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ABSTRACT 

 

  Humanity finds itself in an energy crisis, where our energy demands now and in the 

future are far out of balance with our ability to produce that energy safely and thoughtfully. Many 

energy systems today utilize the chemical energy stored in hydrocarbons in processes that create, 

in addition to ubiquitous carbon dioxide, extra energy in the form of heat that is usually wasted. 

This extra energy in the form of heat, in combustion engines and in other applications, instead of 

being wasted could be converted into usable electrical energy with the help of a class of materials 

called thermoelectrics. 

Thermoelectric devices are a class of materials, usually semiconductors, that convert 

temperature gradients into usable electrical energy. One critical drawback of thermoelectric 

technology today is the relatively low efficiency of thermoelectric devices. In order to evaluate a 

material’s efficiency researchers use the dimensionless figure-of-merit, ZT, which is a product of 

a number of electronic and thermal material properties. By examining the material properties 

which influence ZT values we can systematically develop higher efficiency thermoelectric 

devices.  

Here we present a study of the structural and transport properties of GeTe-SnTe solid 

solutions near the temperatures of their structural phase transition. As two well-known class IV-

VI semiconducting materials GeTe and SnTe have been well studied and developed for 

thermoelectric applications, but there exists a relative dearth of research on their solid 

solutions.  As a complete solid solution, Sn can replace Ge at any concentration without changing 

the crystal system. One aspect about GeTe that makes it interesting for thermoelectrics is that its 

crystal structure transforms from a low-temperature rhombohedral phase to a high-temperature 
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cubic rocksalt phase about 670K. By contrast, SnTe undergoes a similar transformation at about 

100K. Previous studies have shown that in large crystals of GeTe replacing Sn for Ge, Ge(1-

x)Sn(x)Te, lowers the transition temperature as a function of Sn content.  By studying the solid 

solution across all values of x, 0 ≤ x ≤ 1, one has available a unique crystal system with a 

structural phase transition spanning well above to well below room temperature. 

For this study, polycrystalline samples were synthesized from ingots using power 

metallurgy techniques and their thermoelectric properties were measured from 300-770K.We 

show x-ray diffraction data to show the phase purity and lattice constant of these solid solutions, 

as well as observe the elastic constants at room temperature. We report phase transition 

temperatures from observations of changes in crystal structure at elevated and room temperatures. 

We then show the electrical conductivity, Seebeck coefficient, and thermal conductivity as a 

function of temperature and Sn content. Our results show that at low Sn concentrations, Sn atoms 

fill Ge vacancies that cause a decrease in the electrical conductivity from a reduction of the carrier 

concentration. At higher Sn concentrations these filled vacancies contribute to an increase in the 

carrier mobility which offsets the decrease in carrier concentration while also increasing the 

Seebeck coefficient. The thermal behavior of the system shows strong evidence of alloy scattering 

with a minimum near concentrations with similar amounts of Ge and Sn. Distinct discontinuities 

in the total thermal conductivity also provide evidence for the determination of structural 

transition temperatures. Taken together, these studies enable a complete characterization of the ZT 

for these materials above room temperature as well as a contribution to the structural phase 

diagram. The highest ZT values obtained at 400 °C in Ge(1-x)Sn(x)Te  were for x-values x=0.05 and 

x=0.60 with values of 0.36 and 0.31 respectively, which is impressive for unoptimized materials. 
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CHAPTER 1 Introduction 

 
Advanced human civilization since the dawn of agriculture has depended on the 

harmonious management of resources and energy to survive and flourish. After thousands of 

years of increasingly complex activity, humanity is now faced with new challenges stewarding 

resources and supplying energy for our many needs and endeavors.  Many of these challenges 

have emerged from trying to meet ever increasing energy demands of western educated 

industrialized rich and democratic (WEIRD) countries [1]. Demand for energy in the coming 

decades is expected to continue to grow; however, the natural world’s capacity to provide that 

energy is becoming more and more degraded. This makes the extraction of resources more 

difficult and therefore costly [1-3]. There is also a growing and incontrovertible scientific 

consensus that unless we rapidly shift energy systems away from carbon-based fossil fuels, we 

may push the climate to new equilibrium states marked by inconsistent climate patterns [4-5]. 

Attempts to condense the complexity of the problem into projections for the future and 

communicating those issues to the public and decision makers remains a challenge [84]. One 

formulation of this problem is expressed as the “carbon budget” that estimates we have a 

dwindling amount of time to make changes to our energy systems at current usage rates [6]. In 

addition to long-term problems such as removing carbon from the atmosphere there are also 

short-term problems related to the degradation of cooling aerosols that may be temporarily 

counteracting the effects of greenhouse gas emissions [7-8]. Any solution to these problems 

requires energy production and storage systems that look much different than the systems we 

have today, and so creative and innovative solutions are required. With this in mind, we 

understand that solving the challenges of the “energy crisis” is critical to the continued 

sustainable development and flourishing of human civilization.  
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A key to the development of a sustainable future for energy generation is increasing the 

efficiency of our existing energy systems as well as obtaining energy from unconventional 

sources. As it stands today, a large percentage of existing energy systems do not effectively 

utilize the energy made available from their fuels. A major source of the inefficiency is the  

energy lost as “wasted” heat [9]. Estimates done yearly by the Lawrence Livermore National 

Laboratory show that, for many of our power generation systems, a substantial portion of the 

energy generated is lost as ‘waste’ heat (see below in Figure 1.1) [10]. While there are entropic 

limits on the total efficiency of these processes, if we are going to risk the consequences of 

burning hydrocarbon fuels we would do well to capture as much of  that ‘waste heat’ as possible 

and use it to supplement our energetic appetite. This is where the understanding and 

development of thermoelectric (TE) technology and devices holds promise. By either 

augmenting existing systems or as a standalone device for power generation applications, 

thermoelectric technology represents one avenue of improving our energy systems and can be 

one of many bricks in the foundation of a new sustainable energy economy. Thermoelectric 

devices are solid-state materials that can be used to convert heat absorbed at one end of a 

thermoelectric (TE) device into a useful electrical voltage.  
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Figure 1.1: Energy sources and consumption estimates for the US in 2021. Note the large 

amounts of rejected energy from electricity generation and transportation sectors. Figure from 

reference [10] 
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1.2 Brief History of Thermoelectrics 

The development of thermoelectrics started when the Seebeck effect was discovered by 

German physicist Johann Seebeck in the early 19th century, when he was experimenting on 

junctions and loops of dissimilar metals [11]. When one junction of the material loop was heated, 

he was able to detect a voltage difference at the opposite junction of the loop. The 

interdependence of electrical and thermal transport in solids was later further developed and 

formalized, and it was recognized that one can define a Seebeck coefficient for different 

materials. One can quantify the Seebeck coefficient of an arbitrary material with the following 

relation:  

(𝑆1 − 𝑆2) =
Δ𝑉

Δ𝑇
     (1.1) 

 

 

Where S2 is the Seebeck coefficient of a reference material, S1 is the Seebeck coefficient of the 

material in question, and deltas V and T are the voltage and temperature differences respectively. 

One can determine reference values by measuring a junction where one material is 

superconducting and subsequently has a Seebeck coefficient of zero. Due to the two different 

charge carrier species, the Seebeck coefficient will be positive for “p-type” materials, and 

negative for “n-type” materials, which will be discussed in more detail in Chapter 2. All modern 

wire thermocouples operate under this principle, where two metals meet at the very tip of a 

thermocouple, and the voltage difference can easily be converted to a temperature reading.  

After this discovery by Seebeck, the field continued to develop and later in the 19th 

century the French physicist Jean Peltier discovered the Peltier effect, whereby the ‘reverse’ of 

the Seebeck effect was demonstrated: that by passing a current through a junction of dissimilar 

metals, one can induce a temperature gradient at the junctions [12]. Today, devices known as 
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“Peltier coolers” operate using this effect. Later, William Thomson (later known as Lord Kelvin) 

contributed his insights and connected the two effects into what is known today as the Thompson 

Relations [13].  

Following these discoveries, progress in the field of thermoelectrics was initially slow but 

picked up in the 20th century with the development of semiconductors and the physics that 

govern them.  In the early 20th century, Edmund Altenkirch derived the theoretical efficiency of a 

thermoelectric generator and developed a key insight into thermoelectrics, the dimensionless 

figure of merit, ZT [14]. This figure of merit can be applied in the context of the Carnot 

efficiency to develop an understanding and upper bound on the efficiency of thermoelectric 

devices as a function of their material properties. This powerful formulation helps to guide the 

selection and development of promising thermoelectric materials:  

      𝜂  =  
𝑇ℎ−𝑇𝑐

𝑇ℎ

√1+𝑍𝑇−1

√1+𝑍𝑇  + 𝑇𝑐/𝑇ℎ
        (1.2) 

 

 

𝑍𝑇  =  
𝑆2𝜎

𝜅
𝑇                                                                       (1.3) 

 

In equation 1.3, S is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal 

conductivity and T is the absolute temperature. In the 1930’s, Onsager showed that both the 

Seebeck and Peltier effects can be described as a natural consequence of the charge carrier 

transport [16]. Later in the 20th century, work by A.F. Ioffe popularized the notion of using 

semiconductors as base materials for developing thermoelectric devices (due to their high 

Seebeck coefficients) that led to some of the first commercial thermoelectric power generators 

and coolers [15]. With the powerful understanding provided by the formulation of ZT as the 

thermoelectric efficiency, semiconducting materials that had a high electrical conductivity while 
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maintaining or reducing their thermal conductivity were identified as good candidates for further 

development. Work by Goldsmid on tellurides, especially Bi2Te3, led the field for many years 

and Bi2Te3 remains a competitive base material for thermoelectric applications [17]. 

 

 
Figure 1.2: Carnot efficiencies for different ZT values. Note that at room temperature, a ZT of 1 

is about 10% efficient. 

 

In the latter half of the 20th century, thermoelectrics remained confined to niche 

applications as the field continued to develop materials with a high ZT over a broad temperature 

range. While not yet highly efficient, there are other aspects of thermoelectric power generation 

that make it attractive for different engineering applications. If a temperature gradient is 

maintained, the device will produce a usable voltage without any moving parts, which makes it 

extremely low maintenance. By stacking together many thermoelectric generators (TEG) 

together in series, relatively low voltages (typical thermoelectrics are on the order of microvolts 

per Kelvin temperature gradient) can be combined to produce a voltage of reasonable utility. 

With a long-lived heat source such as a radioactive material, a radioisotope thermoelectric 

generator (RTG) can function for years if not decades with no maintenance. One of the more 

successful applications of thermoelectric power generation has been in deep space applications, 
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and the Voyager 1 and 2 probes were outfitted with RTGs that are still in operation some 40 

years later [18].  Modern probes such as the Mars Rover Curiosity are outfitted with RTG’s 

providing over 100W of power with several pounds of plutonium oxide as the long-lived heat 

source [19].  

Modern approaches to developing thermoelectrics pursue a variety of avenues to improve 

the performance of these materials. A rather intuitive approach has been based around the 

“phonon-glass-electron-crystal’ concept where a material is designed to scatter heat-carrying 

phonons while maintaining crystalline electronic performance [25-26].  Research in skutterudites 

and clathrate compounds have made use of so-called “rattlers” where a weakly-bonded atom 

absorbs phonons while confined to a “cage” in the crystal structure. Other routes have been to 

reduce the thermal conductivity to the lowest possible value through nanostructuring, complex 

crystal structures, quantum confinement, and/or maximizing anharmonicity in the crystal lattice 

[21-26,29-30]. One of the more exciting results of the last few years has been the development of 

ultralow thermal conductivity in single crystals of SnSe [20,27,31].  
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1.3 Motivation for GeTe and SnTe 

Many tellurides were identified as good candidates for thermoelectric materials from the 

earliest days of the development of the field. In addition to Bi2Te3, PbTe, GeTe, and SnTe were 

identified as good candidates and an alloy of GeTe with silver and antimony called TAGS-85 

was used in the Voyager probes [28]. This class of materials often have relatively high ZT 

values, maximizing at about 0.5-1.0, and are narrow band-gap semiconductors with high amount 

of symmetry in their crystal structure. They have useful thermal properties in that this class of 

materials has a high mass difference between the atoms, which reduces their thermal 

conductivity as well as useful and tunable electronic properties such as a degenerate band 

structure and large charge carrier effective masses. As such, they have been the subject of much 

interest in the development of thermoelectrics with a variety of strategies for optimizing the ZT 

performance [32-75,86,105-117]. There is an interplay between the competing thermal and 

electronic properties due to the contraindication of the material carrier concentration, and so 

finding the ‘sweet spot’ for an optimized carrier concentration is different in every material to 

maximize the ZT value (below in Figure 1.3, from reference [21]). The dependence of the 

variables in ZT on the carrier concentration will be further discussed in Chapter 2.  
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Figure 1.3: From [21], a figure showing the contraindication of the material properties as a 

function of carrier concentration versus ZT value. Here, α is the Seebeck coefficient, , κ is the 

thermal conductivity, and σ is the electrical conductivity. 

 

While PbTe is recognized as a high performing thermoelectric material, there are other 

drawbacks to consider. Lead is widely recognized as a toxic material, and so research has been 

motivated to replace this toxic Pb with Ge or Sn. By replacing Pb, we can strive to maintain the 

high performance of this class of materials but without the toxicity or price. GeTe has been 

identified as the highest performer in terms of the electronic component, or power factor S2s, and 

has been the subject of many studies [32-50]. SnTe has also been studied, both pristine and 

containing a variety of dopants, and has nominally better thermal properties in addition to Sn 

being a less expensive element than Ge [51-65]. In addition, both GeTe and SnTe exhibit a high-

temperature cubic phase (space group Fm-3m), and a low-temperature phase that is 
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rhombohedral (space group R3m) with the structural phase transformation occurring at  670K for 

GeTe and 97K for SnTe. It is also known that these materials form a complete solid solution, that 

substituting Ge for Sn at any concentration will not result in any line compounds [66]. By 

substituting Sn for Ge, the transition temperature is a tunable property governed by the amount 

substituted [67]. While there have been a number of studies on this solid solution [68-75], there 

is a relative dearth of information about the thermoelectric properties of polycrystalline samples, 

which this study aims to remedy. By being able to continuously vary the Sn concentration on the 

Ge site, we can quantify the effect of these features and observe how changes in the crystal 

structures affects the fundamental thermoelectric properties.  
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CHAPTER 2 PHYSICS OF THERMOELECTRICS 

 
The study of thermoelectric materials and their performance lies firmly in the domain of 

solid-state physics and more specifically in the application of the physics of semiconductors. 

Thermoelectric materials can be understood through the fundamental material properties that 

govern the transport of charge carriers and phonons through a material. The electrical 

phenomena of interest are primarily the behavior of the electrical conductivity (σ) as well as the 

Seebeck coefficient (S), while the thermal behavior of a material can be understood through the 

thermal conductivity (κ). These variables, along with the temperature of a system (T) are used in 

conjunction to determine the efficiency of a thermoelectric material through the aforementioned 

dimensionless figure of merit ZT (equation 1.3). Resting on theoretical ground that has been 

stable for some time, the additional complexities of real materials and their performance make 

the computational prediction of these properties difficult. Specifically, the fact that many 

thermoelectric materials are polycrystalline and have variable grain sizes and defects makes a 

computational determination of ZT for a material difficult. Nevertheless, it is important to 

elucidate the underlying theoretical behavior in order to understand the most important concepts 

and parameters that govern the evaluation of thermoelectric materials as well as understanding 

the results and trends that emerge from the results presented in further chapters.  
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2.1 Electrical Conductivity 

Electrical conductivity, σ, is defined as the ability of a material to conduct electric 

current. It is a measure of how well the material allows the flow of electrons in response to an 

applied electric field. If we choose to consider the Drude model, we can begin with some 

assumptions that there exist charged particles in a material, they freely move in response to a 

force generated by an external electric field, and they largely do not interact with each other. The 

quantification of conduction, the conductivity, can be explained by the frequency of charge 

carrier collisions on lattice sites, which limit the flow of charge carriers through a material. 

While simple on its face, the Drude model is a powerful conceptual framework from which we 

can closely approximate much of the behavior of metals, and to some extent semiconductors as 

well. For the latter case we know well that there are two charge carrier species, electrons and 

holes, but for the sake of brevity we take the perspective of electrons as charge carriers knowing 

the behavior for holes is similar.  

Fundamentally, the formulation of σ can be traced back to simple concepts such as 

Ohm’s Law and Newton’s second law. Ohm’s law states that the current (I) flowing is 

proportional to the voltage drop (V) across a material by the relation V= IR where (R), the 

resistance, depends on the material and its dimensions (length L and cross section A) but is 

independent of the applied voltage or current (equation 2.3). In a hypothetical resistor, the 

voltage drop across length L can be expressed as V= E* L, with E being the external electric 

field. If we consider the current density j = I/A, we can understand a relation between the current 

density j, electrical field E, and a material parameter ρ, which is the resistivity of a material and 

the inverse of the conductivity [76].  
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    𝑉 =  𝐼 𝑅                                                                  (2.1) 

 

𝑗 =  
𝐼

𝐴
 , 𝐼  =  𝐴  ⋅  𝑗                                               (2.2) 

 

𝑅 =  𝜌
𝐿

𝐴
                                                                  (2.3) 

 

𝐸 𝐿  =  𝜌
𝐿

𝐴
  ⋅  (𝐴 𝑗)                                               (2.4) 

 
𝐸  =  𝜌  ⋅  𝑗                                                             (2.5) 

 

In the perspective of Drude, we can then imagine that the average velocity of charge 

carriers, vavg, will be in the same direction through the material. We must also consider the 

number of charge carriers in a given volume that all equally contribute to the current density j, so 

we can rewrite the current density j as a product of this velocity, the number of charge carriers n, 

and the magnitude of an individual charge e.  

𝑗  =   − 𝑛 𝑒 𝑣𝑎𝑣𝑔                                                                       (2.6) 

 

 
Here the negative sign arises due to the fact that by convention j is in the direction of the flow of 

positive charge. To combine these terms we can consider an application of Newton’s second law. 

If there is no external field, the average velocity of the charge carriers is zero because they are 

randomly oriented. When an external field is applied, the charge carriers accelerate in the 

direction of the current density j until they collide with a lattice site. Then, we can assume that 

the direction of the charge carrier after the collision is random, and thus v0 does not contribute to 
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the average velocity.  

𝐹 =  𝑚𝑎,  𝐹 =  𝑒𝐸                                           (2.7) 

  

𝑎  =  
𝐹

𝑚
=

𝑒𝐸

𝑚
                                                         (2.8) 

 

𝑣(𝑡) =  𝑣0 + 𝑎𝑡  = 𝑣0  +  
𝑒𝐸

𝑚
𝑡                           (2.9) 

 

                 𝑣𝑎𝑣𝑔 =
𝑒 𝐸

𝑚
𝑡                                                 (2.10) 

 
By considering the average velocity vavg and the average time between collisions as τ, we can 

replace the expression for v in our definition of j to have an expression for the current density as 

a function of the electric field, where: 

𝑗  =  𝑛 𝑒  (
𝑒𝐸

𝑚
𝑡) =   (

𝑛𝑒2𝜏

𝑚∗
) 𝐸                                   (2.11) 

  

𝑗 =
𝑛 𝑒2 𝜏

𝑚∗
 𝐸                             (2.12) 

 
So that we can express the proportionally value relation between electric field and current 

density as the electric resistivity as defined from our expression for the material resistivity 

J = σ * E, where σ = 1/ ρ, and  𝜎  =
𝑛 𝑒2𝜏

𝑚∗
, where σ is the electrical conductivity, and the electrical 

resistivity is its inverse.  

𝜎  =
𝑛 𝑒2𝜏

𝑚∗
                                                   (2.13) 

 

 
One often sees the electrical conductivity is expressed as σ = n e µ, where µ is the “electronic 

mobility” because it captures two essential parameters: the scattering relaxation time τ as well as 

the charge carrier mass m. If our charges are instead moving in the conduction band of a 
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semiconductor, the behavior of this mass is more properly understood as m*, or the effective 

mass, as the curvature of electronic bands affects the effective mass of charge carriers [76].  

𝜇 =
𝑒 𝜏

𝑚∗
   ,  𝜎 =

𝑛 𝑒2 𝜏

𝑚∗
                                                       (2.14) 

 
Of course, this result is recovered for a crystalline metal, and is incomplete without additional 

discussion of the function of these parameters as a function of temperature as well as a 

discussion of the band structure of semiconductors, which will also detail the various 

contributions to the scattering time 𝜏  as well as the relation between band structure and m*.  
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2.2 Carrier Concentration and Mobility 

While in metals we can use the semiclassical model to describe the overall themes 

regarding the behavior of the transport of charge carriers, we need to refine our understanding 

when the material in question is semiconducting. In particular, the carrier concentration cannot 

be simply taken as a constant, but in fact depends on many additional factors. Specifically, 

semiconductors do not have the same number of allowed energy states at any given energy, but 

have a variable density of allowed energy states, known as the density of states (DOS). More 

critically, semiconductors exhibit a ‘gap’ in the allowed energy states for charge carriers, 

between the conduction band and the valence band (see Figure 2.1 below). Another important 

concept is the Fermi level, that is the energy level for a given charge carrier in equilibrium that 

has a 50% chance of being occupied. For metals the Fermi level is within the conduction band, 

and when carriers gain energy from an external field, they easily occupy higher energy states 

allowed by the unfilled states in the conduction band. For semiconductors the Fermi level is 

within the gap between allowed energy bands, and so a more detailed description is required for 

understanding the behavior of these materials. If the gap is wide enough, carriers are unable to 

gain enough energy to cross the gap and conduct electricity and therefore exhibit no conduction 

at all; these are referred to as insulating materials.  
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Figure 2.1: Illustration of electronic bands for metals, insulators, and semiconductors. Note the 

gap in semiconductors, and the distance between the band edge and the Fermi level (EF) for p-

type versus n-type semiconductors. Image from 

https://en.wikipedia.org/wiki/Valence_and_conduction_bands 

 

  

 Using the powerful formulation provided by Fermi-Dirac statistics as well as the density 

of states formulation we can express the carrier concentration: 

𝑛  =   ∫ 𝑓(𝐸)𝑔(𝐸)𝑑𝐸
∞

0
                   (2.15) 

 
Where f(E) is the Fermi-Dirac distribution function and g(E) is the density of states for a free 

electron: 

𝑓(𝐸) =   (1 + 𝑒
𝐸−𝐸𝐹

𝑘𝑏𝑇 )

−1

                    (2.16) 

 

𝑔(𝐸) =  
√2𝑚∗3/2

ℏ3 𝜋2 √2𝐸             (2.17) 

 
Where m* is the effective mass, E is the energy above the conduction band edge, Ef is the Fermi 

energy, and T is the temperature. If we then combine these equations, we can then recover the 

terms that depend on the effective mass and energy separately: 

https://en.wikipedia.org/wiki/Valence_and_conduction_bands
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𝑛 =  
𝑚∗3/2

ℏ3 𝜋2 ∫
√2𝐸

1+𝑒

𝐸−𝐸𝐹
𝑘𝑏𝑇

𝑑𝐸
∞

0
           (2.18) 

 

𝑛 =  𝑁𝑐  
2

√𝜋
𝐹1/2 (

𝐸𝐹

𝑘𝑏𝑇
)            (2.19) 

 

 𝑁𝑐 = 2  (
2𝜋𝑚∗𝑘𝑏𝑇

ℏ2 )
3/2

             (2.20) 

 
Where F1/2 is the Fermi-Dirac integral, and Nc is the effective density of states at the conduction 

band edge. If Ef = 0, then we recover the result for the carrier concentration at the conduction 

band edge. However, for semiconductors this is often not the case, and we may make further 

simplifications for when the value of Ef inside the Fermi-Dirac integral is in fact not near the 

conduction band edge but rather several factors of kbT into the gap. The previous integral 

formulation then takes the form [76]: 

 𝑛 ≅
𝑚∗

ℏ3𝜋2

3/2
𝑒

−(𝐸𝑐−𝐸𝐹)

𝑘𝑏𝑇   ∫ 𝑒
−(𝐸−𝐸𝑐)

𝑘𝑏𝑇∞

𝐸𝑐
 √2𝐸𝑑𝐸          (2.21) 

 
If we then take into further consideration the law of mass action, that the number of electrons (n) 

and holes (p) should be the same number (that is, each electron promoted out of the conduction 

band will leave behind a hole) and understanding that the energy term dominates the exponential 

relative to the temperature term inside the integrand, we can multiply the equation for n by itself 

to obtain the intrinsic  concentration  ni. Taking the square root: 

𝑛 = 𝑝,     𝑛 ⋅ 𝑝  =  𝑛𝑖
2            (2.22) 

 

 𝑛𝑖   ≈ (
𝑚∗𝑇

ℏ2 2𝜋
)

3/2
𝑒

−(𝐸𝑐−𝐸𝐹)

𝑘𝑏𝑇                   (2.23) 

 

Knowing that the Fermi level Ef is halfway between the valence and conduction bands (assuming 
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equality of electron and hole effective masses), we can rewrite the above in terms of the Energy 

gap Eg and can clearly see how the intrinsic carrier concentration is a function of the 

temperature, effective mass, and the band gap energy.  

𝑛𝑖   ≈ (
𝑚∗𝑇

ℏ2 2𝜋
)

3/2
𝑒

−𝐸𝑔

2𝑘𝑏𝑇                (2.24) 

 

The above is a simplification of the effective masses of the two charge carrier species, but that is 

not necessarily the case. If the masses are not equal, the Fermi level will move in the direction of 

the band with the lower effective mass, but in most materials the ratio of masses is near unity. 

When this is the case, the Fermi level will still be within several kbT of the center and our 

approach is still a useful formulation for understanding the most important parameters governing 

the carrier concentration. With this formulation, one can then consider the behavior of the 

electrical conductivity of a metal versus an intrinsic semiconductor. While a metal with a 

relatively stable carrier concentration will see its electrical conductivity decrease with 

temperature as the time between collisions 𝜏 decreases as thermally excited lattice sites cause 

more collisions, the semiconductor will see an increase in the electrical conductivity with 

temperature as the carrier concentration increases with temperature.  

Armed with this understanding, one can also appreciate the utility of doping a 

semiconducting material. By substituting a small number of ‘impurity’ atoms into the lattice with 

a different valence than the base material, one can tune the carrier concentration of a material in 

the direction (up or down) to one’s choosing. Substituting atoms with a higher valence, which 

add electrons is referred to as an “n-type” dopant while atoms with a lower valence will be “p-

type” dopants. These additional electrons or holes will then finely tune the total carrier 

concentration by adjusting the intrinsic concentration plus the number of ionized donor 

substitutes.  
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The overall performance of a doped intrinsic semiconductor as a function of temperature will 

depend on the particulars of the base material and doping concentration but follow a general 

pattern. At extremely low temperatures, there is not enough energy for any of the carriers from 

donors or intrinsically to bridge the band gap and the concentration is very low. As temperature 

increases, the carrier concentration will increase as dopant atoms become ionized and contribute 

to the total charge carrier concentration but will eventually saturate once all donors are ionized. 

Then the concentration will remain stable or ‘saturated’ until the temperature reaches a high 

enough level to promote intrinsic carriers to be excited across the band gap, and the carrier 

concentration again increases as a power law with temperature.  

 We return again to the standard formulation of the electrical conductivity σ = n e µ, and 

now that we have a better understanding of what goes into n, we now examine the electron 

mobility µ and how it also contributes to our understanding of semiconducting behavior. Recall 

above our formulation for µ: 

𝜇 =
𝑒 𝜏

𝑚∗
            (2.25) 

Where t is the average time between scattering events and m* is the effective mass. There is a 

variety of processes that cause scattering events, and Matthiessen’s rule [85] states that these 

scattering events can be added as reciprocals: 

1

𝜏
  =  

1

𝜏𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠
+

1

𝜏𝑙𝑎𝑡𝑡𝑖𝑐𝑒
+

1

𝜏𝑑𝑒𝑓𝑒𝑐𝑡𝑠
+ ⋯         (2.26) 

Where each   -1 represents the scattering rate for impurities (carriers scattering off ionized atoms 

in a doped material), scattering from defects in the material, or interaction of carriers with 

phonons in the lattice (lattice). One can also consider the electronic mobility in the same 

formulation: 
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1

𝜇
  =  

1

𝜇𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠
+

1

𝜇𝑙𝑎𝑡𝑡𝑖𝑐𝑒
+

1

𝜇𝑑𝑒𝑓𝑒𝑐𝑡𝑠
+ ⋯          (2.27) 

 

For the impurity scattering, the contribution to the mobility will depend on both the 

concentration of impurities (Ni) as well as the effective mass and temperature in the following 

form [77-78]: 

𝜇𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠 ~ 
𝑇3/2

𝑁𝑖√𝑚∗
                    (2.28) 

While the impurity scattering in general increases with temperature and decreases with 

concentration (as the available sites of scattering increase), the contribution from interaction with 

phonons has a different form [79]:  

𝜇𝑙𝑎𝑡𝑡𝑖𝑐𝑒  ~ 𝑇−3/2 𝑚 ∗−5/2           (2.29) 

When taking both into account, one can see the complex behavior of mobility and 

consequently conductivity as a function of temperature. For a doped semiconductor one very 

well might see a hump in the conductivity as a function of temperature as the carrier 

concentration approaches and then saturates the contribution from doped carrier saturates, 

followed by a dip as the mobility decreases with more interaction from phonons, before finally 

rising again with carrier concentration when intrinsic carriers are activated at a greater rate than 

the mobility decreases at higher temperatures. The location of the peaks and valleys in the 

conductivity temperature curve would depend on where the mobility peaks and behavior of the 

carrier concentration for each system.  

At higher temperatures and high carrier concentrations when a material enters the 

intrinsic region (with n on the order of or exceeding ~1021 carriers per cubic centimeter), charge 

carriers scattering off of each other become an important mechanism to consider as well. At this 

stage, the mobility will decrease at a greater rate than the contribution of more carriers, and the 
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more metallic behavior (where conductivity decreases with temperature) will be expected. For a 

highly doped semiconductor, this behavior will present itself at much lower temperatures, and 

the highly doped semiconductor will exhibit behavior more like a metal, and in general will 

decrease with temperature.  
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2.3 Seebeck Coefficient 

 The Seebeck effect is the fundamental basis of thermoelectric power generation, the 

conversion of heat into electricity. The Seebeck coefficient, also known as the thermopower, is a 

key parameter in describing the transport properties of thermoelectric materials. As stated in 

Chapter 1, we can initially simply express the Seebeck coefficient as the ratio of the measured 

voltage in a sample divided by the temperature gradient across the same sample: 

𝑆  = −
Δ𝑉

Δ𝑇
= −

(𝑉𝐻𝑜𝑡−𝑉𝐶𝑜𝑙𝑑)

(𝑇𝐻𝑜𝑡−𝑇𝐶𝑜𝑙𝑑)
           (2.30) 

 
If we understand that in a hypothetical bar of material, the Thot end will have charge carriers that 

have a higher energy, and they will diffuse down to the cold end of the material. This buildup of 

charge on the cold side of the bar, an imbalance of charge, will generate an electric field and if 

the charge carriers are electrons will have a lower potential. Electrons being a negatively charged 

particle will then necessarily introduce a negative sign into the expression above. The result is 

that for n-type materials, whose dominant carrier type is electrons, the Seebeck coefficient will 

have a negative value while p-type materials will have a positive Seebeck coefficient. Typical 

Seebeck values for thermoelectric materials are expressed in microvolts-per-Kelvin or (µV/K) 

and a ‘good’ Seebeck value is on the order of 100 uV/K. (the best values, typical values?). At 

room temperature, pristine GeTe has a Seebeck coefficient of +34 uV/K, owing to many 

naturally occurring vacancies on the Ge site that make the dominant carrier species holes [36].  

 As the primary mechanism for the Seebeck effect is the movement and diffusion of 

charge carriers, the scattering of carriers, the effective mass, and the carrier concentration play an 

important role in the overall magnitude of the Seebeck coefficient. As such it has a complex 

form and is usually expressed in the form of Fermi-Dirac integrals while also considering the 
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differing scattering mechanisms present in a material. It is usually expressed in the general form: 

𝑆  = ± (
(𝑠+2 )𝐹𝑠+1(𝜖)

(𝑠+1)𝐹𝑠(𝜖)
− 𝜖)            (2.31) 

 
Where Fx are Fermi integrals, 𝜖 is the Fermi energy (Ef/kbT), and s is the carrier scattering 

parameter, which takes values s=0, ½, or 2 for phonon, defect, and ionic impurity scattering 

respectively. Real systems have a mixture of all these scattering rates, and so for a given 

temperature a mixture of scattering mechanisms contributes to the total. For metals and degenerate 

semiconductors this is usually expressed by the Pisarenko equation which is an empirical formula 

widely used in the field of thermoelectrics that expresses the magnitude as a function of the 

effective mass, carrier concentration and temperature: 

𝑆 =  
8𝜋2𝑘2

3𝑒ℎ2 𝑇 𝑚 ∗ (
𝜋

3𝑛
)

2/3
           (2.32) 

 
Knowing full well that the carrier concentration n is also itself a function of the effective 

mass, shown in the previous sections, it can be understood how interrelated these expressions are 

to both the effective mass of charge carriers as well as the carrier concentration. The challenge 

presented by developing thermoelectric materials lies in this contraindication of the carrier 

concentration: the conductivity benefits from a high carrier concentration while the Seebeck 

benefits from a lower carrier concentration. The result is that for a given material system there 

exists and optimal carrier concentration n that maximizes the value 𝑆2𝜎. This term, the 

numerator and representing the electrical portion of ZT, is often called the power factor.  

For some materials, both species of carrier concentration may diffuse down the length of 

a material. If this indeed happens, the Seebeck coefficient is resolved from the weighted average 

of the conductivities and Seebeck coefficients of each charge species [80]:  
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𝑆  ≈  
𝑆𝑛𝜎𝑛 + 𝑆𝑝𝜎𝑝

𝜎𝑛 +𝜎𝑝
             (2.33) 

For a more complete description of the transport behavior in the electronic perspective, 

we must also consider the thermal energy transported by charge carriers as they move through a 

material. The relationship between the thermal conductivity of charge carriers, called the 

electronic thermal conductivity or ke is given by the Wiedemann-Franz law [82]: 

𝜅𝑒   =  𝜎 𝐿 𝑇           (2.34) 

 
This empirical law is also based from Drude theory of electrical conductivity where σ is the 

electrical conductivity, T is temperature and L is the Lorenz number. Typically one can take the 

value of L as a constant, that is L0= 2.44 x 10 -8 V2K-2. However, this model usually fails for 

materials at high and low temperatures, as well as for highly doped semiconductors. This can 

lead to errors in calculating the contribution of the different parts of the thermal conductivity by 

overestimating the electronic portion 𝜅e by as much as 40%. Recent work by Kim, Gibbs and 

Snyder [81] show that for materials with a significant Seebeck coefficient, a better 

approximation for the Lorenz value as a function of the Seebeck coefficient is more appropriate: 

𝐿  =  1.5  exp [−
|𝑆|

116
]   ⋅  10−8 𝑊Ω 𝐾−2          (2.35) 

 
Where S is in the units of µV/K. This approximation has been the standard formulation in the 

thermoelectric community when a full characterization of the Lorenz number is not possible. 

This formulation has been shown to agree with experimental results in many TE materials 

including IV-VI semiconductors like PbTe and alloys of Si-Ge [81].  
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2.4 Thermal Conductivity 

 Thermal conductivity is a fundamental property of materials that describes their ability to 

conduct heat. It is defined as the rate at which heat flows through a material per unit area per unit 

temperature difference and is typically expressed in units of Watts per meter Kelvin (W/mK). 

The total thermal conductivity is the sum of the two different contributions from the different 

mechanisms for heat transfer in a material: 

𝜅𝑡𝑜𝑡𝑎𝑙   = 𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒           (2.36) 

 
Where electronic is the heat carried by the movement of charge carriers as detailed above, and 

lattice is the heat carried by the conduction of quantized wave packets, called phonons, as they 

travel through a material crystal lattice via vibrations. While the electronic behavior of materials 

is in the numerator of the figure of merit ZT, the denominator is only the thermal conductivity.  

Typically for semiconductors the electronic thermal conductivity makes a small overall 

contribution; thus a common approach to developing high efficiency thermoelectrics and 

maximizing ZT has focused on methods for reducing lattice to as small as possible without 

negatively impacting the electronic properties. 

To understand the mechanism of heat transfer through a solid material, it is helpful to 

imagine a toy model that bears significant resemblance to real systems. Consider a periodic array 

of atoms in three dimensions as a network of interconnected masses and springs. When an atom 

is displaced from its lattice site, it exerts a force on its neighbors' atoms not dissimilar from the 

linear spring restoring force. As the initial atom comes back to rest at its initial lattice site, the 

displacement is taken up by neighboring atoms and the displacement can be understood as a 

wave that travels through the lattice. This wave packet is known as a phonon and is a quantized 
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representation of the disturbance of atoms from their lattice sites. Any material above absolute 

zero will see atomic motion around the lattice sites, which can be understood in a macroscopic 

way as the temperature of the system. Starting at absolute zero with no atomic motion, as 

temperature is increased the lowest energy (lowest frequency) vibrational modes will be 

activated first, and as temperature goes higher more phonon modes with higher energy will be 

activated.  

In many textbooks the formulation for lattice is relatively straightforward, but truly 

understanding the behavior of a material as a function of temperature calls for a more nuanced 

exposition of where this formulation comes from, particularly as a function of temperature. 

Much like how the electrical conductivity is a scalar relation between the current density and the 

electric field, thermal conductivity can be thought of as the scalar relation between the heat flow 

and the temperature gradient. 

𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒   =
1

3
𝐶 𝑣 𝑙            (2.37) 

 

𝐻  = 𝜅 ∆𝑇              (2.38) 

Where C is the volumetric heat capacity, v is the speed of sound, and l is the mean free path for 

the travel of phonons between scattering events. With H as the heat flow and T as the 

temperature gradient, thermal conductivity (in our case, just considering conduction from the 

lattice) is the scalar relating the two. A more careful consideration of H can be defined with help 

from the Boltzmann transport equations, which relate the heat flow to the number of phonons, 

the group velocity and the energy carried by these phonons ħω. We can then re-arrange the 

above to get 𝜅  by itself [83]: 

𝐻  = ∑ 𝑁(𝑘)ℏ𝜔(𝑘)𝑣(𝑘) 
                  (2.39) 
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𝜅  =
𝐻

∆𝑇
=

1

∆𝑇
∑ 𝑁(𝑘)ℏ𝜔(𝑘)𝑣(𝑘) 

            (2.40) 

 
To further simplify, we can implement what is called the relaxation-time approximation, where 

the number of  increased phonons per change in temperature in some relaxation time t is small, 

i.e. (
𝜕𝑁

𝜕𝑇
) =  

𝑁0−𝑁

𝜏
 and that (

𝜕𝑁

𝜕𝑇
) ≈

𝜕𝑁0

𝜕𝑇
. This allows us to turn our sum into an integral up the 

highest activated phonon mode[83]:  

 

𝜅  =  
1

3
∫ ℏ𝜔

𝜔𝑚𝑎𝑥

0
 𝑣2 𝜏 

𝜕𝑁0

𝜕𝑇
 𝑓(𝜔)𝑑𝜔           (2.41) 

 
Where f() is the phonon density of states with τ as our relaxation time. To inch ever closer to 

the simplified version we are used to seeing an insight of the Debye model assumes that the 

phonon dispersion curve is linear and we introduce a theoretical temperature called the Debye 

temperature. The Debye temperature is the temperature at which every available phonon mode in 

the system is activated, as at low temperatures only the lowest energy modes of vibration are 

activated. Due to the physical spacing of the lattice and finite number of atoms in a primitive 

cell, there is a maximum frequency that will meet the boundary conditions of a periodic crystal 

system. If we consider the highest frequency mode possible in a material system, it will have 

energy kbTD, where TD is the Debye temperature, usually denoted as 𝜃𝐷. Implementing this 

approach with the above expression, we can rewrite our integral in term of the Debye 

temperature and the scaled integrand 𝑥  =  ℏ𝜔/𝑘𝑏𝑇.  

𝜅  =
 𝑘𝑏

2𝜋2𝑣
(

𝑘𝑏

ℏ
)

3
 𝑇3  ∫ 𝜏(𝑥)

𝜃𝐷/𝑇

0
 

𝑥4𝑒𝑥

(𝑒𝑥−1)2 𝑑𝑥             (2.42) 

 
If we now re-introduce the concept of the “mean free path” of a phonon (l= vt), we can then even 

further simplify the expression to separate out an expression for the heat capacity from the velocity 
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and mean free path products: 

𝜅  =
1

3
𝑣2   𝑇3   ∫  𝜏(𝑥)

𝜃𝐷/𝑇

0
 

𝑥4𝑒𝑥

(𝑒𝑥−1)2
𝑑𝑥            (2.43) 

 
 

𝜅  =
1

3
𝑣    ∫ 𝑙(𝑥)

𝜃𝐷/𝑇

0
  𝐶(𝑥)𝑑𝑥 ,                                (2.44) 

 

 

𝐶(𝑥)  =
 3𝑘𝑏

2𝜋2𝑣3 (
𝑘𝑏

ℏ
)

3
 𝑇3  ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2

𝜃𝐷/𝑇

0
 𝑑𝑥                            (2.45) 

 
Where we now have 𝜅 and l as functions of the dimensionless parameter x, and we recover 

something that looks very similar to the ‘textbook’ formulation of the thermal conductivity = 

(1/3)c*v*l  (or if you like  = (1/3) C* v^2 *  ) if we execute the integral and find values for l and 

C. We can then understand that the heat capacity as well as the mean free path are indeed 

functions of temperature and phonon frequency. This formulation allows us to consider the 

effects on these parameters separately and how this might show up in the behavior of materials.  

For low temperatures, it can be easily seen by the formulation of C(x) that the heat capacity 

follows a cubic dependence on T. Starting at a low value near absolute zero, the heat capacity 

rises rapidly with T until all the phonon modes have been activated and we approach the Debye 

temperature. After this, the high-temperature limits applied to the integral and the heat capacity 

becomes a constant value, which is described as the Dulong-Petit law where the heat capacity is 

a constant value based on the average molar mass of the material, i.e.: 

𝐶  ∝  𝑇3 ,  𝑇  ≪  𝜃𝐷                                          (2.46) 

 

𝐶  = 𝑐𝑜𝑛𝑠𝑡.   ,  𝑐𝑜𝑛𝑠𝑡 ~ 
3𝑘𝑏𝑁𝐴

𝑚𝑜𝑙𝑒𝑠
       𝑇 ≫  𝜃𝐷                  (2.47) 

 
For the present study, the materials in question have Debye temperatures well below 
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room temperature as the reported Debye temperatures for GeTe and SnTe range from 180-200K 

and 160-180K respectively [86]. As such, with all measurements done in this study at or well 

above room temperature, we take the Dulong-Petit values as useful approximations for the heat 

capacity. This leads us back to the textbook form of the lattice thermal conductivity, with the 

explicit dependence on mean free path l (l=v ) or with the time between scattering events : 

𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =  (1/3)𝐶 𝑣 𝑙  =  (1/3)𝐶 𝑣2 𝜏                        (2.48) 
 

 

If we more closely consider the speed v or the speed of sound through the material, we 

can see that its value is closely related to the material density as well as the elasticity of the 

material.  

𝑣𝑠𝑜𝑢𝑛𝑑 =  √
𝐾

𝑑
            (2.49) 

 
Where K is the coefficient of stiffness and d is the density. Elasticity is the ability of a material to 

reversibly deform up in response to stress. The coefficient of stiffness might be more 

appropriately expressed as a tensor Kij to account for the number of possible directions the 

deformation might take. When the sample dimensions are much bigger than the grains of the 

material (as it is in the present study, with grain sizes on the order of tens of microns) the so-

called isotropic approximation allows us to simplify the tensor. Fortunately for polycrystalline 

materials, the (generally) random orientation of grains in the sample as well as the symmetry of 

the crystal system reduce the components of Kij to just two independent components K11 and K44, 

which are more commonly referred to as C11 and C44.  

In principle, the speed of sound is the addition between the different component waves 

that are possible, the longitudinal and transverse modes, which are distinct: 
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𝑣𝑠𝑜𝑢𝑛𝑑 =   [
1

3
(

1

𝑣𝑙
3 +  

2

𝑣𝑡
3)]

−
1

3
                   (2.50) 

 

Borrowing some terminology from our friends in engineering, we can express the different 

moduli in terms of the above values in the elastic tensor, and more fully appreciate how these 

elastic tensor values affect the speed of sound. The shear modulus (G) is just C44, while the bulk 

modulus 𝐵 = 𝐶11  −
4

3
𝐶44. Applying to the two modes of sound propagation: 

𝑣𝑙𝑜𝑛𝑔𝑖𝑡𝑑𝑖𝑛𝑎𝑙 = √
𝐶11

𝑑
           (2.51) 

 

𝑣𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = √
𝐶44

𝑑
            (2.52) 

 

The mean free path, or closely related time between scattering events, is often the parameter of 

interest when developing materials with ever-lower thermal conductivity.  Much like the 

Mattheisen’s rule mentioned above, we can consider the contributions from different scattering 

mechanisms separately. These scattering mechanisms depend not only on the material 

composition and crystal structure, but also on macroscopic qualities such as the grain size, 

sample purity, and presence of vacancies in the lattice. In the present study, the most important 

scattering mechanisms present in these materials are impurity (point-defect) scattering, boundary 

scattering, and what is called  phonon-phonon Umklapp scattering.   

1

𝜏𝑙𝑎𝑡𝑡𝑖𝑐𝑒
  =  

1

𝜏𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠
+

1

𝜏𝑔𝑟𝑎𝑖𝑛𝑠
+

1

𝜏𝑈𝑚𝑘𝑙𝑎𝑝𝑝
          (2.53) 

 
Boundary scattering is related to the scattering of phonons off the boundaries of the sample itself, 

or rather the boundaries of neighboring grains in the material for a polycrystalline material. 
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Processing techniques in the synthesis phase of polycrystalline formation such as ball-milling or 

sintering parameters are the primary way of affecting this rate, by reducing the mean free path 

down to the size of an individual grain. As this primarily affects phonons with long wavelengths, 

it is more important for low-temperature behavior.  

Impurity scattering refers to a variety of impurities that can be present in the material. 

These impurities generally are confined to a single atomic site (thus giving rise to the appellation 

point defect) and may be as small as the mass differences in different isotopes present in a 

material to as large as a vacancy on the lattice site. Work on several materials systems, including 

rutile [119] and diamond [87] irradiated with neutrons showed that lattice vacancies could play 

an important role in reducing thermal conductivity. For this study, we expect impurity scattering 

to be important for the materials in this solid solution, as GeTe has a relatively high rate of 

naturally occurring vacancies on the Ge site [36]. While SnTe also has naturally occurring 

vacancies, they occur at a lower rate than that of GeTe [51]. In each case, these impurities give 

rise to the observed carrier concentrations of the materials, as each vacancy results in a 

contribution to the p-type carrier concentration.  The solid solution of GeTe and SnTe presents a 

type of impurity one might reasonably also call alloy scattering, in which Sn may be viewed as a 

point defect on the Ge site in GeTe, or alternatively Ge as a point defect on the Sn site in SnTe.  

If we compare the thermal conductivity of pure Ge versus GeTe, the GeTe system will 

have a nominally lower thermal conductivity due to the larger average atomic mass of Ge (m= 

72.64u) and Te (m=127.6u), as well as the lower Debye temperature of the binary compound. If 

we then further modify the system by alloying with Sn (m=118.71u) on the Ge site, then we will 

further disrupt the propagation of phonons and further suppress the thermal conductivity. 

Because the highest energy phonons approach the wavelength of the lattice spacing, these effects 
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will be important at all temperatures, but especially at high temperatures. It was shown by 

Rayleigh that the relationship between scattering rates for sound was related strongly to the 

frequency [89]. Between the solid solution of GeTe and SnTe, we might expect the minimum 

conductivity due to impurity scattering to occur in the middle (GeSnTe2), where the random 

assignment of Ge and Sn atoms provides for the maximum disorder in the lattice and provides 

the most amount of scattering [90]. Work by Klemens showed that the affect due to mass 

differences scaled as the square of mass differences [88]: 

1

𝜏
~ (

Δ𝑀

M
)

2
                                (2.54) 

 
Umklapp scattering (from the German word umklappen “to turn over”, a phrase proposed 

by a student of Wolfgang Pauli, Rudolf Peierls) is a process by which two phonons scatter off of 

each other, and the resulting phonon vector lies outside the first Brillouin zone of the crystal, so 

when translated back into the original Brillouin zone, it points away from the vectors of the first 

two phonons. Studies by Glen Slack in the mid 20th century gave us a rough relationship between 

the temperature and the thermal conduction due to Umklapp processes at low temperature [91]: 

𝜅𝑈 ~ 𝑇 𝑒
𝜃𝐷
2𝑇 ,        𝑇 ⋅ 10  <  𝜃𝐷          (2.55) 

 
At higher temperatures, the number of phonons continues to increase, and one would expect the 

phonon-phonon interactions to be more and more likely, which would strongly decrease the 

thermal conductivity as temperature increases. For higher temperatures, all the above processes 

contribute to the total thermal conductivity, and it has been shown experimentally that the 

general trend for thermal conductivity varies inversely with temperature, that is: 

𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒  ~ 𝑇 −1     𝑇  ≫  𝜃𝐷           (2.56) 

 
Taking the many above processes into account, Slack et al  combined all these variables into a 
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succinct expression for thermal conductivity to serve as a guide for selecting low (or high) 

thermal conductivity materials sufficiently above the Debye temperature [92]:  

𝜅  =  𝑐 
𝑀 𝜃𝑑 𝑉

𝑇𝛾2𝑁2/3                            (2.57) 

 
Where M is the average atomic mass,   is the Debye temperature,   is the Grüneisen parameter, 

V is the volume per atom and N is the number of atoms per unit cell. This not only reflects the 

expected T-1 dependence, but also considers crystal system qualities such as the number of atoms 

per unit cell and their volume.  

Of particular importance in this equation is the Grüneisen parameter. Physically this is 

associated with terms higher than quadratic in the potential energy relation for atomic motion – 

in other words, it is a measure of deviations from perfectly harmonic (Hooke’s law) behavior.  A 

perfectly harmonic lattice would have a Grüneisen parameter approaching zero, and an infinitely 

large lattice thermal conductivity.  Of course, all solids possess some deviation from perfectly 

harmonic lattice vibrational spectra and thus have finite (non-zero) Grüneisen parameter.  As can 

be inferred from Equation 2.58 above, a large Grüneisen parameter is a strong predictor of a low 

lattice thermal conductivity and recent work has been devoted to identifying and developing 

materials with these desirable properties for thermoelectric applications.  

Macroscopically, the average Grüneisen parameter may be related to the coefficient of 

thermal expansion of a solid: 

𝛾  =  
𝛼 𝐵

𝐶𝑉𝑑
            (2.58) 

 
Where α is the thermal coefficient of expansion, B is the bulk modulus, CV is the heat capacity at 

constant volume and the material density is d.  

For a solid solution, alloy or defect scattering will have a varying effect as a function of 



35 

 

the amount of substitution. Starting with the end members on each side at their respective 

pristine thermal conductivities (on the order of 5-10 W/mK) [35,51] as dopant is introduced the 

thermal conductivity will decrease due to the mass differences introduced into the lattice. This 

will continue until the conductivity as a function of substitution flattens or levels out at 

intermediate values of substitution. This shape, which one might reasonably call a “bathtub” 

shape is modeled by the following function:  

𝜅0  =  
tan−1 𝑥

𝑥
            (2.59) 

 
Where x is the amount of dopant in the solid solution, i.e., the “x” in GeTe(1-x) Sn(x) Te. This 

study will use this notation often in this context, taking “x” to be the fraction of Sn atoms alloyed 

onto the Ge lattice site. In Figure 2.2 below, an illustration of this shape is depicted from [93]. 

 
Figure 2.2: Demonstration of the “bathtub” shape due to alloy scattering in Magnesium Silicide 

alloys from [93]. Note the rapid drop-off in lattice thermal conductivity even at small dopant 

amounts. 
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2.5 Thermoelectric Figure of Merit 

We return again to the dimensionless figure-of-merit ZT that demonstrates the importance 

of maximizing the electronic performance of a material while also limiting the thermal 

conductivity:  

𝑍𝑇  =  
𝜎 𝑆2

𝜅𝑒+𝜅𝑙
            (2.60) 

 
But as we can understand from above, there are also deeper parameters that underlie the complex 

interrelation between the above fundamental parameters that we could use to express ZT to use 

as a guide for identifying or designing promising thermoelectric materials: 

𝑍𝑇  ∝  
𝑚∗2 𝜇 𝛾2

𝑀 𝜃𝐷𝑉
            (2.61) 

 
Where m* is the effective mass,  is the mobility, γ is the Grüneisen parameter, M is the average 

atomic mass, and   is the Debye temperature. This makes a little more explicit how challenging 

developing high-ZT materials can be, as effective mass and mobility are inversely correlated. In 

addition, as mentioned above there exists an optimal carrier concentration for a given material 

that maximizes the electronic performance as well as the thermal conductivity, as the electronic 

portion of the thermal conductivity rises with electronic conductivity. An excellent and oft-

repeated figure by Snyder et al. [21] in Figure 2.3 below demonstrates this graphically.  
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Figure 2.3: From [21], a figure showing the contraindication of the material properties as a 

function of carrier concentration versus ZT value. Here, α is the Seebeck coefficient, , κ is the 

thermal conductivity, and σ is the electrical conductivity. 
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CHAPTER 3 EXPERIMENTAL METHODS 

 
All samples were synthesized via direct fusion as ingots from elements obtained from 

Alfa-Aesar in small pieces or powder with at least 99.999% purity (also described as 5N+). 

Stoichiometric amounts were separately weighed out on plastic trays and loaded into a quartz 

ampoule with an inner diameter of 10mm and a rounded bottom.  These quartz ampoules were 

then transferred to a sealing station. At the sealing station, the ampoules were subjected to a 

vacuum of at least 1x10-5 Torr and sealed with an oxygen-methane torch.  

Sealed ampoules were placed in Thermolite box furnaces and gradually heated to a maximum 

temperature of 950 °C to completely melt the elemental powders. Once at temperature, ampoules 

were soaked at 950 °C for at least 8 hours and then gradually cooled to room temperature. No 

ingots were annealed or quenched, to ensure that samples would not have high-temperature 

structures ‘frozen-in’. Once cooled to room temperature, the quartz ampoules were broken open 

and the resulting ingots were extracted, ranging from 4-8 grams per ingot. Due to the random 

nature of heating and cooling regarding specific crystallographic orientations, this synthesis 

procedure produces samples that are polycrystalline in nature. We did not see any long-range 

ordering of the domains in our samples, and any ordering would be upset by our powder 

processing techniques detailed below. A picture of a sealed ampoule and an extracted ingot is 

shown below in Figures 3.1 and 3.2. 

 

   
Figure 3.1: A sealed ampoule containing a SnTe ingot 
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Figure 3.2: The bottom view of an extracted ingot of a Germanium-rich sample. 

 

 

Many thermoelectric materials, including tellurides and especially materials undergoing a 

crystal phase transition, do not readily form high density ingots. Fresh ingots were porous and 

brittle, likely owing to large grain sizes formed during the slow cooling process. Large grain 

sizes are known to decrease yield strength and hardness, rendering samples mechanically weak. 

To address this and minimize the effects of porosity and low density, a procedure to grind ingots 

into fine powders before a consolidation procedure was developed.  
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3.1 Powder Processing and Sintering 

 Furnace fresh ingots were extracted from quartz ampoules manually and hand-

ground in a mortar and pestle. To check sample purity, samples were subjected to x-ray 

diffraction. To further prepare samples for sintering in a Spark-Plasma-Sintering apparatus, 

samples were subjected to a high-energy ball mill with stainless steel media. Sample powders 

were loaded under an argon atmosphere in a stainless-steel jar with 4-6 stainless steel ball 

bearings and mixed in a SPEX MixerMill 8000D for five minutes. Initial samples were milled 

for longer times, but this additional milling was determined to be unnecessary and introduced 

additional mechanical stress on grains in the sample, evidenced by cracked and brittle samples as 

well as broader XRD peaks in excessively milled samples.  

An attempt was made to circumvent the direct fusion synthesis process and synthesize 

powders by milling elemental powders in stoichiometric amounts, by mechanical alloying. 

Several end-members and solid-solution samples were attempted with ball-mill times upwards of 

three hours. When checked for purity via XRD, these samples produced powder that did not have 

sufficient sample purity with large contributions from unreacted elemental powder. This gave us 

renewed motivation to pursue synthesis via the traditional direct fusion synthesis method. 

After milling for five minutes, sample powder was manually extracted from the stainless-

steel jar and again subjected to x-ray diffraction. After this, sample powder was collected into a 

glass vial for preparation for solidification. Sample densification and solidification were 

achieved using a water-cooled Dr. Sinter Spark-Plasma-Sinter 211LX (SPS). Our process was to 

load powder into a 10mm diameter graphite die, with graphite foil spacers above and below 

10mm graphite punches. Up to 3 grams of powder could fit in a single die, but typically were 

loaded with about half that amount of powder. The loaded die would then be loaded into the SPS 
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chamber and brought under vacuum. The SPS subjects the die to a large uniaxial pressure and 

then utilizes an AC current to generate joule heating between the top and bottom electrodes. 

With a thermocouple connected directly to the die, the SPS has precise temperature and pressure 

controls that are monitored in a data acquisition computer.  

After reviewing available literature SPS synthesis parameters a temperature profile for 

the SPS was developed. A similar temperature profile, depicted in Figure 3.3, was used for all 

the powder samples to compress powder samples into a cylinder with >95% theoretical density. 

The profile was chosen through process optimization to consistently yield samples that were 

durable and dense: up to 300C in five minutes, up to 400C in another five minutes, and then 

holding at 400C for 20 minutes, before linearly cooling down to room temperature over 30 

minutes, with the first three steps at 40 MPa of pressure (near the maximum pressure that the 

graphite die could withstand). Upon linear cooling pressure was gradually reduced from 40MPa 

to prevent cracking in the samples. Samples were extracted from the SPS and dies at room 

temperature, sanded on both sides to remove the graphite foil, and again subjected to x-ray 

diffraction.  
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Figure 3.3: Spark plasma sintering temperature profile used for all samples. 

 

Sample density is a key parameter in evaluating if the sample in question achieved 

sufficient consolidation. After SPS, all samples had their density measured in two ways: 

geometrically via a scale and calipers, and via the Archimedes method by submerging in ethanol. 

Sample density was compared to theoretical desired values, either literature values for end-

members GeTe and SnTe or that derived from a linear rule of mixtures for solid-solution 

samples. Details for sample density can be found in the Appendix. After process optimization 

with the SPS, only samples of at least 95% theoretical density were selected for further 

characterization.  
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Figure 3.4: An image of a series of samples after SPS and polishing. 
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3.2 Phase purity and compositional analysis 

 At many of the steps of the synthesis process, X-ray diffraction (XRD) analysis 

was used to analyze the phase purity of the samples and evaluate any change in microstructure. 

X-ray diffraction is an analysis technique that utilizes the periodic nature of crystal lattices to 

generate an XRD pattern that reflects the constructive interference of scattered x-rays incident on 

different planes of atoms in the lattice. The crystal structure as well as lattice parameters can be 

extracted from an XRD pattern, so it is a powerful, fast, and non-destructive technique for 

evaluating both the phase purity of metallic powders and samples and other crystallographic 

properties.  

Crystal lattice spacings are on the order of angstroms, so therefore for optical scattering 

to take place the incident light must have a wavelength on the same length scale. The condition 

for evenly spaced atoms to scatter light constructively is given by Bragg’s Law:  

𝑛 𝜆  =  2𝑑 𝑠𝑖𝑛𝜃                                                     (3.1) 

Where n is an integer,  is the wavelength of incident light, d is the lattice spacing, and  

is the angle of the incident rays onto the sample. With this understanding, one can generate a 

theoretical XRD pattern for any given material based simply on its crystal structure and lattice 

spacing. Powder x-ray diffraction is a well-established technique, so one can make use of large 

libraries of powder diffraction files (PDFs) and software techniques by which to analyze and 

compare XRD patterns generated from samples. By analyzing and indexing each peak according 

to the Miller crystallographic indices, one can calculate lattice parameters.  

Being a cubic material at room temperature, SnTe has many symmetries in its crystal 

structure, and all those symmetric signals combine to form the largest characteristic peak at just 

above 30 degrees 2.  Because our synthesis method produced polycrystalline samples, we did 
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not consider the relative orientations of our sample compared to the XRD, since the random 

orientation of our samples would produce enough grains to reflect all the lattice planes needed to 

render a full XRD spectrum. Any extra peaks can be compared to known peak profiles of varied 

materials to characterize the phase purity of the samples. Using our synthesis process, we were 

able to create samples that showed phase purity within the detection limit of our XRD analysis. 

When present, the most common impurity was unreacted elemental tellurium.  

During synthesis, sample XRD was performed at room temperature on a Rigaku 

MiniFlex-II using Cu-Kα radiation powered at 30 kV at 15 mA, with the radiation 𝜆 = 1.54 Å. 

Samples were placed on glass slides and leveled to be even with the glass slide surface. For a 

select few samples while equipment was available, XRD was also taken at elevated 

temperatures. For samples x=0.25 and x=0.50, high-temperature XRD (HT-XRD) was taken 

every twenty degrees up to 200C to characterize the temperature of the phase transition. Room 

temperature and HT-XRD was performed under vacuum on a Rigaku Smartlab XRD, with the 

same type of radiation. Analysis of raw data was done in either the Jade 9 or PDXL2 software 

packages for the two different XRD machines, respectively.  
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3.3 Resonant Ultrasound Spectroscopy 

Resonant Ultrasound Spectroscopy is a technique to measure the elastic constants of a 

material by matching the resonant frequencies of a sample to a predicted set of frequencies given 

a sample’s dimensions, density, crystal structure and elastic constants [94-98,112]. Resonant 

Ultrasound Spectroscopy (RUS) was performed on samples to characterize their elastic 

constants. Being non-destructive, this analysis technique allowed us to measure the elastic 

response for cylindrical samples created in our SPS dies. Precise sample geometry and density 

are critical factors for this measurement, as they may shift or disrupt resonant peaks, so with 

polishing we were able to prepare RUS samples that were free of chips, cracks, defects, and 

geometrical deformations. Using an iterative process, we continuously adjusted C11 and C44 

values until the predicted resonances closely matched the observed peak positions [96]. All 

room-temperature measurements were formed on a portable stage from Alamo Creek 

Engineering (ACE) [99].  

The RUS system enables us to calculate the elastic constants of a material by placing the 

sample between a pair of piezoelectric transducers (pictured below in Figure 3.5). One 

transducer sweeps a range of vibrational frequencies while the other transducer monitors the 

sample for resonance peaks. When the first transducer sweeps through a frequency that matches 

one of the many fundamental resonant frequencies of the material, the sample vibrates, and this 

movement is picked up by the receiving transducer. One can then construct a spectrum of peak 

locations with their frequencies with the aid of software. This study used the “Resonance 

Spectrometer” software package, with a representative image in Figure 3.6 below [100-101]. The 

data for these resonance peaks can then be compared to a predicted resonance pattern for a given 

sample’s geometry, density, crystal system and elastic constants. The differences between 
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observed and predicted peaks can then be adjusted iteratively to change the C11 and C44 values 

in a way that minimizes the differences between the observed and predicted peak locations. This 

study used the Cyl.exe software to calculate elastic moduli [94].  

 
Figure 3.5: A picture of the RUS stage with a cylindrical sample mounted between the top and 

bottom transducers.  
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Figure 3.6: An image capture of the “Resonance Spectrometer” software used for RUS analysis. 
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3.5 Laser Flash Analysis 

 
 Thermal diffusivity measurements were performed on all samples were performed 

by Laser-Flash Analysis (LFA). LFA directly measures the thermal diffusivity of a material by 

monitoring the radiation on the back surface of a sample over time after it has been briefly 

illuminated by a pulse of laser energy on its front surface. All measurements were performed on 

a Netzsche LFA 467 utilizing a pyroceram reference material. The nature of the LFA 

measurement requires samples in the form of thin disks. To achieve this, samples prepared via 

the SPS process were polished and thinned with fine-grit sandpaper to be less than 2mm thick, 

taking care to ensure that both sides of the sample were parallel to each other. After polishing, 

samples were coated with a thin layer of graphite spray to ensure good absorption of the thermal 

energy of the laser and minimize laser reflections off the sample. Four samples were prepared at 

a time and measured using a carousel mechanism every 10 °C from 50 °C first heating up to 450 

°C and back down to room temperature (see Figure 3.7). The LFA would take three ‘shots’ per 

temperature step and report the individual values as well as averages in the output data file.  

Using the known relationship (Equation 3.2) between thermal diffusivity (α), density (d), 

and heat capacity (Cp), we calculated total thermal conductivity values from the experimental 

diffusivity values. Density values were obtained again geometrically from weighing the sample 

and measuring with calipers to ensure consistent density values. The heat capacity constant for 

all samples was determined according to the Dulong-Petit relationship, where the value can be 

determined using the known molar masses of the stochiometric elements of the sample [118]. 

See the Appendix for details on the calculations of heat capacity. 

 𝜅𝑡𝑜𝑡𝑎𝑙   =  𝛼  ⋅ 𝑑  ⋅ 𝐶𝑝      (3.2) 
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Figure 3.7: An image of four LFA samples in the 4-sample carousel inside the LFA. 

 

 
Figure 3.8: A schematic of the LFA equipment Image from Netzsch product website [102]. 
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3.6 Electrical resistivity and Seebeck coefficient 

 
To characterize the material’s electrical resistance and Seebeck coefficient, samples were 

characterized in an Ulvac-ZEM3 instrument (ZEM) up to 500 °C. This measurement requires the 

sample to be in the form of a rectangular prism. To this end, the cylindrical sample was cut with 

a low-speed diamond saw and sanded down to be a rectangular prism and its dimensions 

measured carefully with calipers. The sample was then carefully mounted into the ZEM between 

two electrodes and gently tightened into place. Then two spring-loaded thermocouples were 

pressed against the sample at a separation distance measured by a camera mounted to the ZEM 

stage, before being covered with a radiation shield and sealed in a chamber under vacuum. The 

sample chamber was evacuated and purged with Helium several times before being backfilled 

with a small amount high-purity Helium. A schematic of the sample mounted in the ZEM is 

displayed below in Figure 3.9. 

 
Figure 3.9: A schematic of how ZEM operates [103]. 
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The ZEM measures sample resistivity via the 4-point method, with the top and bottom 

electrodes serving as current contacts and one leg of each thermocouple as the voltage contacts. 

Samples were measured at room temperature before vacuuming to ensure a strong signal and 

good contact with the sample. To measure the Seebeck coefficient at every temperature step, the 

ZEM activates a heater encased in the lower electrode arm. This heater in turn generates a 

temperature gradient across the sample, monitored by the spring-loaded thermocouples. The 

Seebeck coefficient (below) is calculated by dividing the voltage difference between the 

thermocouple contacts by the temperature gradient value. Typical values for these materials are 

in the micro-volt per Kelvin range.  

𝑆  =
Δ𝑉

Δ𝑇
                        (3.3) 

 
The ZEM measured sample resistivity and Seebeck coefficient three times per 

temperature step and reported average values per step on both heating and cooling. Temperature 

profiles were set so that a temperature difference of at least 1 degree Celsius was achieved 

between probe thermocouples. To further analyze the lattice and electronic contributions to the 

thermal conductivity, ZEM data was used in conjunction with the Wiedemann-Franz Law, where 

 is electrical resistivity, T is temperature and L is the Lorenz number [82]. 

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝐿⋅𝑇

𝜌
      (3.4) 

 
As detailed in Chapter 2 the Lorenz number can be treated as a constant in most metals, but for 

highly degenerate semiconductors where the Seebeck coefficient is significant an approximation 

commonly used for thermoelectrics is shown above in Equation 2.35 [81]. This approximation 

can be used for every data point we have a Seebeck coefficient for and enables a better 

calculation of the electronic contribution to the thermal conductivity. Taken together, the ZEM 



53 

 

characterization lets us combine the data from the LFA to fully describe the thermal conductivity 

of the samples and their electronic and lattice contributions. 

𝜅𝑡𝑜𝑡𝑎𝑙 = 𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒     (3.5) 
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3.7 Hall effect measurement 
  

 A select few samples were selected for further characterization with a room temperature 

Hall effect measurement of carrier concentration and carrier mobility. A Hall measurement 

makes use of the fact that electrons carry a magnetic moment and therefore their paths of motion 

will be deflected by magnetic fields [104]. By placing a sample in a large magnetic field on one 

axis and connecting the sample electronically to a current on an orthogonal axis, one can 

measure the carrier concentration of a sample from the voltage observed perpendicular to the 

previous two axis. This voltage generated by the external magnetic field, called the Hall Voltage 

(VH), can then be used to calculate the carrier concentration from other sample parameters (see 

equations 3.6-3.8 below). 

𝑉𝐻 =
𝐼𝑥𝐵𝑧

𝑛 𝑒 𝑡
      (3.6) 

 

𝑉𝐻𝑡

𝐼 𝐵
=

1

𝑛 𝑒 
      (3.7) 

 

1

𝜌
= 𝑛 𝑒 𝜇      (3.8) 

 

Where I is the current, B is the magnetic field, t is the thickness of the sample and n is the carrier 

concentration. By measuring the sample voltage, external field and applied current carefully, one 

can then calculate the carrier concentration with equation 3.7. We did this, and while already 

attached to the stage we then measured the sample resistivity with conjunction with the above 
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calculation for n enables us to calculate the carrier mobility 𝜇 via equation 3.8.  

A custom-built room temperature Hall apparatus equipped with a reversible 1.5 Tesla 

GMW Model 5403 electromagnet was outfitted with a LakeShore 421 Gaussmeter to measure 

the strength of the magnetic field on a mounted sample. Samples of known dimensions were 

sanded a thin as possible, ~0.5mm, and mounted with five contacts to the Hall stage to 

simultaneously measure the sample current, field, Hall and resistive voltages. Sample current 

was supplied by a Keithley 2400-LV Sourcemeter and sample voltage was collected with a 

Keithley precision multimeter. By varying or reversing the field strength a linear relationship can 

be developed as a more robust measurement of the carrier concentration. We varied the field 

from -1.6 to +1.6 T and collected 10 data points per measurement of carrier concentration.  

Figure 3.11 is an example of a scan of Hall voltage versus yield for a sample of pure SnTe, and is 

illustrative of the challenge of this measurement (at least with the equipment available to us).  

Despite a very large sample current of 50 mA, the Hall voltage over the applied field range of -

1.6 to +1.6 T is less than 3 V, in spite of the thinness of the sample.  This is a consequence of 

the very high carrier concentration of this sample (and indeed all of the samples in this study).  A 

picture of a sample mounted on the Hall stage is shown below.  
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Figure 3.10: An image of a sample mounted on the Hall stage. Note the five contacts at different 

points on the sample. 

 

 
Figure 3.11: Hall measurement results for SnTe. Note the large fields and relatively small 

voltage signal.  
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3.8 Synthesis Summary 
 

 We describe a way to consistently synthesize polycrystalline GeTe-SnTe samples 

from ingots grown using direct fusion. Upon extraction of a prepared ingot of known 

stoichiometry, ingots were gently hand-ground by mortar and pestle before being loaded under 

Argon into stainless steel ball-mill jars with stainless steel ball-bearings with a mass/media ratio 

of about unity. High-energy ball milling was done in a short step of about 5 minutes – samples 

ball-milled for longer times (~30 minutes) proved to be of low density and/or brittle. Following 

milling, samples were loaded into SPS dies and pressed into cylinders/disks and pressed at 

40MPa for 20 minutes at a maximum temperature of 400 °C before linearly reducing the 

pressure as the sample cools. Samples held at maximum temperature for longer times or samples 

cooled very quickly from the SPS hold temperatures proved to be brittle and did not survive to 

characterization.  

We report that attempts to synthesize samples other than using direct fusion synthesis to 

be unsuccessful. Milling stochiometric amounts of elemental powder in the high-energy ball mill 

for several hours proved unable to provide samples free of unreacted elemental powder. 

Attempts at reactive-SPS (RSPS), where elemental fusion occurs during the SPS process, also 

proved unsuccessful. It is possible that long ball-mill times and rapid temperature changes, 

especially in samples transiting a phase transition, introduced additional stress and strain in the 

crystal lattice. This additional strain may have manifested itself in brittle or low-density samples, 

but more research is needed to quantify the precise effects of these synthesis processes on the 

microstructure and behavior of the system.  
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CHAPTER 4 STRUCTURAL BEHAVIOR 

STRUCTURAL STUDY THROUGH X-RAY 

DIFFRACTION AND RESONANT ULTRASOUND 

SPECTROSCOPY 

 
 

A phase diagram first published by Bierly et al of large crystals grown in 1963 

demonstrated that GeTe and SnTe form a complete solid solution, where replacing Ge with Sn 

does not produce any intermediate compounds [67]. A key difference between GeTe and SnTe is 

that at room temperature they have different crystal structures. As can be seen in the original 

figure (below in Figure 4.1) from Bierly, both compounds have a high temperature cubic rocksalt 

phase (space group Fm-3m) and a low temperature rhombohedral phase (space group R3m), but 

while the temperature at which this transition occurs is well above room temperature for GeTe 

(~700K) it is well below room temperature for SnTe (~100K). As we increase the parameter ‘x’ 

as the occupation of Sn on the Ge site Ge1-xSnxTe, the temperature of this transition decreases 

smoothly from the GeTe value towards the SnTe value. [67].  Much of the motivation for this 

thesis stems from the fact that these solid solutions thus offer the opportunity to study this 

structural phase transition and its effect on thermal and electronic transport over a very wide 

temperature range by controlling the composition of this binary alloy system. 
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Figure 4.1: Figure from a 1963 paper from Bierly et al showing their proposed phase diagram of 

the GeTe-SnTe solid solution.  

 

The cubic crystal system is the simplest and most symmetrical of the fourteen Bravais 

lattices. Within this cubic crystal system family, there exist three crystal types: simple cubic 

(SC), with lattice points at the vertices of a cube; body centered cubic (BCC), with an additional 

lattice site at the center of the cube; and face-centered cubic (FCC), with lattice sites on the eight 

corners of the cube and at the center of each of its six faces.  The cubic structures extant in the 

GeTe-SnTe system assume the FCC habit, with a unit cell that is a cube, and its axes are all of 

equal length and perpendicular to each other. It is often called the “rocksalt” structure because 

table salt, NaCl, has this FCC crystal structure. NaCl is also a good comparison because it 

features two species of atoms that occupy every other site in the crystal lattice. The materials in 

this study, at the appropriate temperature to be in the cubic phase, exhibit similar characteristics. 

The usual crystallographic axes a, b, and c are equal and the angles between these axes are 90°.  

Due to the high symmetry in the cubic system, cubic materials are very common in 

semiconducting, thermoelectric, and other applications due to their versatility.  
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In slight contrast to the cubic system, the rhombohedral crystal group R3m comes from 

the class of trigonal systems and has less symmetry. It can be imagined as either a slight 

distortion of the cubic system or expressed as part of a larger hexagonal cell, which will be used 

below to compare structural data from different crystal systems. If we choose to imagine a 

distorted cubic cell, the rhombohedral R3m structure exhibited by room temperature GeTe 

differs from the cubic structure by an elongation along the (111) body diagonal, where the lattice 

spacings a=b=c is maintained but the cubic angle of 90° is reduced to something less. In the 

hexagonal translation, a=b is maintained, but the third parameter c is instead the length of the 

body diagonal, with the subsequent angles locked at 90 and 120 degrees respectively. An 

example for this translation is shown below in Figure 4.2.  For rhombohedral GeTe, accepted 

literature values have the interior distortion angle very close to 90°, usually 88°- 88.3° [67]. 

 
Figure 4.2: This example is an illustration of the rhombohedral cell (dark lines) within a larger 

hexagonal cell (faint grey lines).  
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Figure 4.3: Illustrations of cubic and rhombohedral structures generated by Materials Project. In 

this example, the rhombohedral angle is exaggerated but for GeTe the distortion angle is very 

close to 90°.  
 

In order to compare cubic and rhombohedral systems, it is necessary to translate the 

parameters to a common crystal system. By comparing the expression for the volumes of each 

primitive cell, we can develop a relationship between the rhombohedral parameters and the cubic 

parameters to make a direct comparison of lattice constants. To find the associated rhombohedral 

angle from the hexagonal system, angles were calculated using a matrix transformation with the 

known relationships between crystal systems. Given rhombohedral lattice parameters aR and cR 

and cubic lattice parameter aC we can develop the equivalence from their volumes: 

𝑉𝑅ℎ =
√3

2
𝑎𝑅

2 𝑐𝑅      (4.1) 

               𝑉𝐶 = 𝑎𝐶
3      (4.2) 

Setting them equal and solving, we develop the condition for when rhombohedral 

parameters yield a cubic structure: 
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𝑐𝑅

𝑎𝑅
=

2√3

√2
              (4.3) 

𝑎𝐶 = 𝑎𝑅  √2      (4.4) 

𝑐𝑅 = 𝑎𝑐  √3     (4.5) 

In sum, this translation allows us to continuously compare lattice values and angles as we switch 

between cubic and rhombohedral crystal systems.  
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4.1 X-ray Diffraction of Ge1-xSnxTe 
 
 X-ray diffraction (XRD), being a non-destructive evaluation method, was performed 

throughout the synthesis process to monitor any changes in the crystal structure as well as 

identify the presence of secondary phases and ensure sample purity. In addition, the peaks 

produced by an XRD pattern can be fitted to literature and database peak profiles such as the 

Inorganic Crystal Structure Database (ICSD). Through a process called Rietveld refinement, 

important sample parameters like the crystal group, lattice spacing, and angles for a theoretical 

XRD pattern can be compared against a real pattern and refined with a scoring mechanism. This 

is the standard practice for evaluating crystalline materials and is a highly developed procedure. 

For Rietveld refinements below, the software package used was PDXL 2 developed by Rigaku. 

We begin with XRD patterns obtained from our end member materials: powdered GeTe 

and SnTe. As well-studied materials there are many reference patterns with which to compare 

our data, and a representative of each of these reference patterns is displayed below the spectra to 

demonstrate both the correctness of fit as well as the sample purity. While the patterns are 

similar, there are two key differences that reflect their different lattice parameters and crystal 

structures. As Sn is slightly larger than Ge, the lattice parameter of SnTe is larger than that of 

GeTe, pushing all peaks for the former compound to smaller angles. In addition, the 

rhombohedral structure of GeTe causes what is a single peak in SnTe at about 40° to split into 

two peaks. As sample temperature rises or as Sn is substituted on the Ge site, these peaks narrow 

and eventually overlap in the cubic phase.  
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Figure 4.4: Representative GeTe powder XRD data with reference. Note the doublet peak 

between 40- and 45-degrees 2, an indicator of rhombohedral structure. 
 

 
Figure 4.5: SnTe powder XRD data with reference. Due to high symmetry in the cubic system, 

many peaks overlap so there are relatively few peaks. 
 

As Sn is substituted onto the Ge site in small amounts, its incorporation into the lattice 

raises the average lattice distance in the crystal primitive cell. This slightly shifts the peak 
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positions, but the doublet peak in the mid 40° is maintained, albeit at a slightly narrower spacing. 

As demonstrated in Figures 4.6 and 4.7 below, the whole pattern and the inset show a 

rhombohedral structure that is becoming more and more cubic as Sn content increases. Here and 

throughout, we will refer to solid-solution samples by their ‘x’ values in Ge(1-x)Sn(x)Te which 

indicates their Sn content; x=0.05 means 5% Sn on the Ge site, x=0.20 means 20% and so on, 

where x=0.0 is GeTe and x=1.0 is SnTe.  

 

 
Figure 4.6: XRD spectra of Germanium rich samples up to x=.40, demonstrating high sample 

purity and no significant contributions from other phases. 
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Figure 4.7: Insets from the data in Figure 4.6 showing the trends of the main peak (above) near 

30° and the double peak (below) between 41-44°. The shifting of peaks to lower values indicates 

a larger lattice parameter, and the narrowing of the doublet indicates a smaller rhombohedral 

angle. 

 

 As we approach samples that are cubic at room temperature, the distinct doublet 

peaks are harder to resolve as the overlap becomes more significant. While the literature data 

suggests the cubic phase may be reached at about x=.70, our collected data suggests that x=.60 
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reflects a nearly cubic structure at room temperature, with a calculated rhombohedral angle of 

89.99°. A full list of calculated lattice parameters and rhombohedral angles for room temperature 

samples is detailed below in Table 4.1.  

 

 

 

 
Figure 4.8: XRD spectra of Sn rich samples showing high sample purity. Note the gradual shift 

to lower angles as Sn content increases, and the peak splitting in the x=.50 sample at about 42°. 
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Figure 4.9: Insets from the data in Figure 4.8 showing the trends of the main peak (above) near 

30° which is consistent with a larger lattice parameter with more Sn content.  The inset of the 

second largest peak and the double peak (below) between 41-43° shows how the x=.50 sample is 

still rhombohedral, the x=.60 has a broad peak that is nearly cubic, and the x=.70 shows one peak 

reflecting a cubic structure. 
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Sn content 
“x” aH (Å) CH (Å) aR (Å) angle αR aC (Å) angle αc 

0 8.332 10.674 5.982 88.27   

0.05 8.362 10.691 5.996 88.41   

0.2 8.452 10.703 6.045 88.71   

0.3 8.520 10.722 6.080 88.95   

0.4 8.580 10.760 6.116 89.09   

0.5 8.654 10.783 6.155 89.34   

0.6 8.779 10.752 6.207 89.99   

0.7 8.810 10.790   6.2296 90 

0.8 8.854 10.844   6.2606 90 

1 8.938 10.947   6.3201 90 

Table 4.1: A table of fitted hexagonal lattice constants from Rietveld refinements at room 

temperature. Cubic samples were converted into an equivalent hexagonal lattice using the 

relationships above.  
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Figure 4.10a: Graphical representation of the data in table 4.1, showing the rhombohedral angle 

versus Sn content (top) and hexagonal lattice constant versus Sn content (bottom) at room 

temperature. 
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In addition to the room temperature XRD data, high-temperature data was taken while 

equipment was available on the same setup for a select number of powder samples we 

synthesized. These samples demonstrated a stark contrast in the XRD patterns between cubic and 

rhombohedral phases and showed that the transition occurs over a fairly narrow temperature 

range and is reversible. For x=.25 the transition temperature indicated by HT-XRD was 230° C 

+/- 10 and for x=.50 at about 130° C +/- 10.  

 

 

 
Figure 4.11: High-temperature XRD spectra for x=.25 upon heating. This is an inset of the full 

spectrum showing the behavior of the doublet peak combining to a single peak at 240° C 
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Figure 4.12: Insets for the same spectra, showing the rapidity of the transition. Left, a closer view 

of the peaks combining upon heating between 220° C and 240° C . On right, the same sample but 

data taken upon cooling, showing the peak splitting between 300° C and 200° C.  
 

 

 

 
Figure 4.13: HT-XRD spectra for an x=0.5 upon heating. Note how the doublet peak flattens 

before truly combing at 130° C.  
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While the phase transition temperature of GeTe has a well-studied and established phase 

transition temperature around 400 °C, the transition temperatures for Ge(1-x)Sn(x)Te alloys have 

been reported by scant few researchers since the initial phase diagram published by Bierly et al 

in 1963. Here we report important contributions provided by analysis of High-Temperature XRD 

data of Sn concentrations x=0.25 and x=0.50 demonstrated quite persuasively in Figures 4.11 

and 4.13. These transition temperatures (at 240°C for x=0.25 and 130°C for x=0.50 respectively) 

are displayed alongside the reported data points from Bierly (1963) below in Figure 6.1. Also 

included in this figure is a single contribution of the room-temperature XRD analysis, that of the 

firmly cubic phase displayed by the x=0.70 sample. Taken together they agree well with the 

initial work, but with some gaps still to be worked out. 

 
Figure 4.14: Phase transition temperatures from XRD in this study (blue) compared with data 

from Bierly et al (green). Note the error bars on the XRD data of ±10 °C which reflect the step 

size of the HT-XRD scans as well as uncertainty in the room-temperature data. 
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4.2 Resonant Ultrasound Spectroscopy of Ge1-xSnxTe 

 
 Resonant Ultrasound Spectroscopy (RUS) is an emerging method for the 

characterization of the vibrational character of crystalline materials [112]. Relying on sample 

dimensions and density, RUS probes a sample by sweeping through a spectrum of frequencies 

and picking up on which frequencies activate the harmonic modes of a material. As it relies on 

external physical parameters to iteratively evaluate elastic constants, sample quality is of utmost 

importance. Critical to the evaluation of sample quality is the material density. A sample may 

have low density due to a variety of factors, including voids or cracks, incomplete fusion of 

materials during synthesis, or mechanical stresses unevenly applied during sample processing 

and sintering. As such, all synthesized samples were checked for density after the SPS process 

using both geometrical and Archimedes methods to ensure high sample quality. Any sample 

below 95% theoretical density was not used for further measurements. Theoretical sample 

density was determined using a simple rule of mixtures following a linear trend between the end 

members. A good sample density is critical to not only RUS measurements, but also in the 

thermal characterization process of the Laser Flash Analysis (LFA).  

Another critical aspect for RUS measurements is a sample with well-defined dimensions 

that is free of chips, cracks, and other physical irregularities. A minor crack in a sample will 

disrupt the natural modes of vibration in a sample and will mix the RUS signal with errant noise. 

In addition, the sample must have parallel sides and sharply defined edges, as the sample is 

positioned between two piezoelectric pickups that contact the sample edges. To assure good 

contact with the sample as well as minimizing any anisotropic affects, sample contact with the 

transducers was rotated to different parts of the sample and spectra were compared to ensure that 

the spectra were representative of the performance of the material.  
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As mentioned in Chapters 2 and 3, due to the symmetry of cubic and rhombohedral 

crystal systems, the elastic tensor can be reduced to just two key components, C11 and C44. Using 

an iterative process described by Migliori et al [94] initial elastic tensor ansatz parameters 

generated an expected series of RUS peaks that were fit to observed spectra taken from the 

sample, using a least-squares method [100-101]. Results for C11 and C44 values are displayed 

below in Figure 4.15. As described in Chapter 2, these elastic tensors can be used in conjunction 

with sample density to calculate the speed of sound, which is shown as a function of Sn content 

in Figure 4.16. 

 
Figure 4.15: Elastic constant values for matrix indices C11 and C44 as a function of Sn content. 

Trend shows a softening near expected structural transition. Data shown with 10% error bars. 
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Figure 4.16: Speed of sound values calculated from elastic moduli data. Speed of sound data 

supports more evidence of lattice softening near structural transition temperature. Data shown 

with 10% error bars. 
 

 

With the room temperature measurements offering clues, we can compare these RUS 

results to similar data taken as a function of temperature. Previous studies of this transition by 

Seddon [109] show that the elastic moduli soften as they approach the structural phase transition 

before sharply stiffening and flattening out at a higher value than before. This is demonstrated 

with a diagram from Seddon’s paper shared below in Figure 4.17. We recover results that at 

room temperature seemingly agree, but a more thorough characterization of these elastic 

constants as a function of temperature would be a fruitful direction of study.  
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Figure 4.17: A figure reproduced from Seddon’s 1975 paper [109]. Note the shape of the elastic 

moduli curve as a function of temperature as it approaches the structural phase transition. This is 

for a sample ‘x’ value of x=0.80, which is predicted to be cubic at room temperature. 
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4.3 Section Summary 

 
 The x-ray diffraction data make a strong case for the samples being single-phase 

with little to no secondary phases. In addition, the analysis of lattice constants shows that the 

solid solution neatly and gradually modifies the lattice parameter from one end-member to the 

other, showing the behavior of the predicted solid solution with trends that follow the rule of 

mixtures. High temperature data demonstrates the rapid and reversible changes in crystal 

structure near the temperatures expected from literature.  The characteristic feature in the 

rhombohedral to cubic structural phase transition in these mixed crystals is the convergence of a 

double peak in the range of 40-45 degrees 2 as the rhombohedral structure evolves into the 

cubic one, related to the “stretch” along the body diagonal and a concomitant increase of the 

rhombohedral angle to 90 degrees.   We shall see in Chapter 5 that these subtle changes in crystal 

structure can have profound effects on the electronic and thermal behavior of these 

semiconductors.   

Consistent with the observations from our XRD data, when the system is near the 

expected structural transition temperature, as is the case for x=0.50- 0.70 samples, the RUS data 

indicates a softening of the elastic constants. In general samples doped with a little tin (“Ge-

rich”) have higher elastic constants than GeTe, while samples with little Ge content (“Sn-rich”) 

closely match the behavior of end member SnTe. This trend is most pronounced in the C11 data 

and less so in the C44 and speed of sound data.  These measurements lead to the conclusion that 

when the system temperature is in proximity to this crystallographic transition there is an overall 

softening of the structure. For samples x=0.80 and above we see an increase in the C11 elastic 

constant compared to the room-temperature rhombohedral samples, but only by a small amount.  
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CHAPTER 5 ELECTRICAL TRANSPORT AND 

ANALYSIS: RESISTIVITY, SEEBECK, AND HALL 

DATA 

 
 This chapter will detail the data obtained from electronic transport measurements via the 

methods described in Chapter 3, specifically the electrical resistivity, Seebeck coefficient, and 

Hall data. Of critical interest for any thermoelectric characterization, this data enables a 

calculation of the electronic portion of ZT, the power factor, from data collected from the ZEM 

in the form of electronic resistivity and Seebeck coefficient. Trends in transport data can be used 

to make inferences about the underlying mechanisms that drive the observed behavior of the 

material. Many samples were synthesized via methods described in Chapter 3, but not all 

samples survived to characterization. Some samples had densities far below theoretical density, 

while other samples were brittle and did not survive the full characterization process. The results 

shown below are from representative samples for which the same physical sample was carried 

through each process. In practice, density and RUS measurements were followed by LFA 

measurements of thermal conductivity with ZEM measurements of resistivity and Seebeck 

occurring last. 
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5.1 Electronic Resistivity of the Ge(1-x)Sn(x)Te system 

 

 As a well-studied material, it has been discovered that while pristine GeTe is predicted to 

be a semiconductor with a band gap on the order of 0.3 eV, in practice it often exhibits nearly 

metallic properties [33]. This is due to the low vacancy formation energy on the Ge site, and with 

every Ge vacancy providing a nominal +2 charge [45,115].  These vacancies are responsible for 

making GeTe a p-type semiconductor, and a high number vacancies can push the carrier 

concentration to values that often make GeTe exhibit metallic behavior. As the vacancies are 

naturally occurring, it is difficult to precisely control the number of vacancies and this in turn 

results in a large spread of reported resistivity values, as the resistivity is directly correlated with 

the carrier concentration. All this to say that semiconductor systems are very sensitive to small 

changes in stoichiometry and defects such as vacancies can play a large role in determining their 

properties, and GeTe is no exception. As we move from GeTe into the Ge1-xSnxTe system, at low 

concentrations of Sn we might expect to see a large change in the electrical behavior as some of 

these vacancies are filled by Sn atoms. This was demonstrated by a 1975 paper on these 

materials from Lewis, J. E., and Lasjaunias, J. C. [68] with their resistivity data displayed in 

Figure 5.1 below. Note that this is not the absolute value of the resistivity, but the difference 

between measured values and the value for GeTe, which they cited as 1.1 x 10-4 Ohm-m. As 

single crystals, the quoted absolute values of resistivity will be in general lower than the 

polycrystalline samples developed in this study, but the shape of the curve is the most interesting 

and salient point.  
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Figure 5.1: Resistivity of Ge(1-x)Sn(x)Te system from Lewis et al (1975) [68]. Note the rapid 

increase in resistivity as Sn is introduced, which then peaks and descends at higher Sn 

concentrations. 
 

Several samples of GeTe were produced and measurements on the ZEM showed similar 

results. In general, the resistivity of GeTe increases with temperature which is indicative of a 

metallic system. A representative data set of the resistivity of GeTe in addition to sample 

literature data is shown in Figure 5.2.  
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Figure 5.2: Resistivity of GeTe in this study compared to a literature data set. Note the 

discontinuity in resistivity about the temperature of the structural phase transition in both data 

sets. Dong et al is in the references as [42]. 
 

Not being strictly smooth curves, many measurements have discontinuities in 

temperature ranges that were suggestive of the effect of the structural phase transition. Some data 

sets were more dramatic than others, for example consider the data set for x=0.10 below in 

Figure 5.3. For samples with low concentrations of Sn, the resistivity rose substantially with the 

inclusion of Sn, with the peak resistivity occurring in the x=0.10 sample.  
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Figure 5.3: Resistivity of Ge-rich samples. GeTe data is re-represented as the x=0 dataset. Note 

the peak in resistivity for x=.10 samples, as well as small discontinuities in the other series. 

 

 

Examining the Ge-rich resistivity data it can also be seen that while the GeTe sample 

appears to shift to a higher resistivity with the structural transition, the x=0.05 and especially the 

x=0.10 see a decrease in the resistivity at the phase transition temperature. One can also see a 

trend in the lower temperature phase that agrees with Lewis et al in that the observed resistivity 

forms a peak on the Ge-rich side of the solid solution and then quickly descends back towards an 

intermediate value. We will see this trend continue for the Sn-rich samples. As with the end 

member GeTe, the trend of increasing resistivity with temperature suggests metallic behavior in 
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the system driven perhaps by a high carrier concentration and an increasing rate of carrier-carrier 

scattering.  

While many synthesized concentrations of Sn on the Ge site provided consistent 

resistivity data from sample to sample, others proved more difficult. In particular the samples 

with x-values of x=0.20 and x=0.40 showed a spread in resistivity values. In Figure 5.4 below 

are two measurements of x=0.20 from different samples, both lower than the x=0.10 resistivity 

but it is unclear which data set accurately represents the trend in resistivity as it decreases with 

Sn content. Both series also show bends in the curve suggestive of phase transition temperatures, 

but at different temperatures. If we were to take the Bierly et al. phase transition figure as a 

guide, these samples should transition from rhombohedral to cubic at about 300 °C.  

 
Figure 5.4: Spread of resistivity values for the x=.20 samples.  
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In addition, the x=0.40 results had inconsistent resistivity results. Below in Figure 5.5 the 

differences are shown quite starkly. While one series has a generally increasing resistivity with 

temperature, the other series has a pronounced negative slope indicative of semiconducting 

behavior. Both data sets have resistivity values well above those shown by higher concentrations 

of Sn, which are shown later in this section. 

 
Figure 5.5: Resistivity values for x=.40 samples.  

 

As we get closer to the Sn-rich region of the solid solution, the resistivity results are less 

dramatic and more well-behaved. As can be seen in Figure 5.6, the increase in Sn content causes 

the resistivity to level off and the values are within a similar range for samples with Sn 
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concentrations of x=0.50 and above. As with previous samples, the rise in the resistivity with 

temperature is consistent with a degenerate semiconductor’s behavior.  

 
Figure 5.6: Electrical resistivity of Sn-rich samples x.50 and above up to SnTe. Note the rising 

resistance with temperature, a hallmark of degenerate semiconductors. 

 

Taking together the resistivity data we can construct a figure like the one developed by 

Lewis et al for comparison. We recover a similar result where resistivity quickly rises at small 

amount of Sn alloying before leveling off closer to the values of the end members GeTe and 

SnTe, displayed in Figure 5.7. With equipment available to us data was taken up through the 

structural transition temperature of GeTe (approximately 400C). Data was taken upon heating 

and cooling, but only heating data is displayed for ease of reading. Cooling data did not 
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significantly deviate from heating data for all resistivity measurements. Data for x=0.20 and 

x=0.40 are omitted due to the inconsistency in data for these compositions. 

 
Figure 5.7: Electrical resistivity of Ge(1-x)Sn(x)Te as a function of Sn content x. Note the large 

increase in resistivity at low Sn concentrations. The peak in the resistivity appears to be shifting 

to higher Sn concentrations at higher temperatures. 
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5.2 Seebeck Coefficient in the Ge(1-x)Sn(x)Te system 

 
 

 Closely related to the resistivity is the Seebeck coefficient, another manifestation 

of the electronic behavior of the system. Seebeck data for this study was measured 

simultaneously in a low-pressure Helium atmosphere with the resistivity data in the ZEM as 

detailed in Chapter 3. Measurement of the Seebeck coefficient requires a temperature gradient 

across the sample which was taken by two spring-loaded thermocouples pressed onto the sample, 

with a temperature gradient between 1- and 2-degrees C. The ZEM data collection procedure 

takes three measurements at three gradient values to minimize instrument noise.  As the Ge(1-

x)Sn(x)Te is a p-type conductor, all Seebeck values are positive. In Figure 5.8, the Ge-rich 

samples are shown alongside the results from the GeTe measurement. As in the resistivity data, 

the x=0.10 series shows a dramatic fluctuation as it moves through the phase transition 

temperature range.  
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Figure 5.8: GeTe and Ge-rich sample Seebeck data. Note the discontinuities in the data near the 

phase transition temperatures for GeTe (~400C) and lower temperatures for x=.05 and x=.10.  

 

While the GeTe data series shows an increase in the Seebeck value after the phase 

transition, the alloyed samples show a decrease. The x=.10 sample begins with a higher Seebeck 

than its end member GeTe at near-room temperatures, but after its structural transition has a 

lower value. In Figure 5.9 we can see the other Ge-rich samples that show similar, if more 

muted, trends.  
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Figure 5.9: Ge-rich sample Seebeck coefficient values. The x=.25 data series shows a subtle 

discontinuity near the expected structural phase transition temperature. 

 

Unlike the resistivity measurements, the x=.20 samples were consistent in their Seebeck 

values, but the x=.40 did show some deviation. Below in Figure 5.10 is shown two data series, 

which correspond to the resistivity data in Figure 5.5. 
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Figure 5.10: Seebeck values for two different x=.40 samples. 

 

For the Sn-rich samples with structural phase transitions near or below room temperature, 

the Seebeck data shows behavior that mirrors the resistivity data and generally rises with 

temperature. Figure 5.11 shows Seebeck data for the remainder of the binary alloy system, which 

in general are higher than the values for Ge-rich samples. The x=0.60 sample had the highest 

Seebeck values measured in this study.  
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Figure 5.11: Seebeck coefficient values for Sn-rich samples. Rising values with temperature are 

consistent with resistivity data and suggest metallic behavior. 
 

Armed with both Seebeck and resistivity data, we can then calculate the electronic 

portion of ZT, also known as the power factor (PF), which is the Seebeck squared divided by the 

resistivity. To make easier use of this data in conjunction with the thermal data below, the 

Seebeck units of micro-Volts per Kelvin and the resistivity units of milli-Ohm centimeter have 

been converted to the SI standard units of Watt per meter Kelvin squared (W/mK2). Often the 

power factor is expressed in term of micro-Watt per centimeter-Kelvin (μW/cmK), and a “good” 

thermoelectric will have a power factor in the range of 20-40 μW/cmK.  As can be seen, the 

electronic portion of the performance is far from optimized, but is still reasonably good with the 
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best samples in the 15-20 μW/cmK range at the highest temperatures. With similar Seebeck 

values to the others in the series but with the lowest resistivity, the x=.05 sample showed the 

highest power factor. Germanium-rich power factors are shown below in Figure 5.12, while the 

Tin-rich power factor calculations are shown in Figure 5.13 with the same scale for comparison. 

 
Figure 5.12: Power factor calculations for Ge-rich samples 

 

 



94 

 

 
Figure 5.13: Sn-rich power factor calculations 

 

While the x=.05 was the highest performer, GeTe was a close second, with x=0.60 

coming in third. In contrast, the lowest performer was the x=0.30 sample, as it had among the 

lowest Seebeck values as well as a middling resistivity. Even so, none of the data series suggests 

that any of these samples would exhibit a high ZT (“high” in this context meaning approaching a 

ZT value of 1) on their own. Rather, these values can serve as a starting point to determine how 

to best optimize this system for a high ZT, namely tweaking the carrier concentration to increase 

the Seebeck coefficient while maintaining a relatively low resistivity. What is also notable is 

how the power factor of GeTe increases as it transitions from a rhombohedral to cubic structural 

phase. In this case this is driven by the increase in the Seebeck coefficient, as the resistivity also 

rises at that temperature which lowers the power factor. 
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5.3 Carrier concentration and mobility via Hall effect 

 
 Measurements for carrier concentration and mobility were carried out for a small 

number of samples that had otherwise undergone full characterization. Samples were thinned to 

the smallest possible extent, 0.2-0.5mm, and mounted in a custom-built Hall Effect Magnet and 

subjected to 1.6 T of magnetic fields in both directions at room temperature to determine carrier 

concentration as described in Chapter 3. Using known sample dimensions and magnetic field 

strength, carrier concentrations were calculated using the standard relation between Hall voltage 

and applied current as detailed in Chapter 3. The carrier concentration is shown with a 

logarithmic scale on the y-axis below in Figure 5.14. A table with all the values of carrier 

concentration, mobility, and sample resistivity are shown in Table 5.1. Samples mounted on the 

Hall stage showed a slight increase in resistivity compared to ZEM data, but were within the 

same order of magnitude.  

 

Sn content 'x' ρ (mΩ-cm) p(1020) μ (cm2V-1 s-1) 

0.1 0.619 30 3.5 

0.2 0.621 23 4.3 

0.3 0.727 6.8 12.7 

1 0.13 2.1 298 

Table 5.1: Data from Hall measurements. Note the large increase in mobility (µ) and 

decrease in carrier concentration (p) with the addition of Sn.  
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Figure 5.14: Carrier concentration from Hall measurements- note the logarithmic scale. Sn content 

decreases carrier concentration dramatically. 

 

 With a measurement of the carrier concentration, a calculation for the carrier mobility 

was made possible and is reported below in Figure 5.15. While we saw a ‘hump’ in the carrier 

concentration data, the mobility data shows a more striking rise in mobility with the inclusion of 

more Sn. Our sample of SnTe showed the highest mobility of all measured samples with a value 

of nearly 300 cm-2V-1s-1 compared to a value of 3.5  cm-2V-1s-1 for the x=0.10 sample. 
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Figure 5.15: Carrier mobility calculated from Hall data. Note the sharp rise in mobility as Sn content 

increases. 

 

These two sets of information lend us a way to understand the trends observed in the 

resistivity data. While the carrier concentration data alone might suggest the x=0.10 sample 

would be more conductive than say SnTe, by virtue of having more carriers, we see here how the 

mobility increase with increasing Sn content explains in part how the x=0.10 sample in fact had 

the lowest electric conductivity (highest resistivity, see Figure 5.7).  
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5.4 Discussion of Electronic Properties 

 
 The effect of Ge/Sn vacancies on the transport behavior of these alloys proves to be 

among the dominant mechanisms observed in this study. Much like the study by Lewis et al, we 

observed an initial sharp rise in the resistivity of samples as Sn was alloyed on the Ge site. As 

substitution of Sn for Ge is isovalent, absent of defects we might not expect to see much in the 

way of differences in transport behavior but here we see substantive differences. As can be seen 

in Figure  5.7, there is a sharp rise in the resistivity, especially the x=0.10 sample, before it drops 

off again much like the figure reported by Lewis et al. The behavior of GeTe as a p-type 

semiconductor is attributed to the vacancies of the Ge site, which each vacancy providing a net 

+2 charge. Here we see the effect that with a substitution of small amounts of Sn, these vacancies 

can be filled by Sn atoms hence removing the effects of these +2 sites in the lattice, resulting in a 

decrease in hole concentration.  This is supported by the information provided in the calculations 

for carrier mobility, as Sn filling a Ge site will cause a sharp rise in the mobility. Other studies 

[39,42] show that in vacancy suppressed GeTe the mobility values increase by an order of 

magnitude, suggesting that Ge vacancies come at a high cost to the carrier mobility. Studies by 

Dong [42] showed that by suppressing vacancies in GeTe, they were able to improve the 

mobility to 90  cm2 V-1 S-1. Our Hall measurements in Figures 5.14 agree with this notion, as we 

observe a more than one order of magnitude reduction in hole concentration in SnTe compared 

to lightly doped GeTe.  At the same time, the hole mobility (Figure 5.15) rises dramatically with 

Sn concentration, a clear sign that scattering of holes by vacancies is strongly diminished. The 

net result on the resistivity is the competing concentration and mobility dependencies shown in 

Figure 5.7 - an initial rise in resistivity as hole concentration diminishes, and a strong decrease in 

resistivity at high Sn concentration as the mobility rises to several hundred cm2 V-1 S-1.  
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CHAPTER 6 THERMAL TRANSPORT EFFECTS 

AND THERMOELECTRIC FIGURE-OF-MERIT 

 

6.1 Total Thermal Conductivity in the Ge(1-x)Sn(x)Te 

system 

 
 In practice, the thermal conductivity measurements were taken before the 

electrical measurements because the measurement technique has the strictest parameters in terms 

of sample geometry and to minimize the effect of thermal cycling on thermal conductivity data. 

As prepared in the way detailed in Chapter 3, 10mm round samples 1-2mm thick of known 

density were loaded into a Netzsch Laser Flash Analysis (LFA) for measurement. The LFA 

measured thermal diffusivity directly and when combined as a product with the sample density 

and the heat capacity the resulting thermal conductivity was calculated. Sample densities and 

heat capacities are detailed in the Appendix. When possible multiple samples from the same 

original ingot were measured and what follows is a representative sample of the available data. A 

select number of samples were run twice or three times in the LFA to check for consistency and 

no significant deviations were observed. Below in Figure 6.1, the same sample of GeTe is shown 

with two subsequent measurements on heating and cooling. 15 
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Figure 6.1: Two subsequent thermal conductivity measurements on the same sample of 

GeTe on heating and cooling. Note the rapid, reversible dropoff in thermal conductivity at the 

phase transition temperature ~400C. The bottom curves in both series represent the heating 

portion.  

 

What is remarkable in Figure 6.1 is the magnitude of the change in thermal conductivity 

right at the structural transition temperature, about 0.7 W/mK. This reduction in thermal 

conductivity is also quickly reversible in temperature, and as evidenced above is easily 

reproducible. As will be seen below, other samples in this alloy system did have thermal 

conductivity increases in the temperature range of the structural transition. This phenomenon 

was seen across multiple samples of GeTe synthesized for this study, and Figure 6.2 shows 

different samples of GeTe. There was some ingot-to-ingot variability in the thermal conductivity 
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values for GeTe, but samples from the same ingot showed similar values. What is remarkable is 

that five samples measured from three ingots of GeTe all exhibit similar drops in thermal 

conductivity at the transition temperature. This drop in thermal conductivity was significant and 

reproducible in several samples from different ingots. This drop was on the order of 1 W/mK and 

reversible, and on cooling the thermal conductivity mirrored that of the heating data in a manner 

similar to that shown in Figure 6.1.  

 
Figure 6.2: Ingot variability in the values of total thermal conductivity of GeTe upon heating. All 

samples show a distinct drop in thermal conductivity in the vicinity of the structural phase 

transition temperature of 400 °C. There was some variability in values between ingots on the 

order of 1-2 W/mK. 
 

As one more piece of contrast, below in Figure 6.3 is similar in concept to 6.2 but instead 

for samples of SnTe. As this material does not undergo a structural phase transition, we do not 
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observe any discontinuities and we see the durability of these samples and the reproducibility of 

these measurements. What is shown are three data sets: the first two are the same sample of SnTe 

made via direct fusion as described in Chapter 3 and the third data set is a sample manufactured 

from commercial-bought SnTe powder using the same SPS procedure. This was initially done to 

check for the effects of oxidation in our source elemental powders on thermal conductivity, as 

been proposed by Isotta et al [108]. and this result shows little deviation from the performance of 

commercially available powders.  

 
Figure 6.3: Thermal conductivity of SnTe made via direct fusion and commercially available powders on 

heating and cooling. The more frequent data set represents the heating data.  

 

In addition to having a higher thermal conductivity than GeTe, the SnTe samples also 

demonstrate a distinct negative slope with temperature while the GeTe (before the transition) 
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remains much flatter. Even with this negative slope, SnTe remains at a higher thermal 

conductivity than GeTe at all temperatures. It makes sense that GeTe has a slightly lower thermal 

conductivity than SnTe, because the cation-anion mass differences are greater in GeTe and here 

we see also that the more complex unit cell of the GeTe structure (below the phase transition) 

contributes to stronger phonon scattering and in sum a lower thermal conductivity.   

With the performance of the end members firmly established we move now to examine 

the performance of Ge-rich alloys. In Figure 6.4 we see that as we move away from GeTe, the 

total thermal conductivity falls off from the values of GeTe, and we also observe discontinuities 

as these samples move through the structural phase transition. Taking the intermediate data for 

GeTe, we can see that with the smaller concentrations of Sn, the increase in Sn content reduces 

the total thermal conductivity. What is also notable is how the samples in Figure 6.4 have 

thermal conductivities that are nearly temperature independent.  
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Figure 6.4: Thermal conductivity for Ge-rich samples. Note the total decrease in the total as we 

move away from the end member GeTe, as well as the weak temperature dependence.  

 

 While we observe a decrease in the total thermal conductivity for GeTe and x=0.10, the 

x=0.05 sample has a sharp increase at 350° C. The trend of decreasing thermal conductivity with 

the addition of Sn is consistent with a mixed-crystal system exhibiting alloy (i.e., mass-

difference) scattering. In addition, the temperature at which the structural transition occurs is 

shifted to a lower temperature, sharply displayed in the x=0.05 data and smoother for the x=0.10. 

Much like the above data from the electrical measurements in the ZEM, some concentrations of 

Sn in the range of x=0.20 to x=0.30 showed variability that could not be resolved between 
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multiple measurements. Below in Figure 6.5 we report the data from three different samples of 

the x=0.20 Sn concentration.  

 
Figure 6.5: Thermal conductivity upon heating of x=.20 samples from three different samples. 

All samples show increases in thermal conductivity with temperature, before a negative step or 

slope at elevated temperatures.  
 

While the absolute values varied between samples, the undulating curvature of the three 

data sets points to the structural phase transition affecting the total thermal conductivity. We 

estimate this transition at 300 ±25 ° C, which is consistent from our high temperature XRD 

analysis putting the x=0.25 transition at about 230 ° C, knowing that the x=0.20 transition 

temperature must be at a higher temperature. After this transition the total thermal conductivity 
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decreases or flattens out. The large spread of the curvature, as opposed to the step seen in the 

GeTe data, is suggests a more gradual transition between ‘rhombic’ and ‘cubic’ behavior. It is 

hard to say definitively if the x=0.20 samples are at a higher or lower thermal conductivity than 

that of the x=0.10 sample, so there may be competing mechanisms driving this behavior beyond 

alloy scattering. Similarly, the x=0.25 and x=0.30 samples measured also had some variability in 

measurements. Below in Figure 6.6 are displayed the data collected for both x=.25 and x=.30 

samples.  

 
Figure 6.6: Thermal conductivity for x=.25 and x=.30 samples. Data is shown upon heating and 

demonstrates structural activity in the temperature range measured.   
 

What is evidenced in the data sets for Ge-rich samples is that the structural phase 
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transition strongly influences the thermal behavior, where the thermal conductivity rises with 

temperature up to the transition, and then decreases or is flat thereafter. For the x=0.25 samples, 

the sharp rise in the thermal conductivity closely correlates with the structural phase transition 

observed in the high-temperature XRD data at about 230 ° C. Like the x=0.05 sample and others 

below, these x=0.25 samples displayed a rise in the thermal conductivity near the transition, 

unlike the GeTe samples which had a sharp decrease. One x=0.30 sample also showed a very 

low total thermal conductivity of 2.3 W/mK slightly above room temperature, among the lowest 

of all samples in this study. Another sample of x=0.30 turned out very similar to the x=0.25 

samples. The trend of decreasing thermal conductivity with increasing Sn content is what we 

would expect, with the minimum thermal conductivity to occur somewhere in the intermediate 

range where the effects of alloy scattering are maximized.  

As was the case for the electronic measurements, thermal data for the samples with 

x=0.40 and above were generally more ‘well behaved’ than the Ge-rich samples. The x=0.40  

data had similar values to other samples on the Ge-rich side, 3-4 W/mK ,suggesting a 

“bottoming-out” of the bathtub shape suggest by the Klemens model [88,90].  Discontinuities 

were observed in that sample as well as the x=0.50 and x=0.60 samples. As more Sn was 

introduced into the material, we observe a neat increase in the thermal conductivity in an ordered 

trend that was held through Ge-poor samples culminating in end member SnTe. Thermal 

conductivity data for samples with Sn content from x=.40 to x=.90 are displayed in Figure 6.7.  
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Figure 6.7: Total thermal conductivity for Sn concentrations of x=.40 and above. Note the 

temperature at which we observe discontinuities in the curve decreases and then disappears with 

increasing Sn content. This is suggestive of the structural phase transition temperature. 

 

We see changes in curvature for the x=0.40,0.50, and 0.60 thermal conductivity curves 

which strongly suggests the effect of the change from a rhombohedral to a cubic crystal system. 

For samples x=0.40,x=0.50 and x=0.60 we see deviations in the thermal conductivity before it 

peaks and falls with T-1 dependence at higher temperatures. There is also a neat shifting of the 

location of these peaks, where x=0.40 sees changes in curvature about 175° C, while the x=0.50 

sees a bend in the curve at 125° C. The temperature range of the x=0.50 sample curvature, 

between 125-150° C, agrees well with the observations of that sample from high-temperature x-
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ray diffraction measurements. The thermal conductivity rising continually with Sn content points 

towards alloy scattering as the mechanism driving these trends. As samples x=0.70 and above 

have predicted transition temperatures at room temperature and below, our data shows a 

‘rounding off’ of the top of the curve, a shift of the same curve observed for x=0.50 but at lower 

temperatures. The general trend of decreasing thermal conductivity at higher temperatures is 

consistent with strong phonon-phonon scattering and we expect that trend would continue until 

the material approaches its melting point (~700° C) [66]. An updated structure phase diagram 

with thermal data in addition to structural analysis from XRD is presented in Figure 6.8. 

 
Figure 6.8: Thermal and Structural analysis of phase transition temperatures in the Ge(1-x)Sn(x)Te 

system. Error bars for the thermal analysis (orange) of ±25 °C reflect the uncertainty in the 

thermal data. 
 

For a more systemic look at the total thermal conductivity, Figure 6.9 was constructed to 

display the total thermal conductivity versus the Sn content at various temperatures. The x=0.20, 

x=0.25, and  x=0.30 data are omitted in this figure considering the inconsistency in measured 

values, but were in the range of 2-4 W/mK. The general trend of the data is consistent with a 
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system with alloy scattering as the dominant mechanism, with a the “bathtub” shape with high 

values for the end members GeTe and SnTe and a flat minima taking advantage of the disorder 

between Sn and Ge species on the cation site. What complicates this picture is the effect of the 

structural phase transition on this trend, as some samples (GeTe, x=0.10), saw thermal 

conductivities decrease while others (x=0.05, x=0.25,x=0.40,x=0.50) increased in the vicinity of 

the phase transition. 

 
Figure 6.9: Total thermal conductivity trends displayed as a function of Sn content at various 

temperatures. 
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6.2 Lattice Thermal Conductivity in the  

Ge(1-x)Sn(x)Te system 

Armed with the wealth of data provided not only from the LFA system total thermal 

conductivity, but also the resistivity and Seebeck coefficient from the ZEM we can calculate the 

lattice contribution to the total thermal conductivity as a function of temperature and Sn content. 

As described in previous chapters, with Equations 6.1-6.3 below we calculate the electronic 

component thermal conductivity using the Wiedemann-Franz Law and subtracting that from the 

total to get the lattice thermal conductivity. Instead of using the Lorenz number (L) for metals, 

we use a formulation common in the thermoelectrics community that utilizes the Seebeck 

coefficient [81]. In practice samples were measured on the LFA first before being sanded into 

parallelepipeds for the ZEM measurement. We show in the figures below the total thermal 

conductivity shown above as well as the calculated values for the electronic and lattice 

contributions. Let us begin with the data for GeTe, below in Figure 6.10. 

 

𝜅𝑡𝑜𝑡𝑎𝑙 = 𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 + 𝜅𝑙𝑎𝑡𝑡𝑖𝑐𝑒    (6.1) 

 

𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 =
(𝐿⋅𝑇)

𝜌
             (6.2) 

 

𝐿 = 1.5 + 𝑒
(

−(|𝑆|)

116
)

⋅ 10−8𝑊Ω𝐾−2           (6.3) 
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Figure 6.10: Thermal conductivity calculations for GeTe 

 

Here we see that the rapid drop in thermal conductivity is wholly reflected as a decrease in the 

lattice thermal conductivity. This is strong evidence that the structural phase transition results in 

a softening in the lattice for cubic GeTe. Other samples showed similar drops, while others saw a 

rise in the lattice thermal conductivity which will be detailed below. One particularly dramatic 

example is shown in the x=.10 results shown below in Figure 6.11. In contrast, the results for the 

x=0.05 point towards a breakdown in the model resulting in unphysical lattice conductivity 

values.   
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Figure 6.11: Thermal conductivity calculations for x=0.05 and x=0.10 
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Here in the x=0.10 case we see a rise in the electronic portion (in step with the decrease 

in resistivity in Figure 5.3) and consequently a decrease in the lattice thermal conductivity. The 

transition in the total conductivity appears to occur at almost 350 °C while the drop in the lattice 

curve appears almost 100 ° below this temperature.  We also know well that there is a minimum 

lattice thermal conductivity corresponding to the amorphous limit on the order of ~0.5 W/mK so 

either this system has a lattice thermal conductivity near this limit, or we are pushing to the limits 

our application of the Wiedemann-Franz law. Given the relationship between electronic and 

electronic resistivity, highly conductive materials will push the values of electronic higher and 

higher and may result in electronic contributions whose value is greater than the total thermal 

conductivity measured on the LFA. We did indeed see this in several samples; the problem-child 

Sn concentrations of, x=0.20 and x=0.30 and to a lesser extent the x=0.05 and x=0.40 samples. 

Below in Figure 6.12 are two results from the two x=0.20 samples that demonstrate these non-

physical results.  

 

Figure 6.12: Lattice thermal conductivity calculations for two x=.20 samples. Note the non-

physical results for sample 9. 
 

  

As sample 9 had a lower resistivity compared to sample 4 (as shown in Figure 5.4), this 
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difference in resistivity leads to a much higher calculated value for the electronic contribution. In 

this case, the calculation result was higher than our LFA results, which point towards a negative 

lattice thermal conductivity, which is unphysical. We saw this again in the results for the x=0.30 

sample below in Figure 6.13. This data is from sample 9, as sample 1 from Figure 6.6 broke 

before it could be measured in the ZEM.  

 

Figure 6.13: Thermal conductivity contributions for the x=.30 sample 

 

While these results may be the most egregious in terms of non-physical results, the 

samples with higher concentrations of Sn fared better. For the x=.40 sample data shown in 

Figure 5.5, only sample 7 was able to be measured in both the LFA and ZEM. As this sample 

had a decrease in resistivity with temperature, it also displayed a decrease in the lattice thermal 
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conductivity.  

 
Figure 6.14: Thermal conductivity contributions for the x=.40 sample. 

 

When this sample shows a bend in the total thermal conductivity curve at about 175 °C, 

this is also the temperature that we see a rapid increase in the electronic portion and a decrease in 

the lattice thermal conductivity. In fact, it continues to drop to below zero values at the highest 

measured temperatures. For the curious reader who might wonder what the results would be 

using the standard value for the Lorenz number, 2.44 x 10-8 W  K-2, the non-physical results 

were even ‘worse.’ In our approximation, the calculated Lorenz numbers are smaller than the 

standard value (usually between 2.0 x 10-8 and 2.3 x 10-8 W  K-2,). Using the larger standard 

value would increase the electronic contribution, which would push lattice thermal conductivity 

values to be even more negative.  
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For samples in the middle of the solid solution and on the Sn-rich side, the results for 

lattice thermal conductivity were much more well behaved. While many had lattice thermal 

conductivities that were very low, none crossed below zero into non-physical territory. Below in 

Figure 6.15 we see the results for the x=.50 sample, for which HT-XRD showed undergoes this 

transition at 140 °C.  

 
Figure 6.15: Thermal conductivity contributions for the x=.50 sample. 

 

Here we see the total and lattice thermal conductivities mirror each other, where the 

transition to the cubic system corresponds to a slight increase in the lattice conduction. We saw 

this again in x=0.60, below in Figure 6.16. For the even-more Sn rich samples, we saw smooth 

curves as these samples are firmly in the cubic phase throughout the measured temperatures. 
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Figure 6.17 has the data for the x=0.70 sample.  

 
Figure 6.16: Thermal conductivity contributions for the x=.60 sample 

 

Figure 6.17: Thermal conductivity contributions for the x=.70 sample 
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Figure 6.18: Thermal conductivity contributions for the x=.80 sample 

 

Figure 6.19: Thermal conductivity contributions for the x=.90 sample 
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Figure 6.20: Thermal conductivity contributions for the SnTe sample 

 

One thing to note about the results from the Sn-rich samples is that in all cases except for 

SnTe, the lattice thermal conductivity was less than that of the electronic contribution. For the 

SnTe sample the lattice contribution was bigger than the electronic. This makes sense, for as we 

saw with the data provided by the Hall measurement, the SnTe samples had a high carrier 

mobility. Now that we have presented the results on a per sample basis, we can examine what the 

trends are when we plot the results as a function of Sn. This is done below in Figure 6.23, and we 

again recover the ‘bathtub’ shape typical of alloy scattering we saw in Figure 6.9. Results with 

non-physical values are omitted from this figure. Also shown are just the lattice  trends from the 

samples above, with the x=0.50 included on both figures for context in Figures 6.21and 6.22.  
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Figure 6.21: Lattice thermal conductivity trends for Ge-rich samples.  

 

Figure 6.22: Lattice thermal conductivity trends for Sn-rich samples. 



122 

 

 

 

Figure 6.23 Lattice thermal conductivity trends as a function of Sn content at select temperatures. 
 

Further insight into our heat conduction results can be gained by examining them in the 

light of the recent T = 0 K lattice dynamical calculations of Banik, et al. (Figure 6.24) [75].    

Here we see that for SnTe in the cubic rocksalt structure (Figure Aa) optical phonons exhibit a 

slight instability at the  point.  This instability causes Sn atoms to move slightly off-center and 

gives rise to the well-known ferroelectric behavior of SnTe [75].  For the x = 0.75 composition 

(Figure 6.24b), this instability at the  point is significantly enhanced, implying a greater 

displacement of Ge atoms. As conjectured by Banik, et al., these unstable optical phonon modes 

engender stronger anharmonic interactions with heat-carrying acoustic phonons, thus giving rise 

to the low thermal conductivity in Ge-containing samples, as well as the very weak temperature 
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dependence of the lattice thermal conductivity of the endmember GeTe.  

 
 

Figure 6.24  Phonon dispersion curves for a) SnTe and b) Ge0.25Sn0.75Te in the cubic rocksalt structure 

at T = 0 K, according to Banik, et al.  The slight instability of optical phonon branches at the Γ point in 

SnTe becomes strongly pronounced in the alloy. 
 

 

  



124 

 

6.3 Discussion of Thermal Behavior 

While the temperature dependence of the thermal conductivity of SnTe is well-behaved 

(lattice thermal conductivity varying roughly inversely with temperature), GeTe exhibits an 

unusually low and nearly temperature independent thermal conductivity. We attribute this 

behavior to a combination of lattice softening and strong anharmonic scattering due to the non-

centrosymmetric crystal structure of GeTe.  For SnTe/GeTe, mixed crystals, the thermal 

behavior observed in this study provides a textbook example of a system with strong alloy 

scattering. While GeTe and SnTe have intrinsically low thermal conductivities, the binary alloy 

system proved to reduce this conductivity further. We observe strong evidence of alloy 

scattering, with the lowest thermal conductivities in the middle region of the alloy providing the 

most disorder in the lattice. The trends in the total thermal conductivity are detailed in Figure 

6.9, and this figure captures the ‘bathtub’ shape predicted by the Klemens model, especially at 

elevated temperatures.  

 The trends were also interesting in the temperature regions of the phase transition. 

While some samples, notably GeTe, found their thermal conductivity reduced in the high-

temperature cubic phase other samples, especially those rich in Sn, saw their thermal 

conductivity increase. The magnitude of the step was the biggest in GeTe, with a step of almost 1 

W/mK in both total and lattice thermal conductivity. The size of the step, and the sharpness of 

the transition, was much smaller for alloyed samples. While GeTe saw a drop in conductivity in 

a temperature span of roughly 20 degrees, the alloyed samples saw non-linear behavior in a 

range twice or three times that of GeTe. For example, the x=0.50 saw a rise of 0.25 W/mK 

spread over an 80-degree range in temperature. Initially we were hoping that the alloyed samples 

would demonstrate sharper and larger changes in thermal behavior like the end-member GeTe, 
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but this was not the case. What is also unresolved is why some concentrations of these mixed 

crystals saw a step up versus a step down in thermal conductivity.  

 We recovered similar alloy-scattering trends when we examined the lattice contributions 

of the thermal conductivity. When examining the total thermal conductivity, the “bathtub” shape 

reflected in Figure 6.9 demonstrates that the alloy scattering mechanism (an effect on the lattice 

thermal conductivity) is the dominant mechanism, in addition to evidence of less dominant 

phonon-carrier scattering. While some samples produced unphysical results in calculating the 

size of the lattice contribution, for the physical results we recovered the expected Klemens model 

shape. There was trouble with the Ge-rich sample stability, reproductivity as well as sample 

brittleness so further investigation is needed to fully understand the contributions of Ge-rich 

samples to the understanding of this phase transition. It could be that these samples, with 

transition temperatures in the range of 200-300 °C, need additional considerations from a 

synthesis standpoint to make them more consistent. It’s possible that the repeated measurements 

and synthesis steps at elevated temperatures are introducing stress into the sample. Early 

attempts at annealing Ge-rich samples below their cubic transition temperature did not appear to 

improve sample durability.  It’s also clear that the Lorenz numbers used historically and from 

estimates using Seebeck coefficient were unable to produce physical results for many samples. 

While we can trust the total thermal conductivity numbers, a better calculation for the electronic 

portions of the thermal conductivity would allow us to say more about the behavior of the lattice 

thermal conductivity with temperature and near the structural phase transition. In addition further 

study of the synthesis and properties of Ge-rich alloys could shed additional light on whether 

slight changes in synthesis procedure produce effects on the thermal behavior. 
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6.4 Figure-of-merit ZT Calculations 

With the wealth of data collected and reported above, we now can complete a calculation 

of the thermoelectric figure of merit, ZT. Below in Figure 6.25 are the ZT results for Ge-rich 

samples, for which the x=0.05 was the clear favorite. Due to the high power factor and decent 

thermal performance, the x=0.05 proved to have the highest ZT of all the results in this study 

with a ZT of 0.40 at 450 °C. Close behind was the ZT from the GeTe sample, which increased 

rapidly as it approached and moved through the structural phase transition and had a peak ZT of 

0.28 at 450 °C.  

 
Figure 6.25: ZT trends for Ge-rich samples. Note that the x=.05 sample is the highest 

performing. 

 

The trends for increasing amounts of Sn proved to result in similar ZT values for x-values 

x=.10 through x=0.40. As for the Sn-rich samples, the x=0.50 sample had a middling ZT, while 

surprisingly the x=0.60 sample had the second highest ZT values in this temperature range, 
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peaking at 0.38 at 450 °C . The other Sn-rich samples had values similar to the Ge-rich samples, 

while the SnTe proved the worst, weighed down by its higher thermal conductivity.  

 

Figure 6.26: ZT trends for Sn-rich samples. Note the high performance of the x=.60 sample. 

 

The x=0.60 sample benefitted from having better Seebeck coefficients than most 

samples, leading to a high power factor, as well as one of the lowest total thermal conductivities 

over this temperature range, only getting better at higher temperatures. The ZT values for the 

other Sn-rich samples were weighed down by both higher thermal conductivity values as well as 

being generally more resistive. Finally, a figure of ZT values as a function of Sn content is 

shown below in Figure 6.27. We see here a curious double peak here with the x=0.05 and the 

x=0.60 samples being high scorers while other concentrations of Sn didn’t do so well. GeTe was 

a better performer than SnTe, as we would expect from the better electronic performance of 

GeTe as well as the higher thermal conductivity observed in SnTe.  
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Figure 6.27: ZT trends as a function of Sn content. Note the peaks at x=.05 and x=.60. 

While both x=0.05 and x=0.60 were high performers, the nature of their performances 

was achieved in different ways. With the x=0.05 sample, the measured power factor (S2/) was 

the highest measured sample in this study, helped in large part by having one of the lowest 

resistivities. In contrast, the x=0.60 scored a high ZT in large part due to its thermal behavior, 

among the lowest in this study especially at higher temperatures. In addition, it benefited from a 

much better power factor than its x=0.50 and x=0.70 neighbors by having the highest Seebeck 

coefficient of all samples measured in this study.  
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Chapter 7 CONCLUSIONS AND FUTURE WORK 

In surveying the results and observations reported throughout the study above, we can 

report several conclusions about the Ge(1-x)Sn(x)Te system. First, we report a way to consistently 

synthesize polycrystalline samples of high density using direct-fusion, ball-milling and Spark-

Plasma Sintering detailed at the end of Chapter 3. By combining structure data obtained from X-

ray Diffraction at room temperature as well as at elevated temperature with the data from thermal 

measurements in the LFA, we can update the phase diagram first laid out by Bierly et al in 1963 

shown in Figure 6.8. This expansion of the phase diagram enables follow-up studies to further 

probe the mechanisms behind the transition as well as provide a roadmap to those developing 

these materials for thermoelectrics or other applications. The information provided by the RUS 

analysis leaves tantalizing clues about the softening of elastic modes in the proximity of the 

structural transition. These observations compare well to previous studies that detail the 

ferroelectric instability of the cation site in both rhombohedral and cubic structures.   

From the electronic and thermal transport data, this study provides a systematic array of 

data that could be used to plan doping studies to optimize the carrier concentration or other 

variables. Quite surprisingly, although the samples studies here have not been doped to optimize 

their thermoelectric properties, some samples achieve reasonably high values of thermoelectric 

figure of merit.  Not unexpectedly, the compositions with lowest thermal conductivity were those 

near the middle of the binary alloy system. With lattice thermal conductivity values on the order 

of 1W/mK, these samples are likely approaching the amorphous limit for this system and so 

further optimization would have to come in the form of altering the electronic behavior of the 

sample. Further attempts to reduce the lattice thermal conductivity via micro or nano structuring 

likely will not be as successful, for as we are near the amorphous limit the mean free path for a 
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phonon is approaching the lattice constant of the material already.  In addition, the off-centering 

of Ge and Sn from their lattice sites proposed by Banik et al [75] would provide a scattering site 

on the order of the lattice constant – a smaller scale than any micro- or nano structuring could 

achieve. The data shown by the carrier concentration and mobility provide strong evidence of Sn 

atoms filling Ge vacancies, which suppressed the carrier concentration while improving the 

carrier mobility. This agrees well with recent studies of vacancy-suppressed GeTe that showed 

that a suppression of vacancies causes the carrier mobility in GeTe to increase dramatically 

[39,42,49].   Our work here further highlights the critical role played by vacancies in these alloys 

and the necessity of controlling them in order to improve the electrical transport characteristics 

of these materials.  

We had a curious result where the measured ZT of these alloys had two peaks; one for 

x=0.05 and one for x=0.60. These two results show alternate pathways of realizing 

thermoelectric performance by either maximizing the power factor or by reducing thermal 

conductivity. It’s clear that both samples in question are far from optimized, so achieving a ZT of 

unity in this alloy system is quite realistic. Substituting Sn for Ge provides a low-cost and more 

environmentally friendly way of attaining similar performance in a material, increasing the 

likelihood of adoption for applications. In addition, by tuning the cubic transition temperature 

with the inclusion of Sn, a device can be tuned to a specific temperature range depending on the 

application.   

From the trends detailed in this study, we can identify several routes forward that would 

further increase our understanding of the fundamentals of this system as well as improve the 

performance of these alloys for thermoelectric applications. First, one could execute a full 

structural study of all alloys in the system at elevated temperatures for both HT-XRD and HT-
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RUS. These studies could be used to pinpoint the exact temperatures of phase transition as well 

as characterize the elastic behavior before, during, and after the phase change. Perhaps the 

softening of the elastic constants can be tuned to a specific temperature range with Sn content to 

maximize the elastic properties for thermoelectric applications.   

Additional dopants may provide the system with more mechanical stability, making it 

less brittle, as well as improving the electrical performance.  N-type doping to further reduce the 

hole concentration should be used, as the carrier concentrations measured here are likely far 

above the optimal levels. By reducing the carrier concentration, the Seebeck coefficient should 

increase with a small penalty to the electrical conductivity, while also reducing the electronic 

component of the total thermal conductivity. For almost all samples, the electronic contribution 

to the thermal conductivity was greater than the lattice contribution, so optimizing the carrier 

concentration would improve the ZT performance synergistically. This has been tried by others 

with many having success in improving ZT using various N-type dopants, including Sb and Bi as 

well as transition-metal co-doping and alloying with Mn, Cu, In, Ga [58,63,111,117].  It is 

possible that some “TAGS-85” like combination of doping and alloying would yield a high-

performing material in this system that would simultaneously optimize the thermoelectric 

performance while also minimizing the amount of precious, toxic, or rare elements used to do so. 

As GeTe-based thermoelectrics were developed in response to replacing toxic Pb in PbTe, we 

now come full circle to examine ways to replace the expensive Ge with less costly and earth 

abundant elements like Sn. Overall, as many have realized, the GeTe-SnTe system is a 

seemingly simple system that can serve as a model system to develop a better fundamental 

understanding of structure-property relationships as well as develop a more thorough 

understanding in how to design thermoelectrics for better performance.   
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APPENDIX: 

 
Sample density was a critical parameter to ensure sample quality. Samples of low density 

would upset the many measurements that rely on models that take the density into account, 

including the LFA thermal data as well as the RUS data. To determine the theoretical density of 

samples throughout the series, a theoretical density was calculated via a linear rule of mixtures 

between the two end members. End-member densities were determined from literature sources 

[106-107] which were in good agreement in variety of sources: 6.14 g/cc for GeTe and 6.44 g/cc 

for SnTe. A table of measured sample densities is displayed below in Table A.1. Samples were 

measured both geometrically with calipers as well as via an Archimedes method and little 

deviation was found between measurements.  

 

Sample Sn 

content  

Geometric 

Density (g/cc) 

Theoretical 

Density (g/cc) 

% 

Density  
0 5.85 6.14 95% 

0.05 5.86 6.155 95% 

0.1 6.103 6.17 99% 

0.2 #4 5.91 6.2 95% 

0.2 #9 5.96 6.2 96% 

0.25 6.21 6.215 100% 

0.3 5.92 6.23 95% 

0.4 #2 6.05 6.26 96% 

0.4 #7 5.98 6.26 96% 

0.5 6.069 6.29 96% 

0.6 6.14 6.32 97% 

0.7 6.202 6.35 98% 

0.75 6.37 6.365 100% 

0.8 6.26 6.38 98% 

0.9 6.28 6.41 98% 

1 6.31 6.44 98% 

Table A.1: Measured sample geometric densities. Note how samples are all at or above 

95% theoretical density. 
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 In addition to sample density, the heat capacity of samples was calculated via their 

stoichiometry using the Dulong-Petite law, a common approach for thermoelectric materials well 

above their Debye temperatures. Using known molar masses and the gas constant R, we calculate 

heat capacity with the following relation:  

     3𝑅 =
𝑀

#
 𝐶 

Where (M/#) is the molar mass per atom in the crystal cell (for us, the average molar mass per 

atom in the unit cell, #=2), C is the heat capacity and R is the universal gas constant. A table of 

the heat capacities used in the study above are listed below in table A.2. Calculated values agree 

well with literature values for heat capacity in GeTe and SnTe [106,116-117].  

 

Sample Sn 

content 

Mass per atom 

(g/mol) Heat Capacity (J/g K) 

0 100.105 0.2492 

0.05 101.25725 0.2463 

0.1 102.4095 0.2436 

0.2 104.714 0.2382 

0.25 105.86625 0.2356 

0.3 107.0185 0.2331 

0.4 109.323 0.2282 

0.5 111.6275 0.2235 

0.6 113.932 0.2189 

0.7 116.2365 0.2146 

0.75 117.38875 0.2125 

0.8 118.541 0.2104 

0.9 120.8455 0.2064 

1 123.15 0.2025 

Table A.2: Calculated heat capacities for samples used in the study.  

 

 


