust and flexible

numerical framework to incorporate various constitutive laws at the level of individual slip systems.

Classical phenomenological constitutive laws [5, 66] employ empirical expressions fitted to

experimental data to describe material behavior under various conditions. These approaches often

involve specifying a flow rule and hardening law based on macroscopic behavior (such as power-

law relationships), with internal state variables calibrated to match experimental observations. As

a result, they can efficiently reproduce observed stress-strain behavior without requiring detailed

knowledge of microstructural variables such as dislocation density or obstacle types. Despite their

limited generalizability beyond the calibrated regime and lack of direct physical interpretability,

they remain widely used due to the advantages in computational efficiency, ease of calibration, and

numerical robustness. The study presented in Chapter 2 employed a phenomenological constitutive

law to investigate the surface-biased slip activity, leveraging its practical performance and maturity.

In contrast, physics-informed constitutive laws aim to represent plastic deformation by explicitly

incorporating the underlying mechanisms that govern the mesoscale physics. Dislocation-density-
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based models [4, 3, 43] are a notable class of such approaches, wherein the motion and evolution of

dislocations are directly coupled to the plastic response. These models typically include physical

parameters for dislocation interactions, thermal activation mechanisms, and slip-system-specific

kinetics, providing a more interpretable and extensible foundation across materials and conditions.

The comprehensive model introduced in Chapter 4 exemplifies this strategy: dislocation densities

are categorized by character (edge vs. screw) and configuration (monopole vs. dipole), with distinct

mobility and evolution laws describing each group.

Regardless of the specific formulation, constitutive laws require calibration against experimental

data. For phenomenological models, this typically involves fitting model parameters to reproduce

observed stress-strain responses, a process that may be highly sensitive to the chosen experimental

setup and boundary conditions. In physics-based models, although certain parameters can be in-

formed by theory or derived from lower-scale simulations, others still necessitate experimental input

for calibration. A central challenge arises when essential quantities, such as the crystallographic

distribution of initial dislocation content, are difficult to measure directly, resulting in significant

uncertainty in the corresponding model predictions [56]. Furthermore, data obtained from surface-

sensitive experimental techniques (e.g., scanning or transmission electron microscopy) may not

accurately reflect bulk behavior, potentially introducing systematic biases into model calibration,

which is a limitation further investigated in Chapter 2.

1.4 Challenges of Modeling BCC Metals

Body-centered cubic (BCC) metals present unique challenges for plasticity modeling due to

their distinctive dislocation behavior and lattice characteristics. Unlike face-centered cubic (FCC)

metals, which exhibit relatively straightforward slip behavior, BCC metals follow more complex

and temperature-sensitive mechanisms, especially for screw dislocations.

1.4.1 Kink-pair mechanism

The kink-pair mechanism of dislocation motion [23] is illustrated in Fig. 1.6, which applies when

the driving force is lower than the periodic energy barrier, which is termed as Peierls stress [58],

and thermal activation is thus necessary for the propagation of dislocations. Dislocation segment

8



Figure 1.6 Illustration of the kink pair mechanism, where the dislocation lines (white) moves via
thermally activated kink pairs and their subsequent lateral migration to opposite directions. Adapted
from Fitzgerald [28].

(white lines) lying in a Peierls valley will have a chance to partially transition over the energy

barrier into the neighboring Peierls valley by nucleating a pair of kinks (vertical steps), which is

aided by thermal fluctuation. Both forward (positive) and backward (negative) kink-pair nucleation

are possible, but are biased by an acting shear stress such that the positive kink-pair nucleation rate

will always exceed the negative one. A kink pair that is too narrow is considered unstable, i.e.

immediately collapses again, because the increase in dislocation line energy outweighs the plastic

work and thermal energy. Under an acting shear stress, the lateral migration of kinks will collapse

any negative kink pairs, whereas positive kink pairs expand and result in the overall forward motion

of the dislocation.

The ratio of Peierls stress to the shear modulus for BCC screw dislocations is typically two

magnitudes higher than that for edge dislocations [76, 47, 63]. Therefore, the motion of screw

dislocations in BCC metals is well acknowledged to follow the kink-pair mechanism [75, 25, 96, 46],

and the velocity of screw dislocation is much more limited compared to edges. The mobility of

screw dislocations then becomes the rate-limiting process that dominates the plastic strain rate of

BCC metals.

Numerous studies [31, 18, 74, 13] have introduced mobility laws that account for the kink-pair

mechanism and its temperature dependence in order to accurately capture the plastic response
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of BCC metals. However, due to the stochastic nature of thermal fluctuation and the complex

nucleation-migration interplay, a general formulation for the average advancing velocity following

the kink-pair mechanism is so far precluded, which is addressed in Chapter 3.

1.4.2 Non-planar core structure and cross-slip mechanism

A major reason for the high Peierls stress for screw dislocations in BCC metals is their non-

planar core structure. Unlike BCC edge dislocations or FCC dislocations that are generally centered

on a single crystallographic slip plane, BCC screws has a non-planar, spread-out core. Atomistic

simulations have shown that the screw dislocation core in BCC metals does not lie neatly in one

slip plane but spreads symmetrically into multiple adjacent slip planes that intersect along the

dislocation line [88, 24, 87, 92].

The non-planar core enables a high propensity for cross-slip, a mechanism in which a screw

dislocation switches its slip plane without requiring a substantial energy barrier. Unlike FCC metals,

where cross-slip is possible but requires an additional activation stress and is less frequent, BCC

screw dislocations are frequently observed to undergo repeated cross-slip events [27]. As a result,

the slip traces they produce on the material surface often appear wavy or non-crystallographic, rather

than aligned with a single slip plane. This easy cross-slip behavior provides several mechanical

advantages: it allows screw dislocations to bypass obstacles, access alternate slip systems, and

contribute to strain hardening and ductility by enabling more complex deformation paths.

However, these same features also introduce modeling and characterization challenges. The

delocalized core complicates the definition of a unique slip plane for each screw dislocation,

making it difficult to infer active deformation modes from experimental observations alone. In

simulation frameworks such as CPFEM, conventional assumptions that tie each slip system to a

fixed crystallographic plane may no longer be valid. Furthermore, the frequent cross-slip introduces

orientation-dependent and stress-path-dependent responses that violate the assumptions of Schmid’s

law [73], requiring more sophisticated constitutive descriptions that incorporate non-Schmid effects

[32].

The modeling work in Chapter 4 explicitly take into account the non-planar core structure

10



and cross-slip mechanism, as well as the kink-pair mechanism. The constitutive model developed

in Chapter 4 explicitly addresses these complexities. A dedicated framework is introduced to

separately account for the behavior of screw and edge dislocations, including the non-planar

spreading of screw cores and their probability of cross-slip. These features are essential for

capturing the distinctive plasticity mechanisms observed in BCC metals.

1.5 Structure of the Dissertation

This dissertation contains three studies, each addressing a specific aspect of the physics-based

crystal plasticity modeling for BCC metals.

Chapter 2 investigates the validity of using surface-based measurements for calibrating crystal

plasticity models for bulk materials, and discussed the underlying mechanism of the slip activity

biased by surfaces.

Chapter 3 develops a general, full-range dislocation mobility law framework based on the kink-

pair mechanism that captures the thermally activated motion of dislocations across a broad range

of stress and temperature conditions, providing a foundation for more physically accurate modeling

of BCC plasticity.

Chapter 4 introduces a comprehensive constitutive model for BCC metals. The model ac-

counts for distinct mobility and evolution laws among different characters and configurations of

dislocations, and is implemented within the DAMASK framework for simulation.

Together, these studies combine practical evaluation of calibration techniques, mechanism-

informed mobility laws, and the integration of dislocation physics into a unified constitutive frame-

work for BCC metals.
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CHAPTER 2

SURFACE EFFECT ON DISLOCATION SLIP ACTIVITY

This chapter is largely based on the study by Bing et al. [10], with adaptation for the purposes of

this dissertation.

2.1 Motivation

The evolution of dislocation content in a plastically deforming grain of a polycrystalline material

generally results from a complex interaction between dislocation activity on multiple slip systems.

The evolving dislocation structure results in differing slip resistance1 to further slip on each slip

system. As such, probing the activity of any potential slip system and its associated resistance

is a valuable tool to understand the evolution of structure and deformation resistance under load.

Moreover, the quantification of slip activity and deformation resistance is essential to formulate

and validate models of crystal plasticity. Such models, when applied to simulate the heterogeneity

of deformation usually exhibited in polycrystalline materials, allow interrogation of, for instance,

the (spatially rare) events that are at the root of material degradation and ultimate failure.

The task outlined above becomes even more complex for materials that have multiple slip

families, such as hexagonal (HCP) or body-centered cubic (BCC) metals, e.g., Ti and Mg, or Fe.

Over the past few decades, several techniques have been developed to extract essential information

for understanding heterogeneous plasticity. In the following, we briefly summarize the major

progress achieved specifically for HCP metals as an exemplar of the challenges.

The most intuitive way is to exclusively activate one selected slip system by intentionally

orienting a single crystal relative to the load, as done, for instance, by Williams et al. [94], and

confirming the intended activity by surface slip trace observation. However, if some slip families

are significantly harder (e.g. pyramidal ⟨𝑐 + 𝑎⟩ in HCP metals), an easier slip family might be

activated sooner even when the targeted (harder) system is in the most favored orientation (has the

highest Schmid factor), thus frustrating the independent probing of such hard families.
1frequently termed critical resolved shear stress (CRSS), usually associated with yielding, and sensitive to alloy

content and microstructural defects
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Alternatively, knowledge can be gained from simulating nano-indentation into a single grain

using a suitable constitutive model, and fitting its parameters (e.g. slip family resistances) to match

the experimental response. Multiple features have been used as the basis for comparison between

simulation and experiment, such as the load–displacement response and surface topography [98] or

variation of hardness with crystallographic orientation [71]. Important challenges for this approach

include the uniqueness of the identified parameter set [52] and the reproducibility of the measured

response, caused, for instance, by the variability of initial defect content and uneven surface finish

[12, 39, 9, 100].

Diffraction-based methods offer a means to directly measure the distortion of the unit cell that

can be translated into the stress tensor, and are used with various deconvolution techniques to

identify slip resistances. Baczmański et al. measured the evolution of lattice plane spacings with

increasing plastic strain in Mg by Multireflection Grazing Incidence X-ray Diffraction (MGIXD)

[7], which only probes the surface grains, and by neutron diffraction in bulk grains [6]. The

results differed and were fitted with a self-consistent crystal plasticity homogenization model, i.

e. embedding each of the simulated grains in an infinite material of their average strength. The

slip family resistances required to match the measurements exhibited a larger difference among slip

resistances (a wider spread) and a lower basal ⟨𝑎⟩ resistance for the surface than the bulk [7, table

3], suggesting a systematic difference in deformation activity for different slip families between

surface and bulk grains.

Furthermore, synchrotron-based high-energy X-ray diffraction microscopy with far-field detec-

tion (ff-HEDM) is able to measure the average deviatoric stress tensor and lattice orientation of

most grains within an illuminated sample volume of typically 1 mm3 at multiple strain levels before

and after plastic yielding. From such data, the shear stress on every slip system in each grain was

derived and the evolving maximum values per slip family were interpreted as the characteristic slip

resistances, e.g., [54, 55]. Similar to the concern raised above in the case of oriented single crystals,

the highest apparent slip resistances might not correlate with actual activity on those slip systems,

but be a (trivial) consequence of plastic flow carried by other (easier) slip systems, thus limiting
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Figure 2.1 Slip resistance of (first-order) pyramidal ⟨𝑐 + 𝑎⟩ (orange) and prismatic ⟨𝑎⟩ (red) relative
to that of the basal ⟨𝑎⟩ (blue) slip family as reported in two investigations sharing identical sample
material of commercially pure Ti but differing depths of probed volume [90, 38] (open and filled
circles, respectively). The surface slip resistances (open circles) exhibit a wider spread.

the overall maximum stress attained in such grains. One possibility to circumvent this uncertainty

regarding actual slip activity is to compare the measured grain lattice orientation change to that

expected for the assumed slip activity [55]. Another approach pursued by Wang et al. [90, 91] is

based on the insight that dominant prismatic ⟨𝑎⟩ slip causes a lattice rotation about the ⟨𝑐⟩-axis and

dominant basal ⟨𝑎⟩ slip about an axis perpendicular to ⟨𝑐⟩. For grains that exhibited one of these

two special rotations, the maximum resolved shear stress for the corresponding slip family was

then averaged and interpreted as the respective slip resistance in commercially-pure Ti as sample

material.

In contrast, a relatively inexpensive and straightforward approach to directly obtain the ratios

between slip family resistances was proposed by Li et al. [38] based on the ratios of expected and

observed frequencies of surface slip trace observations for each slip family and used, for instance,

to investigate the influence of alloying elements on slip resistances in Mg [50].

In both cases where the same material was investigated with techniques that probe either (near-

)surface or bulk locations, i.e. Mg [7, 19] and commercially-pure Ti [90, 38] (see also (Fig. 2.1), the

spread in identified slip resistances turned out to be systematically wider when extracted close to the

surface. As the idea of systematically different intrinsic slip resistances at different material depths

seems unlikely, Chakraborty et al. [19] conjectured that a universal surface influence may exist

because the mechanical constraint that opposes plastic deformation of a grain within a polycrystal
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gradually decreases with proximity to the surface. The open question addressed in this work is

when and how surfaces affect the slip family activity observed in a grain and whether the magnitude

of this effect can be quantified and predicted such that inexpensive surface measurements can be

used to extract bulk slip resistances.

To address the above question, we set up crystal plasticity simulations of thick polycrystalline

film as well as bulk polycrystals as a reference. To investigate the influence of dissimilarity among

slip families, HCP and BCC metals were used as examples for mixed in contrast to universally-high

slip family multiplicity.2 In HCP, basal ⟨𝑎⟩, prismatic ⟨𝑎⟩, and (first-order) pyramidal ⟨𝑐 + 𝑎⟩ were

considered, whereas {1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ slip families were included for BCC.

2.2 Methods

The simulations used the grid solver of the Düsseldorf Advanced Material Simulation Kit

(DAMASK, [68]). The kinematic framework as the foundation of the following constitutive laws

is introduced in Section 1.2.2.

2.2.1 Material constitutive description

The resolved stress on each slip system follows as the projection

𝜏𝛼 = Mp : (m𝛼 ⊗ n𝛼) , (2.1)

where Mp is the Mandel stress, m𝛼 is the unit vector along the slip direction, and n𝛼 is the unit

vector normal to the slip plane.

The rate of shear deformation is derived by

¤𝛾𝛼 = ¤𝛾0

����𝜏𝛼𝜉𝛼 ����𝑛 sgn (𝜏𝛼) , (2.2)

where ¤𝛾0 is a reference shear rate and 𝑛 denotes the stress exponent.

The resistance 𝜉𝛼 to crystallographic slip along each slip system is modeled according to the

phenomenological constitutive description introduced by Peirce et al. [59]. Following Brown et al.

[15], the asymptotic evolution of each slip resistance from an initial value 𝜉𝛼0 to a saturation value

2The number of distinct slip systems in a family is called its “multiplicity”.
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Table 2.1 Constitutive parameters of exemplary HCP and BCC materials and the virtual air.

Property Value Unit

HCP BCC Air

𝑐/𝑎 ratio 1.587 · ·
𝜉0 various various 0.03 MPa
𝜉∞/𝜉0 3 3 2
ℎ0 0.2 1 10−3 GPa

ℎ𝛼𝛽 1 1 (coplanar) ·1.4 (non-coplanar)
¤𝛾0 10−3 10−3 10−3 s−1

𝑛 20 20 5
𝑀 · · 3
𝑎 2 2 2

𝜉𝛼∞ has contributions due to slip on all operating systems:

¤𝜉𝛼 = ℎ0

����1 − 𝜉𝛼

𝜉𝛼∞

����𝑎 sgn
(
1 − 𝜉𝛼

𝜉𝛼∞

)
ℎ𝛼𝛽

�� ¤𝛾𝛽
��, (2.3)

where ℎ0 is a reference hardening parameter, 𝑎 is the hardening exponent, and ℎ𝛼𝛽 characterizes

the slip system interactions.

A similar constitutive description is used to describe the evolution of the eigenstrain gradient

Fi in the case of a “virtual air” layer introduced in Section 2.2.2 (see [68, 45] for details).

Parameters used in the simulations are listed in Table 2.1.

2.2.2 Geometry

To investigate how surfaces influence the slip family activity, polycrystalline structures with

and without the presence of surfaces were constructed (Fig. 2.2) and labeled as “bulk” and “film”,

respectively.

A periodic polycrystalline bulk structure (Fig. 2.2 left) contains 𝑛grain = 400 randomly oriented

grains resulting from a Voronoi tessellation of a random Poisson point distribution within a cubic

volume discretized by 𝑁 = 96 × 96 × 96 equidistant grid points. Reported values of slip family

activity represent cumulative shear arising from each of the considered slip families averaged over

the whole volume.

A freestanding polycrystalline film that is multiple grains thick results from inserting a layer of
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Figure 2.2 Exemplary unit cells of (left) periodic Voronoi tessellation with 400 grains mimicking
a polycrystalline bulk structure, and (right) the same polycrystalline bulk structure but sandwiched
by a layer of dilatational, soft, and compliant material (“virtual air”, translucent) to introduce two,
essentially free, surfaces on top and bottom. Grain color reflects crystallographic direction along
the loading axis 𝑥 (with inverse pole figure coloring of hexagonal symmetry).

dilatational, low-strength, low-stiffness material (“virtual air”) into a periodic polycrystalline bulk

structure to mechanically decouple the top and bottom faces (Fig. 2.2 right). Since the layer of

virtual air can only exert a minuscule normal force (along 𝑦), both interfaces effectively act like

free surfaces. In the case of the film structure, values of slip family activity are averaged per slice

normal to the surface and reported as a function of distance to the nearest surface, i.e. as a depth

profile.

Grid convergence was tested with three resolutions for the film structure as shown in Fig. 2.3

(left) while keeping the number of grid points discretizing the air layer along the surface normal

constant. Since the chosen constitutive law is scale-independent, the coordinate system (specifically

the distance to the surface) is normalized by the average grain diameter 𝑑grain
3 as the only scale-

determining quantity. Figure 2.3 (right) shows the slip activity depth profile observed for pyramidal

⟨𝑐 + 𝑎⟩, which is the worst converging one of all slip families in this example. Its slip activity is

virtually identical between grid resolutions of 643 and 963 in the metal domain. Hence, 𝑁 = 963

3𝑁/𝑛grain = 4𝜋
3

(
𝑑grain

2

)3
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Figure 2.3 The same film structure discretized by 𝑁 = 323, 643, and 963 voxels within the metal
domain, indicated by the black wireframe. The translucent air layer is 10 + 10 voxels thick in all
cases. The film center is about 3 grain diameters from the surface. The depth profile on the right
shows the average cumulative pyramidal ⟨𝑐 + 𝑎⟩ shear in each slice after 5 % strain along 𝑥 for the
three different grid resolutions.

was considered as a suitably converged resolution. Note that the first point from the surface in

Fig. 2.3 (first layer of non-air voxels) is deviating from this overall converging behavior, most likely

caused by the Gibbs phenomenon in response to the sudden property contrast across this interface.

2.2.3 Boundary conditions

Owing to the numerical solution strategy, all simulations obey periodic boundary conditions

such that only volume-averaged stress or deformation values can be prescribed. Both the “bulk”

and “film” structure are deformed along the 𝑥 direction under mixed boundary conditions that are

targeting a unidirectional stress response. Specifically, the volume-averaged deformation gradient
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rate ¤F and work-conjugate first Piola–Kirchhoff stress P values

¤Fbulk =


10−3 0 0

0 · 0

0 0 ·


s−1 and Pbulk =


· · ·

· 0 ·

· · 0


Pa (2.4)

¤Ffilm =


10−3 0 0

0 0 0

0 0 ·


s−1 and Pfilm =


· · ·

· · ·

· · 0


Pa (2.5)

were prescribed for a duration of 10 s and 50 s resulting in a final extension of 1 % and 5 %,

respectively, as it is helpful to include the influence of work hardening in the scope of this work.

A dot ‘·’ in Eqs. (2.4) and (2.5) indicates that the complementary condition is prescribed. Rather

than adopting the bulk boundary condition for the film structure, the numerical convergence of the

film improved notably (with an insignificant effect on the result) when preventing any extension

along the surface normal, i.e. ¤𝐹𝑦𝑦 = 0, such that any contraction of the crystalline volume along 𝑦

is accommodated by a corresponding extension in the thickness of the (essentially stress-free) layer

of virtual air.

2.2.4 Parametric study

To understand the effects of (i) crystal elasticity, (ii) differences in slip resistance per family,

and (iii) multiplicity in easy and hard slip families on a potential surface effect, a parametric study

along these three dimensions was performed.

2.2.4.1 Elasticity

To investigate the influence of elastic anisotropy, HCP was chosen as an example. Upon

inspection of the elemental HCP metals, it turns out that their elastic anisotropy can be clustered

into three groups as illustrated in Fig. 2.4. Table 2.2 summarizes the stiffness tensor components

adopted in this study for HCP metals to represent these three distinct shapes (scaled to approximately

equal overall magnitude) with some examples in each of the three groups, as well as for BCC metals

and virtual air elasticity.
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Figure 2.4 Directional stiffness in lattice frame coordinates illustrating each of the three represen-
tative instances of HCP elastic anisotropy listed in Table 2.2; from left to right and light to dark:
“marshmallow”, “capsule”, and “spin”.

Table 2.2 Elastic stiffness tensor components of (isotropic) virtual air, three sample materials that
span the anisotropy range of HCP metals, and an isotropic BCC material.

Material Elastic stiffness tensor / GPa

𝐶11 𝐶12 𝐶13 𝐶33 𝐶44

virtual air 10−1 10−3 · · ·
HCP

marshmallow (Cd, Zn) 165 5 55 140 60
capsule (Be) 110 10 5 130 70
spin (Co, Mg, Zr) 165 90 60 190 40

BCC 270 110 · · 80

2.2.4.2 Slip resistance

To discern whether the crystallography or the relative ease/difficulty of activation is the primary

cause for a potential surface effect on the slip family activity, several choices of relative slip family

resistances provide a comprehensive comparison (see left column of Fig. 2.5 and Fig. 2.7).

2.2.4.3 Slip family multiplicity

To understand whether the slip family multiplicity plays a role in a surface effect, the number

of available slip systems in the pyramidal ⟨𝑐 + 𝑎⟩ family was artificially reduced to being equal to

basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩, i.e. from 12 to 3 for fixed slip resistances and elastic anisotropy (see

left column of Fig. 2.6).
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2.3 Results and Discussion

All parametric studies of film or bulk structures average 50 or 5 independent realizations,

containing a total of 50 × 400 = 20 000 or 5 × 400 = 2000 grains of random shape and orientation.

Section 2.3.1 considers HCP metals as an example of lattices with mixed multiplicity, whereas

BCC metals are investigated in Section 2.3.2 as example for universally high multiplicity. After

summarizing the surface effect behavior in Section 2.3.3, corresponding mechanisms are discussed

in Section 2.3.4.

2.3.1 HCP

Figure 2.5 displays the HCP slip family activity along the depth of the film structures (vertical

curves) and in the bulk polycrystal (filled squares below bottom scale) up to 1 % and 5 % strain

with their corresponding slip resistance ratios shown in the left column. Data is colored by slip

family and the different shades indicate the three elastic anisotropy cases. Horizontal bars give the

central 68 % of each slip family activity population. The vertical bar represents the average grain

size 𝑑grain, i.e., the overall distance from the surface to the center of the film structure is about three

grains.

2.3.1.1 Influence of elastic anisotropy

The influence of elastic anisotropy diminishes with increasing strain, as reflected by the differ-

ently shaded square symbols and associated depth profiles becoming overlaid in the right column

of Fig. 2.5. The variability of slip activity (horizontal bars) with depth is only illustrated at three

exemplary depths across the three elastic anisotropy instances as it turned out to not strongly depend

on the specific anisotropy. Overall, the elastic anisotropy variations do not affect the shape of the

depth profiles.

2.3.1.2 Bulk slip family activity

Naturally, the slip systems with the lowest slip resistance (rightmost in first column with reversed

scale) values show the greatest activity. The (relative) spread in the slip family activity directly

reflects the imposed slip resistance ratios. For instance, the larger ratios in row 8 (1:1:4) result in

wider activity spread than the smaller ratios in row 7 (1:1:2). Thus, whenever the slip resistance
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Slip resistance Depth profiles of HCP slip family activity

evolution at 1% strain at 5% strain

103

initial

easierharder

1%5%

102

slip resistance / MPa
10-6

center

surface

10-1

average cumulative shear

within
stdev

bulk

Figure 2.5 For eight cases of different slip resistance ratios in the left column, the right columns
present the resulting depth profiles of slip family activity at two strain levels. Slip families are
represented by different colors (and line styles) with shades reflecting the elastic anisotropy.
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ratios narrow in response to strain hardening (filled circles compared to open ones), less favored slip

families become relatively more active (shrinking distance between squares in column 3 compared

to column 2).

2.3.1.3 Depth profiles of slip family activity

At a depth exceeding about 2 𝑑grain, the activity in the film is essentially the same as that observed

in the bulk, i.e. the value in the lower third of each curve is constant and equal to the corresponding

square indicating bulk slip activity. In contrast, when approaching the surface (within 2 𝑑grain), the

slip activity of a film usually deviates from the bulk response. We note that the distance of about

two average grain diameters beyond which a surface effect fades out is consistent with the results

reported by Diehl et al. [22] in their investigation of “columnarity”, i.e., how far away a change in

grain structure is influencing the mechanical response in a bulk polycrystal.4

From the depth profiles presented in Fig. 2.5, two main observations can be made. The slip

activity toward the surface

1. decreases for any slip family that is harder than the easiest

2. increases for the easiest slip family in case of basal ⟨𝑎⟩ (row 2 (1:2:4), 3 (1:4:4), and 4 (1:2:2))

and prismatic ⟨𝑎⟩ (row 1 (2:1:4)) but not for pyramidal ⟨𝑐 + 𝑎⟩ (row 5 (2:2:1)) or combined

basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩ (last three rows)

The latter observation suggests that the number of available slip systems in the easiest family (or a

combination thereof) is a governing factor in the emergence of a surface effect.

2.3.1.4 Slip family multiplicity

To elucidate the influence of the number of available slip systems in the emergence of a surface

effect for the easiest slip family, we select row 5 (2:2:1) of Fig. 2.5 as a test case and reduce the

multiplicity of the (here easiest) pyramidal ⟨𝑐 + 𝑎⟩ slip family from 12 to 3.5 Figure 2.6 shows

that this change results in a gradual increase of the activity of the two harder families (basal ⟨𝑎⟩
4We note the slight conceptual difference of “structural change” being the removal of grains beyond the surface in

the present study in contrast to an alteration of those grains in ref. [22].
5The “capsule” elastic tensor from Table 2.2 was used.
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Number of Depth profiles of HCP slip
slip systems family activity at 5% strain

3, 3, 12

10-4 1
average cumulative shear

center

surface

3, 3, 9

3, 3, 7

3, 3, 6

3, 3, 5

3, 3, 4

3, 3, 3

Figure 2.6 Slip activity of the three HCP slip families (basal ⟨𝑎⟩, prismatic ⟨𝑎⟩, pyramidal ⟨𝑐 + 𝑎⟩)
as a function of distance from the surface for a fixed slip resistance ratio (same as row 5 (2:2:1) in
Fig. 2.5) and elastic anisotropy (“capsule” in Table 2.2) but with a progressively reduced number
of pyramidal ⟨𝑐 + 𝑎⟩ slip systems in the family (i.e. reduced multiplicity).
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and prismatic ⟨𝑎⟩) but does not qualitatively alter their surface effect, i.e., the blue and red curves

remain bent to the left. In contrast, the pyramidal ⟨𝑐 + 𝑎⟩ family develops an increasingly notable

surface effect below a multiplicity of seven.

Such a surface effect is always present if the easiest slip family has low multiplicity. For

instance, the surface effect of basal ⟨𝑎⟩ (multiplicity of three) as the easiest family in rows 2 (1:2:4),

3 (1:4:4), and 4 (1:2:2) of Fig. 2.5 is very comparable to that of the reduced multiplicity pyramidal

⟨𝑐 + 𝑎⟩ in the bottom row of Fig. 2.6. Similarly, the combination of basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩

as easiest families in row 7 (1:1:2) in Fig. 2.5 resembles the result for pyramidal ⟨𝑐 + 𝑎⟩ with the

same (3+3) multiplicity of six in Fig. 2.6.

2.3.2 BCC

The combinations of multiplicity and slip resistance investigated so far suggest that in a situation

of high multiplicity for soft as well as hard families, the surface effect is comparable to the results

shown in rows 5 (2:2:1) and 7 (1:1:2) of Fig. 2.5. To test this hypothesis, we investigated an

exemplary BCC material with two slip families, each having a multiplicity of twelve. Figure 2.7

follows the format of Fig. 2.5 and compares the slip family depth profiles after 5 % strain across

various slip resistance ratios between the {1 1 0} (green) and {1 1 2} (purple) slip families.

From top to bottom, the observed slip activity follows the changing ratios from strongly favoring

{1 1 0} to strongly favoring {1 1 2}. The decrease of activity with increasing relative slip resistance

is asymmetric: {1 1 0} slip (green curves top to bottom) shows a greater decrease than {1 1 2} slip

(purple curves bottom to top) at comparable slip resistances. This is most apparent in the middle

row of Fig. 2.7, i.e. {1 1 2} is more active than {1 1 0} slip at equal slip resistance. We note in

passing that for common BCC metals, the slip resistance of {1 1 0} and {1 1 2} is similar, perhaps

within 10 % of difference, i.e. close to the conditions shown in the middle three rows of Fig. 2.7.

The difference in slip activity despite equally slip-resistant families (about 25 % in the bulk of row

3 (1:2)) can be rationalized by the fact that for a random stress state, the chance that a {1 1 2} slip

system experiences the largest resolved shear stress is a few percent higher than for a {1 1 0} slip

system.
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Slip resistance Depth profiles of BCC slip
evolution family activity at 5% strain
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slip resistance / MPa
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average cumulative shear
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Figure 2.7 For five different slip resistance ratios in the left column, the resulting depth profiles
of BCC slip family activity are presented in the right column after 5 % strain. Closed circles in
the left column correspond to the 95th percentile of slip resistances evolved after 5 % strain from
initial values (open circles). The vertical scale in the right column spans from the film surface to
the center, about three grains deep. Variation across the central 68 % of each slip family activity
population is small and less than the curve widths. The slightly higher activity of {1 1 2} compared
to {1 1 0} slip at equal slip resistance is connected to the slightly higher chance for a {1 1 2}⟨1 1 1⟩
slip system to have the largest Schmid factor.
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Compared to what was observed for HCP metals under most conditions, the extent of surface

effect in BCC cases is subtle to non-existent.

2.3.3 Types of surface effect manifestations

Overall, three distinct patterns a), b), and c) are observed for the surface effect on slip family

activity:

a) The activity of slip families that are harder than the easiest one is decreased near the surface

relative to the interior, e.g. prismatic ⟨𝑎⟩ and pyramidal ⟨𝑐 + 𝑎⟩ in row 2 (1:2:4) of Fig. 2.5,

or basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩ in row 5 (2:2:1) of the same figure.

b) Conversely, the surface activity is increased for the easiest slip family provided its multiplicity

is low, such as basal ⟨𝑎⟩ in rows 2 (1:2:4) of Fig. 2.5, or pyramidal ⟨𝑐 + 𝑎⟩ in the bottom rows

of Fig. 2.6.

c) If the easiest slip family has considerable multiplicity, the surface effect on its activity is

virtually unnoticeable, as demonstrated by the essentially straight curves of, for instance,

pyramidal ⟨𝑐 + 𝑎⟩ in top rows of Fig. 2.6, combined basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩ (featuring

six slip systems in total) in row 7 (1:1:2) and 8 (1:1:4) of Fig. 2.5, or {1 1 2} slip in row 4

(1.1:1) of Fig. 2.7.

Moreover, the surface effect intensifies with

1. larger slip resistance contrast, e.g. all three slip families in row 3 (1:4:4) of Fig. 2.5 show a

larger curvature than in row 4 (1:2:2), a more drastic surface effect on pyramidal ⟨𝑐 + 𝑎⟩ slip

activity is observed in row 8 (1:1:4) compared to row 7 (1:1:2), and for {1 1 0} in row 5 (2:1)

compared to row 4 (1.1:1) of Fig. 2.7;

2. larger multiplicity contrast, e.g., with a slip resistance ratio of 2, Fig. 2.5 shows more

pronounced surface effects than Fig. 2.7.
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2.3.4 Mechanisms

Statistically, the best-aligned slip systems of the easiest slip family are activated first under

loading, and the shape change caused by their activity generally leads to incompatibility with

neighboring grains. In consequence, the stress state changes progressively favoring slip systems

that help maintain compatibility. The overall compatibility constraints are naturally relaxed closer

to the surface than further into the bulk. These ideas are at the core of the following explanations

of the three different manifestations of the surface effect.

If the easiest slip family has numerous members (high multiplicity, typically more than six

slip systems), chances are high that tighter compatibility requirements with increasing depth can

be fulfilled by activating additional members of this (easiest) family. Therefore, if the observed

slip activity is aggregated at the family level, there will be no substantial influence of changing

compatibility constraints with depth on the overall activity of the easiest family, leading to pattern

c), i.e., no surface effect for the easiest family.

However, if the multiplicity of the easiest family is low, an increase in mechanical constraint,

i.e. toward the interior, will decrease the chance to maintain compatibility by slip activity of that

easiest family alone, resulting in decreasing activity of the easiest family with increasing depth as

reflected in pattern b).

Because harder families are generally activated in response to mechanical constraint, their

activity will decrease towards the surface, giving rise to pattern a), independent of whether or not

softer families exhibit a surface effect.

When two or more low-multiplicity families share similar slip resistance values, this effectively

increases the overall multiplicity of the resulting composite family and generally decreases a surface

effect compared to its separate members. Examples are basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩ in row 7 (1:1:2)

and 8 (1:1:4) of Fig. 2.5, which, combined, act in a similar fashion as the sole softest pyramidal

⟨𝑐 + 𝑎⟩ in row 5 (2:2:1) of Fig. 2.5. Moreover, a gradual transition from three separate families

into a combined higher-multiplicity family results when the slip resistance ratios approach one, as

observed in the progression from row 2 (1:2:4) toward 4 (1:2:2) and 6 (1:1:1) of Fig. 2.5, which
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strongly diminishes the surface effect. Conversely, an increasing slip resistance ratio between

the easiest and harder slip families decreases the likelihood of activation for the harder families,

resulting in a widened span of slip family activity, particularly at the surface (compare row 7 (1:1:2)

and 8 (1:1:4) in Fig. 2.5).

Comparing the behavior between HCP and BCC (at slip resistance ratios of 2), the least and

most active slip families differ by more than four orders of magnitude for BCC but no more than

two orders of magnitude for HCP (cf. rows 1 (1:2) and 5 (2:1) in Fig. 2.7 and rows 4 (1:2:2), 5

(2:2:1), and 7 (1:1:2) in Fig. 2.5). This discrepancy is rooted in the similarity of the yield surfaces

associated with the two BCC slip families in contrast to the dissimilarity of those associated with

the basal ⟨𝑎⟩, prismatic ⟨𝑎⟩, and pyramidal ⟨𝑐 + 𝑎⟩ slip families [86]. Since the smallest rotation

to align a {1 1 0} slip system with the nearest {1 1 2} system is only 30◦, the two yield surfaces are

very similar and, therefore, even a small difference in slip resistances between those two families

strongly favors the easier family under virtually all possible deformation conditions. In contrast,

a large misorientation of 64◦ and 79◦ between a pyramidal ⟨𝑐 + 𝑎⟩ slip system and its nearest

basal ⟨𝑎⟩ and prismatic ⟨𝑎⟩ slip system, respectively, implies that basal ⟨𝑎⟩—and even more so

prismatic ⟨𝑎⟩—offers kinematic degrees of freedom where pyramidal ⟨𝑐 + 𝑎⟩ is lacking, despite

its high multiplicity of 12. This kinematic anisotropy of pyramidal ⟨𝑐 + 𝑎⟩ causes the pyramidal

⟨𝑐 + 𝑎⟩ yield surface to be relatively extended (harder to reach) in those directions where basal

⟨𝑎⟩ and prismatic ⟨𝑎⟩ are most facile. Consequently, a very large slip resistance of basal ⟨𝑎⟩ and

prismatic ⟨𝑎⟩ relative to pyramidal ⟨𝑐 + 𝑎⟩ would be required to fully preclude their activity under

deformation conditions unfavorable for pyramidal ⟨𝑐 + 𝑎⟩, i.e., where the pyramidal ⟨𝑐 + 𝑎⟩ yield

surface is extended. This requirement of relatively large slip resistance ratios explains why, despite

pyramidal ⟨𝑐 + 𝑎⟩ being the easiest family in row 5 (2:2:1) and one of the easiest in row 6 (1:1:1)

of Fig. 2.5, there is still appreciable activity of basal ⟨𝑎⟩ and especially prismatic ⟨𝑎⟩, since both

contribute slip activity for deformation conditions that do not align well with pyramidal ⟨𝑐 + 𝑎⟩

kinematic degrees of freedom.

Another consequence of the similarity between the two BCC slip families, in contrast to the
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dissimilar HCP families, is the lack of a large (relative) surface effect for the hardest family in BCC

compared to a much more substantial effect in HCP (pyramidal ⟨𝑐 + 𝑎⟩ in row 8 (1:1:4) of Fig. 2.5).

This is due to the shape of the yield surfaces spanned by each of the two BCC slip families being

very similar, so any changes in the deformation boundary conditions experienced near the surface

compared to the bulk will not substantially alter the ensuing slip activity, as demonstrated by the

modest surface effects observable in Fig. 2.7 (particularly row 3 (1:2)).

2.4 Conclusions

Published slip resistance values of, for instance, magnesium and commercially pure titanium,

determined through a variety of experimental means exhibit differences that suggest a systematic

influence of the surface on the activity of hexagonal slip families. Crystal plasticity simulations of

polycrystalline film and bulk structures were carried out to investigate the influence of a surface on

the slip family activity in hexagonal close-packed (HCP) and body-centered cubic (BCC) materials.

We could demonstrate that two main factors determine the strength of a surface effect, namely the

contrast in slip family resistances (slip resistance ratios) and how similar the different slip families

are (with similarity generally increasing with increasing multiplicity). Any variation in elastic

anisotropy had no appreciable influence on the surface effect. Compared to the bulk interior, the

activity of harder slip families always diminishes near a surface. The activity of the easiest slip

family, especially when it has less than about six available slip systems, exhibits a notable increase

in activity near the surface due to the relaxed constraints. Such a surface effect extends to a depth of

approximately one to two average grain diameters, and it is amplified with increasing slip resistance

ratios.

Based on the present results, given that pyramidal ⟨𝑐 + 𝑎⟩ slip is generally more difficult

than basal ⟨𝑎⟩ or prismatic ⟨𝑎⟩ slip in HCP materials, a significant surface effect of pyramidal

⟨𝑐 + 𝑎⟩ should be anticipated. Specifically, if the sample dimension or slip resistance measurement

methodology restricts the probed depth to less than about two average grain diameters, a significant

overestimation of the slip resistance for the hard pyramidal ⟨𝑐 + 𝑎⟩ family is expected, along with an

underestimation for the easiest family. The magnitude of this surface effect increases with the slip
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resistance ratio between the hardest and softest families, and inversely with the multiplicity of the

easiest family. For HCP metals, the shallower the probed depth, and the greater the ratio between

hardest (pyramidal ⟨𝑐 + 𝑎⟩) and easiest (basal ⟨𝑎⟩ or prismatic ⟨𝑎⟩) slip resistance, the stronger the

expected surface effect.

In contrast, combinations of high-multiplicity slip families do not exhibit a significant surface

effect, as demonstrated using {1 1 0} and {1 1 2} slip families in BCC materials. The observed

larger average activity of {1 1 2} over {1 1 0} slip for equal resistance and multiplicity is connected

to their kinematic difference (twice as many {1 1 2} than {1 1 0} planes) that makes it slightly more

likely to have the highest resolved shear stress on a {1 1 2} slip system.

To sum up, this investigation reveals that interpretation of statistical slip behavior needs to

be done carefully, as responses collected near a surface could differ from bulk locations. This is

particularly relevant for materials featuring low-multiplicity slip families such as HCP, whereas

BCC and FCC metals, in which all slip families have high multiplicity, are virtually unaffected.

Data availability

Scripts employed to generate the data that support the findings of this study are available at

https://github.com/CathyBing/slip_surface_effect.
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CHAPTER 3

A GENERAL MOBILITY LAW FOR BCC SCREW DISLOCATIONS

3.1 Introduction

The mobility law of dislocations is a critical component of dislocation-density-based crystal

plasticity models, where the plastic strain rate depends on the average dislocation velocity [53].

Accurate modeling of dislocation mobility is essential for the prediction of reliable temperature-

and time-dependent plastic responses. However, formulating a mobility law becomes particularly

challenging for dislocations that move via complex mechanisms. For instance, in material systems

with high Peierls stress [58], dislocation motion often follows the kink-pair mechanism [23], i.

e., a dislocation segment advances by the thermally activated nucleation of kink pairs and the

subsequent lateral migration of both kinks in opposite directions. This mechanism is widely

accepted to govern screw dislocation motion in body-centered cubic (BCC) metals [75, 25, 96, 46].

Due to the stochastic nature of thermal fluctuations, the complex interplay between kink-pair

nucleation and kink migration has so far precluded a general analytical formulation of the average

dislocation velocity under arbitrary conditions.

Despite the absence of a general solution, several mobility laws have been developed under

simplifying assumptions tailored to specific regimes of the kink-pair mechanism. Since the kink-

pair mechanism is commonly used to describe screw dislocation motion in BCC metals at low

homologous temperatures, most existing models are constructed in the nucleation-limited regime,

i.e., under the assumption that only a single kink pair exists on a dislocation segment at a time. In

this single-kink-pair regime, the dislocation velocity is a linear function of the kink-pair nucleation

rate [51, 83, 16, 49, 1, 48, 28], with differences across models arising from how the nucleation

rate is formulated. Another approach [18, 74] is to take the harmonic average of the kink-pair

nucleation and migration speeds. Although this yields an intuitive blending of the two processes,

the implicit presumption of only a single kink pair being active on the segment limits its validity to

the rare-nucleation regime.

Some models are applicable beyond the nucleation-limited regime. Hirth and Lothe [31]
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proposed an expression based on kink diffusion theory that captures both the single kink-pair and

the multiple kink-pair regimes, and connected the two asymptotic solutions by harmonic averaging.

More recently, Boleininger et al. [13] developed a statistical mechanics formulation that, although

derived under the presumption of rare kink-pair nucleation rate, offers a limited extension beyond

this regime.

Although many existing mobility models are developed under the assumption that only a single

kink pair is active at a time, the kink-pair mechanism has been observed under much broader

conditions that go beyond this regime. For example, a phase-field dislocation dynamics study by

Jones et al. [33] showed that screw dislocations in niobium transition from single to overlapping

kink-pair motion as temperature increases from 150 K to 400 K (homologous temperature 0.05 to

0.15), with a change in dislocation profile from straight to rugged, under an applied shear stress of

0.57 times the Peierls stress. This observation indicates that the single-kink-pair assumption breaks

down even for relatively moderate temperature regimes of BCC metals.

Moreover, while the kink-pair mechanism is commonly associated with screw dislocations in

BCC metals, it has also been reported for other scenarios. Molecular dynamics simulations [20, 97]

suggest that edge dislocations in BCC metals may also propagate via the kink-pair mechanism, and

nucleation dominates over lateral kink migration. In alloy systems, solute atoms can hinder kink

migration, effectively shifting the rate-limiting process from nucleation to migration [101, 8]. These

reports necessitate models that remain valid when kink migration becomes the bottleneck.

Finally, while blending limiting solutions (e.g., using harmonic averages) may provide rough

estimates, such approaches fail to accurately model the transitional regimes. Therefore, a dislocation

velocity formulation that captures the full-range interplay between the nucleation and migration

processes will extend the applicability of the kink-pair mechanism to broader contexts and result in

more reliable predictions.

Despite the inherent stochasticity of kink-pair nucleation, the average dislocation velocity

resulting from the kink-pair mechanism should, in principle, be expressible in a general and

deterministic form. In other words, the average dislocation velocity �̄� should be representable as a
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function of:

1. critical kink-pair width 𝑤 at which a kink pair will not immediately collapse after nucleation,1

2. segment length 𝐿 of the propagating dislocation,

3. mean rates 𝐽± of nucleating a kink pair of width 𝑤 on a dislocation segment of length 𝐿

causing positive/negative plastic work,

4. lateral migration velocity 𝑣k of individual kinks,

5. distance ℎ between two adjacent Peierls valleys.

Since �̄� is proportional to the kink height ℎ, the formulation can be simplified as

�̄�

ℎ
= �̄� = 𝐹 (𝐽+, 𝐽−, 𝑣k, 𝐿, 𝑤), (3.1)

where �̄� is the normalized average dislocation velocity. The function 𝐹 is intended to remain valid

across the full range of parameter space (𝐽+, 𝐽−, 𝑣k, 𝐿, 𝑤), i.e., without restrictions to the underlying

constitutive laws or parameter conditions, such as, for instance, low kink-pair nucleation rates.

The two limiting scenarios arising from drastic disparities between the kink velocity and the

kink-pair nucleation rate can be readily formulated:

1. If the lateral migration of kinks significantly outpaces the kink-pair nucleation events, then

any negative kink pairs will quickly collapse and the dislocation segment will advance by ℎ

for every nucleated positive kink pair:

�̄�

ℎ
= 𝐽+ (3.2)

2. On the contrary, if the migration of kinks is so slow that the dislocation moves by kink-pair

nucleation only, then the negative kink pairs remain present long enough to compete with

positive kink pairs. Therefore, an advancement of the dislocation line by ℎ requires an excess

of 𝐿
𝑤

positive kink pairs to nucleate:

�̄�

ℎ
=

1
𝐿
𝑤
(𝐽+ − 𝐽−)−1

=
𝑤

𝐿
(𝐽+ − 𝐽−) (3.3)

1We make the simplifying assumption that positive and negative kink pairs share the same critical width.
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Apart from these two limiting scenarios, the complex interplay between the stochastic kink-pair

nucleation process and the lateral kink migration has so far precluded an analytical derivation of a

general function 𝐹 for the entire parameter space in Eq. (3.1).

This study presents a full-range formulation for the average dislocation velocity under the

kink-pair mechanism, derived through probabilistic cellular automaton (CA) simulations. The

propagation of conceptual dislocation segments are tracked across a wide range of conditions, and

their average velocities are systematically fit using a hyperbolic tangent function. The resulting

numerical approximation of the function 𝐹 in Eq. (3.1) is valid for arbitrary combinations of

(𝐽+, 𝐽−, 𝑣k, 𝐿, 𝑤), without presumptions such as rare nucleation events. External dependencies

such as stress or temperature can be introduced via the constitutive relations assigned to the

five variables. By accommodating a wide range of kinetic laws, this general solution extends

the applicability of dislocation mobility models and provides new insights into kink-governed

deformation processes.

The methods of this study are presented in Section 3.2, followed by the simulation results

and fitting process in Section 3.3. The underlying mechanism is discussed in Section 3.4.1. An

example that demonstrates how to apply the proposed solution is provided in Section 3.4.2, and

comparisons to existing approaches are given in Section 3.4.3. Lastly, Section 3.5 draws important

ant conclusions.

3.2 Methods

Two exemplary snapshots (system configurations)2 of the simulated glide process under con-

trasting kink-pair nucleation vs. kink lateral migration speed are given in Fig. 3.1. The slip plane is

simplified as a rectangular cellular lattice of width 𝐿 and infinite height, with each cell representing

an area of 𝑤ℎ. The dislocation separates the slipped area at the bottom from the unslipped area at

the top. Cells in the unslipped area are rendered transparent, whereas any cell in the slipped area is

shaded to reflect the amount of time since it became part of the slipped area, with the most recent

slipped cells in black.
2Animations can be found in the GitHub repository given in Section 3.6.
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(a) Fast lateral kink migration compared to kink-pair nucleation.

(b) Slow lateral kink migration compared to kink-pair nucleation.

Figure 3.1 Snapshots of simulated dislocation profile (boundary between the white unslipped area at
the top and the shaded slipped area at the bottom) for relatively fast (a) and slow (b) kink migration
velocity 𝑣k, respectively, under fixed positive and negative kink-pair nucleation rates (𝐽+ and 𝐽−).
The initial slipped area (the lightest gray area at the bottom) expands upward due to the nucleation
of positive kink pairs and lateral kink migration. The most recently slipped area is rendered darkest
and gets progressively lighter with every elapsed time step to illustrate the area expansion history.
The cell dimension is critical kink pair width 𝑤 by kink height ℎ (not to scale). Both ends of the
(fixed) dislocation segment of length 𝐿 are considered to be perfect sinks for arriving kinks.

Along the dislocation segment, positive (upward) and negative (downward) kink pairs are

formed at a mean rate 𝐽+ and 𝐽−, respectively, with the condition that 𝐽+ > 𝐽−, i.e., the applied

stress determines what is considered “positive.” Every kink moves laterally at a constant velocity 𝑣k

until meeting an opposite kink or the boundary of the simulation window, thereby always expanding

the slipped area, i.e., translating the dislocation line upwards.

Fig. 3.1a shows the scenario when the lateral kink migration significantly outpaces the kink

pair nucleation, which results in an essentially straight dislocation line. The horizontal strips in

the slipped area exhibit a constant gradient reflecting the constant 𝑣k. Occasional abruptly darker

cells are the remnants of collapsed negative kink pairs (e.g. in the second slipped row from the

top). Fig. 3.1b, on the other hand, shows a rugged dislocation profile and a more random advance

pattern (irregular shades) as the kink migration in the illustrated case is much less frequent than

the nucleation of both positive and negative kinks.

Since kink pair nucleation events are considered to be uncorrelated, the number of such events

during interval Δ𝑡, denoted as the random variable 𝑁 , follows the Poisson distribution, i.e., its
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probability mass function is given by:

𝑃 (𝑁± = 𝑛±) =
(𝐽±Δ𝑡)𝑛±

𝑛±!
exp

(
−𝐽±Δ𝑡

)
(3.4)

for nucleation events of positive and negative kink pairs, respectively.

During each time step Δ𝑡:

1. Every kink moves laterally by 𝑣kΔ𝑡 if there is still unslipped area next to it;

2. Two random samples 𝑟± are individually drawn from the uniform distribution over [0, 1), and

the solution 𝑛± of 𝑃 (𝑁± ≤ 𝑛±) = 𝑟±, respectively, becomes the number of new positive and

negative kink pairs to be generated in Δ𝑡;

3. The 𝑛+ new positive kink pairs and 𝑛− new negative kink pairs are generated in randomly

shuffled sequence and positioned one by one at random locations along the dislocation

segment, i.e., along the boundary of the slipped area.

Since the propagation velocity of a dislocation segment can fluctuate widely on short time

scales, the simulations of slipped area expansion are performed over a long enough period. The

average dislocation propagation velocity up to the total simulation time 𝑡 is then calculated as

�̄� =
slipped area

𝐿𝑡
(3.5)

Both Δ𝑡 and 𝑡 are selected such that neither a smaller Δ𝑡 nor a larger 𝑡 change the results by more

than 1 %. To ensure statistical robustness, ten independent simulations were done for each explored

point in the variable space (𝐽±, 𝑣k, 𝐿, 𝑤, ℎ).

In this study, the values of all six variables are kept constant during individual simulations, i.e.

are considered independent of the dislocation profile evolution.

3.3 Results

The critical kink-pair width 𝑤 acts as a natural scaling factor for kink velocity 𝑣k and segment

length 𝐿, similarly to how kink height ℎ does for the average velocity �̄�. Since the normalized
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average velocity �̄� does not change with an arbitrary scaling of lengths by 𝑎 in (𝐽+, 𝐽−, 𝑎𝑣k, 𝑎𝐿, 𝑎𝑤),

Eq. (3.1) can be reduced to a length-free form by choosing 𝑎 = 𝑤−1 such that

�̄� = 𝑓 (𝐽+, 𝜌, 𝜈k, 𝜆) (3.6)

with the normalized kink velocity 𝜈k =
𝑣k
𝑤

, normalized segment length 𝜆 =
𝐿

𝑤
, and net nucleation

fraction 𝜌 =
𝐽+ − 𝐽−

𝐽+
. Consequently, the two theoretical limits resulting from relatively high and

low kink migration velocity (Eqs. (3.2) and (3.3)) are then reduced to

�̄� = 𝐽+, high-𝜈k limit (3.7a)

�̄� =
𝜌

𝜆
𝐽+, low-𝜈k limit (3.7b)

In both cases, the normalized average velocity �̄� is proportional to the nucleation rate of positive

kink pairs 𝐽+. Therefore, simulation results of �̄� are first plotted against 𝐽+ for a given set of

(𝜌, 𝜈k, 𝜆).

Fig. 3.2a presents exemplary results3 for four choices of (𝜌, 𝜈k, 𝜆) as dots in different colors.

All curves smoothly transition from the universal limiting behavior of relatively high kink velocity

(blue line, Eq. (3.7a)) to different limiting behaviors at relatively low kink velocity that depend on

the 𝜌/𝜆 ratio (red lines, Eq. (3.7b)). The curves closely follow the high-𝜈k limit as long as

𝐽+ ≤ 𝜈k
𝜆

=
𝑣k
𝐿
, (3.8)

which corresponds to the condition that a kink laterally sweeps the whole dislocation length before

another positive kink pair nucleates. Consequently, the transition towards the intermediate regime

begins near 𝐽+ = 𝜈k/𝜆 for all curves.

This is further demonstrated by Fig. 3.2b, where both axes are now rescaled by 𝜈k/𝜆 and all

curves collapse onto the same high-𝜈k behavior. Moreover, curves that share a low-𝜈k limit (purple

and black, orange and green) also collapse,4 suggesting that not only the low-𝜈k limits but also the

shape of the transition zone is determined by the 𝜌/𝜆 ratio.
3The ten replications under each condition deviate less than 1 % from each other and are visually indistinguishable

at the scale of the figure, appearing as a single dot.
4The representation of purple and orange data is changed to solid lines in Fig. 3.2b to prevent them from being

fully obscured by the black and green dots.
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Figure 3.2 (a) Four exemplar �̄�− 𝐽+ curves for (𝜌, 𝜈k, 𝜆) (black), (0.1𝜌, 𝜈k, 𝜆) (orange), (𝜌, 10𝜈k, 𝜆)
(purple), and (𝜌, 𝜈k, 10𝜆) (green). (b) Normalizing both axes by 𝜈k/𝜆 collapse the high-𝜈k behavior.
(c) Rescaling the ordinate to transform limits to align low-𝜈k limits. (d) Transformation of the
abscissa collapses all data points into a narrow band, enabling a fit (white curve) by a polynomially
rescaled hyperbolic function given in Eq. (3.10).
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Fig. 3.2c shows the operations to align the different low-𝜈k limits. First, the ordinate is divided

by the abscissa, resulting in a “shear” that transforms each limit to a constant value, and the limits

become horizontal lines. Second, this rescaled ordinate is further normalized by the ratio between

both limits (𝜌/𝜆, see Eq. (3.7)), and all red lines are aligned. The gray-shaded curves illustrate the

variation in the width of the transition zone for a range of logarithmically equispaced 𝜌/𝜆 values.

The transition width appears to be linearly related to the 𝜌/𝜆 ratios on a log-log scale, suggesting

the possibility to consolidate all curves through linearly rescaling the logarithm of the abscissa by

ln(𝜌/𝜆).

A successful fitting attempt5 is demonstrated in Fig. 3.2d with an abscissa transformation:

𝑋 =
ln 𝐽+𝜌

𝜈k
+ 1.54

ln 𝜆
𝜌
+ 2.92

(3.9)

The (asymmetrical sigmoid) master curve is then fitted by a polynomially rescaled hyperbolic

tangent function 6 ,
ln �̄�

𝐽+

ln 𝜆
𝜌

= 0.5
(
tanhpoly(𝑋) − 1

)
, (3.10)

where a satisfactory fitting is given as the white curve in Fig. 3.2d, using

tanhpoly(𝑋) = tanh
(
2.06 − 3.74𝑋 + 2.37𝑋2 − 0.78𝑋3

)
(3.11)

Combining Eqs. (3.9) to (3.11) gives the general solution of the average velocity of dislocations

(Eq. (3.1)) as a function of the four constitutive variables of positive kink nucleation rate 𝐽+, net

nucleation fraction 𝜌, kink migration rate 𝜈k, and normalized segment length 𝜆:

�̄� = 𝐽+
√︁
𝜆/𝜌 exp

(
tanhpoly(𝑋) − 1

)
(3.12)

3.4 Discussion

3.4.1 Interpretation of the predicted behavior

As shown in Fig. 3.2a, the simulation results exhibit a transition between two limiting regimes

(blue and red) during which the dislocation velocity is less than directly proportional to the kink-
5The optimization is done by minimizing the sum of the standard deviation of the curves’ ordinate values, and the

standard deviations are calculated at 200 evenly spaced 𝑥-values sampled across the data range.
6There are other ways of rescaling the abscissa to address the asymmetrical feature of the sigmoid curve. Here we

choose the straightforward polynomial expansion.
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pair nucleation rate, i.e., the slope across an intermediate regime is lower compared to the two

limiting end cases. Starting at the high-kink-velocity limit (blue end on the left), the lateral kink

migration is very fast compared to the kink pair nucleation rate such that lateral migration of a

nucleated kink pair always finishes before the next kink-pair nucleation event. Clearly, this speed

disparity cannot hold up towards higher and higher nucleation rates. Consequently, the relative

increase in dislocation velocity with increasing nucleation rate progressively slows down compared

to the high-kink-velocity limit because each positive kink-pair nucleation then only achieves partial

lateral expansion, which results in a decreased slope. In this intermediate regime, the dislocation

velocity is determined by an interplay of kink-pair nucleation and lateral migration. With a further

increase in nucleation rate (or relative decrease in kink migration velocity) this regime transitions

into the low-kink-velocity limit (red end on the right) where the kink migration velocity becomes so

slow compared to the fast kink-pair nucleation that any dislocation advancement is solely caused by

kink-pair nucleation. Hence, the dislocation velocity turns proportional to the kink-pair nucleation

rate again, which results in the observed upward sloping.

The gradual changes in the sensitivity of the dislocation velocity over the large range of kink-pair

nucleation rate observed in Fig. 3.2a, can be expected to result in corresponding variations of the

nominal activation energy of dislocation velocity.

3.4.2 An example of model applicability

Relation (3.12) captures the full range of behavior without assuming limiting scenarios or any

underlying kinetics other than the kink-pair mechanism, and is thus designed to accommodate a

wide range of kinetic laws for the five variables in Eq. (3.1).

To demonstrate the model applicability, the same kinetic laws and associated parameters for

a 1
2 ⟨1 1 1⟩ screw dislocation in Fe as those adopted by Boleininger et al. [13] is incorporated into

Eq. (3.12), and the predicted dislocation velocity is compared with their analytical solution and

kinetic Monte Carlo (kMC) simulations. In [13], the critical kink-pair width 𝑤 is chosen as the

Burgers vector length 𝑏. A single dislocation line of length 𝐿 is partitioned into 𝜆 sites of length 𝑏,

i.e. 𝐿 = 𝜆𝑏, and each site can accommodate at most one kink. Each site can move forward (+) or

41



backward (-) by the kink height ℎ via two processes:

1. nucleation of a kink pair at this site (and necessarily its neighbor) with rate

𝑘±n = 𝑘0 exp
[
−2 𝑓k(±𝜎,𝑇)

𝑘𝑇

]
, (3.13)

2. motion of a kink across this site with rate

𝑘±m = 𝑘0(1 ± 𝜎/250 MPa), (3.14)

with the attempt frequency 𝑘0 = 10 ps−1 and the free energy 𝑓k of a kink [80] is given by

𝑓k = 0.33 eV
(
1 − 𝑇

700 K
− 𝜎/900 MPa

1 − 𝑇/700 K

)
. (3.15)

The above-listed two rates proposed in [13] are translated into 𝐽± = 𝜆𝑘±n and 𝑣k = ℎ
(
𝑘+m − 𝑘−m

)
,7

which then serve as input for Eq. (3.12).

Boleininger et al. [13] presume a low kink-pair nucleation rate and use a statistical mechanics

approach to derive an approximate analytical expression for the mean dislocation velocity

�̄� = 2ℎ
√
𝑧
(
𝑘+m − 𝑘−m

) 𝐼1 [2𝜆√𝑧]
𝐼0 [2𝜆

√
𝑧]
, (3.16)

where 𝑧 =
(
𝑘+n + 𝑘−n

)
/ 2𝑘0 is the normalized average kink-pair nucleation rate, and 𝐼𝑛 is the modified

Bessel function of the first kind of order 𝑛. Parameters in Eqs. (3.13) to (3.15) are fitted to the kMC

simulations.

Figure 3.3 compares kMC simulations (dots) and the statistical mechanics solution (Eq. (3.16),

dashed lines) of [13] with the probabilistic CA solution (Eq. (3.12), solid line) proposed in the

present study. The predicted temperature dependencies of dislocation velocity from both studies are

very close to each other over a wide range of temperatures. However, towards high temperatures, the

slopes of the probabilistic CA (solid) and statistical mechanics (dashed) curves start to differ, where

the probabilistic CA solution predicts a faster increase of dislocation velocity with temperature.
7The unit step that scales the lateral kink velocity should not be ℎ but 𝑏, as confirmed by Dr. Boleininger, but we

follow the original expression of Boleininger et al. [13] in order to directly compare with their kMC simulations. This
only slightly varies the results as ℎ and 𝑏 are within 40 % of each other.
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Figure 3.3 The average dislocation velocity resulting from the kMC simulations (dots) and corre-
sponding statistical mechanics solution (dashed, Eq. (3.16)) of Boleininger et al. [13] in comparison
to the probabilistic CA solution (solid, Eq. (3.12)) under three applied shear stresses and dislocation
lengths of 250 𝑏. An example of how Eq. (3.19) [18, 74] behaves is illustrated by the dash-dotted
line, where 𝑡n and 𝑡m are the expected time for kink-pair nucleation and lateral sweeping by kink
migration, respectively.

This difference is likely due to the presumption of rare kink-pair nucleation made by Boleininger

et al. [13] in their solution, which becomes increasingly problematic at higher temperatures.

Furthermore, the derivation of Eq. (3.16) is based on a simplification that precludes kink-pair

nucleation within 𝑤 of existing kinks. This might explain the divergence of dislocation velocity at

high temperatures, which corresponds to a regime with relatively higher nucleation rates and more

rugged dislocation profiles.

Overall, the agreement between both studies demonstrates that the probabilistic CA solution

(Eq. (3.12)) yields consistent dislocation velocities when based on known input variables.
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3.4.3 Comparison with alternative approaches

The classical approach to modeling screw dislocation velocity assumes a single thermally

activated process characterized by a constant activation energy Δ𝐺, leading to the expression

�̄� ∝ exp
(
−Δ𝐺
𝑘𝑇

)
. (3.17)

However, as shown in Fig. 3.3, every �̄�–𝑇−1 curve exhibits a distinct bend spanning approximately

50 K to 100 K, where the effective activation energy—evident from the slope—transitions smoothly

from a higher constant value to lower ones with increasing temperature (left to right). This behavior

indicates that assuming a constant Δ𝐺 becomes inadequate outside the low-temperature regime.8

We note that the bend in each curve in Fig. 3.3 happens around the point of the transition from the

high-kink-velocity limit to the intermediate regime in Fig. 3.2a, which occurs at (cf. Eq. (3.8))

𝐽+ =
𝑣k
𝐿
. (3.18)

Therefore, Eq. (3.18) provides a criterion for the validity of using a constant Δ𝐺: as soon as

the stress or temperature causes a crossing of the transition point, it is advisable to use a more

comprehensive model, such as Eq. (3.12), to properly account for the developing interplay between

kink-pair nucleation and kink migration in the intermediate regime.

Another frequently employed mobility law [18, 74] for BCC screw dislocations is

�̄�

ℎ
=

1
𝑡n + 𝑡m

=
1

1
𝐽+ +

𝐿−𝑤
2𝑣k

, (3.19)

where 𝑡n and 𝑡m are the expected time for kink-pair nucleation and lateral sweeping by kink

migration, respectively. Such an intuitive expression blends the rates of both processes and seems

to account for the interplay between them. However, Eq. (3.19) implicitly assumes that only one

kink pair exists at a time. Whereas this assumption is valid in the low-temperature limit—and

yields identical results as Eq. (3.12)—it ignores the emergence of multiple kink pairs beyond that

regime and, therefore, saturates at 2𝑣k/(𝐿 − 𝑤) (see the dash-dotted line in Fig. 3.3), which results

in a constant velocity if the kink migration depends only on stress (such as in Eq. (3.14)).
8While approximating Δ𝐺 as locally constant over narrow temperature intervals may offer limited practical utility,

such an approach is phenomenological and lacks a clear physical justification.
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A method extending beyond the high-kink-velocity limit was proposed by Hirth and Lothe [31],

based on kink diffusion theory. This model leads to

�̄� = 𝑣0 exp
(
−2 𝑓k
𝑘𝑇

)
, if 𝑋 ≫ 𝐿, (3.20a)

�̄� = 𝑣0 exp
(
− 𝑓k
𝑘𝑇

)
, if 𝑋 ≪ 𝐿, (3.20b)

where 𝑓k is the free energy of a single kink, and 𝑋 is the mean distance swept out by a nucleated kink

pair before annihilation. These two asymptotic regimes are blended through harmonic averaging

based on the dislocation segment length 𝐿. The condition 𝑋 ≫ 𝐿 in Eq. (3.20a) is identical to

the high-kink-velocity limit where one nucleated kink pair completely sweeps the whole segment

before the next nucleation event. In contrast, Eq. (3.20b) describes a regime in which multiple

kink pairs are consistently present, leading to frequent kink collisions and mutual annihilation after

short travel distances, analogous to the intermediate regime in Fig. 3.2a. Their proposed reduction

of the activation energy from 2 𝑓k to 𝑓k is consistent with the observed change in slope between the

high-kink-velocity limit and the intermediate regime in Fig. 3.2a. However, it is worth stressing

that the nominal activation energy in the intermediate regime is not a predetermined quantity, such

as 𝑓k, but results inevitably/organically from the transition between two parallel asymptotes, i.e.,

the transition from blue to red limit.

Lastly, the statistical mechanics model offered by Boleininger et al. [13] (Eq. (3.16)) covers

the high-kink-velocity regime well and extends to the intermediate regime, as shown in Fig. 3.3.

Nevertheless, in addition to the divergence observed at the high temperature end, a practical concern

is the numerical overflow of the Bessel functions encountered9 at higher temperatures. Furthermore,

this statistical mechanics model does not inherently recover the high-kink-velocity limit (Eq. (3.2),

blue end), because the normalized kink velocity
(
𝑘+m − 𝑘−m

)
directly scales the overall dislocation

velocity (cf. Eq. (3.16)) rather than being an asymptotic contribution. As a result, the predicted

dislocation velocity remains sensitive to the chosen kink migration law even in regimes where it

should not, thereby limiting the robustness of the model under varying kinetic inputs.
9For the exemplar conditions in Section 3.4.2, both 𝐼0 and 𝐼1 overflow in Python soon after the curves reach the

top end of the figure frame.

45



3.5 Conclusions

This study addressed the lack of a general mobility law that accurately captures dislocation

motion via the kink-pair mechanism across the full spectrum of nucleation-to-migration rate ratios.

By formulating the average dislocation velocity as a function of kink-pair nucleation rates, kink

migration velocity, dislocation segment length, kink-pair width, and kink height, the model provides

a full-range solution based on systematic fitting of results from probabilistic cellular automaton

simulations. The proposed solution does not rely on limiting assumptions or averaging of asymptotic

regimes, and therefore enables a more accurate prediction of the dislocation velocity and supports

robust modeling of temperature- and time-dependent plastic responses. Its compatibility with a

wide range of kinetic laws for the above-listed five variables extends the applicability to BCC metals

at elevated temperatures and to other material systems governed by the kink-pair mechanism. Future

work may incorporate refinements, such as trapezoidal kink-pair shapes or alternative definitions

of available nucleation sites, to further enhance physical fidelity and flexibility.

3.6 Data Availability

All scripts employed to generate the data that support the findings of this study are available at

https://github.com/CathyBing/KP_velocity.
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CHAPTER 4

A COMPREHENSIVE CONSTITUTIVE MODEL FOR BCC METALS

4.1 Introduction

The behavior of dislocations plays a central role in the plastic deformation of crystalline mate-

rials. Studies have shown that the crystallographic distribution of dislocations among slip systems

strongly influences the plastic response, suggesting that effective crystal plasticity models should

be capable of tracking both the mobility and evolution of dislocation populations throughout defor-

mation [56, 90]. The need for a comprehensive constitutive model that can accurately predict the

dislocation dynamics under complex thermomechanical conditions becomes especially important

in the context of cavity formation and other manufacturing processing scenarios.

In BCC metals, the underlying dislocation mechanisms are notably complex. A key aspect

is the fundamental difference in behavior between edge and screw dislocations. As discussed in

Section 1.4, edge dislocations generally have much lower Peierls stresses compared to screw dislo-

cations, which leads to higher mobility. For instance, phase-field dislocation dynamics simulations

of niobium by Jones et al. [33] demonstrate that under applied stress, edge dislocations respond

almost instantaneously, while screw dislocations exhibit a delay due to their kink-pair-controlled

motion. As a result, edge dislocations can quickly leave the crystal, often accumulating at free sur-

faces, whereas screw dislocations remain and dominate the plastic strain rate [29, 77]. This mobility

disparity has been confirmed through both in situelectron microscopy and atomistic simulations

[41, 77, 42, 95].

Because of this well-known distinction in mobility, most conventional crystal plasticity models

do not differentiate between edge and screw dislocation populations in the context of BCC metals.

Mobility laws are frequently based solely on screw dislocation behavior, modeled through the

kink-pair mechanism, while edge dislocations are often neglected [36, 18]. This simplification

limits the ability of such models to capture critical features of plastic flow, particularly under more

complex or extreme conditions. For example, Chen et al. [21] showed that in high-entropy BCC

alloys, both edge and screw dislocations contribute comparably to strengthening due to nanoscale
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trapping effects. Similarly, Jones et al. [33] reported that at higher homologous temperatures, the

mobilities of edge and screw dislocations tend to converge. In addition, it is commonly claimed

that above the critical temperature where edge and screw mobilities become nearly equal, the BCC

material behaves “FCC-like”.

At the atomistic level, density functional theory and molecular dynamics simulations have

revealed that screw dislocations in BCC metals possess non-planar core structures, spreading

symmetrically across several slip planes intersecting along the ⟨1 1 1⟩ direction [88, 24, 87, 93]. This

unique core configuration promotes frequent cross-slip events, which in turn introduce additional

complexity in tracking dislocation mobility and evolution across slip systems.

To address these challenges, a comprehensive dislocation-density-based crystal plasticity model

for BCC metals is developed. This model explicitly distinguishes between edge and screw dis-

location populations and incorporates the kink-pair mobility framework developed in Chapter 3.

It features separate mobility laws and density evolution equations for each dislocation character,

enabling more accurate representations of thermally activated screw motion and relatively athermal

edge glide. Additional mechanisms, such as screw cross-slip and edge climb, are also incorporated

into the density evolution laws. Cross-slip is implemented in a statistical manner, through redistri-

bution of screw dislocation density across slip systems without additional energy barrier, reflecting

its inherently stochastic nature. Moreover, the model includes character-specific parameters such

as distinct annihilation distances for edge and screw dipoles, being consistent with observations

that edge dipoles annihilate over shorter distances than screw dipoles [95].

In summary, this physically informed model is designed to capture the complex plastic behavior

of BCC metals across a wide range of thermomechanical conditions. All features are implemented

as modular and switchable, providing a flexible platform for systematically assessing the role of

various mechanisms in different material systems.

4.2 Constitutive model

The kinematic framework as the foundation of the following model is introduced in Section 1.2.2.

Assuming all plastic deformation in the current scheme is due to slip, the plastic velocity gradient
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Lp is given by the additive combination of shear contributions from all 𝑁slip = 12 ⟨1 1 1⟩{1 1 0}

slip systems1 (indexed by 𝛼 and implicitly summed over repeated indices)

Lp = ¤𝛾𝛼m𝛼 ⊗ n𝛼 =
(
¤𝛾𝛼e + ¤𝛾𝛼s

)
m𝛼 ⊗ n𝛼 (4.1)

where ¤𝛾 is the shear rate, m and n are unit vectors along the slip direction and the slip plane

normal, respectively, and the contribution from edge ( ¤𝛾e) and screw ( ¤𝛾s) characters are explicitly

disaggregated.

To account for the non-Schmid effect that is a prominent feature in BCC metals, the resolved

shear stress (RSS) 𝜏 is modified following the work by Koester et al. [35]:

𝜏𝛼e =S : m𝛼 ⊗ n𝛼 (4.2a)

𝜏𝛼s =S : m𝛼 ⊗ n𝛼 + 𝑎1S : m𝛼 ⊗ n𝛼
1 + 𝑎2S : (n𝛼 × m𝛼) ⊗ n𝛼+

𝑎3S :
(
n𝛼

1 × m𝛼
)
⊗ n𝛼

1 + 𝑎4S : n𝛼 ⊗ n𝛼+

𝑎5S : (n𝛼 × m𝛼) ⊗ (n𝛼 × m𝛼) + 𝑎6S : m𝛼 ⊗ m𝛼

(4.2b)

where S is the second Piola–Kirchhoff stress, 𝑎1,...,6 are parameters determining the non-Schmid

modification (given in Table 4.4), and n1 is a pre-selected {1 1 0} plane normal which is related

to n by a 60◦ rotation about m. The resolved shear stress for edge dislocations 𝜏e is still the

classical Schmid projection (Eq. (4.2a)), as no non-Schmid effect has been reported for the edge

character, whereas due to the non-planar core structure, the screw dislocations typically experience

unsymmetrical resistance to positive and negative shear directions, addressed by the modulated

resolved shear stress (Eq. (4.2b)).

The passing stress 𝜏pass or the slip resistance due to latent and self-hardening is calculated using

the dislocation-density-based hardening law [64]

𝜏𝛼pass = 𝜇𝑏
©«
𝑁slip∑︁
𝛼′=1

𝜉𝛼𝛼′𝜌𝛼
′ª®¬

1
2

(4.3)

1The current model only considers slip along {1 1 0} planes, following the argument made by ? ] for tungsten that
an elementary glide on a {1 1 2} plane is a composite of two elementary steps on alternate {1 1 0} planes. This may
not be monoversally true for BCC metals, but we are using it here for simplicity and {1 1 2} could be added without
too much work.
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D1 C1 B2 A2 A3 C3 B4 D4 A6 D6 B5 C5

D1 1 3 6 6 7 5 4 2 4 2 7 5
C1 3 1 6 6 4 2 7 5 7 5 4 2
B2 6 6 1 3 5 7 2 4 5 7 2 4
A2 6 6 3 1 2 4 5 7 2 4 5 7
A3 7 5 4 2 1 3 6 6 2 4 7 5
C3 4 2 7 5 3 1 6 6 5 7 4 2
B4 5 7 2 4 6 6 1 3 7 5 2 4
D4 2 4 5 7 6 6 3 1 4 2 5 7
A6 5 7 4 2 2 4 7 5 1 3 6 6
D6 2 4 7 5 5 7 4 2 3 1 6 6
B5 7 5 2 4 7 5 2 4 6 6 1 3
C5 4 2 5 7 4 2 5 7 6 6 3 1

Table 4.1 Dislocation interaction matrix 𝜉𝛼𝛼′ for BCC metals [44]. Schmid and Boas notation is
used to identify slip systems.

where 𝜇 is the shear modulus, 𝑏 is the length of the Burgers vector, and the coefficient matrix 𝜉𝛼𝛼′

[44] characterizes the interaction between slip systems (see Table 4.1).

The effective resolved shear stress 𝜏eff is the exceeding part of 𝜏 compared to 𝜏pass,

𝜏𝛼eff =

{
|𝜏𝛼 | − 𝜏𝛼pass for |𝜏𝛼 | > 𝜏𝛼pass

0 for |𝜏𝛼 | ≤ 𝜏𝛼pass

, (4.4)

Within a certain distance (𝑑), two monopolar (mobile) dislocations of the same character and

opposite signs can form a dipolar configuration, whose movement doesn’t considerably contribute

to the deformation anymore2. In our framework, on top of the edge–screw disaggregation, the

dislocation density is categorized into monopolar and dipolar status, depending on the pairing

status:

𝜌 = 𝜌e + 𝜌s

= 𝜌m, e + 𝜌m, s + 𝜌d, e + 𝜌d, s.

(4.5)

For screw dislocations, slip systems are grouped according to Burgers vector, see Table 4.2.

Screw population within a cross-slip group is unified, for two considerations:

1. Due to the non-planar core structure, it is likely that a line segment of screw character features

3 slip systems at the same time;
2Except for the limited increase of slipped area when the dipole coalescence.

50



cross-slip groups

A B C D

slip system A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

slip direction [1 1 1] [1 1 1] [1 1 1] [1 1 1]

slip plane (0 1 1) (1 0 1) (1 1 0) (0 1 1) (1 0 1) (1 1 0) (0 1 1) (1 01) (1 1 0) (0 1 1) (1 0 1) (1 1 0)

Table 4.2 12 ⟨1 1 1⟩{1 1 0} slip systems are grouped into four cross-slip groups.

2. There should not be any imposed energy barrier on cross-slip comparing to slip.

The second point is disputable, as it is well-accepted to describe the mechanism of cross-slip with

an exponential probability function featuring an activation energy Δ𝐺cs, i.e.

𝑃 ∝ exp
(
Δ𝐺cs
𝑘𝑇

)
, Δ𝐺cs = −𝑉

(
𝜏crit − 𝜏

)
, (4.6)

where𝑉 is the activation volume, 𝜏 is the RSS on the cross-slip plane, and 𝜏crit is the critical stress for

cross slip, sometimes chosen as the critical RSS at the onset of stage III on the stress-strain curve as

proposed by Kubin et al. [37], or calculated otherwise with a presumed semi-circular configuration

of cross-slip propagation [65]. The former choice technically eliminates the possibility of cross-

slip before stage III, whereas cross-slip was observed as early as in stage I; and the latter one is

only correct if the screw and edge characters have the same velocity, which is not true for BCC

metals. Either way, the required energy is generally quite considerable, whereas cross-slip is not a

rare event to be observed in BCC materials Moreover, given the non-planar core structure, screw

dislocations should view the three cross-slip slip systems rather impartially, i.e., there should not

be any conceptual distinction between slip and cross-slip.

The usage of the cross-slip probability function 𝑃 has been amended to circumvent its implied

high energy barrier [2, 57]. Instead of a solid indicator determining whether a cross-slip event would

happen, it was used to calculate the relative probability on each cross-slip system, and a tendency of

cross-slipping onto the high-𝑃 system is assumed, which is actually an indirect comparison of RSS

on each cross-slip system. The redistribution of screw dislocations is consequently determined.

In our model, the screw dislocation is not distinguished within each cross-slip group. Plastic

flow of monopolar screw dislocations will be partitioned according to the RSS weight. In other
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words, it is assumed that the unified cross-slip monopolar screw population has the tendency to

(cross-)slip onto the plane that has higher RSS, and the resulted plastic flow will distribute according

to the relative RSS on each possible cross-slip slip system. During each strain step, in cross-slip

group Ψ, the density of monopolar screw dislocation that slips on slip system 𝛼 is

𝜌𝛼m, s =
𝜏𝛼eff∑

𝛼′∈Ψ 𝜏𝛼
′

eff
𝜌Ψm, s. (4.7)

In addition, interaction between screw dislocations is not limited to the same slip system but

the same cross-slip group, e.g. monopoles forming dipoles, spontaneous annihilation, etc.

4.2.1 Mobility laws

Following the Orowan equation [53], the contributions of edge and screw monopoles towards

the total shear rate ¤𝛾 are analyzed separately,

¤𝛾𝛼 = 𝜌𝛼m𝑏𝑣
𝛼 = ¤𝜌𝛼m, e𝑏𝑣

𝛼
e + 𝜌𝛼m, s𝑏𝑣

𝛼
s , (4.8)

where 𝑣e and 𝑣s are the velocity of monopolar edge and screw dislocations, respectively, in contrast

to the average velocity 𝑣 when the edge and screw characters are not individually considered.

Note that only the movement of monopolar dislocations causes plastic shear, as the synchronized

movement of a pair dislocations in dipolar configuration cancels out each other.

Note that dislocation velocity predicted by molecular dynamics (MD) simulation is in general

too fast to be realistic. This is mainly due to the limited timescale in MD simulation, where the

deformation has to be explosive. As a result, the velocity of dislocation is ultra fast and should not

be used as reference in continuum modeling of crystal plasticity.

4.2.1.1 Edge mobility law

The controlling factor of edge dislocation mobility is the lattice friction, while other mechanisms

such as kink nucleation and climb are not significant enough to be included in this model. The glide

mechanism has been reported to stay the same under a wide range of temperatures [33], and being

mostly athermal [14, 42]. Following Lothe [40], in non-relativistic regime, a dislocation segment

moving with uniform velocity 𝑣 experiences the dissipative friction or drag force per unit length
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𝑓drag according to the viscous damping law

𝑓drag = −𝐵(𝑇)𝑣 (4.9)

where 𝐵(𝑇) is the drag coefficient as a function of temperature𝑇 and independent of 𝑣 . As proposed

by Swinburne et al. [81], the drag coefficient can be written in the form

𝐵(𝑇) = 𝐵0 + 𝐵1𝑇 (4.10)

with a constant term 𝐵0 that dominates for nanoscale defects, and a linear term 𝐵1 𝑇 to include the

temperature dependence that is appreciable only for dislocations on an extended scale. As a result

of force equilibrium, the velocity of monopolar edge dislocation 𝑣e is given by

𝑣e =
𝜏eff𝑏

𝐵0 + 𝐵1𝑇
, (4.11)

where 𝜏eff 𝑏 is the glide force per unit length of dislocation.

4.2.1.2 Screw mobility law

In BCC metals, screw dislocations are much less mobile than the edge character, and their

motion is enabled by the nucleation of kink-pairs and their lateral expansion. With low Peierls’

barrier to the kink motion in metals, the kink velocity 𝑣k is given similar to Eq. (4.11) as

𝑣k =
𝜏eff𝑏

𝐵k
(4.12)

where 𝐵k is the constant drag coefficient for kink, equivalent to the term 𝐵0 in Eq. (4.10), as the

temperature-dependent term could be safely ignored for short dislocation segments.

The positive kink-pair nucleation rates 𝐽+ follow an Arrhenius formulation:

𝐽+ =
𝜈kp(𝜆 − 𝑤)

𝑏
exp

(
−
Δ𝐺kp(𝜏eff)

𝑘𝑇

)
, (4.13)

where 𝜈kp is the attempt frequency, 𝜆 is the average segment length of screw dislocations, 𝑤 is

the typical separation between a nucleated kink pair, Δ𝐺kp is the Gibbs free energy of kink pair

formation at the given stress state, and 𝑘 is the Boltzmann’s constant. 𝜆 is represented by the mean

free path of forest dislocations, which estimates the segment length between obstacles (nodes):

𝜆𝛼 =

(
𝑁slip∑︁
𝛼′=1

(���n𝛼 · n𝛼′ × m𝛼′
��� 𝜌𝛼′

e +
���n𝛼 · m𝛼′

��� 𝜌𝛼′
s

))− 1
2

(4.14)
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Note that the projection along the plane normal for edge and screw forest dislocations is different.

The stress dependence of ¤𝛾 is a consequence of the stress dependence of Δ𝐺kp, which can be

formulated following Po et al. [60],

Δ𝐺kp = Δ𝐻kp − 𝑇Δ𝑆kp = Δ𝐻0

{[
1 −

(
𝜏eff
𝜏P

) 𝑝]𝑞
− 𝑇

𝑇0

}
(4.15)

where Δ𝐻kp is the formation enthalpy, Δ𝑆kp is the corresponding entropy. The power-law term

is introduced by Kocks [34] with Δ𝐻0 being the activation enthalpy under zero stress, 𝑝 and 𝑞

define the shape of the dislocation obstacle, 0 < 𝑝 ≤ 1 and 1 ≤ 𝑞 ≤ 2 for most cases, 𝜏P is the

Peierls stress needed to overcome the obstacle without any thermal activation, 𝑇0 is the athermal

transition temperature above which the energy barrier for kink-pair nucleation is guaranteed to

vanish independent of stress.

The average screw dislocation velocity 𝑣s is then determined by Eq. (3.12).

4.2.2 Density evolution laws

Three aspects are considered in the evolution of monopolar dislocations:

1. the multiplication ( ¤𝜌multi) due to the expansion of the slipped area,

2. the spontaneous annihilation ( ¤𝜌anni) along with slipped area coalescence when two opposite

monopoles are too close to each other (distance < 𝑑),

3. the formation of (temporarily/relatively) stable dipoles ( ¤𝜌form) when the distance is within

the range [𝑑, 𝑑] determined by the current stress state.

The time derivative of monopole density ( ¤𝜌m) for each slip system 𝛼 can accordingly be written as

¤𝜌𝛼m = ¤𝜌𝛼multi − ¤𝜌𝛼anni − ¤𝜌𝛼form (4.16)

For dipolar evolution, the contribution from monopoles ( ¤𝜌form) could be sacrificed by

1. the simultaneous annihilation when
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Thus,

¤𝜌𝛼d =

{
¤𝜌𝛼stable − ¤𝜌𝛼m–d − ¤𝜌𝛼cl for edge dipoles

¤𝜌𝛼stable − ¤𝜌𝛼m–d − ¤𝜌𝛼cs for screw dipoles
, (4.17)

while a dislocation segment belonging to a dipole pair could still be approached by an opposite

monopole and spontaneously annihilate, and the previously paired dipolar dislocation becomes

monopolar, resulting in the unchanged monopole density and decreased dipole density ( ¤𝜌𝛼m–d), and

a pair of dipolar dislocations can move out of the original glide plane to annihilate with each other,

by climb ( ¤𝜌𝛼cl) for edge dipoles or cross-slip ( ¤𝜌𝛼cs) for screw dipoles, which is considered to be much

slower than the above mentioned spontaneous reactions. The following treatment of these terms is

mainly an extrapolation of the proposition of Eisenlohr [26], Blum and Eisenlohr [11], except for

the cross-slip aspect ¤𝜌cs.

4.2.2.1 Multiplication ¤𝜌multi

¤𝜌𝛼multi is characterized by introducing a ratio Λ𝛼 3 of slipped area 𝑑𝐴𝛼 per generated monopolar

dislocation length 𝑑𝜆𝛼

1
Λ𝛼

=
𝑑𝜆𝛼

𝑑𝐴𝛼
=

¤𝜌𝛼multi
¤𝛾𝛼/𝑏 ∝ 1

dislocation spacing
:=

1
𝐷

+ 1
𝜆𝛼

, (4.18)

where 𝐷 is the effective grain size and 𝜆 is the spacing between forest dislocations, which is given

by

1
𝜆
=

1
𝑖

(
𝑁slip∑︁
𝛼′=1

(
n𝛼 · m𝛼′

𝜌𝛼
′

s + n𝛼 · n𝛼′ × m𝛼′
𝜌𝛼

′
e

)) 1
2

(4.19)

where 𝑖 is a fitting parameter that represents the number of dislocations passed by a dislocation

before being trapped by a forest dislocation.

The multiplication rate ¤𝜌multi is calculated by

¤𝜌𝛼multi,e =
¤𝛾𝛼s
𝑏Λ𝛼

(4.20a)

¤𝜌𝛼multi,s =
¤𝛾𝛼e
𝑏Λ𝛼

(4.20b)

as the slip of edge and screw dislocations multiplies the screw and edge characters, respectively.
3In this model, strain hardening is described using a dislocation Mean Free Path (Λ) approach.
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4.2.2.2 Spontaneous reaction ¤𝜌form, ¤𝜌stable, and ¤𝜌m–d

A critical glide plane distance 𝑑 below which two opposite monopoles form a dipole is a

function of effective resolved shear stress 𝜏eff:

𝑑𝛼𝑒 =
𝜇𝑏

8𝜋(1 − 𝜈) |𝜏𝛼eff |
(4.21a)

𝑑𝛼𝑠 =
𝜇𝑏

4𝜋 |𝜏𝛼eff |
(4.21b)

Another critical glide plane distance 𝑑 below which a dipole would annihilate spontaneously is

typically a multiple of the Burgers vector:

𝑑𝛼𝑒 = 𝐷𝛼
anni,e𝑏 (4.22a)

𝑑𝛼𝑠 = 𝐷𝛼
anni,s𝑏 (4.22b)

where 𝐷 is a self-determined coefficient, which could be used to control the annihilation rate in the

simulation.

4.2.2.3 Dipole climb velocity 𝑣cl

The vacancy diffusion enabled dislocation climb velocity 𝑣cl is calculated as

𝑣𝛼cl = 𝜇𝐷0 exp
(
−Δ𝐺cl

𝑘𝑇

)
𝑉at

𝜋(1 − 𝜈)𝑘𝑇
1

𝑑𝛼𝑒 + 𝑑𝛼𝑒
(4.23)

where Δ𝐺cl is the activation energy for dislocation climb, here taken as a constant, 𝐷0 is the

pre-factor of the self-diffusion coefficient, and 𝑉at is the atomic volume.

4.2.2.4 Dipole cross slip velocity 𝑣cs

We propose that, instead of that elastic bow-out, the cross-slip should follow the same kink-

pair mechanism as screw monopoles. Unlike climb being a vacancy-diffusion determined process

which is a different mechanism from glide, cross-slip of screw dipoles are still glide in nature,

so intrinsically we should not need a brand-new rule for cross-slip. The only difference is the

modification of driving force, where the attraction between a pair of dipolar screw dislocation

reinforces their approaching to each other by cross-slip, and the glide velocity on the cross-slip

plane will increase due to the increased stress.
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Parameter Definition Value unit

𝐶11 elastic stiffness tensor element [82] 243.6 GPa
𝐶12 ibid. 130.2 GPa
𝐶44 ibid. 27.9 GPa
𝜇 shear modulus 37.5 GPa
𝑎0 lattice parameter of BCC niobium 3.3 Å
𝑏 magnitude of Burgers vector for ⟨1 1 1⟩{1 1 0} slip family

√
3

2 𝑎0
𝑇 temperature 300 K
𝑇m melting temperature 2750 K
𝐷 grain size 5 × 10−5 m
𝑖 Adj. parameter for distance between two forest dislocations 100 -
𝜈 Poisson ratio 1

3 -

Table 4.3 General parameters representing BCC Nb used in the model.

Therefore, 𝑣cs is determined by the same process as described in Section 4.2.1.2 with modified

stress state.

4.2.2.5 Summary of the constitutive laws

Apply above analysis to Eq. (4.16) and Eq. (4.17), we have:

¤𝜌𝛼m, e =
| ¤𝛾𝛼e |
𝑏Λ𝛼

−
2𝑑𝛼𝑒
𝑏

𝜌𝛼m, e | ¤𝛾𝛼e | (4.24a)

¤𝜌𝛼m, s =
| ¤𝛾𝛼s |
𝑏Λ𝛼

−
2𝑑𝛼𝑠
𝑏

𝜌𝛼m, s | ¤𝛾𝛼s | (4.24b)

¤𝜌𝛼d, e =
2(𝑑𝛼𝑒 − 𝑑𝛼𝑒 )

𝑏
¤𝜌𝛼m, e | ¤𝛾𝛼e | −

2𝑑𝛼𝑒
𝑏

𝜌𝛼d, e | ¤𝛾
𝛼
e | − 𝜌𝛼d, e

2𝑣𝛼cl

𝑑𝛼𝑒 − 𝑑𝛼𝑒
(4.24c)

¤𝜌𝛼d, s =
2(𝑑𝛼𝑠 − 𝑑𝛼𝑠 )

𝑏
¤𝜌𝛼m, s | ¤𝛾𝛼s | −

2𝑑𝛼𝑠
𝑏

𝜌𝛼d, s | ¤𝛾
𝛼
s | − 𝜌𝛼d, e

2𝑣𝛼cs

𝑑𝛼𝑠 − 𝑑𝛼𝑠
(4.24d)

4.2.3 Parameters

Since the model is currently under the calibration process, this subsection presents representative

parameters for pure niobium as a demonstrative case. Table 4.3 summarizes the general material

properties applied to both edge and screw dislocations, while Table 4.4 lists the character-specific

parameters used to distinguish their respective behaviors.

4.3 Implementation

The proposed crystal plasticity model has been implemented as a modular extension within

the DAMASK (Düsseldorf Advanced Material Simulation Kit, [68]) framework. The formulation
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Parameter Definition Edge Screw unit

𝑎1 coefficient in Eq. (4.2a) for non-Schmid resolved stress - 0.61 -
𝑎2 ibid. - 0.23 -
𝑎3 ibid. - 0.55 -
𝑎4 ibid. - 0.11 -
𝑎5 ibid. - 0.09 -
𝑎6 ibid. - -0.2 -
𝜌mono,0 initial monopolar dislocation density 1011 1011 m−2

𝜌di,0 initial dipolar dislocation density 1011 1011 m−2

𝐵0 temperature independent part of friction coefficient 4 × 10−4 - Pa s
𝐵1 temperature dependent part of friction coefficient 1 × 10−6 - Pa s K−1

𝐵k (temperature independent) friction coefficient of kink - 8 × 10−5 Pa s
ℎ distance between two consecutive Peierls valleys

√
6

3 - 𝑎0
𝑤 width of the kink pair - 11 𝑏

𝜈kp attempt frequency of kink pair nucleation - 9.1 × 1011 s−1

Δ𝐻0 activation enthalpy under zero stress - 2.72 × 10−19 J
𝜏P Peierls stress - 20 MPa
𝑝 p exponent defining the shape of the dislocation obstacle - 0.86 -
𝑞 q exponent in glide velocity - 1.69 -
𝑇0 athermal transition temperature - 0.8 𝑇m
𝐷 coefficient of spontaneous annihilation distance 10 10 -
𝐷0 pre-factor for self-diffusion 1.1 × 10−4 - -
Δ𝐺cl Activation energy for climb 4.5 × 10−19 - J
𝑉at atomic volume 1 - 𝑏3

Table 4.4 Plasticity parameters that are separately determined for edge and screw characters.

allows for flexible integration with existing DAMASK capabilities and supports simulation of

complex deformation processes in BCC metals.

Key physical mechanisms (e.g., cross-slip and climb) are implemented as optional features.

These mechanisms can be activated or deactivated via user-defined input settings, enabling con-

trolled investigations into their individual and collective effects on plastic behavior.

4.4 Summary

A comprehensive dislocation-density-based crystal plasticity model tailored for BCC metals

is presented. Motivated by the complex and character-dependent dislocation behavior in BCC

systems, the model explicitly distinguishes between edge and screw dislocation populations and

incorporates separate mobility laws and density evolution equations for each dislocation character.

Additional mechanisms, such as cross-slip for screws and climb for edges, are embedded into

the evolution framework, enhancing the model’s physical fidelity. Character-specific parameters,
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such as annihilation distances, are also implemented to reflect the distinct annihilation behaviors

observed in atomistic simulations.

The model architecture is modular, allowing individual physical mechanisms to be activated or

deactivated. This flexibility enables systematic exploration of their influence on plastic behavior

under various thermomechanical conditions. A representative set of parameters for pure niobium

is provided to illustrate the model’s structure and capabilities.

Together, these developments establish a physically-informed and extensible framework for

modeling the plasticity of BCC metals, offering improved predictive accuracy and deeper insights

into the role of dislocation character in deformation.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This dissertation aims to advance the physical fidelity and practical calibration of crystal plasticity

modeling for body-centered cubic (BCC) metals through a physics-informed approach. Spanning

three major studies, this work bridges the investigation of parameter representativeness in model

calibration, the full-range formulation of complex dislocation mobility, and the development of a

comprehensive constitutive model that is both predictive and extensible.

Chapter 2 investigates the validity of surface-based measurements, such as those from surface

slip trace analysis, for calibrating bulk crystal plasticity models. By systematically exploring

the boundary sensitivity of stress responses, this study establishes when surface measurements

are representative of the interior and when they fail. This work emphasizes the critical need

for contextual awareness in experimental-model data pipelines and highlights how traditional

calibration approaches can lead to biased or unreliable parameter extraction when surface effects

appear.

Chapter 3 proposes a novel, generalized dislocation mobility law framework grounded in the

kink-pair mechanism, which is one of the defining characteristics of plastic deformation in BCC

metals. By avoiding restrictive assumptions common in earlier models, this framework captures

the full range of dislocation velocities as a function of stress and temperature. Using principal

component analysis (PCA), the study reduces complex atomistic data into a form amenable to

continuum implementation, while preserving essential features of the underlying physics. This

work enables more robust and transferable mobility laws across different material systems and

thermomechanical conditions.

Chapter 4 develops a comprehensive constitutive model that explicitly accounts for both edge

and screw dislocations in BCC metals. The model incorporates distinct mobility laws, accounting

for the kink-pair-controlled motion of screw dislocations and the nearly athermal glide of edge

dislocations. It also introduces dislocation density evolution laws for both monopoles and dipoles

and incorporates key mechanisms such as cross-slip and climb. The model is implemented in
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the DAMASK simulation platform, with switchable features to isolate and analyze the effects of

individual mechanisms, such as non-Schmid behavior or cross-slip-enabled annihilation.

Together, these three works address core challenges in the crystal plasticity modeling of BCC

metals:

• Calibration reliability: Establishing when and how surface-based experimental data can

inform model parameters for bulk materials.

• Mobility accuracy: Developing transferable and physics-consistent mobility law framework

for dislocation motion.

• Constitutive completeness: Building a constitutive model that accounts for character-specific

behavior and microstructural evolution with high physical fidelity.

Planned future work includes:

• Calibration and validation of the constitutive law developed in Chapter 4, with experimental

data extracted from the heat treatment of niobium sheets.

• Full-scale validation of the kink-pair-based mobility framework across various BCC alloys

and other materials.

• Further investigation into how the initial distribution of dislocation content across slip systems

influences the plastic response of metals.”
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