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ABSTRACT

HYBRID CAVITY-PLASMON MODE ENGINEERING WITH ELECTRONS ON
HELIUM

By

Camille A. Mikolas

Electrons floating above the surface of superfluid helium are a unique platform for in-

vestigating a wide variety of collective phenomena in strongly interacting condensed matter.

Additionally, hybrid quantum systems offer a versatile way to explore both the fundamental

physics and quantum information science applications of single particle and collective quan-

tum systems. In particular, hybrid systems containing superconducting coplanar waveguide

resonators are emerging as an ideal tool for investigating the microwave-frequency collective

dynamics of low-dimensional electron systems. In this thesis, we present experimental re-

sults from microchannel device architectures which allow us to engineer microwave frequency

charge density waves (i.e. plasmons) in electrons on helium and couple those collective exci-

tations to superconducting resonators. The microchannel device provides precision control

over the electron density and enables access to both quasi-one-dimensional electron chains

as well as two-dimensional electron sheets. In the hybrid system coupling a superconducting

coplanar waveguide resonator with the electron on helium system, spectroscopic measure-

ments of the resonator allow us to demonstrate coupling between a plasmonic excitation with

the fundamental mode of the superconducting resonator, with coupling strength g = 50 MHz.

Finally, we discuss how this hybrid system offers a novel platform for cavity optoplasmonic

and circuit quantum electrodynamic experiments with electrons on helium.
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Chapter 1

Overview

1.1 A brief overview of electrons on helium

Electrons on helium refers to the system that consists of electrons floating in vacuum above a

liquid or superfluid helium surface. As a consequence of free electrons existing in proximity to

the liquid helium surface, like any dielectric, the helium substrate becomes polarized. In fact,

helium is a nearly perfect dielectric (εHe = 1.057)! The free electron is naturally attracted

to the surface of the superfluid by the positive image charge it induces in the dielectric

liquid, but prevented from entering the helium by the lack of open electronic states. The

combination of these effects confines the electron approximately 11 nm above the surface

of the superfluid. The simple fact that electrons can exist freely, while remaining vertically

confined while spatially controllable around the xy-plane (more on that later), opens the

door to possibilities of investigations in fundamental physics no other system can compete

with. Every quantum mechanic textbook asks you to consider a free spin-1/2 particle and the

system of electrons on helium provides that experimental platform. From probing quantum

physics with single particle experiments to the strongly correlated collective dynamics of

Coulomb liquids, electrons on helium affords the foundation for studying fundamental physics

via a fundamental platform.

In the late 1960s through the mid-1970s, electrons on helium was a leading platform to
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investigate two-dimensional electron systems (2DES). The first experimental evidence of a

2DES on liquid helium was in 1964, when Sommer reported findings on measurements of the

potential barrier electrons must overcome to penetrate the helium surface [1]. Between 1969-

1970, following the initial experiments of measuring the liquid helium potential barrier [1,

2], theoretical explanations of these surface electron states were developed [3, 4]. However,

the true inflection point was in 1971, when Crandall and Williams proposed electrons on

helium as the optimal platform to demonstrate the crystallization of an electron system [5],

or Wigner crystallization [6]. Up until this point, Wigner crystallization had not been

demonstrated in any system since its theoretical conception in 1934 [6]. Forty-five years after

Wigner proposed the possibility of a solid electronic state of matter, the first experimental

demonstration of the Wigner crystal was done with electrons on helium [7].

An ensemble of such electrons forms a unique trapped particle system, which bears many

similarities to systems of trapped ions [8, 9]. Electrons confined above the surface of liquid

helium are characterized by extremely strong electron-electron interactions [10]. These inter-

actions lead to correlated electronic fluid and Wigner solid [7] many-body ground states pos-

sessing exotic spatial order [11] and temporal dynamics. In addition to the strong electron-

electron interactions produced by the Coulomb force, electrons on helium also interact with

a quantum field of helium surface vibrations, which leads to rich and nontrivial quantum

many-body behavior [12]. The electrons reside in a pristine environment, devoid of defects

or disorder, allowing for investigation of many-body phenomena (e.g. non-equilibrium phase

transitions and collective modes) in a controlled way, which is difficult (if not impossible)

to do in other areas of condensed matter physics. While there has been significant progress

studying electrons on helium, many fundamental questions related to the nature of the col-

lective electron ground states and their dynamics remain open. Tremendous advances in
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nano-fabrication techniques have allowed for the creation of devices in which electrons on

helium can be precisely confined in tailor-made geometries and mesoscopic devices [11, 13,

14], however, the overwhelming majority of experiments conducted to-date have relied on

conventional transport measurements to investigate the trapped electron system in these

device architectures. Qualitatively new opportunities to use electrons on helium as a model

system for studying open questions in condensed matter arise by integrating the electron sys-

tem with the experimental framework of circuit quantum electrodynamics (cQED). The work

in this thesis largely aims to understand and integrate the collective excitations in electrons

on helium in the presence of the superconducting resonators used in cQED architectures.

1.2 Overview of this thesis

To start, in Chapter 2, we lay the groundwork for understanding the basic concepts of

single electrons on helium, ensembles of electrons on helium, and what integrating quantum

circuits with these systems looks like. Then in Chapter 3, we discuss the microchannel device

architecture we have developed that enables us to generate and detect microwave frequency

plasmon modes. From this device, we are able to create a next generation architecture

which includes a superconducting coplanar waveguide resonator coupled to the microchannel

confined plasmon mode, which we describe and discuss the results of in Chapter 4. In

Chapter 5 we present experiments investigating the effects of the superfluid helium on a

superconducting resonator, and further find the resonator allows us to investigate the helium

surface fluctuations. In the final chapter of this thesis, Chapter 6, we discuss how the work

presented here paves the way for novel hybrid quantum systems that integrate electrons on

helium with quantum circuits. We outline experiments in cavity optoplasmonics and circuit

3



quantum electrodynamics, aiming to explore a new framework for hybrid quantum systems

with electrons on helium.
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Chapter 2

Introduction

2.1 Basics of electrons on helium

2.1.1 Superfluid helium

The discussions and experiments presented throughout this thesis are carried out with su-

perfluid 4He. As you will see in the subsequent sections, electrons can be bound to the

surface of superfluid 4He, however electrons can also be bound to the normal liquid 4He

surface as well as to both liquid and superfluid 3He surfaces. At room temperature and

ambient pressure, the stable isotope 4He is gaseous and at sufficiently low temperature it

can be liquefied. In 1908, Heike Kamerlingh Onnes showed that at atmospheric pressures,

4He liquefies at 4.2 K, which earned him the 1913 Nobel Prize in Physics [15]. Unlike any

other element, at atmospheric pressure 4He will not solidify even when cooled down to abso-

lute zero. However, as the temperature gets near absolute zero helium will undergo a phase

transition into a superfluid state. The superfluid phase is characterized by fluid flow without

kinetic energy loss, i.e. zero viscosity. Superfluidity in 4He was first experimentally observed

in 1938 by Pyotr Kapitza – this phase transition occurs at or below the so-called “λ−point”,

Tλ = 2.2 K [16, 17]. Superfluidity in helium is a result of the atoms occupying a collec-

tive quantum mechanical ground state, similar to Bose-Einstein condensation. However, the

superfluid is a highly dense quantum liquid such that standard Bose-Einstein condensation
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(BEC) theory cannot be used to fully describe it, as the theory neglects the interactions

between particles. For superfluid 4He, one must consider the two fluid model [18]. A full

description of superfluidity in helium is beyond the scope of this thesis, however for a well

contained and comprehensive resource, I refer the reader to Ref. [18]. Additional details on

how we utilize the lack of viscosity of superfluid 4He in the devices presented in this thesis

are discussed in Sec. 2.4.1.

2.1.2 Electrons bound to the superfluid helium surface

Imagine you have your favorite box of free electron cereal, a bowl, and a carton of superfluid

helium. If you fill the bowl with liquid helium and try to pour electrons into the bowl, they

will actually float about ten nanometers above the superfluid helium surface. This collection

of electrons will form a bound two-dimensional surface state electron system on helium,

which is a model system for studying a wide range of topics and systems in condensed matter

physics such as Coulomb liquids [19–25] and Wigner solids [6, 7, 26–29], the Hall effect [30–

33], collective excitations of electron ensembles [34–44], and low-dimensional transport at

the highest mobilities of any two-dimensional electron system (2DES) [45, 46].

2.1.2.1 A single trapped electron

When a free electron meets the surface of liquid (or superfluid) helium, the electron will

hover above the surface as a result of the competition between a long-range attraction –

from an image charge formed beneath the helium surface (εHe ≃ 1.057) – and the short-

range repulsion – a consequence of the Pauli exclusion principle which forbids an additional

electron in the already full valence shell of the helium atoms (see Fig. 2.1a). The bound

electron above the liquid helium surface creates a hydrogen atom-like energy spectrum of
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n = 3
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|ψ2| 2

a b
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e-
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liquid 4He

�He ≃ 1.057 

⟨�|�|�〉≃11.42nm

Figure 2.1: Floating electron above the surface of liquid helium. (a) Depiction of
a single electron floating above the surface of liquid helium (4He). The liquid helium is a
nearly perfect dielectric (εHe ≃ 1.057) and when an electron is at the surface an image
charge forms beneath the surface 0.03e+. In its ground state, an electron floats a distance
de = 11.42 nm above the surface of the liquid helium, calculated from the ground state wave
function expectation value. (b) Solutions to the Schrödinger equation (Eq. 2.6) for the n = 1
(red curve, |ψ1|2) and n = 2 (blue curve, |ψ2|2) hydrogenic states normal to the surface, with
their corresponding energy levels (the n = 3 energy level is also plotted in green). In the
absence of an applied pressing field normal to the surface (E⊥ = 0), the potential trapping
the electron is Ve(z) ∼ −Λ/z (solid dark gray line).

the motional states normal to the helium surface, i.e. Rydberg states, where the image

charge formed beneath the helium surface is analogous to the nucleus of the hydrogen atom

(Fig. 2.1b). An electron can remain bound above the helium surface without the help of an

additional electric field normal to the helium surface (E⊥) to hold it in place, however to

trap larger areal electron densities (ns) one must satisfy E⊥ ≥ ens
2ε0

1. If we take E⊥ into

consideration, the one-dimensional (1D) potential that traps the electrons above the helium

surface takes the form:

Ve(z) = eE⊥z +


− Λ

z+z0
, z ≥ 0,

V0 , z < 0
(2.1)

where e is the electron charge, V0 is the potential barrier the electrons must overcome to
1This comes from the requirement that in equilibrium the net force on the electrons must be zero, where

the electric field created by an infinite sheet of charge will be E = ens
2ε0

normal to the helium surface.
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penetrate the helium surface (V0 ≃ 1.0 eV) [1, 2],

Λ = e2(εHe − 1)
4(εHe + 1)

1
4πε0

(2.2)

is the image charge factor, ε0 is the vacuum permittivity, and z0 is an adjustable parameter

that shifts the origin of the image potential inside the liquid to account for the divergence one

would get in Ve at the helium surface – this value is typically chosen to be z0 ≈ 1 Å based on a

fit to the experimentally observed transition frequencies [47]. To approximate the Rydberg-

like energy spectrum of the bound electron, we can make some simplifying assumptions.

First, because the average distance of the electrons from the surface ⟨z⟩ will be much larger

than z0, we can take z0 → 0 in this approximation. Further, the typical surface electron

state energies are much smaller than V0, so we assume the fluid interface resembles an infinite

potential barrier (V0 → ∞) [47]. In the absence of the externally applied field E⊥, we have

the simplified potential, Ve(z) ≃ −Λ/z, and we solve the Schrödinger equation

− ℏ2

2me
∇2Ψ − Λ

z
Ψ = EΨ , (z > 0), (2.3)

where Ψ = 0 for z < 0 and me is the mass of the electron. With electrons free to move in the

xy-plane, the symmetry of the system allows us to consider the quantized vertical motion

separately, thus we consider only the 1D wave function normalized by the surface area, SA,

Ψn(r, z) = 1√
SA

eik·rψn(z). (2.4)

Here, k is the two-dimensional (2D) wave vector of the xy-plane, r is the in-plane position

vector, and n is the quantum number describing the vertical electron states. As noted
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previously, the electron bound to the surface of liquid helium exhibits Rydberg-like energy

levels, resembling the bound electron states of a hydrogen atom. By analogy, we can simply

insert the image charge factor Λ from Eq. 2.2 into the quantized energy spectrum of the 1D

hydrogen atom to write the energies of the electron bound to the helium surface:

En = − Λ2me

2ℏ2n2 , (n = 1, 2, 3, ...). (2.5)

To find the wave functions of the bound electron, we use the 1D Schrödinger equation

d2ψn(z)
dz2 + 2me

ℏ2 (En + Λ
z

)ψn(z) = 0, (2.6)

in the position basis (ψn(z) = ⟨z|n⟩) and solve for the n = 1 and n = 2 wave functions,

where

ψ1(z) = 2z
a3/2 e

−z/a (2.7)

ψ2(z) = z(1 − z/2a)√
2a3/2 e−z/2a. (2.8)

Here we have defined the effective Bohr radius a of the electron state

a = ℏ2

Λme
= a0e2

Λ (2.9)

with a0 = ℏ2/mee
2 ≃ 0.53 Å, and find a ≃ 76 Å. Using these values, we can calculate the

expectation values for the vertical positions of the first two states:

⟨1|z|1⟩ = 11.4 nm & ⟨2|z|2⟩ = 45.6 nm. (2.10)
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The wave functions of the first two levels are plotted in Fig. 2.1b along with the first three

energy levels, E1 = −0.649 meV (red), E2 = −0.162 meV (blue), and E3 = −0.072 meV

(green). The energy difference between the ground and first excited state is (E2 − E1)/h ≃ 119 GHz

and (E2 − E1)/kB ≃ 6 K, which is well below standard experimental operation tempera-

tures (T ≃ 0.01 K), thus the surface electron states will generally be cooled to their vertical

ground state.

In the previous analysis, we neglected the externally applied pressing field E⊥ that is

present in many electrons on helium experiments. The first-order correction to the energy

levels results in a linear Stark shift to the hydrogen atom-like energy spectrum. The ground

state wave function can be found by using a trial wave function of the same form as Eq. 2.7

and then solving the 1D Schrödinger equation given by Eq. 2.6 (using the variational method)

with the full expression for Ve(z ≥ 0) presented in Eq. 2.1. This gives the first order correction

to the energies [48]:

∆En ≈ eE⊥⟨n|z|n⟩. (2.11)

From this, we see that as the pressing field E⊥ increases, the transition frequencies into

higher vertical states increases linearly [7, 49] and can be used to experimentally tune these

levels over a wide range of frequencies [50].

2.1.2.2 Ensembles of electrons

A two-dimensional electron system (2DES) above liquid helium is an ideal system for investi-

gating a variety of interesting properties of low dimensional electronic matter. To understand

what makes the system so ideal, it is instructive to compare it to the 2DESs in solid state
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Figure 2.2: (a) Cross section of a p-type silicon MOSFET device. The central purple electrode
is the gate (voltage Vgt) and to the left and right are the source and drain electrodes which
sit above the n−type source and drain regions. Beneath the gate electrode is the oxide layer,
which is SiO2. A depletion region (grey dashed lines and pink charges) forms around the
pn−junction regions in the absence of an electric field (Vgt = 0) [51]. Once Vgt > Vth and
with a voltage across the source and drain electrodes, current will flow across the channel
creating a 2DEG in this channel region. (b) Sketch of surface state electrons on liquid
helium. A filament source (upper left corner) deposits the free electrons (orange) into the
region between the parallel plate electrodes (purple). The electric field E⊥ is set by the gate
voltage, Vgt (top electrode), which helps determine the density ns of the surface electrons.

devices. In this modern age, you are likely carrying around billions of 2DESs in your pocket

everyday, as computers rely on the physics of complementary metal-oxide semiconductor

(CMOS) technology. Several things set a 2DES of electrons on helium apart from a 2DES

in a semiconductor system such as those found in a metal-oxide-semiconductor field-effect

transistor (MOSFET), however the key characteristics that make surface state electrons on

helium a model system for understanding fundamental physical phenomena is their ability to

exist freely in vacuum above the perfect dielectric that is superfluid helium. A typical solid

state 2DES device is depicted in Fig. 2.2a. These 2DESs rely on fabrication reproducibility

and are limited by their semiconductor and dielectric properties. In particular, defects in

these devices will ultimately limit the 2DES mobility and the semiconductor-based architec-

tures limit the electron-electron interaction strengths necessary for investigating the unique

properties of strongly correlated electronic behavior such as Wigner crystallization [49].
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Compared with its semiconductor counterpart in Fig. 2.2b, free electrons floating above

the superfluid helium surface can host the lowest areal densities and highest mobilities of

any 2DES. Here, a source filament (upper left hand corner) deposits electrons (orange) into

the region between the two metal electrodes (purple). The applied gate electrode voltage

(Vgt) produces an electric field perpendicular to the helium surface (E⊥). When the source

filament emits electrons via thermal emission, they will accumulate in the region between

the two metal electrodes. If the filament is continuously depositing electrons, the electrons

will continue to flow into the regions between the plates until the equilibrium condition is

met – the total electric field above the surface electrons E↑
⊥ = 0, i.e. E⊥ − ens/2ε0 = 0.

This equilibrium condition results in a gate voltage dependent equilibrium electron density:

ns = 2ε0E⊥/e [49].

An unconventional macroscopic analog of the standard n-channel field-effect transistor

(FET), like the one shown in Fig. 2.2a, was demonstrated with electrons on helium by

Nasyedkin et al. in 2018 [52]. This electron-on-helium FET device consists of three neigh-

boring electrodes submerged in superfluid helium – a source (Vs), gate (Vg), and drain (Vd)

electrode – and operates as a FET by varying the gate voltage Vg and fixing Vs = Vd. In

this configuration, the electron conductivity is controlled by Vg, as in the n-channel semicon-

ductor FET. The foundation of this experiment is based on the techniques and architecture

introduced by Sommer and Tanner [53], in which surface electrons on helium above three

submerged electrodes provide an ideal platform to measure the mobility of electrons on he-

lium. This mobility measurement architecture, referred to as the Sommer-Tanner technique,

is discussed in further detail in Sec. 2.3.2

As in the case of a single electron, the 2DES will be bound to the surface with only

vacuum and helium vapor atoms separating the two. Below 1 K, the surface electrons will
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be in their vertical quantum ground state, where they form a non-degenerate – i.e. the

wavefunctions of the electrons do not overlap – 2DES free to move in the plane parallel to

the superfluid surface. The excited state occupation of the electrons and their energy above

the surface will follow a Boltzmann distribution, whereby increasing the temperature will

result in an increased probability (pi) of electrons populating some higher energy state εi,

i.e. pi ∝ e−εi/kBT [54]. This non-degenerate 2DES creates the model system necessary

for understanding non-degenerate electronic states of matter, strongly correlated electron

behavior, collective excitations, and investigating free-floating electron on helium systems in

1D and quasi-1D geometries.

2.1.3 Correlations and Wigner crystallization

A defining property of surface state electrons on liquid helium is the strongly correlated

nature of the electron system, which results from the strong Coulomb forces between elec-

trons. Most solid state systems at the macroscopic level are insensitive to the effects of

the repulsive forces of interacting electrons at the microscopic level, and the kinetic energy

of the electrons dominate. For electrons on liquid helium, the microscopic influence of the

strong Coulomb forces persist to the global level of the whole Coulomb liquid or solid. This

long-range Coulomb interaction is an important characteristic of the electron on helium sys-

tem and is the feature that has made it a model system for observing strongly-correlated

phenomena like Wigner crystallization.

For the 2DES on helium, the liquid to solid phase transition can be understood via the

plasma parameter, which describes the competition between the mean Coulomb potential

energy ⟨U⟩ and the mean kinetic energy ⟨K⟩ of the electrons
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Γ = ⟨U⟩
⟨K⟩

. (2.12)

In general, for a 2DES these energies are given by

⟨U⟩ = e2

4πε0r0
= e2√

πns (2.13)

⟨K⟩ = 1
πns

∫ ∞

0
εν(ε)f(ε)dε (2.14)

where r0 is the interelectron spacing, which is related to the areal electron density ns

by r0 = 1/√πns, ν(ε) = me/πℏ2 is the density of states for electron energy ε, and

f(ε) = [e(ε−µ)/T + 1]−1 is the Fermi-Dirac distribution function with chemical potential

µ [49]. Here, the average kinetic energy of electrons with the energy spectrum εk ∝ k2

allows us rewrite the kinetic energy in terms of the Fermi energy, EF = πℏ2ns/me, and

⟨K⟩ = EF /2. Further, the characteristic energies of the electron system can be represented

by the dimensionless parameter, rs = r0/aB , where aB = ℏ2/mee
2 is the Bohr radius. Uti-

lizing the Rydberg unit of energy, Ry = mee
4/2ℏ2 ≃ 13.6 eV, and substituting these into

the above equations for the average kinetic and potential energy, gives

⟨U⟩ = 2
rs

[Ry] (2.15)

⟨K⟩ = πℏ2ns

2m = 1
r2
s

[Ry] (2.16)

Semiconductor systems typically have densities in the range ns ≃ 1014 − 1015 m−2 and
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are studied at experimental temperatures on the order of T ≃ 0.5 K. In these systems, that

gives the Fermi-degeneracy parameter kBT/EF < 1, meaning the system cannot be treated

with the classical Maxwell-Boltzmann statistics, and in the zero temperature limit, one must

consider the plasma parameter for the degenerate 2DES: Γ = 2rs. If we replace me with

the effective mass m∗ for GaAs (m∗ ≃ 0.07me) and e → e/
√
ϵ (ϵGaAs = 12.5) to take

into account the dielectric constant of the surrounding semiconductor medium, the Coulomb

energy is decreased while the kinetic energy is increased, making the plasma parameter ratio

much smaller and the crystallization condition realtively difficult to realize [29, 49].

In contrast, typical densities in electrons on helium are within the range of ns ≃ 109 − 1012 m−2.

For standard experimental temperatures (T = 0.01 K − 1 K), the Fermi-degeneracy param-

eter kBT/EF ≫ 1 and interelectron distances n−1/2
s are much larger than the electron

thermal deBroglie wavelength λth = 2πℏ/
√

2mekBT . Thus, electrons on helium are a quan-

tum non-degenerate system. In this case, the mean kinetic energy is simply ⟨K⟩ = kBT and

the plasma parameter for the non-degenerate 2DES takes the form:

Γ = 1
4πε0

e2√
πns

kBT
(2.17)

When Γ ≪ 1 the Coulomb interaction is negligible and the system takes a form similar

to that of an ideal gas of fermions. For the range 1 < Γ < 100, in the low density high

temperature limit, the electrons behave like a correlated electron liquid, whereas in the high

density low temperature limit (Γ > 100), the Coulomb potential energy dominates and the

strong correlations between electrons drive the system into a crystalline phase, i.e. a Wigner

solid [54]. The first experimental realization of the classical Wigner solid was in electrons on

helium, where it was found that the crystallization condition was Γ ≳ 137 for electron areal
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densities in the range of ns ≃ 3 × 1012 m−2 − 8 × 1012 m−2 at temperatures T = 0.35 K to

0.65 K [7]. As we will discuss in the next chapter, various techniques have been implemented

to detect the formation of this 2D electron crystal on helium, including measurements of

the electron conductivity and through coupled electron-helium surface modes (i.e. ripplons).

The extremely high mobilities together with the formation of a relatively low density Wigner

crystal, has motivated efforts to utilize these trapped electron systems for quantum comput-

ing.

2.2 Plasmons and collective phenomena

Plasma is the often forgotten fourth state of classical matter2 – typically associated with

things like lightning, hot flames of fire, or plasma televisions – which are conducting gas-

like states of unbound electrons and ions that exhibit long-range collective motion. The

characteristic long-range collective motion of plasmas is the result of Coulomb interactions,

which can result in a compression and expansion of the average interparticle distances. In the

case in which the thermal motion of electrons can be ignored, a three-dimensional electron

plasma can sustain charge density oscillations at the plasma frequency

ωp =

√√√√ nee2

meε0
, (2.18)

where ne is the volume density of electrons and me is the electron mass (see Sec. 2.3.1.1 for

how this arises from the Drude model).

Plasma oscillations are a typical collective excitation found in electrons on helium, how-

ever other collective phenomena also exist. Before discussing how these charge density waves
2Sorry, plasma.
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(i.e. plasmons) arise in electrons on helium, we briefly discuss the other collective phenomena

inherent to electrons on helium.

2.2.1 Collective phenomena in electrons on helium

Collective phenomena in electrons on helium are the result of the highly correlated nature of

the electrons, facilitated by the long-range Coulomb interaction. Examples of the collective

excitations that result from this long-range order include phonon modes in the electron

crystal that arise from the propagation of shear waves [55], resonantly excited incompressible

electronic states [56], as well as coupled phonon-ripplon modes [7, 57, 58].

In the presence of a magnetic field, electron dynamics will exhibit cyclotron motion and

the formation of Landau levels [24]. This leads to magnetoresistance [31, 59, 60] as well as

bulk and edge magnetoplasmons – a dynamical manifestation of the Hall effect in electrons

on helium – which have been widely studied and observed in both two-dimensional [30, 35,

61] and quasi-one dimensional electrons on helium systems [40].

Other collective phenomena of the electron system include hybrid modes coupling the

dynamics of multiple degrees of freedom, including Rydberg level excitations coupled to

the electron cyclotron motion [41, 42] as well as electron ensembles coupled to piezoelec-

tric surface acoustic waves [43]. Additionally, ensembles of electrons on helium have been

strongly coupled to three-dimensional microwave cavities to study cyclotron resonance [37,

44] and integrated into hybrid circuits in which an electron ensemble is placed above a planar

microwave resonator [39].
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k

Figure 2.3: Simple illustration of a longitudinal charge density oscillation, i.e. plasmon, of
electrons on superfluid helium, with wavevector k⃗. Electrons (pink) hover above the surface
(blue), where here the charge density is greatest in the center.

2.2.2 Plasmons in electrons on helium

In electrons on helium, plasmons are simply the charge density oscillation of the floating

charges, as depicted in Fig. 2.3. Two-dimensional plasmons in electrons on helium were first

observed in 1975 by Grimes and Adams [34] in a frequency range of ∼ 20 MHz − 250 MHz.

The general form of the plasmon dispersion relation in the long-wavelength limit (i.e. small

wavevector k, kvth/ωp ≪ 1) and small damping (ωpτ ≫ 1) takes the form [34, 62]

ω2
p0 = 2πnse

2

me

(
1 + i

ωp0τ

)
, (2.19)

where vth is the electron thermal velocity and τ is a phenomenological relaxation time. In

the geometry used by Grimes and Adams, the plasmon dispersion relation is modified to

account for the screening. The modified form of Eq. 2.19 takes into account the finite height

h of their sample cell, in which image charges in the top and bottom plate electrodes will

screen the Coulomb restoring force and lower the long-wavelength plasmon frequency. This

screened two-dimensional plasmon dispersion relation in the geometry of Grimes and Adams

ωp is
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Figure 2.4: Cross sectional illustration of the set up used by the Grimes and Adams to observe
2D plasmons in electrons on helium. The system consists of top and bottom plate electrodes,
which induce potentials above (ϕ2(z2)) and below (ϕ1(z1)) surface electrons (pink).

ω2
p = nse

2

2ε0me

[
q2
xF (qx) + q2

yF (qy)
]1/2

, (2.20)

where the screening factor is given by

F (qi) = 2 sinh [qid] sinh [qi(h− d)]
sinh (qih) , (2.21)

where d is the helium depth, h is the height of the cell, and qx = mπ/W and qy = nπ/L

are the wave numbers for the m and n modes corresponding to the width W and length L

of the cell, respectively.

2.2.2.1 Two-dimensional screened plasmon dispersion relation

To derive this two-dimensional screened plasmon dispersion relation, we consider the cross

section depicted in Fig. 2.4. Neglecting any dissipation, we begin with the continuity equa-

tion, an equation of motion to describe the electron motion in a given potential, and the

Poisson equation for the 2D charge sheet, respectively, to describe the system:
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∂n(r, t)
∂t

+ ∇ · [n(r, t)v(r, t)] = 0 (2.22)

∂v(r, t)
∂t

+ (v(r, t) · ∇) v(r, t) = − e

me
∇ϕ(r, t) (2.23)

∇2ϕ(r, t) = − e

ε0
n(r, t)δ(z − d). (2.24)

Here, n(r, t) is the xy-position dependent electron density n(r, t), where the electron position

is represented by the vector r(x, y); v(r, t) is the electron velocity; and ϕ(r, t) is the total

electrostatic potential. For the Poisson equation (Eq. 2.24), we require the term δ(z− d), as

charge is only present at z = d where the electrons exist3. At all other points in the space

between the electrodes, the Laplace equation will hold (∇2ϕ = 0). For the remainder of the

derivation, we consider the system in cylindrical coordinates (r, θ, z) due to the symmetry

about the z-axis. The derivation for the dispersion relation in Eq. 2.20 consists of three main

steps:

1. Solving for the electric potential in the two regions above (ϕ2(z2)) and below (ϕ1(z1))

the surface electrons.

2. Employing the appropriate assumptions and boundary conditions at the interface of

the two dielectric media ε0 and εHe for the two potentials ϕ2(z2) and ϕ1(z1).

3. Imposing the time varying external electric field E = Re(Ere
−iωt)r̂ (of amplitude Er)

on the charge layer, which will excite the plasmon modes, and solving the continuity

equation and equation of motion with the potentials obtained from (1) and (2).
3Here we have made the approximation that the height of the electrons and the height of the helium

above the bottom electrode are equal.
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(1) Solving for the potentials above and below the electron sheet. The Laplace

equation we must solve, in cylindrical coordinates, is

∇2ϕ(r, θ, z) = 1
r

∂

∂r

(
r
∂ϕ

∂r

)
+ 1
r2
∂2ϕ
∂θ2 + ∂2ϕ

∂z2 = 0. (2.25)

If we let ϕ(r, θ, z) ≡ R(r)T (θ)S(z), we get the separated equations and corresponding solu-

tions,

∂2S(z)
∂z2 − q2S(z) = 0 → S(z) = S0 sinh(qz) (2.26)

∂2T (θ)
∂θ2 + β2T (θ) = 0 → T (θ) = A cos(βθ) +B sin(βθ) (2.27)

∂2R(r)
∂r2 + 1

r

∂R(r)
∂r

+ (q2 − β2/r2)R(r) = 0 → R(r) = R0Jβ(qr) (2.28)

The solution for S(z) has the arbitrary constant amplitude S0 and separation variable q, with

dependence on the sinh(qz) from the fact that we require ϕ(sinh(qz)) → 0 as it approaches

the electron sheet. The solution for T (θ) has the arbitrary constant amplitudes A and B

and has separation constant β. The separation constant β must be single-valued for integer

multiples of (θ + 2π), with β = 0, 1, 2, .... The solution for R(r) has the arbitrary constant

amplitude R0 and depends on both the z and θ separation constants, q and β. The radial part

is just the solution to the Bessel equation with the Bessel function of the first kind Jβ(qr) [63].

Because of the radial component dependence on the angular and axial components, we can

absorb constants from the radial (R0) and axial (S0) solutions into the constants (A and B)

for the angular solution, which we will solve for with the appropriate boundary conditions

in the next part. Then, the analytical solution for the potential takes the form:
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ϕ(r, θ, z) =
∞∑

β=0

∞∑
n=1

Jβ(qnr) sinh(qnz)
[
An sin(βθ) +Bn cos(βθ)

]
(2.29)

and because we have azimuthal symmetry, there will be no θ dependence in the potential ϕ,

which means we have β = 0. The index n corresponds to the integer modes that arise in the

solution for S(z). Finally, this allows us to write the fully reduced analytical form for the

potential:

ϕ(r, z) =
∞∑

n=1
CnJ0(qnr) sinh(qnz). (2.30)

Here, we have introduced the constant Cn to account for all absorbed constants above.

We can now write the potentials above and below the electron sheet, such that z1 = z,

z2 = (h− z1), and

ϕ1(r, z, t) = ϕb +
∞∑

n=1
C1nJ0(qnr) sinh(qnz)e−iωt (2.31)

ϕ2(r, z, t) = ϕt +
∞∑

n=1
C2nJ0(qnr) sinh(qn(h− z))e−iωt. (2.32)

(2) Employing assumptions and corresponding boundary conditions. There are

two boundary conditions we must consider at the interface z = d: (I) the potential must

be continuous across the interface, i.e. ϕ1(d) = ϕ2(d) and (II) the divergence of the electric

displacement field ∇ · D = ρ, which describes how the potential changes across the two

discontinuous media ε0 and εHe for the free charge density ρ.

For (I) at z = d, Eq. 2.31 is set equal to Eq. 2.31 with ϕ1(r, d, t) = ϕ2(r, d, t). This

equation is satisfied when ϕt has a static component that cancels ϕb and also a dynamic
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component that provides information about the motion of the charges at the interface. For

(II) we start with ∇·D = ρ, where we consider a volume element V at the interface between

vacuum and the helium. Integrating over the volume element V we have

∫
V

∇ · D dV =
∫
S

D · n̂ dS =
∫
V
ρ dV =

∫
S
nse dS, (2.33)

where n̂ is a normal component at the interface, which gives the difference in the electric

displacement D2z −D1z = nse. Since D = εE = −ε∇ϕ, at z = d we have:

−ε(∇ϕ2 − ∇ϕ1) = ε(∂ϕ1
∂z

− ∂ϕ2
∂z

) = nse. (2.34)

(3) Solving the continuity equation and equation of motion with an external

field E(ω, t). To consider the dynamical response of the electron system, we impose a time-

varying external field in the plane of the electron sheet E(ω, t) = Re(Ere
−iωt)r̂. This will

cause the charge density to vary slightly from its equilibrium density n0(r, t) as the radial

driving field pushes the charges around,

n(r, t) = n0 + δn(r, t), (2.35)

where δn(r, t) is the charge density variation from its equilibrium configuration due to E(ω, t).

The velocity of the charges in equilibrium v(r, t) = 0 will also be modified by the applied

electric field, where v(r, t) = δvr(r, t) · r̂. Because we are in the vertical ground state and

we have azimuthal symmetry, δvz = 0 and δvθ = 0, respectively.

We can now rewrite the equations we need to describe the plasma motion:
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−iωδn+ n0
1
r

∂

∂r
(r∂vr) = 0 (2.36)

iω∂vr = e

me

∂

∂r
ϕ(r, t). (2.37)

Next, we plug Eq. 2.31 into Eq. 2.37 with z = d at the interface, then impose that at the

edge (r = R) of the charge sheet, δvr(R, d, t) = 0, which means that J1(qnR) = 0. From

this, we get the three main equations for the potential (ϕ), velocity change (δv), and change

in charge density (δn) at the interface:

ϕb +
∞∑

n=1
C1nJ0(qnr) sinh(qnd)e−iωt = ϕt +

∞∑
n=1

C2nJ0(qnr) sinh(qn(h− d))e−iωt (2.38)

δvr(r, d, t) =
∞∑

n=1
−C1nqne

iωme
J1(qnr) sinh(qnd)e−iωt (2.39)

δn(r, d, t) =
∞∑

n=1
n0
C1nq

2
ne

iω2me
J0(qnr) sinh(qnd)e−iωt. (2.40)

Here, we have used the identity ∂
∂r [J0(qnr)] = −J1(qnr) in Eq. 2.39.

Now we can obtain the plasmon dispersion relation using the equations above. From

Eq. 2.38, we consider r over the interval 0 ≤ r ≤ R and use the Fourier-Bessel series

identity4 to get

C1n sinh (qnd) − C2n sinh (qn(h− d)) = 2eiωt

R2J2
0 (qnR)

∫ R

0
rJ0(qnr) dr (ϕt − ϕb). (2.41)

4f(r) =
∑∞

n=1 AνnJν(xνnr/a) with Aνn = 2
a2J2

ν+1(xνn)
∫ a
0 rf(r)Jν(xνnr/a)dr over 0 ≤ r ≤ a [63]
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The integral on the right hand side is solved using the Bessel function identity

∫ R

0
rdrJ0(qnr) = r

qn
J1(qnr)

∣∣∣∣R0 = 0, (2.42)

which goes to zero due to the same assumption we set for Eqs. 2.38, 2.39, and 2.40 at the

edge of the charge sheet (δvr(R, d, t) = 0). Then, the relationship for the coefficients reduces

to C2n
C1n

= sinh (qnd)
sinh (qn(h−d)) . Next, we impose the boundary condition at the interface from

Eq. 2.34 and Eq. 2.40 in Eq. 2.35 to solve for ω, which takes the form

ω2 = n0e2qn
2ε0εHeme

sinh [qnd] sinh [qn(h− d)]
sinh [qnh] + (1 − εHe) cosh [qnd] sinh [qn(h− d)] . (2.43)

We can neglect the second term in the denominator because (1 − εHe) ≪ 1 and we get the

reduced form of the 2D screened plasmon dispersion relation:

ω2 = e2ns

2meε0εHe
qnF (qn), F (qn) = sinh [qnd] sinh [qn(h− d)]

sinh [qnh] . (2.44)

This form of the dispersion can be rewritten in terms of rectangular coordinates by recog-

nizing that the radially dependent part of the equation arises in the wavenumber qn and

in the screening parameter F (qn), for a given mode number n. For a rectangular geome-

try, the wavenumber qn in cylindrical coordinates is simply the magnitude of the in-plane

wavevector q = (qx, qy) in rectangular coordinates, i.e. q =
√
q2
x + q2

y . This means we now

have two mode numbers, n and m, in the rectangular geometry, such that qx = nπ/L and

qy = mπ/W , where L is the length in the x and W is the width across the y. Putting this

all together, we finally arrive at the two-dimensional screened plasmon dispersion relation

from Eq. 2.20:
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ω2
p = nse

2

2ε0me

[
q2
xF (qx) + q2

yF (qy)
]1/2

, F (qi) = sinh [qid] sinh [qi(h− d)]
sinh [qih] , (2.45)

where we have used the subscript i in the screening factor definition to indicate the i = x or

i = y wavenumber.

2.3 Transport properties of electrons on bulk helium

Transport measurements of electrons on helium provide a highly sensitive tool for measur-

ing the electron system conductivity, enabling a way for detecting various phenomena in

low-dimensional electron systems. In particular, transport measurements have been utilized

to reveal dynamical ordering of two-dimensional [11, 64] and quasi-one-dimensional electron

chains [65, 66], as well as the non-equilibrium and nonlinear response of the strongly corre-

lated low-dimensional electron system in the presence of high-frequency perturbing fields [27,

28, 48, 67, 68]. Electron conductivity measurements also reveal the essential role that scat-

terers play in the electron mobility µ, i.e. how easily the electron system moves along the

helium surface when pushed by an external force. As you will see in Chapter 3, transport

measurements also allow us to detect microwave frequency plasmon modes due to a resonant

response in the conductivity of the electron system when excited by a microwave drive.

2.3.1 Mobility

The highest mobility of any 2DES is found in electrons on helium, where mobilities as high

as 108 cm2/Vs [45] have been recorded. The current state-of-the-art mobilities in ultra-high-
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quality GaAs devices have just reached ∼ 50×106 cm2/Vs [69]. The quality or “cleanliness”

of a 2DES is oftentimes parameterized by the mobility µ, which is limited by the various

defects and scatters in the surrounding medium of the 2DES. The mobility of electrons on

helium is limited by two main scatterers – helium vapor atoms and helium surface capillary

waves (ripplons). The mobility of electrons on helium is described by the Drude model, in

which the mobility is a function of the average time τ between scattering events.

2.3.1.1 The Drude model

The dc Drude model

For a system of electrons on helium, the Drude model describes the mobility and conductivity

of the electrons moving with the average velocity v ≡ ⟨v⟩. The equation of motion for

electrons accelerated by an external driving force F is given by:

me
dv
dt

= −me
v
τ

− eE (2.46)

where τ is the relaxation time and F = −eE is the Lorentz force for the case of B = 0.

For the dc Drude model, we consider a constant electric field E and the resulting average

electron velocity will be constant. In this case, Eq. 2.46 reduces to

v = −eτ
me

E = −|µ|E, (2.47)

where the mobility is µ = eτ/me. For completeness, we can substitute this steady-state

solution for the average velocity into the current density [70],

j = −env = ne2τ
me

E = σ0E. (2.48)
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Here, the dc conductivity is σ0 = ne2τ/me = neµ, which is a function of the mobility and

the density of electrons n.

The ac Drude model

In the case where a time-dependent electric field E(t) is present, the equation of motion for

an electron is medv/dt = −mev(t)/τ − eE(t) and the steady-state solution for the electron

momentum will be of the form p(t) = Re(p(ω)e−iωt)5. From this, we get the frequency-

dependent current density [70]:

j(ω) = −enp(ω)
me

= (e2n/me)E(ω)
(1/τ) − iω

. (2.49)

The current density can be written as j(ω) = σ(ω)E(ω), where the ac conductivity σ(ω) is

σ(ω) = σ0
1 − iωτ

, σ0 = ne2τ
me

(2.50)

which is as a function of frequency and depends on the dc conductivity σ0 introduced in

Eq. 2.48. However, this analysis assumes that at any given time t, the force acting on each

electron is the same. By taking into account the spatially-dependent field E(r, t), and solving

Maxwell’s equations for the the current density j(r, ω) = σ(ω)E(r, ω), we get [70]

−∇2E(r) = ω2

c2

(
1 + iσ(ω)

ωε0

)
E(r) (2.51)

where we have the spatially dependent electric field amplitude E(r) and the ac conductivity
5For a field E(t) = E(ω)e−iωt which oscillates at frequency ω, the steady-state solution will have the

form p(t) = p(ω)e−iωt. Plugging this into the equation of motion, dp(t)
dt

+ 1
τ p(t) = −E(t), we get

(−iω + i/τ)p(ω) = −eE(ω).
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σ(ω). Equation 2.51 is the wave equation with a complex dielectric constant

ε(ω) = 1 + iσ

ε0ω
= 1 + ine2τ

(1 − iωτ)ε0meω
. (2.52)

At sufficiently high frequencies (ωτ ≫ 1), the dielectric constant becomes

ε(ω) = 1 − ne2

ε0meω2 = 1 −
ω2

p

ω2 , (2.53)

where we have defined ω2
p ≡ ne2/ε0me, which is just the plasma frequency term from

Eq. 2.18 [70]!

2.3.1.2 Scatterers: Vapor atoms and ripplons

Electrons on helium have the highest mobilities in condensed matter systems because the

electrons have only two primary scatterers: helium vapor atoms and liquid helium surface

capillary waves (ripplons) [71, 72]. In transport experiments, these scatterers limit the

measured electron mobility and conductivity. Phonons in the superfluid helium bulk also

play a role in electron energy relaxation in systems of small numbers of electrons, however this

energy relaxation mechanism has only weak consequences for the relevant 2DES transport

here [57, 73–75].

The total scattering rate τ−1 for electrons on helium is given by:

1
τ(ϵk) = 1

τv
+ 1
τr(ϵk) , (2.54)

where τv is the relaxation time for electron-vapor atom scattering and τr(ϵk) is the relaxation

time associated with electron-ripplon scattering, which depend on the electron kinetic energy
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ϵk.

The contribution of vapor atom scattering is a function of temperature, where the vapor

density of the helium atoms is [48]

nv =
mHekBT

2πℏ2

3/2
e−Tv/T . (2.55)

Here, mHe is the mass of the helium atom and Tv = Lv/kB = 7.17 K is the evaporation

constant for liquid helium6. The vapor atom scattering rate is [48]

1
τv

= 3πℏσsnv

8meaE
, (2.56)

where σs = 4.98×10−20 m2 is the helium atom scattering cross section and aE is the effective

electron Bohr radius in the presence of an external perpendicular holding field E⊥
7. We can

write the vapor atom scattering dependent mobility in terms of the temperature-dependent

vapor atom scattering rate [77]:

µv = eτv
me

= 8eaE

3πℏσsnv
. (2.57)

Once vapor atom scattering becomes negligible (T < 0.7 K), the contributions of ripplon

scattering becomes dominant. Ripplons are surface phonons of the superfluid helium. In the
6The evaporation constant comes from the latent heat per atom of liquid helium Lv = Le/NA, where

Le = 20.5 J/mol [76] is the latent heat of evaporation for liquid helium and NA = 6.022×1023 is Avogadro’s
number.

7This is calculated by solving the 1D Schrödinger (Eq. 2.6) equation and replacing the potential term
−Λ/z with the potential in Eq. 2.1. Saitoh gives this parameter aE in terms of the effective Bohr radius a

(from Eq. 2.9): aE
a = 4

3λE
sinh (1

3arcsinh(9λE
4 )) [48]. Here λE =

√
E⊥/Ec parameterizes the strength of

the holding field E⊥ with respect to the characteristic field Ec = ℏ2/2emea3.
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short wavelength limit8, for helium films with thickness greater than 100 nm, the ripplon

dispersion relation is given by [49, 54]

ωr =
√
α

ρ
q3, (2.58)

where α = 3.7 × 10−4 N/m is the surface tension of the helium, ρ ≃ 145 kg/m3 is the liquid

helium density, and q is the ripplon wave vector [78]. We can look at the energy of the

ripplons taking part in electron scattering by considering wave numbers q that are on the

order of the thermal de Broglie electron wave number, q =
√
mekBT/ℏ ∼ kT [49], and

ℏωr =
√
α

ρℏ
[8mekBT ]3/4. (2.59)

From Eq. 2.59, we find that ℏωr ≪ kBT (for T < 0.7 K), which means the electron-ripplon

scattering will be in the long wavelength limit. Following the treatment in Ref. [48], the

electron-ripplon scattering rate is

1
τr(ϵk) = T

4ℏαa2

[(aeE⊥)2

ϵk
+ 2eE⊥a[ln

(
16Ef/ϵk

)
− 3]

+3ϵk
2

[
(ln

(
16Ef/ϵk

)
− 19/6)2 + (π2/3 − 115/36)

]]
,

(2.60)

where ϵk is the electron kinetic energy when the electron is in the ground Rydberg level, a

is the effective Bohr radius given in Eq. 2.9 and Ef = ℏ2/2meaE . With E⊥ = 0 and at

low temperatures where electron-ripplon scattering is dominant, the ripplon-limited collision

time is on the order of
8The short wavelength limit here refers to when the surface tension is the primary restoring force and

the gravity term (gq) in the full dispersion is negligible [49, 54].
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τr(kBT ) ∼ 8ℏαa2

3k2
BT

2

[
ln

( 0.67ℏ2

2mea2T

)]−2
. (2.61)

In the limit of a strong holding field (eE⊥ ≫ kBT/z), the collision rate has the following

energy dependence:

1
τr(ϵk) = kBT (eE⊥)2

4ℏαϵk
, (2.62)

which can be used to obtain the holding field dependent average collision time for ripplons

⟨τr(ϵk)⟩ = 8ℏα/(eE⊥)2, and the ripplon-limited mobility [49]

µr = e

me
⟨τr(ϵk)⟩ = 8ℏα

emeE2
⊥
. (2.63)

2.3.2 Sommer-Tanner transport measurements

The first mobility measurement of electrons on helium was performed by Sommer and Tanner

in 1971 [53]. This measurement technique, now known as the Sommer-Tanner technique, has

become a standard for electron on helium transport experiments. A sketch of the original

Sommer-Tanner measurement setup is shown in Fig. 2.5, with its transmission line equivalent

circuit. Three electrodes (labeled (1), (2), and (3); colored green), each of length 𝓁, are

submerged in the liquid helium, a depth 𝒽 below the surface. In these measurements,

electrons were deposited by a gas discharge, and the surface charge density ns is a function of

𝒽 and the potential difference Vdc between the top electrode and three submerged electrodes.

A low-frequency (ω1) ac modulated bias voltage (V1) is applied to (1) and a lock-in amplifier

connected to (3) is referenced at ω1. The ac voltage on (1) drives electrons forward and back

across the center grounded electrode (2) as the bias goes from negative to positive at 2ω1.
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Figure 2.5: Sommer-Tanner transport measurement configuration from Ref. [53]. Electrodes
(1), (2), and (3) of length 𝓁 (colored green) are submerged a depth 𝒽 below the liquid
helium surface. Here, the ac drive is provided internally from the lock-in amplifier and
simultaneously being referenced to that ac drive frequency. The 2DES above the liquid
helium surface capacitively couples to the submerged electrodes, with capacitance per unit
length C. When electrons are driven across the electrodes, the electron system will exhibit
some resistance per unit length R.
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The surface electrons are capacitively coupled to all three submerged electrodes, and this ac

drive induces a current I3 at (3) that is measured by the lock-in amplifier. In this experiment

Sommer and Tanner found an electron mobility of only up to 2 × 106 cm2/Vs, due to being

in a temperature range dominated by vapor atom scattering (T = 0.9 K − 3.2 K).

In the original measurements performed by Sommer and Tanner, a transmission line

modeling approach was not used, however, for measurement frequencies f and device lengths

L such that fL ≳ 0.1, the ac driven electrons are most accurately modeled as a transmission

line. In this case, there will be a capacitance per unit length between the surface electrons

and the underlying electrodes will be C = C0𝓁. As the electron system is driven across

the electrodes, it can be modeled as having a resistance per unit length R = R0𝓁, which is

related to the electron mobility µ. From this, we can write

R = 1
nseµℒ

(2.64)

C = εHeε0ℒ
𝒽 , (2.65)

where we see the resistance R is simply just the inverse of the electron conductivity from

the dc Drude model we saw in Sec. 2.3.1.1, with the total length across all three underlying

electrodes ℒ = 𝓁1 + 𝓁2 + 𝓁3. We can calculate the current through the electron layer I3

following the transmission line analysis given by Mehrotra and Dahm [79]. One can find the

relationship between the voltage V1 and current I1 at the input on (1) are related to the

voltage V3 and current I3 at the output on (3) from the following relation in transmission

line theory [80]:
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V (x)

I(x)

 =

 cosh(γx) −Zc(γx)

− 1
Zc

sinh(γx) cosh(γx)


V (0)

I(0)

 , (2.66)

where γ is the propagation constant of the ac signal and Zc is the characteristic impedance:

γ2 = iω1C(R + iω1L) (2.67)

Z2
c = R + iω1L

iω1C
(2.68)

and L = me/nse
2ℒ is the inductance per unit length, which arises as a result of the intertia of

the electrons. At low frequency in the Sommer and Tanner experiment the small inductance

term can be ignored, such that the output current I3 is

I3 = V1

√
iω1C
R

sinh (√γ𝓁1) sinh (√γ𝓁3)
sinh (√γ(𝓁1 + 𝓁2 + 𝓁3))

. (2.69)

Here, it is assumed R and C are constant over the entire electrode region due to negligible

edge effects because 𝒽 ≪ dimensions of the electrodes.

In general, one can determine R and C of the electrons in the transmission line model by

fitting Eq. 2.69 to phase sensitive lock-in measurement data. Additionally, these Sommer-

Tanner transport measurements also allow us to estimate an electron density ns, and if the

density is known, together with the fit value for R, an estimate for µ can be made, following

Eq. 2.64. In the device shown in Fig. 2.5, an estimation of the density can be done if the

center electrode (2) is negatively biased such that the region of (2) looks like a barrier to

the electrons in regions (1) and (3). This creates a depleted region above (2) where no

electrons exist and all electrons are in the regions above (1) and (3). As a result, during a

35



transport measurement, the output current I3 sharply decreases as electrons can no longer

being driven across the device. The voltage at which the barrier into region (2) is decreased

enough such that electrons can traverse across all three electrodes on electrode is called the

threshold voltage Vth. For the device shown in Fig. 2.5, the threshold voltage on electrode

(2), V th
2 , allows us to estimate an electron density ns,

ns = −V th
2

e𝒽
εHeε0

. (2.70)

A more in depth discussion of measuring the electron density via transport is provided in

Sec. 2.4.

2.3.3 Transport of the Wigner crystal

Let us briefly return to a discussion of Wigner crystallization. At this point, we have ad-

dressed crystallization as a consequence of the large interelectron interaction strengths com-

pared to the small thermal kinetic energy at low temperatures. In the previous section,

we considered electron transport across a Sommer-Tanner device mainly in the context of

an electron fluid but what happens in a transport experiment when the electron system

crystallizes?

To answer this question, we start with the situation depicted in Fig. 2.6, where an elec-

trode is submerged in the superfluid helium and a single electron floats above the helium

surface. When the electrode is biased positively, the electric field points away from the elec-

trode and the electron moves closer to the surface to lower its electrostatic energy. This,

together with the image potential beneath the surface and the short-range repulsion from

the Pauli exclusion principle for the helium atoms, induces a depression in the helium sur-
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Figure 2.6: An electron (pink) above the surface of superfluid helium. A positive voltage
on the electrode beneath (+V , purple) pulls the electron down towards the helium surface
as an induced electric field points away from the surface E⊥. This creates a dimple in the
helium surface in the vicinity of the electron.

face. This depression is called a “dimple” and when the 2D electron system crystallizes, it

will create what is referred to as a “dimple lattice”. The dimple lattice will have a lattice

spacing that corresponds to the interelectron spacing and reciprocal lattice vectors G of the

solid. In the electron fluid phase, there is no well-defined dimple lattice because of the fast

and irregular electron motion. Moreover, like every fluid with surface tension, when the liq-

uid helium surface is disturbed, it will host short-wavelength surface waves called capillary

waves, which are quantized for liquid helium. These quantized surface waves – or vibrational

surface excitations – on superfluid helium are called ripplons or surface phonons, and like

any quantum of energy, they can be emitted or absorbed. The same way an electron disturbs

the helium surface by forming a dimple, a ripplon can perturb the electron system – this

interaction is known as electron-ripplon coupling – and the energy exchange between the two

are central to understanding the transport of the Wigner crystal.

To illustrate the coupling between the quantized surface waves of the liquid helium and

the electron crystal, its instructive to remind ourselves what it means for two things to

exchange vibrational or acoustic quanta of energy. The quantum mechanical process by

which two systems exchange quanta of energy is well intuited when thinking about an atom
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absorbing and emitting a photon. An incoming photon with energy corresponding to the

quantized energy level difference of the atom’s ground to first excited state allows the atom

to absorb the photon, thus putting the atom into its first excited state. While there are

many different ways in which that atom will eventually emit a photon, the resulting photon

that is emitted will always correspond to that quantized energy lost by the atom. The way

photons are electromagnetic quanta of energy, phonons are vibrational quanta of energy, and

both require a medium to exist in. Ripplons can be emitted and absorbed by the 2D Wigner

solid and when performing transport experiments, the mobility of the 2D Wigner solid will

ultimately be limited by these interactions.

The ripplon scattering properties of the 2D Wigner crystal of electrons on helium are

also distinct from those effecting the electron liquid. As discussed previously, the mobility of

the 2D electron fluid at temperatures (T > 0.9 K) is determined by temperature dependent

helium atom scattering events and at lower temperatures (T < 0.7 K) a function of ripplon

scattering events.

2.3.3.1 Bragg-Cherenkov scattering

The first experimental demonstration of Wigner crystallization detected resonant coupled

ripplon-plasmon modes [34]. However another method for detecting Wigner crystalliza-

tion is through transport measurements. In fact, in the 1971 experiment by Sommer and

Tanner [53], they remark about a strange behavior in the measured mobility at low temper-

atures and high electron densities. In retrospect, it was possible they were seeing signatures

of Wigner crystallization eight years before the landmark Grimes and Adams result [7]! Due

to the temperature dependence of the electron mobility, at temperatures greater than those

that would correspond to crystallization but in the ripplon scattering limit, one should ex-
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pect to see the highest electron mobilities. Early mobility measurements near the Wigner

solid transition [21, 46, 71] show a sharp increase in the mobility as the temperature de-

creases towards crystallization temperatures. The increase in mobility of a 2D electron

liquid makes sense, as the decrease in temperature should reduce the number of scatterers.

As the temperature continues to decrease, the plasma parameter Γ (Eq. 2.17) tells us that the

system electrons should crystallize – below T ≃ 500 mK, typical surface electron densities

(ns ≳ 4.5 × 1012 m−2) will correspond to crystallization.

The drop in mobility that is seen in transport measurements as a signature of Wigner

crystallization is described by the framework of Bragg-Cherenkov scattering. In the electron

fluid phase, there is no long-range periodic order in the electron system, however, when

the system crystallizes, the electron lattice creates a Bragg condition such that constructive

interference with ripplon scatterers can occur [70]. Bragg-Cherenkov scattering is a many-

electron scattering process that results from the coherent emission and absorption of helium

surface waves by the 2D electron crystal. As its namesake suggests, it involves the combina-

tion of two main processes: Bragg scattering and Cherenkov emission. Cherenkov emission

occurs for single electrons when the electron velocity v is greater than the phase velocity

of the irradiated waves vph(q) and the momentum transferred ℏq is small compared to the

electron momentum. When the electrons form a Wigner crystal, the many-electron system

emits Cherenkov radiated waves that interfere constructively with each other. The periodic

crystal lattice of the 2D electron solid provides a means for Bragg scattering these waves

and when the wave vectors of the radiated waves are equal to the reciprocal lattice vectors

of the electron solid G, the interference is constructive. When the velocity of the electron

solid (v · G/G) ∼ vph(G), the emission rate increases dramatically [81].
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2.3.3.2 The unresolved microscopic picture: crystal sliding versus melting

The underlying microscopic model describing the sharp decrease in conductivity upon the

formation of a Wigner solid and then again increases for stronger driving fields is largely

unresolved. Two main models have been introduced to describe the phenomena seen in

transport experiments:

1. In the presence of weak to intermediate drive fields, the electron crystal deforms the

superfluid helium surface by forming a lattice of dimples. As the electrons are driven,

they must drag their corresponding dimple lattice with them, causing an increase in

the effective mass of the electron system and thus a decrease in the conductivity [71].

As the Wigner solid is driven faster than the ripplon phase velocity, the electron system

decouples from the dimple lattice, resulting in an increase in the measured conductivity

as the electron system slides across the helium surface [27, 57].

2. In the presence of weak to intermediate drive fields, the decrease in mobility is entirely

a Bragg-Cherenkov scattering effect, where the emission of ripplons with a phase ve-

locity vph(q) on the order of the Wigner solid reciprocal lattice vector G constructively

interfere. At stronger driving fields, the jump in mobility is due to heating the crystal

out of equilibrium with the liquid helium, effectively melting the crystal into its 2D

electron fluid state [36, 81, 82].

A model by Vinen [83] presents an attempt to unify the dimple lattice and Bragg-Cherenkov

scattering picture, where at low driving fields, the mobility is limited by a coherent deepening

of the dimple lattice from the Bragg-Cherenkov effect. For increased driving forces, it is

speculated that the electrons decouple from the dimple lattice causing the dimple lattice to

fully disappear – the electron velocity v ≫ vph and the conductivity is on the order of the
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Figure 2.7: The typical Sommer-Tanner device (left) with additional channeled structures
patterned on top of the electrodes (right) to enable precise control over the electron system
and support a more stable helium surface with higher electron densities. Electrodes on the
top surface of the dielectric channeled structures (blue and green) provide additional control
over the confinement.

electron fluid conductivity. Many experiments have been performed to observe the nonlinear

transport behavior of the electron on helium Wigner crystal and to attempt to resolve the

underlying mechanism [25, 28, 65, 66, 82, 84–89]. The non-linear transport properties of the

Wigner solid in the context of Bragg-Cherenkov scattering and the unresolved microscopics

are discussed further in Section 3.2.1 in the context of subjecting the electron crystal to an

additional microwave field.

2.4 Microchannel devices for electrons on helium

The simple Sommer-Tanner device architecture, while great for simple low density transport

measurements, lacks the ability to produce precise spatial control over the electron system.

To combat this, in 1986 Marty [90] proposed creating micro-structured channels on top of the

Sommer-Tanner electrodes (see Fig. 2.7). The addition of these structures provides many

experimental benefits for investigating surface state electrons on helium. These benefits

include the ability to achieve higher densities of electrons. Additionally, the small patterned

channel sizes can help suppress ripplons, and patterning electrodes on top of the structures

enables a high level of confinement and spatial control over the electron system.

The first microchannel device introduced by Marty [90] aimed to study electron systems
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Figure 2.8: Cross section of a typical microchannel device filled with superfluid helium via
capillary action. The bulk helium sits a height H below the microchannel features and a van
der Waals film of thickness t covers the top surfaces. At superfluid helium temperatures,
a channel width w less than the superfluid helium capillary length lc ≃ 0.5 mm, a helium
meniscus in the channel will form with a radius of Rc. The distance of the bottom point of
the meniscus to the bottom of the channel is dl and the total depth of the channel is d. The
tan color represents an arbitrary dielectric substrate (typically Si) and the green features in
the microchannel region are metallic electrodes.

at high densities corresponding to quantum melting of the Wigner crystal [19] as well as

for detecting the formation of the Wigner crystal under geometric confinement [90]. In

2000, Glasson introduced the micro-structures into a Sommer-Tanner-like device architecture

to investigate the transport properties of one-dimensional electron chains [91]. In recent

years, this microchannel device architecture has been shown to be a unique way to facilitate

investigations of the properties of highly correlated low-dimensional electron behavior [13, 85,

92], the melting behavior of quasi-1D electron systems [25, 86], and Wigner crystallization

under various driving fields and spatial constrictions [28, 87, 88, 93].

2.4.1 Superfluid helium as a substrate in microchannel devices

A cross section of the typical microchannel device geometry is shown in Fig. 2.8. The

zero viscosity of superfluid helium allows the superfluid to creep up all the exterior walls,

42



covering all the structures throughout the device due to the van der Waals forces between

the surfaces and the superfluid helium. In the cross section, a small microchannel of width

w and depth d fills via capillary action. Below, we discuss the concepts of microchannel

devices to inform their general operation and highlight why they are an ideal platform for

studying low-dimensional electron behavior.

The thickness of the van der Waals helium film t that covers all the surfaces of the device

depends on the height H of the surface from the bulk liquid helium below. The chemical

potential of the film at z = H is [94]

µf = µ0 + ρgH − β/tξ, (2.71)

where β is the van der Waals coupling constant and the thickness of the film can be calculated

by using the equilibrium condition µf = µ0, where µ0 is the chemical potential of the bulk

helium. The term β/tξ describes the van der Waals potential of the substrate for either large

film thicknesses (ξ = 4) or thin film thicknesses (ξ = 3) [95]. From this, the thickness of the

film is given by [96],

t =
(

β

ρgH

)1/ξ
, (2.72)

where ρ is the superfluid helium density and g is the gravitational constant.

When electrons are introduced above the superfluid surface, the electrostatic pressure

of the electrons reduces the helium film thickness, creating a more unstable surface. This

pressure will be a result of: i) gravity pulling down on the fluid surface, ii) the van der Waals

interaction with substrate, iii) the surface tension of of the superfluid, iv) the electrostatic

pressure from any external electric fields, v) and the electrorestrictive pressure produced by
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the surface electron density. Thus, the total pressure on the superfluid surface is

P = ρgH − β

tξ
− α∇2t− ε0

2 (εHe − 1)(εHeE
2
⊥ + E2

||) + nse∇ϕe (2.73)

where α is the liquid helium surface tension, E⊥ and E|| are external electric fields perpen-

dicular and parallel to the helium surface, respectively, and ϕe is the electric potential from

the charged surface [97–99]. For an uncharged helium surface with no external fields, there

is no net pressure, P = 0, in Eq. 2.72. In contrast, in the case of a charged helium surface

and when the film is covering a metallic surface, the electric potential takes the form of a

parallel plate capacitor ϕe = nsez/2εHeε0 and the thickness in Eq. 2.72 becomes

t =
(

β

ρgH + nse
z ϕe

)1/ξ
. (2.74)

With small channels embedded into the surface at H above the bulk with metal electrodes on

the surfaces, the sharp corners of the channel lead to strong capillary forces in the superfluid

due to surface tension. This simplifies the equilibrium condition to

ρgH − α

Rc
+ n2

se
2

2εHeε0
= 0, (2.75)

where we have defined the radius of curvature of the helium film in the channel Rc ≡ 1/∇2t.

The capillary length of superfluid helium is lc =
√
α/ρg, where for a channel width w ≪ lc, a

meniscus feature will cover the feature as shown in Fig. 2.8. The radius Rc of this meniscus

feature formed at the surface of the helium in the channel can be calculated from Eq. 2.75,

Rc = α

ρgH + n2
se2

2εHeε0

. (2.76)
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For the case depicted in Fig. 2.8, the film covering the channel creates a liquid helium depth

in the center of the channel dl given by

dl = d−Rc

1 −

√√√√1 − w2

4R2
c

, (2.77)

where d is the total depth of the channel set by the etched substrate and the thickness of the

metal electrode. When the radius of curvature is much larger than the width of the channel,

i.e. when w/Rc ≪ 1, we get the following approximation for the height at the center of the

channel:

dl = d− w2

8Rc
. (2.78)

2.4.2 Critical electron density

Microchannel devices like the one in Fig. 2.8 are useful for increasing the electron surface

densities above those typically achievable in larger area devices. The critical density nc is the

electron density at which the surface electrons put too much local electrostatic pressure on the

helium surface and punch through the liquid due to an electrohydrodynamic instability [100].

To calculate the critical density at which the helium surface reaches this hydrodynamic

instability, we can turn to the dispersion relation for ripplons. In the presence of surface

charges, the frequency of the ripplons ωr decrease with increasing electron density ns. For

the case of bulk helium, with the ratio of the ripplon wave number k to the electron surface

density, (k/2π)2/ns ≪ 1, the ripplon frequency will be limited by the electron density such

that [98]
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ω2
r = gk + α

ρ
k3 − e2n2

s

ρεHeε0
k2. (2.79)

From this, we see that superfluid surface will become unstable at wave numbers given by

kc =
√
gρ/α, where ω2

r < 0, and we can calculate the electron critical density nc that

corresponds to the hydrodynamic instability:

nc = (4αgρ)1/4√
e2/εHeε0

. (2.80)

This gives the standard bulk helium critical density of ns ≃ 2 × 1013 m−2. On the other

hand, in the microchannel device structures, there exists a minimum wave vector kmin ≃ π/l0

for helium surface deformations to exist within a feature size l0 set by the fixed boundary

conditions at the edges of the channel. Following the treatment in Ref. [90], this gives the

critical density in a microchannel structure

nc =
√
α εHeε0 π
e2 l0

. (2.81)

The relevant microchannel feature sizes for the experiments described in this thesis (l0 ∼

10−6 m) correspond to critical densities of nc ∼ 5 × 1014 m−2, an order of magnitude larger

than in the bulk case. While this is a good estimation, the electronic pressure that creates

the radius of curvature Rc of the helium in the microchannel will slightly reduce this critical

density. To find the critical density for the charged surface with a helium surface radius of

curvature Rc in the channel of width w for w/Rc ≪ 1, we plug Eq. 2.76 into Eq. 2.78 and

we get
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Vch

Vac + Vres Is+ Vres

Vguard

Vgt

Figure 2.9: A simplified sketch of a microchannel device architecture with Sommer-Tanner
electrodes embedded. The Sommer-Tanner electrodes are the yellow and red colored elec-
trodes at the bottom, where the left side yellow electrode corresponds to (1) in Fig. 2.5, the
middle red electrode corresponds to (2), and the right side yellow electrode corresponds to
(3). Yellow electrodes are the reservoir electrodes and have a dc bias voltage Vres and red
electrode in the center is the channel electrodes with a dc bias voltage Vch. Helium fills the
channels created by the etched down area around the green (guard electrode, Vguard) and
blue (gate electrode, Vgt) electrodes, where the green and blue electrodes are dc biased to
provide strong electrostatic confinement for the electron system. The ac drive Vac is modu-
lated at frequency fac on the left reservoir electrode and the resulting electron current Is is
read out on the right reservoir electrode via lock-in amplifier.

dl = d− w2

8α

(
ρgH + n2

se
2

2εHeε0

)
(2.82)

for the center of the channel. At the critical density, dl → 0 and here ρgH ≪ (n2
se

2/2εHeε0),

which then gives

nc =
√

16αd
w2

εHeε0
e2 . (2.83)

For a microchannel of width w = 7 × 10−6 m and a channel depth d = 1.4 × 10−6 m (the

dimensions of the microchannel device used for the experiments outlined in Ch. 3) the critical

density is nc = 2.5 × 1014 m−2, or about half of that estimated by Eq. 2.81.
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2.4.3 Transport measurements in microchannel devices

The standard microchannel device architecture used in the experiments discussed in this

thesis is shown in Fig. 2.9. In this device, Sommer-Tanner electrodes (yellow and red) are

pattered such that transport measurements of electrons on helium in an electrostatically

confined long and narrow region in the center (called the central microchannel) can be per-

formed. The channeled structures throughout (the cross section of which resembles Fig. 2.8)

provide a more stable helium surface that can support high electron densities, in particular,

providing stability in the large reservoir regions on the left and right side. Additionally, the

electrostatic confinement of the electron system can be finely tuned with dc voltages on the

surrounding electrodes (green and blue), allowing precise spatial control over the 2DES and

investigations into 2D and quasi-1D electron system behavior in various transport regimes

(see Sec. 2.4.4). In the devices described in this thesis, after condensing helium in the sample

cell such that the superfluid fills the channels, electrons are deposited via thermal emission

of a tungsten filament [101].

A standard transport measurement in a device of this type is performed as follows: An ac

drive Vac (at frequency fac ∼ 20 kHz−4 MHz) is superimposed onto the dc bias voltage Vres

applied to the reservoir electrode via a bias tee. Simultaneously, on the other reservoir, the

same dc bias voltage Vres is applied along with the lock-in amplifier measurement referenced

to the ac drive frequency fac. The gate and guard electrodes have a fixed dc bias voltages

(Vgt and Vguard, respectively) to provide another level of electrostatic confinement over the

electron system. At sufficiently large dc bias voltage on the channel electrode, Vch ≥ V th
ch ,

an electron current will be induced through the device and detected via the lock-in amplifier

as Is. This is referred to as the channel threshold voltage V th
ch . This process is outlined in
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e = 0.48

Vch=0.5V Vch=1.2V Vch=2.0V

a

b

Figure 2.10: (a) Typical transport measurement sweeping Vch with Vres = 0.5 V,
Vgt = −0.15 V, Vac = 30 mV, and fac = 43.33 kHz at temperature T = 750 mK. Here the
threshold voltage V th

ch = 0.67 V, below which no transport can occur (light green region).
This plot shows the three transport regimes: (I, light green) no transport, (II, dodger blue)
low density high conductivity, (III, red) Wigner crystal. (b) Sketches show the correspond-
ing configuration of electrons in the reservoirs (yellow region) and channel (red region) in
each regime (I, II, and III). Plots show the potential ϕ(y) at the center of the channel across
the width of the channel in each regime from (a). The chemical potential ϕe = 0.48 V (teal
dashed line) shows the minimum ϕ(y) necessary for transport through the channel to occur.
Below the threshold at Vch = 0.5 V, no electrons can enter the channel, at the low density
corresponding to Vch = 1.2 V the electron system in the channel resembles an electron fluid,
and at high densities Vch = 2.0 V the electron system in the channel crystallizes.
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Fig. 2.10.

Similarly to the standard Sommer-Tanner architecture, this microchannel device provides

a way to perform transport experiments via the three embedded electrodes and to estimate

the electron density in the central channel by sweeping the voltage on the channel electrode

Vch and by finding the threshold value at which electrons can enter the channel V th
ch . A first

order approximation of the areal density of the electron system in the central channel is

ns = εHeε0
ed

(Vch − α0
chV

th
ch ). (2.84)

The density of electrons at a given channel voltage Vch depends on the average distance of the

electron system above the channel electrode d, the threshold voltage V th
ch , and the capacitive

coupling constant between the electron system and the channel electrode at the center of

the channel α0
ch. In general, the electron system is capacitively coupled to each ith electrode

by some amount parameterized by αi = Ci/CΣ, where the total capacitance between the

electrons and each corresponding electrode is CΣ = ∑
iCi = Cch + Cgt + Cres + Cgu (see

Fig. 2.11 for an illustration of this capacitive coupling). The second term in parentheses

α0
chV

th
ch ≡ ϕe is the chemical potential. These coupling constants αi can be found from finite

element modeling (FEM) simulations of the central region of the device. Furthermore, a

more accurate estimate of the electron density in the channel can be made through FEM

simulations of the 2D cross section in the center of the channel (see Fig. 2.11). For a complete

description of the FEM techniques used to find these parameters, see Appendix C.
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Figure 2.11: Cross section of the central microchannel region showing the electrostatic po-
tential confinement on the electron system (electrons represented by pink dots). The con-
finement across the y-direction of the channel is defined by the potential profile ϕ(y) (see
Eq. 2.86), which is a function of the capacitive coupling between the electron system and
the electrodes (Cch and Cgt) as well as the dc voltages on the channel and gate electrodes
(Vch and Vgt). Here we plot the potential as −ϕ(y) for visualization purposes. The potential
profile with Vch = 1 V is shown for two different gate electrode voltages, Vgt = 0 V (teal
dashed line) and Vgt = −1 V (green dotted line). The chemical potential ϕe = 0.3 V (yellow
dashed line) defines the effective width we of the electron system for a given potential profile.
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2.4.4 Confinement

The gate and guard electrodes defined atop the microchannel structures provide an added

level of precision control over the electrostatic confinement of the electron system in the

channel. In general, at a given position in the device, the electron system will experience an

electrostatic potential given by

ϕ(x, y) =
∑
i

αi(x, y) Vi, (2.85)

where αi(x, y) is the capacitive coupling of the electron at position (x, y) with the corre-

sponding ith electrode and Vi is the voltage on that ith electrode. For a long and narrow

channel, the capacitive coupling constant of the electrons to the guard and reservoir elec-

trodes will be negligible at the center of the channel (x = 0). Thus, we can estimate the

potential at the center (x = 0) of the microchannel across the width (y) as

ϕ(y) = αch(y)Vch + αgt(y)Vgt. (2.86)

As shown in Fig. 2.11, the voltage on the gate electrode Vgt will control the effective width

we of the electron system in the channel, where we increases with increasingly positive bias

Vgt. The electrostatic potential profile for Vgt = 0 V (teal dashed line) and Vgt = −1 V

(green dotted line) is plotted. The electron system forms an effective width of we ≃ 4 µm in

the Vgt = −1 V, Vch = 1 V potential for a chemical potential of ϕe = 0.3 V (yellow dashed

line). These additional electrodes provide another knob for spatially controlling the electron

system and precisely tuning the confinement such that 1D and quasi-1D electron chains can

be investigated [25, 66, 86, 93, 102].
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2.5 Quantum devices with electrons on helium

Efforts to utilize single electrons on helium for quantum hardware involves the integration of

quantum circuits with standard electron on helium devices. Early work integrating quantum

devices with electrons on helium involved single electron transistors (SETs) in order to detect

a single trapped electron as well as charge-coupled devices (CCDs) [103] for the possibility of

high mobility transport of single electron qubits. Additionally, architectures integrating both

ensembles [39] and single electrons on helium [104] with superconducting coplanar waveguide

(CPW) resonators have been realized in order to study electron ensemble dynamics as well

as to establish the readout and manipulation of qubits based on single electrons.

2.5.1 Qubits with trapped electrons on helium

A large motivation for why the system of trapped electrons on helium is interesting to under-

stand (beyond investigating fundamental physics) has to do with its potential as a platform

for quantum computation, however, this is not a thesis about how to quantum compute

or how to build a quantum processor with electrons on helium. Before the contemporary

quantum computing revolution9, quantum computing was envisioned as a way to better

understand quantum physics. Nearly 80 years after the conception of quantum mechanics,

Feynman gave the historic keynote [105] first proposing quantum computing, where the most

straightforward platform for a qubit was a single spinful particle such as the electron.

The formation of a low density electron crystal and the ultra high mobilities of trapped

electrons above the surface of liquid helium motivated the theoretical work of Platzman

and Dykman in 1999 [73] who proposed using the vertical states of single trapped electrons
9I’m referring to the current decade of writing this as the quantum computing revolution, which is not

so crazy considering the UN just declared 2025 the International Year of Quantum Science and Technology.
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as quantum bits (qubits) for analog quantum computation. In this work, they estimated

a ripplon scattering dominated energy relaxation time of ≈ 0.1 milliseconds and today ef-

forts to realize qubits from the vertical positions of electrons on helium are ongoing [38, 41,

50, 106–109]. Following this initial theoretical proposal, in 2003 Lyon [110] proposed an

architecture that utilizes the spin degree of freedom of the electron as a qubit, estimating

coherence times on the order of many seconds. The higher coherence time for the spin de-

gree of freedom makes it particularly attractive and results from the ultra clean, defect free

helium substrate and reduced spin-orbit interactions compared to what is typical in semi-

conductor spin systems [110]. The third and final proposed degree of freedom for an electron

on helium qubit is the lateral motional (orbital) state of the electron when the electron is

confined to an in-plane potential well. This platform [111] utilizes circuit quantum electro-

dynamics (cQED) [112] to control and readout the lateral motional states of the confined

electrons. Efforts to demonstrate a lateral motional state qubit are ongoing, with early work

integrating electrons on helium with standard cQED devices such as superconductor copla-

nar waveguide (CPW) resonators. The first demonstration integrating a CPW resonator

with a system of trapped electrons above a superfluid helium surface showed the collective

charge motion of the electron ensemble coupling to the superconducting coplanar waveguide

(CPW) resonator [39], which manifested as a shift in the frequency of the resonator. A later

device demonstrated single electron trapping in an electrostatic potential well and showed

coupling of single electron motional states to a CPW resonator [104]. Technology based on

this work [104] is being further developed to manipulate and readout the electron spin degree

of freedom [113, 114]. It is also important to note here that electrons on helium are not the

only trapped electron system being pursued for quantum information science. Architectures

based on Ref. [104] have demonstrated high coherence charge qubits with electrons on solid
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neon, with coherence times on the order of 0.1 ms [115, 116].

2.5.2 Single electron transistors

In Sec. 2.1.2.2 the metal-oxide-semiconductor field-effect transistor (MOSFET) was intro-

duced to illustrate the advantages of studying 2DESs on helium and the unconventional

analog of the FET using electrons on helium [52] was introduced. For qubits based on sin-

gle trapped electrons on helium, an early proposal suggested the use of a single electron

transistor (SET) for the electronic charge state readout [117], due to its high charge sen-

sitivity. Similarly to the FET, the operation of an SET relies on source, drain, and gate

electrodes. However, rather than an induced current from the conducting electrons across a

channel, the source and drain electrodes, separated by an SET island or quantum dot, have

tunnel junctions on either side, and the state of the device is determined by whether or not

electrons tunnel through the quantum dot. Operationally, this follows from the Coulomb

blockade [118]. The gate electrode controls the electric potential of the quantum dot through

a capacitive coupling and by positively tuning the gate voltage, a tunneling current can be

achieved across the source and drain10 [18]. When an SET is submerged beneath the sur-

face of superfluid helium and an electron is present above the SET island, a charge will be

induced on the SET island, providing a way to detect the presence of single electron charge

states.

Using an SET to detect electrons above the helium surface was first demonstrated by

Papageorgiou in 2003 [119] and in 2005, Papageorgiou [120] demonstrated the ability to trap
10The total capacitance on the island CΣ must be small enough such that the bias voltage across the

source and drain Vb < e/CΣ and the electrostatic energy required to put a charge carrier on the island is
much larger than kBT , i.e. e2/2CΣ ≫ kBT , so thermally excited charge carriers cannot pass through the
island. [18]
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and detect single electrons with an SET device architecture. In these devices, the SET is

placed within an electron trapping region (an electrostatic potential well), where electrons

are transferred from an adjacent reservoir region to the trap region through surrounding

patterned gate electrodes. As the electrons are introduced into the trapping region, each

individual electron induces a change in the charge ∆Q on the SET island such that ∆Q
e > 0.

SETs have also been used to study noise in quantum devices. As quantum devices,

such as qubits for quantum computing, continue to improve, the seemingly unavoidable low-

frequency noise, known as 1/f noise, continues to be a limiting factor in charge sensitive

devices. In these types of devices, 1/f noise results from two-level fluctuators (TLFs) [121,

122] – quantum two-level systems that arise from microscopic degrees of freedom in amor-

phous solids, e.g. in the oxide layer of a Josephson junction [123–125], shown to be a primary

source of decoherence in superconducting qubits [124, 126–129]. In particular, noise from

TLFs in and around an SET tunnel junction add a layer of difficulty in performing sensitive

quantum measurements. As efforts to integrate SETs with electrons on helium for single

trapped electron qubits progress, work has been done to investigate how immersing an SET

in superfluid helium effects the noise performance of the SET [130]. In this work [130], it is

found that the frequency of charge fluctuations from TLFs near the SET tunnel junctions are

reduced when submerged in superfluid helium, presenting a unique advantage for utilizing

SETs in quantum devices with electrons on helium.

2.5.3 Charge-coupled devices

Charge-coupled devices (CCDs) are commonly associated with the technology that enabled

digital imaging capabilities in early digital cameras, however the fundamental operation of

the device make it quite convenient for transporting small ensembles and single electrons on
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helium. A single CCD channel is comprised of a one dimensional array of electrodes along

the channel, where each electrode corresponds to a pixel across which charge packets are

transferred and at the last electrode, the charge packet is converted into a voltage signal. The

efficiency of a single charge transfer η is defined as the ratio of the charge arriving at electrode

2 to the charge originally stored in the neighboring electrode 1 [131, 132]. Incorporating

individual arrays of CCDs into microchannel architectures enables greater single electron

control as well as a pathway towards realizing mobile single electron on helium spin qubits.

The first measurement of charge transfer efficiency in electrons on helium using a CCD

array was demonstrated in 2006 by Sabouret and Lyon [133]. In this work, electron transfer

between gates was governed by diffusion, ultimately limiting the operating frequencies (at

13 Hz, η = 0.9974), however the charge transfer efficiency remained high at low electron

densities. Large improvements in transport efficiency have been made by integrating CCD

arrays into microchannel structures, where the narrower underlying gates facilitate the strong

fringing fields that help electron transfer and also provide more relatively uniform holding

fields [103]. In an electron on helium CCD-microchannel architecture, electron packets down

to single electrons were clocked over 109 pixels, corresponding to 9 km without any transfer

errors detected, with transport efficiencies reported to be four orders of magnitude better

than state of the art semiconductor CCDs [14]. Continued work in developing these CCD in-

tegrated microchannel devices have enabled a pathway towards high precision single electron

detection and spatial control for mobile spin qubits [113, 134–136].
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Chapter 3

Plasmon mode engineering with

microchannel devices

Circuit quantum electrodynamics (cQED) [112] has enabled the development of sophisti-

cated quantum control and measurement protocols for a wide variety of quantum systems

ranging from superconducting circuits [137] and semiconductor spins [138], to systems of

trapped electrons [104, 115, 116], as well as nano- and micromechanical oscillators [139–141].

These techniques can also be leveraged as powerful experimental tools for investigating mi-

crowave frequency collective phenomena in quantum systems composed of many interacting

particles or degrees of freedom [142]. For example, when coupled with superconducting cir-

cuits, these approaches have been used to study collective modes in magnonic [143–147] and

phononic [148–151] systems and to investigate the dynamics of spin ensembles [152, 153].

Electrons trapped above the surface of condensed noble gas substrates, such as superfluid

helium or solid neon, are emerging as promising systems for integration with cQED archi-

tectures and microwave frequency devices for quantum information processing [73, 110, 154,

155]. At the level of single electrons, cQED techniques have been used to investigate the in-

plane orbital states of electrons on helium [104, 156] and have recently been utilized to realize

high-coherence charge qubits on the surface of solidified neon [115, 116]. In contrast to sin-

gle electron dynamics, these systems can also host a wide variety of collective charge modes
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including plasmonic [7, 34] and magneto-plasmonic excitations [30, 35, 40, 157, 158], as well

as hybrid modes coupling the dynamics of multiple degrees of freedom [41–43]. Additionally,

ensembles of electrons on helium have been strongly coupled to three-dimensional microwave

cavities to study cyclotron resonance [37, 44] and integrated into hybrid circuits in which

an electron ensemble is placed above a planar microwave resonator [39]. Fully leveraging

cQED-type techniques to study the high-frequency dynamics of electrons on helium requires

the development of devices that have not only an optimized microwave environment [39],

but also the ability to engineer and manipulate the collective modes of the electron system

via precise spatial control. In this work, we address the latter of these aspects by realizing a

device that enables precision control over the spatial distribution of electrons in a microchan-

nel geometry, providing the ability to engineer, excite, and detect plasmonic excitations with

frequencies in a range compatible with cQED-based systems. Local microwave excitation

resonantly couples to the plasmon modes, which we detect via changes in the electron con-

ductance determined by simultaneous transport measurements. By precisely varying the

electron density in the microchannel, we can tune the frequency of the modes by several

GHz. Analyzing the power dependent plasmon response allows us to investigate possible

mechanisms leading to plasmon dephasing and energy loss. Finally, we highlight how this

type of device and our results demonstrate the overall system control necessary to integrate

with future low-loss microwave cQED architectures.
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Figure 3.1: Oxygen-free high thermal conductivity (OFHC) copper sample cell with stainless
steel capillary fill line and assembled base cap with custom printed circuit board (PCB). The
PCB is mounted and electronically connected via SMP connectors. The microchannel device
is adhered to the PCB with GE varnish and wirebonded to the PCB coplanar waveguide
lines. The two wires of the tungsten filament are soldered to a 2-pin dual inline package
(DIP) integrated circuit (IC) socket and the DIP IC socket is soldered to the PCB. The
tungsten filament wires are manipulated such that the filament hovers ≈ 2 − 5 mm above
the center of the microchannel device.

3.1 Experimental setup

3.1.1 Microchannel device for plasmon confinement

Microchannel device architectures, like the one we employ, are widely used to study the effect

of geometric confinement on the thermodynamic ground state and transport properties of

electrons on helium. Typically in these devices, micron-scale deep channels are filled with su-

perfluid helium via capillary forces and electrons are deposited above the superfluid surface.

Metallic electrodes around the channels are used to precisely shape the electrostatic envi-

ronment to control the spatial distribution of surface state electrons and perform transport

experiments [13, 90]. These types of channeled devices have been used to reveal dynami-

cal ordering of two-dimensional [11, 64] and quasi-one-dimensional electron chains [65, 66],

and perform ultra-efficient clocking of electrons in microchannel-based CCD arrays [14, 103].

Here we leverage a microchannel architecture to engineer the spatial structure of the two-
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dimensional electron system in order to host and investigate charge density oscillations, i.e.

plasmons.

The device is fabricated on a 7 mm × 2 mm high resistivity silicon chip, onto which

hard-baked resist is deposited and selectively etched to create h ≃ 1.4 µm deep channels

(see Appendix B). The device is wire-bonded onto a custom-made printed circuit board

(PCB) that is placed into a superfluid-leak-tight copper sample box that mounts to the

mixing chamber plate of a cryogen-free dilution refrigerator (see Fig. 3.1). A stainless steel

capillary fill line is hard soldered into the sample cell, which extends to a room temperature

volume containing helium gas for filling the microchannels with liquid. The sample cell

contains a tungsten filament for thermionic electron emission, which is achieved by applying

a −2 V amplitude, 300 ms duration, square pulse to the filament. As shown in Fig. 3.2,

four electrodes are lithographically patterned to define two reservoir areas connected via a

central microchannel region having a length of L = 90 µm and a width of w = 7 µm.

The high degree of spatial control and confinement over the electrons in the reservoirs and

microchannel regions are enabled by voltages (Vi) applied to the four electrodes: Vgt (gate),

Vch (channel), Vres (reservoirs), and the guard electrode. These voltages allow us to control

the two-dimensional electrostatic environment experienced by the electrons in the plane

of the helium surface ϕ(x, y) = ∑
i Viαi(x, y) (see Fig. 3.3a), where the constant αi(x, y)

describes the capacitive coupling between the electrons and the corresponding ith electrode.

To design a given confinement profile, we numerically solve the Laplace equation using finite

element modeling (FEM) techniques [86]. This allows us to extract αi and construct the

potential by applying appropriate values of Vi. This numerical procedure also allows us to

calculate the areal electron density ns(x, y) for a given potential.

By controlling the electrostatic environment in this fashion, we can effectively create a
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Figure 3.2: False color scanning electron micrograph of the microchannel device. Grounded
guard electrodes (green) patterned above a resist layer surround reservoir electrodes (yellow)
located beneath. The central microchannel region between the two reservoirs consists of a
channel electrode (red) and top side gate electrode (blue). A dc voltage source biases the
two reservoir electrodes with low pass filters corresponding to a ≤ 2 kHz passband and a
≤ 10 kHz passband. An ac voltage Vac at frequency fac drives the electrons (white dots)
through the channel and the resulting transport signal Vs is detected via a lock-in amplifier.
A microwave signal with a frequency ω/2π is applied to the gate electrode to generate
longitudinal plasmons in the central channel (the first mode of which is shown schematically
by the δns plot).
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resonant cavity for confined plasmonic modes, i.e. oscillations of the charge density δns

along the length of the central channel. At the boundaries of the microchannel, electrons are

free to enter and exit into the reservoir regions, enforcing charge density nodes at the ends

of the channel, as depicted in Fig. 3.2. Because the number of electron rows is ≳ 10 in the

density regime in which we investigate plasmons, the electrons in the central channel can

be modeled as a two-dimensional sheet of charge defined by the electrostatic confinement

produced by the electrode voltages. The long and narrow geometry (L ≫ w) of the central

channel ensures a large separation in frequency between plasmons along versus perpendicular

to the channel. This allows us to consider only longitudinal plasmon standing-waves along

the channel length, which have the following dispersion relation [34, 49, 54],

ω2
p = nse

2

2ε0me

√
q2
xF (qx) , (3.1)

where ωp is the density-dependent frequency of a plasmon having wavevector qx = nπ/L

and mode number n, me is the electron mass, e is the electron charge, and ε0 is the vacuum

permittivity. The wavevector-dependent factor F (qx) takes into account the reduction in

the electron-electron interaction due to the presence of the nearby metallic electrodes. This

screening factor will correspondingly reduce the plasmon frequency [34], and for the geometry

of our device we utilize the following phenomenological form for F (qx),

F (qx) = 1
2(tanh qxl + tanh qxh), (3.2)

where l = w − we parameterizes the effective distance of the electron sheet from the sur-

rounding side gate electrodes and h = 1.4 µm is the height of the electrons above the
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bottom channel electrode. The effective width we of the electron system is defined where

the parabolic confinement potential of the channel is equal to the chemical potential ϕe, i.e.

ϕ(y = we/2) = ϕe, as shown in the bottom panel of Fig. 3.3a, which we extract from FEM.

For our specific device geometry, which includes laterally defined side gate electrodes, an

analytical solution for the screening factor is lacking. However, we find that the phenomeno-

logical form presented in Equation (??) captures to good approximation the screening contri-

butions in the long wavelength limit (qxh, qxl ≪ 1), as well as in the limiting case, in which

the screening electrodes are moved infinitely far from the electrons in the channel and the

unscreened plasmon dispersion is recovered, i.e. F (qx) = 1. Using Equation (3.1) and FEM

calculations, we find a fundamental (n = 1) plasmon mode frequency of ωp/2π ≃ 1.0 GHz at

ns ≃ 2.3×1012 m−2. This lowest frequency mode corresponds to a half-wavelength standing

wave of the time-varying change in density δns along the channel, as shown in the top panel

of Fig. 3.2. In the following section, we discuss how these modes are generated using an

additional microwave drive and detected using transport techniques.

3.1.2 Transport measurements & microwave excitation

To characterize the electron system in the central microchannel, and its collective dynamics,

we utilize a conventional ac transport measurement scheme [65]. In these measurements,

an ac voltage Vac is superimposed on the left reservoir electrode driving electrons from one

reservoir to the other via the central channel at a frequency fac. The resulting electron

transport through the channel is detected from the voltage Vs induced on the right reservoir

electrode, which we measure using standard phase-sensitive lock-in techniques. As described

previously, a dc voltage Vch applied to the channel electrode controls the population of

electrons in the central microchannel. In Fig. 3.3b we show a standard transport map as
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Figure 3.3: (a) Top panel: Schematic cross section view across x = 0 of the channel with
a fixed dc bias voltage (i.e. no microwave drive) on the side gate electrode Vgt. Bottom
panel: Electrostatic potential profile, ϕ(x = 0, y), transverse to the channel (solid red line),
with chemical potential ϕe (dashed red line), and the distribution of electron density ns(y)
along the y-direction (blue line). (b) Transport measurements performed at various values
of Vgt, showing the three characteristic transport regimes. Here, Vres = 0.9 V, Vac = 20 mV,
fac = 1.408 MHz. See main text for complete description.

we tune the electron density and confinement potential in the central channel. This type of

measurement reveals three transport regimes depending on the density of electrons in the

central microchannel. In regime I, ϕ(y = 0) < ϕe, and electrons cannot enter the channel

from the reservoirs. When ϕ(y = 0) = ϕe, the channel threshold voltage V th
ch condition is

met and electrons can enter the microchannel for Vch ≥ V th
ch . In this regime (regime II),

the electrons form a highly conducting state in which the electrons interact weakly with the

helium surface, resulting in a large transport signal [11]. At sufficiently high density, the

electrons in the microchannel form a low-conductivity Wigner solid (regime III) [81]. These

measurements also allow us to calculate the electron density in the central microchannel

ns from the potential in the center of the channel ϕ0 ≡ ϕ(x = 0, y = 0) and the chemical

potential ϕe, as

ns = εHeε0
eh

(ϕ0 − ϕe), (3.3)
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where εHe = 1.057 is the dielectric constant of liquid helium. Here, the chemical potential is

calculated using ϕe = V th
ch α

0
ch [85] and the capacitive coupling constant in the center of the

microchannel, α0
ch ≡ αch(x = 0, y = 0) ≃ 0.7, is obtained through FEM calculations of the

device [66].

To generate plasma oscillations in the electron sheet, we apply a high-frequency signal

onto the gate electrodes located on either side of the microchannel as shown in Fig. 3.2.

The microwave power modulates the otherwise static confinement potential throughout the

microchannel, which leads to a periodic modulation of the effective width we of the electron

system (see top panel Fig. 3.2b) and creates charge density oscillations of the electrons in the

central microchannel due to the strong Coulomb interaction. The frequency and amplitude

of these oscillations are controlled by the gate modulation frequency ω/2π and microwave

signal power P , which is measured from the output of the high-frequency source. This

microwave signal is attenuated by an additional 28 dB before entering the cryostat.

3.2 Detection and analysis of plasmon modes

3.2.1 Plasmon detection

In Fig. 3.4, we show how the GHz-frequency plasmonic modes of the electrons in the central

microchannel are imparted on the transport signal by monitoring Vs as a function of Vch as

we increase the power P of a fixed ω/2π = 5.5 GHz signal applied to the gate electrodes.

In these measurements, we observe the three characteristic transport regimes described in

the previous section, corresponding to (I) no electrons, (II) a low-density, highly conducting

electron state, and (III) a high-density, low-conductivity Wigner solid within the central

channel. At increasing microwave power, the electron density ns that corresponds to the
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Figure 3.4: Transport detected plasmon resonances. Microchannel transport measurements
in the presence of a ω/2π = 5.5 GHz microwave excitation signal on the gate electrode for
increasing values of microwave power P . Traces are offset vertically for clarity and color
coded with the corresponding P . Vertical dashed lines indicate the transition into a low-
conductivity Wigner crystal electron state, which increases with increasing P . At P ≳
−15 dBm, resonance-like features appear in regime II, indicating plasmon modes generated
along the length of the channel as described in the main text. Measurements were performed
at T = 18 mK, with Vgt= 0 V, Vac = 6 mV, fac = 3 MHz, and Vres = 0.4 V.

transition into the low-conductivity Wigner solid regime increases [159], as shown by the

vertical dashed lines for each trace, and we find that this type of effect occurs independent

of the microwave drive frequency.

More interestingly, with increasing microwave power, we observe the emergence of resonance-

like features in the transport signal when the electrons in the microchannel are in the highly

conducting state (regime II). Three resonances are clearly visible in the green trace in Fig. 3.4

at Vch = 0.58, 0.68, 0.96 V corresponding to densities of ns = 5.7, 8.6, 16.9 × 1012 m−2 in

the central channel. The resonances appear as local minima in the transport signal indicative

of a reduction in the conductivity of the electron system in the central channel.

To understand these experimental features, we must consider the non-linear transport

phenomena arising from the coupling of the electrons to the helium surface when the system

is subjected to the effects of the ac driving and microwave excitation fields, which drive the
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electrons out of equilibrium [50, 67, 68]. We begin by noting that, at T ≃ 20 mK, in the

absence of microwave excitation and at low ac drive, the electron system would remain in

the low-conductivity regime (III) for all values of the electron density shown in Fig. 3.4.

In other words, the equilibrium state of the electrons in this case would correspond to the

low-conductivity Wigner solid1. In this regime, the electrons coherently emit ripplons whose

wavevectors match the reciprocal lattice vectors of the electron crystal. This phenomenon

is known as the resonant Bragg-Cherenkov scattering effect [81]. This effect results in an

increased frictional force on the electrons and a saturation of their velocity at the phase

velocity of the emitted ripplons vph = ωr(G1)/G1, where ωr(k) =
√
σt/ρ · k3 is the ripplon

dispersion relation, σt = 358 µN/m is the liquid helium surface tension, ρ = 145 kg/m3 is

the liquid helium density, and G1 = (8π2ns/
√

3)1/2 is the first reciprocal lattice vector of

the Wigner solid. When subjected to high driving fields, the electron system can heat [48]

and transition to a non-equilibrium state which has a high conductivity (regime II). This

state has been interpreted as the formation of either a disordered electron liquid state [160]

(melting model) or as a depinning transition of the Wigner solid [11, 27, 28, 159] (sliding

model). In the sliding model, the transition to the Wigner solid state is associated with the

formation of static surface deformations appearing under each electron, referred to as a dim-

ple lattice, which moves together with the electron lattice. When subjected to a sufficiently

strong drive, the electron solid can decouple from the underlying dimple lattice and move at

higher velocities. In contrast, the melting model does not involve the concept of a dimple

lattice; instead, the transition to a high-conductivity regime is interpreted as a transition

to a disordered state. Despite the lack of an unambiguous microscopic description of these
1In this regime the electron system is in equilibrium with the helium bath, thus for an electron tem-

perature Te = 20 mK the critical density to form a Wigner solid (ncr
s = 8 × 109 m−2) is reached for

(Vch − V th
ch ) > 0.2 mV.
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nonlinear effects, the transition into the high-conductivity regime (II) strongly depends on

the positional order of the electrons in both models. Reducing this order weakens the Bragg-

Cherenkov scattering effects and lowers the critical ac driving field required to transition

into the high-conductivity state. For the experimental data presented in Fig. 3.4, transport

measurements were performed at ac driving fields sufficiently high enough to promote the

electrons into the non-equilibrium high-conductivity state for densities ns < 18.8×1012 m−2.

3.2.2 Non-equilibrium transport in the presence of microwave ex-

citation

To characterize the non-equilibrium transport response of the electron system in the pres-

ence of the microwave excitation field, we perform a series of ac drive dependent transport

measurements with and without simultaneous microwave power applied to the side gate elec-

trodes. Fig. 3.5a shows the density dependent transport through the central microchannel

with increasing ac drive amplitude and with no microwave excitation on the side gate elec-

trode. At low ac drive (Vac < 12 mV), the electron system remains in a low-conductivity

Wigner solid state for all values of the electron density shown in Fig. 3.5a. In this regime,

the electron velocity saturates at the ripplon velocity. At Vac ≃ 12 mV, the electron system

conductivity abruptly increases, indicative of the transition into a high-conductivity state

of the electron system, which can be interpreted as either an unpinned Wigner solid or a

disordered electron liquid [11, 27, 28, 48, 159, 161, 162].

In Fig. 3.5b we present a similar ac drive dependent transport measurement but with

a ω/2π = 5.5 GHz microwave tone applied to the side gate electrode. The presence of the

n = 3 plasmon mode appears as a reduction in the measured transport signal (solid purple
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Figure 3.5: Drive-dependent transport measurements at T = 16 mK with and without mi-
crowave side gate excitation. (a) Density-dependent microchannel transport with increasing
ac drive voltage, Vac, with no microwave power applied to the side gate electrode. This
measurement was performed at fac = 3 MHz, Vres = 0.7 V, and Vgt = 0 V. Green dashed
(Vch = 0.6 V) and solid (Vch = 0.77 V) lines correspond to the linecuts plotted in (c). (b)
Transport measurements similar to those presented in panel a) except with the additional
application of a ω/2π = 5.5 GHz microwave tone applied to the side gate electrode with
P = −10 dBm. Purple dashed (Vch = 0.6 V) and solid (Vch = 0.77 V) lines correspond
to the linecuts plotted in (c). (c) For additional clarity we show vertical line cuts of the
transport signal from panel (a) (green dashed and solid) and panel (b) (purple dashed and
solid).
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line). Additionally, and in contrast to the case with no microwave excitation (Fig. 3.5a), the

non-linear Bragg-Cherenkov regime is not observed down to the lowest levels of ac drive for

which we are able to perform transport measurements. Rather, we observe a steady increase

in the transport signal with increasing ac drive amplitude both on and off resonance (see

purple linecuts in Fig. 3.5c), which is consistent with the heating of an underlying electron

liquid state.

The application of the additional microwave excitation field onto the side gate electrodes

further perturbs the electron system. In the Wigner solid state, these perturbations in-

duce high-frequency electron motion, which in a quasi-static approximation (ω ≫ ωr) can

be viewed as a weakening of the positional order of the electron solid. As a result, the

transition into the low-conductivity Bragg-Cherenkov scattering regime shifts to higher in

densities with increasing amplitude of the perturbing field. This effect is analogous to rais-

ing the temperature of the electron system Te, which characterizes the melting of the solid.

Due to the large electron-electron collision rate (1011 s−1) and small energy relaxation rate

(105 − 106 s−1), the electron system temperature can be raised above that of the helium

bath [163]. In this way, the perturbing field effectively melts the Wigner solid leading to a

transition into the high-conductivity regime. The ultimate electron temperature produced by

the microwave field is determined by a balancing of the incident microwave and ac drive field

powers with the energy transferred into the helium bath via the emission of short-wavelength

ripplons and phonons. Due to the complex geometry of the device, which includes multi-

ple regions with varying electron density, and the lack of information about how much of

the incident microwave power is absorbed by the electron system, estimating Te is unfeasi-

ble. Nonetheless, a qualitative approach can be employed to interpret the decrease in the

measured transport signal at the position of the resonances shown in Fig. 3.4.
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Independent of the underlying microscopic state of the electron system in regime II, the

microwave energy absorbed by the electrons increases when plasmons are resonantly excited,

which results in additional heating of the electron system on resonance. Since the resonances

appear in the high-conductivity regime (II), an additional increase in Te can be understood

as producing an increase in the electrons’ momentum transfer rate to ripplons, leading to a

reduction in the mobility of the electron liquid state [48]. This is consistent with the observed

decrease in the measured signal on resonance. We note that, in principle, the reduction

in the measured transport signal on resonance could also be interpreted as a transition

from a unpinned Wigner solid into the Bragg-Cherenkov non-linear regime. However, our

experiments indicate that in the presence of microwave excitation, the high-conductivity

regime consistently remains in a linear transport regime, indicative of an electron liquid

state.

The transport measurements presented in Fig. 3.4, conducted with an additional per-

turbing microwave field, reveal the high sensitivity of the measured signal to the presence

of plasmonic excitations in the electron system confined within the microchannel. These

experiments underscore the complex nature of the non-equilibrium and nonlinear response

of this strongly correlated low-dimensional electron system coupled to the helium surface

excitations and enrich the extensive body of research on these topics [27, 28, 48, 67, 68]. De-

spite the absence of an unequivocal microscopic picture of the electron conductivity in these

regimes, we can leverage the sensitivity of these measurements to investigate the plasmonic

excitations we generate in the central microchannel. Finally, we note a similar technique has

recently been employed to detect the excitation of Rydberg-like resonances of electrons on

helium due to resonant microwave heating [50].
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Figure 3.6: Plot of how the first three plasmon modes will manifest (a) in terms of the change
in areal electron density δns along the channel and (b) in terms of the change in electron
displacement ∆x along the channel. The odd modes (n = 1 and n = 3) are represented by
solid lines and the even mode (n = 2) by a dashed line. (c) Plot of the microwave potential
in the region of the central microchannel with corresponding electric field lines (black lines
with arrows) calculated from FEM simulations. The plot shows how the field lines terminate
on the various areas of the device, promoting a stronger coupling to odd versus even plasmon
modes.

3.2.3 Plasmon mode generation and coupling

In the experiments, plasmons are generated via a microwave excitation signal applied to

the gate electrode (colored blue in Fig. 3.6c). The coupling between the microwaves and

plasmons in the central channel is determined by the dot product of the electric field dis-

tribution generated by top gate electrodes and electron displacement field
∫
(E⃗ · ∆⃗x)dxdy.

In Fig. 3.6 we schematically plot the spatial distribution of the charge density displacement

δns (Fig. 3.6a) and corresponding electron position displacement ∆x (Fig. 3.6b) for the first

three longitudinal plasmon modes along the channel, as well as the electric field distribution

calculated using FEM (Fig. 3.6c). For longitudinal plasmon standing-waves along the chan-
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nel length, the primary contribution to the coupling comes from the regions near the channel

ends, where the x-component of the microwave electric field is nonzero. The symmetry of

the electric field also determines which modes couple more efficiently: modes with position

displacement values of opposite sign at the channel ends — corresponding to odd-numbered

modes — are more readily excited by microwave fields applied to the gate electrode. We

also note that, in principle, the electric field configuration within the channel allows for the

excitation of transverse modes. These plasmons correspond to the optical branch of the

plasmon excitation spectrum, with frequency increasing as the wavevector increases and a

finite frequency gap in the limit of small wavevector, which is set by transverse confining

potential frequency ωt (for number of rows Ny ≥ 2) [164]. For the voltage ranges used in

our experiments, we estimate ωt/2π > 10 GHz, making the excitation of transverse modes

unlikely.

3.2.4 Analysis of plasmon mode structure

In Fig. 3.7a we show the full channel density and microwave frequency dependence of the

transport signal through the device. In regime II, we observe a family of density-dependent

resonances in the channel, which are consistent with the long-wavelength two-dimensional

longitudinal plasmons described by Eq. (3.1). To analyze these plasmon modes, we extract

the local transport minima along each of the first seven resonances (blue dots in Fig. 3.7b)

and compare them to the calculated values of ωp using Eq. 3.1 and our device geometry

parameters (red dashed lines). In this calculation, the effective width we of the electron

system and the corresponding central microchannel electron density ns are calculated using

FEM for each value of Vch. As shown in Fig. 3.7b, we find good agreement between our data

and the two-dimensional screened plasmon model for the fundamental mode and its first six
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Figure 3.7: Characterization and tuning of plasmon modes. (a) Microwave frequency de-
pendent transport map. Transport measurements are performed by sweeping Vch to control
the electron density in the central channel while simultaneously applying a microwave signal
ω/2π to the gate electrodes. For Vch ≲ 0.29 V, the channel is empty (I). Above V th

ch elec-
trons can enter the microchannel and form a low-density high-conductivity state (II) and
high-density low conductivity Wigner solid (III). The transport signal Vs reveals a family
of density and frequency dependent plasmon resonances that manifest as local minima in
regime II. Measurements were performed at P = −15 dBm, with Vgt= 0 V, Vac= 8 mV,
fac = 3 MHz, Vres = 0.29 V, and T = 26 mK. (b) Blue dots are the extracted local minima
from the first seven resonances in (a). Red dashed lines correspond to the first seven longi-
tudinal plasmon modes along the channel, calculated using the dispersion relation given in
Equation (??) with our device design parameters. Grey shaded region indicates the empty
channel (I) and grey dashed line indicates V th

ch = 0.29 V.

harmonics. The results reveal plasmon modes in a frequency range compatible with cQED

systems, and that their frequency can be electrostatically tuned over an extremely broad

range (≃ 2 − 3 GHz) by controlling the areal density of electrons. We note that the most

pronounced modes in Fig. 3.7a correspond to odd harmonics. This effect can be understood

as arising from a preferential coupling between the microwave excitation field and plasmon

modes that have charge density nodes at the ends of the microchannel, as discussed in the

previous section.
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The data show the resonances appearing only in regime II, and not in the low-conductivity

Wigner solid (regime III). This is consistent with a significant reduction of the charge density

oscillation frequency arising from the phononic modes of the crystal when they are coupled

to the elementary excitations of the helium surface (ripplons). In the long wavelength limit,

this coupling to ripplons reduces the bare longitudinal plasmon frequency by a factor of√
m/m∗ [57], where m∗ ≳ 100me parameterizes the effective mass of electrons on helium

in the Wigner solid state [22]. Finally, we note the data in Fig. 3.7b show the transition

to the low-conductivity Wigner solid state is significantly non-uniform as a function of mi-

crowave drive frequency. This non-resonant effect could be associated with the absorption

of microwave energy by other parts of the device, e.g. the resist layer between the top and

bottom electrodes or variable microwave transmission due to impedance mismatches in the

drive line.

3.2.5 Power dependence of plasmon modes

The measurements presented in Fig. 3.8a show how increasing microwave power modifies the

transport characteristics and plasmon response at a fixed microwave excitation frequency

of 5.5 GHz. Here, the transition between the high-conductivity (regime II) and Wigner

solid (regime III) states shifts to higher electron density as the microwave power increases,

indicating a weakening of the positional order of the Wigner solid, as discussed earlier.

Additionally, as the channel density is varied, the 5.5 GHz microwave drive generates the

n = 7, 5, and 3 plasmon modes (from left to right, respectively), which manifest and broaden

with increasing power. As it is the most prominent, we will focus on the n = 3 mode centered

at Vch ≃ 0.96 V for the remainder of the analysis in this section.
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Figure 3.8: (a) Microwave power dependent transport measurements at fixed excitation
frequency ω/2π = 5.5 GHz. With increasing power the resonant plasmon modes broaden
significantly. Measurements were performed at Vac = 6 mV, fac = 3 MHz, Vgt = 0 V,
Vres = 0.4 V, and T = 18 mK. (b) Linecuts of the n = 3 plasmon mode, corresponding to
the horizontal dashed lines in (a). Depending on the applied microwave power, the plasmon
resonances are fit to either a Lorentzian or Gaussian, superimposed on a smoothly varying
background function (see Supplementary Information, section IV).

3.2.5.1 Evolution of the plasmon lineshape

In Fig. 3.8b, we show linecuts of the data at low and high microwave power. At low power

(P = −14 dBm), we find the data is well described by a Lorentzian of width 2γ while at high

power (P = −4 dBm) the resonance is captured by a Gaussian having a linewidth of 2σ. We

also take into account the background transport signal with the addition of a logistic func-

tion, which we find phenomenologically captures the smoothly varying density-dependent

background. The composite fitting function containing the Lorentzian distribution has the

following form,

L(ns) = γ

π[(ns − ns0)2 + γ2] + A
[
1 − 1

1 − e(ns−ns1)/α

]
, (3.4)

where 2γ is the full-width at half-maximum of the Lorentzian, ns0 is the density at which
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Figure 3.9: Standard deviation of the residual error from fitting each transport linecut from
P = −14.5 dBm to P = −3 dBm of Fig. 3.8 to G(ns) (green dots) and to L(ns) (pink dots).

the resonance feature is centered and {A, ns1, α} are phenomenological fitting parameters

describing the logistic function. The electron densities are mapped from the corresponding

values of Vch in the transport data, calculated using Eq. 3.3. The composite function con-

taining the Gaussian distribution, which we find fits the high power data better, has the

form

G(ns) = e−(ns−ns0)2/2σ2

σ
√

2π
+ A

[
1 − 1

1 − e(ns−ns1)/α

]
. (3.5)

where 2σ is the linewidth of Gaussian distribution and the second term describes the back-

ground signal in a similar way as in Eq. 3.4. In Fig. 3.9, we show how the standard deviation

of the residual error evolves when fitting all the microwave power-dependent transport data

(Fig. 3.8) to L(ns) (pink) and to G(ns) (green). We find that plasmon resonance features

measured at microwave powers P < −10 dBm are better represented with the Lorentzian-like

function, while at higher powers, the Gaussian-like lineshape provides a better description

of the data.
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3.2.5.2 Sources of plasmon broadening

In general, the spectral linewidth and its power dependence contain information about intrin-

sic and inhomogeneous sources of plasmon broadening. In what follows, we discuss possible

sources of broadening including static and dynamic density inhomogeneity of the charge

carriers in and around the channel as well as plasmon energy loss.

To begin, the application of the microwave field can lead to a non-equilibrium redistribu-

tion of charge carriers inside the channel and could be responsible for the plasmon broadening

we observe with increasing microwave power. In fact, previous experiments with electrons

on helium have demonstrated a transient redistribution of electrons arising from resonant

photovoltaic effects [165]. We also note that the long and narrow aspect ratio of the central

channel creates an electron density profile that varies transverse to the length of the chan-

nel as shown in Fig. 3.3a, where we plot the density along the y-direction determined from

FEM. If we ascribe the broadening of the low power plasmon spectrum exclusively to static

inhomogeneity in the electron density, the observed linewidth of the resonance feature cor-

responds to a density variation of 1.8 × 1012 m−2. This is significantly smaller than the full

density variation transverse to the channel, indicating that a static density inhomogeneity is

likely not the dominant mechanism contributing to the plasmon broadening at low powers.

However, it is possible that non-uniform heating of the electron system by the microwave

excitation could enhance static density inhomogeneities in the channel and contribute to the

plasmon broadening we observe with increasing power.

Additionally, collective excitations such as plasmons are naturally sensitive to the bound-

ary conditions imposed by their environment. The boundary conditions for longitudinal

plasmons excited along the channel are determined by the difference in density and con-
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Figure 3.10: (a) Plot of the density along the length of the channel for Vch = 0.96 V with
vertical dashed lines indicating the change in the channel length. The pink dashed vertical
line corresponds to the actual length of the channel, L = 90 µm. (b) Plot showing how
the plasmon frequency for a given mode (n = 1, 3, or 5) will vary for different variations in
channel length δL using Eq. 3.6.

ductivity between the electrons in the central channel and those in the reservoir regions of

the device. At the ends of the central channel, the electron density varies smoothly over a

distance of approximately δL = 10 µm, leading to an uncertainty in the plasmon wavelength

(see Fig. 3.10a). Using the plasmon dispersion relation in Eq. 3.1, which depends on the

length of the channel, ωp(L), we can understand how perturbations in the channel length

will effect the plasmon frequency for a given mode by Taylor expanding ωp(L) up to the first

term in δL. This Taylor expansion is given by

ωp(L+ δL) = ωp(L)− nse
2

4meε0 ωp(L)

qx
L

√
F (qx)

+ q2
x

4L
√
F (qx)

(
l sech2(lqx) + h sech2(hqx)

)δL.
(3.6)

The difference in plasmon frequency for a given mode from Eq. 3.6 is plotted in Fig. 3.10b.

For a δL = 10 µm, the corresponding uncertainty in the plasmon frequency would be approx-

imately 400 MHz, which is the same order of magnitude as the plasmon linewidth we observe
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at low microwave power. In particular, if we use the plasmon dispersion relation to convert

the width of the plasmon mode in Vch to a frequency, at low power (P = −14 dBm) the n = 3

mode linewidth corresponds to 2γ = 280 MHz, while for the high power (P = −4 dBm)

n = 3 mode, the linewidth corresponds to 2σ = 570 MHz. Furthermore, as the microwave

drive power is increased, additional broadening could result from a dynamical redistribution

of charge carriers in the vicinity of this boundary. Another possible broadening mechanism is

the finite transparency at the boundary on either end of the microchannel. In this scenario,

plasmon damping results from a leakage of the charge density wave from the central channel

to the electron system in the reservoirs and subsequent thermalization [166]. In addition, it

has been proposed that plasmon damping can arise from the difference in the conductivity

between the channel and reservoir electron systems [167].

Lastly, it is also important to consider the intrinsic energy losses of the plasmon modes.

In this system, energy loss can arise from the screening currents in the lossy resistive metallic

gate electrodes, as well as from interactions with the helium surface vibrational modes (rip-

plons) and phonons in the liquid, which are the dominant energy and momentum relaxation

mechanisms at the relevant experimental temperatures (T ≲ 0.8 K). In the absence of

inhomogeneous effects these losses should dominate the plasmon linewidth. If we assume

that the low power (P = −14 dBm) broadening arises predominately from intrinsic losses,

we estimate a lower bound for the plasmon lifetime τp ∼ 1 ns.

3.2.6 Reservoir dependence of the resonance features

To instill confidence that the plasmon resonances we observe in the transport are occurring

only in the central microchannel region, we can perform reservoir dependent transport at

fixed microwave frequency. This measurement is shown in Fig. 3.11 at ω/2π = 4.22 GHz.

81



0.1 0.6 1.1 1.6
Vch (V)

0.2

0.3

0.4

0.5

0.6

0.7

V r
es

 (V
)

20

60

100

 V
s

(
V)

Figure 3.11: Reservoir dependent microwave frequency transport data. Transport measure-
ments are performed at fixed microwave frequency ω/2π = 4.22 GHz, while the reservoir
voltage Vres is varied. Here we see as the reservoir voltage decreases, the channel thresh-
old V th

ch decreases, as expected. We also see the plasmon resonance features follow the
threshold, confirming the plasmon modes are occurring within the central microchannel.
At Vres = 0.24 V, we lose electrons. This measurement was taken at T = 17 mK, with
fac = 3 MHz, Vac = 5 mV, and P = −8 dBm.

As the reservoir voltage is decreased, we see the threshold decrease as expected, and we also

see the plasmon resonance features follow that threshold line. This indicates that we are

exciting plasmons only in the central microchannel.

Throughout this section thus far, we have only presented data showing the plasmon

resonance features manifesting in the transport data as an overall decrease in the electron

conductivity. However, we have also observed these features manifest as an overall increase

in the electron conductivity. This is shown in the data presented in Fig. 3.12. We find that

the conductivity response of the resonance signal depends on the electron system saturation

in the reservoirs. In Fig. 3.12a-b, we perform microwave power dependent transport data

(similar to the data in Fig. 3.8), where in Fig. 3.12a we see the plasmons appear as increases

in the conductivity and in Fig. 3.12 they appear as the familiar decrease in conductivity.
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Both measurements were performed at the same microwave frequency and reservoir voltages,

however between the measurement in panel (a) and the measurement in panel (b), some

amount of electrons were lost from the reservoir regions of the device. This is indicated by

the shift in the threshold voltage between the two sets of data (vertical white dashed line).

In general, we have understood the manifestation of the plasmon features as a response

to the resonantly heated electron system, where the system melts and we see the resulting

increase in conductivity on resonance. However, in our attempt to understand the transport

signal response, we neglected the significance of the state of the electrons in the reservoirs.

From the data in Fig. 3.12a-b, we find that the reservoir electrons play an integral role in

the transport signal we observe. When the electron system in the reservoirs is saturated,

we expect higher overall densities, while at lower saturation we expect lower densities. We

speculate that the difference in observed plasmon features between the high versus low

saturation is a consequence of how efficiently the thermally excited plasmons in the channels

heat the electrons in the reservoirs. In particular, if the reservoir electrons are in the highly

dense crystallized state, when the crystallized electrons are heated, that will correspond to

an increase in the electron mobility. In contrast, if the electrons in the reservoirs are in the

liquid state, the heating would cause the mobility to decrease [54]. This physical picture is

consistent with what we observe in the highly saturated reservoir case in Fig. 3.12a, where

we see the signal increase on resonance, as well as with what we observe in the low saturated

reservoir case in Fig. 3.12b, where we see the signal decrease on resonance.

These measurements provide deeper insight into how we are able to detect the plasmons

via transport measurements and indicate the significant role the reservoirs play in transport

measurements. We also point out that further measurements of this type could help uncover

the unresolved microscopics of the sliding versus melting of the electron crystal discussed in
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Figure 3.12: Microwave power dependent transport measurements at fixed frequency
ω/2π = 5.22 GHz, with Vres = 0.7 V and at T = 17 mK. (a) Plot shows the plasmon
mode resonance features manifesting as an increase in transport signal with a V th

ch = 0.5 V
(vertical white dashed line). (b) Microwave power dependent transport data taken again after
losing some amount of electrons from the reservoirs, indicated by the shift in the threshold
(V th

ch = 0.7 V, vertical white dashed line). Plot shows plasmon mode resonance features
manifesting as a decrease in transport signal.

Sec. 2.3.3.1.

3.2.7 Consideration of the one-dimensional dispersion relation

Throughout the analysis here, we have utilized a two-dimensional plasmon dispersion relation

(Eq. 3.1) to study the density dependence of the plasmon resonance frequencies extracted

from the experimental data (as shown in Fig. 3.7). While this expression is relevant for the

density range over which we observe plasmons in the microchannel device, it is instructive

to also discuss the case of a one-dimensional plasmon, which could in principle be realized

in the limit of low electron density and tight spatial confinement.

In the low-density limit, the electron system can form a single electron chain due to the

constraints imposed by the confining potential of the central microchannel. The problem of

the plasmon dispersion for a single linear row of electrons is analytically solvable [164] and,
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for a screened Coulomb interaction, is given by:

ω2
1(q) = e2

4πε0me
nlq

2
[3
2 + ln nl

κ

]
. (3.7)

Here, q = nπ/L is the plasmon wave number associated with mode number n and channel

length L, nl is the linear density of the electron chain, and the parameter κ = 1/λ is the

reciprocal of the screening length λ. This expression only strictly applies for the case of

a single electron chain and we note that in our experiments the number of electron chains

increases with increasing channel electrode bias voltage Vch. However, for the sake of com-

parison, we can assume that at low density (i.e. in the vicinity of the threshold voltage

Vch ≳ V th
ch ) the plasmons in the microchannel can be described by the excitations of indi-

vidual electron chains having a dispersion given by Eq. 3.7. This simplification allows us

to compare a quasi-one-dimensional model with our experimental data as well as the two-

dimensional plasmon dispersion given by Eq. 3.1 in the main manuscript. In Fig. 3.13a,

we plot Eq. 3.7 along with the data and the two-dimensional screened dispersion relation

ωp from Eq. 3.1. As shown in the figure, we find that the simplified single electron chain

model and the two-dimensional plasmon dispersion tend to converge at low electron density.

As expected, we also find that as the density increases, and the system becomes more two-

dimensional, the simplified single electron chain model only very roughly agrees with our

data. In particular the scaling of the plasmon harmonics and the density dependence are

not well-captured by the one-dimensional dispersion. In contrast, the fully two-dimensional

plasmon dispersion relation more accurately captures the observed resonances. These results

are also consistent with the dimensionality of the electron system inferred from the melting

properties of a microchannel confined Wigner solid. The ground state electron configuration
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Figure 3.13: Comparison of the one-dimensional plasmon dispersion relation from Eq. 3.7
to the dispersion relation used in the main text ωp (solid black lines) along with the data
(blue dots) for the first five plasmon modes. The linear electron density nl and the number
of electron rows are calculated using FEM.
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of a non-degenerate two-dimensional electron system is determined by the plasma parameter

Γ = e2√
πns/4πϵ0kBT – the ratio of the Coulomb potential energy to the mean kinetic

energy. When Γ < Γ2D
c = 130, the thermal fluctuations dominate and the electron system

behaves like a fluid, while above the critical value of Γ2D
c , a two-dimensional Wigner solid

forms. Previous transport experiments on microchannel confined electron systems [66, 161]

have shown that the melting of the Wigner solid is well-described by a value of Γ2D
c for

a number of electron rows in the channel Ny ≳ 10 − 20, while for small numbers of rows

the critical plasma parameter is suppressed. Finally we note that, in our experiments we

do not observe plasmons until Vch ≃ 0.45 V, which corresponds to an electron row number

across the channel of Ny ≃ 10 according to FEM calculations. For this number of rows

the thermodynamic properties of the electrons in the microchannel are consistent with the

properties of a two-dimensional electron system.

3.3 Summary of results

In summary, we have demonstrated a microchannel device architecture that enables us to

precisely engineer spatially-confined microwave frequency plasmonic modes in electrons on

helium. The generation of these plasmons resonantly drives the electron system out of

equilibrium, which we detect via low-frequency ac transport measurements of the device

conductivity. Precise control over the electrostatic environment of the microchannel-confined

electrons enables a tunability of the plasmon modes over a frequency range of ∼ 3 GHz

and we find good agreement between the observed plasmonic mode structure and the two-

dimensional screened plasmon dispersion relation. Power-dependent measurements allow

us to explore the interplay between the microwave drive and the non-equilibrium plasmon
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response in the device and could open the door to investigate plasmon dynamics in the

hydrodynamic regime [168].

The high degree of spatial control and broad microwave frequency tunability provided by

this type of microchannel device offers a compelling framework for integrating charged collec-

tive oscillations of electrons on helium with circuit quantum electrodynamic systems. Devices

utilizing an improved and optimized microwave environment will ultimately be needed for

future cQED experiments with ensembles of electrons on helium. Placing many-electron on

helium systems into high-quality factor microwave cavities opens entirely new avenues for

exploring cavity optoplasmonics with collective modes in both the Coulomb liquid and solid

phases. Similarly, integration with charge sensitive superconducting qubits [169] would en-

able fast readout of individual and collective electron dynamics and could be used to reveal

the microscopic breakdown in the coupling of the electrons to the quantum field of helium

surface waves [11, 162]. Alternatively, hybrid systems composed of electrons on helium cou-

pled to superconducting qubits could be used as a model system for understanding qubit

decoherence produced by charged fluctuators [170, 171] in a systematic and tunable fashion.
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Chapter 4

Coupling plasmons in electrons on

helium to superconducting resonators

Circuit quantum electrodynamics (cQED) has been an effective framework to investigate

light-matter interactions at the single particle level, coupling two-level systems to high quality

factor superconducting resonators [112, 172, 173]. Due to the quantum mechanical nature of

these types of hybrid systems, the ability to manipulate the two-level systems via the cavity,

and the realization of strong coupling, cQED-based superconducting qubits have been a

successful platform for building quantum processors [174–178]. Moreover, as discussed in

Sec. 2.5.1, the cQED architecture has also been used to develop charge qubits based on

single trapped electrons on helium and on solid neon [74, 104, 113–116]. More broadly, these

techniques can be used to investigate light-matter interactions and extended to investigate

many-body condensed matter systems, by coupling collective degrees of freedom to quantum

circuits [179]. This has been done in a variety of systems, including spin ensembles in nitrogen

vacancy centers [152, 153] and in semiconductor systems [180], as well as in trapped ion

ensembles [181–183], and with superconducting qubits and phononic modes [151, 184]. We

also note early work demonstrating electrons on helium in superconducting resonator devices

has been investigated in Ref. [39].

Here, we present progress on developing a novel many-body cQED architecture, coupling
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Figure 4.1: Depiction of a charge density wave (i.e. plasmon) in electrons on helium coupled
to a microwave cavity field. The plasmon and cavity are coupled with coupling rate g, and
the plasmon and cavity have loss rates γ and κ, respectively.

highly-tunable microwave frequency plasmons in electrons on helium to superconducting

coplanar waveguide (CPW) resonators. Fig. 4.1 shows how one might think about this hy-

brid ensemble system, where the collective excitations of a many-body electron on helium

system interact with a microwave cavity field with an interaction strength g. The microwave

cavity has a fundamental frequency ωr and loss rate κ, and similarly, the collective mode of

the electrons has a frequency ωp and loss rate γ. This work aims to understand microwave

frequency plasmonic excitations in electrons on helium using circuit quantum electrodynam-

ics and explore how the superconducting resonator influences the electron system transport

response. These experiments lay the groundwork for developing novel hybrid systems of

strongly coupled microwave frequency plasmons and superconducting resonators, opening

the door to a new field of cavity optoplasmonics.
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4.1 Integrating superconducting resonators with

microchannel devices

4.1.1 Superconducting coplanar waveguide resonators

Superconducting coplanar waveguide resonators (CPWRs) are high quality factor planar

resonators, typically operating in the frequency range of several GHz. CPWRs are most

notably used in superconducting qubit systems, where the resonators are able to host a

small number of photons and coherently couple to the superconducting qubits. Here, we

briefly discuss these resonators, which we employ to investigate electron on helium ensemble

systems.
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Figure 4.2: (a) Cross section of a superconducting coplanar waveguide resonator. The dielec-
tric substrate (with relative dielectric constant ϵR) is colored brown and the metalized areas
are colored blue. The width of the center conductor w and the spacing s between the center
pin and ground plane define the characteristic impedance (Z0) and effective permittivity
(ϵeff) of the resonator. The total length l of the center conductor sets the fundamental fre-
quency ωr/2π of the resonator. (b) Sketch of a half-wavelength (top) and quarter-wavelength
(bottom) CPW resonator capacitively coupled to a feedline. The two ends of the feedline
are connected to ports 1 and 2 of a vector network analyzer (VNA) to measure the resonator
transmission. (c) Voltage mode structure of the microwave excitations trapped in the re-
spective CPW resonators.

A superconducting coplanar waveguide resonator has a planar geometry, as depicted in

the cross section in Fig. 4.2a. The fundamental frequency of the resonator is defined in
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fabrication by the resonator wavelength λ,

f0 = c

λ
√
ϵeff

. (4.1)

Here, the term c/
√
ϵeff is the phase velocity of the propagating electromagnetic wave in the

cavity, which depends on the speed of light c and the effective permittivity ϵeff of the CPW,

where ϵeff is determined by the geometry of the metallic center pin, its spacing to the ground

plane (as depicted in Fig. 4.2a), and the permittivity of the substrate (ϵR). Depending on how

the resonator is terminated at either end, the wavelength of the fundamental mode will be

either a quarter-wavelength λ = 4l or a half-wavelength λ = 2l [185]. As shown in Fig. 4.2b, a

λ/2 resonator is open on both ends, whereas a λ/4 resonator has one end shorted to ground.

CPW resonators will have some geometric inductance Lr and geometric capacitance Cr,

based on the dielectric material and the geometry of the center pin and the ground plane.

These geometric parameters, as well as the effective permittivity, can be calculated using

finite element modeling (FEM) or with an online coplanar waveguide resonator calculator,

such as Ref. [186]. CPWRs are often approximated by a resonant LC-oscillator circuit, with

fundamental frequency ωr = 1/
√
LrCr and characteristic impedance Z0 =

√
Lr/Cr [185].

The resonators shown in Fig. 4.2b are capacitively coupled to a feedline, which allows one to

perform resonator spectroscopy with a vector network analyzer (VNA). An S21 measurement

of the feedline shows the resonator transmission as a function of frequency.

In the experiments presented in this section, we utilized a λ/4 CPWR in the device. The

choice for a quarter-wavelength resonator is two-fold: (1) the resonator has an inherently

smaller spatial footprint, making it easy to fit both the microchannel devices and CPWRs

onto a single chip; and (2) the well-defined voltage anti-node at l = L (see Fig. 4.2c) provides
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a straightforward way to couple the voltage of the microwave signal to the electron system.

This also allows us to see how the electron system influences the resonator transmission when

the electrostatic environment at that boundary of the resonator is changed.

Additionally, we note that because the effective permittivity plays a role in defining the

frequency of the resonator, a CPW resonator can be used as a tool to measure how much

helium has condensed in the electron on helium device. This is a consequence of the dielectric

liquid helium (εHe = 1.057) increasing the overall effective dielectric ϵeff of the CPWR,

causing the resonator frequency to decrease as helium fills throughout the device. This

helium-level sensor functionality will be discussed in further detail in Chapter 5. As discussed

in the previous chapter, we can design microchannel geometries that host GHz-frequency

charge density oscillations, i.e. plasmons. By strategically integrating a superconducting

resonator with this microchannel device architecture, we can investigate how microwave

excitations in the resonator affect the electron transport signal and, conversely, how the

collective excitations of the electron system affect the resonator response.

4.1.2 Composite resonator and microchannel device

4.1.2.1 General device architecture

Quarter-wavelength (λ/4) superconducting coplanar waveguide resonators are integrated

with the microchannel device architectures as shown in Fig. 4.31. The device is fabricated

onto a 250 µm thick high-resistivity silicon wafer. To create the microchannel structures, a

reactive ion etching process was used to etch into the silicon substrate. A combination of elec-

tron beam lithography and photolithography was used to pattern microchannel electrodes,
1This device was designed at Michigan State University and fabricated by Dr. Heejun Byeon in the

Pritzker Nanofabrication Facility at the University of Chicago.
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Figure 4.3: Optical microscope image of the superconducting coplanar waveguide resonator
integrated microchannel device. The full chip contains two separately operable CPW-
microchannel devices. The left side device (LSD) consists of the left most reservoir, left
central microchannel, and middle reservoir, with the f = 4.51 GHz resonator capacitively
coupled to the left central channel region. The right side device (RSD) consists of the right
most reservoir, right central microchannel, and middle reservoir, with the f = 5.45 GHz res-
onator capacitively coupled to the right central channel region. Both microchannel devices
have the same geometry.

CPW resonators, and air bridges (the structures seen across the feedline, which connect

the floating ground to the main ground plane of the device). Niobium metal is evaporated

onto the device so that the lithographically defined regions are all metalized. The complete

fabricated device consists of three reservoirs, two central microchannels, and two CPW res-

onators situated in close proximity to the central microchannel regions. Both resonators

have a center conductor of width wr = 4 µm, spacing to the ground plane s = 8 µm, and

niobium metal thickness t = 80 µm. At the open end of the CPW resonators, both center

conductors have a foot of length Lf = 80 µm that extends parallel along the center of

the central microchannel regions. The resonator on the left side was designed to have a

frequency of ωL/2π = 4.5 GHz and a linewidth of κL/2π = 1 MHz. The resonator on

the right side was designed to have a frequency of ωR/2π = 5.48 GHz and a linewidth of

κR/2π = 15 MHz. The linewidths of the resonators are set by their coupling geometry to

94



the feedline, where here we have used a capacitive coupling scheme.

The two central microchannels have the same geometry, with total channel length L = 283 µm

and width w = 8 µm. The three reservoirs also all have the same geometry, where each

reservoir is 310 µm wide and 400 µm tall. The reservoirs are made up of 23 individual 7 µm

wide channels and each channel is separated by 7 µm. For the left side central microchannel,

either end of the channel lets out into the left and middle reservoir regions and similarly, for

the right side central microchannel, either end of the channel lets out into the middle and

right reservoir regions. This creates the two separate microchannel devices, where the left

side channel, left side reservoir, and middle reservoir regions make up what we will call the

left side device (LSD), whereas the right side device (RSD) consists of the middle reservoir,

right side central microchannel and right reservoir regions (see Fig. 4.3).

The 2 mm × 7 mm chip is wirebonded to a PCB similar to the one shown in Fig. 3.1

and is housed in the same oxygen-free high thermal conductivity (OFHC) copper sample

cell used for the previous device described in Chapter 3. The sample cell is mounted onto

the mixing chamber plate of a dilution refrigerator and helium is condensed in the cell at

T ≃ 150 mK through a stainless steel capillary fill line from a room temperature volume.

When helium fills the microchannel structures, it shifts the resonator frequency due to the

change in the resonator effective dielectric εeff . This affect will be discussed in more detail

in Chapter 5, however we note here that the resonator provides a useful tool to monitor

the helium level in the device. Spectroscopy of the resonators is performed via transmission

measurements through the feedline using a VNA (connected as described in Fig. 4.2b). For

the quarter-wavelength resonators used here, we perform S21 measurements through the

feedline, which correspond to measurements of the reflected signal off the resonator. These

transmission measurements are continuously monitored as helium fills the channels. We find
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Figure 4.4: Resonator spectroscopy of the two quarter-wavelength CPWRs in the device. The
S21 measurements through the feedline correspond to the reflected signal off the resonator.
Both measurements were performed with microchannels filled with helium, with no electrons
present on the device, and with microwave power P = −56 dBm, at temperature T = 60 mK.
(a) Resonator spectroscopy of the left side resonator (see Fig. 4.3). Fit to a Lorentzian
distribution gives the resonator frequency ωL/2π = 4.515 GHz and the resonator linewidth
κL/2π = 3.234 MHz. (b) Resonator spectroscopy of the right side resonator (see Fig. 4.3).
Fit to a Lorentzian distribution gives the resonator frequency ωR/2π = 5.445 GHz and the
resonator linewidth κR/2π = 13.945 MHz.

that a frequency shift of ∆f ≃ −2 MHz corresponds to fully filled microchannels. When

too much helium is condensed in the device, such that the helium level in the microchannels

corresponds to a bulk helium level and the channels are no longer filled via capillary action,

we find a frequency shift of ∆f ≳ −10 MHz (see Appendix A.4.1). In Fig. 4.4, we show the

resonator transmission for the case of helium filled channels and no electrons yet present on

the device. In Fig. 4.4a, we fit the LSD resonator spectroscopy to a Lorentzian distribution

and find the resonator frequency ωL/2π = 4.515 GHz and the resonator linewidth κL/2π =

3.234 MHz. We do the same for the RSD resonator, and find the resonator frequency

ωR/2π = 5.445 GHz and the resonator linewidth κR/2π = 13.945 MHz.

Once helium is condensed in the device, a tungsten filament, located ∼ 3 mm above the

center of the device, is used to deposit electrons via thermal emission (see Appendix A.2.3 for

a description of electron emission). We find that we can successfully deposit electrons onto
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the device at T ≃ 50 mK2. Fig. 4.5a shows an example of what happens to the resonator

spectroscopy when we initially fire electrons into the general region of the LSD. The blue trace

shows the typical S21 measurement response in the absence of electrons on the device, with

helium filled in the channels. The pink trace shows the resonator response after electrons

are fired with the RSD electrodes biased negatively – here, the right reservoir and right

channel electrodes are biased together, where VRSD = −0.9 V – while the LSD electrodes

are biased positively – here, the left and middle reservoir electrodes are biased together with

Vres,L = Vres,M = 1.0 V and the left channel electrode is biased with Vch,L = 0.2 V. In this

firing procedure, we see that the emitted electrons preferentially land on the general region

of the LSD, indicated by the weakened LSD resonator signal due to the presence of electrons

in and around the resonator. Due to the negatively biased electrodes corresponding to the

RSD, we see the resonator signal remains, indicative of no electrons in that region of the

device. In order to actually utilize the microchannel-resonator device, however, we need to

remove electrons from the region in and around the resonator to re-establish the resonator

signal.

To remove electrons from the resonator and restore its quality factor, we have developed

a cleaning protocol. In this procedure, we incrementally increase the microwave power on

the feedline while measuring S21 until the resonator signal returns to its original amplitude

and linewidth. This cleaning protocol is shown in Fig. 4.5b for the LSD resonator. During

these measurements, the RSD electrodes are biased negatively to prevent electrons from

entering that region (VRSD = −2.0 V) of the device, and bias the middle reservoir positively

(Vres, M = 1.2 V) to have electrons preferentially held in that general region, with Vres, L =

2Previous microchannel devices showed to be unstable for electron trapping below temperatures of ≃
400 mK
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Vch, L = 0 V. During this procedure, no ac transport drive is applied. As the microwave

power is increased, we see the resonator return to its original signal amplitude (at P ≃

−55 dBm), indicating that electrons have been removed from the resonator. At the highest

power P = −46 dBm shown in Fig. 4.5b, we fit the transmission to a Lorentzian and find

the resonator returns to nearly its original frequency and linewidth, ωL/2π = 4.514 GHz

and κL/2π = 3.557 MHz, respectively. With electrons in the appropriate regions of the

device, both transport and resonator spectroscopy measurements can be performed. The

same firing and cleaning protocol procedures follow for the RSD region. We note, however,

that we can also simply move the electrons already in one side of the device to the other

by strategically biasing the corresponding regions of electrodes. In the example shown here,

where we have fired electrons into the LSD region, we can move them to the RSD by putting

negative voltages on the left reservoir and channel electrodes (Vres,L = Vch,L = −0.5 V),

while simultaneously applying positive voltages to the middle reservoir, right reservoir, and

right channel electrodes (Vres,M = Vres,R = Vch,R = 0.8 V). For the remainder of this chapter,

all measurements presented are on the RSD.

4.1.2.2 Microchannel-CPW resonator device operation

Standard transport measurements on can be performed as described in Chapter 3. Fig. 4.6a

shows a false colored optical microscope image of the RSD in the region surrounding the

central microchannel, along with the corresponding transport circuit. The middle reservoir

electrode voltage Vres, M is modulated by an ac drive voltage Vac at frequency fac, which in-

duces transport across the device once electrons are introduced into the channel (Vch ≳ V th
ch ).

In all transport experiments described here, the dc voltage applied to the right reservoir elec-

trode and middle reservoir electrode is the same, Vres, R = Vres, M. The resulting transport
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Figure 4.5: (a) Resonator S21 spectroscopy before firing electrons onto the device (dodger
blue) and immediately after firing electrons onto the device (pink). Data is offset for vi-
sualization. Electrons were fired with all electrodes corresponding to the right side device
(RSD) having voltage VRSD = −0.9 V, and with positive voltages applied to the electrodes
corresponding to the LSD (Vres,L = Vres,M = 1.0 V, Vch,L = 0.2 V). Comparing the two
plots shows the precise control over firing electrons onto a particular region of the device
(in this case, the LSD). (b) S21 resonator spectroscopy showing the resonator cleaning pro-
tocol. By incrementally increasing the power on the VNA (while storing all microchannel
device electrons in the middle reservoir region), the electrons that cover the resonator de-
vice can be removed. Here, the resonator power removes electrons from the center pin at
P ≃ −55 dBm. At the highest power P = −46 dBm, we fit the data to a Lorentzian and
find the resonator returns to its original frequency and linewidth, ωL/2π = 4.514 GHz and
κL/2π = 3.557 MHz, respectively.

signal is measured as the voltage induced on the right reservoir, which is amplified by 40 dB

and detected using a high frequency (25 kHz −200 MHz) lock-in amplifier (SR844, see Ap-

pendix A). The pinch-off gate electrodes (green, Fig. 4.6a) are biased negatively to prevent

electrons from escaping into the electrode bias lines (Vpinch = −0.2 V for all measurements

presented here). Additional channel gate electrodes (Vchgt) provide an added level of confine-

ment over the electron system in the channel and add another voltage barrier to separate the

electrons in the central microchannel from those in the reservoir regions. For all transport

measurements discussed in this chapter, they are biased together with the central channel

electrode (Vchgt = Vch). The open end of the RSD CPWR is shown in blue in Fig. 4.6a,

where the resonator foot spans 80 µm along the central microchannel region to facilitate
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Figure 4.6: (a) False colored optical microscope image of the central microchannel region
of the RSD along with a depiction of the transport measurement circuit. The open end of
the CPW resonator (blue) is capacitively coupled to the central microchannel region (red).
When electrons are present in the device, transport is performed by applying an ac drive
Vac on the middle reservoir and the induced voltage on the right reservoir is amplified by
+40 dBm and measured with a lock-in amplifier. (b) Cross-section of the center of the
central microchannel. The channel is filled superfluid helium and covered with electrons
(pink dots). The potential −ϕy across the channel (green) is plotted for Vch = 1.0 V, along
with the chemical potential ϕe = 0.21 V. The central channel has a total width of w = 8 µm,
a depth of h = 1.17 µm, and the channel electrode has width wc = 5 µm.

capacitive coupling to the channel (red) as discussed in Chapter 3, Sec. 3.2.3.

Fig. 4.6b shows a cross section of the device taken at the middle of the central mi-

crochannel. The potential profile, ϕy, is plotted to indicate the corresponding electrostatic

confinement. The depth of the channel is h = 1.17 µm and the width is w = 8 µm. The chan-

nel electrode is centered (y = 0) at the bottom of the channel and has a width of wc = 5 µm.

A voltage applied to the central channel electrode Vch will shape the electrostatic potential

profile ϕ(x, y) (dark green line). Here, Vch = 1.0 V and the chemical potential ϕe = 0.21 V

(light green dashed line) corresponds to V th
ch = 0.265 V and a capacitive coupling constant

αch = 0.795. To perform transport measurements using the RSD, the LSD electrodes are all

biased negatively – similarly, for measurements using the LSD, the RSD electrodes would be

biased negatively. We found RSD transport measurements were most stable with the LSD
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Figure 4.7: Standard transport phase diagram. As Vres increases, the threshold voltage
(V th

ch ) increases (yellow dashed line) due to the change in the chemical potential ϕe. Three
transport regimes are observed: (I) no electrons in the channel, (II) high-conductivity low-
density regime in the channel, and (III) low-conductivity Wigner solid. In this measurement,
no microwave power was applied to the resonators, Vac = 6 mV, fac = 4.013 MHz, Vpinch =
−0.2 V, VLSD = −0.4 V, and T = 55 mK.

electrodes having voltages Vch,L = Vchgt,L = Vres,L = −0.4 V.

4.2 Standard transport measurements and transport

assisted cavity spectroscopy

Typical transport measurements in the absence of a microwave drive on the resonator can be

performed to characterize the electron system in the central microchannel region. Fig. 4.7

shows a series of transport measurements at varying Vres (throughout this chapter, the

convention Vres is used to refer to Vres, M = Vres, R). This measurement can be used to find

the channel threshold voltage (V th
ch ) and the electron density ns in the central channel for

different values of the reservoir voltages. The three typical transport regimes are observed in
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Figure 4.8: (a) Microwave resonator drive frequency dependent transport measurements
at low microwave power (P = −80 dBm). Each transport measurement is performed
by with the resonator drive signal applied to the feedline, and performing a sweep of the
voltage on Vch, while measuring the corresponding transport signal on a lock-in amplifier.
(b) Similar measurement as in (a), however with higher microwave power, P = −60 dBm.
Both measurements were performed at T = 55 mK, with Vac = 4 mV, fac = 4.013 MHz,
Vres = 0.5 V, Vpinch = −0.2 V, and VLSD = −0.4 V. (c) Transport linecuts from (a, red)
and (b, orange) corresponding to the frequency f = 5.42 GHz. At high power at the
CPW resonator resonance frequency, the transport signal doubles in amplitude, indicative
of electron heating.

this measurement: (I) at low channel voltage (Vch < V th
ch ) the channel is empty so no electron

transport occurs through the device, (II) at voltages just above the threshold (Vch ≳ V th
ch ),

the electron system is in a low-density, high-conductivity regime characteristic of an electron

liquid or a sliding Wigner solid, and (III) at Vch corresponding to a sufficiently high electron

density, the electrons crystallize into a low-conductivity Wigner solid. As expected, the

channel threshold V th
ch increases with increasing Vres and the electron density ns in the

channel is constant along the slope of the threshold (yellow dashed line in Fig. 4.7).

To investigate how the CPW resonator drive changes the electron transport signal, we per-

form a series of transport measurements at varying frequency applied to the resonator. These

measurements are shown in Fig. 4.8a. At low microwave power (panel a, P = −80 dBm),

the transport signal does not appear to be affected by the microwave drive. In contrast, at

high microwave power (panel b, P = −60 dBm), the transport signal amplitude increases in
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the frequency range near the microwave resonator fundamentla mode. In particular, we see

the greatest increase in the electron conductivity at the frequency of the CPW resonator,

indicative of microwave photons heating the electron system. In Fig. 4.8c, we compare the

two transport signals at low power (red) and high power (orange) for the corresponding

horizontal linecuts in panels (a) and (b) at a frequency f = 5.42 GHz. The data show that

the increased number of resonator photons doubles the electron transport signal. We also

see the channel voltage (Vch) at which the system enters into regime (II) increases, as we saw

for the previous device discussed in Chapter 3. This further indicates that the microwave

drive is heating the electron system, due to the increased thermal energy of the electrons

from the microwave photons necessitating higher electron densities in order to form a Wigner

crystal. This follows from the condition that the plasma parameter Γ ≳ 130 ∝ √
ns/T (from

Chapter 2, Sec. 2.1.3) in order for crystallization to occur.

Additionally, we show the dependence of the microwave frequency applied to the feedline

at low versus high power for fixed electron density (corresponding to vertical linecuts in the

data at fixed Vch in Fig. 4.9a-b). In Fig. 4.9c, the transport signal just above the threshold

(V th
ch = 0.32 V) is plotted for both low and high power. At low electron density (Vch =

0.325 V), for both low and high power measurements, no increase in electron conductivity is

observed as a result of the applied microwave power. In Fig. 4.9d, we compare the microwave

power effects at a constant high electron density in the channel (Vch = 0.545 V). At low power

(red), the transport signal indicates that the electron system remains in the low conductivity

Wigner crystal state for all microwave frequencies. In contrast, at high microwave power

(orange), the electron system appears to heat in the vicinity of the resonance frequency of the

CPW resonator. We note, this may also be interpreted as the microwaves promoting a sliding

Wigner crystal, however further transport data as a function of ac drive voltage, with and
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Figure 4.9: (a),(b) Same data shown in Fig. 4.8. Vertical dashed lines in (a) and (b) cor-
respond to the linecuts presented in panels (c) and (d). (c) Transport signal as a function
of the resonator drive frequency at Vch = 0.325 V from (a, red) and (b, orange) showing
the frequency dependence at constant low electron density in the channel. At both low
and high microwave power, the electron system is insensitive to the microwave signal for
all frequencies. Grey dashed line indicates the lock-in signal in the no-electron region. (d)
Transport signal as a function of resonator drive frequency at Vch = 0.545 V from (a, red)
and (b, orange) showing the frequency dependence at constant high electron density in the
channel. At low microwave power, for all frequencies, the electron system is in the low con-
ductivity Wigner solid state. At high microwave power, the electron system conductivity
jumps at the frequency of the CPW resonance frequency, indicative of a non-equilibrium
heating of the electron system. The transport signal is fit to a Lorentzian (blue dashed line)
and the resonance frequency of the CPW resonator in the presence of electrons is resolved
(ω/2π = 5.421 GHz) as well as a broadened resonator linewidth κ/2π = 20.5 MHz.
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without a microwave drive on the resonator, would be needed in order to say definitively. By

fitting the high power data in Fig. 4.9d to a Lorentzian distribution, we find the data peak at

frequency, ω/2π = 5.421 GHz and have a linewidth κ/2π = 20.5 MHz. As we will see in the

next section (Sec. 4.3.1), this frequency and linewidth are in agreement with the frequency

and linewidth of the resonator when electrons are present in the central microchannel. This

measurement is consistent with microwave induced non-equilibrium heating of the electron

system.

4.3 Plasmon-resonator coupling

4.3.1 Spectroscopy of the coupled resonator-plasmon system

To investigate the coupled plasmon-resonator system, we perform S21 measurements of the

CPW resonator at varying channel electrode voltage (Vch). Tuning Vch corresponds to tuning

the density, where ωp ∝
√
ns(Vch), and we can anticipate tuning the electron density such

that a plasmon mode becomes resonant with the CPW resonator, ωr = ωp. Data from this

type of measurement is shown in Fig. 4.10a. Here, we perform spectroscopy measurements

at each increment in Vch to monitor the resonator response as electrons populate the central

channel. This measurement is performed at fixed reservoir voltage, Vres = 0.5 V, and with

no ac transport drive.

At Vch = 0.374 V, the data show an avoided crossing like feature. To confirm that this

avoided crossing feature is the result of electrons within the central microchannel, the same

measurement is performed for varying reservoir voltages Vres (see Appendix [] for all reservoir

dependent spectroscopy data). As the reservoir voltage Vres changes, the threshold voltage

Vch changes, as shown in the phase diagram in Fig. 4.7. Because the electron density in the
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Figure 4.10: (a) S21 resonator spectroscopy measurements as a function of the central mi-
crochannel voltage Vch. Electrons enter into the central channel at the threshold voltage
V th

ch = 0.274 V (white dash dotted line) and with increasing channel voltage, the electron
density ns in the channel increases. At Vch ≃ 0.374 V, the data show an avoided crossing,
indicative of the channel reaching an electron density that corresponds to a plasmon mode
resonant with the CPW resonator ωp ≃ ωr, such that the plasmon and resonator hybridize.
Measurements here were taken at Vres = 0.5 V and P = −80 dBm. (b) Extracted avoided
crossing points (blue) taken from similar spectroscopy measurements as (a) at varying Vres
plotted with the channel threshold voltages V th

ch at each corresponding Vres (pink). Thresh-
old data is taken from Fig. 4.7.
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Figure 4.11: (a) Extracted frequencies ω/2π of the resonator as a function of Vch from fits
to a Lorentzian distribution for the data shown in Fig. 4.10a. In the region of the avoided
crossing, the frequency has the largest shift per Vch. (b) Extracted linewidths κ/2π of the
resonator as a function of Vch from the fit performed in (a). At the avoided crossing, the
linewidth is the largest

channel is proportional to the threshold, ns ∝ (Vch − V th
ch ), the voltage Vch at which the

avoided crossing occurs should shift, as the reservoir voltage is changed, to meet the resonant

plasmon density condition. The transport threshold voltage V th
ch for each corresponding Vres

is extracted from Fig. 4.7 and plotted in Fig. 4.10b (pink dots), along with the extracted

avoided crossing centers in Vch for each spectroscopy measurement.

4.3.2 Plasmon-resonator interaction: two classical

coupled oscillators

4.3.2.1 Electric field coupling and boundary conditions

To understand the origin of the avoided crossing feature seen in the data in Fig. 4.10a and

how the electron system and resonator might couple, we perform finite element modeling

(FEM) calculations of the device in the general region of the central microchannel. Because

the open end (i.e. voltage anti-node) of the resonator is placed adjacent to the channel

electrode, when electrons populate the channel, they experience the electric field produced

by the resonator. The contribution to the electric field from the resonator is shown in
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Figure 4.12: Microwave potential in the central microchannel region near the open-end of
the resonator center pin with corresponding electric field lines (white arrows) calculated from
FEM simulations.

Fig. 4.12, where the white arrows indicate the electric field lines calculated from FEM. On

either edge of the resonator center pin (x = ±40 µm), the electric field distribution in the

channel has a non-zero x-component. This enforces odd-mode longitudinal plasmons along

the length of the channel to be the most strongly coupled, as discussed for the previous

device in Chapter 3. In Fig. 4.13a, we plot the half-wavelength electron displacement profile

∆x for the n = 1, 3, and 5 modes and compare them to the x-component of the electric

field. Fig. 4.13b shows the x-component of the electric field Ex from the resonator for each

point along the center of the channel, where each point (pink) represents a point along the

pink dotted line in Fig. 4.14a. Here, we see for a half-wavelength odd mode, the maximum

displacement amplitude aligns with the maximum electric field amplitude in the x-direction

at x ≃ ±40 µm.

In Fig.[density fig], we show the static density profile (i.e. in the absence of a microwave

drive on the resonator) in the device for the applied voltages used for the measurement in

Fig. 4.10a, for the channel electrode voltage at the center of the avoided crossing (Vch ≃

0.374 V). In particular, we see there exists an intrinsic static density inhomogeneity in the

108



a

b

Figure 4.13: (a) Plot showing how the n = 1, 3, and 5 plasmon modes will manifest in
terms of the change in electron displacement ∆x along the channel. (b) x-component of
the electric field produced by the resonator center conductor along the center of the central
microchannel. Each pink dot corresponds to a position in the channel from the pink dotted
line in Fig. 4.14a.

channel near the edges of the resonator center conductor, which could impose the boundary

condition at x = ±40 µm for a plasmon mode wavelength of λ/2 = 80 µm.

If we assume the electric field and density inhomogeneity produced by the resonator at the

edges of the center conductor set the plasmon mode coupling and wavelength, respectively,

we can estimate the plasmon frequencies for this geometry. The plasmon dispersion relation,

from the 2D screened plasmon dispersion relation we defined in Chapter 3 (Eq. 3.1), is

ωp/2π =
 nse

2

2meε0

√
q2
x F (qx)

1/2
. (4.2)

Here, the wavevector qx = nπ/L corresponds to the direction along the length of the channel

for the plasmon wavelength λ/2 = L and corresponding mode n. The screening parameter,

F (qx) = 1
2 [tanh(l qx) + tanh(d qx)], depends on the screening lengths from: (1) the electron

system to the center conductor (at y = 4 µm) and ground plane (at y = −4 µm), l =

w − we, for the channel width w = 8 µm and the 2D electron sheet effective width we;
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and (2) the electron system to the channel electrode beneath d = 1.17 µm. The avoided

crossing feature in Fig. 4.10a occurs at Vch ≃ 0.374 V, which corresponds to a density of

ns ≃ 7.81 × 1012 m−2 and an effective width we ≃ 3.2 µm. Plugging these numbers into

Eq. 4.2, we find that the n = 1, 3, and 5 modes correspond to the plasmon frequencies

ωp/2π = 1.9 GHz, 4.3 GHz, and 6.2 GHz, respectively. Although these plasmon frequencies

are not consistent with the 5.42 GHz frequency we observe in the avoided crossing, we can

model the system as two classical coupled oscillators to determine where the discrepancy

might be coming from. This will also allow us to model our data to estimate the effective

coupling strength geff and the plasmon mode loss rate γ.

4.3.2.2 Coupled system equations of motion and eigenfrequencies

To model the resonator response, we approximate the plasmon-resonator system as two clas-

sical coupled oscillators, following the illustration of the coupled system shown in Fig. 4.15a.

First, we consider the CPW resonator as its LC-circuit equivalent. This allows us to write

the Lagrangian L of the circuit in terms of the charge variable q(t) including a dissipation

term F , corresponding to the resonator loss rate κ, using

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

+ ∂F
∂q̇

= 0. (4.3)

The Lagrangian, L = T − U , for the damped LC-circuit has kinetic energy T due to the

geometric inductance Lr of the resonator T = 1
2Lrq̇

2, and potential energy U from the

geometric capacitance Cr of the resonator, U = q2/Cr. The dissipative term is given by

F = 1
2γq̇

2 [187]. From this, we can write the equation of motion for the resonator as
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Figure 4.14: (a) Electron density distribution for the corresponding voltages used for the
measurement in Fig. 4.10a, where Vres = 0.5 V, Vpinch = −0.2 V, and Vch = 0.374 V.
Pink dotted line along the center of the central channel corresponds to the location of the
calculated points in Fig. 4.13a-b. (b) Electron density distribution from (a), zoomed into the
region near the resonator center conductor. Colormap shown for 4.1 ≤ ns < 4.5 (×1012 m−2)
to highlight the intrinsic static density inhomogeneity in the region of the channel near the
resonator.
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Lr
d2q(t)
dt2

+ 2Lrκ
dq(t)
dt

+ 1
Cr
q(t) = g x(t). (4.4)

On the right hand side, the parameter g x(t) corresponds to the coupling rate g of the

charge density wave oscillator, with generalized coordinate x(t) corresponding to the electron

positions. The equation of motion for the charge density wave oscillator can be written in

terms of the position of the electrons x(t), as

m̃
d2x(t)
dt2

+ 2m̃γ dx(t)
dt

+ m̃ω2
px(t) = g q(t), (4.5)

where we have the effective mass of the charge density wave m̃, plasmon damping rate γ,

and plasmon frequency ωp [187]. These two coupled equations describe how the amplitude

of the resonator field will apply a force on the charges in the sheet proportional to q(t)

and similarly, how the charge density oscillations will influence the local resonator field. At

frequency ω, the two systems can hybridize. We can find the eigenfrequencies of the coupled

plasmon-resonator system by making the ansatzes,

q(t) = q0e
−iωt, x(t) = x0e

−iωt (4.6)

for the resonator and the plasmon excitations, respectively. Plugging these into Eqs. 4.4 and

4.5, gives the coupled equations in the form:

q0(−ω2 − 2iκω + ω2
r ) = g

Lr
x0 (4.7)

x0(−ω2 − 2iγω + ω2
p) = g

m̃
q0, (4.8)
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Figure 4.15: (a) Simplified illustration of the 2D plasmon in the region between the end of
the resonator center pin and the ground plane. The electron sheet will have some width w
and the plasmon mode length will be approximately the length of the resonator center pin
foot L. The distance between the open end of the resonator and the ground plane is d.

where in Eq. 4.7, we have divided by Lr and defined the fundamental frequency of the

resonator ωr = 1/
√
LrCr. The two equations can be set up in matrix form,

(ω2
r − ω2 − 2iκω) − g

Lr

− g
m̃ (ω2

p − ω2 − 2iγω)


q0
x0

 =

0

0

 (4.9)

and the eigenfrequencies can be found by diagonalizing the 2 × 2 matrix. In the undamped

limit, κ = γ = 0, the eigenfrequencies of the coupled system are

ω2
± =

ω2
r + ω2

p

2 ± 1
2

√√√√(ω2
r − ω2

p)2 + 4g2

Lrm̃
. (4.10)

On resonance (ωr = ωp), we get the mode splitting 2g/
√
Lrm̃. In order to solve for the

complex eigenfrequencies in the damped case (i.e. non-zero κ and γ), we make the simplifying

assumption that the damping is weak compared to the frequencies, κ, γ ≪ ωc, ωp, and that

we are in a near resonance regime such that ω ≈ ωc ≈ ωp. Then, we find the complex

113



eigenfrequencies Ω± by solving det(M − ΩI) = 0, where

det

(ωr − iκ− Ω) − g
Lr

− g
m̃ (ωp − iγ − Ω)

 = 0 (4.11)

(ωr − iκ− Ω)(ωp − iγ − Ω) − g2

Lrm̃
= 0, (4.12)

and

Ω± = (ωr − iκ) + (ωp − iγ)
2 ±

√√√√1
4

(
(ωr − iκ) − (ωp − iγ)

)2
+ g2

Lrme
. (4.13)

The first term is the average of the two uncoupled complex frequencies, where the real part

1
2(ωr + ωp) is the frequency at which the hybridized system splitting is centered, and the

imaginary part gives the average loss, or the hybrid mode linewidth, 1
2(κ+ γ) in the limit of

κ ≈ γ.

4.3.3 Analysis of the effective plasmon-resonator coupling

Although we cannot fully quantify the coupling parameter g due to the complicated way

the electric field from the resonator couples to the electron system, we can still model the

data from Fig. 4.10a with an effective coupling parameter geff = g√
Lrm̃

. In Fig. 4.16a,

we plot the data from Fig. 4.10a beginning at V th
ch = 0.274 V to simplify the analysis by

only considering the case with electrons in the channel. The upper and lower branches are

plotted (gray dotted lines) for the undamped limit κ = γ = 0 and with the effective coupling
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= 50 MHz

ba ω±

 2π 
geff

Figure 4.16: (a) Same data from Fig. 4.10a with calculated avoided crossing from Eq. 4.14.
Here we find an effective coupling rate geff/2π = 50 MHz. (b) Calculated S21 response using
Eq. 4.16 with κ/2π = 14.4 MHz, γ/2π = 150 MHz, geff/2π = 50 MHz, and a linear plasmon
frequency dependence ωp ≃ βVch with β/2π = 14.5 GHz/V.

parameter geff , where

ω± = ωc + ωp

2 ±
√

(ωc − ωp)2

4 + g2
eff . (4.14)

In this approximation, we neglect how the electron system shifts the resonator frequency,

as this will not affect the strength of the effective coupling in this simplified model. In

Fig. 4.16b, we calculate the eigenmodes from Eq. 4.13, using the geff parameter, and assume

a Lorentzian response for the upper and lower branches R±,

R± ∝ 1
(ω − Re[Ω±])2 + Im[Ω±]2 (4.15)

⇒ S21 = 1 − (R+ + R−). (4.16)

In modeling the avoided crossing data in this approximation, we use the known resonator

loss rate κ/2π = 14.4 MHz and find the effective coupling rate is geff/2π = 50 MHz and the

plasmon loss rate is γ/2π = 150 MHz. In the near-resonance approximation, we assume the
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plasmon mode Vch-dependence is roughly linear, with ωp ≃ βVch. In Fig. 4.16a-b, we find

ωp scales with Vch as β/2π = 14.5 GHz/V.

We note that we do not use the plasmon dispersion (Eq. 4.2) to model ωp in this anal-

ysis. When we discussed the the plasmon mode we anticipated for the coupled system in

Sec. 4.3.2.1, we found that the n = 3 and n = 5 modes would correspond to plasmon frequen-

cies of ωp/2π ≃ 4.3 GHz and ωp/2π ≃ 6.2 GHz, respectively. In contrast, for the classical

coupled oscillator modeling, we consider the plasmon frequency ωp as scaling linearly with

Vch as β/2π = 14.5 GHz/V. We find that the theoretical calculation for the complex eigen-

frequencies Ω± plotted in Fig. 4.16b agrees well with the data, and this parameter gives the

plasmon frequency near the avoided crossing ωp/2π ≃ 5.42 GHz. If we assume the screen-

ing parameter F (qx) and the FEM simulations for the density are accurate, the primary

unknown parameter in our modeling is the plasmon mode wavelength. This is reasonable

given the non-trivial x-component of the electric field distribution, shown in Fig. 4.12. To

extract the plasmon frequency we use in the resonant interaction modeling from Fig. 4.16b,

the plasmon wavelength would have to correspond to λ/2 ≃ 58 µm. In Fig. 4.17, we plot the

n = 3, 2D plasmon dispersion relation ωp for a λ/2 ≃ 58 µm wavelength from Eq. 4.2, with

the ωp ≃ βVch plasmon frequency dependence used to model the avoided crossing data for

β/2π = 14.5 GHz/V. From this, we find good agreement with the avoided crossing modeling

for the CPW resonator coupling to a n = 3 longitudinal plasmon mode along the length of

the channel for a plasmon wavelength of λ/2 ≃ 58 µm.

It is also noted that we neglected the effect of electrons in the channel on the resonator

frequency that we observe in the data in Fig. 4.10a from Vch = 0.4 − 0.9 V. The resonator

shifting up in frequency as a function of electron density is not something we would have

anticipated and why this happens remains a mystery. Intuitively, we would expect as the
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Figure 4.17: Plot showing the Vch dependence on the plasmon frequency for the 2D screened
plasmon dispersion relation introduced in Chapter 3 (Eq. 4.2) ωp/2π (pink dashed line) and
plasmon frequency used to model the resonant interaction in Fig. 4.16, βVch/2π (blue dotted
line, β/2π = 14.5 GHz/V).

electron density increases (i.e. as the effective width of the electron system increases), the

local capacitance between the open end of the resonator and the ground plane would in-

crease and thus the total geometric capacitance Cr would increase, resulting in a decrease in

resonator frequency (see Fig. 4.15). This phenomenon remains an open question. For future

iterations of this device, one way to ensure knowing how the plasmon wavelength boundary

conditions are set would be to design the channel gate electrodes to be positioned in the

channel at x = ±40 µm. Experiments of the same kind performed here with that kind of

geometry could verify how the ends of the channel in which the plasmon propagates are set,

by cutting off the rest of the channel and reservoir regions right at the boundary of where

the plasmon mode is likely coupling to the resonator.

4.3.4 Summary of results

Here, we have designed, fabricated, and tested a microchannel device architecture with

superconducting coplanar waveguide resonators coupled to the central microchannel region.

We found that simultaneous transport measurements in the presence of a microwave drive on

the resonator reveal the resonator fundamental mode frequency ωr/2π and linewidth κ/2π
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and we observed signatures of non-equilibrium heating effects of the electron system similar to

those observed and discussed in Chapter 3. By tuning the density in the central microchannel

and measuring the resonator transmission, the resonator and electron system hybridize and

the data show an avoided crossing-like feature. We find this avoided crossing feature follows

the channel threshold voltage, indicating that the hybrid system is occurring due to electrons

in the central microchannel. From FEM calculations, the electric field distribution created

by the resonator in the channel region indicates that odd plasmon modes are the most likely

modes to couple to the resonator field. By analyzing the coupled electron-resonator system

as two classical coupled oscillators, we find that the plasmon and resonator couple with the

effective coupling rate g = 50 MHz and that the plasmon loss rate is γ/2π ≃ 150 MHz.

From this analysis, we also find that the boundaries within which the plasmon is confined is

ill-defined. However, by setting the plasmon wavelength to be defined at the onset of a non-

zero electric field x-component (x ≃ ±30 µm), the λ/2 ≃ 58 µm n = 3 mode corresponds to

the plasmon frequency ωp/2π = 5.42 GHz.
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Chapter 5

Using superconducting resonators to

investigate helium surface fluctuations

Experiments relying on the low mechanical noise at low temperatures have recently gained

more attention. This is largely driven by the increasing popularity of cryogen-free “dry” sys-

tems instead of the “wet” dilution refrigerators that rely on cryogenic liquid helium. These

wet systems become expensive due to the large helium consumption and require interruptions

to experiments for refilling the dewar with helium. “Dry” dilution refrigerators provide an

excellent continuous cooling and cost-effective performance at base temperatures of 10 mK.

This is achieved by utilizing a Pulse Tube (PT) cryocooler, which provides cooling to 4 K.

However, the PT represents a major source of mechanical and acoustical noise [188]. The

noise is generated from a rotary valve that switches the connection of the PT between the

high pressure helium gas output lines connected to a compressor at a frequency 1.4 Hz.

Despite this main obstacle, there is a large effort in the scientific community to minimize

the vibrations in “dry” cryostats. For example, scanning probe microscopy requires a low

vibrational noise environment for precision measurements, and various vibration isolation

techniques at low temperatures have been demonstrated [189–191]. Experiments on super-

conducting qubits can be affected by electrical noise in the coaxial cables originating from

mechanical vibrations [192, 193].
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Recent experiments attempting coherent control of the motion of a single electron on the

surface of liquid helium have revealed the important role of helium surface fluctuations as a

source of decoherence [104]. In these types of experiments, an electrostatic trap determines

the motional frequency of the electron qubit and the helium surface fluctuations can lead to

dephasing of the electron’s in-plane motional states, as discussed in Sec. 2.5.1. The helium

surface fluctuations are naturally coupled to the mechanical vibrations of the cryostat. In

this work we investigate the noise properties of a coplanar waveguide (CPW) covered with

superfluid helium to quantify the contributions from the PT.

5.1 Superconducting coplanar waveguide resonator de-

vice

Fig. 5.1a and b show schematics of our measurement setup and a cross section of the CPW

resonator, respectively. We patterned the λ/2-wavelength resonator on a high-resistivity

(ρ ≥ 10 kΩ·cm) Si substrate, where a 230-nm Al film was deposited via thermal evaporation.

The Al resonator pattern is generated by exposing reverse image resist AZ5214E through a

mask with traditional UV lithography. The resonator has a 10 µm wide center strip with

w = 5 µm gaps between the center strip and the ground plane. The length of the resonator,

l = 45.54 mm, corresponds to the measured resonator frequency fr = ωr/2π = 1.315 GHz.

For this half-wavelength resonator, the fundamental frequency is defined as fr = c/2l√εeff,

where c is the velocity of light in vacuum and the effective permittivity of the CPW line

εeff = 6.25, close to the calculated value εeff ≈ 6 based on conformal mapping techniques

[185]. The center strip of the resonator is coupled to the input transmission line via a finger

capacitor with six pairs of fingers of length 100 µm, width 2 µm and separation 2 µm,
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Figure 5.1: (a) The resonator measurement circuit diagram. The microwaves generated
in VNA delivered into the sample cell (dashed box) through various attenuator inside the
cryostat, cryogenic circulator, low pass filter and bias tee. The reflected signal from the
resonator amplified by cryogenic HEMT amplifier and room temperature amplifier before
entering the VNA input port. (b) The cross-sectional view of the resonator. Microchannels
filled with superfluid helium occupy some part of the electromagentic field mode volume of
the resonator, changing its resonance properties. (c) The temperature dependence of the
measured resonance frequency (circles). Dashed line represents a fit to a theoretical model.
(d) Measured loaded quality factor, which shows anomalous behavior around 0.6 K.

which gives the capacitive coupling Cκ = 0.12 pF, calculated from finite element modeling

simulations.

5.2 Resonator spectroscopy

The frequency dependence of the reflection coefficient S11 was measured with a vector net-

work analyzer (VNA). The microwave signal was attenuated by 20 dB at room temperature,

followed by 10 dB and 20 dB of attenuation (at the 50K and 4K stages of the dilution refrig-

121



erator, respectfully) in order to reduce the spectral density of thermal radiation. Microwaves

further propagate through a cryogenic circulator RADC-1.35-1.45-Cryo at the 4K stage, and

a low pass filter K&L 4L250-4080 (with cut-off frequency 4 GHz) and bias tee Anritsu K250

(in these experiments the dc bias was not used) at the mixing chamber stage with a total

insertion loss < 4 dB. The CPW resonator was mounted into custom made printed-circuit

board (PCB) located inside the hermetically sealed sample cell attached to the mixing cham-

ber plate of the cryostat. The microwave signals enter the sample cell through hermetic SMP

connectors. The reflected signal from the resonator passed back through a circulator with

20 dB isolation to protect the resonator from noise in cryogenic low-noise HEMT amplifier

LNF-LNC1.5_3.5A with a noise temperature of ∼ 7 K and gain of 27 dB. At room temper-

ature, the signal is further amplified by a Mini-Circuits ZKL-2R5+ amplifier with a gain of

30 dB.

Typical reflection measurements from the resonator as a function of frequency is shown in

Fig. 5.1a (measured at T = 0.6 K) and in inset of Fig. 5.2 (measured at T ∼ 0.1 K). The data

was acquired with input power -50 dBm, low enough to avoid nonlinearities from high power

input. We note, that the resonance curves in inset of Fig. 5.2 show small asymmetry likely

arising due to impedance mismatch in the transmission lines or bonding wires [194]. Fig. 5.1c

shows the temperature dependence of the resonant frequency. In order to describe this

dependence we use lumped element approximation for the resonance frequency, which scales

as ωr ∝ 1/
√
L with inductance. The inductance here is a sum of a temperature independent

geometric (magnetic) inductance Lm and temperature dependent kinetic inductance of a

superconductor Lk. The temperature dependence of the kinetic inductance governed by

the London penetration depth, which scales as Lk ∝ λ2(T ) ∝ (1 − (T/Tc)4)−1 [195] with

Tc = 1.2 K being critical temperature for Al. We find the best fit of a theoretical function to

122



Figure 5.2: S11 power spectrum during the liquid He condensation process. Regions I, II, III
and IV indicate different filling regimes as described in the main text. The inset shows the
vertical linecuts in regions III, IV demonstrating a distinct shift of the resonance frequency.
The linecut at the boundary between these regions shows the periodically distorted resonance
conditions during the frequency sweep at the pulse tube frequency.

experimental data with a ratio parameter Lk/Lm ≈ 0.06 (see Fig. 5.1c). The loaded quality

factor of the resonator is determined as Ql = fr/2δfr, where δfr is the full width at half

max of the power spectrum. Fig. 5.1d shows the temperature dependence of measured Ql.

At low temperatures Ql saturates at values 1.7 × 103. We observe an anomalous increase

of the quality factor by 2 orders of magnitude near the temperature T = 0.6 K. We believe

that this behavior originate from the internal properties of the resonator, however the origin

of the physics remains unknown. We note, that the data presented here acquired from one

sample and further investigation with different samples are necessary.
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5.3 Resonator response to liquid helium

Replacing the vacuum above the resonator with low loss dielectric medium - the liquid helium

- changes the electrostatic environment which results in a shift of its resonance frequency. We

monitored a frequency shift by measuring power spectrum during the helium condensation

process, which is shown in Fig. 5.2. The liquid helium introduced into the sample cell through

a stainless still capillary line, and helium is thermally anchored using sintered silver heat

exchanger at the 1K stage of the cryostat. During the condensation process the temperature

of the mixing chamber varied from 100 mK up to 200 mK. We approximately estimate

the condensed liquid helium volume from the pressure changes in the helium tank at room

temperatures. We observe four regions with distinct behavior shown in Fig. 5.2. In the first

region I the resonance frequency doesn’t change, which we associate with the filling of the

dead volume in the silver sinter first. The second region II indicates the introduction of the

liquid helium in the form of unsaturated thin van der Waals film into the sample cell, which

covers the surface of the resonator and all walls of sample cell. Observed large shift of the

ωr/2π in this region we associate with the increase of the resonator’s temperature due to

introduction of a "hot" helium initially thermalized at 1K stage. After approximately 3-5

mins the resonance frequency abruptly shifts back to its original value, which we attribute

to the thermalization of the liquid helium to a mixing chamber plate temperature. We

note that this behavior is reproducible upon the warming up the cell to room temperature

and a cooldown with prior evacuating of the sample cell procedure. However, if the cell is

warmed up only to 20 K (which results in residual 4He gas in the cell) and cooled back

down, this feature is not observed. We also note that the condensation rate controlled by

the needle valve at the room temperature slightly changes the details of the observed shift
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features. This all indicates to a nonequilibrium processes during the thermalization of the

liquid helium and the sample substrate, which has complex physical nature. Once the bulk

helium is formed at the bottom the cell, the thickness of the helium film on the resonator

starts to grow as d = (γ/ρgH)1/4 [94], where γ is the van der Waals constant, ρ = 146 kg/m3

is the mass density of liquid He, g is the acceleration due to gravity, and H is the distance

from the resonator surface down to the bulk liquid helium level in the cell. At the same time

the microchannel regions between central pin and ground plane starts to fill with superfluid

due to capillary action (region III in Fig. 5.2). The thickness of the liquid helium in the

microchannels is determined by a balance of the hydrostatic pressure caused by gravity and

the surface tension, and is given by h ≃ dr − ρgHw2/16σt [90], where dr = 230 nm is the

depth of the microchannel, σt = 3.58×10−4 N/m is the surface tension of liquid helium. Once

the helium fills microchannels completely we measure the frequency shift of the resonator

∆ωr/2π = −0.35 MHz, which is in a close agreement with our Finite Element Modeling

(FEM) calculations ∆ωFEM
r /2π = −0.31 MHz. The onset of the region IV indicates the

level of the bulk helium H → 0, and the formation of bulk volume of liquid above the

resonator chip. Interestingly at the boundary between regions II and IV we do not observe

a single resonance feature in the power spectrum, but rather a sharp periodic changes in the

reflection coefficient appear during the frequency sweep in a 10s span time. The frequency

of these periodic features is equal to a main harmonic of the pulse tube. This indicates

the generation of the large surface excitations in the bulk helium by mechanical vibrations

in the cryostat driven by pulse tube. In the last region IV we measure the frequency shift

∆ωr/2π = −3.25 MHz, which is also in a good agreement with our numerical calculations

∆ωFEM
r /2π = −3.33 MHz. We would like to emphasize a similar investigations of the helium

filling the microwave resonator have been done in ref. [104], where a similar behavior of the
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resonance shift were observed with small differences due to different resonator geometry.

5.4 Investigating helium surface fluctuations

In order to measure helium surface fluctuations we partially fill microchannels with liquid he-

lium and operate in a region II shown in Fig. 5.2. The fluctuations on helium surface changes

the participation volume of the dielectric medium in the electromagnetic mode volume, thus

changing resonator’s frequency. Therefore the information about the helium fluctuations is

embedded in the resonator’s noise properties. We recordered the reflection coefficient as a

function of time at fixed frequency f0 corresponding to the highest slope on the power spec-

trum. A 40-s traces were recordered at a sampling rate 400 Sa/s limited by the bandwidth of

the VNA. The spectral densities of the measured noise SdB are computed by Welch’s average

periodogram method. For a reference, we show spectral densities of measured S11 in the

absence of liquid helium (region I) and when the resonator is completely submerged in liquid

helium (region IV) in Fig. 5.3a. Here we observe electric 60 Hz noise and several distinct

resonances, which potentially can originate from mechanical fluctuations of bonding wires.

The spectral density changes qualitatively when liquid helium fills microchannels. Fig. 5.3b

shows the spectral density of the frequency fluctuations calculated as Sf = SdB(∂S11/∂f)−1

measured at temperature 10 mK. We observe several resonances corersponding to harmonics

of the pulse tube at frequencies n ∗ fPT, which were absent in Fig. 5.3a. These resonances

can be modestly enhanced by inducing mechanical vibrations in the cryostat frame. The

majority of PT harmonics disappear or their amplitude reduces when the PT is turned off.

A noticeable feature in frequency range 30-60 Hz originate from a building vibrations, which

excite cryostat vibrational modes. This was confirmed by a frequency shift after providing

126



#3

#6
#7

#8

Figure 5.3: (a) Noise spectral density SdB of the resonator in the absence of liquid helium and
when the resonator completely submerged into liquid. Measurements are done at T = 20 mK.
(b) Spectral density Sf of the frequency fluctuations with superfluid partially filling the
microchannels. PT harmonics are indicated by arrows. (c) Noise spectral density of vertical
vibrations of the mixing chamber plate measured via geophone. Measurements are done at
room temperatures. Arrows show PT harmonics.
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additional support structure to the cryostat’s OVC. These all indicates that the majority

of helium fluctuations originate from mechanical vibrations of the cryostat body and frame.

The integrated RMS vibrations are calculated as:

∆hRMS =
(
∂fr

∂h

)−1
√√√√∫ f2

f1
S2

fdf, (5.1)

where ∂fr/∂h = 1.4 kHz/nm is obtained from FEM calculations. We estimate ∆hRMS =

0.9 nm by integration the data on Fig. 5.3b between frequencies 1 Hz and 200 Hz in the case

of PT on. This value reduces to 0.77 nm when the PT is off.

To gain additional information about the vibrations we performed measurements on the

geophone attached to the mixing chamber plate. A geophone consist of a spring loaded

mass attached to a magnet, which moves relative to a solenoid. Small vertical motion of a

magnet produces the voltage on the solenoid, which can be further measured and converted

to a displacement. We use Geophone Sensor RTC-4.5Hz-375 with natural frequency 4.5

Hz, below which the sensitivity of the sensor is small. The signal from geophone is further

amplified by NF LI-75A low noise current preamplifier with gain 100 and recordered with

MC USB-1602HS digitizer at a 2 kSa/s rate. We perform the geophone calibration procedure

to relate measured voltages to a magnet displacement as described in ref. [196]. Fig. 5.3c

shows the noise spectrum of the vibrations measured on geophone attached to the mixing

chamber plate at room temperature with PT on and off. The PT harmonics are clearly

visible at low frequencies and at frequencies > 60 Hz, which disappear once the PT is off.

From this measurements we estimate the total root mean square displacement noise with

PT on and off is 58 nm and 47 nm, respectfully.

All the preliminary experiments, presented here, indicate that the major source of the
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mechanical vibrations originate from the PT crycooler, which then couple to helium fluctua-

tions in the microchannels. There are several possible solutions to reduce fluctuations of the

helium surface, for example by mechanically disconnecting the cold head from the cryostat

frame, or by using suspended spring stage [190, 197] and adding eddie current dampers [189].

These various vibration isolation techniques should be applied with careful consideration of

thermal anchoring.

5.5 Summary of results

In conclusion, we have studied a CPW resonator’s properties in the presence of the superfluid

helium filled microchannel structures. We identified different regimes of the resonator’s

response depending on the amount of liquid helium in the sample cell. Our results on

the frequency shift of the resonator are consistent with FEM calculations. There are open

questions, like the anomalous temperature dependence of the quality factor, which needs

further investigation.
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Chapter 6

Conclusion and outlook

Throughout this thesis, we have shown progress in developing architectures for investigating

and controlling well-defined collective excitations in electron ensembles trapped above the

surface of superfluid helium. By placing superconducting resonators in these architectures,

we establish a pathway towards novel regimes of many-body circuit quantum electrodynamics

and cavity optoplasmonics with electrons on helium.

6.1 Summary of work

In Chapter 3, we show that these collective excitations, in the form of charge density waves,

i.e. plasmons, can be precisely engineered and spatially controlled using a microchannel

device architecture. In this work, we realize microwave frequency plasmon modes, which we

can detect via low-frequency transport measurements, and we find that the modes are tun-

able with electron density over a broad range (≃ 3 GHz). Microwave drive power dependent

transport measurements allow us to investigate the various broadening mechanisms of the

plasmon modes. In particular, we find there exists an evolution from intrinsic to inhomo-

geneous broadening contributions from low to high power, and we estimate a lower bound

plasmon lifetime τp ∼ 1 ns. The modes being in the microwave frequency regime make them

compatible with the frequency regimes of circuit quantum electrodynamics (cQED) devices,

such as superconducting coplanar waveguide (CPW) resonators and superconducting qubits.
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In Chapter 4, we utilize the microchannel geometry that enables us to generate the mi-

crowave frequency plasmon modes and fabricate a superconducting CPW resonator onto the

device, such that the electron system and resonator can couple. In this work, we investigate

how the two systems affect on another, through both transport experiments and resonator

spectroscopy measurements. By driving the microwave resonator through its resonance fre-

quency while doing simultaneous transport measurements, we can measure the resonance

frequency of the CPW resonator via the non-equilibrium heating of the electron system

we observe in the transport conductance signal. We also perform resonator spectroscopy

measurements as a function of increasing electron density in the central channel. This corre-

sponds to tuning the two-dimensional electron system through densities that correspond to

a plasmon frequency ωp/2π ∝ √
ns. Because of this, as we continuously drive the resonator

through its resonance frequency ωr/2π, we see an avoided crossing occur when the electron

system is tuned into a density such that ωp(ns) ≈ ωr. By modeling the hybrid system as two

classical coupled oscillators, we can simulate our the resonator response and we find that the

systems couple with an effective coupling rate geff/2π = 50 MHz. Moreover, by performing

finite element modeling (FEM) calculations of the electric field produced by the resonator,

we find the mode likely mode being generated is the n = 3 plasmon mode and that it has a

loss rate of γ/2π ≃ 150 MHz.

Finally, in Chapter 5 we show how a superconducting coplanar waveguide resonator can

be used as a tool to understand how superfluid helium affects these types of devices. In

this work, spectroscopy measurements allow us to track how much helium has filled the

microchannel structures based on the resonator shift in frequency. This resonator frequency

shift is a result of the helium changing the effective dielectric of the device, leading to a

decrease in resonator frequency as more helium is introduced into the channels. We also find
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that placing this superconducting resonator into superfluid helium allows us to investigate

the helium surface fluctuations. In particular, from noise spectral density measurements, we

can detect the fluctuations that result from the pulse tube of the dilution refrigerator. These

kinds of measurements allow us to better understand the noise we might anticipate seeing

in future sensitive quantum devices integrated with electrons on helium architectures.

6.2 Outlook and future directions

I have often said that if I could be a graduate student forever, doing these experiments with

electrons on helium and quantum circuits indefinitely to my heart’s desire, I would. But

unfortunately that is not feasible, and many of the experiments I would have liked to do

are left up to future generations. Here, a few ideas are outlined that I believe would help

progress the work discussed throughout this thesis for future ambitious graduate students.

6.2.1 Resolving the unresolved: Wigner crystal sliding vs melting

One particular phenomenon that remains a mystery throughout the entire electrons on he-

lium community is understanding the non-linear and non-equilibrium behavior of the electron

system when perturbed with a high driving field. This was discussed throughout Chap-

ters 2, 3, and 4, where we attempt to understand through our data and past experiments

whether the high conductivity regime we observe is a sliding Wigner crystal or an electron

liquid heated out of equilibrium. Future experiments using architectures similar to the hybrid

microchannel-resonator device from Chapter 4 could help to uncover the unresolved micro-

scopics of this phenomenon. Experiments like the transport assisted cavity spectroscopy

in Sec. 4.2 as a function of dilution refrigerator temperature as well as a function of the
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ac drive voltage Vac could help elucidate whether the high conductivity phenomenon is a

heating effect or a sliding effect.

6.2.2 Towards strong coupling with a longer lifetime plasmon in

electrons on helium

In Chapter 4, while the architecture allowed us to demonstrate the resonator-plasmon cou-

pling we set out to do, both the plasmon loss rate and cavity loss rate were high. Additionally,

experiments on the higher quality factor resonator showed worse coupling rates, likely due

to the fact that the number of electrons N that corresponds to the plasmon frequency at

which ωp ≃ ωr is lower, and typically the coupling g ∝
√
N . One of the likely contributions

to the lossy plasmon mode is the ill-defined boundary condition, set by a small density in-

homogeneity at the edges of the channel where the resonator couples to the electron system.

To demonstrate strong coupling between the plasmon and resonator, a future device archi-

tecture could place the channel gate electrodes (see Fig. 4.6a) on either side of the channel

where the resonator foot couples to the channel. This would help set a well-defined (and tun-

able!) plasmon wavelength and limit the loss from the energy leakage into the surrounding

electrons in the channel that are not participating in the charge density wave oscillation.

6.2.3 Regimes of cQED and cavity optoplasmonics with plasmons

in electrons on helium

If one can design a microchannel architecture that can host a long-lived plasmon, coupling the

plasmon to a high-quality factor resonator opens the door to circuit quantum electrodynamics

(cQED) and cavity optoplasmonics with electrons on helium plasmons. A device architecture
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that could enable experiments within the framework of cQED would be a microchannel device

architecture similar to the ones described in this thesis, coupled to a superconducting qubit

via a bus resonator. If one could successfully demonstrate a lower loss plasmon following from

the ideas listed in the prior paragraph, experiments such as quantum bath engineering [149,

151, 198, 199] could be realized with plasmons in electrons on helium.

Moreover, if one designs a microchannel that can host plasmons in the MHz frequency

range, one could also realize experiments similar to those done in the field of cavity optome-

chanics. For example, a 500 µm long channel could host a ≈ 500 MHz fundamental plasmon

mode. By designing the channel gate electrodes as discussed in Sec. 6.2.2, one could apply an

external microwave drive to the electron system to drive the 500 MHz plasmon mode, while

performing simultaneous resonator spectroscopy measurements. When coupled, one could

anticipate resolving sidebands in the resonator spectroscopy at ±500 MHz, and even demon-

strate cavity optomechanical phenomenon [200, 201] like sideband cooling and amplification

of the mechanical motion [202–206] of the charge density wave.
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Appendix A

Measurement apparatus, circuits, and

protocol

A.1 Measurement apparatus and circuit components

Table A.1 and Table A.2 show the main measurement apparatus and circuit components used

in the measurements described in this thesis. The full circuit diagrams for the experiments

with these listed components are diagrammed in Sec. A.3 and Sec. A.4.

Measurement apparatus
Description Model
DC voltage sources Yokogawa GS200 and Yokogawa 7651
Vector network analyzer (VNA) Keysight N5230A PNA-L Network Analyzer (2-

ports), 300 kHz - 13.5 GHz
High frequency lock-in amplifier Stanford Research Systems, Model SR844
Waveform generator (WG) Keysight 33500B Waveform Generator
Spectrum analyzer Signal Hound, SA124B
High frequency (HF) source Signal Core SC-5511A
Data acquisition device (DAQ) Measurement Computing USB-2404-10

Table A.1: Table of the measurement apparatus used for the experiments described in this
thesis.
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Circuit components
Description Model
Bias tee (MC) Mini Circuits Bias-Tee, 0.1 MHz - 6000 MHz,

ZFBT-6GW+
Bias tee (A) Anritsu Bias-Tee, 0.1 - 40 GHz, K250
Low pass filter (SLP-5+) Mini Circuits LC Low pass filter, DC - 5 MHz, 50

Ω, SLP-5+
Low pass filter (SLP-2950+) Mini Circuits LC Low Pass Filter, DC - 2700 MHz,

50 Ω, SLP-2950+
Low pass filter (EF-112) Thor Labs Low-Pass Electrical Filter, ≤ 2 kHz

Passband, EF-112
Low pass filter (EF-120) Thor Labs Low-Pass Electrical Filter, ≤ 10 kHz

Passband, EF-120
Amplifier (ZFL) Mini Circuits Low Noise Amplifier, 50 Ω, 0.1 MHz

- 500 MHz, ZFL-500LN+
Amplifier (ZX60) Mini Circuits Linear Amplifier, 500 MHz - 8000

MHz, 50 Ω, ZX60-83LN-S+
Cryogenic microwave low pass fil-
ter (K&L)

K & L Microwave, 6L250 Tubular Low Pass Filter,
6L250-10000/T20000-O/O

Cryogenic filter epoxy Cuming Microwave, C-RAM KR-112

Table A.2: Table of the main circuit components used for the experiments described in this
thesis.

A.2 Pre-experiment device preparation

A.2.1 Sample cell “pump & flush” procedure

Once the sample cell is closed up (using a superfluid-leak-tight seal with an indium o-ring)

and mounted onto the mixing chamber plate of a dilution refrigerator, before cooling it down,

it is cleaned out by doing a “pump & flush” procedure. The procedure utilizes an external

pump station (EPS) – consisting of an Agilent Varian Dry Scroll pump and Pfeiffer Vacuum

TMU-261 CompactTurbo pump – and an external helium gas handling (EGHS) system. The

“pump & flush” procedure is as follows:

1. The sample cell is pumped down using the EPS scroll pump for approximately 45 mins.
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2. ≃ 350 Torr of helium gas (measured at the channel 2 pressure gauge on the EGHS)

is let into the sample cell – this takes approximately 5 − 10 minutes to reach the

sample cell in the dilution refrigerator (Helios) where the experiments in this thesis

were performed.

3. After waiting ≃ 10 mins, the sample cell is pumped down again using the EPS scroll

pump for approximately 45 mins.

4. Steps (1) and (2) are repeated such that each step is completed 6 times.

5. On the final pump, the cell is pumped out via the turbo pump and left to pump for

12 − 24 hours.

A.2.2 Condensing helium into sample cell

Once the dilution refrigerator reaches T ≃ 100 mK, before turning on the turbo pump in the

dilution circulation, helium is condensed into the sample cell. The helium is condensed from

a 22 L room temperature tank connected to the EGHS and is circulated through a cold trap

submerged in liquid nitrogen before entering into the capillary fill line that leads down to

the sample cell at the mixing chamber plate of the dilution refrigerator. Because the helium

being condensed is coming from a room temperature volume, the pressure corresponding to

the flow rate of helium into the capillary line (channel 2 on the EGHS) is kept low to keep

the fridge from warming up. Typically, we start with pressures PCh2 ≃ 15 Torr for the first

10 − 15 Torr of helium out of the tank – the amount of helium condensed is monitored by

the change in helium pressure in the 22 L tank (this is the channel 1 pressure PCh1 . After

∆PCh1 ≃ 15 Torr, the flow rate of helium can be slowly increased, however we typically do

not exceed PCh2 ≃ 45 Torr. As helium is condensed into the cell, the still temperature on

138



the dilution refrigerator is monitored, such that the temperature does not increase above

T5 ≃ 1.2 K. The amount of helium required to fill the microchannels of the device varies

device to device. For the device in Chapter 3, we typically found ∆PCh1 ≃ 75 − 125 Torr

was sufficient. With the device in Chapter 4, filling was more straightforward, as we could

monitor the amount being filled via the resonator shift, as discussed in detail in Chapter 5.

For the microchannel-resonator hybrid device, we found ∆PCh1 ≃ 80 − 100 Torr to be the

filling sweet spot (see Sec. A.4.1).

A.2.3 Electron firing procedure

Once the helium is condensed into the sample cell, the helium is left overnight to stabilize

before electron deposition is performed. Electrons are fired via thermionic emission of the

tungsten filament that is wired into the device PCB. The filament is connected at room

temperature to superconducting twisted pairs down the fridge. One leg of the filament is

grounded at room temperature and the resistance across the filament at base temperature

should be 8 Ω – at room temperature, it is typically 25 Ω. A Keysight 33500B Waveform

Generator is used to send a single, manually triggered, inverted square pulse to the filament.

The square wave is typically between −1.6 Vpp to − 2.0 Vpp, with an offset of half the

amplitude of the pulse, and a total pulse duration of 200 − 400 ms. For the device in

Chapter 3, trapping electrons into the microchannels was most successful when the mixing

chamber was heated to temperatures of T ≃ 400 − 600 mK. Additionally, before firing

electrons, we would apply the following voltages to the electrodes: Vres = 1.2 V, Vres = 0.7 V,

Vac = 50 mV, fac = 3 MHz. In contrast, the microchannel-resonator hybrid device did not

seem to be sensitive to the temperature of the system to successfully trap electrons. We found

we could trap electrons anywhere between T = 50 mK − 450 mK. The applied electrode
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voltages for successful trapping in this hybrid device were similar to those in the former

device, however, as discussed in the main text, the electrodes corresponding to the unused

side microchannel device were biased negatively (see Sec. 4.1.2).

A.3 Plasmon mode engineering device
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Figure A.1: Full circuit diagram for experiments on the device described in Chapter 3. See
Table A.1 and Table A.2 for full description of listed components.
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A.4 Microchannel-resonator hybrid device
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Figure A.2: Full circuit diagram for experiments on the device described in Chapter 4. See
Table A.1 and Table A.2 for full description of listed components.
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A.4.1 Helium filling characteristics of the resonators

As discussed in detail in Chapter 5, as helium fills the sample cell, a resonator device will

shift in frequency as a function of the amount of helium covering the device. We performed

similar spectroscopy measurements for the resonator devices in the microchannel-resonator

hybrid device from Chapter 4.

A sketch of the filling regimes for the cross section of these resonators is shown in Fig. A.3.

The four regimes are as follows: (I) no helium is condensed in the device and the resonator

frequency is the bare resonator frequency in the absence of helium; (II) helium is just barely

introduced into the device and begins to fill the main surfaces with a thin van der Waals

film, just slightly shifting the resonator frequency; (III) a large enough volume of helium has

filled the cell such that the channels throughout the device fill via capillary action and the

resonator shifts down in frequency on the order of 1−2 MHz; (IV) a large helium bulk in the

cell causes the channels to over fill beyond the capillary meniscus and the entire device lives

beneath the bulk helium layer within the cell, causing a frequency shift ∆ω/2π > 10 MHz.

The filling data that corresponds to the regimes discussed above is shown for the left

side device resonator in Fig. A.4 and for the right side device resonator in Fig. A.5. In

both figures, the resonator data is plotted as a function of the difference in the 22 L room

temperature helium tank pressure ∆PCh1 , where Ch1 is the corresponding pressure gauge

(Pfeiffer DPG 202) we monitor on the helium filling external gas handling system.

For both figures, panel (a) shows the resonator shift ∆ω(R/L)/2π as a function of the

change in the room temperature helium tank pressure ∆PCh1 . The data points were ex-

tracted by fitting the spectroscopy data shown in panel (b) to Lorentzian distributions. The

linewidth for each point was also extracted and the loaded quality factor is plotted in panel
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I II

IVIII
Figure A.3: Cross section of CPW resonator showing how superfluid helium fills the resonator
device via capillary action. The four filling regimes discussed in Chapter 5 are shown: (I)
no helium is in the device, (II) helium begins to create a van der Waals film throughout
the surfaces of the device, (III) helium fills the channels via capillary action, (IV) a large
amount of helium has filled the device and created a bulk helium level beyond the height of
the device.

(c), where QL = ω/κ. In the experiments performed here, we found the sweet spot for filled

channels and stable electron trapping to be at ∆PCh1 ≃ 80 − 100 Torr.

A.4.2 Reservoir voltage dependence for avoided crossing measure-

ments

As discussed in Chapter 4, we can confirm the avoided crossing feature we see in our resonator

spectroscopy measurements as a function of channel electron density is coming from the

electrons in the channel by performing these measurements at varying reservoir voltage.

These measurements are shown in Fig. A.6. These measurements correspond to the extracted

data points in Fig. 4.10.
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Figure A.4: Helium filling characteristics of the left side resonator (ωL ≃ 4.5 GHz). (a) Plot
showing the shift in resonator frequency ∆ωL/2π as a function of the pressure difference
from the helium tank at room temperature ∆PCh1 . The four filling regimes corresponding to
Fig. A.3 are indicated in Roman numerals. The pressure difference in the helium tank when
the resonator shifts into a different filling regime are labeled accordingly. Each resonance
frequency was extracted by fitting the spectroscopy data to a Lorentzian distribution. (b)
Resonator spectroscopy as a function of the helium tank pressure difference ∆PCh1 from
which the frequency shifts in (a) were extracted from. Dark green dashed line shows the
initial resonator frequency ωL/2π = 4.5166 GHz in the absence of helium and lighter green
dashed lines show the two main helium shifted frequencies, ∆ωIII

L /2π = −1.0896 MHz, and
∆ωIV

L /2π = −11.801 MHz. (c) Resonator loaded quality factor QL as a function of helium
filling. QL is calculated by extracting the full-width at half-maximum (i.e. the linewidth
κ) from the Lorentzian fit used to extract the points in (a), then the loaded Q-factor is
calculated (QL = ω/κ) for each helium tank pressure dependent spectroscopy measurement.
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Figure A.5: Helium filling characteristics of the right side resonator (ωR ≃ 5.45 GHz). (a)
Plot showing the shift in resonator frequency ∆ωR/2π as a function of the pressure difference
from the helium tank at room temperature ∆PCh1 . The four filling regimes corresponding to
Fig. A.3 are indicated in Roman numerals. The pressure difference in the helium tank when
the resonator shifts into a different filling regime are labeled accordingly. Each resonance
frequency was extracted by fitting the spectroscopy data to a Lorentzian distribution. (b)
Resonator spectroscopy as a function of the helium tank pressure difference ∆PCh1 from
which the frequency shifts in (a) were extracted from. Dark green dashed line shows the
initial resonator frequency ωR/2π = 5.4503 GHz in the absence of helium and lighter green
dashed lines show the two main helium shifted frequencies, ∆ωIII

R /2π = −1.723 MHz, and
∆ωIV

R /2π = −15.356 MHz. (c) Resonator loaded quality factor QL as a function of helium
filling. QL is calculated by extracting the full-width at half-maximum (i.e. the linewidth
κ) from the Lorentzian fit used to extract the points in (a), then the loaded Q-factor is
calculated (QL = ω/κ) for each helium tank pressure dependent spectroscopy measurement.

145



Figure A.6: Resonator spectroscopy measurements as a function of the channel electrode
voltage Vch for varying reservoir electrode voltages Vres. As the reservoir voltage increases,
the avoided crossing feature shifts to increased channel voltage, due to the increased chemical
potential.
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Appendix B

Fabricating microchannel devices

The plasmon mode device fabrication discussed in this section corresponds to the particular

device from Chapter 3. However, fabrication processes following the one described here can

be used to fabricate a variety of similar microchannel device architectures.

B.1 Silicon chip cleaning protocol

We begin with a pre-cut (1 cm x 1 cm) high resistivity silicon chip and use a standard chip

cleaning protocol to remove the S1813 resist used to dice the wafer into their 1 cm2 chip

sizes, as well as any other small particles on the chip surface. This standard chip cleaning

protocol is as follows:

1. Course clean the pre-cut silicon chips in acetone to remove all photo-resist.

2. Place chips into a slotted PTFE cleaning basket and submerge the basket in a beaker

filled with acetone. Put the beaker into a heated (∼ 40◦C) ultrasonic bath sonicate

acetone beaker with chips for 15 minutes.

3. After 15 minutes, clean out the beaker of acetone and replace with fresh acetone.

Sonicate chips for 5 - 10 more minutes.

4. After 5 - 10 minutes of sonication, begin removing a single chip at a time to check for

any residual gunk on the chips under an optical microscope – to do this, first remove a
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single chip from the beaker (leaving the others in the beaker), rinse with fresh acetone,

followed by a rinse with IPA, then blow dry with an N2 gun and check for gunk under

microscope. If gunk remains, put chip back into position in the slotted basket and

check another chip. If no gunk is present, put chip back into basket in a new position.

Continue checking until no gunk is visible on any chips.

5. Once all chips are fully cleaned with acetone, remove the beaker from the sonicator

and take out slotted cleaning basket with chips. Replace beaker of acetone with beaker

of IPA and put the basket with chips into the beaker of IPA. Place beaker back into

heated ultrasonic bath for 5 - 10 minutes.

6. Check each chip once again, one by one, to ensure no gunk or imperfections are on the

chips – this time removing the chips one by one, rinsing with fresh IPA, blow drying

with an N2 gun, and looking at the chip under an optical microscope.

7. Once all chips have been cleaned under sonication and no imperfections are visible

under the optical microscope, remove all chips from the PTFE slotted basket, rinse

with IPA followed by DI water and blow dry with N2 gun.

8. Finally, put all chips onto aluminum foil tray and torch in the plasma etcher at 300W

for 3 minutes.

The chips should now all be free of any gunky imperfections!

B.2 Fabrication of plasmon mode device

Fabrication of the plasmon mode device begins on a 1 cm x 1 cm high resistivity silicon chip,

where three devices will be patterned onto in a single fabrication process. At each step of
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Figure B.1: Photomask associated with the plasmon mode device. Full photomask is in the
center with enlarged patterns for each step of photolithography. (1) is the corner mask, (2)
is the first electrode layer, (3) is the dielectric hard baking layer, and (4) is the channel
structures and top layer electrodes.

fabrication, ensure that no particles have landed on the chip by looking under the optical

microscope – if any imperfections are present, the previous step must be redone if possible,

or the entire device fabrication must be started over from the beginning if not possible to fix

the imperfection from the previous step. The UV lithography steps for this device utilizes

the Photo Sciences mask with device name: DeviceD_141121, as pictured in Fig. B.1.

1. First layer: Bottom electrodes (channel and reservoir electrodes)

(a) UV lithographhy I

i. Place sample on resist spinner, spin sample and blow dry with N2 gun to

ensure a particle-free, clean chip surface

ii. Spin coat AZ5214E (∼ 5-8 drops should completely cover the surface of chip)

at 4000 RPM for 50 seconds

iii. Clean off any resist that got on the bottom of the chip with acetone and a

ruby stick

iv. Bake in the oven at 90◦C for 30 minutes (or on the hot place at 100◦C for 60

seconds)
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v. Prepare sample on UV lithography stage and expose the corner cleaning mask

((1) in Fig. B.1) for 24 seconds

vi. Develop in AZ300 MIF for 30 seconds, rinse in beaker of DI water for 15

seconds, blow dry with N2 gun

vii. Clean off any remaining resist along the edges of the sample that were not

removed in the developing process with acetone and a ruby stick

(b) UV lithography II

i. Place device on UV lithography stage and prepare the bottom electrode mask

((2) in Fig. B.1)

ii. Expose pattern for 3 seconds

iii. Bake in the oven at 95◦ C for 30 minutes

iv. Let sample cool for a couple minutes, then place back onto stage and do a

flood exposure for 24 seconds

v. Develop in AZ300 MIF for 45 seconds, followed by a rinse in DI water for 15

seconds and blow dry with N2 gun

vi. Pre-ash in the plasma etcher – 100W for 20 seconds

(c) Thermal evaporation I

i. Prepare thermal evaporator with titanium and gold for metal deposition

ii. Pump down thermal evaporator to ∼ 2 × 10−5 Torr, then thermal degass

5 nm of Au followed by 5 nm of Ti

iii. Wait until chamber pumps down to a base pressure of ∼ 8 × 10−7 Torr (will

need to fill cold trap to acheive this pressure)

iv. Evaporate first 3.5 nm of Ti, followed by 40 nm of Au.
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(d) Lift-off I

i. Begin lift-off of sample in a beaker of PG remover on a 100◦ C hotplate for

∼ 20 minutes

ii. In the meantime, place a second beaker of PG remover (without samples) on

the 100◦ C hotplate

iii. After 20 minutes, put samples into the second beaker of 100◦ C PG remover

and gently sonicate to remove any excess metal (if necessary upon inspection

under microscope)

iv. Rinse in IPA for ∼ 15 seconds to clean PG remover from device and blow dry

with N2 gun

v. Torch in plasma etcher – 300W for 300 seconds

(e) Electron beam lithography I

i. Spin coat PMMAC2 resist at 4000 RPM for 40 seconds

ii. Clean off the bottom of the sample of any resist with acetone and a ruby stick

iii. Bake on hotplate at 180◦ C for 8 minutes

iv. Prepare sample in EBL

v. Set the magnification to x400 and first write the align design file:

"MCH_11_single_ALIGN.dc2"

vi. Once aligned, run the "MCH_11_single_EBEAM.dc2" file to write the mi-

crochannel electrodes

vii. Develop pattern in a 1:3 solution of MIBK:IPA for 50 seconds, followed by

rinsing in IPA for 15 seconds and blow drying with N2 gun

viii. Pre-ash in plasma etcher at 100W for 35 seconds
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(f) Thermal evaporation II

i. Prepare the thermal evaporator and follow steps (i) - (iii) in "Thermal evap-

oration I"

ii. Evaporate 4 nm Ti, followed by 50 nm Au

(g) Lift-off II

i. Prepare beaker of acetone (with an aluminum foil lid to prevent evaporation)

on a 60◦ C hot plate

ii. Place samples warm acetone for at least 30 minutes, then can remove from

the hot plate and leave for lift-off overnight

iii. Inspect samples under microscope to ensure all metal has lifted off – gently

sonicate if not

iv. Once all metal lifted off, rinse in IPA and blow dry with N2

v. Torch in plasma etcher – 300W for 150 seconds

2. Second layer: Microchannel structures created with hardbaked resist

(a) UV lithography III and hard bake

i. Spin coat S1813 resist at 4000 RPM for 60 seconds

ii. Bake on the hot plate at 110◦ C for 120 seconds

iii. Place sample on UV lithography stage and prepare the dielectric openings

pattern ((3) in Fig. B.1)

iv. Expose pattern for 8 seconds

v. Develop in MF319 for 30 seconds, rinse in DI water for 15 seconds, then blow

dry with N2
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vi. Clean around the edges of sample to get rid of residual resist with acetone

and a ruby stick

vii. Pre-ash in plasma etcher – 100W for 60 seconds

viii. Place samples on the already 110◦ C hot plate and increase the temperature

to 200◦ C. Bake for 1 hour and 50 minutes

ix. Let samples cool for at least an hour after baking

3. Third layer: Top layer electrodes (guard electrode, gate electrode, and ground plane)

(a) UV lithography IV

i. Spin coat AZ5214E resist at 4000 RPM for 45 seconds

ii. Bake on the hotplate at 100◦ C for 60 seconds

iii. Expose the corner mask ((1) in Fig. B.1) for 24 seconds

iv. Develop in AZ300 MIF for 30 seconds followed by a rinse in DI water 15

seconds

v. Clean edges of device with acetone and a ruby stick

(b) UV lithography V

i. Place sample on UV lithography stage and ensure the sample is as flat and

level as possible

ii. Using the top layer electrode mask ((4) in Fig. B.1), align the mask utilizing

all the alignment marks around the edges

iii. Expose the pattern for 3 seconds

iv. Bake on the hotplate at 120◦ C for 90 seconds

v. Do a flood exposure of the entire sample for 24 seconds
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vi. Develop in AZ300 MIF for 50 seconds followed by DI water for 15 seconds

vii. Clean edges of any residual resist with acetone and a ruby stick

viii. Pre-ash in plasma etcher – 100W for 20 seconds

(c) Thermal evaporation III

i. Prepare the thermal evaporator and follow steps (i) - (iii) in "Thermal evap-

oration I"

ii. Evaporate 5 nm Ti, followed by 60 nm Au

(d) Lift-off III

i. Prepare a beaker of PG remover on a hotplate at 100◦ C

ii. Place sample in hot PG remover for ∼ 25 minutes and then inspect

iii. Once lift-off complete, rinse in IPA and blow dry with N2

(e) Torching dielectric layer

i. Place samples into plasma etcher and torch at 300W for at least 300 seconds

ii. Keep an eye on the device through the window (a flashlight angled at the right

hand corner window above the device is usually a good angle) and watch for

the interference pattern indicating the dielectric layer is being torched away.

This typically takes between 400 seconds - 600 seconds.

iii. As soon as you see the last bit of dielectric get torched away, wait 20 more

seconds and then turn off the plasma etcher

iv. Inspect device under microscope to ensure excess dielectric layer has been

removed and you are left with open channels in the reservoirs – if not, torch

for longer
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Appendix C

Finite element modeling calculations

for devices

Finite element modeling (FEM) simulations are a useful tool to parameterize the microchan-

nel device. In these simulations, we can model how the electron system capacitively couples

to the surrounding electrodes, find the effective width of the electron system for a given

confinement, and calculate the electron densities in the central microchannel for a given

electrostatic potential profiles. In the modeling of the microchannel devices throughout this

thesis, we have mainly utilized FreeFem++ [207] for FEM calculations and Gmsh [208] for

building and visualizing the geometry. We have also used ZeroHeliumKit [209], which uti-

lizes both FreeFem++ and Gmsh. For modeling the superconducting coplanar waveguide

resonators, COMSOL Multiphysics was used.

C.1 FEM for microchannel devices

For both devices discussed in this thesis, the following device modeling procedure holds for

finding the various device parameters. Here we discuss two different methods for approaching

how one can calculate the electron density in the microchannel. In the first method, we build

the full three-dimensional geometry of the device, where we calculate the capacitive coupling

constants, α(x, y), at each coordinate in the device, and from this we can estimate a quasi-1D

155



electron density, where

nq1D
s = ε0εHe

ed
(
∑
i

αi(x, y)Vi − ϕe), (C.1)

or an estimate of the 2D electron density from

n2D
s = ε0εHe

ed
(Vch − ϕe). (C.2)

Here, the chemical potential ϕe = α0
chV

th
ch , with α0

ch the capacitive coupling constant to the

channel electrode in the center of the central microchannel, calculated in FEM.

In the second method, we use the two-dimensional (y, z)-cross section along the center

of the channel (x = 0), and self-consistently solve the Poisson equation to obtain a two-

dimensional electron sheet width across the channel (we) as a function of a varying channel

electrode voltage Vch.

C.2 Method 1: FEM calculation of coupling constants,

α(x, y)

This method begins with a DXF file containing the parts of the device to be modeled. In

Gmsh, the device electrodes get assigned to physical surface identifiers, and the chip below,

helium within the channels, and vacuum above get assigned to physical volume identifiers.

Then, the electrostatic Laplace equation in the weak form is solved,

ε
∫
Th

(∇u · ∇v)dV. (C.3)
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Here, u is the unknown function that we are trying to solve for and v is the test function

used in the weak formulation, and we solve this iteratively at each point in space for each

electrode. In this type of FEM, we use the three-dimensional(3D) quadratic-element space

(P2 polynomials in 3D) on the mesh Th [207].

C.3 Method 2: FEM calculation of densities, ns, using

the microchannel device cross section

This method begins with using a cross section across the center of the central microchannel

(see Fig. 3.3 for example). In order to self-consistently solve for the electron sheet width, we

calculate the electrostatic force F = −e∂ϕ
∂y acting on the edges of the electron sheet, such

that at the equilibrium configuration, F = 0. This will give the effective electron sheet width

we.

To solve for the electron areal density, we solve for the potential above and below the

electron sheet,
∂ϕ

∂z

∣∣∣∣above
− εHe

∂ϕ

∂z

∣∣∣∣below
= −ens

ε0
, (C.4)

where the integral for the linear density nl

nl =
∫ w/e

−we/2
ns(y)dy (C.5)

is used to calculate the number of electron rows Ny = √
wenl for a given confinement [86].
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