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ABSTRACT

The fission of neutron-rich heavy, and superheavy, nuclei is hypothesized to impact r-process

nucleosynthesis. However, the lack of experimental data for these nuclei demands theoretical

predictions with quantified uncertainties. Nuclear energy density functional theory (DFT)

has had success predicting fission lifetimes and yields for many r-process nuclei by repre-

senting the process as a tunneling problem in a collective space. In this dissertation, I will

describe the current DFT framework we use and introduce an implementation of the nudged

elastic band technique. I then discuss the application of the nudged elastic band to calculate

fission lifetimes and yields to study nuclei with competing modes of fission. Then, I discuss

recent progress towards improving our theoretical framework of fission using an instanton

approach to model nuclear fission. Furthermore, I will highlight possible overlaps of this

approach with nuclear dynamics. I propose an algorithm to find mean-field instanton solu-

tions and I conclude with future directions for the instanton approach for nuclear fission and

future applications of the nuclear DFT approach to fission lifetimes and yields.
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Chapter 1. Introduction
Nuclear fission is currently understood as a spontaneous or induced, time-dependent, quan-

tum mechanical process that transforms a nucleus into two or three smaller nascent frag-

ments. Much of this understanding follows from experiments and theoretical models from

the 1930’s. In 1934, Enrico Fermi and collaborators irradiated uranium with neutrons and

observed subsequent beta decays [1]. It wasn’t until 1939 when Otto Hahn and Fritz Straß-

mann discovered decay products barium, strontium, yttrium, and krypton following the

neutron irradiation of uranium. Their observations provided strong evidence the uranium

nucleus was in fact splitting into two fragments [2]. Lise Meitner and Otto Frisch named the

splitting "nuclear fission" and developed a qualitative description of the phenomena based

on the concept of a charged liquid drop [3, 4]. Bohr and Wheeler formalized Meitner and

Frisch’s ideas into a quantitative theory in their seminal paper [5]. In their publication, they

postulated that the nucleus behaves like a semi-classical charged liquid drop that is unstable

against deformation. They characterized the instability by parameterizing the potential en-

ergy of the nucleus with various modes of nuclear deformation. This characterization defined

a paradigm that persists in many models of fission used today.

Despite the success of the paradigm, there are still open problems regarding the origin

of fissioning nuclei and the fission mechanism that have yet to be solved. It is known that

many fissioning nuclei are actinides (heavy elements) with atomic numbers ranging between

89 and 102 and trans-actindes (superheavy elements) with atomic numbers greater than 102.

Determining the natural production site of heavy and superheavy nuclei is an open problem

in nuclear physics, and forming these elements in terrestrial laboratories is very challenging

(see Refs. [6–9] for reviews). By studying the astrophysical rapid neutron capture process

abundance patterns, we can learn about the origin of heavy and superheavy nuclei.
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There are two primary neutron capture processes identified to be responsible for element

formation beyond the iron group. Depending on the time scale of neutron capture compared

to the time scale of beta decay [10], these two processes have been called slow neutron

capture process (s-process) and the rapid neutron capture process (r-process) [11]. Since the

formation path of the s-process lies along the valley of beta stability, most of the properties of

relevant nuclei have been experimentally studied. Additionally, the astrophysical sites of the

s-process are known (see, for example, Ref. [12] and references therein). On the other hand,

the r-process involves thousands of neutron-rich nuclei that are currently beyond the reach

of experimental studies, and the astrophysical events in which the r-process occurs remain

elusive. The r-process requires neutron fluxes large enough for neutron capture reactions to

dominate over beta decay. The only known sites capable of producing such large neutron

fluxes are binary neutron star (BNS) mergers [13], binary black hole-neutron star (BH-NS)

mergers [14, 15], and highly spinning core-collapse supernova [16].

One prediction of nuclei hypothesized to take part in the r-process is highlighted in red in

Fig. 1.1 and the green arrow schematically represents an r-process synthesis trajectory. The

predicted nuclei are neutron-rich and primarily take part in the r-process through β− decay,

neutron capture, photodisintegration, beta-delayed neutron emission, and nuclear fission.

To study the synthesis of heavy elements, one considers the nuclear abundances as a

function of time during a simulation of one of the proposed astrophysical events. High-

fidelity simulations of compact binary mergers and core-collapse supernovae are needed to

study the abundances of nuclei produced at these sites [19–21]. Nuclear abundance histories

are calculated by solving reaction networks which consist of a set of differential equations
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Figure 1.1: Partition of the nuclear chart highlighting relevant regions for r-process nucle-
osynthesis. The green arrow schematically represents the r-process trajectory through the
region of the chart predicted to exist by FDRM2012 [17]. The black and gray squares label
the stable and measured nuclei respectively [18]. The blurred red boundary schematically
represents the approximate location of the neutron dripline.

given by [22],

dYi
dt

= f(Yk, T, λk), (i = 1, 2, . . . , N) (1.1)

where Yi labels the particle species abundance, and f is function of the temperature, T , and

the rate of reactions or decays taking part in the evolution, λk. N denotes the total number

of species in the network. Nuclear reaction and structure measurements or theoretical pre-

dictions in the form of reaction or decay rates and yields are necessary inputs for the reaction

network. In particular, studies to date have shown that nuclear fission rates and fragment

distributions influence the abundances of lighter nuclei produced in the r-process through

the fission cycling mechanism [23–29]. However, fission observables are significant sources of

uncertainty [30–32]. Many fissioning nuclei hypothesized to take part in the r-process lack
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Figure 1.2: Schematic representation of the different stages of fission separated by time scale
starting from an initial state to scission. Figure taken from Ref. [33].

experimental data. Therefore, to assess the impact of fission in the r-process, one must rely

on theoretical predictions.

A complete quantum mechanical theory of fission is needed to systematically predict

fission observables [33]. This theory must appropriately treat the nuclear interactions and the

many-nucleon physics across a very wide time scale. Rather than solving the entire nuclear

dynamics from initial state to final state, the process partitioned into stages separated by

timescale. Fig. 1.2 from Ref. [33] shows typical time scale separations defining the different

stages of fission. An overview of each stage is given in Ref. [33]. In this dissertation, we study

the collective motion stage leading to nascent fission fragments to advance our theoretical

models of nuclear fission.

1.1 Dissertation Organization

The dissertation is organized as follows: In Ch. 2 we overview the theoretical foundations
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of the non-relativistic nuclear mean-field theory. In Ch. 3 we discuss how mean-field theory

is used to study spontaneous fission and the methods used to calculate fission lifetimes. In

Ch. 4 we apply this approach to select nuclei with competing modes of fission and discuss

the methods used to calculate fission mass and charge yields. Ch. 5 discusses the many-

body tunneling and the instanton method as a possible framework that extends beyond the

mean-field approach introduced in Ch. 2. Finally, conclusions and future work is outlined

in Ch. 6.
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Chapter 2. Nuclear Mean-field Theory

2.1 Theoretical Foundations

Our description of fission is rooted in nuclear mean-field theory. This approach approximates

many-body interactions with effective interactions and many-body wave-functions1. We

select the vacuum (also called a reference) state that minimizes the total energy of the

many-body system,

|Ψ⟩ = argmin
|Ψ̃⟩

⟨Ψ̃ | Ĥ | Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

= argmin
|Ψ̃⟩

E
[
|Ψ̃⟩
]

(2.1)

where |Ψ̃⟩ is an arbitrary state and Ĥ is the many-body Hamiltonian in second quantization:

Ĥ =
∞∑

p,q=0

⟨p | ẑ | q⟩η̂†pη̂q +
1

2

∞∑
p,q,r,s=0

⟨pq | v̂ | rs⟩η̂†pη̂†q η̂sη̂r + . . . . (2.2)

E is referred to as the energy functional. The operator ẑ contains one-body interactions such

as the kinetic energy operator, v̂ contains two-body interactions, and so on. η̂p and η̂
†
p are

fermionic annihilation and creation operators defined on an anti-symmetrized Fock space F

satisfying anti-commutation relations

{η̂†p, η̂q} = δpq, {η̂p, η̂q} = {η̂†p, η̂†q} = 0 (2.3)

If the minimization procedure is unrestricted in F , then the optimization is equivalent

to solving for the exact many-body ground state by the Rayleigh-Ritz variational principle

[34]. This is computationally intractable as the cardinality of F scales exponentially with

1Unless otherwise stated, we use natural units ℏ = c = 1 and assume Einstein summation convention.
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Figure 2.1: Schematic representation of the energy functional E[|Ψ⟩] over the space F .
E[|Ψ⟩KS] is defined over the low dimensional Kohn-Sham domain indicated by the red curve.
The Kohn-Sham subset contains a state that reproduces the ground state energy EGS.

the number of nucleons [35].

An ansatz by Kohn and Sham [36] maps the minimization over F to a minimization over

a significantly smaller subspace spanned by states representing a fictitious non-interacting

system of independent fermions. The Kohn-Sham domain is a small subset of F and contains

a non-interacting fermion state that reproduces the true many-body ground state energy.

This is schematically represented in Fig. 2.1. The ansatz makes the minimization computa-

tionally tractable [37, 38]. In nuclear physics, the Kohn-Sham assumption is well motivated

by the success of the independent particle picture underlying the nuclear shell model [39].

Further, ab initio studies of finite nuclei have shown that residual interactions from 3-body

or higher forces are much smaller compared to the normal ordered one-body potentials [40–

42]. Nevertheless, mean-field theory does not completely solve the nuclear many-body prob-

lem. Other approaches which attempt to go beyond the independent particle approximation
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include using multi-reference states [43–46], the coupled-cluster approach [47–50], and the

In-Medium-Similarity-Renormalization-Group (IMSRG) method [51–53]. We assume our

many-body system is well represented by a single Kohn-Sham state.

One commonly used Kohn-Sham state is a particle-hole Slater determinant which yields

the Hartree-Fock (HF) equation from the minimization of E. While this choice has been

used extensively to describe nuclear ground states, excited states, and dynamics (for example,

see Refs. [54, 55] and the references therein), the particle-hole Slater determinant neglects

superfluid features observed in nuclei [34, 56]. For this reason, we assume a quasi-particle

Slater determinant defined by the Bogoliubov transformation of particle-hole annihilation

and creation operators [34],

β̂
†
p =

∑
q

(
Uqpη̂

†
q + Vqpη̂q

)
, β̂p =

∑
q

(
U∗
qpη̂q + V ∗

qpη̂
†
q

)
(2.4)

To preserve the fermionic anti-commutation relations, we require

U†U + V †V = 1, UU† + V ∗V T = 1 (2.5)

UTV + V TU = 0, UV † + V ∗UT = 0.

We denote a quasi-particle Slater determinant as

|Φ⟩ =
∏
p

β̂p|0⟩ (2.6)

where |0⟩ is true vacuum. If we assume there exists a one-to-one mapping between |Φ⟩ and

a reduced one-body density R (N -representablity [37]), then define a generalized reduced
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one-body density in quasi-particle vacuum as

R =

 ρ κ

−κ∗ 1− ρ∗

 (2.7)

where the particle density ρ and pairing density κ are

ρpq = ⟨Φ | η†pηq |Φ ⟩ = (V V †)pq, κpq = ⟨Φ | ηpηq |Φ ⟩ = (UV †)pq. (2.8)

The Wick contraction ..... indicates a contraction with respect to quasi-particle vacuum.

To ensure R is a density operator, we enforce the idempotent condition R2 = R. The

minimization is equivalently taken over generalized densities,

min
|Φ̃⟩

E
[
|Φ̃⟩
]
= min

R̃
E[R̃]− Tr

(
Λ(R̃2 − R̃)

)
(2.9)

where Λ is a matrix of Lagrange multipliers. Proof of the minimization Eq. (2.9) over

N -representable densities is formalized by Levy and Lieb’s constrained search [57–60].

Rather than representing the total energy E[R] in terms of a Hamiltonian, we instead

represent it as an integral over a scalar function of reduced one-body densities and currents

called an energy density functional (EDF) E . This approach is the core of nuclear density

functional theory (DFT) and is used in our non-relativistic mean-field description of fission.

We overview the essential results from DFT used in this dissertation.

The foundations of DFT were derived by Hohenberg and Kohn in their seminal paper

[61] for electronic systems. Their results can be summarized by two theorems:
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Theorem 1. There exists a mapping between a ground state density of the many-body system

and a one-body potential. This map is unique up to an additive constant and defines a set of

what are called V -representable densities for which this map exists.

Theorem 2. There exists a universal EDF of densities and currents such that it’s global

minimum corresponds to the exact ground state energy of the many-body system.

The proofs can be found in Ref. [37]. Progress towards formal extensions of the

Hohenberg-Kohn theorem for self-bound intrinsic systems have been made [62–65] and mo-

tivate using DFT for nuclear systems.

Minimizing the energy with respect to R leads to the Hartree-Fock-Bogoliubov (HFB)

mean-field equations

H

Upk
Vpk

 = Ek

Upk
Vpk

 (2.10)

where the HFB matrix H is

H =

 f ∆

−∆∗ −f∗

 . (2.11)

The matrix elements of H are given by

fpq =
∂E

∂ρpq
, ∆pq =

∂E

∂κ∗pq
(2.12)

where f is the Fock matrix (also called the particle-hole Hamiltonian), and ∆ is the pairing

field.

The HFB equations have three crucial features. First, in the presence of pairing correla-
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tions, H does not commute with the particle-hole number operator N̂ =
∑
p η̂

†
pη̂p. Solutions

to the HFB equations do not have definite particle number. This is discussed in more de-

tail in section 2.3.1. Second, the HFB matrix admits conjugate solutions with eigenvalues

−Ek. These are related to the positive energy solutions through complex conjugation of the

eigenvectors in Eq. (2.10). It is conventional to solve for positive eigenvalues and eigen-

vectors and assume the negative eigenstates are occupied. Third, the spectrum of the HFB

matrix is unbounded above and below. Due to the unbounded spectrum, physical bound

states of the HFB matrix have some coupling to the quasi-particle continuum which must be

treated carefully in numerical calculations. Typical methods for treating the quasi-particle

continuum include discretization using vanishing Dirichlet boundary conditions in coordinate

space [66–68], discretization by expanding solutions in a harmonic oscillator basis [69, 70],

or treating the continuum in the Berggren basis (Gamow-HFB) [71].

The construction of the HFB matrix requires a model of nuclear interactions, as the

Hohenberg-Kohn theorem only proves the existence of a universal EDF. The form of the

universal functional is currently unknown. Much work has been done to derive EDFs from

effective theories of nucleon-nucleon interactions [72–78]. Alternatively, the form of the EDF

can be postulated, usually guided by symmetries or phenomenology. A few examples of

postulated EDFs are the Skyrme-type [79–84], Gogny [85, 86], SeaLL1 [87], and Fayans

[88, 89] functionals. In this dissertation we only consider Skyrme and Gogny EDFs. Phe-

nomenological EDFs based on relativistic meson exchange models are discussed in section

5.
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2.2 Structure of a Nuclear Energy Density Functional

The structure of the EDF depends on whether the nuclear system contains an odd or even

number of particles. In odd nucleon systems, time-reversal symmetry is broken and time-

odd parts of the EDF must be included [34, 90]. The classification based on time-reversal

symmetry is used to identify parts of the EDF that are present for all nuclear systems. We

only focus on nuclei with an even number of protons and neutrons due to the additional diffi-

culties posed by odd nucleon systems [91, 92]. In the following, we overview the construction

of EDFs for even-even systems.

Assume single quasi-particle states of the form |p⟩ ∈ F where p is the occupation quantum

number. We label spin and isospin projections with s and τ (τn = −1/2 for neutrons and

τp = 1/2 for protons) respectively. The position space representation of the reduced one-

body particle density operator on F has the form:

ρ̂(r⃗1, r⃗2) =
∑
ij

ρij(r⃗1, r⃗2)σi ⊗ τj (2.13)

=
1

4
ρ0(r⃗1, r⃗2)Îs ⊗ Îτ +

1

4
ρ1(r⃗1, r⃗2)Îs ⊗ τ⃗ +

1

4
s⃗0(r⃗1, r⃗2)σ⃗ ⊗ Îτ +

1

4
s⃗1(r⃗1, r⃗2)σ⃗ ⊗ τ⃗

where σ⃗ and τ⃗ are the vector of Pauli matrices for spin and isotopic spin respectively [93].

Define isoscalar (labeled with t = 0) and isovector (labeled with t = 1) particle densities,

ρ0(r⃗1, r⃗2) =

1/2∑
s1s2τ=−1/2

ρ(r⃗1, s1, τ, r⃗2, s2, τ) (2.14)

ρ1(r⃗1, r⃗2) =

1/2∑
s1s2τ=−1/2

(−1)2τ+1ρ(r⃗1, s1, τ, r⃗2, s2, τ) (2.15)
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and the isoscalar and isovector spin densities,

s⃗0(r⃗1, r⃗2) =

1/2∑
s1s2τ=−1/2

ρ(r⃗1, s1, τ, r⃗2, s2, τ)⟨s1 | σ⃗ | s2⟩ (2.16)

s⃗1(r⃗1, r⃗2) =

1/2∑
s1s2τ1τ2=−1/2

ρ(r⃗1, s1, τ1, r⃗2, s2, τ2)⟨s1 | σ⃗ | s2⟩ · ⟨τ1 | τ⃗ | τ2⟩ (2.17)

respectively. By taking traces of the reduced one-body densities, we define local densities and

their derivatives. Relevant local densities and currents classified by their symmetry under

time-reversal and their first and second derivatives are shown below

1. Time-even:

ρt(r⃗) =

∫
d3r′δ3(r⃗ ′ − r⃗)ρt(r⃗, r⃗

′) (particle density) (2.18)

τt(r⃗) =

∫
d3r′δ3(r⃗ ′ − r⃗)

(
∇⃗ · ∇⃗′ρ(r⃗, r⃗ ′)

)
(kinetic density) (2.19)

Jt,ij(r⃗) = − i

2

∫
d3r′δ3(r⃗ ′ − r⃗)

(
∇i −∇′

j

)
sj(r⃗, r⃗

′) (spin current density) (2.20)

2. Time-odd:

s⃗t(r⃗) =

∫
d3r′δ3(r⃗ ′ − r⃗)s⃗t(r⃗, r⃗

′) (spin density) (2.21)

S⃗t(r⃗) =
∫
d3r′δ3(r⃗ ′ − r⃗)

(
∇⃗ · ∇⃗′s⃗t(r⃗, r⃗ ′)

)
(kinetic spin density) (2.22)

jt,i(r⃗) =

∫
d3r′δ3(r⃗ ′ − r⃗)

(
∇i −∇′

j

)
ρt(r⃗, r⃗

′) (current density). (2.23)

Similar operators and densities can be defined with the replacement ρ → κ. To build time-
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even pairing EDFs, it is convenient to define a time-even form of the pairing densities [66],

ρ̃(r⃗1, s1, τ1, r⃗2, s2, τ2) = −2s2κ(r⃗1, s1, τ1, r⃗2,−s2, τ2). (2.24)

We use this form of the pairing density.

EDFs in quasi-particle vacuum have the general form [93],

E = Ekin[ρ] + Ec.o.m[ρ] + Eph[ρ] + Epp[ρ, κ, κ∗] + Ee.m[ρ] (2.25)

where Ekin[ρ] is the kinetic energy density, Ec.o.m[ρ] is the center of mass functional, Eph[ρ]

is the particle-hole (also called the potential) term, Epp[ρ, κ, κ∗] is the particle-particle (also

called the pairing) term, and Ee.m[ρ] is the electromagnetic density. The kinetic energy

functional is

Ekin[ρ] =
∑
t=0,1

ℏ2

2mp
τt[ρ] (2.26)

where t = 0, 1 denote isoscalar and isovector respectively. We use the bare nucleon mass

expression from Ref. [81],

ℏ2

2mp
= 20.735530 MeV fm2. (2.27)

The kinetic term is often paired with a center-of-mass density Ec.o.m[ρ] to correct for trans-

lational symmetry breaking by the mean-field in the intrinsic system. Rather than restoring
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the symmetry completely, a simple approximation that is often used is [90]

Ec.o.m[ρ] = −
∑
t=0,1

1

2mpA
τt[ρ]. (2.28)

This correction is not included in all EDFs and must be included in the calibration. The

particle number is not additive in the exact center of mass correction and this poses a

conceptual problem when modeling fission. Properly computing this relative contribution

is difficult, as it reflects the entanglement between prefragments [94]. Because of these

difficulties, the EDFs we consider do not include the center of mass correction.

The electromagnetic term contains the direct (Hartree) and exchange (Fock) term arising

from the anti-symmetric nature of fermions,

Ee.m.[ρ] = EDe.m.[ρ] + EEe.m.[ρ]. (2.29)

The direct term is the classical Coulomb interaction,

EDe.m.[ρ] =
e2

2

∫
d3r′

ρτp(r⃗)ρτp(r⃗
′)

|r⃗ − r⃗ ′| (2.30)

where ρτp is the local proton particle density. In numerical calculations, a singularity free

representation proposed by Vautherin [95] or Dobaczewski et al. [67] is used. The time-even

exchange term is [93]

EEe.m.[ρ] = −e
2

2

∫
d3r′

ρτp(r⃗, r⃗
′)ρτp(r⃗ ′, r⃗)

|r⃗ − r⃗ ′| . (2.31)

The exchange term is more computationally expensive since it depends on the reduced one-
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body density. While there exist numerical methods to compute this [96–98], the Slater

approximation [99],

EEe.m.[ρ] ≈ −3e2

4

( 3
π

)1/3
ρ
4/3
τp (r⃗) (2.32)

is often deployed due to its simplicity. The total difference between the Slater approximation

and the exact expression of the exchange term in the calculation of nuclear ground states is

on the order of 1 MeV [100]. We use the Slater approximation for all Skyrme calculations.

We ignore pairing contributions to Ee.m. as it is ∼ 100 keV [93, 100].

The particle-hole (ph) and particle-particle (pp) densities represent the nuclear inter-

action between independent particles and particle pairs respectively. Combinations of the

basic densities in Eqs. (2.18)-(2.23) are multiplied by parameters optimized to reproduce

experimental data such as nuclear masses, isomers, and nuclear matter properties [82]. The

optimization depends on the training data selected as well the method used to treat broken

symmetries of the nuclear system. Extrapolative predictions beyond the training data to

all nuclei is an active field of research [28, 101, 102]. The Skyrme and the Gogny class of

EDFs have been used to extrapolate fission predictions to actinides and trans-actinides and

we briefly overview each one.

2.2.1 The Skyrme Functional

The original Skyrme EDF, proposed by Skyrme [103–105], is derived by calculating matrix

elements of a phenomenological two-body contact potential. Modern versions of the Skyrme

EDF are derived from the density matrix expansion proposed by Negele and Vautherin [106,
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107] and have the form

ESk = Ekin[ρ] + Ec.o.m[ρ] + ESk,ph[ρ] + ESk,pp[ρ, κ, κ∗] + Ee.m[ρ]. (2.33)

where Ec.o.m[ρ] maybe included depending on the calibration. The particle-hole sector con-

tains time-even and time-odd isoscalar and isovector parts,

ESk,ph[ρ] =
∑
t=0,1

(
E(even)t,ph [ρ] + E(odd)t,ph [ρ]

)
(2.34)

The time-even part contains bilinear combinations of the densities and currents (from Eqs.

(2.18)-(2.20)),

E(even)t,ph = C
ρρ
t [ρ]ρ2t + C

ρτ
t ρtτt + CJ

2
t Jij,tJij,t + C

ρ∆ρ
t ρt∇⃗2ρt + C

ρ∇J
t (εijk∂kJij,t)ρt (2.35)

where we suppress the spatial indices. Since we are only considering even-even nuclei,

E(odd)t,ph = 0. The C coefficients are real numbers with the exception of

C
ρρ
t [ρ] = C

ρρ
t0 + C

ρρ
tDρ

α (2.36)

which has density dependence. Cρρt [ρ] is an effective density dependent coupling meant to

reproduce renormalized n-body forces. The particle-hole sector contains 13 tunable param-

eters,

{Cρρt0 , C
ρρ
tD, C

ρτ
t , CJ

2
t , C

ρ∆ρ
t , C

ρ∇J
t , α} (2.37)
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for t = 0, 1. Relations between the parameter set in Eq. (2.37) and Skyrme interaction

couplings are shown in Ref. [108]. In the pairing sector, one can define a similar density

matrix expansion. A common simple zero-range pairing force of the form,

ESk,pp[ρ, κ, κ∗] =
1/2∑

τ=−1/2

Vτ

(
1− ρ0(r⃗)

ρref

)
ρ̃2τ (r⃗) (2.38)

where Vτ are fit parameters, and ρ̃(r⃗) is the time-even pairing density from Eq. (2.24) [90,

109]. This form of the pairing interaction is inspired by the t0 and t3 terms from the Skyrme

potential [105]. The reference density ρref classifies the type of pairing interaction. We use

ρref = 0.16 fm3 corresponding to “surface pairing”. Other values of ρref have also been used

in various calibrations of the Skyrme EDF [110]. The pairing functional in Eq. (2.38) is

used in the UNEDF parameterization of the Skyrme functional [82, 111]. Other forms of the

Skyrme functional such as the SkM∗ functional use a BCS-type of pairing functional [95]

ESk−BCS,pp = −2G
∑
i

(
ni(1− ni)

)1/2 (2.39)

where ni are the occupation probabilities of state i and G is a fit parameter. Due to the

zero-range behavior, both of the pairing functionals contain ultraviolet divergences. This

requires a regularization scheme to render the pairing sector finite [67, 112].

Since the original Skyrme interaction was published, there have been many parameteri-

zations of the Skyrme EDF published with different calibrations, treatments of pairing, and

densities included (see Ref. [110] for a review of the various Skyrme EDF parameteriza-

tions). In this work, we use the UNEDF1HFB [111] and SkM∗ [83] functionals. These are

both calibrated with fission data. UNEDF1HFB was fit including fission isomer excitation

18



energies of selected actinides and SkM∗ was fit to reproduce fission barrier heights of 240Pu.

2.2.2 The Gogny Functional

The Gogny interaction combines the finite-range potentials from the phenomenological Brink

and Boeker force [113] and the contact density dependence from the Skyrme interaction. The

form of the Gogny two-body interaction is [85]

VGogny(r⃗1, r⃗2) =
2∑
j=1

e

−|r⃗1−r⃗2|2
µ2j

(
Wj +BjP̂σ −HjP̂τ −MjP̂σP̂τ

)
(2.40)

+ t3(1 + x0P̂σ)δ
3(r⃗1 − r⃗2)ρ

α
( r⃗1 + r⃗2

2

)
+ i
(
WLS(σ⃗1 + σ⃗2) · k⃗†

)
×
(
δ3(r⃗1 − r⃗2)k⃗

)

where P̂σ = 1
2

(
I2+ σ⃗1 · σ⃗2

)
and P̂τ = 1

2

(
I2+ τ⃗1 · τ⃗2

)
are the spin and isotopic spin exchange

operators respectively and k⃗ is the relative momentum operator,

k⃗ =
1

2i
(∇⃗ − ∇⃗ ′). (2.41)

Note that the conjugate momentum k⃗† acts on states to the left. The Gogny functional

contains 14 fit parameters,

{µj ,Wj , Bj , Hj ,Mj , t3, x0, α,WLS} (2.42)

for j = 0, 1. The pairing sector is treated using the contact pairing from Eq. (2.38). Similar

to the Skyrme EDF, there exist many parameterizations of the Gogny interaction [114].

The D1S parameterization [115] was fit to reproduce the barrier height of 240Pu. This

parameterization has been used to study fission of heavy and superheavy nuclei [114] and
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this is the parameterization we use.

2.3 Symmetries and Constraints

When defining a mean-field state by minimizing the total energy functional E, one must

decide to preserve symmetries before performing the energy minimization or restore them

afterwards. Allowing the minimization to consider states that break symmetries may result

in a lower mean-field energy resulting in an unrestricted HF or HFB vacuum, however, this

state may not represent the physics of interest. Alternatively, enforcing symmetries results

in a restricted HF or HFB vacuum which is not guaranteed to result in the global minimum

energy configuration. This situtation is called the mean-field theory "symmetry dilemma"

in the literature [116–118].

The choice to preserve or break symmetries depends on the problem under consideration.

There are two main strategies to treat the "symmetry dilemma". First, are symmetry

restoration techniques. In this approach, an unrestricted minimization is performed, then

the Kohn-Sham solution is projected onto the subspace where the symmetry is preserved.

Second, is to introduce constraints to the energy minimization to preserve the symmetries

relevant to the problem of interest. The EDF calibration must take into account how the

symmetries are treated and must be used consistently in applications. We take the second

approach and introduce constraints linearly by method of Lagrange multipliers. We overview

the relevant symmetries and methods used to constrain them.

2.3.1 Particle Number and Pairing Fluctuations

Quasi-particle vacuum does not preserve particle number. This poses a problem when de-

scribing systems with definite numbers of protons and neutrons. Exact restoration of particle

number can be done by projecting the Kohn-Sham solution onto a subspace with definite
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proton and neutron numbers using the projection operator,

P̂Nτ =
1

2π

∫ 2π

0
dϕeiϕ(N̂τ−Nτ ) (2.43)

where Nτ is the fixed number of protons (τ = 1/2) or neutrons (τ = −1/2). This approach is

computationally expensive and has a small effect on the ground state properties of even-even

nuclei [119].

A more practical and computationally cheaper alternative is to constrain the vacuum

expectation value of the particle number operator for proton and and neutron separately by

introducing linear constraints,

L[R, λτ ] = E[R]−
1/2∑

τ=−1/2

λτ
(
⟨ N̂τ ⟩−Nτ

)
, ⟨ N̂τ ⟩ = ⟨Φ | N̂τ |Φ ⟩ (2.44)

where λτ are Lagrange multipliers for protons and neutrons. λτ are interpreted as the chem-

ical potentials defining the Fermi surface for protons and neutrons and must be calculated

with the HFB equations simultaneously. Only solutions with λτ < 0 are considered. These

solutions correspond to localized HFB orbitals which are interpreted as bound state solutions

to the HFB equations. Since the HFB matrix is unbounded below and above, eigenvalues

with Ek,τ /∈
[
− |λτ |, |λτ |

]
are interpreted to be elements of the discretized continuum spec-

trum.

However, due to the presence of the pairing interaction, the expectation value of N̂2
τ is

not negligible in nuclei based on empirical evidence [120, 121]. The Lipkin-Nogami (LN)
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method adds a constrain on N̂2
τ [122],

L[R, λτ ] = E[R]−
1/2∑

τ=−1/2

λτ
(
⟨ N̂τ ⟩−Nτ

)
−

1/2∑
τ=−1/2

λ2τ ⟨ N̂2
τ ⟩ (2.45)

Constraining N̂2
τ has been shown to prevent the collapse of the pairing energy gap [123]. The

UNEDF1 functional [94] was calibrated with the Lipkin-Nogami procedure while UNEDF1HFB

[111] was not.

Pairing fluctuations about the HFB solution are directly related to the second moment

of the particle number operator and the pairing gap [34, 124, 125]. The influence of pairing

fluctuations on fission was explored using microscopic-macroscopic models [126]. Using DFT,

Sadhukhan et. al [127] added an additional constraint on the second moment of the particle

number operator to study pairing fluctuations,

L[R, λτ ] = E[R]−
1/2∑

τ=−1/2

λτ
(
N̂τ − ⟨N̂τ ⟩

)
−

1/2∑
τ=−1/2

λ2τ
(
N̂2
τ − ⟨N̂τ ⟩2) (2.46)

In Ref. [127], the Lagrange multipliers λ2τ were treated as coordinates parameterizing the

energy gap as nuclei fissioned. They showed that pairing fluctuations are not negligible in

the calculations of fission lifetimes [127]. This is again investigated and discussed in Ch. 3.

2.3.2 Nuclear Deformation

Motivated by the liquid drop model proposed by Bohr and Wheeler [5], we represent the nu-

clear shape with constraints on multipole operators. The multipole operators in the intrinsic

frame have the form

Q̂µν = r̂µŶ ∗
µν (2.47)
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where r̂ is the radial position operator and Ŷ ∗
µν are scalar spherical harmonic operators. If

the nuclear surface is represented as a smooth parametric function, it can be represented

with a multipole expansion. Near scission, the surface develops non-smooth characteristics

and the expansion begins to diverge. We are only interested fission before scission and we

are justified to used multipole moments to parameterize the shape of the nucleus.

We solve the HFB equations adding constraints on various Q̂µν operators to a set of

expectation values,

L[R, λµν ] = E[R]−
∑
µν

λµν
(
⟨ Q̂µν ⟩−Qµν

)
(2.48)

In our studies, we restrict to axially symmetric deformations, which implies ⟨Q̂µν⟩ = 0 for

all ν ̸= 0. It has been shown that constraining Q̂22 has an influence on fission lifetimes near

the ground state configuration [128] however we ignore this moment to reduce computational

cost. Since the nuclear shapes before scission are compact, we only consider moments with

µ ≤ 4 as these moments provide an adequate number of degrees of freedom to describe most

compact deformations before scission. Q̂00 = N̂ is being constrained by the particle numbers

for protons and neutrons separately. Q̂10 is the dipole moment operator corresponding to

the center of mass coordinate of the nucleus. The expectation of this operator is always

constrained to 0 in our calculations. Q̂20 is the quadrupole moment which parametrizes

the elongation of the nuclear surface, Q̂30 is the octupole moment which controls mass

asymmetry of the nucleus, and Q̂40 controls the geometry of the neck region as the nucleus

deforms into two fragments [91].
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2.4 Numerical Solution of the HFB Equations

To solve the non-linear HFB eigenvalue equations Eq. (2.10), we use the self-consistent

mean-field (SCMF) method implemented two different code bases:

1. HFBTHOv3 [129] is a Fortran 95 code that solves the HFB equations by self-consistent

iteration until a fixed point solution is reached. This code uses cylindrical coordinates

and assumes axial symmetry. A harmonic oscillator or a transformed harmonic oscil-

lator [130] basis is used. The number of basis states is parameterized by the number

of harmonic oscillator shells. Time-odd terms are ignored. The SCMF method is im-

plemented using a Broyden method [131, 132] to minimize the total energy and solve

constraint equations. Solutions to a single particle Woods-Saxon Schrödinger equation

are used for initialization. Particle number and multipole expectation constraints are

introduced linearly. Possible multipole constraints up to Q80 are included with the

possibility to leave multipole moments unrestricted to be optimized over. MPI and

OpenMP paradigms are used to parallelize calculations of potential energy surfaces.

2. HFBaxial [133] is a Fortran code that uses a gradient descent method to minimize the

energy with constraints in cylindrical coordinates in the harmonic oscillator basis. Sim-

ilar to HFBTHOv3, this code ignores time-odd terms and considers only axial shapes.

Constraints on the multipole moments and the number operators are introduced in a

similar way as HFBTHOv3. MPI and OpenMP paradigms are also used.
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Chapter 3. Spontaneous Nuclear Fission

3.1 Nuclear Fission as an Adiabatic Process

Assuming a quasi-particle vacuum, time-dependence is often introduced by the Dirac-Frenkel-

McLachlan (DFM) variational principle [134, 135]:

SDFM
[
|Φ⟩
]
= ⟨Φ(t) | i∂t − Ĥ |Φ(t) ⟩ (3.1)

Taking a variation with respect to ⟨Φ(t)| leads to the time-dependent HFB (TDHFB) equa-

tions [136]. If one assumes |Ψ(t)⟩ is normalized for all t, the action SDFM is real. Other

time-dependent variational principles have also been used (see [55] and references therein).

The correspondence between a time-dependent many-body state and a time-dependent non-

interacting system is proved by the Runge-Gross and Van Leeuwen theorems (see [38] for

discussion about these theorems). Under mild assumptions, these theorems guarantee the

existence of a non-interacting system that can reproduce the exact time-dependent reduced

one-body densities [38].

For any unstable quantum system, quantum tunneling is often used to account for decay

processes such as spontaneous fission [91, 137, 138]. However, it is unclear if the tunneling

physics needed to describe fission decays is contained in the action functional Eq. (3.1).

Restrictions on the normalization of |Φ(t)⟩ or the domain of SDFM seem to obfuscate tun-

neling physics. For example, the TDHFB equation predicts a single deterministic history

and is interpreted as a classical equation of motion that cannot predict tunneling. Because of

this, TDHFB does not admit solutions representing tunneling decay. Nevertheless, one can

parameterize |Φ̃⟩ to facilitate tunneling through a finite set of real, time-dependent collective
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coordinates {qi(t)}
Nq
i=1 where Nq is the total number of collective coordinates. We assume

there exists a reparametrized trajectory

|Φ̃(t)⟩ = |Φ̃
(
q⃗(t), ξ⃗

)
⟩ ∈ F (3.2)

that smoothly depends on time through q⃗(t). The coordinates ξ⃗ are intrinsic variables

representing single particle motion and we assume they are separable from the collective

coordinates (see Ref. [139]). We will ignore the intrinsic variables throughout this chapter.

Assuming N-representability, this trajectory is equivalently represented by a generalized

density matrix, R
(
q⃗(t)

)
:

R
(
q⃗(t)

)
=

⟨ Φ̃
(
q⃗(t)

)
| N̄ [β̂

†
mβ̂n] | Φ̃

(
q⃗(t)

)
⟩ ⟨ Φ̃

(
q⃗(t)

)
| N̄ [β̂rβ̂s] | Φ̃

(
q⃗(t)

)
⟩

⟨ Φ̃
(
q⃗(t)

)
| N̄ [β̂

†
mβ̂

†
n] | Φ̃

(
q⃗(t)

)
⟩ ⟨ Φ̃

(
q⃗(t)

)
| N̄ [β̂rβ̂

†
s] | Φ̃

(
q⃗(t)

)
⟩

 (3.3)

where N̄ [...] indicates normal ordering with respect to quasi-particle vacuum. The set of

states {|Φ̃(q⃗(t))⟩} do not necessarily span a linear space and the superposition principle is

not valid along the trajectory [140, 141]. Studying the tunneling trajectory is non-trivial

since it evolves according to a nonlinear Hamiltonian (see Refs. [142–145] for nonlinear

tunneling examples in single particle quantum mechanics). Instead of using the DFM action

to define the fission trajectory, let us suppose there exists a generalized density R(0)
(
q⃗(t)

)
that is the solution to the constrained HFB equations defined by,

R(0)(q⃗(t)) = argmin
R̃

(
E[R̃]−

1/2∑
τ=−1/2

λτ
(
⟨ N̂τ ⟩−Nτ

)
−
∑
µ

λµ
(
⟨ q̂µ(t) ⟩−qµ(t)

))
(3.4)

for all t. Eq. (3.4) defines a set of instantaneously diagonal density matrices reparameterized
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Final State

Initial State

Figure 3.1: Schematic representation of the time-dependent fission trajectory in the many-
body manifold F . The green curve represents the adiabatic density trajectory R(0)(t). The
curvature about R(0)(t) is schematically represented by the dashed lines. The local variations
in the pathway δR are represented by the solid black line connecting to an alternate pathway
denoted by the dotted line. The δ2R is schematically represented by the width between the
dashed lines.

by q⃗(t). Since the solution set R(0)(t) corresponds to a minimum energy configuration of a

nucleus for all t, we call it an adiabatic fission trajectory. Along this pathway, R(0)
(
q⃗(t)

)
is,

R(0)(q⃗(t)) =

⟨Φ
(
q⃗(t)

)
| β̂†mβ̂n |Φ

(
q⃗(t)

)
⟩ ⟨Φ

(
q⃗(t)

)
| β̂rβ̂s |Φ

(
q⃗(t)

)
⟩

⟨Φ
(
q⃗(t)

)
| β̂†mβ̂†n |Φ

(
q⃗(t)

)
⟩ ⟨Φ

(
q⃗(t)

)
| β̂rβ̂†s |Φ

(
q⃗(t)

)
⟩

 =

0 0

0 I

 (3.5)

where I is the identity matrix. Assuming |Φ̃⟩ and |Φ⟩ are not orthogonal, we can relate

them with the quasi-particle Thouless theorem [34]:

|Φ̃
(
q⃗(t)

)
⟩ = exp

(1
2

∑
kk′

Zkk′(t)β̂
†
kβ̂

†
k′
)
|Φ
(
q⃗(t)

)
⟩. (3.6)

Expanding R(t) about the adiabatic pathway R(0)(t) to second order in Z and using Wick’s
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theorem with respect to quasi-particle vacuum yields,

R
(
q⃗(t)

)
= R(0)(q⃗(t))+

−Z†(t)Z(t) −Z(t)

Z†(t) Z†(t)Z(t)

 (3.7)

Figure 3.1 schematically shows the expansion of R(t) about R(0)(t) in the full many-body

manifold F . The generalized density representing the fissioning nucleus starts in an initial

compact shape and deforms into a final configuration state. δR and δ2R represent the local

variations and curvature about R(0)(t) respectively.

To study the curvature of the energy functional E along the trajectory due to the varia-

tions in R(t), we expand it about the adiabatic fission pathway to second order in R(t),

E[R] ≈ E[R(0)] + (R−R(0))pq
∂E

∂Rpq
+ (R−R(0))pq(R−R(0))rs

∂2E

∂Rpq∂Rrs
(3.8)

Inserting Eq. (3.7), and using the relationship to the HFB matrix

∂E

∂Rpq
= Hpq (3.9)

we have

E[R] ≈ E[R(0)] +
1

2

(
Z† Z

)
B

 Z

Z†

 (3.10)
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where B is the quasi-particle linear response matrix [136],

B =

(Ep + Er)δprδqs − ∂2E
∂Rpq∂Rrs

∂2E
∂Rpq∂Rrs

∂2E
∂R∗

pq∂R∗
rs

(Ep + Er)δprδqs − ∂2E
∂R∗

pq∂R∗
rs
.

 (3.11)

The repeated indices in the definition of B do not indicate sums. From the adiabatic time-

dependent HFB equations [136], the Z matrices are related to time derivatives of R(0)

through the linear response matrix,

 Ṙ(0)

Ṙ(0)†

 = B

 Z

Z†

 (3.12)

Noting that R(0)(t) = R(0)
(
q⃗(t)

)
and using chain rule,

∂R(0)

∂t
=

Nq∑
i=1

q̇i
∂R(0)

∂qi
(3.13)

results in the total energy having the form

E[R] = E[R(0)] +
1

2
q̇iq̇jMij (3.14)

where we define the collective inertia matrix as

Mij =

(
∂R
∂qi

† ∂R
∂qi

)
B−1

 ∂R
∂qj

∂R
∂qj

†

 . (3.15)

Eq. (3.14) has the form of a classical Hamiltonian in terms of collective coordinates qi(t)
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and collective momentum pi(t). If we "requantize" this using Dirac quantization,

qi(t) → q̂i(t), pi →
∂

∂qi
(3.16)

and define the quantity V (q⃗) = E[R(0)(q⃗(t))] to be the potential energy surface (PES) at a

point q⃗(t) we arrive at a collective Hamiltonian operator

Ĥ =
1

2
M−1

ij

∂

∂qi

∂

∂qj
+ V (q⃗) (3.17)

The collective inertia is computationally expensive to calculate since it requires the linear

response matrix B and its inverse. In systems with axial symmetry, the rank of B is on

the order of 105. The finite amplitude method (FAM) was introduced as a fast and efficient

way to compute the collective inertia [146, 147] and this has been implemented for fission in

Ref. [148]. We use the cranking approximation which approximates M by removing second

derivatives of E from the linear response matrix [149]. Then, the collective inertia takes the

form [149],

Mij(q⃗) =
1

2q̇iq̇j

∑
αβ

(
F i∗αβF

j
αβ + F iαβF

j∗
αβ

)
Eα + Eβ

(3.18)

where F iαβ are

F i

q̇i
= U†∂κ∗

∂qi
U∗ + U†∂ρ∗

∂qi
V ∗ − V † ∂ρ

∂qi
U∗ − U† ∂κ

∂qi
U∗. (3.19)

The derivatives are computed using a three-point Lagrange approximation [128, 150]. Meth-

ods evaluating these derivatives by perturbation theory also exist however they have been
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found to produce large variations in the fission lifetime compared to the non-perturbative

methods [128, 149, 151]. We use the perturbative approach due to its small computational

cost as well as non-perturbative formulations of the collective inertia in our studies.

3.2 Tunneling in the Reduced Space

Tunneling physics can be recovered by solving the collective Schrödinger equation,

(
ϵ2

2
M−1

ij

∂

∂qi

∂

∂qj
+ V (q⃗)

)
ψ(q⃗) = E0ψ(q⃗) (3.20)

where we inserted an expansion parameter ϵ. We solve Eq. (3.20) using leading order WKB

theory [152] where we assume an asymptotic solution,

ψ(q⃗) ∼ exp
(1
ϵ
S0(q⃗)

)
as ϵ→ 0 (3.21)

Ignoring second order derivatives of S0, the resulting differential equation is a multi-dimensional

eikonal equation,

M−1
ij

∂S0
∂qi

∂S0
∂qj

= 2(V (q⃗)− E0) (3.22)

We look for exponentially damped solutions in the tunneling region V (q⃗)−E0 > 0. Consider

the reparameterization q⃗(s) with affine real parameter s satisfying q⃗(0) = q⃗in, q⃗(1) = q⃗out.

Integrating along the curve, and using the line integral theorem leads to the classical action

S[L] =

∫ 1

0

√
2Meff(s)(V (s)− E0)ds (3.23)
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where the effective mass is

Meff(s) = Mij(s)
dqi
ds

dqj
ds

(3.24)

and L represents the trajectory connecting q⃗in and q⃗out. We define the outer turning sur-

face as V (q⃗) = E0. Relevant contributions to the tunneling amplitude ψ(q⃗) correspond to

pathways that minimize S,

S[L] ≥ min

∫ 1

0

√
Meff(s)(V (s)− E0)ds (3.25)

Stationary points of the classical action, L = Lmin, produce the lower bounds of the classical

action and are called least action pathways (LAPs). E0 is taken to be the ground state

potential energy V (q⃗gs). In other studies, E0 includes zero-point energy corrections associ-

ated with the ground state [91]. The classical action S[L] can feature multiple stationary

points depending on the form of Meff and V . This fact has consequences for fission and will

be explored in section 4. LAPs are formally equivalent to instantons in the path integral

formulation of quantum mechanics [153–155]. Mean-field instantons are discussed in section

5.

The spontaneous fission half-life is approximated using a semi-classical approximation,

t1/2 =
ln(2)

nP
, P =

1

1 + e2S(Lmin)
(3.26)

where P is the probability of tunneling through the potential barrier V (q⃗) [156, 157]. n is

a phenomenological parameter representing the number of classical assaults on the barrier

estimated by the zero-point energy of the ground state [156]. We use n = 10−20.38 s−1 from
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Ref. [158].

To determine a fission trajectory, we calculate a PES V (q⃗) and the collective inertia

M(q⃗) using the constrained DFT approach outlined in section 2.3. Practically, this is done

by computing the PES and collective inertia on a grid by constraining to various expectation

values of deformation parameters q⃗. Since we do not apriori know where the fission trajectory

is located in the collective space, we compute the PES and inertias on a sufficiently large

domain of collective coordinates. In the next section, we discuss the numerical method used

to find LAPs. The sections to follow largely draw from my own publication [159].

3.3 The Nudged Elastic Band Method

Previous studies of fission lifetimes used grid-based methods such as the dynamic program-

ming method (DPM) [157] or the Ritz method [158] to minimize the action in Eq. 3.25.

Because these algorithms are grid-based, accuracy of the calculated collective action and

pathway were limited by the resolution of the grid. Further, the algorithm complexity scales

exponentially as the number of grid points increase. The nudged elastic band (NEB) is an

iterative method that does not suffer from these limitations. Originally developed for tran-

sition state theory in chemistry [160–165], we adapted the NEB method for applications to

fission in Ref. [159]. We published an open-source software package implemented in Python

named PyNEB (available at https://pyneb.dev/) as part of Ref. [159].

The NEB method discretizes the trajectory L into N points, called images, located at

q⃗i. S[L] is subsequently discretized using the trapezoidal rule. Each image is regarded as a

unit point mass obeying classical equations of motion in the presence of a net force F⃗ opt
i

¨⃗qi = F⃗
opt
i (3.27)
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The net force on all images contain two terms,

F⃗
opt
i = F⃗

(k)
i + g⃗⊥i (3.28)

F⃗
(k)
i is a spring force coupling each image together,

F⃗
(k)
i = k

(
|q⃗i+1 − q⃗i|−|q⃗i − q⃗i−1|

)
τ⃗i (3.29)

where τ⃗i is the tangent unit vector at point q⃗i defined in Ref. [165]. The spring constant

k is a tunable parameter that controls the strength of the spring force. We take the spring

constant to be the same for all q⃗i. The force g⃗⊥i is the optimization force chosen depending

on the problem. g⃗i = ∇⃗iV can be chosen to find minimum energy pathways (MEPs) or

g⃗i = ∇⃗iS0 (q⃗) for LAPs. The components parallel to the curve are projected out using the

Gram-Schmidt procedure to decouple the dynamics of the path from the tangent forces of

the spring [166],

g⃗⊥i = g⃗i − (g⃗i · τ⃗i)τ⃗i. (3.30)

The forces on the boundary points of the discretized path q⃗1 and q⃗N are defined differently.

First, the spring force is one-sided,

F⃗1 = k|q⃗2 − q⃗1|, F⃗N = k|q⃗N − q⃗N−1| (3.31)

Second, the end points q⃗1 and q⃗N need not be fixed to a single point. It is often desirable to

constrain the end points to a particular equipotential surface V (q⃗) = constant. This is done
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by adding a harmonic constraint. The total force on q⃗N is,

F⃗
opt
N = F⃗

(k)
N −

(
F⃗
(k)
N · f⃗N (q⃗N )− η[V (q⃗)− E]

)
f⃗(q⃗N ) (3.32)

where f⃗(q⃗N ) = −∇V/|∇V | and η is a parameter that determines the strength of the con-

straining force. A similar expression is enforced on q⃗1. In our applications, this constraint

is useful for finding pathways to outer turning surfaces and optimal exit points.

Algorithm 1 Nudged Elastic Band
Define initial start and end point
Initialize images along some initial trajectory
for Steps do

for Images do
Update effective force
Compute velocity of image
Compute forces
Translate image

end for
Compute collective action
Check convergence

end for

To update the forces, various optimization routines have been used. Originally, a velocity

Verlet algorithm [167, 168] was used to find MEPs for chemical reaction rates in transition

state theory [160–165]. While this algorithm is numerically stable for our applications, it

requires many iterations to find an LAP. The Fast Inertia Relaxation Engine (FIRE) was

developed to improve the overall convergence speed of the Verlet algorithm [169, 170]. The

FIRE algorithm features an adaptive acceleration step to reduce the number of iterations.

We found it to be numerically stable and robust in the variation of the algorithm’s parameters

for our application to fission. We implemented both the original velocity Verlet and FIRE

algorithms in PyNEB and found that FIRE improved the convergence of the nudged elastic
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band. The basic algorithm for PyNEB is shown in Algorithm 1.

3.4 Analytic Examples

PyNEB’s performance was bench-marked against grid-based methods DPM and Dijkstra’s

algorithm (DA) [171] as well as numerical solutions to the Euler-Lagrange (EL) equations for

the collective action. Using the Müller-Brown (MB) [172, 173] and symmetric/asymmetric

six-camel back (CB) analytic surfaces [159, 174], the performance of the NEB method was

assessed by comparing the LAP found using NEB (denoted as NEB-LAP) to the paths found

using the DPM, DA, and EL approaches. We assume a constant inertia Mij = δij for these

cases. The details regarding the initialization, optimization, and PESs used are found in Ref.

[159]. The calculated LAP action values for each method as well as the MEP calculated with

NEB (denoted as NEB-MEP) are reproduced in Table 3.1. The LAPs computed with NEB,

Table 3.1: Action integrals for the 6-Camel-Back (CB-S and CB-A) and Müller-Brown (MB)
surfaces. The integrals have been calculated using a linear spline interpolation evaluated at
500 points along each trajectory. Table taken from Ref. [159].

NEB-MEP NEB-LAP DPM EL DA
CB-S 5.522 5.518 5.524 5.536 5.563
CB-A 6.793 6.404 6.405 6.407 6.886
MB 28.491 22.875 22.909 22.871 23.427

EL, DPM, and DA methods are very similar for all three surfaces. The DA trajectory tends

to deviate from the others. DA is more constrained by the grid spacing as it can only

consider its nearest neighbors. This is reflected in the actions displayed in Table 3.1. DPM

does not have this constraint. For all cases, the NEB method consistently determines LAPs

with slightly lower action values when compared to other methods. This shows that the

NEB algorithm can accurately determine an LAP and is an improvement over established

algorithms. It is important to note that the MEP action values are higher than the LAP

actions on the CB-A and MB surfaces. This shows MEPs are not equivalent to the LAP in
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general. Appendix A shows the conditions necessary for an LAP and MEP to be equivalent

however MEPs should not be used to calculate tunneling trajectories in general.

3.5 Realistic Examples

Figure 3.2: Calculated PES for 256Fm parameterized by Q20 and Q30 using D1S EDF.
Details are discussed in Ref. [159]. Figure taken from Ref. [159]

In most realistic calculations, we choose Q20 and Q30 as collective coordinates. As a

visual example, Figure 3.2 shows a two-dimensional PES for 256Fm calculated using the D1S

EDF. The energy of the PES is shifted by the ground state energy; V − Egs. Symmetric

(red) and asymmetric (green) fission trajectories begin at the ground state at E0 = 0 and

progress through the barrier to the outer turning line shown in white. The red and green

dots indicate the exit points where the pathways exit the barrier. Particle density profiles

are shown along the symmetric and asymmetric trajectories. Notice that the profiles do not

indicate well separated nascent fragments. Scission occurs outside the barrier at much larger

deformations [91, 175].
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Figure 3.3: Calculated 232U PES (in MeV) using the SkM∗ EDF. The solid lines correspond
to pathways obtained using constant inertia while the dotted lines are those obtained with
non-perturbative inertia. The blue,orange, purple, and black curves represent the LAPs
calculated using the NEB, DPM, EL, and DA methods, respectively. The green curve is the
MEP calculated using NEB and the outer turning line is shown in white. Figure taken from
Ref. [159].

To asses the performance of the NEB method and other approaches to the LAP in

realistic cases, we carried out nuclear DFT calculations for 232U in two collective coordi-

nates (Q20, Q30) and 240Pu in three collective coordinates (Q20, Q30, λ2) using the Skyrme

functional SkM∗ with the mixed density-dependent pairing EDF from Eq. (2.38). Here,

λ2 = λ2n + λ2p. DFT calculation details are discussed in Ref. [159].

To apply the NEB method, which involves derivatives at arbitrary values of collective

coordinates, we interpolate the PES and the inertia tensor on the mesh. Because the grid is

two dimensional and the PES is smooth, a cubic spline interpolator is sufficient. Technical

details about the application of the NEB method on these two surfaces are in Ref. [159].

Fig. 3.3 shows the LAPs calculated with DPM, DA, the EL method, and the NEB with
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constant and non-perturbative inertia. By visual inspection, all methods are finding similar

pathways and exit points when the inertia tensor is constant. However, we notice small

deviations in the trajectories when the non-perturbative inertia is used. The action values

are shown in Table 3.2. The NEB consistently finds the path of least action compared to

Table 3.2: Action integrals for 232U computed using DPM, DA, EL method, and the NEB.
The paths are computed using constant and non-perturbative inertia tensor are labeled as
“con.” and “n.-p.”, respectively. The actions were computed using a linear spline interpolation
evaluated at 500 points along each trajectory. Table taken from [159]

NEB-MEP NEB-LAP DPM EL DA
232U

con. 174.5 174.2 174.2 174.9 175.8
n.-p. - 173.6 173.3 175.0 178.5

240Pu
con. 19.09 18.98 19.21 19.01 22.85
n.-p. - 16.54 16.47 18.18 30.50

other methods demonstrating the robustness of the NEB method in a realistic case. Note that

the MEP is in rough agreement with the LAP. This is expected as the MEP approximately

satisfies the conditions needed to be equivalent to an LAP (see Appendix A for details).

Next, we studied the PES of 240Pu parametrized by (Q20, Q30, λ2). Fig. 3.4 shows

trajectories computed using DPM, EL method, and the NEB starting from the fission isomer.

Pathways connecting the ground state of 240Pu and its isomer were studied in Ref. [127].

With the addition of the dynamical pairing parameter λ2 we see the constant inertia pathways

are in qualitative agreement and their action integrals are similar with the exception of DA.

However, when the inertia is not constant we see the pathways deviate appreciably. Despite

this, the DPM and NEB trajectories have nearly the same action. This is because the PES

is nearly flat in the λ2 direction. Deviations in λ2 direction produce small variations in the

action.

If a PES is mostly flat, we noticed that the NEB required at least ∼ 105 iterations to

converge. This is because the gradients used to nudge the images in the direction of minimal
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action are very small. In this case, DPM produces a slightly lower action than the NEB.

The NEB converges to an even lower action if it is initialized with the DPM pathway. This

suggests that for tunneling in more than two dimensions using DPM to initialize the NEB

might reduce the number of iterations needed for convergence.
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Figure 3.4: The PES (in MeV) for 240Pu in the collective coordinates Q20 , Q30 and λ2. The
2D cross section of the PES of 240Pu at λ2 = 0 is shown. The blue, orange, and purple curves
are the LAP, calculated using the NEB, DPM, and EL methods, respectively. The dashed
curves are pathways computed with non-perturbative inertia. The outer turning surface is
indicated by the dark blue meshed surface. Figure taken from Ref. [159].

Exit points disagree quite considerably in the λ2 coordinate. However, the Q20 and

Q30 coordinates of the exit points are very similar for all trajectories. In the calculation of

fission fragment yields (see section 4) the multipole moments of the exit point are the only

coordinates needed.
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3.6 Summary

In this chapter, I reviewed how the adiabatic approach to spontaneous fission is derived by

first highlighting the complications using the DFM action to describe a decay process with

quantum tunneling. Then, I describe how we facilitate tunneling through the introduction

of real, time-dependent collective coordinates q⃗(t). I then reviewed the essential assump-

tions leading to re-quantization of the collective Hamiltonian and subsequent solution of

the collective Schrödinger equation using WKB theory. I then discussed benchmarking the

NEB leading to practical applications finding fission trajectories of 232U and 240Pu in two

and three collective coordinates respectively. My explicit contributions in the development

of PyNEB were implementations of numerical gradients to be used in the optimization rou-

tines, implementing the velocity Verlet and FIRE optimization routines, and implementation

of the routine to find MEPs. I also contributed to the benchmarking of the NEB implemen-

tation by calculating MEPs and LAPs on analytic surfaces and calculated some of the LAPs

for 232U and 240Pu. I also matematically proved differences between MEPs and LAP and

showed when they are equivalent (see Appendix A). After this initial study, we have applied

the NEB method to more nuclei in two and three dimensions. This is explored in the next

section.
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Chapter 4. Modes of Spontaneous Fission
In the previous section, we presented the nudged elastic band as a general method for

finding least action fission trajectories. The classical action Eq. (3.25) can feature multiple

stationary pathways corresponding to different modes of fission. Fig. 3.2 shows one example

of multimodal fission featuring symmetric and asymmetric modes. Each mode contributes

to the overall tunneling amplitude through the fission barrier however, the pathways are not

physical observables. In fact, each trajectory contributes to the experimentally measurable

total mass and charge fission yield. This chapter presents a multimodal fission study carried

out in my publication Ref. [176]. First, I discuss how we model the fission fragment mass

and charge distributions. Then, I discuss the application of PyNEB and our fission fragment

distribution approach to model the spontaneous fission of a Fermium isotope chain and

superheavy nuclei.

4.1 Fission Fragment Distributions

Fission fragments emerge at a time near scission where the nucleus separates into fragments

[91]. Leading up to scission, shell effects, dissipation, odd-even effects, decoherence, and

phase space effects interplay to determine properties, such as charge and mass, of the nascent

fragments [33, 91]. At the current time, there is no complete theory capable of predicting

all fission fragment properties exactly however, there exist many different models that can

be used to predict the mass and charge yield distributions. We briefly overview the models

used in Ref. [176] to motivate the method we use to estimate mass and charge yields.

4.1.1 Time-dependent Approach

Starting with the DFM action from Eq. (3.1), TDHFB equations can be derived. If the

evolution is initialized with configurations on the outer turning surface, the dynamics are
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classically allowed. The mean-field is time evolved until separation and observables such as

the total kinetic energy, fragment yields, and excitations energies can be calculated [177,

178]. This approach is appealing since the TDHFB evolution is equivalent to exact one-

body density dynamics guaranteed by the Runge-Gross and Van Leeuwen theorems (see

section 3.1). Non-adiabaticity and one-body dissipation in fission can be modeled in this

framework [177, 179]. However since the evolution is considered classical, quantum fluctu-

ations are lacking. TDHF (and by extension TDHFB) has been proven to underestimate

the particle number fluctuations needed to calculate fragment distributions [55, 180, 181].

Because of this, TDHFB has difficulty predicting realistic fission yields. Time-dependent

multi-reference techniques, which model the many-body state as a linear combination of

particle-hole or quasi-particle Slater determinants, have recently been applied to calculate

fission yields [182–184]. While this approach is promising, multi-reference approaches tend

to be too computationally expensive for large scale studies of fission.

4.1.2 Stochastic Methods

To account for the lack of quantum fluctuations, stochastic mean field methods have been

developed [181, 185]. These approaches essentially replace single a TDHF (or TDHFB)

trajectory with a superposition of classical trajectories initialized with conditions that are

sampled from a statistical distribution of initial values in a way that reproduces the fluctua-

tions in the of observables of interest. Then, each initial condition is time evolved according

to a classical equation of motion to reproduce quantum mean values and fluctuations dynam-

ically. This method has been applied to calculate the fission yields of 258Fm [186]. While

progress with this approach has been made, the computational cost is also too high to use

for large scale studies.

Starting from the stochastic mean-field approach, Ayik showed in Ref. [185] one can
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reduce the mean-field equations of motion to a classical Langevin equation for a point particle

in one dimension. One can extend this result to multiple dimensions via:

d

dt

(
Mij(q⃗)q̇j

)
+
∂V (q⃗)

∂qi
= −γij

dqj
dt

+ ηijξj(t). (4.1)

M is the collective inertia defined in Eq. (3.15), V is the PES, γij is the friction matrix, ξj(t)

is a time dependent random variable representing a stochastic force, and ηij is the stochastic

strength matrix. The Langevin equation has been widely used to model nuclear dynamics in

dissipative systems (see Refs. [187, 188] for reviews). Kramers [189] showed that dissipative

tunneling through collective barrier can be modeled as a diffusion process with a stochastic

equation similar to Eq. (4.1). Diffusion is compatible with the adiabatic assumption made in

section 3.1 as the intrinsic degrees of freedom are assumed to be decoupled from the collective

motion. From this point of view, the system described by the space of collective states

represents an open system while the intrinsic system represents an environment. Coupling

these two systems together results in the collective system and the environment being able

to exchange information and hence reproduce dissipative effects.

The friction matrix and stochastic strength matrix are related to the temperature of the

nucleus as function of excitation energy and level density by the fluctuation-dissipation the-

orem [190]. The exact density of states is unknown and has been studied through analytical,

configuration interaction, and statistical models [8, 33]. Modeling the strength and friction

matrix has been explored in stochastic mean field theory [181, 185]. Rather than modeling

the level density or the friction and strength matrices directly, phenomenological models

have been used to predict fission yields, namely, Brownian shape motion (BSM) [191–194],

scission point models (SPM) [195–197], and the semi-empirical general description of fission
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observables (GEF) [198]. The BSM model phenomenologically treats stochastic motion in

the collective space as the nucleus approaches scission while SPM only considers properties

of the nucleus at scission. GEF is based on geometric and statistical properties of the nucleus

as it deforms. All these models produce qualitative differences for many fissioning nuclei,

such as the number of mass and charge yield peaks and their locations [197].

4.1.3 Hybrid Method

A hybrid approach that combines DFT input and statistical phenomenology to estimate the

fission fragment yields was developed in Refs. [199, 200]. We use this model to calculate

fission yields in this work and we review the essential ideas of this approach here.

When considering the exit point configurations, DFT allows one to produce an effective

one-body picture of the distribution of protons and neutrons in a fissioning nucleus. To

estimate the spatial distribution of nucleons, we use the nucleon localization function (NLF)

[201, 202],

Cτs =

[
1 +

(
ττsρτs − 1

4 |∇⃗ρτs|2 − |⃗jτs|2
ρτsτTFτs

)]−1

, τTFτs =
3

5
(6π2)2/3ρ

5/3
τs (4.2)

where the subscripts τ and s label the isospin and spin projections respectively. τTF is the

Thomas-Fermi kinetic energy density introduced as a reference density. The NLF represents

the conditional probability of finding a particle at a spatial location r⃗2 given a particle of

the same species is located at r⃗1. An example NLF for protons and neutrons for 254Fm at

an asymmetric exit point configuration is shown in Fig. 4.1. Notice for both protons and

neutrons, there are spatially well defined prefragments connected through a non-vanishing

neck region. The method of identifying the prefragments is not a well defined procedure.

First, we associate a center coordinate with each prefragment by choosing a local extremum
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Figure 4.1: The nucleon localization functions calculated at an asymmetric exit point con-
figuration of 254Fm using the SkM∗ EDF. (a) and (b) are neutron and proton localizations
respectively. Horizontal dashed lines denote the selected center of the prefragments.

around the center of each prefragment along the r = 0 axis by visual inspection [199]. In

symmetric fission, the prefragments have no octopule deformation and this choice is made

to preserve reflection symmetry. However, in general the prefragments can break reflection

symmetry by asymmetric deformation and the center is no longer located at an extremum

of the NLF. This results in a miscount when partitioning the number of nucleons into the

neck and prefragment regions. For asymmetric configurations, we instead assume spherical

prefragments and look for the maximal extent of the localization for each prefragment. The

z-coordinate of this extent is taken to be the center rather than an extremum along the r = 0

axis.

The number of nucleons assigned to each prefragment is determined by integrating the

proton and neutron particle densities upwards and downwards in the z-coordinate for the top

and bottom prefragments respectively. Each integration is then multiplied by 2 assuming

each prefragment is approximately spherical. The remaining nucleons are assumed to be in

46



the neck region of the fissioning nucleus. The neck nucleons are then distributed between

the prefragments according to a microcanonical probability distribution proposed by Fong

in Ref. [203],

P (A1, A2, E) ∝
1

2

(
A
5/3
1 A

5/3
2

A
5/3
1 + A

5/3
2

)3/2(
A1A2

A1 + A2

)3/2
(a1a2)

2

(a1 + a2)
5/2

(4.3)

×
(
1− 1

2[(a1 + a2)E]
1/2

)
E9/4 exp

(
2
√

(a1 + a2)E
)
.

A1 and A2 are the mass number of the fragments, E is the excitation energy of the nucleus,

and ai = Ai/10 MeV−1 are level density parameters [204]. E is estimated using a liquid drop

model and classical Coulomb interaction [204]. Since Ai are discrete, the mass and charge

yields are convolved with Gaussians and, for the charge yield, the odd and even Z yields are

convolved separately to show the odd-even staggering effect [200]. The partitioning is not

guaranteed to result in an integer number of particles in the neck or prefragment regions and

we choose to round the integrated particle numbers to the nearest integer. This introduces

a 2-particle uncertainty Ni ± 1 and Zi ± 1 in the calculated fission fragment yields. This

uncertainty is larger than the input used to calculate E and, within the particle uncertainty,

experimental measurements of the yields agree well [199].

Each fission pathway is associated with a relative probability defined as,

Pi ≈
e2Si∑
k e

2Sk
(4.4)

where Si is the action of the i-th pathway. We assume the pathways are independent. The

total fission yield is the sum over all fission yields calculated at every exit point weighted by
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their respective relative probability,

Ytot =
n∑
i=1

PiYi (4.5)

where Yi is the yield calculated from i-th exit point and n is the total number of exit points.

4.2 Applications

4.2.1 The Fermium Isotope Chain

The even-even Fm isotopes with neutron numbers N , 154 ≤ N ≤ 160 are known to undergo

a transition from asymmetric fission, characteristic of lighter actinides, to symmetric fission

as N increases towards N = 164. This transition is related to strong shell effects present

in the prefragments as they approach the doubly magic nucleus 132Sn. This transition in

fission mode dominance has been investigated in numerous publications [178, 182, 199, 200,

205–219]. This motivates choosing the Fermium isotopic chain to study multimodal fission

with PyNEB.

We calculated PESs for 254−260Fm parameterized by coordinates (Q20,Q30) with the

SkM∗, UNEDF1HFB, and D1S energy functionals. The PESs are shown in Fig. 4.2. Since

triaxiality is ignored, one path along Q30 ≈ 0 connects the ground state and the fission

isomer in most cases. The path continues past the isomer, and then a bifurcation resulting

in a coexistence of symmetric and asymmetric pathways takes place. Paths are smooth at

the bifurcation point. We observe an additional asymmetric pathway present in the PES

computed with SkM∗ that is not present in the other cases.

The relative probability Ps of the symmetric mode is shown in Table 4.1. All EDFs

transition from an asymmetric-dominant to a symmetric-dominant fission path with increas-
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Figure 4.2: Potential energy surfaces of 254−260Fm (in MeV) calculated using UNEDF1HFB
(left column), SkM∗ (center column), and D1S (right column) EDFs. The symmetric (dashed
lines) and asymmetric (solid and dotted lines) least action paths are drawn from the ground
state (solid circle) to the fission isomer (asterisk) to the exit point (open square). The white
contour denotes the outer turning line. Gray contours are marked at 1-MeV intervals for
0 < Veff < 5 MeV. Figure taken from Ref. [176]

ing N . Competition between the modes is present in 256,258Fm for UNEDF1HFB, 258Fm

for SkM, and 256Fm for D1S. The calculated yields are shown in Fig. 4.3 together with

experimental data from Refs. [220–223]. The experimental data for 254,256Fm show an

asymmetric distribution, while distributions for 258Fm are symmetric. The error bands in

the calculated distributions are from the 2-particle uncertainty discussed in section 4.1.3.

The UNEDF1HFB results are in close agreement with the data for 254Fm. Competition be-

tween modes for 256,258Fm is present across all EDFs. However, the D1S model overestimates
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Table 4.1: The relative probability Ps of the symmetric mode for the 2D calculation of Fm
isotopes.

254Fm 256Fm 258Fm 260Fm
UNEDF1HFB ≈0 0.12 0.79 1
SkM∗ ≈0 ≈0 0.17 1
D1S ≈0 0.88 1 1
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Figure 4.3: Fission fragment mass (left) and charge (right) yields for 254,256,258,260Fm calcu-
lated with UNEDF1HFB (magenta vertical patterns), SkM∗ (black horizontal patterns), and
D1S (green × patterns). Experimental yields (circles) [220–223] are shown where available.
Figure taken from Ref. [176].
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the symmetric contribution. All EDFs predict overlapping symmetric yields for 260Fm. The

transition from asymmetric to symmetric fission is clearly present, albeit at different neutron

numbers for the EDFs. Despite the overestimation of the symmetric mode for 256Fm, we

conclude that UNEDF1HFB provides the best description compared to the other EDFs.

We then extended the 2D surfaces into a 3D collective space parameterized by (Q20, Q30, Q40)

for 254,256,258Fm. We present the results for SkM∗ PES for 258Fm. Discussion of UNEDF1HFB

and D1S results are in Ref. [176]. Fig. 4.4 shows the 3D PES for 258Fm computed with

SkM∗ and least action pathways. The part of the path from the ground state to the fission

Figure 4.4: The least action paths in 3D for 258Fm using SkM∗. The outer turning surface is
shown. A 2D PES is shown for constant Q40 = 16 b2 Neutron localizations for the identified
precission configurations are shown in the insets. Figure adapted from Ref. [176].

isomer is not shown for clarity. Two symmetric modes are identified: the compact (CS) and

elongated (ES) modes. Let C denote the prescission configuration at an exit point. CES,

has larger Q40 than CCS, and hence the neck region for CES is thicker. We also found two
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asymmetric fission pathways: the weak (WA) and strong (SA) modes. CWA is characterized

by a small (Q30 < 10 b3/2) octupole moment that were present in the 2D case. The ES mode

is present due to the Q40 constraint, however, the probability associated with this pathway

is negligibly small. The other modes are consistent with the 2D calculations. Fig. 4.5 shows
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Figure 4.5: The fragment mass (left) and charge (right) yields for 258Fm using SkM∗ calcu-
lated in the 2D (green solid lines) and 3D (blue lines) collective spaces. Experimental data
from [223] is shown as red filled circles. Figure adapted from Ref. [176].

the corresponding SkM∗ fragment yields compared to the yields calculated in the 2D collec-

tive space. Due to the additional coordinate, agreement with experiment is improved due

to the increase in the relative contribution of the symmetric mode. However, the tails of

the distribution are suppressed and worsen the agreement with experiment. This suggests

that additional collective coordinates should be considered when multiple fission modes are

present. Their addition may induce or reduce competition between the modes.

4.2.2 Superheavy Nuclei

The superheavy nuclei are stabilized by quantum shell effects [9, 224, 225] making them short-

lived. The dominant decay modes observed in superheavies are α decay and spontaneous

fission [225–230]. Neutron-rich superheavy nuclei may decay directly via spontaneous fission
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[27, 29, 194, 197, 198, 231, 232] marking the end of the r-process nucleosynthesis trajectory.

Multimodal fission has been studied in the superheavy region in Refs. [209, 231].

Figure 4.6: Similar as Fig. 4.4 but for 306122. The 2D surface is at constant Q40 = 0. Figure
adapted from Ref. [176].

In our study, LAP calculations were carried out in 2D for 258Rf, 262Sg, and 262Hs using

the UNEDF1HFB and SkM∗ functionals. The calculated fragment yield peaks for each mode

agrees between EDFs, but contributes differently due to their relative probabilities [176]. In

comparison, SPM [197] and GEF [198] predict asymmetric yields for 258Rf. BSM predicts

asymmetric yields for 258Rf and 262Sg and symmetric yields for 262Hs [194]. The large

spread between theoretical predictions highlights the usefulness of multimodal fission for

differentiating between models.

Finally, we consider 306122, an undiscovered superheavy nucleus that is proposed to

exhibit multimodal fission [194, 197, 231, 233–236]. Fig. 4.6 shows the PES and pathways
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for 306122 calculated with SkM∗. A pronounced asymmetric valley forms beyond the outer

turning surface leading to the cluster-decay channel, similar to 294Og [237]. The fission yields

show qualitative agreement between SkM∗ and UNEDF1HFB EDFs [176]. As with 294Og, the

heavy fragment is close to the doubly magic nucleus 208Pb. The calculated yields disagree

with the symmetric yields predicted with the BSM model [194] however, SkM∗ results are

consistent with those in Refs. [231, 233].

4.3 The Need for Reduced Order Modeling

Large scale calculations of fission properties are essential to study r-process as hundreds of

fissioning nuclei are hypothesized to play a role (see section 1). Additionally, estimating

uncertainties for fission lifetimes and yields within a Bayesian framework requires massive

computational resources. Given the computational costs, using DFT with quantified un-

certainties for fission is infeasible and the development of DFT emulators is necessary. Re-

cently, feed-forward neural networks were used to emulate the PES and collective inertia

tensor, parametrized by Q20 and Q30 [238]. The result was successful emulation of fission

lifetimes for many r-process nuclei. Reduced order modeling and other dimensionality re-

duction techniques have recently been applied to problems in nuclear physics [239–243]. Ref.

[244] has recently explored applications of reduced order modeling techniques to emulate

DFT calculations needed for large scale studies of fission.

4.4 Summary

In this chapter, I applied PyNEB in systems with coexisting modes of fission. My explicit

contributions to this work were computation of the PESs using the SkM∗ EDF and compu-

tation of LAPs and yields for this case. Individual modes are successfully classified with the

nudged elastic band technique according to their relative probabilities. Using the fission yield
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estimation schemes from Refs. [199, 200], we also computed the total fission fragment mass

and charge yields for a Fermium isotope chain and various superheavy nuclei. A well defined

transition from symmetric to asymmetric fission was observed in the Fermium chain however,

the point of transition strongly depends on the EDF and the collective space. Overall, the

UNEDF1HFB functional produced results that best agreed with experiment. Our predicted

fission yields tend to disagree with BSM and SPM approaches. The spontaneous of super-

heavy nuclei was also investigated. Qualitative agreement between fission yields calculated

with SkM∗ and UNEDF1HFB is observed, however, our results are not in agreement with

BSM. This shows the usefulness of multimodal fission for differentiating between models.

Given the computational costs of computing fission lifetimes and yields within the frame-

work presented, I highlight the need for emulators to study fissioning r-process nuclei with

quantified uncertainties and recent efforts build DFT emulators. I co-authored Ref. [238]

where we developed of a neural network to emulate PESs and inertia tensors for to be used

for large scale studies of spontaneous fission. Specifically, I contributed to the conception of

the idea of using neural networks for emulation, development of the method used to train

the neural network including the sampling of data, and network architecture.
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Chapter 5. The Instanton Approach to Nuclear

Fission Lifetimes
In section 3.1, we derived the adiabatic collective tunneling expressions for spontaneous fis-

sion. This required us to assume there exists a reparameterized minimum energy trajectory

R(0) (q⃗(t)) that depends smoothly on time-dependent collective coordinates q⃗(t). The col-

lective coordinates are chosen apriori. These assumptions restrict the dynamics and do not

include non-adiabatic features which are known to present in fission [177]. Additionally, the

computational complexity of the adiabatic approach scales exponentially with the number

of collective coordinates. The consequences of these assumptions systematically limit the

accuracy of the calculated lifetime. A theory capable of computing lifetimes that does not

require such limiting assumptions is desired.

Fission is a dynamic process and must incorporate quantum tunneling to account for

decays. If a nucleus is unstable with respect to fission, the ground state must be metastable

and not in the spectrum of the system’s Hamiltonian. Due to metastablity, a fissioning

nucleus maybe regarded as an open quantum system [138, 245]. If a system external to

the nucleus is not considered, the decay results in non-unitary real-time evolution which

represents information leaving the isolated system. Tunneling is one manifestation of this

non-unitary evolution.

Decays in quantum mechanics are often treated with time-independent semi-classical

approximations such as WKB theory. Understanding this phenomena in real-time setting

is not entirely understood. Many-body dynamics can be derived from the DFM action

(Eq. 3.1). The stationary points of this action are interpreted as classical trajectories and

quantum tunneling is obscured. However, the meaning of "classical" in this context is not
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clear. In WKB theory, classical mechanics emerges as a leading order term in the asymptotic

expansion of the wavefunction in powers of ℏ as ℏ → 0. From the expansion, the classical

to quantum transition is more clearly displayed. However, the transition from classical to

quantum is not completely understood, and is a widely studied foundational problem in

quantum mechanics (See Ref. [245] for a review). Quantum decoherence, interference, and

measurement give meaning to the notion of a classical trajectory and these concepts are more

clearly represented within the sum over histories approach to quantum mechanics [246].

This chapter explores the classicality of mean-field fission trajectories within the sum over

histories approach. Following closely the work in Refs. [247–251], we develop a mean-field

description of tunneling in real and imaginary time that generalizes the adiabatic approach

developed in section 3.1. First, we overview the path integral in single particle mechanics.

Then, we derive a functional integral representation of a transition amplitude for a non-

relativistic many-body system using the Hubbard-Stratonovich (HS) transformation in real

and imaginary time. We extend these results to meson exchange models applicable to fission.

A general algorithm is proposed to search for mean-field instantons for the non-relativistic

and meson models.

5.1 Path Integral Representation

To introduce the sum over histories approach, we overview the path integral representation

for single particle quantum mechanics in one spatial dimension. For detailed pedagogical

introductions, see Refs. [246, 252–257].

A solution to the time-dependent Schrödinger equation can be expressed in terms of a
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Green’s function1 G,

Ψ(xf , t) =

∫
dxiG(xf , xi, t)Ψ(xi, t) (5.1)

where the Green’s function is represented in the path integral formalism [246]:

G(xf , xi, t) =

∫ x(t)=xf

x(0)=xi

DxeiS[x], S[x] =

∫ t

0
dt
1

2
mẋ2 − V (x). (5.2)

The leading order contributions to G satisfy δS[x] = 0, that is, Newtonian equations of

motion

mẍ = −dV
dx

. (5.3)

Recently, Refs. [259, 260] have proposed redefining the Green function in Eq. (5.2) using

Picard-Lefschetz theory [261, 262]. In this reformulation, the pathways x(t) are analytically

continued into the complex plane and the classical histories satisfying δS[x] = 0 play a central

role in the evaluation of the path integral. Saddle points of S are recognized as the leading

order term in an ℏ expansion of the path integral as ℏ → 0 making the connection to classical

physics clear. In the Picard-Lefschetz formulation, the saddle points of S are generally

complex. Complex saddles have been proposed to contribute to the path integral in the

past [257], however, more recently they have been shown to be related to real-time quantum

tunneling at the classical level [259, 260, 263–268]. Fig. 5.1 shows a simple illustration

of a classical trajectory connecting x0 = 0 and xf = 5.5; a point outside the barrier in

the cubic potential V (x) = 1
2x

2 − 1
3x

3. We see there exists a pathway in the complex

1See Ref. [258] for nomenclature.
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Figure 5.1: An example of a real-time saddle point of the action with a cubic potential. The
outer turning point (OTP) of the barrier is denoted with the orange circle.

position plane that connects the two sides of the barrier and contributes to the transition

amplitude. This suggests that for dynamics, complex saddle points can exist and extensions

to semi-classical approximations in a many-body theory of dynamics should take them into

consideration. These saddle points were at least partially understood to play a role in mean-

field formulations of S-matrix theory for mean-field nuclear dynamics [269–273]. While there

has been progress in understanding tunneling in real-time, many problems still persist (see

Refs. [260, 274] for examples).

Static properties of metastable quantum systems can be calculated by analytically con-

tinuing Eq. (5.2) to complex time, t = iτ . In particular, the partition function can be

expressed as

Z = Tr
(
e−Ĥτ

)
=

∫ x(βT )=xi

x(0)=xi

Dxe−S[x], SE [x] =

∫ βT

0
dτ
m

2
ẋ2 + V (x) (5.4)
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where we identify periodic imaginary time with the thermodynamic β, τ = β = 1/kbT .

The partition function is now represented as a sum over all periodic trajectories starting

and ending at a point xi in imaginary time. If a system is metastable, the ground state

energy is complex, ε = E0 − iΓ2 where E0 is the real ground state energy and Γ is the decay

width of the state. To leading order in ℏ, Refs. [275, 276] showed the decay width could be

approximated by

Γ ∝ e−SE [x∗] +O(ℏ), (5.5)

where x∗ satisfies the saddle point equation:

m
d2x

dτ2
= +

dV

dx
, x(0) = x(βT ) = xi. (5.6)

Eq. (5.6) is analogous to Eq. (5.3) but describes a particle propagating in imaginary time

in an inverted potential. A periodic solution inside the inverted potential is referred to

as a "bounce" trajectory comprised of an instanton (motion leading to the outer turning

point) and anti-instanton (motion returning from the outer turning point back to xi). The

method of approximating the tunneling lifetime, by solving Eq. (5.6), is often referred to

as the instanton method. Instantons are related to real time dynamics through analytic

continuation. Refs. [263, 265] studied the analytic continuation of instantons in a double

well potential. More detailed discussions and instanton examples are in Refs. [153, 252,

274–277]. The topics in the next sections contain formalism for constructing an instanton

method for many-nucleon systems to describe fission.
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5.2 Non-Relativistic Models

Analogous to the single particle case, we seek a sum over histories representation of the life-

time for a many-body system. We first derive the semi-classical expression for the real-time

transition amplitude, then analytically continue the result to imaginary time. Refs. [247,

250, 271] derived such expressions by assuming a simple two or three body Hamiltonian using

the HS transformation to linearize the two or three body operators by introducing collec-

tive fields in particle-hole channel. The HS transformation leads to a semiclassical expansion

which results in an effective one-body potential and is well suited for nuclear phenomenology.

There are, however, limitations to this approach. First, the use of density dependent po-

tentials is not clearly defined within the HS transformation for transition amplitudes. DFT

models such as ones based on the Skyrme or Gogny energy density functionals (see 2.2)

containing density dependence cannot simply be applied since the definition of a one-body

density becomes ambiguous (see Refs. [89, 115]). For instance, calculating the amplitude

between two arbitrary states

⟨Ψf | e−iĤ[ρ]t |Ψi⟩, (5.7)

where Ĥ depends on the one-body density, yields different results depending on which state

Ĥ is applied to. This limits the number of models we can use within this framework at the

current time. Progress in deriving potentials from effective actions has been made previously

[78, 278, 279]. Second, the pairing field is introduced in the particle-particle channel separate

from the particle-hole channel. To include fluctuations in both channels, we must integrate

the overlapping domains of the fields and that can lead to over counting contributions [253,
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280]. Despite these complications, we use the HS transformation in the particle-hole channel

only. Extensions to include pairing in the particle-particle channel within this work are

straightforward.

Assume our Hamiltonian only contains up to two-body operators and has the form,

Ĥ =
∞∑

p,q=1

fpqη̂
†
pη̂q −

1

2

∞∑
p,q,r,s=1

v
(A)
pqrsη̂

†
pη̂sη̂

†
q η̂r (5.8)

where p, q, r, s are arbitrary state labels in the occupation representation. We assume single

particle orbitals (in position space),

⟨x|q⟩ =



ψqτp↑(x)

ψqτp↓(x)

ψqτn↑(x)

ψqτn↓(x)


, (5.9)

where τp = 1/2 and τn = −1/2 denote proton and neutron and ↑, ↓ denote spin up and

spin down respectively. fpq and v
(A)
pqrs are one-body and two-body anti-symmetrized matrix

elements respectively in a generic basis defined as

fpq = ⟨p | f̂ | q⟩, v
(A)
pqrs = ⟨pq | v̂ | rs⟩ − ⟨pq | v̂ | sr⟩, (5.10)

where the superscript (A) indicates the anti-symmetrized matrix element. Define the one-

body density operator as ρ̂pq = η̂
†
pη̂q,

Ĥ =
∞∑
pq=1

fpqρ̂pq −
1

2

∞∑
pqrs=1

v
(A)
pqrsρ̂psρ̂qr = K̂ + V̂ . (5.11)
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5.2.1 Transition Amplitudes

In the Schrödinger picture, the time evolution operator U(tf , t0) can be discretized into small

time steps ∆t,

U(tf , t0) = T̂ e−i
∫ tf
t0

Ĥ(t)dt ≈ e−iĤ∆t ≈ e−iK̂∆te−iV̂∆t +O(∆t) (5.12)

as ∆t→ 0. T̂ is the time-ordering operator. The interaction V̂ can be linearized in ρ̂ using

the HS transformation. To perform this transformation, we insert the functional form of the

Dirac delta function [254, 281]

1 =

∫
Dσδ[σ(t)− ρ] =

∫
Dσ

∫
dξeiξ(σ(t)−ρ) (5.13)

at every time slice tk and integrate out the ξ variables,

exp
(
i
∆t

2

∑
pqrs

v
(A)
pqrsρ̂psρ̂qr

)
=

√
det
(
∆tv

(A)
pqrs

)∫ ∏
ps

dσps(tk)√
2πi

× exp
(
− i∆t

2

∑
pqrs

σps(tk)v
(A)
pqrsσqr(tk) + i∆t

∑
pqrs

σps(tk)v
(A)
pqrsρ̂qr

)
. (5.14)

Taking the limit as the number of time steps N → ∞ and ∆t → 0, the time-evolution

operator has the form,

T̂ e−i
∫ tf
t0

Ĥ(t)dt
=∫ ∏

rs

DσrsT̂ exp
(
− i

2

∫ tf

t0

dt
∑
pqrs

σrs(t)v
(A)
rpqsσpq(t)

)
exp

(
i

∫ tf

t0

ĥ[σ]dt
)
, (5.15)
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where the integral measure is defined as

∏
ps

Dσps = lim
∆t→0
N→∞

N∏
k=1

√
det
(
∆tv

(A)
pqrs

)∏
ps

dσps√
2πi

. (5.16)

The “mean-field" Hamiltonian ĥ[σ] has the form

ĥ[σ] =
∑
pq

(
fpq −

∑
rs

σrs(t)v
(A)
rpqs

)
ρ̂pq. (5.17)

This is recognized as the Hartree-Fock Hamiltonian expressed in an arbitrary single particle

basis [34]. The transition amplitude between arbitrary initial and final many-body states

|Ψi⟩ and |Ψf ⟩ is

⟨Ψf | T̂ e
−i
∫ tf
t0

Ĥ(t)dt |Ψi⟩ =
∫ ∏

rs

Dσrse
iSeff [σ], (5.18)

where we define the effective action Seff [σ] as

Seff [σ] = −1

2

∫ tf

t0

dt
∑
pqrs

σrs(t)v
(A)
rpqsσpq(t)− i ln

[
⟨Ψf | T̂ exp

(
i

∫ tf

t0

ĥ[σ]dt
)
|Ψi⟩

]
. (5.19)

It is important to note that the effective action Seff is in general a complex valued function.

The saddle point approximation yields,

⟨Ψf | T̂ e
−i
∫ tf
t0

Ĥ(t)dt |Ψi⟩ ∼ eiSeff [σ
∗], (5.20)
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where σ∗ is a solution to δS[σ] = 0:

σ∗pq(t) =
⟨Ψf | Û [tf , t;σ]ρ̂pqÛ [t, t0;σ] |Ψi⟩

⟨Ψf | Û [tf , t0;σ] |Ψi⟩
. (5.21)

Define time dependent states,

|Ψi(t)⟩ = U(t, t0;σ)|Ψi⟩, |Ψf (t)⟩ = U†(tf , t;σ)|Ψf ⟩. (5.22)

Note that U†(tf , t;σ), tf > t, describes backward time propagation from tf to t.

σ∗pq(t) =
⟨Ψf (t) | ρ̂pq |Ψi(t)⟩

⟨Ψf (t)|Ψi(t)⟩
. (5.23)

The saddle point is the time evolved expectation of the reduced one-body density matrix.

Suppose |Ψi⟩ and |Ψf ⟩ are single Slater determinants constructed from A orbitals in

position space {ϕ(i)(x)} and {ψ(f)(x)} respectively. The saddle point in position space is

σ∗(x1, x2, t) =
⟨Ψf (t) | ρ̂(x1, x2) |Ψi(t)⟩

⟨Ψf (t)|Ψi(t)⟩
. (5.24)

Assuming |Ψi⟩ and |Ψf ⟩ are not orthogonal and using Wick’s theorem with respect to true

vacuum we get,

σ∗(x1, x2, t) =
⟨Ψf (t) | ρ̂(x1, x2) |Ψi(t)⟩

⟨Ψf (t)|Ψi(t)⟩
=
∑
jk

ψ
(f)∗
j (x1, t)ϕ

(i)
k (x2, t)

Cjk
(
U(t)

)
det
(
U(t)

) , (5.25)

where ψ(f)(x1, t) are the orbitals of the Slater determinant |Ψf (t)⟩ and ϕ(i)(x2, t) are the

orbitals of the Slater determinant |Ψ(i)(t)⟩. The matrix Cjk is the cofactor matrix of the
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transformation matrix U ,

Ujk(t) =

∫
d3xψ

(f)∗
j (x, t)ϕ

(i)
k (x, t), Cjk(t) = (−1)2j+kMjk(t), (5.26)

Mjk is the matrix of minors of U . The final and initial state single particle orbitals evolve

according to

−iℏ
∂ψ

(f)
j

∂t
= h[σ]ψ

(f)
j , iℏ

∂ϕ
(i)
k

∂t
= h[σ]ϕ

(i)
k (5.27)

with final and initial conditions ψ(f)j (x1, tf ) = ψj(x1) and ϕ(i)k (x2, t0) = ϕk(x2) respectively.

These expressions are to be used for real-time mean-field dynamics.

The Hartree-Fock equations emerge as a special case. Let |Ψf ⟩ = |Ψi(tf )⟩. The effective

action is then

Seff [σ] = −1

2

∫ tf

t0

dt
∑
pqrs

σrs(t)v
(A)
rpqsσpq(t)− i ln

[
⟨Ψi(tf ) | T̂ exp

(
i

∫ tf

t0

ĥ[σ]dt
)
|Ψi⟩

]
(5.28)

The saddle points in this case are

σ∗(x, t) =
⟨Ψi(t) | ρ̂(x) |Ψi(t)⟩
⟨Ψi(tf )|Ψi(tf )⟩

=
A∑
k=1

ϕ̄k(x, t)ϕk(x, t)

⟨Ψi(tf )|Ψi(tf )⟩
, (5.29)

where the orbitals evolve according to

i
∂

∂t
ϕk(x, t) = ĥ[σ]ϕk(x, t), ϕk(x, t0) = ϕk(x). (5.30)
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This defines the time-dependent Hartree-Fock (TDHF) equations and the action takes the

form,

Seff [σ] = −1

2

∫ tf

t0

dt
∑
pqrs

σrs(t)v
(A)
rpqsσpq(t)− i ln

[
⟨Ψi(tf ) | T̂ exp

(
i

∫ tf

t0

ĥ[σ]dt
)
|Ψi⟩

]
= −1

2

∫ tf

t0

dt
∑
pqrs

σrs(t)v
(A)
rpqsσpq(t)− i ln

[
⟨Ψi(tf )|Ψi(tf )⟩

]
(5.31)

If Ψi(tf ) is normalized, then the log term vanishes and Seff is a real number. The transition

probability is

∣∣⟨Ψi(tf ) | T̂ e−i ∫ tft0 Ĥ(t)dt |Ψi⟩
∣∣2 ∼

∣∣eiSeff [σ∗]∣∣2 = 1. (5.32)

The TDHF equation emerges as a deterministic classical equation organized by the asymp-

totic expansion of the transition amplitude in powers of ℏ. Solutions to the TDHF equations

result in a real effective action and cannot correspond to any tunneling trajectory if the

time-evolved state |Ψi(t)⟩ is normalized. If the many-body states are not normalized, the

action can become complex.

5.2.2 The Bounce Equations

The sum over histories representation of tunneling in nuclear fission has been previously

explored in a few studies [249, 251, 280, 282–285]. Our discussion closely follows Refs. [249]

and [251]. To calculate the lifetime of a metastable system, the quantity of interest is the

Fourier transform of the resolvent operator trace,

Tr

(
1

Ĥ − E

)
=

∫
dtTr

(
eiĤt

)
e−iEt (5.33)
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where the trace is performed over the entire Fock space F . Continuing to imaginary time,

we recognize this expression as the Fourier transform of the partition function,

Tr

(
1

Ĥ − E

)
=

∫
dtZe−Eτ , Z = Tr

(
e−τĤ

)
(5.34)

To calculate the lifetime we look for complex energy poles in the Fourier transform of Z.

Performing a trace over F is computationally infeasible since this is equivalent to solving

the nuclear many-body problem. Similar to what was done in section 3.1, we restrict the

trace of the resolvent operator to an A-particle subspace of F spanned by a complete basis

of Slater determinants {|Ψn⟩},

Tr
(
e−βĤ

)
=
∑
n

⟨Ψn|e−βĤ |Ψn⟩. (5.35)

Each term in the trace can be represented as a sum over histories of a collective field σ by

performing the HS transformation introduced in section 5.2,

Tr
(
e−βĤ

)
=

∫
Dσe

−S(E)
eff

[σ]
, (5.36)

where the superscript (E) denotes the Euclidean action and is defined as

S
(E)
eff [σ] =

1

2

∫ τf

τ0

dτ
∑
pqrs

σrs(τ)v
(A)
rpqsσpq(τ)− ln

[∑
n

⟨Ψn | T̂ e−
∫ τf
τ0

dτĥ[σ] |Ψn⟩
]
. (5.37)
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σ satisfies periodic boundary conditions σ(τ0 + βT ) = σ(τ0) for βT = τf − τ0. The saddle

point equations δS(E)
eff = 0, are

σ∗(x, τ) =
∑
n

A∑
k=1

ϕ̄nk(x, τ)ϕnk(x, τ)

N , N =
∑
m

⟨Ψm | e−
∫ τf
τ dτ ĥ[σ]e

−
∫ τ
τ0
dτĥ[σ] |Ψm⟩,

(5.38)

where the orbitals ϕnk(x, τ) evolve according to the the imaginary time-dependent HF equa-

tion,

∂

∂τ
ϕnk(x, τ) = ĥ[σ]ϕnk(x, τ), ϕnk(x, τ0) = ϕnk(x, τf ) = ϕnk(x). (5.39)

If the state ϕnk(x, τ) is to be normalized, we require

∫
d3xϕ̄nk(x, τ)ϕnk(x, τ) =

∫
d3xϕnk(x, 0)e

ĥ[σ]τe−ĥ[σ]τϕnk(x, 0) = 1. (5.40)

This implies the conjugate orbital is the imaginary time reversed state, ϕ̄nk(τ) = ϕnk(−τ)

and evolves according to

− ∂

∂τ
ϕnk(x, τ) = ĥ[σ]ϕnk(x, τ), ϕnk(x, τ0) = ϕnk(x, τf ) = ϕnk(x). (5.41)

Eq. (5.41) resembles an inverse diffusion equation and is not mathematically well-posed

as initial value problem [286, 287]. The mean-field σ∗ is well defined and finite since it is a

product of exponentially growing and decaying functions. However, in practical calculations,

constructing σ∗ is numerically unstable. Rather than considering the imaginary time evolu-

tion as an initial value problem, we transform the evolution into an eigenvalue-eigenvector
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problem.

Considering the partition function, assume |Ψn⟩ is an eigenstate of the evolution operator

T̂ e−
∫ τf
τ0

dτĥ[σ]. The sum in the second term of Eq. (5.37) becomes,

∑
n

⟨Ψn | T̂ e−
∫ τf
τ0

dτĥ[σ] |Ψn⟩ =
∑
n

exp
(
−

A∑
k=1

αnk [σ]
)
. (5.42)

The trace over all A-particle Slater determinants becomes a sum over all possible combina-

tions of eigenvalues αnk . The partition function is then

Z =
∑
n

∫
Dσ exp

(1
2

∫ τf

τ0

dτ
∑
pqrs

σrs(τ)v
(A)
rpqsσpq(τ)−

A∑
k=1

αnk [σ]
)

=
∑
n

∫
Dσe

−S(E)
eff

[σ,αn] (5.43)

The sum over n scales exponentially and is infeasible to compute. In the low temperature

limit (τ → ∞), the lowest action configuration of αnk becomes dominant. This will truncate

the sum over n and will reduce the number of combinations of eigenvalues needed in the

sum.

To diagonalize T̂ e−
∫ τf
τ0

dτĥ[σ] for all τ ∈ [τ0, τf ], consider the action of the time-evolution

operator

Û [σ, βT ] = T̂ e−
∫ τf
τ0

dτĥ[σ] (5.44)

on a single particle orbital,

|ϕnk(τf )⟩ = Û [σ, βT ]|ϕnk(τ0)⟩. (5.45)
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We transform ϕk into the Floquet form [288, 289],

|ϕnk(τ)⟩ = e
−αnk [σ,βT ]τ |χnk(τ)⟩, (5.46)

where αnk are Floquet indices. The states |χnk⟩ are imaginary time-periodic |χnk(τ+βT )⟩ =

|χnk(τ)⟩. For any τ < βT , the orbitals evolve according to

U(τ, 0)|ϕnk(0)⟩ = e
−αnk [σ,τ ]τ |ϕnk(0)⟩ = e

−αnk [σ,τ ]τ |χnk(0)⟩. (5.47)

Using the Floquet form of the single particle orbitals leads to an eigenvalue problem,

(
∂τ − ĥ[σ]

)
χnk(x, τ) = αnk [σ, βT ]χnk(x, τ) (5.48)

with boundary conditions

χnk(x, τ0) = χnk(x, τf ) = χnk(x), lim
|x|→∞

χnk(x, τ) = 0. (5.49)

This defines a non-hermitian eigenvalue problem since σ is complex. Eq. (5.48) is the Floquet

representation of Eq. (5.39). Saddle points of S(E)
eff are derived in the same way as the real

time case,

σ(x, τ) =
A∑
k=1

χk(x,−τ)χk(x, τ), (5.50)

which is the local one-body density matrix in imaginary time.

Ref. [249] solved Eq. (5.48) using the self-consistent mean-field theory method by adding
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constrains on multipole moments to get non-trivial solutions. In section 5.4, we propose an

alternative algorithm to find saddle points of the effective action in Eq. (5.43) that avoids

the self-consistent mean-field method. Despite developing a new algorithm to find mean-

field bounce trajectories, the number of non-relativistic models we can use for fission lifetime

estimations is currently small. In the next section, we extend the formalism developed thus

far to meson exchange models.

5.3 Meson Exchange Models

The Walecka model [290] and the NL3 model [291] are two meson exchange models that have

been used extensively to predict nuclear observables (see Ref. [292] for a review). Both of

these models have been shown to reduce to Skyrme-like effective potentials in the low momen-

tum limit [291]. To extend the formalism developed in section 5.2, we consider a Yukawa

theory with a scalar-isoscalar σ meson with electromagnetic interactions. The formalism

presented here can be extended to include additional mesons in a straightforward way. The

classical field Lagrangian under consideration in (+,-,-,-) Minkowski metric signature2 is

L =Ψ̄
(
iγµ∂µ −M − gσσ − eγµA

µ
(
1 + τ3

2

))
Ψ

+
1

2
∂µσ∂

µσ +
1

2
m2
σσ

2 − 1

3
g2σ

2 − 1

4
g3σ

4

− 1

4
FµνF

µν . (5.51)

2Note we use Greek indices to label spacetime coordinates 0,1,2,3 and Latin indices to label spatial
coordinates 1,2,3.
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The field Ψ is a 8× 1 spinor field of the form

Ψ =

ψτp
ψτn

 (5.52)

where τp = 1/2 and τn = −1/2 label proton and neutron respectively. ψτp , ψτn are Dirac

spinors, M is the bare nucleon mass, and γµ are the gamma matrices (see Ref. [254]). The

operator 1
2(1 + τ3) is the isospin projection operator onto the proton field ψτp . Aµ is the

electromagnetic four-potential, the electromagnetic field tensor is given by

Fµν = ∂µAν − ∂νAµ, (5.53)

and σ is a scalar-isoscalar meson. This model contains coupling constants gσ, g2, g3 taken to

be fit parameters. Standard field quantization using the coherent basis can be used to derive

a sum over field histories representation of the partition function [253, 255, 256, 280].

To describe finite nuclear systems, two challenges must be overcome in the field repre-

sentation. First, the couplings are not known and must be fit to experimental data. It has

been shown that the couplings are large, and perturbative expansions in powers of coupling

constants are dubious. Second, the fermion fields must be constrained such that the num-

ber of protons and neutrons are fixed. Particle number constraints are commonly used in

the canonical ensemble approach in lattice field theory [293–296]. This approach requires

repeated Fourier transforms of the fermion functional determinant, which for large systems

becomes numerically challenging to perform. While the canonical ensemble method has

been successfully used to study finite density quantum chromodynamics, we do not use this

method in this work. Instead we pursue an occupation representation similar to what was
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used in section 5.2. This approach leads to the “relativistic mean-field theory" approach for

finite nuclei [72, 73, 290–292, 297, 298]. We start with deriving the expression for a real time

transition amplitude between two many-body states.

5.3.1 Transition Amplitudes

In the Hamiltonian picture, we consider fermions coupled to a scalar meson and the electro-

magnetic field. Define the Fock space

F = Ff ⊗Fb, (5.54)

where Ff is the fermion sector Fock space and Fb is the boson sector Fock space. To define

a many-body Hamiltonian operator on F , consider a many-body time-independent Dirac

equation in position space,

A∑
k=1

(
(ĥDirac,k + βσ(xk, t) + eβγµAµ(xk, t)

(
1 + τ3

2

))
ψ(x1, x2, ..., xA) = Eψ(x1, x2, ..., xA)

(5.55)

where the Dirac Hamiltonian is

ĥDirac,k = −i(αj∂j)k + βMk (5.56)

σ is the scalar meson field, and Aµ is the electromagnetic four potential. αi = γ0γi and

β = γ0 are the Dirac matrices and e is the electric charge. Using second quantization, we

introduce fermionic operators,

η̂
†
p = η̂

†
p ⊗ Îb, and η̂p = η̂p ⊗ Îb, (5.57)
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where Îb is the identity operator on the boson sector Fb. The many-body Dirac equation

can now be written as

ĤΨ =
∑
pq

∫
d3xψp(x)

(
− iαk∂k + βM + gσβσ̂(x, t) + eβγµAµ(xk, t)

(
1 + τ3

2

))
ψq(x)η̂

†
pη̂q.

(5.58)

Here, the single particle orbitals are isospin doublets of Dirac spinors,

⟨x|q⟩ = ψq(x) =



ϕqτp↑(x)

ϕqτp↓(x)

χqτp↑(x)

χqτp↓(x)

ψqτn↑(x)

ψqτn↓(x)

χqτn↑(x)

χqτn↓(x)



. (5.59)

ϕ and χ denote particle and anti-particle wave-functions respectively. The many-body Hamil-

tonian under consideration is then

ĤYuk =
∑
pq

∫
d3xψp(x)

(
− iαj∂j + βM + βgσσ̂(x, t) + eβγµAµ(xk, t)

(
1 + τ3

2

))
ψq(x)η̂

†
pη̂q

+ Ĥσ + Ĥe.m.. (5.60)
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The σ and Aµ are quantized using equal-time canonical quantization. The σ Hamiltonian is

Ĥσ =

∫
d3x
[1
2
π̂2σ +

1

2
(∂iσ̂)

2 +
1

2
m2σ̂2 +

1

3
g2σ̂

3 +
1

4
g3σ̂

4
]

(5.61)

and the electromagentic Hamiltonian is

Ĥe.m. =

∫
d3x

1

2

(
Ê2 + B̂2

)
+

∫
d3xJ⃗ · A⃗ (5.62)

in the Coulomb gauge acting on the proton sector. We refer the reader to standard texts on

scalar field and electromagnetic field quantization such as Ref. [252] for more details.

Using the Hamiltonian Eq. (5.60), we express the real-time transition amplitude

⟨Ψf | T e−iĤYukt |Ψi⟩ =
∫
DσDAµeiSeff [σ,A

µ], (5.63)

where the action is

Seff [σ,A
µ] = S[σ] + S[Aµ]− i ln

[
⟨Ψf | T̂ e

−i
∫ tf
t0

dtĥ[σ,Aµ] |Ψi⟩
]
. (5.64)

The mean-field Hamiltonian has the form,

ĥ[σ,Aµ] =

∫
d3x

∑
pq

ψp(x)
(
− iαk∂k + βM + gσβσ(x, t) + eβγµAµ(xk, t)

(
1 + τ3

2

))
ψq(x)η̂

†
pη̂q

(5.65)
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and the σ field action is

S[σ] =

∫
d4x

1

2
∂µσ∂µσ − 1

2
m2σ2 − 1

3
g2σ

3 − 1

4
g3σ

4 (5.66)

and the electromagnetic action is

S[Aµ] = −1

4
FµνF

µν . (5.67)

Appendix B contains a detailed derivation of the transition amplitude for a linear Yukawa

theory that extends to the derivation of Eq. (5.63). It is interesting to compare the form of

the meson effective action in Eq. (5.64) to the non-relativistic action in Eq. (5.28). If one

removes the kinetic, cubic, and quartic terms of the σ action and reduce the electromagnetic

interactions to Coulomb potentials in Eq. (5.64), we recover an action of the same form as

the non-relativistic effective action in Eq. (5.28). Integrating out the mesons and taking a

low momentum limit, results in a density dependent effective potential containing powers of

ρ and a nuclear spin-orbit term.

The saddle point equations for configurations of the fields σ and Aµ are,

∂µ∂
µσ −m2σ − g2σ

2 − g3σ
3 = −gσ

∑
jk

ψ̄
(f)
j (x1, t)ϕ

(i)
k (x2, t)

Cjk
(
U(t)

)
det
(
U(t)

) (5.68)

∂µF
µν = −e

∑
jk

ψ̄
(f)
j (x1, t)γ

νϕ
(i)
k (x2, t)

Cjk
(
U(t)

)
det
(
U(t)

) (5.69)

(
iγµ∂µ −M − gσσ(x, t)− eγµAµ

(
1 + τ3

2

))
ϕ
(i)
k (x, t) = 0 (5.70)(

iγµ∂µ −M − gσσ(x, t)− eγµAµ

(
1 + τ3

2

))
ψ
(f)
k (x, t) = 0 (5.71)
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where the orbitals satisfy initial and final conditions ϕ(i)k (x, 0) = ϕ
(i)
k (x), ψ(f)k (x, tf ) =

ψ
(f)
k (x) respectively. These saddle point equations are of the same form as the relativistic

mean-field equations where the fermion single particle orbitals are the source terms in the

meson and electromagnetic saddle point equations [72, 73, 290–292, 297, 298].

5.3.2 Bounce Equations

Following the steps taken in section 5.2.2, we express the partition function as,

Z =

∫
DσDAµe

−S(E)
eff

[σ,Aµ]
, (5.72)

where the Euclidean effective action in imaginary time is

S
(E)
eff = S[σ] + S[Aµ]− ln

[∑
n

⟨Ψn | T̂ e−
∫ τf
τ0

dτĥ[σ,Aµ] |Ψn⟩
]
. (5.73)

We express the Euclidean effective action in terms of the eigenvalues of the time ordered

mean-field operator as was done in section 5.2.2,

∑
n

⟨Ψn | T̂ e−
∫ τf
τ0

dτĥ[σ] |Ψn⟩ =
∑
n

exp
(
−

A∑
k=1

αnk [σ]
)
. (5.74)

The eigenvalues α are determined by

(
γ
µ
E∂µ −M − gσσ(x, τ)− eγµAµ

(
1 + τ3

2

))
χnk(x, τ) = αnk [σ,A

µ, βT ]χnk(x, τ), (5.75)

where

|ϕnk(τ)⟩ = e
−αnk [σ,A

µ,βT ]τ |χnk(τ)⟩ (5.76)
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and γE are the gamma matrices in Euclidean signature,

γ0E = γ0, γkE = iγk (5.77)

The imaginary time saddle point equations for the σ meson are,

∂µ∂
µσ −m2σ − g2σ

2 − g3σ
3 = −gσ

A∑
k=1

χnk(x,−τ)χnk(x, τ), (5.78)

for the electromagnetic field,

∂µF
µν = −e

A∑
k=1

χnk(x,−τ)γ
νχnk(x, τ), (5.79)

and for fermion single particle orbitals,

(
γ
µ
E∂µ −M − gσσ(x, τ)− eγµAµ

(
1 + τ3

2

))
ϕnk(x, τ) = αnk [σ, βT ]ϕnk(x, τ) (5.80)(

γ̄
µ
E∂µ −M − gσσ̄(x, τ)− eγµAµ

(
1 + τ3

2

))
ϕnk(x,−τ) = ᾱnk [σ, βT ]ϕnk(x,−τ). (5.81)

These mean-field equations define the instanton trajectories and the fission lifetime. Inspect-

ing the low-momentum limit, we find that the meson models easily provide sophisticated

description of nuclear forces. Because of this, using a meson model is immediately capa-

ble of calculating realistic fission lifetimes using the instanton method. While the physics

is extensive, the meson bounce equations (Eqs. (5.78) - (5.80)) are still nonlinear and the

properties of these equations are not well studied. The self-consistent mean-field method

is not expected to succeed in solving these equations as difficulties using this method were

seen in the non-relativistic case. A new numerical method is needed to solve the meson
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bounce equations to find bounce trajectories. In the next section, we suggest a new general

algorithm for finding bounce trajectories.

5.4 Bounce Search Algorithm

One of the persisting problems with instanton or bounce trajectory searches in mean-field

theory is the ineffectiveness of the self-consistent mean field approach to solve the imaginary

time-dependent mean-field equations from Eq. (5.48). Additionally, construction of the mean

field σ is numerically unstable due to the exponential growth and decay of the functions used

to construct it. In this section, we overview a new approach that replaces the self-consistent

mean-field method with a method that directly finds stationary points of a given action with

out needing to construct the mean-field explicitly.

The effective actions for the bounce trajectories under consideration in this work have

the form,

Seff [σ,A
µ] = S[σ] + S[Aµ]−

A∑
k=1

αk[σ,A
µ]. (5.82)

By discretizing the effective action onto a lattice, Seff becomes a high dimensional function

of complex variables. To find saddle points, we need to solve a set of equations

∇⃗Seff = 0 (5.83)

for each field. There are two primary challenges in searching for stationary points of the

effective action. First, we need to solve Eq. (5.83), a very high dimensional set of non-linear

equations. Second, we need to compute the eigenvalues αk. To address the first challenge,

there are techniques from lattice field theory that can be applied. One common method
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used to find stationary points of the action is Newton or quasi-Newton methods [299]. These

methods can be adapted to equations of complex variables and can explore the domain of

Seff to find saddle points. However, there is no guarantee that the saddle points found with

this method are relevant. The relevance of a saddle point is determined by its intersection

number [261, 262, 264]. Determining the intersection number for a saddle point is, in general,

a very difficult task. Intersection numbers can be computed by solving the holomorphic flow

equations over complex space [300–303]. This is also a very demanding task.

To overcome difficulties in determining the relevance of a saddle point, one can use the

parallel tempering technique [304, 305] to initialize a distribution of configurations and then

minimize Re(S). If Re(S) for the dynamic saddle point is greater than Re(S) of the static

solution, then the saddle point is deemed irrelevant. Using the minimal Re(S) fields, we

initialize a Newton or quasi-Newton method. It is also possible to use existing solutions

from the adiabatic approach to fission to initialize the saddle point search.

Eigenvalues αnk need to be computed at every iteration. This requires a solution of

the eigenvalue-eigenvector equation (5.48) for non-relativistic systems or equations (5.78)

-(5.80) for the meson models. All these equations have periodic boundary conditions in τ

and vanishing Dirichlet conditions in x defining a boundary value problem. These equations

are solved using the pseudo-spectral B-Spline method [306–309] in coordinate space. Finally

to find the lifetime, one needs to study the Fourier transform

Tr
( 1

Ĥ − E

)
∼ −i

∫
e−iEτe−Seff [σ

∗,Aµ∗ ]dτ (5.84)

to search for poles in the complex energy plane.
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5.5 Summary

In this chapter I developed formalism for nuclear mean-field dynamics and tunneling by

extending the sum over histories approach to a many-body system. First we reviewed the

sum over histories approach in single particle quantum mechanics and made the connection

between complex classical trajectories and tunneling in real time. In imaginary time, Sidney

Coleman’s instanton formalism [153, 275, 276] was mentioned to approximate decay lifetimes

for metastable states. Next, by following Ref. [249, 251], we developed a formalism for

many-body dynamics using the HS transform to derive an effective action in terms of a

collective variable σ in the particle-hole channel. Saddle points of the effective action in real-

time yielded Hartree-Fock like equations that could in general yield trajectories resulting

in a complex action. These trajectories are interpreted as tunneling trajectories. Analytic

continuation of these results to imaginary time yielded bounce equations that approximate

the partition function which in turn allows one to approximate complex energies of a many-

body system by Fourier transform. Since nuclear DFT is not so easily applied in the non-

relativistic case, we extend the formalism to a meson model consisting of a scalar-isoscalar

mesons and electromagnetic interactions. Similar real-time and imaginary expressions were

derived. Finally, we discussed a new algorithm to search for a bounce or instanton trajectory

that replaces the self-consistent mean-field method and avoids numerical instabilities when

calculating mean-fields.
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Chapter 6. Future Investigations
The work presented in this thesis focused on developing numerical methods for computing

fission lifetimes and yields and formalism to improve our models of nuclear fission. Building

off these developments, a number of future directions are being pursued. These are outlined

in this section.

6.1 Nuclear Fission Lifetimes and Yields with DFT

Within a stationary DFT framework, I developed an implementation of the nudged elastic

band method into a python package called PyNEB. This was published in Ref. [159] and

presented in section 3.3. This publication presents an extensible, modular tool constructed to

identify least action and minimum energy pathways for arbitrary potential energy surfaces.

I developed and benchmarked the numerical implementation of the nudged elastic band

technique and used this package to efficiently estimate the fission mass and charge yields

and lifetimes of various even-even actinides in two and three dimensional collective spaces.

Additionally, I provided mathematical foundations for the application of the technique to

nuclear fission by proving the equivalence between MEPs and LAPS. Further, I used this

tool to identify the contributions from different fission modes in selected actinide and trans-

actinide nuclei in two and three dimensional spaces in Ref. [176].

Aside from finding fission pathways in higher dimensional collective spaces, modeling

fission lifetimes and yields at finite temperature is desired. Using existing DFT models [71,

310], the impact temperature has on fission half-lives and yields using the nudged elastic

band method can be studied. DFT results can be compared with predictions from Landau’s

Fermi liquid theory [311]. Additionally, theoretical descriptions of nuclear fission at finite

temperature also contain conceptual and technical difficulties [33]. Extending DFT to in-
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clude continuum and internal degrees of freedom crucial for descriptions of fission at finite

temperature and for nuclei far from stability [32, 71, 111, 204].

In Ref. [238], neural networks were shown to successfully emulate PESs and collective

inertias across the r-process region of the nuclear chart. This accuracy translates to reason-

able predictions in the half-life and the primary fission fragment yields. Further emulator

development is discussed in Ref. [244]. With extensive emulators, large scale studies of

fission in the r-process are possible. One impactful application of both dimensionality re-

duction and the DFT approach to fission is to compute fission lifetimes and yields across the

r-process region of the nuclear chart to be used in reaction network calculations. This will

provide some insight about the role nuclear fission plays in the nucleosynthesis of heavy and

superheavy nuclei.

6.2 Instanton and Mean-field Extensions

Section 5 dealt with developing formalism in real and complex time for describing many-

body tunneling at the mean-field level. Many-body transition amplitudes in real and complex

time can be used to derive mean-field theories of nuclear dynamics and stability respectively.

One clear future work direction is developing a complete numerical implementation of the

methods mentioned in section 5.4. Extensions of the instanton framework to include pairing

effects are needed for realistic fission lifetime predictions. This can be accomplished by

including collective fields in the particle-particle channel when constructing the effective

action with the HS transform. With numerical implementations of the instanton method,

realistic calculations of fission lifetimes without the adiabatic assumption will be possible.

Further, more developments are needed to improve the non-relativistic instanton formalism.

Constructing effective theories from which nuclear DFT can be derived is one way to do this
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[75, 78]. Extensions of the mean-field instanton dynamics formalism to include temperature

and environmental effects for induced fission studies are also desired. Investigating the

existence of complex saddle points in real-time nuclear dynamics can improve mean-field

approximations of cross-sections vital to reaction studies.

In open quantum systems such as nuclei far from stability, couplings between nuclear

degrees of freedom and an environment are essential [33, 312]. Continuum effects have shown

to be crucial for understanding the structure of superheavy elements and other weakly bound

nuclei [9, 71, 313]. In a broader context, the inclusion of an environment is necessary to

understand quantum decoherence and the transition between classical and quantum systems

[245]. Decoherence has been shown to play a role in determining quantum state lifetimes

[314–317]. Considering decoherence, it is unclear if actinide and trans-actinide nuclear decays

are influenced by an environment or if the environment contributes to dissipative effects in

fission. Development of nuclear mean-field formalism and numerical methods that will enable

studies of how environmental effects impact nuclear stability is desired.

6.3 Dimensionality Reduction for Nuclear Physics

The computational cost of static and dynamic DFT calculations makes uncertainty quantifi-

cation and large scale studies difficult. The development of emulators capable of reducing

the computational cost are needed. I contributed to the development of an emulator based

on neural networks that can reproduce two dimensional potential energy surfaces and inertia

tensors [238]. The result was successful emulation of fission yields and lifetimes for r-process

nuclei. More recent applications of reduced order modeling to problems in nuclear physics

have been promising [239, 240, 242–244]. I would like to explore applications of intrusive and

data-driven dimensionality reduction techniques such as dynamic mode decomposition [318],
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reduced basis methods [319], and parametric matrix models [320] to emulate nuclear dynam-

ics, reaction networks and fission observables. Given the recent interest of reduced order

modeling within the nuclear physics community (see for example Refs. [321–324]), I think

applications of reduced order modeling techniques to emulate dynamics and nuclear observ-

ables relevant for r-process nucleosynthesis are areas that lead to impactful advancements

in nuclear physics.
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APPENDIX A

Minimum Energy and Least Action

Pathways
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Figure A.1: The asymmetric camel-back surface VCB−A(x, y) with the calculated NEB-MEP
(red), NEB-LAP (magenta), DPM (black), EL (cyan), and DA (lime) trajectories. Black
stars indicate saddle points and yellow crosses mark local minima. Figure taken from Ref.
[159]

Here we discuss the equivalence between LAPs and MEPs. Fig. A.1 shows the asymmet-

ric camelback surface defined in Ref. [159]. We observe a significant difference in the LAPs

and MEPs in their location on the PES and calculated action (see Table 3.1). The MEP is
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obtained by computing the steepest descent flow on the PES, and the LAP is determined

by minimizing the collective action. Similar to Ref. [325], we define the MEP as a gradient

curve γ⃗(τ) satisfying the differential equation

˙⃗γ = σ(τ)∇⃗Veff(γ⃗(τ)), (A.1)

with boundary conditions γ(0) = q⃗in and γ⃗(1) = q⃗out. τ is an arbitrary monotonic

parametrization of the curve, while ˙⃗γ represents the local velocity of the trajectory. σ(τ) is

a factor to account for the transformation of arc length to the parameter τ to be used in the

Euler-Lagrange equations. Solutions to Eq. (A.1) define a trajectory made by a collection

of steepest descents and ascents between q⃗in and q⃗out in terms of the parameter τ .

On the other hand, the LAP trajectory q⃗(τ) is derived by finding a stationary point of

the action integral Eq. (3.25). By Beltrami’s theorem, one can transform Eq. (3.25) into

S̃ =

∫ 1

0

(
Veff(q⃗)− E0

)
Mµν(q⃗)q̇

µq̇νdτ

=

∫ 1

0
gµν q̇

µq̇νdτ. (A.2)

This action is analogous to the action of a free particle in a curved space with metric gµν .

The stationary points of this action satisfy the Euler-Lagrangian equations for the functional

(3.25) however, the converse of this statement is not true. The Euler-Lagrange equations

are derived by varying Eq. (A.2),

(Veff − E0)¨⃗q =
1

2
| ˙⃗q|2∇⃗Veff −

(
˙⃗q · ∇⃗Veff

)
˙⃗q, (A.3)
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with the boundary condition q⃗(0) = q⃗in and q⃗(1) = q⃗out. We assumed constant inertia

Mµν ∝ δµν .

Suppose there exists a trajectory q⃗(τ) satisfying ∇⃗Veff
[
q⃗(τ)

]
∝ ˙⃗q, i.e, the tangent vectors

of the solution q⃗(τ) are parallel to the surface gradient ∇⃗Veff evaluated along the curve.

Since ∇⃗Veff and ˙⃗q are parallel, Eq. (A.3) would imply that ¨⃗q ∝ ˙⃗q along the trajectory. This

further implies that the tangent vectors of the solution q⃗(τ) are always in the same direction

as its acceleration. From this we conclude that in order for the MEP to also be a solution

of Eq. (A.3), such trajectory q⃗(τ) can only be composed of straight lines. Critical points of

the PES where Veff −E0 and ∇⃗Veff both vanish are the only locations on the surface where

the trajectory can bend non-smoothly and still obey Eq. (A.3).

These results significantly restrict the types of PESs for which an MEP can be an LAP.

Such conditions on the surface can be obtained by the use of Eq. (A.1) as an ansatz for the

equation of motion Eq. (A.2). We first note that, if the trajectory solves Eq. (A.1), then:

¨⃗γ(τ) = σ̇∇⃗Veff + σ
∂∇⃗Veff
∂γ⃗

∂γ⃗

∂τ
,

∂∇⃗Veff
∂γ⃗

∂γ⃗

∂τ
= H[γ⃗(τ)] ˙⃗γ, (A.4)

where H is the Hessian matrix of second derivatives of the PES evaluated along the gradient

curve γ⃗. For such a trajectory, the acceleration along the curve is

¨⃗γ(τ) = σ̇∇⃗Veff + σ2H∇⃗Veff . (A.5)

Substituting this into the the geodesic equation we obtain

H∇⃗Veff = −
( |∇⃗Veff|2
2(Veff − E)

+
σ̇

σ2

)
∇⃗Veff. (A.6)
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Figure A.2: Absolute value of the minimum angle (in degrees) between the gradient of V and
the eigenvectors of the Hessian H for the CB-S surface. The NEB-MEP is shown in red and
NEB-LAP is shown in green. The yellow stars indicate critical points of the surface. The
inset zooms-in on one region where there is a slight difference in the MEP path compared
to the LAP. Figure taken from Ref. [159].

We see that the gradient ∇⃗Veff
[
γ⃗(τ)

]
must be an eigenvector of the Hessian H

[
γ⃗(τ)

]
for

all τ . This shows that the eigenvectors of H, or principal directions of the surface Veff , must

also be parallel to the gradient curve tangents along the trajectory. Since we know that if

γ⃗(τ) is to be a solution of (A.6), then ˙⃗γ(τ) ∝ ¨⃗γ(τ); again showing that the curve γ⃗(τ) must be

a straight line. In regions where the gradient curve is not parallel to the Hessian eigenvectors,

there will be an acceleration along the gradient curve perpendicular to its tangents. In this

situation, the function γ⃗(τ) cannot be a solution to (A.3) since ¨⃗q(τ) ̸∝ ˙⃗q(τ) for all τ .

Equation (A.6) allows us to identify whether an MEP is an exact stationary path by

checking if the gradient descent trajectory on the surface Veff misaligns at any point with

the eigenvectors of the surface’s Hessian H. Figure A.2 shows the smallest angle between

the gradient and the Hessian’s eigenvectors for the CB-S surface. In the regions where the
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angle is small (stationary path can be approximated by straight lines) the MEP are LAP are

close. From this analysis, we conclude that in many situations the MEP will not coincide

with the LAP. However, in cases where a stationary path can be approximated by straight

lines, such as in the CB-S surface, the MEP might well approximate the LAP. Since the LAP

is a stationary path, small deviations from the LAP could translate into very small errors in

the action value. Still, the MEP can be used for finding critical points (minima and saddles)

on the surface.
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APPENDIX B

Derivation of Yukawa Path Integral

This appendix explicitly derives a hybrid sum over histories approach representative of the

one stated in section 5.3.1. To simplify the derivation, we only consider a linear Yukawa

model described by Hamiltonian,

Ĥ = Ĥψ + Ĥψσ + Ĥσ (B.1)

where

Ĥψ =
∑
pq

∫
d3xψp(x)

(
αi∂i − βM

)
ψq,τ (x)η̂

†
pτ η̂q (B.2)

Ĥψσ =
∑
pq

∫
d3xψp(x)

(
− βgσσ̂(x, t)

)
ψq(x)η̂

†
pτ η̂q (B.3)

Ĥσ =

∫
d3x
[1
2
π̂2σ(x, t) +

1

2
(∂iσ̂(x))

2 +
1

2
m2σ̂2(x, t)

]
(B.4)

It is assumed the operators act on their respective sectors. The scalar field operator σ̂(x, t)

operates at different times on the boson sector of the Fock space F = Ff ⊗ Fb. The time

evolution operator on F has the form

Û(t0, tf ) = T̂ exp
(
− i

∫ tf

t0

Ĥ(t′)dt′
)

(B.5)
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where T̂ is the time-ordering operator. The amplitude for an initial state |Ψ⟩0⊗|σ⟩0 at time

t0 to evolve to a state |Ψ⟩f ⊗ |σ⟩f at time tf , tf > t0 is,

(
⟨Ψ|f ⊗ ⟨σ|f

)
T̂ exp

(
− i

∫ tf

t0

Ĥ(t′)dt′
)(

|Ψ⟩0 ⊗ |σ⟩0
)

(B.6)

To obtain the sum over histories representation, we adapt the construction given in [254] for

a scalar field theory. First, we divide the time interval into N + 1 partitions.

T̂ exp
(
− i

∫ tf

t0

Ĥ(t′)dt′
)
≈ e

−iĤ(tf−tN+1)e−iĤ(tN+1−tN )...e−iĤ(t1−t0) (B.7)

where we assume N is large enough so that tk+1 − tk is small. The product is time ordered

so that tk+1 > tk for all k < N + 1. The discretized amplitude is then,

(
⟨Ψ|f ⊗ ⟨σ|f

)
e
−iĤ(tf−tN+1)e−iĤ(tN+1−tN )...e−iĤ(t1−t0)

(
|Ψ⟩0 ⊗ |σ⟩0

)
(B.8)

In between each interval, we insert a resolution of the F identity operator, So we insert the

following form of the identity operator at every time-step

Îf ⊗ Îb = Îf ⊗
∫
Dσk|σk⟩⟨σk| (B.9)

where the definition of the measure Dσk is given in [254]. We keep the identity for the

fermion sector fixed at the identity since the fermion operators do not depend on time and

satisfy time-independent anti-commutation relations

{η̂†p, η̂q} = δpq, {η̂p, η̂q} = {η̂†p, η̂†q} = 0 (B.10)
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The σ field on the other hand obey equal time commutation relations for a fixed time tk.

[π̂σ(x, tk), σ̂(y, tk)] = iδ3(x− y), [σ̂(x, tk), σ̂(y, tk)] = [π̂σ(x, tk), π̂σ(y, tk)] = 0 (B.11)

Inserting Eq. (B.9) at every timestep we arrive at

(
⟨Ψ|f ⊗ ⟨σ|f

)
T̂ exp

(
− i

∫ tf

t0

Ĥ(t′)dt′
)(

|Ψ⟩0 ⊗ |σ⟩0
)

=
(
⟨Ψ|f ⊗ ⟨σ|f

)
e
−iĤ(tf−tN+1)

(
Îf ⊗

∫
DσN+1|σN+1⟩⟨σN+1|

)
e−iĤ(tN+1−tN )

×
(
Îf ⊗

∫
DσN |σN ⟩⟨σN |

)
. . .
(
Îf ⊗

∫
Dσ1|σ1⟩⟨σ1|

)
e−iĤ(t1−t0)

(
|Ψ⟩0 ⊗ |σ⟩0

)
. (B.12)

Since the tensor product is bilinear, we can factor out the integrals from each tensor,

(
⟨Ψ|f ⊗ ⟨σ|f

)
T̂ exp

(
− i

∫ tf

t0

Ĥ(t′)dt′
)(

|Ψ⟩0 ⊗ |σ⟩0
)

=

∫ N+1∏
k=1

Dσk

(
⟨Ψ|f ⊗ ⟨σ|f

)
e
−iĤ(tf−tN+1)

(
Îf ⊗ |σN+1⟩⟨σN+1|

)
× . . .

(
Îf ⊗ |σ1⟩⟨σ1|

)
e−iĤ(t1−t0)

(
|Ψ⟩0 ⊗ |σ⟩0

)
(B.13)

To evaluate this, we look at the kth insertion,

...
(
Îf ⊗ |σk+1⟩⟨σk+1|

)
e−iĤ(tk+1−tk)

(
Îf ⊗ |σk⟩⟨σk|

)
... (B.14)
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If we assume tk+1 − tk is small for all k, then

e−iĤ(tk+1−tk) ∼ If ⊗ Ib − iĤ(tk+1 − tk) +O
(
(tk+1 − tk)

2
)

(B.15)

Then,

(
Îf ⊗ |σk+1⟩⟨σk+1|

)
e−iĤ(tk+1−tk)

(
Îf ⊗ |σk⟩⟨σk|

)
=
(
Îf ⊗ |σk+1⟩⟨σk+1|

)
If ⊗ Ib

(
Îf ⊗ |σk⟩⟨σk|

)
− i(tk+1 − tk)

(
Îf ⊗ |σk+1⟩⟨σk+1|

)
Ĥ
(
Îf ⊗ |σk⟩⟨σk|

)
(B.16)

We evaluate the first term of Eq. (B.16),

(
Îf ⊗ |σk+1⟩⟨σk+1|

)
If ⊗ Ib

(
Îf ⊗ |σk⟩⟨σk|

)
= Îf ⊗ |σk+1⟩⟨σk+1|σk⟩⟨σk| = Îf ⊗ |σk+1⟩⟨σk|δ[σk+1 − σk] (B.17)

where

δ[σk+1 − σk] =
∏
x⃗

δ
(
σk+1(x)− σk(x)

)
(B.18)

We can write the delta function in the Fourier representation,

∏
x⃗

δ
(
σk+1(x)− σk(x)

)
=
∏
x⃗

∫ ∞

−∞
dπk
2π

eiπk(x)
(
σk+1(x)−σk(x)

)
(B.19)
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To evaluating the second term in Eq. (B.16), we note the Hamiltonian has the form,

Ĥ = Ĥψ ⊗ Ib +

∫
d3x

∑
pq

ψp(x)β
(
If ⊗ σ̂(x, t)

)
ψq(x)

(
η̂
†
p ⊗ Ib

)(
η̂q ⊗ Ib

)
+ If ⊗ Ĥσ

(B.20)

The second term in Eq. (B.16) is then,

(
Îf ⊗ |σk+1⟩⟨σk+1|

)[
Ĥψ ⊗ Ib

+

∫
d3x

∑
pq

ψp(x)β
(
If ⊗ σ̂(x, t)

)
ψq(x)

(
η̂
†
p ⊗ Ib

)(
η̂q ⊗ Ib

)
+ If ⊗ Ĥσ

](
Îf ⊗ |σk⟩⟨σk|

)
(B.21)

We evaluate each term in Eq. (B.21). First,

(
Îf ⊗ |σk+1⟩⟨σk+1|

)
(Ĥψ ⊗ Ib)

(
Îf ⊗ |σk⟩⟨σk|

)
= Ĥψ ⊗ |σk+1⟩⟨σk|δ[σk+1 − σk] (B.22)

The next term,

(
Îf ⊗ |σk+1⟩⟨σk+1|

)∫
d3x

∑
pq

ψp(x)
(
If ⊗ σ̂(x, t)

)
ψq(x)

(
η̂
†
p ⊗ Ib

)(
η̂q ⊗ Ib

)(
Îf ⊗ |σk⟩⟨σk|

)
=

∫
d3x
(∑
pq

ψp(x)βψq(x)η̂
†
pη̂q

)
⊗
(
σ(x, tk)δ[σk+1 − σk]|σk+1⟩⟨σk|

)
. (B.23)
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Last equality is the form used to quantize the free scalar field Hamiltonian from Ref. [254].

The result is,

(
Îf ⊗ |σk+1⟩⟨σk+1|

)
Ĥσ

(
Îf ⊗ |σk⟩⟨σk|

)
= Îf ⊗ |σk+1⟩⟨σk+1 | Ĥσ |σk⟩⟨σk|

= Îf ⊗
∫
Dπσ,kH[πσ,k, σk] exp

(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
|σk+1⟩⟨σk| (B.24)

Using these results, the k-th slice becomes

Îf ⊗ |σk+1⟩⟨σk| − i(tk+1 − tk)
[
Ĥψ ⊗ |σk+1⟩⟨σk|

∫
Dπσ,k exp

(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
+

∫
d3x
(∑
pq

ψp(x)βψq(x)η̂
†
pη̂q

)
⊗
(
σ(x, tk)|σk+1⟩⟨σk|

)∫
Dπσ,k exp

(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
+ Îf ⊗

∫
Dπσ,kH[πσ,k, σk] exp

(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
|σk+1⟩⟨σk| (B.25)

where we used the Fourier representation of the functional delta functions. If we factor out

If ⊗ |σk+1⟩⟨σk|,

(If ⊗ |σk+1⟩⟨σk|)
∫
Dπσ,k

[
If ⊗ Ib − i(tk+1 − tk)

(
Hψ ⊗ Ib

+

∫
d3x

∑
pq

ψpβ(If ⊗ σ(x, tk))ψq(x)(η̂
†
p ⊗ Ib)(η̂q ⊗ Ib) + If ⊗H[πσ,k, σk]

)]

× exp
(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
= (If ⊗ |σk+1⟩⟨σk|)

∫
Dπσ,k

[
If ⊗ Ib − i(tk+1 − tk)H[πσ,k, σ, η̂

†
p, η̂q]

]

× exp
(
i

∫
d3πσ,k(x)(σk+1(x)− σk(x))

)
(B.26)
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Since tk+1 − tk is small, we replace I − i(tk+1 − tk)H by e−i(tk+1−tk)H ,

=

∫
Dπσ,k exp

(
i

∫
d3xπσ,k(x)(σk+1(x)− σk(x))− i(tk+1 − tk)H[πσ,k, σk, η̂

†
p, η̂q]

)
× Îf ⊗ |σk+1⟩⟨σk| (B.27)

Considering every insertion, we have

(
⟨Ψ|f ⊗ ⟨σ|f

)
T̂ exp

(
− i

∫ tf

t0

Ĥ(t′)dt′
)(

|Ψ⟩0 ⊗ |σ⟩0
)
=

lim
N→∞

∫ N∏
k=1

Dσk

N∏
j=0

Dπσ,j⟨Ψf |T̂ exp
(
i∆t

N∑
j=0

∫
d3xπ(x, tj)

(σj+1 − σj)

∆t
−H[πj , σj , η̂

†
p, η̂q]

)
|Ψ0⟩

=

∫
DσDπ⟨Ψf |T̂ exp

(
i

∫ tf

t0

dt

∫
d3x
[
π(x, t)σ̇(x, t)−H[πσ, σ, η̂

†
p, η̂q]

])
|Ψ0⟩ (B.28)

We can do the integral over momentum πσ,

(
⟨Ψ|f ⊗ ⟨σ|f

)
T̂ exp

(
− i

∫ tf

t0

Ĥ(t′)dt′
)(

|Ψ⟩0 ⊗ |σ⟩0
)

=

∫
Dσ⟨Ψf |T̂ exp

(
i

∫
d4xL[σ, η̂†p, η̂q]

)
|Ψ0⟩ (B.29)

where the Lagrangian L is

L = −
∑
pq

ψp(x)
(
αi∂i − βM − βgσσ(x, t)

)
ψq(x)η̂

†
pη̂q +

[1
2
∂µσ∂µσ +

1

2
m2σ2

]
(B.30)

This completes the derivation.
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