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ABSTRACT

FREE SPACE CHARGE DOMINATED INSTABILITIES AND RESONANCES IN
SYNCHROTRONS

By

Michael A. Balcewicz

A Multiple Loop Square Well Model has been developed to simulate coherent motion

in synchrotron machines, while including space charge and wakefields. The model builds

upon previous single-well work by Blaskiewicz[?] and Burov[?] to allow the approximation

of arbitrary potentials via the superposition of multiple square wells. Model predictions and

experimental confirmation are discussed. In particular the convective instability is simulated

and compared with experimental results showing good agreement between the two.

Please note that figures are still in work. References and Bibliography still need to be

provided.
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0.1 Preface

The main body of this dissertation is divided into five chapters, with some additional ma-

terial contained in Appendices. This dissertation discusses the development of a Multiple

Loop Square Well (MLSW) model to simulate beam stability in high intensity synchrotron

machines including synchro-betatron coupling, as well as model predictions and experimental

confirmation.

Chapter 1 is primarily concerned with establishing the background for subsequent sec-

tions. This will act as the minimum baseline to understand collective effects and beam in-

stabilities, including sideband generation, coherent space charge tune shift, and wakefields.

This chapter concludes with a brief survey of coherent instabilities and modeling efforts.

Chapter 2 contains the detailed mathematical derivation of the Multiple Loop Square

Well model, although some of the more tedious portions of the derivation were relegated to

Appendix ?? to improve readability and flow. This model is a description of bunch evolution

in the presence of significant space charge tune shift and is a generalization of previous work

by Blaskiewicz [?] and Burov [?]. This model generalizes the longitudinal dynamics as an

arbitrary system of square potential wells, generating new physical results. The final sections

of the chapter describe the implementation of the MLSW model in a C++ code with python

wrapper.

Chapter 3 focuses on the predictions of this model, beginning with demonstrating that

this new MLSW matches the well established results from the limiting case of Blaskiewicz’s

Square Well Model. From there, we move on to study the implications of more complex lon-

gitudinal dynamics, such as approximating arbitrary particle distributions, nonlinear chro-

maticity, along with the convective instability[?] and coupled bunch modes over extended
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time periods.

Chapter 4 is focused on an experimental study of mode coupling instabilities at the

Fermilab Recycler to confirm aspects of the MLSW model. Initial work was concentrated

on studying existing data sets from the Waker experiment which uses a kicker to artificially

simulate wakeforces. This culminated in a dedicated February 2023 experiment where the

convective instability was observed using the Waker.

In Chapter 5 we end with a study of Periodic Resonances in the AGS. These resonances

are driven by synchro-betatron coupling at significant space charge tune shifts and are there-

fore complementary to the main body of work.
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Chapter 1

Collective Effects and Instabilities

Particle accelerators have gone through many generations of evolution in the past century,

growing from small tabletop experiments to larger Van de Graaff machines and cyclotrons,

and so on to modern day linear accelerators, Free Electron Lasers, and kilometer scale

synchrotrons. The applications of these accelerators have expanded from pure physics to

other applications including materials and biology research from light-sources to medical

isotopes and treatment. Over time, the accelerators have evolved to higher and higher

energies and intensities.

Conventional non-wakefield acceleration is limited by breakdown. If electric fields are

too strong, small imperfections and residual gas will cause an arc between high and low

potentials and reduce the electric field. This makes it less economical to build a high energy

accelerator out of a linear set of voltage gaps once the single particle energy becomes too

high. A more efficient new circular geometry must be adopted. In such an accelerator

particles will pass the same magnets and the same cavities over and over making it possible

to get a much higher final energy than achievable with a linear configuration. The cavity

fields sinusoidal, operating at an harmonic of the time it takes a particle to complete one

revolution. Therefore particles will be accelerated each and every turn. The sinusoidal form

of the cavity fields also provide longitudinal confinement of the bunch, as particles along the

length of the bunch will observe slightly different fields, the proper choice of which will give
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linear focusing for a small offset from the central synchronous particle.

Higher intensity is needed to provide good statistics as the number of events observed

scales linearly with beam intensity. While high intensity is needed, the beam quality must

also be considered, to ensure the particles are where you actually want them, as quantified

by figures of merit like luminosity and bightness. There are several ways to increase inten-

sity, but there are essentially two options: increase the number of bunches, or put more

particles within each bunch. It is possible to transport the same number of bunches as the

harmonic number of the accelerating cavity, but this may not be practical due to tight tim-

ing constraints and interactions between the nearby bunches. Each particle bunch interacts

with the accelerating structures it passes, generating wakefields which may interfere with

the propagation of multiple bunches. These interactions will decay over time, but additional

bunches too soon after the initial bunch can create a feedback loop and disrupt transport.

Wakefields will be discussed in more detail in section ??

Adding more particles to a single bunch will increase the free space charge of the bunch.

Like any charged particle distribution it will generate fields which will interact with other

particles in the field. Since all particles within the bunch have the same charge, the coulomb

forces are defocusing, and without external fields from the accelerator will lead to loss. The

interaction of the space charge and wakefields generated by the bunch itself also creates

feedback within the bunch, making it possible to drive particle loss–known as collective

instability–inside the bunch.

It could be said that the final fate of a synchrotron is to become the injector for a next

generation accelerator. Because of this, old machines will often have to transport a higher

current than they were designed for. This can mean that assumptions break down and new

sources of loss can be introduced. A thorough understanding of collective instabilities is
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necessary to adjust these old accelerators, as well as to design new higher current machines.

1.1 Frame of Reference and Coordinates

1.1.1 Accelerator ’Tune’ and ’Time Like’ Coordinates

A particle going through any lattice with optics will oscillate in the transverse planes. This is

known as betatron oscillation. We can think of this as a phase advance that increases along

the optics. For a regular structure that will be traversed repeatedly, the total phase advance

will be the sum of the individual phase advances. A synchrotron is a good example of a

regular structure (the phase advance can change over the ramp, but this is slow). The total

number of oscillations in a revolution around a synchrotron is known as the tune. There is

a tune for each transverse direction Qx, Qy as well as the longitudinal direction Qs.

A bunch in a synchrotron stays centered around the synchronous particle with small

position and velocity offsets from it. Since synchrotrons are relativistic, the velocity of the

synchonous particle is nearly constant. This means that there is a direct correspondence

between the position of the central particle s, the azimuthal angle around the synchrotron θ

and time t. The relation between these for a synchrotron with circumference C is:

βct = s = Cθ (1.1)

This will lead to some artifacts depending on which time like variable is used. For

example, dx/ds is often used instead of dx/dt as a transverse velocity. In this work, all three

of these time like variables (t, s, θ) will be used.
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1.1.2 The Beam Frame of Reference

The normal coordinate system for accelerators is known as the Ferret Serret[?] coordinate

system. The coordinate system is defined with a travelling and rotating origin following the

reference orbit of a synchronous particle. By defining the system this way, we essentially

make a transformation to the bunch’s frame of reference. The time like vector along the

bunch is s⃗ = βctẑ. Small position offsets in the direction of motion are a displacement

z from this synchronous particle. The z dimension is often known as the longitudinal or

synchrotron direction.

The other spatial dimensions x and y are known as the transverse or betatron directions.

x̂ is in the radial direction for a rotating synchronous particle. That is, for a synchronous

particle undergoing rotation about an axis in the ŷ direction passing through point p⃗(s),

x̂ is oriented in the direction of the vector from the center of rotation to the origin of the

synchronous particle. Synchrotrons are circular machines and therefore the direction of

motion of the origin must undergo some rotation to be periodic. Technically this rotation

can be arbitrary as long as it is periodic over one circumference, but generally rotations are

constrained to a single plane. In straight sections of the synchrotron the Ferret Serret vectors

for x̂ and ŷ are multiply defined, but this can be fixed by treating the straight section as

having an infinitesimal curvature in the direction of one’s choice.

1.1.3 Small Phase Advance Optics

To maintain bunch shape and position in an accelerator, constraining forces must are applied.

In order to simplify construction and to enable focusing in both trasnverse planes, focusing is

split into discrete elements along the accelerator. Transverse (betatron) focusing is provided
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ẑ
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p⃗(s)

O

Figure 1.1: Diagram of the Frenet-Serret coordinate system.

by magnetic and electrostatic elements that are slowly varied with beam energy. Longitudinal

(synchrotron) focusing and acceleration are generally performed by RF cavities.

Longitudinal focusing tends to be much slower than transverse due to several factors.

Longitudinal focusing occurs with net acceleration from RF potential gaps. Since the bunch is

moving relativistically in the longitudinal direction, kicks provided by RF are comparatively

small compared to the transverse dimensions perpendicular to the relativistic motion.

Since accelerator elements are separated into discrete along s we can define the focusing

strength along the accelerator as a focusing strengthK(s) which varies as it passes individual

elements giving Hill’s Equation:

x′′ +K(s)y = 0 (1.2)

This for elements with a constant value K within them, the solution can be represented as a
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Defocusing Quad1/2 Focusing Quad 1/2 Focusing QuadDriftDrift

x̂

Figure 1.2: Diagram of a FODO cell. For symmetry the focusing quad is split into two half
elements.

transfer matrix evaluated at the edge of the bunch and making beam transport along a line

of linear elements matrix multiplication. However, under certain conditions Hill’s Equation

and the corresponding Matrices simplify down to simple harmonic motion.

Let us consider with a FODO (Focusing Drift Defocusing Drift) cell of length ℓ and focal

length f in both transverse directions. This transfer matrix has the form:

x

x′


s+ℓ

=

 1− ℓ2

8f2
ℓ(1 + ℓ

4f )

− ℓ
4f2

(1− ℓ
4f ) 1− ℓ2

8f2


x

x′


s
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The transfer matrix MFODO can be thought of as a solution to a differential equation at

s+ ℓ given certain initial conditions at s. Assuming the cell is small, we take the differential

to get the differential equations of motion.

d

ds

x

x′


s

≈ ∆

∆s

x

x′


s

=
1

ℓ
(MFODO − I)

x

x′


s

These matrices correspond to equations of motion:

x′ = −x ℓ

8f2
+ x′(1 +

ℓ

4f
) (1.3)

x′′ = −x 1

4f
(1− ℓ

4f
)− x′

ℓ

8f2
(1.4)

Both ℓ and 1/f are small and can be ignored at O(ℓ2), O(ℓf−1), O(f−2), and above.

x′ = x′ +O(2) (1.5)

x′′ = −x 1

4f
(1− l

4f
) +O(3) (1.6)

Which is just the harmonic oscillator in spatial units. The conversion to time yields a

harmonic oscillator with ω = βc
2
√
f

√
1− l

4f .

If a particle is not moving at the design velocity, there is a slight correction to the single

particle tune due to the longitudinal momentum offset. This is normally defined in terms of

δ ≡ ∆p/p, but our choice of canonical variable ż works as well. Chromaticity is defined in

the following way: ∆Qx
∆ż = ξ(ż).
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1.2 Sideband Modes

In the simplest case, an oscillator can be thought of as an object experiencing a ’spring like’

force, oscillating at a rate which is dependent on the force and object itself. The addition of

another spring force orthogonal to the original force generates coherent frequencies offset by

multiples of the second oscillator’s frequency.

In a charged particle bunch, the particles themselves are a system of coupled (and pos-

sibly nonlinear) oscillators. For a synchrotron, the bunch is constrained in all three spatial

dimensions so we should expect to observe sidebands due to coupling between these modes.

This is not the only source of sidebands, as even a single spatial dimension can have multiple

orthogonal modes with corresponding sidebands.

With the multiplicity of different modes describing the bunch, it may seem difficult to

fully analyze them all. Thankfully, this is not necessary. Each sideband mode is orthogonal

to one another so it becomes possible to decompose the bunch into these modes and limit

our view to those which are the most physically interesting.

1.2.1 Betatron Distribution Sidebands

Phase space modes of a beam have effective frequencies contingent on the rotational symme-

try of the mode. An arbitrary one dimensional distribution is comprised of a sum of these

modes. The zero mode, also known as the equilibrium distribution[?], is the fundamental

and has a zero frequency corresponding to a distribution that does not vary in time. Higher

order modes have sidebands given by their mode number m. Consider a phase space ρ that
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can be expressed in terms of action angle coordinates (J, φ) along with mode number.

ρ(J, φ) = R(J)cos(mφ) =
R(J)

2
(eimφ + e−imφ) (1.7)

Where R(J) is a function of action. For a harmonic oscillator φ̇ (the frequency) is a con-

stant, leading to a constant phase advance along the bunch. In this case the motion has two

interfering oscillatory components, the forward and backward propagating elements. These

two frequencies for each mode m are considered sidebands. In the transverse direction these

are known as betatron sidebands, and in the longitudinal direction synchrotron sidebands.

Sidebands are generally symmetrically offset around a fundamental frequency.

A similar argument can be made using a one turn map. The initial phase space dis-

tribution has an equivalent definition as Eq. 1.7. The phase advance does not need to be

constant over the entire lattice period, only that the map M , defined as Mnq⃗0 = q⃗n must be

linear. For the mth mode the system will oscillate with a constant phase advance for every

application of the map. This map has the same oscillatory properties where it is comprised

of both a positive and negative rotating term.

Experimentally it is necessary to constrain our solutions to positive frequencies as os-

cilloscopes and analyzers only provide positive frequencies[?]. Only positive frequencies are

necessary to describe the system due to the properties of complex numbers. For mth side-

band with a coherent frequency ∆Q which is observed, the pickup signal has the form:

Ae−2πni(mQ−∆Q) = A∗e2πni(mQ−∆Q) (1.8)

making it possible to reflect negative sidebands across the origin. Each sideband mode will
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have a different contribution to the total motion of the bunch. For dipole instabilities, the

upper sideband +1Q is often considered to be the dominant term in a possible instability.

To make the upper sideband physically relevant without its conjugate, modifciations may

be necessary.

1.2.2 Synchro-Betatron Sideband Generation

Synchrotrons are circular accelerators where the beam propagates through the same elements

many times. Multiple transverse focusing elements are needed to generate a net focusing

effect on the bunch in both directions with many oscillations per revolution. The large

number of betatron oscillations along with superperiodicity are necessary (but not sufficient)

for stability from space charge effects. There are fewer longitudinal cavities which are located

near to one another, and so multiple turns are needed to complete a synchorotron oscillation.

Thus it can safely be assumed that Qx > 1 > Qs; Qx >> Qs.

Every individual particle will oscillate with their own amplitude and phase, but with

a well defined wave velocity which is quite interestingly the synchrotron tune Qs where

Qs = ∆φs/∆θ. θ corresponds to the angle around the accelerator which is a time coordinate;

φs is the synchrotron phase along the bunch which is a spatial coordinate. For simplicity, let

us assume that the phase advance per element along the accelerator is small and consistent

enough to be well approximated by a linear oscillator. Effectively this means that individual

particles and waves propagate around the bunch at a rate related to the synchrotron tune.

This system consists of simple uncoupled oscillators, but variations in the spatial distri-

bution of the particle ensemble can be decomposed into orthogonal terms in Fourier space

coupling them together and generating sidebands.

Collective effects and chromaticity have explicit longitudinal dependence which shift the
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sideband modes generated by the variations in particle distribution. This explicit synchro-

beta coupling is naturally expressed in terms of conjugate variables z and ż rather than with

phase terms φs and Js, complicating the solutions. The difficulty of including coupling with

sidebands is one of the main driving forces for approximate PDE methods such as the Square

Well Model [?]. The exact PDE treatment is given in Chapter ??

Coupling between variations in the ensemble can be seen in the first order moment x of

the transverse dimension:

x(θ, ψs) = cos(Qxθ)
∞∑
n=0

An cos(n(Qsθ − φs)) (1.9)

The transverse moment of a bunch varies along the synchrotron phase with the variations

represented by the Fourier series. Variations can come from many sources including Schottky

noise[?]. Each Fourier term is trapped in the same potential, so while they have different

spatial content, they all travel along the bunch at the same rate and undergo a full oscillation

in 1/Qs revolutions. Individual Fourier modes can be restated as synchrotron sidebands using

angle addition.

xn(θ, ψs) = Ancos(Qxθ)cos(n(Qsθ − φs)) (1.10)

= An
2 [cos(Qxθ + n(Qsθ − φs)) + cos(Qxθ − n(Qsθ − φs))] (1.11)

This makes the total bunch motion the sum of all modes x

x(θ, ψs) =
∞∑
n=0

=
An
2
[cos(Qxθ + n(Qsθ − φs)) + cos(Qxθ − n(Qsθ − φs))] (1.12)

It is expected that lower n modes will tend to have larger Fourier components varying
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bunch by bunch. It is sufficient to only study sideband modes near to the fundamental in

most cases. Wakes with sufficiently rapid oscillation frequencies compared to the bunch may

drive higher order components.

Although the system has been approximated as harmonic oscillators, nonlinearity can

be understood qualitatively. If the nonlinearity is sufficiently small, it can be treated by

splitting the bunch into multiple ensembles with each detuned slightly. Nonlinearity in

the transverse dimension (red lines in fig. ??) will spread out all the tunes but preserve the

spacing between them. Linear synchro-betatron coupling shifts the sidebands, while coupling

synchrotron tune adds tune spread that increases for higher n sidebands (blue lines in fig.

??).

So far, bunches have only been looked at in terms of coupling from the longitudinal di-

mension to the transverse. This tends to be dominant because the action of the longitudinal

direction is much larger than that of the transverse plane. Although the inverse is possible,

where betatron motion couples to create sidebands in synchrotron oscillations, such coupling

can be neglected. Since Qx >> Qs this will produce sidebands that are essentially nonphys-

ical. This can be visualized as follows: synchro-betatron coupling creates small changes

in frequency due to small and slow oscillations coupling into a betatron dimension, wearas

in the converse, the frequency change due to a rapid oscillation will average out over the

synchrotron oscillation.

1.2.3 Head Tail Phase

So far we have limited the scope of our discussions to coupling due to the shape of the

synchrotron bunch distribution, but chromatic effects cannot be ignored. Small variations

in longitudinal momentum (δ) or velocity (ż) cause particles to spend differing amounts of
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Figure 1.3: Diagram of sideband modes.
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time in accelerator elements effectively detuning them from the synchronous tune. For linear

chormaticity, particles are over-focused for one half of the synchrotron period and under-

focused in the other. This leads to an overall mismatch in phase φβ over the half synchrotron

period. and ξ is the chromaticity.

φβ =

∫
ξżdψs (1.13)

Where ξ is the linearized chromaticity in term of ż. Although over a complete synchrotron

period the betatron phase difference resolves itself, there is a phase shift from the front to

the back of the bunch. This is known as the head tail phase shift χ. For a linear chromaticity

one obtains a total head tail phase shift of:

χ = ξ

∫ π

0
sin(φs)dφs (1.14)

This phase difference can be treated as a wave that accumulates and fades away along the

synchrotron oscillation.

1.3 Free Space Charge

1.3.1 Fields From Moments

For the general case, analytic solutions for particle motion with self fields only exist for

specific pathologic distributions[?]. Rather than limit ourselves to these distributions (many

of which have been studied extensively[?]) or simply simulate the problem (which can be

noise dominated in certain regimes) we will look at how to approximate this space charge
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effect.

Space charge derives from the total effect of all particles in the beam distribution. Imag-

ine a distribution of charged particles f comprising a bunch. The electric field will be a

convolution of the electric field of an infantesimal charge and the distribution itself. The

field can then be calculated at an arbitrary point, and be Taylor expanded to a specific order

(unlike that of a single particle, which cannot be Taylor expanded due to its singular nature).

This field can then be separated into linear and nonlinear components. For a sufficiently

small excursion about the center of the expansion, linear components remain the dominant

contribution to the field.

A particle in this linear regime will observe a springlike defocusing force proportional to

its displacement. Over a small time period, it may be adequate to treat this as an external

force but this becomes less accurate as the distribution deforms.

Another similar but more preferred approach is to express the forces in terms of basis

functions of the distribution rather than Taylor expanding them after the fact. In this case,

the basis functions of the expansion may cross couple to one another. However, due to the

peaked nature of the distribution, only limited orders of the Taylor expansion are necessary.

1.3.2 Coherent Tune Shift

To begin with, let us consider the linear order space charge force. As noted earlier, this is a

linear force which acts with a spring like force centered around the center of momentum, and

will have the same effect on the moments of bunch distribution as well. Since these forces

correspond to basis functions of the distribution itself, the bunch distribution will oscillate

with a space charge contribution shifting the frequency.

Because the space charge effect varies along the distribution, the average space charge
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detuning for particles at two specific sets of initial conditions are not necessarily the same.

But as coherent space charge is a linear force on particles in the bunch, one might naively

assume that coherent mode is purely a function of λ(z) the linear charge density (∆Qx =√
Q2
x − Cscλ(z) − Qx). While this can be approximately correct in certain cases, it is not

actually true in general, especially when sidebands are included.

Consider a particle with position x only experiencing constant linear focusing and a

coherent space charge force proportional to the displacement from the center of the bunch

x− x.

ẍ = −Q2
xx+ Csc(x− x) (1.15)

Since all particles within the bunch oscillate linearly one expects that motion of a single

particle and the total bunch moment are interrelated. As a result, there is no longer a

constant offset or a simple driving harmonic. It will average out to an effective tune shift

over a complete synchrotron period. The exact interrelation between these modes will depend

upon the sidebands of the system[?].

1.3.3 Incoherent Tune Spread

The problem fundamentally changes when nonlinearity is no longer neglected. Nonlinearity

can come from either the bare lattice optics or the Taylor expanded nonlinear portion of the

space charge forces. The space charge force assumes a basis set of distributions that shift

and evolve along the distribution with the distribution itself shifting along the bunch.

A central difference for the nonlinear motion is due to amplitude dependent tune (fre-

quency) shifts. This means that particles no longer oscillate in phase with one another.

18



Therefore, rather than a single coherent tune shift, the tunes spread out into an incoherent

continuum of transverse frequencies. This is not necessarily a bad thing, as incoherent tune

spread over the driving frequency is central for Landau damping. This will mostly be beyond

the scope of this thesis but will be touched on briefly in chapter 3.

1.3.4 Coherent Mode Splitting

When examining a bunch distribution, it is important to understand the continuity and

boundary conditions of the system. Let us consider an infinitesimally thin ’loop’ of current

in longitudinal phase space. This airbag of current has a synchrotron period and exhibits

transverse waves along the length of the bunch that corresponds to synchro-betatron side-

bands. Each wave must be continuous over the longitudinal extent of the bunch and has a

characteristic frequency associated with its sideband.

Any arbitrary longitudinal phase space distribution can be treated as an infinite collection

of infinitesimal loops of current each of which can interact through space charge and other

collective forces and must simultaneously satisfy their own boundary conditions. These loops

provide sufficient degrees of freedom in frequency domain for multiple valid tunes to exist

that satisfy all the boundary conditions for a given sideband mode. The valid tunes originate

from the same sideband before splitting off from one another.

These split modes can intermittently couple to other modes and become degenerate. Such

degenerate modes correspond to imaginary frequencies (growth and decay modes) and are

lightly unstable examples of the collective instability which will be covered in more detail

later in this work.

Functionally it can be difficult to split a sideband into coherent modes. Such interactions

between loops of current can be difficult to drive, setting a functional limit on how many
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coherent modes can be identified. An example of coherent mode splitting for the MLSW

model is shown in Fig. 1.4 and can also be found in [?]

1.4 Transverse Collective Instabilities

The combination of single particle and collective effects are nontrivial. It is not sufficient to

model these collective forces as simple focusing elements.

Interactions between particles and the environment can make the beam catastrophically

unstable, with significant particle loss following. There are many avenues for loss with their

own characteristic dynamics and a functional ’threshold’ where the beam transfers between

a stable and unstable state. Knowing the physics behind a given instability makes it possible

to find a regime where the beam is stable.

Most collective instabilities have strong intensity dependence. The justification to this

is that one expects to regain stable motion if the bunch intensity is decreased sufficiently,

given that single particle motion is stable.

1.4.1 Head Tail Instability

In the presence of wakefields head-tail phase can drive beam instability. Over many periods

the head tail phase shift and the wakes that drive it give rise to comparatively slow growth

over time. This growth however is difficult to naturally damp.

1.4.2 Transverse Mode Coupling Instability

Although sometimes called the Fast Head Tail Instability[?], the Transverse Mode Coupling

Instability (TMCI) has a separate instability mechanism from Head Tail Instability. Instead,
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Figure 1.4
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TMCI occurs when two synchrotron sideband modes are shifted together by wakes and

become degenerate.

It can be unclear what this physically corresponds to, so a two macro particle description

will be used to obtain a simplified model. This method is similar to that in [?], but has

a few different assumptions. These macroparticles oscillate in transverse and longitudinal

dimensions with transverse wakeforces generated by the head particle witnessed by the tail

particle. Every half synchrotron period the macroparticles exchange positions and the head

particle moves to the tail and vice versa. Instability will occur when the interchange between

particles leads to sustained and uncontrollable growth in bunch (dipole) position.

Let us consider the following inhomogeneous harmonic oscillators along the synchrotron

period. The integer n is the number of synchrotron oscillations, w is the wake strength and

subscripts denote the macroparticle.

ẍ1 +Q2
xx1 =


0 for 2πn < Qsθ < π(2n+ 1)

wx2 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.16)

ẍ2 +Q2
xx2 =


wx1 for 2πn < Qsθ < π(2n+ 1)

0 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.17)

22



This can also be given as a set matrix of linear differential equations as of the form:

d

dθ



x1

ẋ1

x2

ẋ2


=



0 1 0 0

−Q2
x 0 0 0

0 0 0 1

w 0 −Q2
x 0





x1

ẋ1

x2

ẋ2


∣∣∣∣∣
2πn<Qsθ<π(2n+1)

(1.18)

d

dθ



x1

ẋ1

x2

ẋ2


=



0 1 0 0

−Q2
x 0 w 0

0 0 0 1

0 0 −Q2
x 0





x1

ẋ1

x2

ẋ2


∣∣∣∣∣
π(2n+1)<Qsθ<2π(n+1)

(1.19)

From here it is simple enough to simulate this two particle model in order to determine

thresholds. But that is not particularly physically meaningful. Other methods are given

in [?] and [?]. Let us consider two adjacent (one odd, one even) synchro-betatron modes

along the bunch. The total motion of the two bunches can be redefined in terms of the even

sum mode x+ = 1
2(x1 + x2) and the odd difference mode x− = 1

2(x1 − x2). Normally each

mode in a bunch would be driven by small dipole moments along the length of the bunch

where each mode is unique and separately driven. With only two particles only such sum

and difference modes exist. Making a change of variables to sum and difference modes we

obtain:
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d

dθ



x+

ẋ+

x−

ẋ−


=



0 1 0 0

−Q2
x +

w
2 0 w

2 0

0 0 0 1

−w
2 0 −Q2

x − w
2 0





x+

ẋ+

x−

ẋ−


∣∣∣∣∣
2πn<Qsθ<π(2n+1)

(1.20)

d

dθ



x+

ẋ+

x−

ẋ−


=



0 1 0 0

−Q2
x +

w
2 0 −w

2 0

0 0 0 1

w
2 0 −Q2

x − w
2 0





x+

ẋ+

x−

ẋ−


∣∣∣∣∣
π(2n+1)<Qsθ<2π(n+1)

(1.21)

With the change of variables, a few phenomena become obvious. The sum mode observes

a defocusing wake in the first half period and a focusing mode in the second half period.

This can be thought of as a physical explanation why beams are not necessarily unstable

to TMCI even while the tail particle is unstable. Since this change is periodic in time, it is

straightforward to combine the equations of motion for the entire domain.

F (θ) =


−w

2 for 2πn < Qsθ < π(2n+ 1)

w
2 for π(2n+ 1) < Qsθ < 2π(n+ 1)

(1.22)

The inhomogenous portion of the equation is periodic (with a period 2π/Qs) and can
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therefore be treated as a sum of individual Fourier driving terms.

F (θ) =
∞∑
i=1

bnsin(nQsθ) (1.23)

bn =
2Qs
2π

∫ 2π
Qs

0
F (θ)sin(nQsθ)dθ

=
wQs
π

[

∫ π
Qs

0
(−1/2)sin(nQsθ)dθ +

∫ 2π
Qs

π
Qs

(1/2)sin(nQsθ)dθ] (1.24)

=
w

2nπ
[cos(nQsθ)|

π
Qs
0 − cos(nQsθ)|

2π
Qs
π
Qs

bn = 2w
nπ for odd values of n and bn = 0 for even n. The new basis is constructed of two

symmetric coupled differential equations:

ẍ+ = (−Q2
x +

w

2
)x+ +

2w

π
x−

∞∑
i=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.25)

ẍ− = (−Q2
x −

w

2
)x− − 2w

π
x+

∞∑
i=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.26)

Here we reach a conundrum. Although the equations have been simplified, a clean solu-

tion of the system is not obvious. Perturbative solutions are available, but do not exhibit

a clear threshold due to the truncated solution. Two methods show promise: guessing a

solution to the differential equation with synchrobetatron modes, or further simplifying the

differential equations into a more tractable form. This second method is what we shall

attempt.

The sum and difference differential equations are similar in form to one another save

for two aspects. First, the wake drives a small frequency detuning from the transverse fre-

25



quency. The magnitude of this detuning is small compared to the total oscillation magnitude.

Secondly, the coupling terms have the opposite sign of the wake force due to macroparti-

cle interchange. Thus, if the detuning is vanishingly small the two equations will retain a

constant phase difference and any growth will be slow compared to the speed of transverse

oscillations. If a set of initial conditions can be chosen such that the x+ = −xx this problem

simplifies to the form:

ẍ+ = (−Q2
x +

w

2
)x+ − 2w

π
x+

∞∑
n=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.27)

ẍ− = (−Q2
x −

w

2
)x− +

2w

π
x−

∞∑
n=1

sin((2n− 1)Qsθ)

(2n− 1)
(1.28)

Both sums are of a similar form, with a small frequency offset that will eventually cause

dephasing of the solution. We shall neglect this dephasing as it occurs slowly compared to

the speed of instability growth.

The Fourier sum term is formed due to particle interchange of the two macroparticles.

Under one half synchrotron period the sum mode is driven while in the other half period

the difference mode is driven instead. In order to make this into a solvable form it becomes

necessary to determine if any of the Fourier terms dominate. If so, it may be possible to

neglect minor terms to arrive at a usable solution.

But is this actually the case? One may expect that harmonics will not drive instabilities

as strongly as that of the fundamental tune. The exact form of such resonances are difficult

to characterize as these harmonics are not independent. The higher order terms aren’t

suppressed either. The Fourier constants are of the form bn ≈ 1/(2n − 1), so higher order

terms will have less of a contribution, but the scaling alone is divergent. Therefore, we

cannot justify a simplification to only include a single frequency.
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Instead of finding a justification for simplifying the system any further, we can find an

analogous head tail system instead. Such a system must have an odd wake force and must be

positive in the first half synchrotron period, and negative in the second half. The expression

sin(Qsθ) satisfies both criteria. The analogous form has the differential equation:

ẍ+ ≈ −Q2
xx+ − 2w

π
x+sin(Qsθ) (1.29)

This differential equation is a statement of the Matteiu Equation[?], but it needs to be

massaged slightly to obtain the correct final form. We make a change of variables from the

azimuthal angle θ to τ to retrieve a conventional Mattieu form. Here we define 2τsθ where

d
dθ = Qs

2
d
dτ .

d2x+
dτ2

+ [a+ 2qsin(2τ)]x+ ≈ 0 (1.30)

a = (
2Qx
Qs

)2; q =
4w

πQ2
s

This equation has a solution of form [c1e
iµτ−c2e−iµτ ]Φ(τ) where Φ is a periodic function.

If the characteristic exponent µ becomes complex the system is unstable making it possible to

determine the TMCI threshold[?]. Calculating this threshold by hand is unnecessary as the

characteristic exponent is included in many standard libraries[?]. The instability threshold

of such a model is shown in Fig. ?? in terms of the wake strength w.
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Figure 1.5: TMCI threshold shown. The system becomes unstable when the characteristic
exponent of the solution becomes complex. Note the distinctive parabolic form of TMCI
threshold.
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Figure 1.6: TMCI threshold in terms of stability criterion Υ which becomes unstable above a
certain value. This graph shows a similar form to that given in Dr. Chao’s text[?], although
the functional forms of the two are somewhat different.
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1.4.3 TMCI Models

Perhaps the best known model for TMCI is the two particle model given in Dr. Chao’s text

on collective effects[?]. Unfortunately this model is not the most precise in a realistic case.

To get quantitative results other models need to be applied.

Strong instabilities can be well modeled by Particle in Cell (PiC) codes with full collective

effects from wakefields and space charge. These are attractive methods due to the their

obvious applicability to real machines. However, PiC codes can have significant shot noise

and are slow to run [?]. One can think of PiC codes as multidimensional numerical differential

equations evolving in time with both single particle and ensemble effects. The smaller the

timestep, the lower the error. This numerical error will accumulate to some degree over long

runtimes, potentially muddying the results. As more particles are added, this becomes more

computationally intensive. As particles propagate within the bunch, its space charge forces

and wakes generated need to be correspondingly updated for correct collective motion.

Analytical models are another common method to understand TMCI. TMCI is not an-

alytically solvable with both an arbitrary distribution and space charge so significant sim-

plifications must be made to arrive at a solvable model. One of the largest difficulties in

creating a solvable model are realistic collective effects. Although relatively simple mod-

els can generate necessary wake modes, transverse space charge is effectively ’pancaked’ at

highly relativistic velocities making its effects short ranged along the bunch length and very

sensitive to distribution shape compared to low frequency wakefields.

Good examples of this are the Square Well Model (SWM)[?] and the Airbag Square Well

(ABS) [?]. These models simplify the longitudinal dynamics to a continuum of current in a

square potential well, the average motion of which can be solved as a system of linear ODEs.
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Although solvable, the unrealistic phase space shape is a significant detriment, making it

most useful for its qualitative dynamics.

A derivation of the SWM/ABS is given in chapter ?? as it gives strong physical intuition

for TMCI and will act as the starting point for the main thrust of this work.

1.4.4 Space Charge and TMCI

The two particle approach gives insight into the onset and prevention of Mode coupling in-

stabilities. Changing the ratio of coupling tunes and decreasing wake impedance are obvious

solutions to move below instability threshold. A feedback system, an artificial wake designed

to counteract natural wakes in the system is also a viable solution to such a problem.

Due to simplifications in the two particle model (specifically the fact that it is just a

two particle model) space charge effects cannot be included in a well justified way. Other

methods and models will have to be used to derive the functional form of space charge effects.

With that said, a qualitative understanding can be arrived at without a space charge model.

As shown in the previous section, TMCI is driven by mode degeneracy. Two previously

stable modes combine together into a new set of unstable tunes with long term growth in θ

the time-like coordinate. Space charge slows the oscillation of the coherent motion shifting

all the modes of the system. If this shift prevents modes from becoming degenerate, collective

motion will not become unstable.

1.4.5 Circulant Matrix Models and BimBim

Later comparisons in sections ?? will compare results with the simulation code BimBim [?].

This is what is known as a Circulant Matrix Model (CMM). For CMM, longitudinal phase
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space is decomposed into radial and azimuthal sections, with each section having a definite

geometric size, shape, and density. Because these are directly sampled from the distribution,

rather than constructed from macroparticles the system is not susceptible to Schottky noise,

making it possible to attain relevant results with fewer model elements.

Each section of longitudinal phase space is assumed to evolve as a single quantity xρ,ϕ

in transverse dimensions. These terms are projected onto the z axis before undergoing

transport and collective forces between xρ,ϕs. Transport and collective effects of this form

can be represented by a Circulant Matrix and are therefore solvable.

It should be noted that BimBim does not have fully self consistent space charge kicks.

Instead, the space charge is a small correction on the bare lattice path of the beam. In cases

where this correction is small (such as weak space charge or small step size) this is sufficient.

Step size can be varied, but will lead to increased computation time.

1.4.6 Convective Instabilities without TMCI

If wakes continue to be increased but the system remains absolutely temporally stable[?] due

to space charge forces the saturated solution will not grow in time. In such a case oscillation

frequencies shift but do not grow or decay. Unfortunately, stability in time is not sufficient

to prevent beam loss. Head-tail amplification–transverse beam growth along the length of

the bunch–can cause the bunch to reach a maximum transverse displacement near the tail.

If the maximum position is larger than the beam pipe, particles will hit the wall and be lost.

Head Tail amplification can be thought of as unstable growth along the bunch and is

the genesis for the somewhat confusing name of the convective instability. The convective

instability does not need to undergo ’convection’, that is motion to short ranged kinetic

interactions. The ’convective’ in convective instability is actually due to an unstable term
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ż ∂∂z in the total derivative d
dt . This total derivative is sometimes known as the ’convective’

derivative[?] leading to the name and the confusion.

Coherent space charge itself can effectively be thought of as a retarding/defocusing force,

slowing the oscillation speed of coherent modes. Let us consider some wake driven by an

initial transverse bunch offset. If the wake drives significant motion from the head to the

tail of the bunch, the bunch is convective. Unlike true instabilities, convective motion does

not have a threshold; as long as head-tail amplification is small enough and the beam pipe

large enough, particles will not be lost.

Normally this class of instability is characterized using Burov’s ABS model[?]. However

other analytic models also reproduce convective behavior. An example of such a model is

given below.

According to linear small phase advance optics bunches are constructed of multiple co-

herent modes, with a small wake that does not heavily impact the tune of the system. Each

of these modes has the form xn(t) ∝ cos((Qxω0t + ∆Q(ω0t − ψs)). There are potentially

multiple coherent modes for each sideband, leading to a large set of valid tune shifts ∆Qx.

All particles flow cyclically around in synchrotron phase space, therefore there is a constant

phase where ∆Q(ω0t − ψs) = 0. The phase contribution ż = vp(z) is the phase velocity

of a wave of particles along the length of the bunch. Thus ϕs ≡
∫ z
0

dz′
vp(z′)

. The beginning

differential equation has the following form:

[
d2

dt2
+ (Qx +∆Qx)]x = F (t, z) +O(ϵ) (1.31)

F (t, z) =

∫ z

0
f(z − z′)λ(z′)x(t, z′)dz′

Since F (t, z) is small it would be tempting to consider it a perturbation and obtain a
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solution for a short time scale. However this will only be valid over short times, and we

are looking for a more general solution. In fact, we know that for small wakes the system

remains stable and bounded (which is necessary for accelerators everywhere). Instead we

will look at the spatial dependence of the system. The wake is the convolution of average

particle position and the wake function f(z − z′). Because of the form of the wake, we can

expect an oscillatory solution in time and phase with varying amplitude along the bunch

length due to the wake forces. There are multiple other coherent frequencies which interact

through their wake forces, but these are not expected to have a significant contribution due

to poor coupling.

The wake force is a convolution of the wake function and the transverse moment λ(z)x(t, z).

We can then take the spatial derivative of Eq. 1.32 and obtain the following:

d

dz
(
d2

dt2
+ (Qx +∆Qx))x =

d

dz

∫ z

0
f(z − z′)λ(z′)x(t, z′)dz′ (1.32)

(
d2

dt2
+ (Qx +∆Qx))

d

dz
x = f(0)λ(z)x− f(z)λ(0)x(0)

We can see that the wake force will add a small detuning to the system d2

dt2
= −(Qx+∆Qx+

∆Qw)
2. With this in mind we guess a solution to the differential equation.

x(t, z) = b(z)cos(Qxω0t+ (∆Qx +∆Qw)(ω0t−
∫ z

0

dz′

vp(z′)
))

dx

dz
= b′(z)cos(Qxω0t+ (∆Qx +∆Qw)(ω0t−

∫ z

0

dz′

vp(z′)
))(1.33)

+b(z)(∆Qx +∆Qw)(
1

vp(z)
− 1

vp(0)
)sin(Qxω0t+ (∆Qx +∆Qw)(ω0t−

∫ z

0

dz′

vp(z′)
))

If we assume that the phase velocity is approximately constant, then vp(z), λ(z), f(z) are

constant. This simplifies the system a bit. Including the approximation and substituting
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into the differential equation yields:

f(0)λ(z)x(z)− f(z)λ(0)x(0) = −2∆Qw(Qx +∆Qx +∆Qw/2)
b′(z)
b(z)

x(z)

1− x(0)

x(z)
= − 2∆Qw

f(0)λ(0)
(Qx +∆Qx +∆Qw/2)

b′(z)
b(z)∫

(1− x(0)

x(z)
)dz = − 2∆Qw

f(0)λ(0)
(Qx +∆Qx +∆Qw/2)

∫
b′(z)
b(z)

dz (1.34)

z −
∫

(
x(0)

x(z)
)dz = − 2∆Qw

f(0)λ(0)
(Qx +∆Qx +∆Qw/2)ln(b(z))

b(z) = e
−(Qx+∆Qx+∆Qw/2)

f(0)λ(0)
2∆Qw

(z−
∫
(
x(0)
x(z)

)dz)

One might be mistaken in assuming that this is a decay rather than growth of the beam

along the length of the bunch. However, ∆Qw < 0 and |∆Qw| ∼ Qs meaning that instead

of a negative term in the argument of the exponential, it is instead highly positive. This

also simplifies the integral in b(z); x(z) ∝ b(z) so we can expect that the contribution

from the integral
∫ x(0)
x(z)

dz contributies a multiplicative factor for a rapidly amplifying beam.

Therefore the the solution for convective motion is:

x(t, z) = b(z)cos(Qxω0t+ (∆Qx +∆Qw)(ω0t−
∫ z

0

dz′

vp(z′)
)) (1.35)

b(z) ≈ Ae
zf(0)λ(0)

(Qx+∆Qx+∆Qw/2)
2|∆Qw|
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Chapter 2

Multiple Loop Square Well

It is clear that including space charge effects may have a significant effect on the instability

threshold. However, at this point many analytic methods for studying instabilities break

down. The structure of the beam itself is necessary to include space charge, leading to

more general systems where self forces are included. One such system, the Square Well

Model[?] includes space charge and arbitrary wake functions. In the intervening years since

its invention, this model has appeared in several different forms including the Airbag Square

Well (ABS)[?] and Core Halo Models[?].

In order to make both space charge and wakes solvable in such a system, it is necessary

to heavily simplify the longitudinal dynamics. In the case of the SWM it is simplified into

a single longitudinal energy trapped in a square potential well. However, by splitting the

longitudinal dynamics into a series of discrete steps, it is possible to turn the system into a

series of loops of current, each with a different energy and different synchrotron tunes. This

model we shall call the Multiple Loop Square Well (MLSW).

We shall derive the equations which govern the MLSW prior to discussing the limiting

cases of SWM and ABS to give physical intuition and context.
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2.1 The Vlasov Equation and Transverse Moments

To begin this derivation shall define a continuity equation in three dimensions:

∂f

∂t
+

3∑
i=1

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
) =

df

dt
= 0 (2.1)

Eq. 2.1 is also known as the Vlasov equation. Particle flux is not created or destroyed, but

it can flow in all three dimensions. The transverse dimensions are (x, px, y, py) whereas the

coordinates for the synchrotron direction are (z, ż) with z being the position along the bunch

and ż as the momentum coordinate to make the physical meaning of the longitudinal motion

clear. The time dependence can also be represented by other time-like variables as necessary

while ż can be expressed in terms of δ (see sections ?? and ??). For a decoupled system, this

can be simplified into a pair of two dimensional Vlasov equations, one for each transverse

dimension. Such a distribution is collisionless but has electromagnetic interactions within

the ensemble.

Due to the collective effects and external optics, the Vlasov equation becomes a mixture

of single particle and collective motion. The collective forces are constructed of moments as

in section ??. The moments of the bunch distribution f are the following:

M j,k ≡
∫ ∞

−∞
dxxj

∫
dpxp

k
xf (2.2)

For the rest of this section, the bounds of all integrals are −∞ to ∞. The zeroth (0th) and

the normalized first (1st) order moments of x will be most important and will therefore be
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given their own definitions:

ψ ≡M0,0 =

∫
dx

∫
dpxf

ψX ≡M1,0 =

∫
dxx

∫
dpxf (2.3)

ψP ≡M0,1 =

∫
dx

∫
dpxpxf

Normalizing the 1st order moments means that X and P will correspond to the average

position and momenta.

2.1.1 Derivatives of Moments

Applying the total derivative of the Vlasov equation it is possible to define equations of

motion for the the various moments of the system. These moments are physically meaningful

as TMCI is a dipole instability–which is to say driven by first order moments. Furthermore,

the Vlasov equation makes certain simplifications possible. But first a few identities must

be obtained by integrating the Vlasov equation.

∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+

3∑
i=1

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] = 0 (2.4)

As these are a proper set of canonical coordinates, Hamilton’s equations can be substi-

tuted for q̇i = ∂H/∂pi and ṗi = −∂H/∂qi, and further where q̇i = pi and ṗz = −U(t,z,ż)
dz

and not a function of pi.

∫
dqx

∫
dpxq̇x

∂f

∂qx
=

∫
dqx

∂f

∂qx

∫
dpxpx (2.5)∫ ∞

−∞

∂f

∂qx
= f |∞−∞ = 0
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∫
dqx

∫
dpxṗx

∂f

∂px
=

∫
dqx

dUi
dqx

∫
dpx

∂f

∂px
(2.6)∫ ∞

−∞

∂f

∂px
= f |∞−∞ = 0

This allows us to eliminate the transverse dependence of the integral:

∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+
∑
i̸=x

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] = 0 (2.7)

If the transverse motion is oscillatory and is much faster than the synchrotron motion

its net effect averages to zero. Therefore, the longitudinal Hamilton’s equations will not

contain transverse coupling terms. In order to get the equations of motion of the moments

themselves we must compute their derivatives. The derivation of these moments is rather

long and involved and has been moved to appendix ?? to facilitate readability.

2.2 Collective Equations of Motion

Since Mode Coupling is a linear phenomenon it is sufficient to quantify the first order dipole

moments. Higher order transverse terms may have some effect on this dipole motion, but can

be neglected. The differential equations of the first order moment calculated in Appendix

?? are given below:

Ẋ =
12∑
i=1

Ti = P − Fy
∂X

∂py
+

∫
dxxFy

∫
dpxf
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Fy ≡ ṗy is the transverse force in the y direction. There is an equivalent term Fx for the

other transverse direction. Taking the derivative and rearranging, we get:

Ẍ + Fy
d

dt

∂X

∂py
− d

dt

∫
dxxFy

∫
dpxf = Ṗ (2.8)

Ṗ =
24∑
i=13

Ti = −g0ψ − g1X −
∫
(Fx − g0 − g1x)dx

∫
fdpx

+
∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py

Combining these equations yields:

Ẍ + g0ψ + g1X +

∫
(Fx − g0 − g1x)dx

∫
fdpx = (2.9)

−Fy
d

dt

∂X

∂py
+
d

dt

∫
dxxFy

∫
dpxf +

∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py

Note that this equation of motion neglects the effects of nonlinear optics and higher

order space charge terms. Transverse forces of a given nonlinear order generate coupling

to moments of that order and below. If only coherent motion is included, however, this

simplifies into a more elegant relation. For now, we shall narrow our scope to this linearized

system of differential equations:

Ẋ ≈ P

Ṗ ≈ −g0ψ − g1X

Ẍ + g0ψ + g1X ≈ 0 (2.10)
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For the simplified differential equation, the two transverse dimensions are decoupled,

making the dynamics a set of two simpler Vlasov equations.

2.2.1 Transverse Force Fx

It is necessary that we determine g0 and g1 before Eq. 2.10 can be solved. These are from

the Taylor series of Fx. (Since Fx ≡ dpx
dt = −∂H

∂x is one of Hamilton’s equations) it would be

tempting to define a single particle Hamiltonian and go from there, but this isn’t necessary).

We have previously defined the components of this force in Chapter 1 (Sections ??, ??, and

??) and can build terms g0 and g1, out of bare optics (including chromaticity), coherent

space charge, and diffuse wakes.

One main caveat should be noted however. The collective moments of the transverse

equations become independent from one another when the axes of the beam distribution

and optics are aligned. The space charge effects from a properly rotated bunch will satisfy

this condition. This independence may be violated if the input beam is offset from the beam

optics, although that may not be significant if the offset angle is small.

Including wakes, space charge and optics to the linear order g0 and g1 (from the Appendix

??) we arrive at the following form:

g0(t, z)ω
−2
0 = −2Qx∆Q

′
scλ(z)X(t, z) +

∫ z

0
W (z − z′)λ(z′)X(t, z′) (2.11)

g1(z, ż)ω
−2
0 = −Q2

x + 2Qx(∆Q
′
scλ(z)− ξ(ż)) (2.12)

Where X ≡
∫∞
−∞ ψXdż/

∫∞
−∞ ψdż and the line density λ(z) =

∫∞
−∞ ψdż. Even after

all that simplifying, we can see this system is still a second-order PDE of three separate

variables. Thankfully, it is possible to simplify the system into one that is more tractable.
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The next few sections will focus on this process. These sections parallel that of [?], which is

in preparation.

2.2.2 Upper Betatron Sideband Approximation

The total distribution of particles will have moments generated by the order of the betatron

sideband. The ±1 betatron sidebands (normal betatron oscillations) are primary oscillation

frequencies that generate first-order moments. By assuming that the tune is primarily due to

this sideband, we can assume a form for X and reduce the order of the differential equation.

In this case we assume X is made up of a slowly varying term X̃ and a fast oscillation at

the upper betatron sideband tune:

X ≡ Re(X̃e−iQxω0t) (2.13)

P = Re(( ˙̃X − iQxω0X̃)e−iQxω0t)

d2

dt2
(X̃e−iQxω0t) = ( ¨̃X − 2iQx ω0

˙̃X −Q2
xω

2
0X̃)e−iQxω0t

Since the X̃ is slowly varying compared to the betatron tune it is not a significant

contribution to the solution ( ¨̃X = 0). Thus, when substituting into Eq. 2.10 we obtain a

first order differential equation.

2Qx
iω0

˙̃X = X̃(Q2
x + g1(z, ż)) + eiQxω0tg2(t, z) (2.14)
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The total time derivative can be divided into explicit and implied components d
dt =

∂
∂t+

∑3
i=1(q̇i

∂
∂qi

+ṗi
∂
∂pi

). Since the transverse dependence has either been integrated out or is

independent, this is equivalent to the one-dimensional total derivative. d
dtl

= ∂
∂t+ż

∂
∂z+

dU
dz

∂
∂ż .

U(z) is a scaled potential from section ?? such that it is in the proper relativistic frame with

mass taken out. Substituting this into the collective equation of motion yields the following:

∂X

∂t
+ ż

∂X

∂z
− 1

m

dU

dz

∂X

∂ż
=

iω0
2Qx

[X̃(Q2
x + g1(z, ż)) + eiQxω0tg2(t, z)] (2.15)

With the current form of the partial differential equation, the solution is not obvious.

Even if a solution could be found, it would likely only be solvable in special cases. However,

if the system can be simplified to a system of linear ODEs, the problem will become solvable.

Therefore, we shall attempt to make the system one dimensional in z only, as well as linearize

it such that the problem has the form Mν⃗ − Λν⃗ = 0 where M is the matrix of differential

equations, ν⃗ is an eigenvector constructed of basis functions, and Λ is the eigenvalue.

2.2.3 Betatron Tune Shift ∆Qx

In a coherent system like this, the motion is governed by a sum of oscillation frequencies. It

is therefore reasonable to assume a solution where ∂/∂t = −i∆Qxω0. Although there are

ways to calculate what this tune shift must be for a given system, it is not necessary as it

can be easily determined using an error minimization scheme. (See section ??)

∂X

∂z
=

iω0
2Qxż

[X̃(Q2
x + g1(z, ż)) + eiQxω0tg0(t, z) + 2Qx∆Qx] +

1

ż

dU

dz

∂X

∂ż
(2.16)
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2.2.4 Wake Forces

The wake force integral is the last major hurdle that needs to be defined. Specifically, the

wake force must be a basis function (or set of basis functions) of the system of differential

equations in order to be solvable in such a manner.

F ≡ e−iQxω0t
∫ z

0
W (z − z′)λ(z′)X(z′) (2.17)

WhereW is the wake function, λ is the line density, and the line density is the projection

of the distribution function f onto the z axis. The differential equation for F follows the

Liebniz Integral Rule:

dF

dz
eiQxω0t =

d

dz

∫ z

0
W (z − z′)λ(z′)X(z′) (2.18)

= W (z − z)λ(z)X(z)
d

dz
z −W (z − 0)λ(0)X(0)

d

dz
0

+

∫ z

0

∂

∂z
W (z − z′)λ(z′)X(z′)

dF

dz
eiQxω0t = W (0)λ(0)X(z) +

∫ z

0

∂

∂z
W (z − z′)λ(z′)X(z′) (2.19)

If the wake force is a sum of κ exponential terms rather than an arbitrary function of the

form W (z − z′) =
∑κ
k=1wke

−αk(z−z
′), then it becomes

dF

dz
eiQxω0t = W (0)λ(0)X(z)− αk

κ∑
k=1

∫ z

0
wke

−αk(z−z
′)λ(z′)X(z′) (2.20)

wk and αk are chosen to approximate the actual wake function. If the wake function decays

before the next bunch arrives, it can be approximated by the Fourier set. That being said, it
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is often considered sufficient to model the wake with only a few exponential terms. wk > 0

corresponds to a ’natural’ wake–wake a that creates forces in the same direction as the offset

while a negative wk < 0 corresponds to a damping kicker creating forces in the opposite

direction as the offset that generated it making it a common choice to tamp down collective

motion. Each of these individual terms k will be a basis function in the system of linear

ODEs. For ease of identification, all basis functions will have a hat, therefore we shall define

the wake force basis vectors as F̂k ≡ e−iQxω0twk
∫ z
0 e

−αk(z−z
′)λ(z′)X(z′).

F =
κ∑
k=1

F̂k (2.21)

dF̂k
dz

= wkλ(0)e
−iQxω0tX(z)− αke

iQxω0t
∫ z

0
wke

−αk(z−z
′)λ(z′)X(z′)

dF̂k
dz

= wkλ(0)X̃(z)− αkF̂k (2.22)

Collecting terms and redefining:

h0 ≡ g0(t, z)

2Qx
eiQxω0tg2(t, z) (2.23)

= −∆Q′
scλ(z)X̃(t, z) + eiQxω0t

1

2Qx

∫ z

0
W (z − z′)λ(z′)X(t, z′) (2.24)

h1 ≡ Q2
x∆Qx + 2Qx∆Qx + g1(z, ż)

2Qx
(2.25)

= (∆Qx +∆Q′
scλ(z)− ξ(ż)) (2.26)
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∂X

∂z
=
iω0
ż

[(h1(z, ż))X̃ + h2(t, z)] +
1

ż

dU

dz

∂X

∂ż
(2.27)

2.3 Longitudinal Dynamics

Up to this point, we haven’t made any statement as to the form of the longitudinal phase

space and constraining potential, other than it is an equilibrium distribution and it couples

to the transverse dynamics, while the effect of transverse dynamics on it averages to zero.

Because of this lack of coupling, the tune in the longitudinal dimension is:

Qs ≡
τω0
2π

=
ω0
2π

∮
dz

ż
(2.28)

τ is the period of the synchrotron oscillation and ż ≡ ±
√

2(E0 − U(z)). To obtain the ODE

form must eliminate the term 1
ż
dU
dz

∂X
∂ż → 0 from the differential equations of motion Eq.

2.15. Therefore U(z) must be constant, and form a loop in phase space. Such a system is

only satisfied with a square potential well–or a series of finite height square potential wells.

Longitudinal particle velocity is constant and transverse motion is defined by a system of

ordinary linear differential equations between the edges.

The following sections will define the notation and machinery to model nested square

wells.

2.3.1 Approximating Longitudinal Potentials

Assume that we have a singly peaked potential U(z) that we wish to approximate with N

square potential wells bounded by 2N edges. Only N of the edges need to be defined–the

others will be conjugate equipotentials. Ordering the edges along z we define them in order as

46



zn where z0 is the head of the bunch and z2N−1 is the tail. Since this system is periodic over

the bunch train, the head of the next bunch (possibly the same bunch on a subsequent turn)

can be defined as z2N to include multi-bunch wake forces. However, if wakes decay quickly

compared to the distance between bunchs or have some other multiscale characteristic, it

may not be necessary to define z2N . For simplicity, we have so far assumed that z0 = 0

and z2N−1 = lb (the total length of the bunch), but this can be adjusted to accommodate

for any singly peaked potential. These edges split the domain into a set of 2N subdomains

where subdomain n lies between zn−1 and zn. There are no particles trapped in the final

subdomain.

It should be noted that we cannot know a priori the optimum choice of edges for a given

system. The choices must capture the relevant physics in the bunch, and sufficiently sample

the state space. The choice of edges need not be perfect, but should be chosen according to

the main features of the physics.

After discretiztion, many of the functions will be discontinuous (or discontinuous in the

derivative) at the edges zn but continuous within each subdomain. As such it becomes useful

to define these terms in the following way:

f(z) ≡ fn(z) for zn−1 < z < zn (2.29)

Where f(z) is an arbitrary function that may be discontinuous at edges zn. The longitudinal

potential can be discretized in this form. It should be noted that the range for the potential

of each subdomain is the average U(z) where:
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U
m ≡


∫ zn
zn−1

U(z)dz+
∫ z2N−n
z2N−n−1

U(z)dz

(zn−zn−1)+(z2N−n−z2N−n−1)
for n ̸= N∫ zn

zn−1
U(z)dz

(zn−zn−1)
for n = N

(2.30)

m ≡ N − |N − n| (2.31)

Terms such as linear density, longitudinal velocity, and the averaged potential U(z) will

be symmetric around the central well, yielding the form fm(z).

2.3.2 Continuity of Current in Airbag Loops

Now that the potential has been approximated, it becomes necessary to discretize the phase

space to reduce the number of equations of motion to a finite set and to generate realistic

synchrotron tunes. Each finite square well traps a continuous ring of energy levels spanning

multiple subdomains. Without discretization, each energy level would contribute another

set of coupled ODEs. Also, due to the stepwise structure of the square potential wells, some

of these energy levels would have unrealistic tunes.

We must further discretize each of these ring surfaces of current into a monoenergetic

’loop’ of current (also known as airbag distributions), with a single loop of current trapped

by each square potential well. The currents of individual loops are constant so the line

density will vary with the velocity of the bunch. For the loop of current trapped by the jth

square well, the continuity between slices n and o has the following form:

żnj λ
n
j = żojλ

o
j (2.32)
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Figure 2.1: An annotated example phase space portrait of multiple loops of current trapped
in a discretized potential.

Each loop of current can be divided into two half loops with the opposing velocities

(ż−j = −żj). Fig. ?? shows the loops of current in phase space.

2.3.3 Determining Qs for Current Loops

Each current loop has a tune Qs which will decrease monotonically with the total energy of

the loop. The choice of a proper Qs is necessary as mode coupling is heavily dependent on

the synchrotron tune. Since it is monotonic, there is only one corresponding velocity for a

given target tune. The expression for the synchrotron tune of the nth current loop is:

From here it is possible to either invert Qs(E) or perform a concentration series to bound

the necessary energy. The expression for the synchrotron tune of the jth well is:

Qs,j(Ej) =
ω0
2π

∮
dz

ż
=
ω

π

2N−j∑
n=j

zn − zn−1

żmj (Ej)
(2.33)

żmj =
√
2(Ej − U

m
) (2.34)
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What is the proper tune for a loop of current? If the loop of current is undergoing linear

focusing, there is only one tune and the solution is trivial. But when nonlinear terms are

present, the synchrotron tune of the original ’true’ potential will vary with energy. Therefore,

particles trapped within a loop of current will not have a single tune. For maximum accuracy,

one can calculate the average tune of the portion of the ’true’ distribution trapped in a given

potential well (by using a procedure similar to section 2.3.4). Or with enough subdomains,

the differences in tune within that loop of current become small and we can use the method

in section 2.3.4 directly.

2.3.4 Sculpting Phase Space

Just like the potential, we must bin the particle density into individual subdomains. Because

of current continuity the line density λ will be the average value of of the true linear density

λtrue(z).

λ = λm ≡


∫ zn
zn−1

λtrue(z)dz+
∫ z2N−n
2N−n−1 λtrue(z)dz

(zn−zn−1)+(z2N−n−z2N−n−1)
for n ̸= N∫ zn

zn−1
λtrue(z)dz

(zn−zn−1)
for n = N

(2.35)

Since multiple loops of current contribute to the total line density of the system, we can

treat this as a sum of the form:

λ = λm = 2
m∑
j=1

λmj (2.36)
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At the edges of the distribution, there is only a single loop of current making the line

density simple to determine (λ1 = 2λ11). Using the continuity of current for a single loop

of current it is possible to determine the complete λm1 . This in turn makes it possible to

calculate the contribution from the next (loop j = 2) loop. This procedure is repeated until

the system is completely defined.

2.3.5 Generalized Equations of Motion

Now that the longitudinal dynamics are fully determined for the MLSW model we can come

up with the final system of equations. Since the velocity of particles in a subdomain are

constant, we can evaluate Eq. 2.27 at each longitudinal velocity żnj . Doing this gives the

following basis differential equations:

dF̂nk
dz

= wk

m∑
j=1

λnj (X̂
n
j + X̂n

−j)− αkF̂
n
k (2.37)

dX̂n
j

dz
=
iω0
żnj

[h1(z, ż
n
j )X̂

n
j + h0(t, z)] if ż

n
j is real (2.38)

dX̂n
j

dz
= ϵX̂n

j if żnj is imaginary, ϵ << 1 (2.39)

h0(z) = −∆Q′
sc

m∑
j=1

λnj (X̂
n
j + X̂n

−j) +
1

2Qx

κ∑
k=1

F̂nk (2.40)
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h1(z, ż
n
j ) = ξ1ż

n
j +∆Q′

sc

m∑
j=1

λnj +∆Qx (2.41)

Special notice should be given to Eq. 2.39, if żnj is imaginary, this loop of current has been

trapped by a previous square potential well and is therefore not present in this subdomain.

It is possible to change the size of the matrix at each subdomain (as is done in the code

itself for performance), but this is unnecessary from a notation perspective. Ideally, the

matrices in each subdomain have the same order to facilitate matrix multiplication down

the line. It is valid to extend the smaller matrices with the addition of diagonal elements with

vanishingly small value ϵ. This allows us to match the equations at the boundaries of the

bunch (z0 and z2N ) rather than matching them one by one as the size of the matrix changes

and loops of current are trapped by progressive square wells. The differential equations for

each subdomain can be expressed with the following matrix:

dV⃗ n

dz
=MnV⃗ n (2.42)
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V⃗ n =



F̂n1

...

F̂nκ

X̂n
1

X̂n
−1

...

X̂n
N

X̂n
−N



(2.43)

This matrix form has solutions that are an eigensystem with eigenvalues Λ and eigenvectors

ν⃗.

(Mn − Λ)ν⃗ = 0 (2.44)

Each eigenvector propagates with its given eigenvalue such that ν⃗a(z) = ν⃗a(zn−1)e
Λna (z−zn−1).

Λi is the ith eigenvalue while ν⃗i is the corresponding eigenvector. This makes the propagation

of the individual basis function V⃗ :

V⃗ n(z) =
κ+2N∑
a=1

(νn)−1
ca E

n
aa(z)ν

n
abV⃗

n(zn−1) (2.45)

The diagonal matrix Eaa ≡ eΛa(z−zn−1). νab is a matrix made up of row vectors ν⃗ that

translates from the basis of basis functions V⃗ to the basis of eigenvectors ν⃗. We are essentially

translating the initial conditions at the edge of a subdomain zn−1 into a sum of eigenvectors
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before propagating the eigenvectors and then translating back to the initial basis.

2.3.6 Continuity and Boundary Conditions

The motion of the bunch is now well defined in a single subdomian for all basis functions.

Wake forces F̂k and the average position X̂±j of the bunch are continuous along the length

of the bunch where V⃗ nj (zn) = V⃗ n+1
j (zn). Therefore, the propagation of all basis functions

has the form:

V⃗ (z) =
κ+2N∑
e=1

(ν−1)heEee(z)νeg

n−1∏
d=1

[
κ+2N∑
a=1

(νd)−1
ca Eaa(zd)ν

d
ab]V⃗

1(z0) (2.46)

for zn−1 < z < zn

V⃗ (z2N ) ≡ MV⃗ (z0) (2.47)

Now that we can propagate the system to an arbitrary position within the bunch while

maintaining continuity, we can define a vector of boundary conditions that must be satisfied.

First is the boundary condition for the wakes fk, which defines continuity of wakes between

bunches (z0 and z2N ). Bunches may be out of phase with one another which will add a

complex multiplicative factor. This will often be a pure rotation as is the case in coupled

bunch modes, but may vary for specific cases.

At the same time, the upper and lower half loops of current X̂j and X̂−j must have

the same value at their edges X̂j(zj−1) = X̂−j(zj−1), X̂j(z2N−j) = X̂−j(z2N−j). We shall

consider the boundary condition at the head portion of the loop to be an and the tail of

the loop as bn. This seems to suggest that our boundary conditions are a system of κ+ 2N

equations with the same number of unknowns. This is however not actually the case. Instead

the head of the outermost loop must be offset from the center of the beampipe by some small
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amount–this is because our betatron sideband is nonzero. We may arbitrarily set this initial

offset to 1 as we do not know the true offset of an input beam. Because of this it is not

possible to satisfy all boundary conditions simultaneously except in special cases. Therefore,

there will be a small error e that must be accounted for on its own. This error could be

included anywhere, but calculations are simplified if the error is accounted for at the tail of

the initial loop. The initial and final boundary conditions V⃗ (z0) and V⃗ (z2N ) are:

V⃗ (z0) =



f1e
−2πiBT −D

...

fκe
−2πiBT −D

1

1

a2

a2

...

aN

aN



, V⃗ (z2N ) =



f1

...

fκ

b1 + e

b1

b2

b2

...

bN

bN



(2.48)

Where B is the coupled bunch mode number, T is the total number of equally spaced

bunches, and D is a decay factor from the multiscale system. We can represent both of these

vectors of the initial and final conditions in terms of a vector of constraints q⃗ and the vector
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of the initial offset of the bunch c⃗:

q⃗ =



f1

...

fκ

e

b1

a2

b2

...

aN

bN



, c⃗ =



0

...

0

1

1

0

0

...

0

0



(2.49)

Where V⃗0 − c⃗ ≡ Riq⃗ and V⃗2N ≡ Rf q⃗. Therefore,
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Ri =



e
−2πiBT −D

. . . 0
e
−2πiBT −D

0 0

0 0

1 0

1 0

0 . . .

1 0

1 0



(2.50)

Rf =



1

. . . 0
1

1 1

0 1

0 1

0 1

0 . . .

0 1

0 1



(2.51)
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With this it becomes possible to use matrix methods to determine the boundary condi-

tions:

V⃗ (z2N ) = MV⃗ (z2N )

Rf q⃗ = M(Riq⃗ + c⃗)

M−1Rf q⃗ = Riq⃗ + c⃗

(M−1Rf −Ri)q⃗ = c⃗

q⃗ = (M−1Rf −Ri)
−1c⃗ (2.52)

This vector of constraints/initial conditions is only physical when the error boundary

condition e = 0. This is the κ + 1 constraint. Since the matrix M changes with the input

tune shift ∆Qx we can therefore find a choice of tune shift that brings the error to zero.

2.3.7 Determining ∆Qx

As we can see, the entire bunch is defined within an error term concentrated at the tail of

the bunch. A real solution will have this error go to zero and satisfy all of the boundary

conditions. This will only occur at certain values of the parameter ∆Qx, which we can vary

to find proper solutions. We shall minimize this error e using a gradient descent method [?].

For every initial choice of tune shift ∆Qx,i there is a complex valued error e. By choosing

slight offset tune shifts ∆Qx,i+dΩ and ∆Qx,i+ idΩ we can then calculate the derivatives for

the real and imaginary errors. dΩ is a small change to the initial tune shift used to calculate
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the numerical derivative.

Re(e)

Im(e)

 =

 dRe(e)
dRe(Ω)

dRe(e)
dIm(Ω)

dIm(e)
dRe(Ω)

dIm(e)
dIm(Ω)


Re(Ω)

Im(Ω)

 (2.53)

Ω is the change to the tune shift necessary to minimize error if the error is completely

linear. With this in mind we can define a new initial tune shift and iterate the solution

as necessary until the error is below some arbitrary threshold. It can be useful to place an

upper limit on the stepsize in order to not jump toward a more strongly attracting tune

solution.

 dRe(e)
dRe(Ω)

dRe(e)
dIm(Ω)

dIm(e)
dRe(Ω)

dIm(e)
dIm(Ω)


−1Re(e)

Im(e)

 =

Re(Ω)

Im(Ω)

 (2.54)

∆Qx,f = ∆Qx,i − Ω (2.55)

Interestingly, it turns out that this method for calculating tune shifts is very robust for

the system we are studying. It continues to function even with a large number of square

potential wells, as long as a sufficient number of initial starting points near to the coherent

modes are selected.

2.3.8 Physical Interpretation of MLSW

What we have spent most of this chapter solving is the slowly varying portion of the dipole

moments. Since all basis functions oscillate at the same tune (Qx +∆Qx)), the total dipole

motion of a coherent mode is:
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X̂ =

∑m
j λnj (x̂

n
j + x̂nj )

2
∑m
j λnj

(2.56)

Therefore the average position of particles oscillating at a specific tune shift will be:

X = Re(

∑m
j = 1λnj (x̂

n
j + x̂nj )∑m

j = 1λnj
e−2πiωt(Qx+∆Qx)) (2.57)

The weighted sum of all valid tune shift modes will give the complete solution.

This is the steady-state solution for the coherent bunch motion. Wakes will grow and

bunches deform until this system arrives at these coherent modes. Because of this, it may

take several synchrotron periods in order for the system to reach this final steady and state

crossing the parameter space as it does so. If this path towards the steady state crosses an

instability threshold (shown in Fig. ??) it may experience this instability even if the steady

state itself is stable.

2.3.9 Solving the MLSW with Codes

It should be obvious that although this is an exactly solvable problem, boundary condition

matching for such a system is an iterative process. A code and accompanying wrapper have

been developed to discretize a beam, translate it into the square well method then calculate

the coherent modes of the system.

The Python wrapper discretizes the input potential and generates a set of input files

with longitudinal dynamics and transverse parameters (sections ??-??). This is then read

by the main C++ code which uses the matrix solver Eigen[?] to satisfy boundary conditions
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??-??). The coherent tune shift and the shape of the bunch modes along with the bunch

shape are then saved as output files that can be read and visualized by the wrapper.

The python[?] wrapper for the MLSW code has the following form. It begins with an

input potential which it discretizes into a set of square potential wells (section ??) and bins

the line particle density. From there the tune of the trapped particles is calculated and an

energy level assigned to give the approximating airbag the correct tune (section ??). Particle

densities are meted out to the individual loops before being combined with transverse bunch

information (section ??). The wrapper then saves an input file for each individual setting

which can be used by the main C++ calculation code.

The C++ code is a multi-threaded code that uses the matrix solver Eigen[?] to perform

the individual matrix calculations. Each input file is read by one of the threads which are

then translated into two sets of matrices. The first matrix is the total system with no

tune shift term M |∆Qx=0. The second matrix is R, the matrix of constants and prefactors

for the tune shift, where R ≡ (M −M |∆Qx=0)/∆Qx. This way it is possible to evaluate

the total matrix M quickly since M = M |∆Qx=0 + ∆QxR. Then the error minimization

can be performed to satisfy boundary conditions. With boundary conditions satisfied, the

individual coherent modes and the spatial functions are then saved to a file where they can

be visualized by the python wrapper.

61



Chapter 3

MLSW Results

The generalized Multiple Loop Square Well model is only useful insofar as they tell us more

about the system then the limiting cases. Therefore we shall begin with a comparison of

the MLSW model with the SWM and ABS (sections ?? and ??). A systematic study of

multiloop phenomena is then performed from the normal case (section ??). After that,

we use the MLSW to analyze certain systems such as nonlinear chromaticity (section 3.4),

oscillating wakes (section ??), nonlinear longitudinal potentials (section ??), and methods

for damping instabilities (section ??).

3.1 SWM Comparisons with MLSW

In the limit of a single square well, the Multiple Loop Square Well reduces to the Square Well

Model[?]. In this section we will demonstrate that the MLSW match the SWM results in this

limiting case. We will survey these results to give physical intuition and offer a comparison

point for more complex dynamics of multiple square wells and loops of current.

For a single square well, the velocity can be easily defined in terms of tune:

Qs =
ω0
2π

(

∫ lb

0

dz

vs
+

∫ 0

lb

dz

−vs
)

vs =
ω0lb
πQs

(3.1)
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A single loop of current will have longitudinal velocity ±vs and the corresponding two

equations of motion–one for the forward propagating and one for the backward propagating

portion of the bunch. Since this bunch has a non-infinitesimal amount of particles oscillating

at a given tune, the loops of current in this distribution have a density in phase space of

λδ(ż ± vs)/2 where δ is the Dirac Delta Function. This has the added effect of making the

the particle density λ(z) constant within the square potential well and zero everywhere else.

Evaluating this gives the set basis of differential equations X̂+, X̂− completing the set of

basis vectors for the system of linear ordinary differential equations.

dX̂+

dz
=
iπQs
lb

[(∆Qx +
χω0
πQs

)X+ +
λ

2
∆Q′

sc(X̂+ − X̂−) +
1

2Qx

κ∑
k=1

F̂k)] (3.2)

dX̂−
dz

= −iπQs
lb

[(∆Qx −
χω0
πQs

)X− +
λ

2
∆Q′

sc(X̂− − X̂+) +
1

2Qx

κ∑
k=1

F̂k)] (3.3)

dF̂k
dz

= wkλ(X̂+ + X̂−)− αkF̂k (3.4)

Because the system only has particles at mirrored velocities, the chromatic term can

only be meaningfully defined in terms of the head tail phase shift χ or the linear order of ξ

(χ = ξlb) as even components of the expansion will just lead to a small frequency detuning.

The boundary conditions for a bunch with quickly decaying wakes are:
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X̂+(0) = X̂−(0) ≡ 1 (3.5)

X̂+(lb) = X̂−(lb) ≡ b (3.6)

3.1.1 SWM Beam Instabilities

When a valid tune solution ∆Qx has a negative imaginary component, Im(∆Qx) < 0,

the system becomes unstable and the bunch oscillations will grow exponentially until some

mechanism stabilizes the beam. The most trivial example of this is particle loss, where loss

will decrease the strength of the wake force, the main source of instability in our case. At

a sufficient distance from the center of the optics nonlinear forces become stronger and we

may exit the linear regime. Even if nonlinearity prevents direct particle loss there will still

be a significant decrease in beam quality.

Many instability result from modes combining together and becoming degenerate as in

TMCI. But there are exceptions, as the Head Tail instability does not exhibit this behavior.

3.1.2 SWM and TMCI Threshold Under Constant Wake

All tune solutions ∆Qx for a stable system will reside on the real line (Im(∆x = 0)),

making each solution oscillate at an offset from the fundamental betatron tune. If two

modes shift together on the real line they will become degenerate and create an instability.

Since the distance between sideband modes without collective effects is Qs, a wake must

shift a sideband ∼ Qs in order to drive this instability.

For the simplest possible wake, where α1 = 0 known as a constant wake or a step wake.
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This is not technically a possible wake because transverse wakes must satisfy
∫∞
0 W (z)dz = 0

But it is possible to have a wake which only valid for the interval of interest.

When α1 = 0 there is no natural oscillation, and the wake will best couple to the zero

mode. Thus it is possible to define the approximate tune shift generated by a step wake

of this form known as the Rigid Mode tune shift ∆Qw. ∆Qw ≡ wk
4Qx

for a bunch with a

total bunch intensity of N . ∆Qx = −∆Qw while wk is sufficiently small, effectively when

the wake force does not heavily perturb the modes of the solution. However as the wake

strength increases, this shifting of other modes becomes more significant and must not be

discounted–leading to the shape of the instability diagram shown in Fig. 3.1. These other

modes can be driven into instability as well, but only become the dominant unstable term

in specific cases.

The TMCI threshold for a constant wake and no space charge is:

w1

4QxQs
∝ w1

4ωxωs
> 2 (3.7)

This has the very good agreement between the two macroparticle model with [?] with the

same functional form and constant factors. However. Since the SWM is a macroparticel

model approximately the same functional dependence as [?] the two macroparticle model

from section ??, but lacking synchro-betatron resonances due to the continuous particle

distribution.
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Figure 3.1: The TMCI threshold simulated using the SWM. Note the lack of resonance lines
characteristic of macroparticle methods such as those shown in section ??
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Figure 3.2: This figure shows the corresponding tune shifts of an oscillating wake fre-
quency. The tune shift response for input the wake function is an even function of N
(N = |αk|lb/π)while the tune kick is small. The zero mode is more strongly driven by
wakes, making it easier to drive into an unstable regime compared to other wakes.

3.1.3 SWM and MLSW Mode Responses for Varying Wake Fre-

quency

Rather than assuming a constant wake function, let us also consider wakes generated by an

oscillatory wake function of the form αk = iπN /lb. The parameter N , which we shall call

the cosine wake mode number is a continuous parameter that will drive a combination of

coherent modes. When N is in resonance–slightly above the integer due to interaction with

other modes, it has the same natural frequency as a sideband mode, exciting a tune shift in

the beam, as is shown in Fig. 3.2. For the single well version of this, the fundamental mode

is easier to drive than the offset modes.
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Figure 3.3: MLSW with three loops of current driven by an oscillating wake function. The
tune shifts of an oscillating drive tune shifts in a combination of modes. As with the single
well, this response is an even function of N , where N = |αk|lb/π. The error minimization
algorithm does not always resolve all coherent modes of interest, leading a few missing
datapoints such as in the 0 mode.

Taking the same approach with three potential wells and measuring the responses we

obtain Fig. 3.3 which has the same rigid fundamental mode, but a decreasing response from

the sidebands. Since the bunch is no longer flat, modes are no longer solely driven by the

ratio of the wake αk to the length of the bunch lb as the bunch shape itself has its own

resonances. Therefore, we should expect this to vary with the exact distribution shape.

3.1.4 TMCI with Space Charge

In the single well limit, free space charge effects shift all modes except for the fundamental

(n = 0) correspondingly lower, effectively slowing the oscillation speed of the bunch. The

fundamental mode doesn’t shift and space charge alone cannot cause mode coupling, the

positive sideband modes will asymptotically approach the fundamental mode from above

68



while the negative sideband will continue to decrease linearly with ∆Qsc/2. For a real

machine however, the intensity along the bunch varies longitudinally making the tune vary

along with it.

With a natural wake (wk > 0) space charge is a stabilizing effect. The distance between

the n = 0 and the n = −1 modes will be approximately Qs+∆Qsc/2 making the total tune

shift necessary to couple between such modes larger than in the absence of space charge. But

this is a double edged sword. At strong space charge, damper wakes can induce instability

by driving mode coupling between the modes where n ≥ 0. This instability is shown in Fig.

3.4

Perhaps the most important prediction is that certain beams (below the red line in

Fig. 3.4) cannot become unstable to TMCI no matter how high the particle intensity

is. This suggests that for SWM beams it is not needed to limit the beam intensity when

2Qxwl/∆Qsc > 2).

But a slight caveat. While TMCI from the zero and one modes may be damped by suffi-

cient space charge, other modes may not necessarily be damped in the same way. Therefore

one should be aware that higher order terms may become problems at very high intensity

even if space charge dampens the main instability.

When we move on to a multiple loop case this system changes significantly. Although the

same modes exist in Fig. 3.5 (albeit with their frequencies adjusted slightly), other modes

dominate at high intensity. These features are due to mode splitting in the coherent modes

and will be talked about in section 3.2.5. Therefore at high intensity there is a strong upper

current limit.
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Figure 3.4: Colormap of instability magnitude for the SWM. As bunch intensity increases,
so do both the rigid mode tune shift (4Qxw1) and the space charge tune shift (∆Qsc). If the
ratio the rigid mode and space charge is less than one but still greater than zero the beam
will be stable for any intensity. TMCI at the top left is from modes -1 and 0, the one at the
bottom is 0 and 1, while the final mode is much weaker and at the top right and is the 2
and 1 modes.
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Figure 3.5: Colormap of instability magnitude for N = 3 mulitloop. This bunch has a worse
resolution in order to save computation time so structures are not as well resolved. Note
the spike like nature of some of the instabilities, these are due to orthogonal modes crossing
one another briefly without fully coupling. and are only degenerate over short time in the
parameter space.
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3.1.5 Head-Tail Instability with Linear Chromaticity

Unlike TMCI, the head-tail instability doesn’t require mode degeneracy in order to become

unstable. Instead, the head-tail phase shift χ causes a small mismatch between the phase

of the forward and backward propagating loops of current. Without wakes, the phase offset

will satisfy boundary conditions as cos(nπ+χ) = cos(nπ−χ). In the presence of wakes the

tune must be complex to satisfy the boundary conditions. A diagram of this mode structure

for the SWM is shown in Fig. 3.6. Since mode coupling does not occur in this case there is

only one complex mode for each sideband, which may be stable or unstable depending on

specific conditions.

This chromatic effect has a theoretical relationship to the growth rate of the TMCI

threshold as well[?]. As Head Tail modes are already unstable, it can be difficult for head tail

modes to couple properly into TMCI. Because of this, chromaticity is sometimes suggested

as a method to damp such instabilities.

For systems where the number of loops of current N > 1, chromatic effects will differ due

to the more complex phase space and will treated in section 3.4.

3.2 MLSW Phenomena

3.2.1 Bunch Shaping and RF

So far we have taken an overview of the MLSW model, focusing on general aspects of bunch

performance. This survey used simple peaked multiwells and linear RF forces to make the

results widely applicable.

As more square wells and loops of current are added the exact shape of a distribution
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1wellChromaticity.png

Figure 3.6: A plot of the most unstable modes due linear chromatic effects. Though we use
nonstandard definitions for chromaticity, chi should remain unchanged. As has been noted
before, the No comparison with MLSW will be shown here, as that will need to be discussed
in more detail in section 3.4.
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beomes more important. The longitudinal RF potential defines the tune of each individual

loop of current while the particle distribution populates each loop with current. Many beams

are approximately Gaussian in form, but any equilibrium distribution with a singly peaked

potential can be approximated by the superposition of multipile square wells. It is useful to

think about some special cases, which show interesting results.

3.2.2 Hollow Beams and Beams with weak Collective Effects

Let us begin by thinking about a loop of current. This is essentially a single airbag trapped

in multiple square wells, and with enough loops potential wells this approximately becomes

a hollow distribution, shown in Fig. 3.7. In the limit without collective effects, a bunch is

made up of multiple hollow distributions evolving independently.

This gives us an interesting thought experiment. If we imagine that we have an input

beam without any collective effects mediating between loops of current, this will lead to the

each loop of current being oscillating based on their initial offsets. Each loop will have its

own individual sidebands that propagate separately from the others.

What happens when coupling is included? As soon as there are forces propagating

between the multiple loops of current, the system is fully defined and each loop of current

will eventually shift to toward the system’s coherent modes. Before the system saturates,

each mode will shift to the final oscillation frequency. For these weak collective effects the

external current loops essentially cancel the contributions of other modes while the system

is dominated by the outermost loop of current. This is why the coherent tune has the

synchrotron sidebands of the outermost loop as the coupling strength between loops of

current goes to zero.

However, when mode bifurcation occurs these new coherent modes will be some hybrid of
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6wellHallow.png

Figure 3.7: The longitudinal distribution of single airbag bunch trapped by nested square
potential wells.

75



4wellHallow.png

Figure 3.8: Instability modes for a single loop of current trapped in a series of potential
wells. Note that there is no mode bifurcation as there is only a single degree of freedom in
this case. The space charge tune will vary along with bunch with λ but over an oscillation
will average to a single mode per sideband.
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the outermost loop of current and some of inner ones that propagate slightly differently. That

being said, if particles are only in a single loop of current, the bunch will regain the hollow

distribution unperturbed by other loops of current and will not have bifurcating modes (Fig.

3.8).

3.2.3 The Gaussian Distribution

Gaussian beams, and others with slow decay at their edges can be difficult to model the bunch

with square wells without needing to artificially cut off those particles with a large excursion

from the center of the bunch. This is because it is important to have a sufficient number

of particles in each loop of current. This is particularly important because the outermost

loop is the one which includes the initial offset boundary condition. And therefore, if there

are significantly fewer particles in this loop, it is equivalent to a smaller initial offset for the

bunch overall, and will weaken the total response.

We can expect that many beams will have a Gaussian like shape, so this distribution

will act as a good baseline for determining TMCI thresholds 3.9 for a normal beam. And

interestingly, the space charge-less case has a similar TMCI threshold to other distributions

such as those from Fig 3.8. This is because the zero mode is essentially constant, making the

total rigid mode tune shift an integral of the distribution over the length of the bunch–which

equals the total charge of the bunch. What is different is that this beam has significantly

different space charge forces between the center and the edges of the bunch, which allows

coherent modes to split quite readily from one another another.
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6wellGauss.png

Figure 3.9: Coherent modes for an approximated Gaussian distribution with 6 loops of
current. Perhaps most interestingly, it seems that that space charge-less TMCI threshold for
both this and the other models are approximately the same, while space charge forces differ
greatly between them.
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3.2.4 TMCI Threshold Convergence

When approximating a given distribution, increasing the number of square wells (and loops

of current) should improve the resolution of the approximation. For a reasonable choice

of square potential wells, increasing the well number should allow the solution to converge

toward the true value of such a distribution. If this does not converge or remain constrained

to a small boundary, this approximation method is suspect.

To demonstrate the convergence of this method we will consider a Gaussian distribution

approximated by a number N square potential well and linear RF. All loops of current will

have approximately the same synchrotron tune and particle number. This will be shown

in two ways, first an instability will be driven using a rigid wake which is whown in Fig.

3.10, after that is completed and instability observed, space charge will effectively dampen

the instability as in Fig. 3.11. In the multiple loop cases, instabilities may also occur after

TMCI is initially damped. These are due to mode splitting, the subject of the next section.

3.2.5 Bifurcating Instability Modes

Each of the N loops of current contributes a degree of freedom to bunch itself. These

degrees of freedom, make it possible for multiple modes to split off from an original coherent

mode as in section ?? by the physics of the system. This is perhaps most obvious when

considering space charge effects where multiple loops of current can be offset to satisfy

boundary conditions. These offset modes begin at the synchro-betatron sidebands. More

loops of current correspond to more degrees of freedom that can be excited, which turn a

sparse mode structure into a more dense one. It should be noted that these modes are still
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TMCImultiwellConvergence.png

Figure 3.10: TMCI growth rate of the rigid mode of a Gaussian bunch. The threshold for
mode coupling occurs when the 0 and the −1 synchrotron sidebands couple into one another
generating an exponentially growth rate −ω0Im(∆Qx). Converging threshold is observed

at
wl
2Qx

≈
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DampingmultiwellConvergence.png

Figure 3.11: The damping of TMCI with space charge with a rigid mode tune shift of
wl
2Qx

= 1, around twice the TMCI threshold. The space charge tune shift needed to dampen

this instability for a large number of wells is ∆Qsc ≈
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discrete and do not represent a continuum.

This has a few clear implications for the motion of the system. Space charge effects will

be split into multiple degrees of freedom with each observing different average tune shifts.

Thus particles dominated by the center of the beam motion can be expected to have a larger

tune shift compared to a mode dominated particles at the edge of the bunches.

Each of these modes can by themselves drive mode coupling with other sidebands, but

they do so in a different way due to the degrees of freedom. Modes that are from the same

degree of freedom couple normally as discussed in the SWM, but if two orthogonal modes

cross in tune space they will still become briefly degenerate. Such brief degeneracy of modes

will cause some beam loss for the system.

It is worth noting that increasing space charge normally dampens instabilities for a single

degree of freedom, but in systems with multiple orthogonal modes space charge can briefly

drive mode coupling from these orthogonal modes such as is shown in Fig. 3.13. Since such

modes are only briefly degenerate, with correspondingly smaller growth rates. However,

as the intensity of the bunch increases we can expect these orthogonal modes to continue

crossing one another making the beam likely to be unstable at high intensity.

3.2.6 Space Charge Self Effect

Additional loops of current distribute the charge among the loops. For the single well case

half of the particles are in the upper filament and the other half are in the lower. Since there

are no self forces, this is why the SWM has the prefactor of 1/2 in front of ∆Qsc for Eqs.

3.2 and 3.3. As more loops of current are added, this corrects itself as each filament has a

relatively smaller contribution and the lack of self effect becomes comparatively less. This

makes it more difficult to drive TMCI between the 0 and −1 modes of a multiloop than the
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Figure 3.12: Mode structure of coherent modes at high space charge intensity without wake-
fields. The real components of ∆Qx shown in blue. Unstable modes will accompanying red
dots offset by their imaginary components. The degeneracy of orthogonal modes makes this
system unstable to to TMCI, which becomes worse as the intensity increases.
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Figure 3.13: TMCI Threshold Portrait of a three well Gaussian distribution and single well
under a varying wake strength wl and a space charge tune shift of ∆Qsc = 2Qs. Because of
the lack of self effect, the single well has a lower threshold than the multiwell Gaussian.

single loop case. This can be observed in Fig. ?? which has the same scale as in Figs. 3.4

and 3.5.

Perhaps surprisingly, the negative TMCI modes are still very much the same form as the

single well case. In the strong space charge regime, negative (damping) kicks can quickly

drive instability.

3.3 Convective Instabilities

3.3.1 Airbag Square Well

In recent years Burov [?] has further expanded upon Square Well Model with his so called

Airbag Square Well Model (ABS Model). This model differs from the SWM in two main

ways. First of all, the model eliminates chromatic effects to make certain solutions simpler

and more elegant. Secondly, it has more of a focus on the eigenfunctions of the system to

derive the actual evolution and shape of the forward and backward propagating beams.

3.3.2 Spatial Modes

Since the MLSW model is a system of linear ODEs that propagate along the length of the

bunch, the individual solutions are a sum of exponential solutions with complex growth rates.

This means that in general this system is a combination of decay, growth, and oscillatory

motion, constrined to match boundary conditions. Every subdomain of a multiwell will have

different propagation making the total motion of the bunch less obvious. However just as in
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the single well case it is still possible that spatial modes could drive the convective instability.

3.3.3 ABS Convective Instability

There is significant physics in the strong space charge regime where the system is stable

to TMCI, but particle loss and beam quality degradation may still occur. These areas of

beam degradation are due to the same convective instability that was shown in section ??.

At a high intensity, but below the TMCI threshold, the tune shift eigenvalues will be real

while the bunch shape eigenvectors correspond to extreme amplification from the head of

the bunch to the tail. This amplification can move the portions of the bunch outside of the

dynamic aperture where particles will be lost.

The scaling for head tail amplification for modes with n ≥ 0 is shown below. Unlike the

model in the previous chapter, only those moments become convective.

It should be noted that there are two separate kinds of convective instabilities identified

in [?], the saturating convective instability (SCI) and the absolute convective instability

(ACI). The saturating convective instability will experience growth in the rear of the bunch

until the system fully saturates, at which point the bunch will stop growing and become

stable. If the bunch is still within the aperture, it may be transported without loss. On the

other hand, if this amplification is able to drive an instability within the bunch due to head

tail feedback, this system can become absolutely unstable instead.

Interestingly, there is a relatively simple way to identify whether the instability is satu-

rating or absolute. The stroboscopic plot of the transverse centroid (plotting several turns

along z) will have nodes if saturating and waists if absolute. Examples of the saturating

and absolute instabilities are shown in Fig. 3.14 These are artifacts of the order of the

synchro-betatron sidebands inherent in the system.
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Figure 3.14: The top figure shows the saturating convective instability over 20 turns. The
bottom figure shows the absolute instability for the same parameters, save for tail-head
feedback from including multi-turn wakefields.
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3.3.4 MLSW Convective Modes

Since the initial offset of bunch particles has been set to 1 the head tail amplification is the

maximum amplitude of the spatial modes. We can expect this maximum to be near the tail

of the bunch as the wake will accumulate over the bunch length.

The amount of amplification that will contribute to loss depends upon the initial offset

of the bunch as well as the size of the beam pipe. This makes it difficult to come calcuate

a threshold for when convective modes begin to drive particle loss. So instead, we shall

consider a mode as convective when head-tail amplification becomes exponential.

There are two main regions that are of interest. First is convective motion at very weak

wakes and strong space charge. This region is not unstable to TMCI, but may be decidedly

unstable to convective motion if growth becomes exponential. If convective motion becomes

significant before the the TMCI threshold, it suggests that there is a further constraint placed

on the TMCI thresholds

3.4 Chromatic Effects in the MLSW model

If there is chromaticity in a bunch, each loop of current will have a difference in the phase of

the upper and lower halves of the loop. These will couple into the outermost loop to produce

the total head tail phase shift χ for the bunch. In the presence of wakes, this phase shift will

mismatch the boundary conditions which will need to be satisfied by the imaginary portion

of the tune shift Im(∆Qx). If the imaginary term is a growth mode where Im(∆Qx) < 0

the mode is unstable to the Head Tail Instability.

In the single loop case it was only possible to include a linear chromatic effect, but the

more realistic longitudinal phase space in the MLSW makes it possible to observe higher
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order chromatic modes.

3.4.1 Chromatically Dominated Beams

The Head Tail instability can occur below the TMCI threshold, however if the bunch is

above the TMCI threshold, chromatic effects can heavily dampen the growth rate compared

to that without TMCI. In the Fig. ?? we can see the strength of the TMCI alone (zero

chromaticity) is near maximum instability strength.

Because there are multiple degrees of freedom within a bunch, we cannot expect to find

ourselves in a region where none of the modes are unstable. However a strong chromatic effect

may weaken the instability. Furthermore, it should be possible to damp these instabilities

with a damping kicker[?].

As a benchmark to this, let us examine a hollow beam with a single loop of current.

With a single degree of freedom, there should only be one set of modes for the Head Tail

Instability, making it the structure simpler. We can compare this solution to Fig. 3 in [?]

where we see good agreement.

3.4.2 Nonlinear Chromaticity

Now that we have a more complex phase space model, we shall attempt to characterize

higher order chromatic effects, specifically quadratic terms of ż. This will make all of the

loops symmetric, except the innermost and outermost loops. Because of this the inner loop

will only have limited chromatic effects while the outer loop will be the most excited. In the

Fig. 3.17
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Figure 3.15: The instability growth rate for linear chromaticity on the stability of a stable
beam (blue) and a beam unstable to TMCI (orange). Chromaticity is expressed in nonstan-
dard units, see section ??
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Figure 3.16: Growth rate −Im(∆Qx) of a hollow beam with a constant wake function and
a broad band resonator for varying chromaticity. Similarities can be observed between our
model, and that quoted in [?]
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Figure 3.17: Frequency spectra of a Gaussian beam with nonlinear cosine sinusoidal chro-
maticity.
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3.5 Wake Impedances

Up to this point, we have focused on constant wake functions and exponential decaying

wakes, since this mode, known as the rigid mode, is dominant for diffuse wakes. Over a

short bunch, the wake can accumulate, but has little time to decay or evolve on its own

making it approximately constant. However this is not the complete picture. Since growth

can be exponential, it can also have an imaginary exponential term in it.

This means that we must also be concerned about oscillatory wake functions. These

oscillatory wakes are in principle applicable to resonant structures like cavities whose high

quality factor allows them to ’ring’ for a long time before the fields decay. However, since

cavities are localized impedance sources they will behave properly in the MLSW which

assumes diffuse wakes.

Understanding these oscillatory wakes is important to determining the modes of highly

unstable modes and will be the main topic for this section.

3.5.1 Tune Shifts of Oscillating Wakes

For oscillatory wake functions, we know the basics from the single square well case. Wakes

with a similar pitch to the synchrotron sidebands will make it possible to drive modes

beyond the zero mode. The sideband modes are more difficult to excite compared to the

fundamental by about a factor of three. Since all the sidebands can be driven with similar

ease, this implies that with a high enough frequency impedance it may be possible to create

instabilities with arbitrarily large sideband mode numbers. This isn’t realistic as we know

there is some natural limit to sideband modes.

This is no longer true when we migrate to the multiloop case. Fig. ?? shows the instability
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thresholds for mode coupling wakes, and that higher order modes are suppressed. This much

more realistically limits modes to near the fundamental and is in stark comparison to the

SWM. The MLSW results demonstrate that there is no need to worry about TMCI driven

by some exotic high frequency phenomena.

3.5.2 Space Charge with Oscillating Wakes

Now let us move to consider a system that includes both oscillating wakes and significant

space charge effects. Space charge effects depress the tunes of the system while a wake will

shift a single mode or two. This shows why space charge can dampen instabilities–it shifts

modes away from the mode that they would naturally couple to. This is why a negative

wake constant wl is so unstable to TMCI, with both space charge and the wake pushing

coupling modes together.

There may be certain certain oscillatory wakes where space charge is no longer helpful

for generating TMCI. Since oscillatory wakes shift which modes they couple to, it is possible

that shifting some combination of modes may either not be helpful to damp TMCI, or even

have a destabilizing effect upon the bunch. In Fig. ??, we show the TMCI threshold for a

peaked distribution.

We can validate our solutions with the code BIMBIM [?]. This code has some structural

similarities to the MLSW as the longitudinal dynamics are approximated as well a bunch of

loops of current that are then split into subdomains, but is not self consistent with regard

to space charge effects and so should give at least somewhat different results. Fig. from [?]

shows the TMCI threshold for BIMBIM. The equivalent using the MLSW is shown in Fig

3.18 and 3.19. Unlike the single square well where the thresholds for sideband wakes are

close to constant, approximating the bunch with multiple loops has the threshold for the
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Figure 3.18: TMCI thresholds for an N = 2 MLSW. Note that these have good agreement
with the bunches shown in similar BIMBIM simulations??. The two well version of this
model has a slightly smaller threshold compared to the three well one.

sidebands increase linearly with sideband number.

3.5.3 Nonlinearity of Wake Functions

A key question is how many wakes are required to approximate the necessary coupling

physics.

If the modes were linear this would be simple enough, as we only care about some number

of physically relevant modes. If the frequency response of a wake function was linear, this

could be approximated by single frequency kicks. We could integrate over the the total wake

function and get the total response as a combination of individual coherent modes. However,

these modes are not linear and responses change as the bunch deforms due to the input wake.

Therefore, another approach will have to be taken.
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Figure 3.19: TMCI thresholds for an N = 3 MLSW. Note that these have good agreement
with the bunches shown in similar BIMBIM simulations??. The three well version of this
model has a slightly larger threshold compared to the two well one.
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This is not to say that the forces aren’t linear–they obviously are since wakes are elec-

tromagnetic in nature. However the total response to these forces also perturbs the bunch

distribution leading to nonlinearities. Also nonlinearity tends to be accentuated by mode

coupling unless the modes are orthogonal. If by prior knowledge one already knows which

modes will couple, one can focus on expressing this portion of the wake physics rather than

the taking a Fourier series. In Blaskiewicz[?] it is stated that a wake function can be ap-

proximated by three wakes in the single well case, but the applicability of this is unclear.

3.6 Nonlinear Longitudinal Motion

3.6.1 Higher Order RF Harmonics

Nonlinear terms appear naturally as higher order Taylor expansions of RF fields. If these

become significant the outer loops and inner loops will have different synchrotron tunes.

Beyond the natural nonlinearity, higher order harmonics can be used to deform the shape of

the input distribution to something more desirable. Often this is used to decrease the peak

space charge tune shift of a bunch. This flattening of a bunch is shown in Fig. ??

3.6.2 Landau Cavity

A Landau cavity is a harmonic cavity designed to cancel out the quadratic potential terms

for a given beam. Operating at full power the cavity cancels the linear term of the original

sinusoid term and makes this oscillator strictly a nonlinear one. If at less than full power

there will still be a linear component that weakens as the Landau cavity is energized. Because

of this nonlinearity the tune will be significantly different from what one would expect in
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Figure 3.20: This figure shows the approximated distribution function of Gaussian bunch
with nonlinearity flattening the particles in the bunch due to this nonlinearity the nonlin-
earity is slowly and adiabatically turned on.
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Figure 3.21: The stability diagram with nonlinear longitudinal motion. Slight stabilization
observed over the original single harmonic form.
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the linear case. This cavity is normally used to induce nonlinearity and facilitate Landau

Damping [?].

Let us consider a Landau cavity system that is unstable to TMCI when the Landau

cavity is off. When the cavity is turned on slowly and adiabatically, the distribution will

deform to follow the new distribution’s equipotential lines. The Landau cavity will squeeze

the coherent modes closer together, while dampening instabilities. If this were a linear case,

smaller synchrotron modes would generally be considered less stable, so this nonlinearity will

have a significant effect on the TMCI. This is due to Landau Damping within the bunch.

3.7 Damping Instabilities

3.7.1 Shifting Bunch Center

Convective motion seems to set an additional limit on the stable parameter space for mode

coupling instabilities. It has been suggested that like TMCI, changing the RF and bunch

shape may have a positive effect on convective motion as well. With this difficulty in mind

we must ask whether there is there a bunch shape that does not give the convective motion

enough space to propagate and amplify. Shifting the peak of the distribution towards either

the front of back of the bunch may interfere with the growth. Fig. ?? shows the head tail

amplification of a given beam with a shifted potential and a preserved betatron tune.

3.8 Coupled Bunch Modes

In the regime where wakes decay slowly compared to the distance between bunches, we must

focus on how the wakes driven by one bunch effect the others. Let us consider a bunch train
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Figure 3.22: The stability diagram for a bunch with a landau cavity. As the strength of the
cavity increases, instabilities are stabilized due to nonlinear longitudinal motion.
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of T total bunches that form a complete cycle around the accelerator. The coupled bunch

mode number B is essentially the phase offset of the next bunch. This is a mode just like

the sideband we have previously focused on for single bunch TMCI. The total evolution of

the bunch will be a weighted sum of these coupled bunch modes. Therefore, if any of these

coupled bunches make the bunch unstable, particle loss will occur.

Bunch trains in certain machines such as the planned EIC?? have interbunch distances

that are comparable to the length of the bunch itself. As pointed out in section ?? tracking

has difficulty studying coupled bunch modes over long time periods, making this an attractive

area to apply our method.

3.8.1 Short Bunch Limit

In order to test coupled bunch modes of the system, let us consider the limit where the bunch

is very small compared to the distance between bunches. The results should be equivalent

to that of methods where individual bunches are treated as single macroparticles.

3.8.2 Bunch Motion for EIC Parameters

With this method benchmarked, it is interesting to consider instabilities in the future EIC.

Using the preconceptual design report??, we can model a system that is analogous to the

EIC. Specifically we are interested in the fill, which takes tens of minutes, so it is possible

that even small instabilities could balloon into particle loss.
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Chapter 4

Experimental Verification of MLSW

It is important to verify the results of the MLSWmodel experimentally, but it can be difficult

to do so in a meaningful way. There is a large parameter space that can be studied, but a

given accelerator may not be able to access the portion of the space necessary to confirm the

model.

The wake impedances are particularly difficult in this respect. The accelerator structures

define the impedance and therefore the wakes making this physics more or less intrinsic to

the machine itself. That is, unless wakes are created artificially with some device–a kicker.

4.1 Recycler Waker Experiment

A kicker is essentially a beam pickup with a electrode operating based off of the pickup

signal. Kickers are normally designed to provide negative feedback and dampen coherent

motion of the bunch. With positive feedback the kicker functions much like a wake itself,

except that this wake has a resolution and function determined by the electronics rather

than the accelerator structure.

Such an artificial wake makes it possible to tune parameters and drive instabilities not

normally present in an accelerator, and while there are still natural wakes in the system,

they can be neglected if small enough, or incorporated into the model if not.

The Fermilab Recycler Ring (RR) is a proton synchrotron that has a highly tunable
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’Waker’ kicker feedback system. This waker is used to drive various mode coupling insta-

bilities and study them. In February 2023, an experiment was performed at the kicker to

observe TMCI and Convective instabilities in the accelerator.

4.1.1 Recycler Ring Parameters

The Recycler Ring is injected to from the Fermilab Booster and was originally used as an

accumulator and cooler for the antiprotons??. Currently, the ring accumulates protons into

a more intense beam which it sends into the main injector which it shares a tunnel with. In

the future it will provide an input beam used to generate muons for the g-2 experiment.

Parameter Value

Synchrotron tune Qs 0.0005
Chromaticity ξx, ξy −0.75,−0.16
Betatrone tune Qx, Qy 25.42, 20.44

Emittance ϵN,rms 2.5π mm mrad
Energy E 8 GeV
Radius R 528 m

Table 4.1: Parameter list for Recycler Ring from [?]

4.1.2 Waker Feedback System

The Waker is essentially made up of four main parts [?]. First is the pickup, made up of two

BPMs which are at a 82◦ phase advance in order to get most of the position and momenta

information. Next is the feedback system which takes the pickup data and transforms it.

Then come the amplifiers which drive the kicker itself. Finally, the kicker which is a stripline

that mimics a wakefield and has a bandwidth of 200 MHz. In order to obtain a good time

resolution for the bunch, it must be long compared to what is resolvable by the pickup
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Figure 4.1: Diagram of the Waker at the Fermilab Recycler from [?]

and the kicker. The length of the bunch is around 150 ns, making the pickup and kicker

resolutions sufficient.

4.1.3 Beam Position and Intensity

The BPMs and a stripline record the response of the bunch and have a sufficient time reso-

lution to resolve bunch motion. Since these are both capacitive pickups they act as differen-

tiators and must be integrated to give the dipole signals. These signals have two channels,

the sum channel which detects beam intensity and a difference channel which detects the

total bunch moment. These provide high time resolution transverse bunch information.

There are also DC Current Transformers (DCCT) which can measure the intensity of the

Waker over many turns. This provides high resolution intensity measurements of the entire

bunch but cannot resolve the finer structure within the bunch itself. Using this makes it
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obvious whether a resonance has been crossed and particles lost, compared to the stripline

and BPM measurements where it can often be difficult to determine the exact onset of

particle loss.

4.2 Observing Instabilities

The objective of these experiments is to study both TMCI and Convective motion. Since

these are both dipole instabilities is possible to detect them using a dipole pickup such as a

BPM or the stripline. Both the BPM and stripline give similar data which is complementary

to one other.

4.2.1 Coherent Modes

We known that the motion of the bunch is essentially a sum of coherent sidebands that are

separated at low intensity by approximately one synchrotron tune. Nonlinearity will spread

out these values, but these moments should still be resolvable. This can be performed with

a normal FFT or some other more advanced method such as NAFF [?] to determine the

coherent modes of the bunch.

Since we know that certain modes dominate different portions of the bunch, it is possible

to enhance these signals by averaging signals from the portion of the bunch that is more

heavily driven by a certain mode.

Since sideband modes can shift into one another when modes are perturbed by collective

effects, a large number of turns are necessary, To obtain a finer resolution than Qs, more

than 1/Qs turns are necessary. This is not however sufficient to resolve the modes or their

shifts. In the run-up to this experiment, the spectrum of a 20000 turn experiment shown in

105



Figure 4.2: Synchro-Betatron modes of a stable beam. The orange lines show the modes
before the Waker was actived, blue lines correspond to the coherent Modes after. Activating
the waker should shift the center mode, but there does not seem to be a high enough
resolution to observe this effect.
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Fig. 4.2 shows that it is possible to resolve these modes, but additional turns are needed to

improve these results.

4.2.2 Head Tail Amplification

With high time resolution measurements of the bunch along the detectors, one can determine

the total dipole moment along the bunch for a given turn. If there is significant growth from

head to tail, it is possible that this bunch is convective. However, this is not sufficient to

prove that this is a convective mode. In certain cases, such as those outlined by Metral, et

al. in [?], it is possible that a sum of normal coherent modes can interfere with one another

and create something that looks convective for a short time, but isn’t actually due to the

convective instability.

The best way to distinguish between convective motion and a sum of coherent but non-

convective motion is to ensure that these convective elements oscillate together. If these are

actually different modes interfering with one another, there should be some time when the

head tail growth of the bunch will reverse into tail head amplification. If the motion does

not dephase like this, then this the system is undergoing convective motion.

4.2.3 Tracing TMCI Thresholds

If looking at an instability with a sharp threshold (TMCI has a sharp threshold unlike

Convective Instability), it is possible to follow the surface of the instability threshold itself.

This relies on the ability to carefully cross the TMCI threshold, which is not particularly

difficult in negative wakes, but becomes more difficult to accomplish for positive/natural

wakes due to the structure of higher loop TMCI.
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4.3 Experimental Results

The experiment performed at the Recycler Waker had the following setup. The individual

experiments consisted of 30, 000 turn shots, 10, 000 turns with the Waker off to begin and

20, 000 turns afterwards with the Waker on. The wakes were of the form w1Θ(z− z′) where

Θ is the Heavyside Theta function and w1 is the wake constant.

4.3.1 Non-Equilibirium Longitudinal Distributions

In order for the results to be valid, the longitudinal distribution must be an equilibrium

distribution. If this is not the case, the distribution itself will oscillate. The bunch oscillation

would prevent the bunch from converging to its final state, and because the bunch never

converges the coherent modes will spread out.

4.3.2 Non-Convective Observations

During a number of the experimenal runs, the Recycler Ring exhibited significant oscillations

of the longitudinal distribution which is shown in Fig. 4.3. This meant that we were unable

to resolve the coherent modes with sufficient accuracy.

TMCI was observed in several of the experiments, most notably when the wakes became

damping such as in Fig. 4.5. These did not exhibit head tail growth, but still cause loss due

to exponential growth of the entire mode.

4.3.3 Convective Instability Observations

Finally we shall conclude with observations of the Convective Instability driven by the Waker.

Several of these Instabilities were observed but the cleanest one is shown in Fig. ??. This
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Figure 4.3: The beam intensity obtained with BPM at different turns. The head of the
bunch begins at around 3000 with the tail near to contemporaneous with the edge of the
measurement.
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Figure 4.4: FFT spectrum of a Waker experiment. As can be seen, coherent modes cannot
be resolved with accuracy. This is due to the non-equilibrium longitudinal distribution. The
two colors corresponds to before the waker was turned on (blue dotted) and after it was
(blue solid).
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wakerDampingWake.png

Figure 4.5: TMCI Instability observed for a damping kicker wake. A wake is considered
damping when wk < 0.
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Figure 4.6: Stroboscopic plot of Convective Instability observed using the Waker. Head Tail
amplification of this mode is significant–around a factor of 10.

mode is convective as at no time does the system shift form Head Tail Amplificaiton to Tail

Head amplification as one would expect if these were from adjacent modes moving out of

phase.

This is in close agreement with the prediction for convective instabilities in ??.
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Chapter 5

Periodic Resonance at the Alternating

Gradient Synchrotron

Space charge phenomena have a significant effect on more than just coherent instabilities.

Resonant particle loss, essentially particle loss due to resonances between a particle’s tune

nonlinear optics will be changed by the presence of intense space charge effects. In order to

study one example of this known as Periodic Resonance, experiments were performed at the

Alternating Gradient Synchrotron (AGS) during March and April of Run 22.

The AGS is a synchrotron in the Brookhaven National Laboratory (BNL) Collider Ac-

celerator Complex which injects into the Relativistic Heavy Ion Collider (RHIC). It has two

partial Siberian Snakes?? to preserve the polarization of ions and has a 1 Hz acceleration

cycle. After the EIC (Electron Ion Collider) is completed, the AGS will instead inject into

the EIC ion ring. The bunch is injected into the ring at 144 ms (0 ms is the bottom of the

AGS ramp) and will remain at this low energy before being later accelerated. Space charge

effects are expected to be most significant during this initial injection period. Due to the

rapid repetition rate, experiments must be performed in single rep snapshots rather than by

sweeping parameters.
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5.1 Space Charge Driven Resonance Crossings

High intensity resonance crossings operate somewhat differently from low intensity ones.

Essentially this is whether we can consider the bunch as approximately point-like in tune

space, or whether nonlinearity and space charge are strong enough to form a large tune

footprint. The high intensity regime is indicated when the width of the resonance is smaller

than the the bunch’s tune shift. This structure is often referred to as the space charge

’necktie’, the characteristic footprint of the bunch in tune space. An example of multiple

space charge neckties is shown in Fig. 5.1. The particles on or close to a resonance line will

interact with this resonance and cause an emittance growth and/or particle loss. The large

size of the tune footprint means that it is more difficult to choose a working point for the

beam that won’t be resonantly excited. The space charge necktie has a loose correspondence

to its location within the bunch–the maximum tune shift is situated at the maximum particle

density of the bunch, while the edges of the bunch oscillate at what is essentially the single

particle lattice tune.

The strength of a given resonance can be explained in a couple of ways. This derivation

utilizes what is known as a driving term integral[?]. The driving term integral is the strength

of a given multipole (in this case a sextupole) and a phase factor:

G0,3,le
−iξ0,3,l =

√
2

24π

∮
β
3/2
y K2(s)e

−i[3ψy(s)−2π(3Qy−l)s/C]ds (5.1)

G±2,1,le
−iξ±2,1,l =

√
2

8π

∮
β
1/2
x βyK2(s)e

−i[3ψy(s)±2ψx(s)−2π(Qy±2Qx−l)s/C]ds (5.2)

Where K2 is the magnetic field strength of the sextupole field, β is the betatron function, ψ
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Figure 5.1: Simulated tune footprint at AGS injection using PyORBIT. The solid black lines
are resonances, with the dashed lines 3Qy = 26 and 2Qx + Qy = 26 corresponding to the
exited resonances of interest. At this ∆Qsc, resonance crossing would be significant even for
initial conditions where bunch growth or particle loss was not observed, implying that the
AGS tune shift at injection is smaller than this.

115



is the betatron phase, ξ is some accompanying phase factor, and l is the integer resonance.

Physically we can think of this driving term as a kick. Over one turn there is some total

kick to the bunch. If this kick is in resonance with the tune oscillations, this leads to greater

excitation with each revolution. If not on resonance these kicks will average out.

5.1.1 Periodic Resonance

Periodic Resonances are a special type of space charge-driven resonances where the tune

footprint of a bunch crosses a resonance line. Particles undergoing synchrotron motion will

cross these resonances repeatedly over the space of multiple synchrotron periods leading to

a large total kick.

This class of resonance is naturally self-stabilizing. Both emittance growth and particle

loss can decrease the space charge effect and contract the system’s tune footprint. With

enough emittance growth or particle loss, a bunch may no longer cross such resonances.

There are two main types of Periodic Resonances that we can expect to observe. These

are the Trapping and Scattering resonance regimes.

5.1.2 Adiabaticity Parameter T

It is possible to differentiate between these regimes with a so-called Adiabaticity Parameter.

which is defined in Franchetti, et al. [?] as:

T =
1

Qisl∆L

∂Lfp
∂n

(5.3)

where Qisl is the tune of the islands, ∆L is the size of the islands in phase space, and Lfp is

the location of the fixed points of the bunch. For small T we are in the adiabatic regime and
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particles will be trapped on stable islands if the islands are large enough. Particles in these

islands will not experience substantial loss or emittance growth and we can expect that the

bunch shape will not be significantly shortened since the particles are evenly distributed in

the longitudinal direction. Alternately, if the parameter T is large we are in the non-adiabatic

regime, and we expect bunch shortening due to particles scattered by the resonance crossing.

Particles with large oscillatory amplitude in z are excited as they cross this resonance multiple

times per synchrotron period. Without islands of stability, these particles will be lost.

This will continue until particle loss and emittance growth move the tune shift above the

resonance.

5.2 Electron Ionization Profile Monitors

Ionization Profile Monitors (IPMs) are beam diagnostic devices designed to project the

transverse distribution onto a detector, effectively imaging the beam. The operation of such

a device can be described as follows:

The beam passes through a residual neutral gas, ionizing some of the gas into a plasma

of electrons and ions. The charged particles are accelerated to electrodes with either the

ions or the electrons impacting a readout detector known as a Microchannel Plate (MCP).

The MCP is segmented into multiple channels (AGS eIPMs have 64) which each detect and

amplify input signals. Because of the segmentation of the system, the transverse projection

is separated into bins by the hardware itself.
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5.2.1 Electron IPMs

It is in principle possible to collect either electrons or ions on an MCP, with an electron

IPM called an eIPM. Since electrons are much lighter than the residual gas ions, electrons

will have a much more rapid time response bit worse space charge effects deforming the

projected profile. The more rapid time response makes it possible to obtain turn by turn

profile measurements. Our resonances of interest will be quite rapid, so eIPMs are necessary

to observe the growth as it happens.

Such eIPM measurements are useless if free space charge effects perturb the results too

strongly. Although it is possible to use the binned events to simulate the ionizing beam[?],

space effects can be countered by including a magnetic field oriented normal to the MCP. This

field constraints particles to a radius that is ∝ mv⊥/B where v⊥ is the velocity perpendicular

to the field and B is the magnitude of the magnetic field. If the radius of the field is smaller

than the MCP bins, this will give a similar signal to that of a space charge less eIPM. It

should be noted that this magnetic field will perturb the beam itself, but is small enough to

not significantly interfere with it.

Two eIPMs are installed in AGS straight sections, one in the horizontal plane at D5 and

the other in the vertical plane at D15.

5.2.2 Calibrating AGS eIPMs

The performance and collection efficiency profile of eIPMs can change over time. Without

frequent calibration, the drift in eIPM performance can make results unrealistic. Calibration

of the eIPMs is performed by sweeping an already characterized beam across the eIPM and

correcting the responses correspondingly. The bin corrections are a constant offset as well
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.png

Figure 5.2: Diagram of the AGS.
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as a linear factor adjustment. Higher order terms may exist for especially intense beams but

are not specifically corrected for.

Unlike AGS ion IPMs, AGS eIPMs can take turn by turn measurements. These can be

averaged over a number of turns to decrease statistical error. Since ionization and counting

are stochastic processes with comparatively few events, this statistical error is significant.

Due to degrading eIPM performance, systematic errors cannot easily be quantified. For these

experiments the error in bin measurement will be defined as the standard deviation of the

counts.

5.2.3 ’Dead’ Bin Signals

If a beam bin gives results which are obviously erroneous, that bin is excluded and set to a

zero sensitivity. This is not optimal however. This cutout from the distribution can make

it difficult to fit a characteristic distribution to the bunch or calculate the emittance. This

can be solved somewhat by averaging the adjacent bins to get an estimated value. With

this, bunch size can be measured using the full width half maximum (FWHM) or another

method. Our interest is primarily in relative bunch growth so this method will be sufficient.

It should be noted that because the Periodic Resonances may deform the bunch shape, it is

not advisable to use an assumed distribution to calculate the emittance in this case.

Not all ’Dead’ bins are caught by the calibration step. It was observed that during the

experiment certain bins had anomalous behavior. On alternate turns these bins registered

anomalously large signals followed by signals of the correct order but uncorrelated with

beam intensity. Since these signals were not automatically excluded from the analysis, this

led to spikes in the observed emittance as shown in Fig. 5.3. These bins were identified and

removed during post processing to eliminate these spikes.
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Figure 5.3: Example of eIPM calibration for 50 turns taken at injection (144 ms), The initial
signals (red dots) are averaged to give the original signal which are averaged (green line).
The calibration correction is applied. Dead bins are then removed with smoothed signals
put in their place.

121



The source of these dead bins was not identified, but several observations can be made.

eIPM performance can degrade from long-term damage to the system, but not all degradation

in signals is permanent. Limiting eIPM use may regenerate some of the original performance

of the device. And because the functioning of these bins can be intermittent, calibration may

misidentify these as properly functioning bins. As a note, RF does not appear to correlate

with eIPM dysfunction, exhibiting the same dead bins when RF is off..

5.2.4 eIPMs as Intensity Monitors

There are dedicated monitors in the AGS to quantify the bunch intensity. The wall current

transformer (WCT) has a robust response with the ability to determine the peak of a given

resonance as well as the saturated intensity after resonant beam loss. Because eIPM events

scale with intensity, it is possible to use them in a mode where they also act as bunch intensity

monitors. This is useful to double check the WCT data and to act as a backup if the WCT

is offline. The other advantage of an eIPM is that it provides a true statistical measure of

the count errors (which is not available with the WCT). This gives true turn by turn data,

however the window size limits the ability to identify beam loss as it occurs. Using this

method, the relative intensity of a bunch is proportional to the number of calibrated events

per time, while the average survival rate for a particle from one time to another is the ratio

of the final over initial intensities.

An eIPM used in this way can be expected to display some systemic errors. Mainly, these

are calibration errors and errors due to dead wires. Each bin has its own calibration and its

own error. The error of a bin at some initial time will be correlated with the error at some

later time. Because of this, there is a correlation between the shape of the bunch (which

bins it is divided into) and the associated error. This effectively increases the contribution of
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these errors to the total calculated current. Because of this, as the bunch grows one expects

to observe errors when using the eIPM to determine bunch intensity.

Other systematic errors can be encountered when using an eIPM. The main problem is

the calibration of the bunch itself. Since the AGS calibration is calculated from an input

test beam, that places an initial limit on the accuracy of such a model. More important is

the eIPM model itself. There is also a chance to undercount at high intensity when many

events are happening at once[?]. Higher order intensity corrections may be needed to correct

for this if a bunch shape changes significantly. This may lead to observed intensity changes

from eIPMs that are not physical.

5.2.5 eIPMs at the Relativistic Heavy Ion Collider

Although this experiment was only concerned with the AGS, it is worth performing a study

at the Relativistic Heavy Ion Collider (RHIC). Since the dead bins have been identified as

the source of error we can perform a similar search of historical data from RHIC.

As can be seen in Fig. ??, RHIC does not exhibit the anomalous dead bins seen in the

AGS. This is not surprising as the performance of RHIC eIPMs seem to be more stable than

the AGS devices. As with the AGS case, each bin has a varying sensitivity yielding striations

for each individual bin.

5.3 Periodic Resonance at AGS Run 22

With continued high intensity operations at the AGS there is interest in studying resonances

at strong space charge, primarily 3rd order resonances. The single particle tune during AGS

run 22 is Qy ∼ 8.8 two of the nearest accessible third order resonances are 3Qy = 26 and
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Figure 5.4: eIPM at RHIC, note that less corrections are needed for RHIC bins. There seem
to be no missing/dead bins.
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2Qx + Qy = 26. Before the introduction of the partial snakes, these resonances had been

studied at low intensity[?] and corrected with sextupole families. Current AGS settings have

shifted to a tune further away from the third order resonances, but at high intensity they

may still be a concern. Therefore, our focus was to drive periodic resonances over a series of

initial lattice tunes–beginning directly on resonance and slowly increasing the vertical tune

Qy until effects from the resonance crossing are no longer observed.

The experiment was conducted as follows. First the vertical tune was brought near to the

resonance line Qy = 26/3. This vertical resonance was chosen as the vertical eIPMs at the

AGS are less noisy than their horizontal counterparts. This can be done in the current AGS

configuration, but this tune will not preserve polarization of the bunch. Since polarization

is not important in this experiment, its loss will not be missed. Three main devices were

employed to study resonant effects. First, the eIPM which was discussed in detail in section

5.2. This provided bunch size and emittance measurements along with intensity calculations

at 1 ms increments starting at 144 ms (the injection). Secondly there was the Wall Current

Transformer, which gives the total intensity of the bunch over a longer time scale than the

eIPM is capable of. Finally, there was the Wall Current Monitor, which gives the intensity

of the bunch in z over a very short time scale. This makes it possible to resolve changes in

the longitudinal bunch projection as particles are lost, and observe ’bunch shortening’.

5.3.1 Resonance Driving Term Adjustments

At the nominal settings for the AGS, the loss due to the periodic resonance was not easily

resolved. With enough time, even a small resonance could lead to loss, however the accelera-

tion cycle of the AGS made long time studies of such weaker resonances impossible. Instead

it was decided to strengthen the 3rd order nonlinear driving term to make the resonance
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detectable. This was originally performed with two sextupoles that were spaced such that

they have an additive contribution to the driving term, but no effect on the chromaticity.

However, the currents necessary to produce such an effect on the beam were not achievable

in the AGS. Instead, it was decided to use the sextupole corrector family originally designed

to dampen this resonance. By purposefully adjusting this sextupole family, it was possible

to strengthen the driving term and make the resonances correspondingly stronger.

With the adjusted driving term significant resonant particle loss was observed, indicating

that the resonance was able to interact strongly with the input beam and cause loss and

emittance growth.

5.3.2 Experimental Observations

With the Enhanced resonance strength, emittance growth and particle loss can be observed

at injection before quickly saturating on the order of a few milliseconds. As the bunch crosses

the resonance (Fig. ?? left to right) we note that initially the emittance grows, then these

excited particles are lost to the walls of the beam pipe and are registered on the Wall Current

Transformer. This implies that emittance of resonant particles will grow until they either

saturate the instability, or are lost. Once particles are lost, the emittance decreases as the

driving resonant force is proportional to J3/2. Therefore, once edge particles are lost, the

emittance decreases and only central particles survive.

It is worth discussing the particle loss in more detail. The eIPM counts observe a lo-

cal particle loss minima before the main resonance. This is not theoretically expected as

emmittance growth should precede particle loss (and dampen the emittance growth peak)

since particles must grow transversely to be lost by this mechanism. Since no other loss

mechanism or resonance can be identified for this minima and further because the WCT in
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Figure 5.5: Periodic Resonance at injection. Emittance growth and bunch survival consis-
tant with work from Franchetti, et al. cite franchettiPS cite franchettiGSI. Note the slight
deviation in survival rates between the two methods, specifically the local minimum observed
in the eIPM at Qy = 8.73. This disagreement seems to be due to a systemic error in the
eIPM survival rate.
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Fig. ?? does not reproduce this behavior, we must conclude that this is erroneous. This is

not unexpected as correlations between bin signals could create significant error for beams

growing transversely.

Finally the Wall Current Monitor should also be mentioned. The original longitudinal

projection does not change shape significantly for any of the resonance crossings tested.

The lack of bunch shortening makes it difficult to classify this periodic resonance as

either adiabatic rregime trapping or the non-adiabatic regime scattering. Bunch shortening

is normally a sign that the machine is in the adiabatic regime, but it is possible that noise in

the RF could have flattened the bunch profile of the non-adiabatic scattering regime. Future

experiments are likely needed to conclusively prove one or the other conjecture.
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Transverse Moments

Normalization Moment, ψ̇

ψ̇ =
d

dt
ψ(t, y, py, z, ż) (4)

ψ along with the other moments does not depend on x or px (as those terms were integrated

away). Therefore,

ψ̇ = ψ(t, y, py, z, ż)

∫
dx

∫
dpx

df

dt
=

∫
dx

∫
dpx[

∂f

∂t
+
∑
i̸=x

(q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
)] (5)

Which is zero by eq. 2.7. Thus the x projection of the distribution function ψ, does not vary

in time.

ψ̇ = 0 (6)
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Position Moment, Ẋ

dX

dt
=
∂X

∂t
+

3∑
i=1

(q̇i
∂X

∂qi
+ ṗi

∂X

∂pi
) (7)

∂X

∂t
=

1

ψ

∂

∂t

∫
dxx

∫
dpxf =

1

ψ

∫
dxx

∫
dpx

∂f

∂t
(8)

The explicit time dependence can be substituted into the Vlasov equation. This makes the

convective derivative d/dt [?] a sum of terms of the form u̇∂f∂u
∫
dxx

∫
dpx−

∫
dxx

∫
dpxu̇

∂f
∂u .

Ẋ = − 1

ψ
[

∫
dxx

∫
dpxpx

∂f

∂x
−
∫
dxx

∫
dpxFx

∂f

∂px
+

∫
dxx

∫
dpxpy

∂f

∂y

−
∫
dxx

∫
dpxFy

∂f

∂py
+

∫
dxx

∫
dpxpz

∂f

∂z
−
∫
dxx

∫
dpx

dU

dz

∂f

∂pz
] (9)

+px
∂X

∂x
− Fx

∂X

∂px
+ py

∂X

∂y
− Fy

∂X

∂py
+ pz

∂X

∂z
− dU

dz

∂X

∂pz

Each individual integral can be evaluated on their own for clarity.

T1 = − 1
ψ

∫
dxx

∫
dpxpx

∂f
∂x T2 = 1

ψ

∫
dxx

∫
dpxFx

∂f
∂px

T3 = − 1
ψ

∫
dxx

∫
dpxpy

∂f
∂y T4 = 1

ψ

∫
dxx

∫
dpxFy

∂f
∂py

T5 = − 1
ψ

∫
dxx

∫
dpxpz

∂f
∂z T6 = 1

ψ

∫
dxx

∫
dpx

dU
dz

∂f
∂pz

T7 = px
∂X
∂x T8 = −Fx ∂X∂px

T9 = py
∂X
∂y T10 = −Fy ∂X∂py

T11 = pz
∂X
∂z T12 = −dU

dz
∂X
∂pz

This allows us to express the integral Ẋ as a finite sum of integrals.

∂X

∂θ
= Σ6

i=1Ti (10)
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Ẋ =
dX

dθ
= Σ12

i=1Ti (11)

We shall now evaluate terms T1 through T12 sequentially in the following sections.

T1

T1 = − 1

ψ

∫
dxx

∫
dpxpx

∂f

∂x
= − 1

ψ

∫
dpxpx(xf |∞x=−∞ −

∫
dxf) = 0 + P (12)

T1 = P (13)

T2

T2 =
1

ψ

∫
dxx

∫
dpxFx

∂f

∂px
=

1

ψ

∫
dxxFx

∫
dpx

∂f

∂px
(14)

=
1

ψ

∫
dxxFxf |∞px=−∞

Evaluating the limits

T2 = 0 (15)

T3

T3 = − 1

ψ

∫
dxx

∫
dpxpy

∂f

∂y
= −

py
ψ

∂

∂y

∫
dxx

∫
dpxf (16)
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T3 = −
py
ψ

∂X

∂y
(17)

T4

T4 =
1

ψ

∫
dxx

∫
dpxFy

∂f

∂py
=

1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (18)

If Fy is a function of x this cannot be further simplified.

T4 =
1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (19)

If Fy is not an function of x then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

T4 =
Fy
ψ

∂X

∂py
(20)

T5

T5 = − 1

ψ

∫
dxx

∫
dpxpz

∂f

∂z
= −pz

ψ

∂

∂z

∫
dxx

∫
dpxpzf (21)

T5 = −pz
ψ

∂X

∂z
(22)
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T6

T6 =
1

ψ

∫
dxx

∫
dpx

dU

dz

∂f

∂pz
=

1

ψ

dU

dz

∂

∂pz

∫
xfdxdpx (23)

T6 =
1

ψ

dU

dz

∂X

∂pz
(24)

T7

T7 = px
∂X

∂x
=
px
ψ

∂

∂x

∫
xfdxdpx (25)

We then apply the power rule.

T7 =
px
ψ
[

∫
dxdpxf +

∫
x
∂f

∂x
dxdpx]

=
px
ψ
[ψ +

∫
dpxxf |∞x=−∞ −

∫
dpx

∂f

∂x
] (26)

=
px
ψ
[ψ − ψ +

∫
dpx(xf

∞
x=−∞)]

T7 = 0 (27)

T8

T8 = −Fx
ψ

∂X

∂px
= −Fx

ψ

∫
dxx

∫
dpx

∂f

∂px
(28)

= −Fx
ψ

∫
dxxf∞px=−∞

134



T8 = 0 (29)

T9 through T12

T9 = py
∂X

∂y
(30)

There is no need to simplify any further as it cancels with T3.

T10 = −Fy
∂X

∂py
(31)

There is no need to simplify any further as it cancels with T4.

T11 = pz
∂X

∂z
(32)

There is no need to simplify any further as it cancels with T5.

T12 = −dU
dz

∂X

∂pz
(33)

There is no need to simplify these terms any further. The total time derivative of the spatial

moment is therefore:

Ẋ =
12∑
i=1

Ti = P − Fy
∂X

∂py
+

∫
dxxFy

∫
dpxf (34)
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And if Fy is not a function of x,

Ẋ =
12∑
i=1

Ti = P (35)

Momentum Moment, Ṗ

dP

dt
=
∂P

∂t
+

3∑
i=1

(q̇i
∂P

∂qi
+ ṗi

∂P

∂pi
) (36)

∂P

∂t
=

1

ψ

∂

∂t

∫
dxx

∫
dpxf =

1

ψ

∫
dxx

∫
dpx

∂f

∂t
(37)

The explicit time dependence can be substituted int the Vlasov equation. This makes the

convective derivative d/dt [?] a sum of terms of the form u̇∂f∂u
∫
dxx

∫
dpx−

∫
dxx

∫
dpxu̇

∂f
∂u .

Ṗ = − 1

ψ
[

∫
dx

∫
dpxp

2
x
∂f

∂x
−

∫
dx

∫
dpxpxFx

∂f

∂px
+

∫
dx

∫
dpxpxpy

∂f

∂y

−
∫
dx

∫
dpxpxFy

∂f

∂py
+

∫
dx

∫
dpxpxpz

∂f

∂z
−
∫
dx

∫
dpxpx

dU

dz

∂f

∂pz
] (38)

+px
∂P

∂x
− Fx

∂P

∂px
+ py

∂P

∂y
− Fy

∂P

∂py
+ pz

∂P

∂z
− dU

dz

∂P

∂pz

Once again we will evaluate each individual integral.
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T13 = − 1
ψ

∫
dx

∫
dpxp

2
x
∂f
∂x T14 = 1

ψ

∫
dx

∫
dpxpxFx

∂f
∂px

T15 = − 1
ψ

∫
dx

∫
dpxpxpy

∂f
∂y T16 = 1

ψ

∫
dxx

∫
dpxpxFy

∂f
∂py

T17 = − 1
ψ

∫
dx

∫
dpxpxpz

∂f
∂z T18 = 1

ψ

∫
dx

∫
dpxpx

dU
dz

∂f
∂pz

T19 = px
∂P
∂x T20 = −Fx ∂P∂px

T21 = py
∂P
∂y T22 = −Fy ∂P∂py

T23 = pz
∂P
∂z T24 = −dU

dz
∂P
∂pz

This allows us to express the integral Ṗ as a finite sum of integrals.

∂P

∂θ
= Σ18

i=13Ti (39)

Ṗ =
dP

dθ
= Σ24

i=13Ti (40)

T13

T13 = − 1

ψ

∫
dx

∫
dpxp

2
x
∂f

∂x
= − 1

ψ

∫
dpxp

2
xf |∞x=−∞ = 0 (41)

T13 = 0 (42)

T14

T14 =
1

ψ

∫
dx

∫
dpxFx

∂f

∂px
=

1

ψ

∫
dxFx

∫
dpxpx

∂f

∂px
(43)

=
1

ψ

∫
dxFx(pxf |∞px=−∞ −

∫
dpxf) = − 1

ψ

∫
dxFx

∫
dpxf
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Evaluating this integral becomes exceedingly messy for incoherent space charge and other

nonlinear fields. It is possible to Taylor expand the higher orders, but this leads to the

additional difficulty where higher order terms must also be solved in order to get a self

consistent solution. We define the Taylor expansion of the transverse force around the origin

as gn ≡ 1
n!
dnFx
dxn xn|0.

T14 = −g0 − g1X − 1

ψ

∫
(Fx − g0 − g1x)dx

∫
fdpx (44)

If higher order terms are sufficiently weak, the higher order terms can reasonably be ne-

glected.

T15

T15 = − 1

ψ

∫
dx

∫
dpxdpxpy

∂f

∂y
= −

py
ψ

∂

∂y

∫
dx

∫
dpxpxf (45)

T15 = −py
∂P

∂y
(46)

T16

T16 =
1

ψ

∫
dxx

∫
dpxFy

∂f

∂py
=

1

ψ

∂

∂py

∫
dxxFy

∫
dpxf (47)
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If Fy is a function of x this cannot be further simplified without going to a higher order.

T16 =
1

ψ

∂

∂py

∫
dxFy

∫
dpxpxf (48)

If Fy is not an function of x then the x dynamics are not coupled in to the other transverse

direction making further simplification possible.

T16 = Fy
∂X

∂py
(49)

T17

T17 = − 1

ψ

∫
dx

∫
dpxpxpz

∂f

∂z
= −pz

ψ

∂

∂z

∫
dx

∫
dpxpxpzf (50)

T17 = −pz
∂P

∂z
(51)

T18

T18 =
1

ψ

∫
dx

∫
dpxpx

dU

dz

∂f

∂pz
=

1

ψ

dU

dz

∂

∂pz

∫
pxfdxdpx (52)

T18 =
dU

dz

∂P

∂pz
(53)
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T19

T19 = px
∂P

∂x
=
px
ψ

∫
dxx

∫
dpx

∂f

∂px
(54)

=
px
ψ

∫
dxxf∞px=−∞

T19 = 0 (55)

T20

T20 = −Fx
∂P

∂px
= −Fx

∂

∂px

∫
pxfdxdpx (56)

We then apply the power rule.

T20 = −Fx
ψ

[

∫
dxdpxf +

∫
dxdpxpx

∂f

∂px
]

= −Fx
ψ

[ψ +

∫
dpxpxf |∞x=−∞ −

∫
dpx

∂f

∂px
] (57)

= −Fx
ψ

[ψ − ψ +

∫
dpx(pxf

∞
p+x=−∞)]

T20 = 0 (58)

T21 through T24

T21 = py
∂P

∂y
(59)
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T22 = −Fy
∂P

∂py
(60)

T23 = pz
∂P

∂z
(61)

T24 = −dU
dz

∂P

∂pz
(62)

There is no need to simplify any further as they are already in a usable form and mostly

cancel. Summing the terms together we obtain the complete solution for Ṗ .

Ṗ =
24∑
i=13

Ti = −g0 − g1X − 1

ψ

∫
(Fx − g0 − g1x)dx

∫
fdpx (63)

+
1

ψ

∂

∂py

∫
dxFy

∫
dpxpxf − Fy

∂P

∂py

And if Fy is not a function of x, and the system is linear it is possible to simplify further.

For external electromagnetic fields, a nonlinear system implies that Fy is a function of x, [?]

but this is ultimately unimportant.

Ṗ =
24∑
i=13

Ti = −g0 − g1X (64)

Thus for linear forces without coupling, it is possible to express the collective motion

of the beam bunch as a set of coupled partial differential equations. This is not true for

nonlinearities and coupling, but that is beyond the scope of this section. A discussion of the

implications of nonlinearity and coupling will be presented in section ??.
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