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ABSTRACT
The nuclear matter equation-of-state (NM-EOS) determines the stability and bulk proper-

ties of nuclear matter, and is thus, directly linked to astrophysical phenomena—e.g. neutron
star physics. Moreover, a tightly constrained NM-EOS opens an avenue to test and improve
nuclear force models. The NM-EOS is therefore, of great interest to the physics commu-
nity. Recent advances in ab initio nuclear theory have led to an explosion of nuclear forces
amenable to many-body methods—which scale polynomially in time. Some of such meth-
ods include Many-Body Perturbation Theory (MBPT), and nonperturbative approaches:
In-Medium Similarity Renormalization Group (IMSRG), and Coupled-Cluster theory (CC).
Unlike MBPT and CC, the IMSRG has not been applied to study NM-EOS with realistic
nucleon forces. Therefore, we apply the IMSRG to calculate NM-EOS using multiple real-
istic forces. To accomplish this goal, we develop a state-of-the-art, high-performant nuclear
matter IMSRG program with access to a multitude of two and three-body nuclear forces. We
compare NM-EOS obtained from MBPT, IMSRG, and CC to benchmark the methods. And
we observe disparities between the methods in symmetric nuclear matter that are due to non-
perturbative physics. IMSRG NM-EOS computations are done at scale, and are therefore,
highly computationally demanding. Consequently, we introduce novel ideas to accelerate
IMSRG computations using Unitary Coupled-Cluster (UCC)-inspired IMSRG generators,
and Shanks and Padé IMSRG extrapolators. We realize that approximate UCC solutions
can be used as IMSRG generators. And, viewing UCC as a nonlinear commutator inversion
problem, we realize that UCC amplitudes are given by a generalized Born series—so long the
series converges. Using these developments, we introduce three IMSRG generators named
“Born,” “UCC-Born,” and “Carinae.” Using the novel generators, we sometimes observe

2-4X IMSRG speedup, particularly when the IMSRG is slowly convergent.
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Chapter 1. Background and Introduction

“Fverything is fine!”

—Periphery

1.1 Importance of the Nuclear Matter Equation-of-State

The nuclear matter equation-of-state (NM-EOS) is given by E(p)/A where E(p) is the total
energy of a system containing A — oo interacting nucleons confined in a V — oo volume
at density p. It determines the stability and bulk properties of nuclear matter, such as
its response to gravitational compression. Consequently, the NM-EOS is directly linked to
astrophysical phenomena—e.g. neutron star physics [1-3]. And it is indicative of possible
new states of ultra-compressed matter [1-3]. Moreover, a tightly constrained NM-EOS allows
the testing and improvement of nuclear force models [4-6]. There are known deficiencies in
X-EFT in heavy nuclei (overbinding with radii that are too small) that are linked to poor

nuclear saturation [6].

1.2 Recent Advances in Ab Initio Nuclear Theory

Ab initio nuclear theory predicts properties of nuclear systems using the most fundamental
building blocks that are accessible to theorists [7]. Recent advancements in ab initio nuclear
theory have led to an explosion of two- and three-body nuclear forces from Chiral Effective
Field Theory (x-EFT) that can be used by many-body methods to compute observables in
nuclear systems [1,4,8,9]. Some of such methods include Many-Body Perturbation Theory

(MBPT), and nonperturbative approaches: In-Medium Similarity Renormalization Group
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(IMSRG) and Coupled-Cluster theory (CC). These many-body methods scale polynomially
in time, and consequently, have been used to target heavy nuclei [10-12]. Unlike MBPT
and CC, the IMSRG has not been applied to study NM-EOS with realistic nucleon forces.

Therefore, the application of the IMSRG in nuclear matter is still in its infancy.

1.3 Thesis Outline

We introduce the IMSRG in Chapter 2, and detail how it can be applied to study an infinite
lattice of nuclear matter. We subsequently introduce the computer program in Chapter 3
that is used to perform all nuclear matter IMSRG calculations in this work. And we show
the program’s performance capabilities. In Chapter 4, we calculate and exhibit various
NM-EOS using three chiral forces. Observing the large runtimes needed to obtain NM-
EOS using the IMSRG at scale, we then look towards developing techniques to accelerate
IMSRG computations. In Chapter 5, we introduce novel physics-motivated techniques to
accelerate IMSRG computations. And, we apply known data driven methods in Chapter 6, to
extrapolate converged IMSRG energies. This thesis is accompanied by a graphic presentation
located in the supplemental materials. The graphic presentation offers visual explanations
of the ideas in this work, which may enhance the reader’s understanding. Therefore, we

employ the reader to seek it according to their preference.



Chapter 2. IMSRG Theory for Nuclear Matter

“Sometimes you have to be
willing to accept ‘good

enough’
—Scott K. Bogner

The In-Medium Similarity Renormalization Group (IMSRG) is a powerful computational
tool that has been used to calculate nuclear structure observables for a wide range of finite
nuclei starting from realistic inter-nucleon forces [10,11,13-15]. However, prior to the present
work, the IMSRG had never been adapted to carry out large-scale EOS calculations of infi-
nite nuclear matter starting from realistic Hamiltontians—it had only been used to perform
small, proof-of-principle calculations of pure neutron matter with the aged and godforsaken
Minnesota two-nucleon potential [16, 17].1 In this work, we develop a nuclear matter IMSRG
program built from the ground up to be performant and thus, usable for large-scale calcu-
lations using modern chiral two- and three-nucleon forces. In this chapter, we describe the
basic formalism of the IMSRG, and how it can be extended and applied to carry out micro-
scopic EOS calculations of nuclear matter as well as other infinite homogeneous many-body

systems such as the electron gas.

e jest, and hope that the Minnesota force, which has served its role well as a highly simplified (and
hence only semi-realistic) model, is without offense.



2.1 SRG Theory

The Similarity Renormalization Group (SRG) is the al-Qa’idah (foundation) of the IMSRG.
The SRG performs a sequence of continuous unitary transformations on a given Hamiltonian
to construct unitarily equivalent Hamiltonians with desired properties determined by the
transformations’ generators. Simply stated, the SRG enables the shaping or manipulation

of a given Hamiltonian while preserving its eigenvalues.2 Consider a bare interaction® 4

1
H = Zqua;,aq + W

1
> Vighdlalosar + g 3 Vigabalalouaas . 21
pq

pqrs 7 pgrstu

H is an A-body operator that is truncated at the three-body level. And V(2 and V)
are anti-symmetrized body-operators. Notice that H is normal-ordered relative to the true
vacuum, i.e. (0|H|0) = 0.

The SRG transforms H via

H(s) = U(s)H(0)U(s)! (2.2a)
Us=0)=1 = H(s=0)=H (2.2b)
U(s)U(s)T = U(s)TU(s) = 1 (2.2¢)
) = Tt = (o) (2.2
dH(s)

2Unitarity in the SRG and IMSRG are theoretically guaranteed. However, approximations within each
method—such as many-body truncations for computational feasibility—can break unitarity.

3The two-body and higher-body ranks of H in Eq. (2.1) are typically determined from Chiral Effective
Field Theory (x-EFT) [18].

4The D,--,uu subscripts in Eq. (2.1) label single-particle states.
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[19]. Eq. (2.2e) is commonly referred to as the “flow equation.” s is a continuous parameter
that labels the stage of the SRG evolution.” And n(s) is an anti-Hermitian A-body operator
(n(s) = —n'(s)) that is also truncated at the three-body level. 7(s) is called the generator of
the SRG since it implicitly defines the SRG transformation [20]. Let H(s) = Hy(s)+ H,q(s),
where Hy(s) and H,4(s) denote the diagonal and off-diagonal sectors of H (s), respectively.%
The SRG is typically used to diagonalize H. To that end, 7(s) is chosen via perturbative
analysis of Eq. (2.2e) such that limg_s H,4(s) = 0. The SRG evolution is then iterated

until dgés) = 0. Some notable generators include the White, Imaginary-time, and Wegner

generators [20].
Although we truncated H at the three-body level, Eq. (2.2e)’s commutator induces many-

body forces above the three-body level in %ﬁs) If there are A particles in the system of

interest, dlé—és) will contain operator ranks up the the A-body level. These induced higher-
body operators are not only computationally troublesome to handle, but can also have
important effects on the convergence and unitarity of the SRG in many-body systems [19].

Therefore, we are motivated to find alternatives that avoid the explicit handling of such

induced higher-body operators. This leads us to the IMSRG, which we turn to next.

5The flow parameter s, should not be confused with the generic single-particle index s—since the latter
will always be shown as a subscript.

6In the matrix formulation of the SRG, H. 4(s) and H,4(s) correspond to the conventional definition
of diagonal and off-diagonal matrices of H in a given basis, respectively [19]. In this work, the notions
of “diagonal” and “off-diagonal” are kept general. This is will convenient when we employ the minimal
decoupling scheme in Subsection 2.2.2.



2.2 IMSRG Theory

The IMSRG improves on the SRG by rewriting H = H(0) ezactly into a normal-ordered

form, based on a Hartree-Fock reference state—called the Fermi vacuum |®) [20].7

1
H=F + prq : a};aq D+ 1 Z Cpgrs a;;a:gasar : (2.3a)
Pq pars

1

pqrstu
E = Z Tyqng + = Z VqTqr ngnr + = Z Vqrsqrs NgNrs (2.3b)
qrs
2 3
foq = Tpg + Z Vp(ngr ny + 3 Z Vp(rs)qrs Nyng (2.3¢)
r rs
qurs - quS + Z pqtrst (2-3d>
Woarstu = V) pgrst (2.3
pqrstu pgrstu. ¥ PqTStU- 3e)

calal .. aa : denotes the normal-ordered form of a'al ... aa with respect to |®), such that
(@ : alal.. . aa : |®) = 0. And np = O(€Fermi — €p) is the occupation of the pth single-
particle state with energy ¢, embedded in |®) with energy €pei. Since H is normal-
ordered relative to |®), H(s) and (s) are likewise normal-ordered relative to |®).8 Therefore,
the commutator in Eq. (2.2e) is written to act on normal-ordered operators using Wick’s
theorem [10,15,19-21]. In conclusion, the IMSRG solves Eq. (2.2¢) using a commutator that
acts on normal-ordered operators H(s) and n(s) [10].

By rewriting H into a normal-ordered form in Eq. (2.3), we propagate terms from T

"When modeling infinite nuclear matter, f;, = f,; = 0 is guaranteed in Eq. (2.3c) due to momentum
conservation seen in Egs. (2.15) and (2.17). Therefore, Hartree-Fock conditions on f are automatically
satisfied [19].

8See Eqs. (2.4a-2.4c).



V(2), and V) into their respective lower operator ranks of H. This is the appeal of normal-
ordering. If the target wavefunction |¥), of H is approximated well by |®), we can truncate
induced high-body forces while mitigating the violation of unitarity. Simply stated—for
example, the IMSRG allows the inclusion of three-body forces without explicitly evolving
three-body operators [15,19].

In this work, we utilize the IMSRG(2) scheme—meaning that all IMSRG operators and
induced commutators are truncated at the two-body level. The IMSRG(2) truncation is
employed because the computational cost needed to store and evolve three-body operators
at scale is immense. Additionally, we utilize two normal-ordering truncation schemes denoted
“normal-ordered 2NF” and “normal-ordered 3NF.” Within the normal-ordered 2NF scheme,
H is truncated at the two-body level by assuming V() = 0 in Eq. (2.3). Within the normal-
ordered 3NF scheme, V(3) is preserved in Egs.(2.3b)—(2.3¢). Consequent to the IMSRG(2)
truncation, W is however, discarded in Eq. (2.3a). Thus, we render the 1748 dependence
in W, inconsistent with the V3) dependence in E, f, and I'. Hence, the IMSRG(2) +
normal-ordered 3NF scheme certainly violates unitarity. Despite this drawback, three-body
correlations are still propagated to the lower operator ranks F, f, and I'.

The IMSRG (2) scales roughly as N©

orbitals’ where Ny bitals 1 the number of single-particle

orbitals. The next level of truncation, the IMSRG(3), is intractable for large scale problems

as it scales as N?

orbitals: HHowever, recently Stroberg, Morris and He introduced an approxi-

mate IMSRG(3) scheme that captures the dominant three-body correlations and only scales

as N7

orbitals

[22]. Going forward, insights from Stroberg et al. [22] will likely improve the
handling of three-body correlations in this work. Lastly, note that the IMSRG(2) 4+ normal-

ordered 3NF scheme can also be called the IMSRG(2) with density-dependent three-body



nuclear forces (DD3NF)."

2.2.1 Flow Implementation

Within both normal-ordered 2NF and 3NF IMSRG(2) schemes, H(s), Z2E) and n(s) are
given by !0
1
H(s) = E(s) + prq(s) 3 a},aq "t Z Lpgrs(s) a;;agasar : (2.4a)
\pq o pqrs )
f(s) T'(s)
dH(s) _ dE(s) dfpq(s) 1 dTpgrs(s)
)50 | Sl L ) e
pq pqrs
1
n(s) = scalar + %}:qu@) : a;r,aq s Z};SWPQTS(S) : a;r,anrasar . (2.4¢)

Utilizing Egs. (2.2e, 2.4a-2.4¢), and derived expressions for commutators of normal-ordered

operators from Hergert et al. [10], a set of coupled differential equations for the individual

Hs) . dE(s) df(s)

d dr'(s)
body-operator components of —r = ds 0 —ds s

and

—called “flow equations,”

M Egs.(2.3b)—(2.3d), v(3) enters E, f, and T with occupation factors (density matrices).

10The zero-body component of 7)(s) does not affect the dynamics of the IMSRG. Since it is has no physical
relevance, it is usually neglected.



can be derived [10,15,19,20].11

dE 1
ds Z(nq N nr) X Tpq Jap + ) Z npngfrfs X NpgrsLrspg (2.5a)
pq pqrs
d
% - Z(l + qu) X Nprfrq + Z(nr - ns) X (nTSFSqu — frsNsprq) (2.5Db)
r rs

1
+ B Z(nrnsﬁt + ﬁrﬁsnt) X (1 + qu) X NiprsLrstq

rst

dr
Cll)srs - ;(1 = Pog) % (nptTigrs = fptneqrs) (2.5¢)

_ 2(1 — PTS) X (nterqts - ftrﬂpth)
t

1
+ 5 % (1 —ng — nu) X (ﬁpqtuFturs — qutuﬁturs)

— Z (nt —nu) x (1= Ppg) x (1= Prs) X nugtsCtpur -
tu

Note that the flow parameter s, is suppressed in Eq. (2.5) for brevity. The permutation
operators Ppq and Prg, exchange indices on their operand; e.g., Ppg X NugtsItpur = NuptsLtqur-
And ny =1 —ny,.

In this work, we chose to instead solve the flow implementation of the IMSRG directly
in Eq. (2.2e)’s form, on the condition that n(s) and H(s) are normal-ordered relative to |®).
Thus, we let our highly optimized commutators handle the tensor contractions between the
body-operator components of 7(s) and H(s) seen in the RHS of Eq. (2.5) (see Listing 3.1).

The flow equation is numerically integrated with high-order adaptive ordinary differential
equation solvers to preserve the unitary equivalence between H and H(s). Such high-order
solvers require the storage of multiple solution vectors calculated at different step sizes. The

flow implementation of the IMSRG can therefore be memory expensive, especially in large

UHeing et al. [15] notably corrected some expressions of three-body commutators from Hergert et al. [10].
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systems [20]. And the flow equations can become stiff when using potentials with a hard core
[19]. Lastly, the flow equation was specifically engineered to evolve H(s). Therefore, we must
simultaneously evolve other operators beyond H(s) to obtain observables beyond energies
[20]. This is prohibitively expensive since the IMSRG solution vector doubles in size for
each additional operator that is evolved. Observables beyond F/(s) may converge at different
time scales than FE(s). This would introduce complications in our performance tuning of
the IMSRG, since we would like to avoid storing and evolving operators for observables that
are effectively converged. We look towards the Magnus expansion to cure some of these

aforementioned ailments.

2.2.2 Magnus Expansion

We seek to describe the Magnus formulation of the IMSRG, denoted “Magnus-IMSRG,”
which bypasses some issues of the IMSRG flow implementation [20]. Multiplying both sides

of Eq. (2.2d) with U(s), the SRG/IMSRG dynamics can be rewritten

10



If the Magnus expansion is convergent, one can write U(s) = ¢2() where Q(s) = —Q(s)T

and ©(0) = 0. And €(s) is obtained by numerically integrating the Magnus series [20]:

S) - ngq<8) : a/paq Z qu'rs apa(—gasa/r : (273)
pq pqrs
— bm (m)
ds = > 2 9(s), n(s)] (2.7h)
m=0

(m—1)
Q(s), [Q(s), n@)] , VYm >0 (2.7¢)
=n(s), (2.7d)
where by, are Bernoulli numbers of the 1st-kind. Eq. (2.7b) can be integrated with a 1st-
order Euler solver with the benefit of H(s) being unitarily equivalent to H, regardless of

errors incurred in Q(s) [20].'2 And the unitary transformed Hamiltonian H (s), is given by

the Baker-Campbell-Hausdorff (BCH) formula

(2.8)

In this work, we utilize the minimal decoupling scheme detailed by Jensen et al. [19]

b
),

generated by H acting once on |q)).13 We work in the single reference picture [19]; and the

to eliminate all one-particle-one-hole (1plh) excitations ‘@?% and 2p2h excitations

12%While a nice feature, the built-in unitarity of the Magnus-IMSRG does not permit arbitrarily large
errors in €2(s). This may yield divergent calculations of H(s) that are although unitary, but do not yield
physically meaningful observables.

13Although we describe the minimal decoupling scheme in this subsection, its use is not restricted to the
Magnus-IMSRG. It can also be applied to the flow implementation of the IMSRG [19].
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off-diagonal sectors of H(s) are given by

H,4(s) = Z (O] H(s)|P]) azai i+ iz <@‘H(s)‘®%b> ; ajlaZajai : +He (29
ai abij
where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (2.9). Note
that (®| H(s)|®¢) = 0 in infinite nuclear matter—due to momentum conservation seen in
Egs. (2.15) and (2.17) in conjunction with Eq. (2.3c).14 Therefore, |®) is a Hartree-Fock
reference state. Figure 2.1 illustrates that so long the ground state wavefunction |\I/g_ 5>, of
H is approximated well by |®), we can obtain the ground state energy of H by employing
the minimal decoupling scheme. Consequently,

Wy.) = lim e ) |p) . (2.10)

§—00

If the Magnus-IMSRG is convergent—i.e. limg_so0 H,4(s) = 0, we take the scalar component

of limg_so H(s) as the ground state energy of H

Egs= (Vs H |[Vgs) = lim (@] 205) 1) |p) (2.11)

§—00 §—00 §—00

= (®| lim H(s)|P) = { lim H(s)} = lim E(s).
0—body

Therefore, E(s) approximates Eg s; and limg o0 E(s) is the ground state energy of H. For
brevity in this work, we sometimes employ the notation: F(o0) = limg_yo F(s).

Figure 2.2 shows iterative IMSRG(2) approximations of the ground state energy. And
the zero temperature (" = 0) equation-of-state (EOS) is taken as the converged IMSRG

ground state energy per particle E(oc0)/A, over various particle densities p. Figure 2.2

14 The flow equations also preserve momentum conservation.
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Figure 2.1: Schematic of the ground state decoupling of H carried out by the IMSRG(2)
within the single-reference context. H is represented in a basis spanned by Slater determinant
|®), and its particle-hole excitations |®%). In the limit of s — oo, the IMSRG(2) eliminates
the coupling of |®) to ‘@% and ‘@%b> through H. Since H is truncated at the two-body level

in Eq. (2.4a), it can generate at most 2p2h excitations by acting once on |®). Consequently,
the ground state energy of H is given by (®|limg_oo H(s)|P). This figure is obtained
courtesy of Jensen et al. [19].
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Ground state energy [MeV]

Flow parameter (s)

Figure 2.2: Iterative IMSRG(2) approximations to the ground state energy of H for sym-
metric N = Z = 66 nuclear matter at density p = 0.11 fm~3. This calculation is done in a
model space of size Nypias = 3700. We include MBPT(2) correlations AE(2)(s). Notice

that limg y00 AE(?)(s) = 0. Therefore, the IMSRG obviates MBPT(2) correlations as it
converges in s.
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includes 2nd-order Many-Body Perturbation Theory (MBPT) correlations from H(s) to
demonstrate that the IMSRG eliminates said correlations in the limit of s — oo. Therefore,
the IMSRG generates a unitary equivalent H(co), to H, such that 2nd-order MBPT on
H(o0) is converged [10].

We utilize the Magnus-IMSRG in this work due to its many appealing features.!®> By
using a lst-order Euler solver, the Magnus-IMSRG bypasses the needed storage of multiple
solution vectors used by high-order solvers [20]. Once limg—y~o €2(s) is computed, it permits
unitary transformations to obtain observables of interest beyond energies [20]. Lastly, sim-
ilarities between the Magnus-IMSRG and Unitary Coupled-Cluster theory (UCC) inspire

novel IMSRG generators seen in Chapter 5 of this work.

2.3 Modeling Infinite Nuclear Matter in a Cubic Box

All operators in this work are represented within an infinite matter basis. In this section,
we describe the single-, two-, and three-particle bases—which comprise the infinite matter

basis.

2.3.1 Single-Particle Basis

We model nuclear matter following the work of Jensen et al. [19]. All calculations in this
work are performed in a finite 3-dimensional box of volume V = £3 [fmg} with periodic
boundary conditions, containing N identical neutrons and Z identical protons.16 The density

of particles in the box is given by p = A/V [fm*3], where A = N + Z. The single-particle

15 417 IMSRG results in this work are procured using the Magnus-IMSRG formulation.
16We use periodic boundary conditions to model an infinite system. Also, £ denotes the box-size.

15



basis is composed of normalized plane wave states:

(r) = X |oz) X |12, (2.12)

oo =1)=11), l[o2=0) =),
=1 =1, [ =0)=1]),
2m

k= =7 17]1? < Nmax, 7€ Z3.

lo.), and |7;) are spin and isospin projection states on the z-axis. 7, = 1 labels proton
states, while 7, = 0 labels neutron states. And Npax > 0 is a proxy for the upper-bound
of momenta l;, in the basis. We work in spin unpolarized systems; therefore, each orbital
is at least 2-fold degenerate. Our basis is also isospin unpolarized, so long min(N, Z) > 0.
If min(N,Z) = 0, we can work in an isospin polarized basis—if we can guarantee that all
body-operators built on top of the basis will conserve total charge. By storing only isospin
polarized orbitals, we reduce the overall basis size by a factor of 2. Furthermore, each orbital

(7), has an associated kinetic energy € oo r dependent on the nucleon mass mr,
yUZy 12

¢Ea Oz,Tz

)

2
B (he) i

€- =
kv 0z,Tz QmTZ

(2.13)

mr,—1 = 938.272 MeV, and m,,—g = 939.565 MeV. And each orbital ¢E (7), has an

,02,T2

associated occupation number OCCE - —which measures the number of particles located
y V2,12

in its respective orbital. This work is done at zero temperature; therefore, the occupation of

all orbitals is binary.
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Nmax is used to truncate the size of the single-particle basis into a closed shell structure.1”

A shell is a collection of orbitals with the same kinetic energies. Every shell has an associated
modevector 7 gpey such that || gpenl|? < Nmax. We choose to either completely fill each
shell with particles, or leave each shell empty. This is done to model the wavefunction when
it is believed to have a closed shell structure. N and Z are magic numbers with sample
values: 0, 2, 14, 38, 54, 66, 114, 162, 186, 246, 294, 342, 358, 406, 502, 514, ....'® And,
the total number of single-particle states in the basis is denoted N pitals- We include an
example single-particle basis in Table 2.1. Notice, we fill our basis such that all nucleons
sit in orbitals with the lowest possible energies consistent with the Pauli exclusion principle.
This is done to model the ground state wavefunction. Thus, the basis contains baked-in

information regarding the overall system’s wavefunction.

Table 2.1: Single-particle basis with Ny pitals = 76 containing N = 2 and Z = 14 nucleons
in a box sized £ = 4.308 fm at density p = 0.20 fm 3.

Index | Occ | ng | ny | ny | oy | 72 | K [fmfl} € [Me\/}
0 1 01010 |44 0.000 0.000
2 1 O] 0|0 |41 0.000 0.000
4 1 [ -1 0[]0 |41 1.458 44.121
6 1 O[-110 4T ]7T 1.458 44.121
8 1 OO0 -1 4] 7 1.458 44.121
10 | 1 [o]o] 1[4 1+] 1458 | 44.121
12 1ol 1 o4t 1]| 1458 | 44121
4 | 1 [ 1]0o]o 4| t] 1458 | 44.121

17Practically, we must truncate the number of orbitals in our basis. This introduces artifacts in our
many-body calculations that we try to minimize using a large number of orbitals.

18Practicanlly, we must truncate the number of particles in our basis. This introduces finite-size artifacts
in our many-body calculations. See Subsection 2.3.3 for how we address this issue.
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Table 2.1 (cont’d)

Index | Occ | ng | ny | ny |0z | 72 | K [fm_l] € [MeV}
16 O | -1]-1]0 |4t] 7T 2.062 88.242
18 O | -1]0|-1]Jt]7T 2.062 88.242
20 O | -1]0 |1 |Jt]7T 2.062 88.242
22 O | -1 1|0 |dt]7T 2.062 88.242
24 0 O |-1|-1[i|7 2.062 88.242
26 0 O -1 |1 [T 2.062 88.242
28 0 O | 1 |-1[i!7 2.062 88.242
30 0 o1 1 47 2.062 88.242
32 0 1 7-1]0 ({41 ] 1T 2.062 88.242
34 0 1 {0 |-1]41] 1T 2.062 88.242
36 0 1101 |47 2.062 88.242
38 0 11110 |47 2.062 88.242
40 0O [ -1]01]0 [t] 4 1.458 44.060
42 0 O |-110 [l 1.458 44.060
44 0 010 -1l 1.458 44.060
46 0 010 1 4] 1.458 44.060
48 0 O 1[0 41T 1{ 1.458 44.060
50 0 11010 |44 1.458 44.060
52 O | -1]-1]0 4t] 4 2.062 88.121
54 O | -1]0|-1]Jt] 4 2.062 88.121
26 O | -1]0 |1 |Jt] 4 2.062 88.121
58 0O | -1]1]0 [{t] 4 2.062 88.121
60 0 0 [-1[-1 4] 1{ 2.062 88.121
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Table 2.1 (cont’d)

Index | Occ | ng | ny | ny | 02 | T2 k[fm_l} € [Me\/}

62 0 O |-1]1]4 2.062 88.121

64 0 0|1 -1} 2.062 88.121

66 0 o 1|1 2.062 88.121

68 | 0 | 1 |-1]0] 2.062 | 88.121

70 0 [1]0/|-1]4 2.062 88.121

72 10 [ 1|01t 2.062 | 88.121

e e R e R R

74 0 | 1| 1]0|t 2.062 | 88.121

2.3.2 Two- and Three-Particle Bases

The two- and three-particle bases are subsequently built on top of the single-particle basis.
The two-particle basis stores all tuples (p,q) Vpg, and categorizes them into blocks that
conserve symmetries of the two-body Hamiltonian. Particularly, two-particle blocks contain

two-particle states (p, q) and (r, s) such that

(T2)p + (72)q = (72)r + (72)s, (2.14)

Likewise, the three-particle basis stores all triples (p, ¢, ) V¥ pgr, and categorizes them into

blocks that conserve symmetries of the three-body Hamiltonian. Particularly, three-particle
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blocks contain three-particle states (p, q,r) and (s, t,u) such that

(T2)p + (T2)q + (72)r = (72)s + (T2)t + (72)u, (2.16)

Ep + Eq k= kg + Kt + Ky Y pgrstu. (2.17)

The two- and three-particle blocks are then used to create block matrices of two- and three-
body operators seen in Chapter 3.19 The two- and three-particle bases also store metadata
such as the numbers and locations of two- and three-particle states for our IMSRG program’s

administration.

2.3.3 Errors Due to Finite Size and Incomplete Basis Sets

To obtain many-body quantities that are free from finite size and incomplete basis set arti-
facts, we must approach the thermodynamic and complete basis set limit [23]. Approaching
the thermodynamic limit requires the use of a sufficiently large number of particles at fixed
particle density. Likewise, approaching the complete basis set limit requires the use of a
sufficiently large number of single-particle orbitals. IMSRG calculations with large parti-
cle numbers and basis sizes are computationally expensive. Therefore, we must balance
the need to maximize particle numbers and basis sizes, with constraints from our available
computational resources. Although we do not study how finite size and finite basis errors
affect equation-of-state calculations in this work, we take reasonable measures to reduce
such errors. Equations-of-state are computed in Chapter 4 using A = 66 and A = 132
in pure neutron and symmetric matter, respectively. This is done following Hagen et al.’s

observation that finite size artifacts are particularly small in pure N = 66 neutron and sym-

197pe single-particle basis is also used to create one-body operators composed of one matrix block with
shape Nopitals X Norbitals-
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metric N = Z = 66 matter [23].20 Moreover, we perform IMSRG calculations with large
values of Ny pitals, Such that results are obtained within days, using < 1 terabyte memory

consumption.

2.4 Conclusion

We model an infinite lattice of nuclear matter, by placing nucleons in a finite-sized box
with periodic boundary conditions. This finite box contains states which form the basis
of our calculations. Nuclear Hamiltonians are thus, represented within the infinite matter
basis, and diagonalized using the IMSRG to extract ground state energies of nuclear matter.
Therefore, we can obtain zero temperature nuclear equations-of-state, by computing ground
state energies that are normalized to the number of nucleons in our model—over various
nucleon densities. In the following chapter, we describe the IMSRG program that is used to

extract nuclear equations-of-state.

20We only utilize periodic boundary conditions in this work. Following insights from Hagen et al., it might
be lucrative to implement twist-averaged boundary conditions—to further reduce finite size effects [23].
We also have the computational horsepower to perform A ~ 1000 IMSRG(2) calculations—which have
significantly less finite size effects than their A ~ 132 counterparts [23]. However, we believe such calculations
might require significantly more orbitals than their A ~ 132 counterparts—to sufficiently reduce incomplete
basis set artifacts. Thus, we consider A ~ 1000 EOS calculations in this work to be preliminary.
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Chapter 3. Nuclear Matter IMSRG Program

“You think too much. Why

not go do something?”
—Donald Fear

We need high performant and reliable codes to achieve our physics objectives. Therefore, we

have developed a C++ IMSRG program (dubbed “SCKY-IMSRG”) that calculates ground

state energies of nuclear matter with the following features:!

1. Carefully designed—verbose, unit-tested, and sufficiently general for future needs

2. Compatible with various proton fractions Z/A, and extendable to other systems (e.g.

finite nuclei, e~ gas)

3. Based on Eigen C++ library with BLAS, Intel MKL, OpenMP multi-threading, and

The Message Passing Interface (MPI) support?

4. Optimized for high-performance calculations: ~ 10 hour runtime and < 1 terabyte

memory consumption for A = 132 and N pitals ~ 3700, without three-body forces

5. Integrated with a variety of chiral forces from Drischler et al. [1], including density-

dependent three-body forces
6. Equipped with canonical and novel generators from Chapter 5
7. Equipped with Shanks + Padé extrapolators from Chapter 6
8. Modernized with automated data compilation—file parsing for plots

We detail the most salient components of the SCKY-IMSRG in this chapter.

1The name SCKY-IMSRG is chosen as a homage to the founders of this project: Yani Udiani, Kang Yu,
Christian Drischler and Scott Bogner; and the incredible journey we took to complete it.

2Although available, MPI is not used in this project. Our MPI implementation in the SCKY-IMSRG
assumes that all nodes store all IMSRG operators. Given the high memory demands needed just to do a
single large-scale IMSRG calculation on one node, the use of MPI with multiple nodes is intractable in this
project.
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3.1 SCKY-IMSRG Program Output

We include a sample program output below:?

cmd: ./imsrg -N 66 -Z O -gen born -rho 0.12 -numshells 1
hostname: Urmum

date (month/day/year): 10/08/2024 : 15:04:23

Warning: EOS_NNPWBASEPATH hasn’t been set.

Warning: EOS_NNEFFPWBASEPATH hasn’t been set.

B A i

overall configuration

B o B S S D By

N i e 66
L e e e e, 0
NUMSHELlS. .ttt e e e e 1
o 4 0.12
temperature......... ... .. i e 0
ConSerVeTZ. .ottt i i e e e e 1
usePH. ... e 1
boxDimension.......oiiiiiiiiii e i 3
Lo 1
ODE_threshold.........coiuiiiiiiiiiiiiininneonn 1le-06
USESCKYTTUNC. « ottt it i e e e e 0
saveMISCResUltS. ..ot i e i e 0
NOIMSRG. . ottt e e e e 0
bornlrder. . ... e e e 5
genRefOrder....... ... oot 14
genTargOrder. . ... ... ...ttt 14
generator_choice.......... ... ittt 6
imsrgRunConfig......... ... i 0

30ne might wonder why MBPT before the IMSRG starts differs from MBPT at s = 0. This is because
we employ a generalized form of MBPT during the IMSRG seen in Appendix H—which depends on the
chosen IMSRG generator. Standard MBPT can be restored using White’s generator.
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B 13 o= o = o PP 0
useSCKYInteraction.......ovviiiiiiiiiiiiiiiiiiiinnnnn, 1

interaction.......... ... i, OptimizedN2L0

[NOTIFICATION]: Anti-symmetrized components of all BodyOps will be omitted.

SINGLE PARTICLE BASIS INFO

Neutron number (N): 66

Proton number (Z): O

Total particle number (A): 66

Neutron fraction (xn): 1

Proton fraction (xp): O

[NOTIFICATION]: Only storing neutron containing orbitals.

[ACTION]: Generating and populating single particle states (SPS)...

[SUCCESS!]: The single particle basis (SPB) has been constructed.

[UNIT SYSTEM]: Length[fm], Density[fm~-3], Momentum[fm~-1], Mass/Energy[MeV]

[NOTIFICATION]: Using SPB composed of plane waves in a 3-D box with periodic boundary conditions.
Number of shells above max(N,Z) occupied orbits (numShells): 1

SPS obtained using box cutoff: n_x"2 + n_y"2 + n_z"2 <= nmax

Number of single particle states (numSPS): 114

Box size (L): 8.19321271 [fm]

Particle density (A/L"3): 0.12000000 [fm~-3]

Neutron fermi momentum (kfn): 1.53375374 [fm~-1], 302.65099380 [MeV]

Momentum cutoff (kmax): 1.71478881 [fm~-1], 338.37409780 [MeV]

Modevector cutoff: 2 1 0

[NOTIFICATION]: All 66 fermions have the lowest possible kinetic energies consistent with the

exclusion principle.

[NOTIFICATION]: When handling: Two Particle Basis.

The 2-particle basis has been successfully constructed!
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Number of stored physical 2-particle states: 6441
Number of blocks in the 2-particle basis: 341

Time taken to create standard basis --- 18.669 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H
This 0.003973 [GB] HamiltonianOp is populating itself up to at most the 2-Body level.

Time taken to populate HamiltonianOp --- 135.176 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H
This ABodyOp is normal ordering itself at the 2-Body level.

Time taken to normal order ABodyOp --- 0.378 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H
Measuring how much this ABodyOp deviates from its stated hermiticity.
| IH[0]-H[0] “{dag}|| = 0.000000000000

| IH[1]-H[1]"{dag}||

0.000000000000

| l1H[2]-H[2] ~{dag}| | 0.000000000000

| IH-H~{dag}|| = 0.000000000000

[NOTIFICATION]: When handling: A-Body Operator: H

Printing available norms over this ABodyOp’s differing sectors.

[ 1H[O] || = 892.54185704

[1H[1] 1| = 316.91701542, ||H[1]_aill = 0.00000000, ||H[1]1(p'=q) || = 0.00000000

I[1H[2] || = 415.26158947, ||H[2]_abijl|| = 111.54291337, ||H[2]_abcj+ijkal| = 258.75293935,
[1H[2] _iajbl| = 204.29038345, ||H[2]_abcd|| = 98.37469423, ||H[2]_ijkl|| = 204.04690958

[NOTIFICATION]: When handling: MBPT solver.

Doing many body perturbation theory up to 3rd order.

E_{Reference} / A = (13.52336147,0.00000000)

dE2 / A = (-0.35265909,-0.00000000)

dE3 / A = (0.07796819,-0.00000000)

E_{Correlation} / A = (-0.27469090,-0.00000000)
(E_{Reference} + dE2) / A = (13.17070238,-0.00000000)
(E_{Reference} + dE) / A = (13.24867057,-0.00000000)

Time taken to do MBPT --- 55.860 --- milliseconds.
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[NOTIFICATION]: When handling commutator routine.
Constructing particle-hole basis.
Time taken to construct the particle-hole basis --- 40.622 --- milliseconds.

Using mirror block symmetry in particle-hole commutators.

[NOTIFICATION]: When handling: A-Body Operator: Eta
Generating Born generator.

Born series order: 5

[NOTIFICATION]: When handling: IMSRG ODE Solver.
A1l 10 needed A-Body operators have been created costing a total 0.043906 [GB].
Time taken to construct operators and commutator --- 208.859 --- milliseconds.

Initiating IMSRG(2) evolution...

Flow (s) E/A (E+DE2) /A (E+DE2+DE3) /A  Shanks(1) Pade | 1Etal2] || | |Gammaod | |

0.00000000 13.52336147 13.22700538 13.26500506 13.22700538 13.22700538 1.52374776 111.54291337

1.00000000 13.23030104 13.23009147 13.23008626 13.23009147 13.23009219  0.05139831  2.33940529

2.00000000 13.23011774 13.23011762 13.23011761 13.23011785 13.23011785  0.00134170  0.04758731

Correlation energy per particle: -0.29324373

Nonperturbativity (smaller is better): 0.40019827

Time taken to perform IMSRG transformations --- 913.521 --- milliseconds.

[NOTIFICATION]: When handling commutator routine.

Printing any existing performance statistics:

Commute(): 35 calls | <duration> = 25.6995 milliseconds | total duration = 899.4820 milliseconds
Commutel_1_0(): 16 calls | 0.0288 % of total duration
Commutel_1_1(): 16 calls | 2.2612 % of total duration
Commutel_2_2(): 32 calls | 0.9749 % of total duration
Commute2_2_0(): 32 calls | 0.1937 % of total duration

Commute2_2_1(): 26 calls | 31.1108 % of total duration
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Commute2_2_2(): 29 calls | 65.0163 % of total duration
Commute2_2_2_Ladder(): 29 calls | 48.4970 % of total duration
Commute2_2_2_Ladder()’s DotProd(): 29 calls | 47.5244 % of total duration
Commute2_2_2_Ladder()’s hermitize: 29 calls | 0.4340 % of total duration
Commute2_2_2_PH(): 29 calls | 16.5101 % of total duration
Commute2_2_2_PH()’s DotProd(): 29 calls | 13.9360 % of total duration
PH-Transform: 29 calls | 1.0833 % of total duration

PH-Inverse Transform: 29 calls | 1.4822 % of total duration
Anti-Symmetrization: 26 calls | 0.0002 % of total duration
BornSeriesCommute(): 10 out of 35 Commute() calls | 35.6947 % of total duration
MBPT(2) Commute(): 6 out of 35 Commute() calls | 0.0481 % of total duration
MBPT(3) Commute(): 3 out of 35 Commute() calls | 3.7414 % of total duration
There were 2 Anti-Hermitian commute calls.

There were 33 Hermitian commute calls.

Operators for approximate particle-hole cost a total 0.00824678 [GB].

[NOTIFICATION]: When handling: Rank 2-Body Operator: 1st Internal Commutator Temporary
Printing distribution of blocks:

There are a total of 235337 matrix elements.
There are 24 blocks shaped (1, 1)

There are 60 blocks shaped (4, 4)

There are 72 blocks shaped (8, 8)

There are 6 blocks shaped (9, 9)

There are 24 blocks shaped (12, 12)

There are 8 blocks shaped (13, 13)

There are 54 blocks shaped (20, 20)

There are 12 blocks shaped (25, 25)

There are 48 blocks shaped (36, 36)

There are 6 blocks shaped (45, 45)

There are 8 blocks shaped (52, 52)

There are 12 blocks shaped (68, 68)

There are 6 blocks shaped (72, 72)

There is 1 block shaped (113, 113)

Time taken to run entire program --- 1.184 --- seconds.
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The SCKY-IMSRG is descriptive. For example, certain class instances are named. This is
because the code does runtime checks, and alerts the user to information unique to each
instance. Care is taken to ensure that runtime checks do not affect the program’s perfor-
mance. These runtime alerts provide generic information, warnings, and errors. Alerts with
named class instances are incorporated to help developers pinpoint sources of runtime errors,
or worse yet, unusual behaviour. Although mundane, a logging system is important to give
developers runtime debugging tools, in addition to confidence that the program is working

as intended.

3.2 Big Data Management: Parsing IMSRG Outputs

Each IMSRG output contains a trove of interesting data. Moreover, a large amount of
IMSRG output files are created when generating the EOS. It is thus paramount that data
are properly labeled, sorted, and accessible to everyone with access to the project. To
achieve these goals, the SCKY-IMSRG is equipped with scripts that label and parse all
program outputs, aggregate parsed data, and plot quantities of interest such as the EOS,

performance statistics, and IMSRG flow data.

3.3 Nuclear Forces

The SCKY-IMSRG contains momentum space representations of the One Pion Exchange
(OPE) [24], N2LOgpt [23, 25],4 and Minnesota [17,19] potentials—implemented directly

within a finite box. Moreover, the SCKY-IMSRG has wrappers to convert free space two-

4The SCKY-IMSRG uses wrappers to a Fortran implementation of N2LOgpt in a finite box, proudly
stolen from Ekstrom et al. [23,25].
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and three-body interactions from Drischler et al. [1], into their respective box representa-
tions (see Eq. (E.14)). Free space interactions from Drischler et al. [1] are obtained using the
partial wave expansion (PWE). And the machinery of Drischler et al. [1] has been validated
by comparing matrix elements of the One Pion Exchange interaction (OPE) summed into
a finite box using the PWE (see Eq. (E.12)) from Drischler et al. [1], to matrix elements
of OPE implemented directly in a finite box—seen in Eq. (D.21). See Appendices D and
E for additional details. Although the partial wave expansion is not directly utilized by
the SCKY-IMSRG, we include its derivation for two-body interactions in Appendix E. We
hope that Appendix E clarifies the derivation of the partial wave expansion given by Jensen
et al. [19]. In Appendix B, we derive momentum space representations—within a finite
box—of local interactions, originally given in coordinate space. Subsequently, we derive the
momentum space representation of the Minnesota potential [17] in Appendix C. Although
the Minnesota potential is not used in this work, it is included due its historical significance
in nuclear matter calculations [16,19,23]. And, we add a correction to its momentum space
representation within a finite box, given by Jensen et al. [19], by including the appropriate

error functions in Eq. (C.22).

3.4 SCKY-IMSRG Program Hierarchy

The SCKY-IMSRG creates an A-particle basis—which currently stores zero-, one-, two-, and
up to three-particle bases.> The zero-particle basis contratrivially contains only one block
with one state (for scalars). The one-particle basis stores the physical single-particle states, in

addition to metadata such as the number of occupied (hole) and unoccupied (particle) states

5The three-particle basis is omitted if three-body operators are not present.
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in the system, with locations of hole and particle states. Data from the one-particle basis are
propagated to higher rank bases to form two- and three-particle states, and organize them
into blocks according to symmetries of the Hamiltonian—i.e. center-of-mass momentum
and charge conservation. Data stored in the A-particle basis are then propagated to the
programs’ many-body functions such as normal orderings, commutators, generators, and
norms for ground state decoupling. See Jensen et al. [19] and Hergert et al. [10] for more
details regarding these many-body functions.

ABodyOps (meaning A-body operators) are the foundational data structure of the SCKY-
IMSRG. Representing a linear combination of body-operators, each ABodyOp stores an ar-
ray of BodyOps. BodyOps (meaning body-operators) store blocks of complex-double Eigen
matrices of varying sizes. BodyOps contain block matrices to store only the symmetry pre-
serving parts of our operators—conserving memory. ABodyOps and BodyOps are imbued
with arithmetic operations for series expansions. And commutators are defined between
ABodyOps. ABodyOps are designed to abstract away administration of the individual body
components of the IMSRG (and UCC). For example, we solve the flow implementation of
the IMSRG directly in Eq. (2.2e)’s form, and the Magnus expansion in Eq. (2.7b)’s form.
By doing so, we let the commutators handle the individual components of ABodyOps—so
long the input ABodyOps are normal-ordered (see Listing 3.1). Thus, extensions to four-
and higher-body forces can be implemented without rewriting the SCKY-IMSRG’s admin-
istration. Users can specify the individual BodyOp components of an ABodyOp to be
constructed. Therefore, if an ABodyOp is guaranteed to only have one nonzero BodyOp,
users can only store that nonzero rank of the ABodyOp—conserving memory. Moreover, all
ABodyOps provide access to their individual BodyOps for users that need to work directly

with BodyOps.
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Operators in the SCKY-IMSRG are built with the following hierarchy:5

Hamiltonian Magnus Operator Generator

Inherit

Transformer

~

Has access to commutators

Inherit

ABodyOp

Data

s Name: “H”, “Omega”’, “Eta”, “Richard”, ...
s A-particle basis
s Array of rank 0, 1, 2, ... -BodyOps

¢ Hermitized, normal-ordered and anti-symmetrized status

Functions

+* Normal-ordering

s Commutators defined between ABodyOps

% Arithmetic: += (with ABodyOps), *= (with scalars), . ..
% Indexing operator [] to grab a particular BodyOp

s Norms, anti-symmetrization

6 Commutators are actually defined outside of ABodyOps, but they could be placed inside the class!
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All BodyOps have the following design pattern:
BodyOp

Data

s Name: “E”, “f”, “Gamma’, “Brawndo”, ...
* Rank, number of blocks, and array of block sizes

% Array of Eigen::MatrixXecd:

4

77777777

77777777

17777777

777777

Symmetry preserving
blocks

17777777

1777870777777

Functions

Arithmetic: += (with BodyOps), %= (with scalars), ...

+ Indexing operator || to nab a particular matrix block

Norms
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Listing 3.1: Commutators handle the individual operator components of ABodyOps.

void Commutator::Commute(const ABodyOp &opl, const ABodyOp &op2, ABodyOp &buffer){

VerifyInputs(opl, op2, buffer);
PrepareBuffer(opl, op2, buffer);
const unsigned maxRank = pBasis—>maxRank;
const std::vector<unsigned> rankStatusl = opl.GetRankStatus();
const std::vector<unsigned> rankStatus2 = op2.GetRankStatus();
for(unsigned i = 0U; i <= maxRank; i++4){

for(unsigned j = 0U; j <= maxRank; j+-+){

if (rankStatusl[i] == 1U and rankStatus2[j] == 1U){

Commute(opl[i], op2[j], buffer);

Transformers are ABodyOps with access to commutators. And commutators are defined in
Listing 3.1. Using the ABodyOp data structure, series expansions involving nested commu-
tators of A-body operators (e.g. BCH and Magnus) become easily abstracted. We include

the transformation function used to compute the BCH and Magnus expansions in Listing 3.2.

Listing 3.2: Transform used by Transformers for expansions involving nested commutators

void Transformer::Transform(const ABodyOp &operand, ABodyOp &buffer,
const std::vector<double> &seriesCoeffs,
const std::vector<double> &coeffsForConvergenceCheck,
const unsigned rankForConvergenceCheck,
const double tolerance, const double seriesCoeffTolerance){
if (temps—>GetNumTemps() < 2U){
Error(std::string("Failure in Transformer::Transform(): temps only contains ")
+ std::to_string(temps—>GetNumTemps())
+ std::string(" ABodyOps. A minimum of 2 is needed to store results "

"from the nested commutators.")

);
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if (seriesCoeffs.empty()){
Error("Failure in Transformer::Transform(): Input series has no coefficients.");

}

if (seriesCoeffs.size() != coeffsForConvergenceCheck.size()){

Error("Failure in Transformer::Transform(): "

"seriesCoeffs.size != coeffsForConvergenceCheck.size().");
}
if(&operand == &buffer and seriesCoeffs[0U] != 1.0){
Error("Failure in Transformer::Transform(): &operand == &buffer,"

" yet seriesCoeffs[0U] != 1.0.");
}
CollectionOfTemps &arrayOfTemps = xtemps; // We’ll treat temps like an array!
const std::vector<double> &cvgCoeff = coeffsForConvergenceCheck;
const unsigned maxOrder = seriesCoeffs.size()—1U;

const unsigned rank = rankForConvergenceCheck;

// Set C = c_0 * B
buffer = operand;

buffer *= seriesCoeffs[0U];

// Run checks to see if we need to go past Oth order
if(maxOrder == 0U) {return;}

if(maxOrder == 1U and abs(seriesCoeffs[1U]) <= seriesCoeffTolerance) {return;}

// Now, compute 1st order adjoint = [A,B]
ABodyOp &adjoint = arrayOfTemps[0U];
commutator—>Commute(*this, operand, adjoint);
if (maxOrder == 1U){

adjoint *= seriesCoeffs[1U];

buffer 4= adjoint;

return;

// Now, sum remaining terms into C
for(unsigned n = 2U; n <= maxOrder; n++){

ABodyOp &previousAdjoint = arrayOfTemps[n % 2U]; // Stores [A, Bl (n-1)
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ABodyOp &currentAdjoint = arrayOfTemps[(n + 1U) % 2U]; // Ready to store [A, Bl (n)

// Compute [A, [A, B]"(n-1)]1 if [A, B]"(n-1) != "O"
const auto prevNorm = abs(cvgCoeff[n—1U] * previousAdjoint[rank].FrobeniusNorm());
if(prevNorm > tolerance){
commutator—>Commute(*this, previousAdjoint, currentAdjoint);
}
// Sum: C += c_{n-1} * [A, B] " (n-1) if c_{n-1} != "O"
if (abs(seriesCoeffs[n—1U]) > seriesCoeffTolerance){
previousAdjoint *= seriesCoeffs[n—1U];
buffer += previousAdjoint;
}
// If [A, B]"(n-1) = "O0", then the series has converged
if (prevNorm <= tolerance) {

break;

// If the series hasn’t yet converged, but we’re at n = maxOrder,
// sum: C += c_{maxOrder} * [A, B]~ (maxOrder)
if(n == maxOrder){
if (abs(seriesCoeffs[maxOrder]) > seriesCoeffTolerance){
currentAdjoint *= seriesCoeffs[maxOrder];

buffer += currentAdjoint;

With these developments, the BCH and Magnus series are easily given by Listing 3.3 and

Listing 3.4, respectively.
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Listing 3.3: Implementation of BCH expansion

void Transformer::BCHOptimized(const ABodyOp &operand, ABodyOp &buffer) {
const unsigned maxOrder = 12U;
const double tolerance = 1.0e—4;
const unsigned rankForConvergenceCheck = 0U;
const double seriesCoeffTolerance = 1.0e—10;
const std::vector<double> expCoeffs = ExpXPowerSeriesCoeffs(maxOrder);
const std::vector<double> invFactorial = this—>ExpXPowerSeriesCoeffs(maxOrder);
this—>Transform(operand, buffer, expCoeffs, invFactorial,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);

Listing 3.4: Implementation of Magnus series

void MagnusOp::MagnusSeriesOptimized(const Generator &Eta, ABodyOp &dOmegads){
const unsigned maxOrder = 12U;
double tolerance = le—6;
const unsigned rankForConvergenceCheck = 2U;
const double seriesCoeffTolerance = 1.0e—10;
const std::vector<double> bernoulliCoeffslstKind = BernoulliCoeffs1stKind(maxOrder);
const std::vector<double> invFactorial = this—>ExpXPowerSeriesCoeffs(maxOrder);
std::vector<double> coeffsForConvergenceCheck = invFactorial;
if (useMorrisBognerTruncation){
tolerance = le—4;
double normOmega = abs((*this)[rankForConvergenceCheck].FrobeniusNorm());
if(normOmega == 0.0){ normOmega = 1.0}
for(unsigned k = 0U; k <= maxOrder; k++) {
double bernoulliWeight = abs(bernoulliCoeffs1stKind[k]);
if (bernoulliWeight == 0.0){ bernoulliWeight = 1.0;}

coeffsForConvergenceCheck[k] *= bernoulliWeight / normOmega;

}
this—>Transform(Eta, dOmegads, bernoulliCoeffslstKind, coeffsForConvergenceCheck,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);
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We denote the variable “tolerance” as egcy = le—4 and €pfagnus = le—4 in the BCH
and Magnus series, respectively. We truncate the BCH and Magnus expansions accord-
ing to Morris et al. [20]. The Magnus-IMSRG evolution is likewise, easily implemented in

Listing 3.5.

Listing 3.5: Implementation of Magnus-IMSRG Evolution

for (int i = 0; i < maxiterations; i++){
// Evolve
Omega—>MagnusSeriesOptimized(xEta, *dOmegads); // Eta initialized outside
*dOmegads *= ds;
*Omega += *dOmegads;
Omega—>BCHOptimized(HO, *Hs); // HO is the original Hamiltonian being diagonalized

Eta—>Update(*Hs);

// Extract energies

E = (+Hs)[0U][0U](0,0);

mbptResultBuffer = Eta—>DEFromMBPT (xHs, useGeneralizedMBPT);
DE2 = mbptResultBuffer[2U];

DE3 = mbptResultBuffer[3U];

CheckForImagEnergies(E, DE2 + DE3);

// Print data

PrintFlowResults(i+1, ds, A);

// Convergence check
if (abs(DE2)/abs(E) < epsilon){ // MBPT(3) unused since it is generally bad for UCC generators

break;
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3.5 High-Performance Optimizations

It is essential to be efficient with memory and compute utilization to perform large-scale
IMSRG calculations. The SCKY-IMSRG is optimized to that effect. Although we forgo
including the internals of commutators between BodyOps in Listing 3.1 (for brevity), we
describe the many optimizations made to such commutators in this section.

Since we only work with anti-symmetrized two-body operators, we only store one quad-
rant of each operator. Consider a two-body operator O. We partition O into Ogored =
Op<q,r<s and Ogpitted € {Op>q,r<s: Op<q,r>s; Op>q,r>s}. This cuts memory costs of
the two-body operators by a factor of 4X. Moreover, we can recover Ogpitted USINE Ogtored
with the appropriate sign—if needs be. Better yet, if we know the operation (such as a
matrix product) that utilizes Ogpitteq, We can likely determine the result of the operation
from Ogtoreq With the appropriate sign. This saves an additional 4X in compute, modulo
administrative costs.

Commutators between two-body operators are the most expensive computations in the
IMSRG, if no three- or higher-body forces are present. Such commutators can be decomposed

between so-called “ladder” and “particle-hole” terms. Ladder terms given by [10]

+= Z (1 —ng — nu) X (qutuBturs - pqtuAturs) (3.1)
t<u

4.5

pars
are already in matrix multiplication form, and are easily evaluated using Eigen’s optimized
BLAS/MKL interface. Particle-hole terms are not given in matrix multiplication form, and

are thus much harder to optimize. We detail the many optimizations on the particle-hole

terms used in the SCKY-IMSRG in Appendix F, in addition to this thesis’ supporting graphic
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presentation.

Commutators are further optimized using multiple strategies. We strategically reuse
data as much as possible while minimizing function calls. We exploit hermiticity and anti-
symmetry to avoid matrix products that can be deduced through symmetries. We avoid
unnecessary copying of large objects through aliasing; and we write expressions in ways fa-
vorable to Eigen’s lazy evaluator. Moreover, OpenMP multi-threading directives are strate-
gically placed to avoid threads writing to the same cache line—thus invalidating it. We
assume that all rank 1 BodyOps are diagonal to eliminate summations in commutators in-
volving one-body operators, while casting those expressions into more cache friendly forms.
Lastly, we store all two-body occupation operators as diagonal matrices to save memory, and

further minimize cache misses.

3.5.1 Performance Results

We perform multiple SCKY-IMSRG calculations while increasing the single-particle basis size
to see general trends of the SCKY-IMSRG’s computational scaling. Results are obtained
using high-performance compute resources provided by the Institute for Cyber-Enabled Re-
search (ICER) at Michigan State University. The IMSRG outputs for these results are
included in the project’s repository; and the resulting figures are plotted by our automated
data managers.

Figure 3.1 displays the growing memory cost needed to create nine ABodyOps, in ad-
dition to all diagonal occupation matrices, and temporaries for particle-hole terms. Three

ABodyOps are internally used to evaluate one commutator.” Two temporaries are needed to

TOf the three ABodyOps stored in a commutator, one ABodyOp is used to store a one-body occupation
operator. Only the one-body rank of said ABodyOp is allocated to save memory.
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Figure 3.1: Memory cost of all operators in the SCKY-IMSRG as we increase the basis size.
The majority of the SCKY-IMSRG’s memory requirements come from ABodyOps.
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Figure 3.2: Growing memory cost needed to do SCKY-IMSRG calculations in model spaces
composed of 1030 particles. We can easily need up to 1 terabyte of memory, depending on
the basis size. These calculations use Born’s generator seen in Chapter 5. Born’s generator
creates an additional ABodyOp to store energy denominators used in the generalized Born
expansion. Therefore, 10 ABodyOps are created. Here is a fun fact: the IMSRG calculation
with Nypitals = 3102 stores and evolves ~ 5el0 complex-double matrix elements.
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cache intermediate commutator evaluations when doing nested commutators. The remaining
four ABodyOps are H, H(s), n(s) and Q(s).® Additional temporaries are needed to calcu-
late particle-hole terms. Those temporaries are not written as ABodyOps (or BodyOps) to
avoid storing zeros in sectors that can be eliminated within the particle-hole transformation.
The memory cost of particle-hole temporaries are also included in Figure 3.1. We prefer to
store all SCKY-IMSRG objects in random access memory (RAM) to reduce latency in our
calculations. In Figures 3.1 and 3.2, notice that we utilize hundreds of gigabytes of RAM to
do IMSRG calculations in large model spaces.

Figure 3.3 shows that we can obtain SNM calculations in large model spaces within hours,
so long density-dependent three-body nuclear forces (DD3NF) are omitted. However, it is
apparent in Figure 3.4 that the use of DD3NF noticeably worsens the performance of the
SCKY-IMSRG. This is partly due to the many invocations of computationally expensive
three-body force functions when normal-ordering. Despite the many optimizations in the
SCKY-IMSRG, large-scale NM-EOS computations using DD3NF still require several days
to complete.

Without DD3NF, commutator evaluations account for the majority of IMSRG runtimes.
This is desired, since our commutator implementation is highly optimized. Figure 3.5 exhibits
total commutator runtimes, in addition to runtimes needed to evaluate ladder and particle-
hole terms. Runtimes for ladder terms dominate particle-hole terms. This is preferred since
particle-hole terms require significantly more administration (and potential overhead) to
implement compared to ladder terms. Figure 3.5 shows the payoff of the optimizations made
in the particle-hole terms.

Given the many optimizations made in the commutators, we can do novel IMSRG(2)

8We store %&s) in n(s).
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Figure 3.3: Runtime of the SCKY-IMSRG as we increase the basis size. We include the
total time needed to evaluate all commutators in each program, as well as the time needed
to normal-order without three-body forces. We can obtain converged calculations (in terms
of the basis size) within hours when omitting density-dependent three-body forces.
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Figure 3.4: Runtime of the SCKY-IMSRG, varying the particle density p. We include the
total time needed to evaluate all commutators in each program, as well as the time needed to
normal-order with three-body forces included. Normal-ordering accounts for nearly half of
each program’s total runtime. In theory, the normal-order runtime should remain unaffected
by changes in p. This is largely seen here—barring runtime variability from the operating
machines. Likewise, the time needed to evaluate one commutator should be insensitive to
changes in p. However, the number of iterations (and likewise, commutator evaluations)
needed for the IMSRG to converge, can vary depending on p. Barring variability from the
operating machines, variations in total commutator runtimes are due to the varying amount
of IMSRG iterations.
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Figure 3.5: Breakdown of the time taken to evaluate all commutators throughout the lifetime
of each IMSRG program seen in Figure 3.3. Ladder commutators account for the majority of
commutator runtimes, while particle-hole commutators account for a minority of runtimes.
This is desired since ladder commutators primarily involve matrix products optimized by
Eigen’s BLAS/MKL interface, while particle-hole commutators require administration to be
evaluated as matrix products.
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Figure 3.6: Runtime of the SCKY-IMSRG in model spaces composed of 1030 particles. We

can do these calculations within hours, without the presence of density-dependent three-
body forces.
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Figure 3.7: Breakdown of the time taken to evaluate all commutators throughout the lifetime
of each IMSRG program seen in Figure 3.6. The gains from the optimizations made in the
particle-hole commutators seen in Eq. (F.9d), are lessened in these systems since the number
of particles is comparable to the number of orbitals. Consequently, runtimes of the ladder
and particle-hole commutators are also comparable.
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calculations simulating 1030 neutrons in large model spaces.? Figure 3.2 and Figure 3.6
respectively show that these calculations require hundreds of gigabytes of RAM, and can
be completed within a few hours. Figure 3.7 shows that runtime costs of the ladder and
particle-hole commutators are comparable when using 1030 neutrons. This is expected since
we optimize particle-hole commutators by exploiting the fact that the number of orbitals in
the basis is typically much larger than the number of particles.

The largest calculations performed with 1030 neutrons utilize 3102 basis orbitals, requir-
ing 876 gigabytes of RAM (seen in Figure 3.2). By using 1030 particles, we reduce errors
in the IMSRG incurred by the use of a finite number of particles. However, we also reduce
the maximum momentum in the basis—worsening errors in the IMSRG related to the use
of a truncated single-particle basis.10 Subsequently, we suspect that we need significantly
more orbitals than 3102 to sufficiently reduce artifacts from the incomplete basis. However,
such calculations would exceed 1 terabyte of RAM consumption—complicating our ability
to obtain the needed resources on ICER. We expect this barrier to be obviated when clusters
with > 1 terabyte of RAM are easily accessible. We include IMSRG(2) calculations with
1030 particles in this work as a proof-of-principle. There are ongoing questions regarding
the existence of super heavy elements (and isotopes) beyond the periodic table. The IMSRG
may shed light on such questions. Since IMSRG calculations simulating 1030 particles in

infinite nuclear matter are possible, the same may also be possible in finite nuclear matter!

94 = 1030 calculations need not be restricted to pure neutron matter alone!

10The box-size is given by L = (A/ p)l/ 3. By increasing the number of particles at a fixed particle density,
we subsequently increase the box-size—lowering all momenta in the basis.
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3.6 Concluding Remarks with Perspectives

We have developed a state-of-the-art, high-performant nuclear matter IMSRG(2) program
(dubbed “SCKY-IMSRG”) with a multitude of two-body and density-dependent three-body
forces from Drischler et al. [1]. The program is verbose, unit-tested, and sufficiently general
for future needs. Moreover, the SCKY-IMSRG is equipped with automated data managers
(to ensure that data is preserved and easily accessible), novel IMSRG generators from Chap-
ter 5, and novel IMSRG extrapolators seen in Chapter 6. Commutators in the program are
highly optimized for large-scale computations. And such calculations can be executed in
within hours to days—depending on the inclusion of density-dependent three-body forces.
The SCKY-IMSRG exploits operator symmetries to be efficient with memory. Despite mem-
ory optimizations, the program consumes hundreds of gigabytes of computer memory in large
systems.

Given the program’s many features, we hope that the SCKY-IMSRG becomes a foun-
dation for future IMSRG and many-body developments. Operators in the SCKY-IMSRG
are versatile, and can be used to compute quantities beyond energies—e.g. momentum dis-
tributions, static structure factors, etc. Furthermore, the SCKY-IMSRG is written at zero
temperature. Future developers can add finite temperature extensions using insights from
Smith et al. [26].17 The SCKY-IMSRG can also be extended to finite nuclei via a change of
basis. Optimizations made in the program’s commutators enable novel A = 1030 IMSRG(2)
calculations. Such calculations in finite nuclear systems may shed light on the existence of

heavy nuclei beyond the periodic table. Lastly, the SCKY-IMSRG implements 3rd-order

11Beware, the distinction between particles and holes, exploited in Appendix F, is lost if occupation
operators become continuously valued.
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Many-Body Perturbation Theory (MBPT) using nested commutators seen in Appendix H.
This enables intermediaries within MBPT(3) diagrams to be cached and reused—significantly
improving the compute performance of MBPT(3). If higher-order MBPT expressions can be
similarly written in terms of commutators, then they can be implemented without explicit
handling of the exploding number of MBPT diagrams [27]. We exhibit equations-of-state

that are calculated from the SCKY-IMSRG program in the next chapter.
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Chapter 4. Nuclear Matter Equation-of-State

“Only when it is dark enough

can you see the stars”
—Carl & MLK, Jr.

We utilize the SCKY-IMSRG to calculate the zero temperature nuclear matter equation-
of-state (NM-EOS) using the N2LOgpt, Hebeler, and the N2LO Entem-Machleidt-Nosyk
(EMN) inter-nucleon interactions derived from chiral EFT [4,25,28]. We compare results
from the IMSRG(2) to those of Many-Body Perturbation Theory (MBPT). And when nec-
essary, we also make comparisons to IMSRG’s nonperturbative relative—Coupled-Cluster
(CC) theory. We do so to establish similarities and differences between the perturbative and
nonperturbative many-body methods using multiple inter-nucleon forces. These interactions
are chosen due to their wide use in the literature [1,23], and because they run the gamut
from the very soft and perturbative Hebeler and N2LOt interactions, to the significantly
harder and less perturbative EMN potentials.

As will be seen, the disagreement between IMSRG(2) and 3rd-order MBPT (denoted
“MBPT(3)”) is noticeably larger in symmetric nuclear matter (SNM), as correlations play
a much greater role than they do for pure neutron matter (PNM), even for soft interac-
tions.! To better investigate these differences, we include data from CC, whenever available.
Particularly, we include CC results containing doubles excitations “CCD,” and approximate

2

triples excitations “CCD(T)”—obtained in collaboration with Gaute Hagen.® This serves

as a useful consistency check, as it is empirically known that IMSRG(2) ground state en-

L This is primarily because the iterated tensor force in the 351 -3 D1 channel, which is active in SNM
but inactive in PNM, is known to produce significant correlations. Additionally, certain short-range terms
vanish in pure neutron matter due to the Pauli Principle that are non-vanishing in symmetric matter.

2As a consequence of momentum conservation, singles excitations should be zero in infinite nuclear
matter.
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ergies almost always fall between the CCSD and CCSD(T) results in finite nuclei that are
of single-reference (i.e., closed-shell) character [10]. We therefore expect a similar pattern
for our nuclear matter calculations, which are carried out for “magic” particle numbers
corresponding to closed-shell configurations in the periodic box.

We also include MBPT(4) results to compare against the IMSRG(2) results. MBPT(4) is
the lowest order of perturbation theory that contains triples excitations [27]. If correlations
from triples excitations are large, MBPT might not be well-converged. Lastly, we include
results from a reduced version of MBPT(4)—which subtracts from MBPT(4), diagrams that
are excluded or undercounted by IMSRG(2). This is based on the earlier work of Titus
Morris, who carried out a diagrammatic analysis of the perturbative content of IMSRG(2)
[10]. This analysis showed that the IMSRG(2) is “3rd-order exact”, which means that
the IMSRG(2) energy contains all MBPT diagrams up to 3rd-order.> At 4th-order, the
IMSRG(2) starts to miss some diagrams. For instance, MBPT(4) diagrams that correspond
to triple excitations (i.e., 3p3h intermediate states) are missed completely, see diagrams T}
thru T7¢ in Fig. 4.1. Additionally, the so-called asymmetric quadruple-excitation diagrams,
Q¢ and Q7 in Fig. 4.1, are under-counted by a factor of 1/2 [10].

Like the IMSRG(2), CCD can be shown to contain all MBPT(3) contributions, while miss-
ing the MBPT(4) triples-excitation diagrams completely. However, unlike the IMSRG(2),
CCD correctly counts the asymmetric quadruples diagrams (g and ()7 with their full weight.
Similarly, CCD(T) can be shown to be “4th-order exact”, as it includes the 4th-order triples-
excitation diagrams. Lastly, we stress that while CCD and CCD(T) are 3rd- and 4th-order

exact from the perspective of MBPT, both also include infinite partial summations of higher-

3t is important to stress that the IMSRG(2) is an intrinsically non-perturbative method. While it
correctly includes MBPT contributions up to 3rd-order, it also includes bits and pieces of all higher-orders
of perturbation theory. For example, it can be shown that particle-particle and hole-hole ladder diagrams,
as well as particle-hole ring diagrams, are summed to all orders in the IMSRG(2).
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order MBPT diagrams [27]. For instance, CCD (like the IMSRG(2)) sums up all two-particle
ladder and ring diagrams, while CCD(T) sums up analogous diagrams involving three par-
ticles.

We note that the IMSRG(2)’s undercounting of the asymmetric quadruple-excitation
diagrams explains the empirical observation that IMSRG(2) results tend to fall between
CCD and CCD(T). This is because diagrams Qg and Q)7 are positive-definite, while the
dominant 4th-order triples diagrams,* T 15 and T1g, can be shown to be negative-definite.
Note also that the asymmetric quadruples diagrams and the two dominant triples diagrams
have a similar structure—i.e., they look like a MBPT(2) diagram where one of the internal
lines has a self-energy insertion. Therefore, undercounting diagrams Qg and )7 roughly
mimics some of the attraction that would be gained if the triple-excitation contributions
were included.

The reduced version of MBPT(4) is obtained by subtracting from MBPT(4): all diagrams

£

triples (diagrams T-T1g in Fig. 4.1), as well as half the

(4)

asymmQ”

associated with triples excitations A
asymmetric quadruples contributions (diagrams Qg and @7 in Fig. 4.1) AFE

AW = AE® AR

reduced — triples

_ EAE@)
2

asymmQ@ -

(4.1)

We therefore expect the reduced MBPT(4) to yield energies that are closer to that of IM-
SRG(2) than the unmodified MBPT(4), since they are now equivalent thru 4th-order. Any
discrepancy between the reduced MBPT(4) and the IMSRG(2) results are therefore due to
the higher-order contributions that are summed by the IMSRG.

The true NM-EOS is only obtained with a full accounting of the uncertainties in the

4For the interactions studied here, these two diagrams accounted for more than 95% of the total triples-
excitation energy contribution.
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Figure 4.1: A subset of the MBPT(4) Hughenholtz diagrams corresponding to irreducible
triples (3p3h) and quadruples (4p4h) excitations. The IMSRG(2) misses the triples diagrams
T1-Thg completely, and undercounts the asymmetric quadruples diagrams Qg and ()7 by a
factor of 1/2. This figure is obtained courtesy of Hergert et al. [10].

nuclear forces arising from the EFT truncation errors and the uncertainties in the fitted
low-energy constants, as well as the truncation errors in the many-body methods used to
calculate the NM-EOS. While we get a qualitative feeling for the many-body uncertainties
by comparing the energies obtained from different orders and truncations of MBPT, IMSRG,
and CC, we do not assess the uncertainties arising from EFT truncation errors and/or the
uncertainties in the low-energy constants that appear in the chiral interactions. We view cal-
culations provided in this work as the first step towards obtaining an uncertainty-quantified
NM-EOS using the IMSRG. Eventually, we are hopeful that the uncertainty-quantified NM-
EOS using the IMSRG can be obtained by generating sample NM-EOS calculations for a

multitude of forces. Such equations-of-state can then be utilized by the Bayesian approach
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of Drischler et al. to determine EFT truncation errors [29]. Moreover, emulation of the low
energy constants of the nuclear force using techniques such as Eigenvector Continuation, will
likely be useful in obtaining an uncertainty-quantified IMSRG-calculated EOS [30, 31].

All results presented below are obtained using high-performance compute resources pro-
vided by the Institute for Cyber-Enabled Research at Michigan State University. And, all

figures stylized in Matplotlib’s “ggplot” are plotted by our automated data handlers.?

4.1 Results

We start by discussing our calculations of pure neutron matter, which as mentioned above has
much weaker correlations to contend with compared to symmetric nuclear matter. Figure 4.2
shows that IMSRG(2) and MBPT(3) with the N2LOp¢ two-nucleon potential, produce sim-
ilar NM-EOS in pure N = 66 neutron matter. This is expected since many-body methods
in PNM are considered to be highly convergent when using most typical chiral EFT interac-
tions®. Likewise, Figure 4.3 shows the near identical NM-EOS produced by IMSRG(2) and
MBPT(3) in pure N = 1030 neutron matter. Consequent to using such a large number of
particles, we note that the 3102 orbitals used are insufficient to eliminate errors due to the
truncated single-particle basis. Despite concerns regarding the sufficiency of the number of
orbitals, we include Figure 4.3 to highlight the payoff of the SCKY-IMSRG optimizations

made in Chapter 3.

5The geplot style is used as a throwback to my early days learning how to program using R!

6possible exceptions are for chiral interactions at higher resolution scales that are constructed to be local
in coordinate space. Such interactions are generally difficult to handle in CC or IMSRG calculations as they
require an excessively large single-particle basis to reach convergence.
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Nuclear Equation-of-State at T = 0

== IMSRG(2)
= ’= MBPT(3)
17.5- N=66,2=00f2618 Orbitals
) Normal-ordered 2NF
- NZLOopt
- 9.55 [hours] Tot. Runtime
'; 15.0 i 432.76 [GB] Avg. Memory
@ -
S _
< _
=) 12.5 _
10.0-

0.075 0.100 0.125 0.150 0.175 0.200
p [fm—3]

Figure 4.2: Pure N = 66 neutron matter sample EOS obtained using IMSRG(2) and
MBPT(3) with the N2LOgp¢ two-nucleon potential [25]. In this system, we consider 2618
orbitals to be sufficiently large to reduce errors due to the truncated single-particle basis.
A total of 9.55 hours is taken to do all seven SCKY-IMSRG calculations over the various
density points. And, each calculation requires the same 432.76 gigabytes amount of memory.
MBPT(3), acquired using Algorithm 9, tracks IMSRG(2) quite well, with slight discrepan-
cies at low densities.
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Nuclear Equation-of-State at T = 0
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Figure 4.3: Pure N = 1030 neutron matter sample EOS obtained using IMSRG(2) and
MBPT(3) with the N2LOgpt two-nucleon potential [25]. A total of 38.86 hours is taken to
do all seven SCKY-IMSRG calculations over the various density points. And, each calcu-
lation requires the same 876.74 gigabytes amount of memory. MBPT(3), acquired using
Algorithm 9, tracks IMSRG(2) exceedingly well in this system.
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The MBPT calculated ground state energy per particle in the thermodynamic limit
Eﬁ%ﬁ%o/fl, and in the finite box Ell\g/ﬁg(PT/A, are defined in Eqs. (4.2a) and (4.2b), re-

spectively.

Eﬁ%ﬁ%o/A = Eg%ermO/A + AE’ThermO/A (4.2&)
Bier/A = Pl /A + AP .20
ﬁ%{PT/A BOX/A + AEThermO/A (4.2(3)

The thermodynamic limit and box-acquired Hartree-Fock energies per particle are denoted
by Eg{%ermo /A and EBOX /A, respectively. And the thermodynamic limit and box-acquired
MBPT correlation energies per particle are denoted by A gThermo /A and AEBox /A, respec-
tively. MBPT(3) was not implemented in the finite box at the time of data collection for
this work. However, Eﬁ}gﬁ%o /A is available through collaboration with Christian Drischler.
We can thus approximate EII\B/I%(PT /A by assuming AEBOX /A ~ AEThermo s 4 iy Bq. (4.2¢).
All MBPT results in Figures 4.4-4.12 are procured in the finite box using Eq. (4.2c). After
implementing MBPT(3) in the finite box, we observe differences between the box acquired
MBPT(3) correlation energy per particle and its thermodynamic limit counterpart to be at
most 0.1 MeV per particle using N = 66 and/or Z = 66 nucleons. Thus, we consider ther-
modynamic limit MBPT(3) correlation energies per particle to be sufficiently representative
of their box-acquired counterparts.

The IMSRG(2) and MBPT(3) agreement in pure N = 66 neutron matter is further seen
in Figures 4.4 and 4.5—which feature NM-EOS from the A = 1.8 fm™! and A\ = 2.8 fm™!

SRG evolved Hebeler force, respectively. The A = 2.8 fm~! Hebeler force is less SRG

softened than its A = 1.8 fm ™1 counterpart, and is thus a harder force. Hence, Figures 4.4
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Figure 4.4: Pure N = 66 neutron matter sample EOS for the A = 1.8 fm™! SRG evolved
Hebeler force with Asy = 2.0 fm~! regulator cutoff [4]. The three-body force is used when
normal-ordering, but is subsequently truncated after normal-ordering. In other words, the
Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation. We see
excellent agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.5: Pure N = 66 neutron matter sample EOS for the A = 2.8 fm™ SRG evolved
Hebeler force with Azy = 2.0 fm~! regulator cutoff [4]. This figure compliments Figure 4.4,
with the primary difference being in the utilized Hebeler force with increased SRG resolution

scale A. Thus, see Figure 4.4 for additional details. We see excellent agreement between
energies obtained from IMSRG(2) and MBPT(3).
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and 4.5 show that IMSRG(2) and MBPT(3) are in excellent agreement in PNM, regardless
of the hardness of the Hebeler force.

Figures 4.6 and 4.7 also feature the same IMSRG(2) and MBPT(3) NM-EOS agreement in
pure N = 66 neutron matter. Figure 4.6 is obtained using the N2LLO EMN potential with low
energy constant cp = 2.5, and a 450 MeV regulator cutoff. Likewise, Figure 4.7 is obtained
using the N2LO EMN potential with ¢p = —1.5, and a 500 MeV regulator cutoff [28].
The regulator cutoff is the interaction resolution scale. Thus, the EMN potential is harder
using a 500 MeV regulator cutoff versus a 450 MeV cutoff. Furthermore, given that the
EMN potential is not SRG softened, it is considered to have a harder core than the Hebeler
force. Again, consistent with our expectations, Figures 4.4-4.7 confirm that IMSRG(2) and
MBPT(3) coincide in PNM— regardless of the hardness of the employed inter-nucleon force.
We include Figure 4.8 to demonstrate that the SCKY-IMSRG can compute NM-EOS for
nuclear matter beyond PNM and SNM alone.” We again see excellent agreement between
IMSRG(2) and MBPT(3) in nuclear matter with a 0.05 proton fraction.

The disagreement between IMSRG(2) and MBPT(3) is however, substantially larger in
SNM. This is prominently seen in Figures 4.10-4.12, which employ the Hebeler and harder
N2LO EMN forces. To better investigate these differences, we also make comparisons to
CC in Figures 4.9, 4.10, and 4.12.8 Lastly, we include Figure 4.13 to convey the large
computational expenses needed to generate the NM-EOS seen in Figure 4.11. All NM-EOS
calculations (particularly for SNM) in this chapter are highly computationally demanding.

Note, for IMSRG(2), and all CC and MBPT variants, the three-body force is used when

7By working in a closed shell system, the SCKY-IMSRG is restricted to only use particle numbers that
are magic. However, by using large particle numbers, we can obtain NM-EOS for a variety of proton fractions.
Going forward, we might be able to interpolate IMSRG-acquired NM-EOS between proton fractions using
the insights of Drischler et al. [29].

8CC results are excluded in Figure 4.11, since they are currently unavailable.
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Figure 4.6: Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-
nucleon potential with low energy constant c¢p = 2.5, and 450 MeV regulator cutoff [28].
The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation. This
figure compliments Figure 4.4, with the primary difference being in the harder EMN force
in use. Thus, see Figure 4.4 for additional details. Despite using a harder force than the

Hebeler force, we still see excellent agreement between energies obtained from IMSRG(2)
and MBPT(3).
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Figure 4.7: Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-
nucleon potential with low energy constant c¢p = —1.5, and 500 MeV regulator cutoff [28].
The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation.This
figure compliments Figure 4.6, with two main differences: the lowered value of c¢p, and the
increased resolution scale A. Thus, see Figure 4.6 for additional details. Despite increasing
A, we still see excellent agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.8: N = 38, Z = 2 nuclear matter sample EOS for the A = 2.8 fm~! SRG evolved
Hebeler force with Agy = 2.0 fm ™! regulator cutoff [4]. The three-body force is used when

normal-ordering, but is subsequently truncated after normal-ordering. And we see excellent
agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.9: Symmetric N = Z = 66 nuclear matter sample EOS for the A = 1.8 fm~! SRG
evolved Hebeler force with Agy = 2.0 fm ™! regulator cutoff [4]. These results are obtained
in the same system as Figure 4.4, with the difference being in the utilized Z = 66 protons
and the sampled density range. As expected, Reduced MBPT(4) is closer to IMSRG(2) than
MBPT(4). And, IMSRG(2) energies fall between CCD and CCD(T) energies. All methods
predict energies that saturate near p = 0.19 fm_3, but not at the empirical saturation
point pgat = 0.16 fm~3. The largest difference in E'/A between the methods is 0.67 MeV
per particle—seen between CCD and MBPT(4) at p = 0.08 fm™3. IMSRG(2) and CCD
energies differ from MBPT(3) energies by 0.02-0.14 MeV per particle and 0.21-0.38 MeV
per particle, respectively. CCD(T) and MBPT(4) energies differ by 0.03-0.09 MeV per
particle. And CCD(T) and CCD energies differ by 0.35-0.59 MeV per particle.
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Figure 4.10: Symmetric N = Z = 66 nuclear matter sample EOS for the A = 2.8 fm~! SRG
evolved Hebeler force with Agy = 2.0 fm~! regulator cutoff [4]. These results are obtained
in the same system as Figure 4.5, with the difference being in the utilized Z = 66 protons
and the sampled density range. All methods predict nuclear saturation around the empirical
saturation point pgat = 0.16 fm 3. The largest difference in F/A between the methods is
1.48 MeV per particle—seen between CCD and MBPT(4) at p = 0.08 fm™3. This disparity
between CCD and MBPT(4) is more than twice that of the disparity seen in Figure 4.9.
Moreover, IMSRG(2) energies differ from both MBPT(4) and CCD(T) energies by at most
0.54 MeV per particle. Notably, reduced MBPT(4) energies effectively coincide with IM-
SRG(2) energies, but differ from both MBPT(3) and MBPT(4) energies by 0.36-0.55 MeV
per particle, while MBPT(3) and MBPT(4) effectively coincide. IMSRG(2) and CCD en-
ergies differ from MBPT(3) energies by 0.5-0.56 MeV per particle and 1.37-1.49 MeV per
particle, respectively. CCD(T) and MBPT(4) energies differ by 0.07-0.6 MeV per particle.
CCD(T) and CCD energies differ by 0.88-1.45 MeV per particle. And IMSRG(2) energies
fall between CCD and CCD(T) energies. Notably, energy differences between CCD and

CCD(T) grow in increasing p and are largest at p = 0.22 fm ™3,
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Figure 4.11: Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN
potential with low energy constant ¢y = 2.5, and 450 MeV regulator cutoff [28]. These results
are obtained in the same system as Figure 4.6, with the difference being in the utilized Z = 66
protons, and the sampled density range. CCD and CCD(T) results are currently unavailable
in this system. Note, this system’s MBPT(2) energies calculated within a finite box, can also
be seen in Figure 4.13. All methods predict nuclear saturation near the empirical saturation
point pgat = 0.16 fm™3. MBPT(3) and MBPT(4) are nearly converged. And notably,
MBPT(3) and MBPT(4) energies are 0.72-1.72 MeV per particle and 0.63-1.71 MeV per
particle more bound than IMSRG(2), respectively. Using the reduced MBPT(4), we still see
0.3-1.29 MeV per particle more attraction than IMSRG(2).
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Figure 4.12: Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN
potential with low energy constant ¢p = —1.5, and 500 MeV regulator cutoff [28]. These
results are obtained in the same system as Figure 4.7, with the difference being in the utilized
Z = 66 protons, and the sampled density range. This figure also compliments Figure 4.11,
with two main differences: the lowered value of ¢, and the increased resolution scale A. Most
methods predict nuclear saturation near the empirical saturation point pgay = 0.16 fm_3,
with CCD being the main exception. MBPT(4) energies are 0.59-1.47 MeV per particle more
bound than IMSRG(2). Using the reduced MBPT(4), we still see 0.23-0.88 MeV per particle
more attraction than IMSRG(2). IMSRG(2) and CCD energies differ from MBPT(3) energies
by 0.73-1.64 MeV per particle and 1.85-4.32 MeV per particle, respectively. CCD(T) and
MBPT(4) energies differ by 0.16-0.92 MeV per particle. CCD(T) and CCD energies differ by
0.77-3.99 MeV per particle. And IMSRG(2) energies often fall between CCD and CCD(T)
energies. Notably, energy differences between CCD and CCD(T) grow in increasing p, and

are largest at p = 0.21 fm 3.
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Nuclear Equation-of-State at T = 0
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Figure 4.13: Symmetric N = Z = 66 nuclear matter sample EOS obtained using IMSRG(2)
and MBPT(2), with the N2LO EMN potential with low energy constant c¢p = 2.5, and
450 MeV regulator cutoff [28]. This figure is made in the same system as Figure 4.11.
The three-body force is used when normal-ordering, but is subsequently truncated after
normal-ordering. In this system, we consider 3700 orbitals to be sufficiently large to reduce
errors due to the truncated single-particle basis. A total of 11.01 days is taken to do all
eight SCKY-IMSRG calculations over the various density points. And the breakdown of
the runtime is seen in Figure 3.4. Each SCKY-IMSRG calculation requires the same 867.06
gigabytes amount of memory. MBPT(2), acquired using Algorithm 8, predicts saturation
near IMSRG(2), but yields energies that significantly disagree with energies from IMSRG(2).
MBPT(3) is not included since these results were obtained before its implementation.
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normal-ordering, but is subsequently truncated after normal-ordering. In other words, the
Hamiltonian is treated at the NO2B approximation for all reported calculations.

We summarize some notable differences in NM-EOS calculated from IMSRG(2), CC and
MBPT below. We see at most a 1.72 MeV per particle difference between IMSRG and
MBPT(3) computed energies (found in Figure 4.11). Likewise, we see at most a 4.32 MeV
per particle difference between CCD and MBPT(3) computed energies (seen in Figure 4.12).
Comparing CCD(T) and MBPT(4), we observe at most a 0.92 MeV per particle difference in
computed energies (seen in Figure 4.12). Lastly, we observe at most a 3.99 MeV per particle
difference between CCD and CCD(T) computed energies (found in Figure 4.12). These
discrepancies between the many-body methods are significant, and must be understood.
Although, we observe discrepancies in energies computed from the methods, we however,
see that all methods share similar predictions of nuclear saturation. This is noticeably seen
in Figures 4.10-4.12, where most many-body methods predict saturation near the empirical

saturation point pgat = 0.16 fm 3.

Curiously, all methods predict saturation near p =
0.19 fm 3 with the softened X = 1.8 fm~! Hebeler force in Figure 4.9.

Figures 4.9-4.12 confirm that energies from reduced MBPT(4) are indeed closer to those
of IMSRG(2), than energies from MBPT(4). Notably, energies from the reduced MBPT(4)
effectively coincide with IMSRG(2) energies in Figure 4.10. This means that the missing
triples and undercounted asymmetric quadruples in IMSRG(2), primarily account for the IM-
SRG(2)-MBPT(4) disparity in that system. However, energies from the reduced MBPT(4)
do not always coincide with those of IMSRG(2). This is notably seen in Figure 4.11 where
the reduced MBPT(4) yields energies that are 0.3-1.29 MeV per particle more bound than

IMSRG(2) energies. Interestingly, the disparity between energies from the reduced MBPT(4)

and IMSRG(2) is slightly lower when using the harder N2LO EMN force with an increased
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resolution scale A = 500 MeV, in Figure 4.12. However, it should be stressed that the two
EMN potentials have different two- and three-nucleon contact interactions associated with
them, so simply comparing the two resolution scales to infer that one should be more non-
perturbative than the other is likely misguided. For instance, the low-energy 3N constant
cp is somewhat stronger for the A = 450 MeV interaction.

As expected, IMSRG(2) energies generally fall between CCD and CCD(T) energies in
Figures 4.9, 4.10, and 4.12. In Figures 4.10 and 4.12, we see that the disagreement between
the many-body methods—with the exception of MBPT(3) and MBPT(4)—tends to widen
as the SNM nucleon density p, is increased. This behavior is prominently seen between CCD
and CCD(T) in Figure 4.12, where energies from both methods differ by at most 3.99 MeV
per particle (at p = 0.21 fm’?’). This suggests that correlations from triples excitations are
increasingly dominant in CC (and perhaps IMSRG) as p is increased. As seen in Figures 4.9,
4.10, and 4.12, the energies of IMSRG(2) are close to those of CCD(T) when p < 0.13 fm =3,
but with larger deviations at higher densities—albeit to a smaller extent than CCD. We
suspect that triples also account for the overbinding of IMSRG(2) relative to CCD(T) at
higher density. Conversely, energies from MBPT are farthest from those of CCD(T) at the
low-end of the density range p ~ 0.08 fm ™3, but become notably closer as p is increased.
Recall that CCD(T) contains all MBPT diagrams up to 4th-order and includes infinite par-
tial summations of higher-order diagrams [27]. Therefore, the 0.07-0.6 MeV per particle
and 0.16-0.92 MeV per particle disparities between MBPT(4) and CCD(T) in Figures 4.10
and 4.12; respectively, are due to correlations in CCD(T) beyond 4th-order. Interestingly,
these higher-order correlations in CCD(T) are most dominant when p < 0.13 fm ™3, but

3

become less prominent at higher densities p ~ 0.2 fm™°. Turning our attention to IM-

SRG(2) and CCD, recall that both methods contain all MBPT diagrams up to 3rd-order
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and include infinite partial summations of higher-order diagrams [10,27]. Therefore, the
IMSRG(2)-MBPT(3) and CCD-MBPT(3) disparities seen in Figures 4.9-4.12, are due to
correlations in IMSRG(2) and CCD beyond 3rd-order. Converse to the CCD(T)-MBPT(4)
relationship, these higher-order correlations in IMSRG(2) and CCD are most dominant at
the high-end of our sampled density range p ~ 0.2 fm ™3, but become less prominent when
p < 0.13 fm™3.

Unlike CC (and perhaps IMSRG), the net effect of triples correlations in MBPT is gen-
erally small. This is reflected in the decent MBPT convergence from 3rd to 4th-order—seen
in Figures 4.9-4.12. For example, MBPT(3) and MBPT(4) are effectively converged in Fig-
ure 4.10. However, energies from the reduced MBPT(4) differ from those of MBPT(3) and

MBPT(4) by 0.36-0.55 MeV per particle. This implies that in Eq. (4.1), there are sub-
4)

stantial 0.36-0.55 MeV per particle cancellations within MBPT(4) between AEr(e duceq and
(4) 1A (%)
AEtriples + ?AEasyme'

4.2 Discussion

Given the excellent agreement seen between IMSRG(2) and MBPT(3) in PNM, we expect
to see the same agreement when also considering MBPT(4) and CC. Therefore, we turn our
attention towards the more interesting SNM results. Consistent with observations in finite
nuclei [10], IMSRG(2) generally falls between CCD and CCD(T) energies in Figures 4.9,
4.10, and 4.12. We consider this a validation of our IMSRG(2) implementation. As is the
case in finite nuclei, the correlations from 4th-order triples and asymmetric quadruples are
attractive and repulsive, respectively [10]. While both IMSRG(2) and CCD miss attrac-

tive correlations from 4th-order triples, the IMSRG(2) undercounts repulsive asymmetric
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quadruples—yielding to more attraction than CCD. Therefore, IMSRG(2) mimics the at-
traction of triples by undercounting the repulsive asymmetric quadruples. CCD(T) is exact
at 4th-order MBPT and thus includes all attractive 4th-order correlations due to triples [10].
Consequently, CCD(T) tends to yield more attraction than both CCD and IMSRG(2).

Figures 4.9, 4.10, and 4.12 imply that correlations from attractive triples become larger in
CC and IMSRG as the density of SNM is increased. This observation can be interpreted using
the old hole-line expansion arguments of Brueckner theory for nuclear matter [32]. Methods
like CC and IMSRG have superseded Brueckner theory in recent years, though intuition
from the latter is still useful since the dominant contributions to CC and IMSRG correlation
energies are of the Brueckner type. Brueckner’s hole-line expansion is an expansion in the
“diluteness” of the many-body system, where the small parameter is the ratio of the range
of the repulsive core of the NN potential divided by the average interparticle spacing. The
leading term in the hole-line expansion sums the particle-particle ladders between pairs of
particles to all orders, while the next term in the expansion treats the particle-particle ladders
between interacting triplets of particles to all orders, and so on. In CC theory, for example,
CCD and CCDT reduces to leading-order and next-to-leading order Brueckner theory if one
drops the terms with particle-hole intermediate states. Therefore, it is quite reasonable that
we find the attractive triples contributions are becoming rather large as the density increases,
since the expansion parameter of the hole-line expansion is becoming large.

It is important to mention that we are inclined to most trust CCD(T) results since from
the perspective of MBPT, it completely sums all 4th-order correlations, it partially sums
higher-order correlations, and it incorporates triples excitations. However, the non-iterative
implementation of triples in CCD(T) assumes that the effect of triples in the CC correlation

energy is small [23]. This is clearly not the case in Figures 4.10 and 4.12, which show
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that triples introduce substantial 1.45-3.99 MeV per particle attraction in CCD(T) over
CCD. Therefore, a full treatment of triples in CCDT (or perhaps IMSRG(3)) is needed to
properly account for triples correlations using a nonperturbative method. Unfortunately, it
is currently intractable to store and evolve three-body operators at scale.

Figures 4.9, 4.10, and 4.12 show that energies from CCD(T) and MBPT(4) are closest
(around p = 0.2 fm™3) when triples correlations are highest in CC. We are unsure of how
to interpret this observation. Given that MBPT seems relatively converged from 3rd- to
4th-order, perhaps both methods are converging to the true NM-EOS (for the Hebeler and
EMN forces) around p = 0.2 fm3. Or perhaps both methods happen to cross around
p=0.2 fm 3, but may diverge at further densities. It is important to note that the observed
trends between the many-body methods are not guaranteed to hold outside of our sampled
density range. Going forward, it will be interesting to compare the many-body methods at
densities going up to 2pgat. [t will also be very interesting to implement the approximate

(and hence computationally viable) IMSRG(3) scheme outlined in Ref. [22].

4.3 Conclusion

We find that NM-EOS computed using IMSRG(2) and MBPT(3) coincide in PNM, irrespec-
tive of the hardness of the employed inter-nucleon force. And we expect similar agreement in
NM-EOS obtained using CC in PNM. However, within SNM, we find substantial disagree-
ments in energies computed from IMSRG(2), MBPT, and CC using the Hebeler and harder
N2LO EMN forces [4,28]. At most, we observe energy differences of 1.72, 4.32, 0.92, and
3.99 MeV per particle between the following methods, respectively: IMSRG(2)-MBPT(3),

CCD-MBPT(3), CCD(T)-MBPT(4), and CCD(T)-CCD. Despite the significant energy dis-
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agreements between the methods, we find that the methods often predict energies that sat-
urate near the empirical saturation point pgat = 0.16 fm 3.

Consistent with findings in finite nuclei [10], we observe that IMSRG(2) energies generally
fall between those of CCD and CCD(T). We consider this a validation of our nuclear matter
IMSRG(2) implementation. Therefore, as is the case in finite nuclei, we conclude that
the correlations from 4th-order triples and asymmetric quadruples are also attractive and
repulsive, respectively, in nuclear matter. IMSRG(2) and CCD are not only 3rd-order exact
from the perspective of MBPT but also include infinite partial summations of higher-order
MBPT diagrams [10,27]. Also, CCD(T) is 4th-order exact from the perspective of MBPT
and includes infinite partial summations of higher-order MBPT diagrams [27]. Hence, we
conclude that observed IMSRG(2)-MBPT(3) and CCD-MBPT(3) energy disparities are due
to correlations in IMSRG(2) and CCD beyond 3rd-order. Likewise, we also conclude that
observed CCD(T)-MBPT(4) energy disparities are due to correlations in CCD(T) beyond
4th-order. Though, given that triples account for at most 3.99 MeV per particle more
attraction in CCD(T) over CCD, we worry that CCD(T) may not be fully converged, and a
full treatment of triples in CCDT may be needed.

Comparing CCD to CCD(T), we see that correlations from attractive triples become
larger in CC and IMSRG as the density of SNM is increased. And we realize that this
observation can be qualitatively understood using Brueckner’s hole-line expansion [32]. We
find that MBPT is decently converged from 3rd to 4th-order. Though, we see substantial
0.36-0.55 MeV per particle cancellations between diagrammatic terms of MBPT(4). We
also observe that energies from CCD(T) and MBPT(4) are closest (at the higher-end of
our density range) when triples correlations are highest in CC. And we are unsure of how

to interpret this observation. Given that MBPT seems relatively converged from 3rd- to
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4th-order, perhaps both methods are converging to the true NM-EOS at the higher-end of

our density range. This needs further investigation.

4.4 QOutlook

The disparity between energies obtained from IMSRG, CC and MBPT in SNM need to be
further investigated by extending the sampled density range, going up to perhaps 2pgat.
Moreover, all IMSRG calculations in this work are done using normal-ordered 2NF and
3NF IMSRG(2) schemes. Given the large discrepancy observed between CCD and CCD(T)
calculated NM-EOS in Figures 4.9, 4.10, and 4.12, we look towards a future nuclear matter
IMSRG implementation with approximate triples. And developments from Stroberg et al.
[22] will likely be needed in this endeavor. We suspect that the inclusion of approximate
triples in the IMSRG should yield more attractive energies at higher densities.

NM-EOS are acquired using only three chiral forces at next-to-next-to leading-order
(N2LO) of x-EFT in this work. The true NM-EOS is only obtained with a full accounting
of the uncertainties in the nuclear force. We do no such accounting in this work. Therefore,
going forward, IMSRG computed NM-EOS will be acquired using a much larger number
of forces—perhaps ten, with some at next-to-next-to-next-to leading-order (N3LO) of x-
EFT—in the immediate continuation of this project. Subsequent acquired NM-EOS can
then be fed into the Bayesian machine-learning approach of Drischler et al., to determine
EFT truncation errors [29].

As seen in Figure 4.13, the computational cost needed to obtain NM-EOS using the
IMSRG for one force alone is massive. Therefore, there is great interest in using emulation

techniques including Eigenvector Continuation (EC) [30], Dynamical Mode Decomposition
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(DMD) [33], and Parametric Matrix Models (PMM) [34] to emulate results from the IMSRG,
while varying the low energy constants of the nuclear force. This interest follows the work
of Ekstrom et al. [31]—which saw great success emulating binding energies in finite nuclei,
obtained from Coupled-Cluster theory using EC. Perhaps these methods could be applied
to obtain an uncertainty-quantified NM-EOS that is calculated with the IMSRG—while
using less computational resources. While doing preliminary explorations of a potential
EC application in the IMSRG, we realized that a generalized form of the Baker-Campbell-
Hausdorff expansion (BCH) might a useful tool in such an endeavor. Subsequently, we derive
the generalized BCH in Appendix A. Given the large computational costs needed to obtain
NM-EOS using the IMSRG, we look towards novel ideas to accelerate IMSRG calculations
using Unitary Coupled-Cluster (UCC)-inspired IMSRG generators in Chapter 5, and Shanks

and Padé IMSRG extrapolators in Chapter 6.

7



Chapter 5. UCC-Inspired IMSRG Generators

“I call it Coupled-Cluster

-Fock theory”

—Robert Branson

We view IMSRG generators n (H (3)) as approximate diagonalizers of H (s) within the Magnus-
IMSRG formulation. Therefore, the IMSRG’s convergence can be accelerated by improving
the diagonalizing power of n(H (s)) Given the striking similarities between the Magnus-
IMSRG and Unitary Coupled-Cluster theory (UCC), we improve on existing IMSRG gener-
ators by constructing approximate UCC diagonalizers. We view UCC as a nonlinear inverse
problem; and we realize that UCC amplitudes at any order of UCC, are given by a gener-
alization of the Born series—so long the series converges. We introduce three UCC-inspired
IMSRG generators named the Born, UCC-Born, and Carinae generators, which use regu-
lated Born expansions to approximately solve UCC. Born’s generator targets 1st-order UCC,
while UCC-Born and Carinae target high-order UCC. UCC-Born is iteratively constructed
using a gradient descent based UCC ansétz seen in Appendix I. Carinae is constructed by
iteratively solving UCC with a strict convergence criterion. UCC-Born and Carinae are
obtained using preconditioners to improve the convergence of the Born series. Using all
novel generators with the Magnus-IMSRG, we often observe noticeable reductions in com-
mutator evaluations needed for IMSRG’s convergence compared to using the existing White
generator—translating to observed IMSRG speedups. We sometimes observe 2-4X IMSRG
speedup using the novel generators, particularly when the IMSRG with White’s generator is
slowly convergent. In all, we connect two historically separate theories—IMSRG and UCC

by using approximate UCC solutions as generators of the IMSRG. We introduce the Born
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expansion as a tool to solve UCC. And we use preconditioners to aid the convergence of the
Born series. Moreover, we provide an ansatz for a renormalized Hamiltonian in UCC. We

hope this work leads to further developments of these methods within many-body physics.

5.1 Motivation

The IMSRG is a powerful, yet computationally expensive method—especially in large sys-
tems. We dub the “realistic limit” as the combination of the thermodynamic and the com-
plete basis set limit in infinite nuclear matter calculations. Approaching the realistic limit
is essential to obtain results that are free from finite size and incomplete basis set arti-
facts, in nuclear matter. Approaching the realistic limit, we must increase the number of
orbitals Ny hitals i the infinite matter basis and increase the number of particles—which
are computationally costly.

Commutator evaluations are the most computationally limiting operations of the IMSRG
and UCC methods. The computational cost to evaluate a commutator at the two-body level

in the IMSRG and UCC scales as O(N©

orbitals

) [19]. Moreover, the IMSRG can sometimes
require hundreds of commutator evaluations to converge, especially in strongly correlated
systems. This can significantly hamper IMSRG runtimes in large systems. Therefore, there
is growing interest in efficiently accelerating the convergence of the IMSRG—obtaining more
converged results with fewer commutator evaluations.

Recent ideas have centered around utilizing data driven methods including the Shanks
and Padé transformation (seen in Chapter 6 of this work), and machine learning to extrap-
olate on the IMSRG flow. Yoshida notably used neural networks to accurately extrapolate

IMSRG operators with great success [35]. We aim to expand on this emerging research
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area by taking a different approach. Particularly, we combine the IMSRG with UCC in the
form of novel UCC-inspired IMSRG generators. We then introduce physics-motivated tech-

niques in UCC to accelerate the generator calculations—translating to an efficient IMSRG

convergence acceleration.!

5.2 Assumptions

All generator calculations in this chapter make the following assumptions:

All Hamiltonians H = E + f + I satisfy Assumption 1, and Assumption 2.
Assumption 0 All A-body operators are truncated at the two-body level.
Assumption 1 fpg = 6pg X fpq Vg — Hog = fa7 + Tapi; Vabij .2
Assumption 2 A5 = faa + foo — fii — [ #0 Vabij 3
Assumption 3 We denote approximate diagonalizers of H by
N(H) =Y et : aba; : + iznabij(H) cabalaja;: — He. (5.1)
ai abij

where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (5.1). n(H) is
assumed to be zero in its diagonal sectors. We also assume 7),;(H) < fu;, and f,; = 0 under

Assumption 1.

I The computational performance of the IMSRG and UCC at similar truncation levels are generally
considered to be similar. The exact performance difference between both methods is however, not investigated
in this work due to the lack of a computer program using existing state-of-the-art UCC techniques in infinite
nuclear matter. The success of this work is measured by efficient convergence acceleration seen in the IMSRG.
We however, suspect that the introduced UCC techniques should also confer improvements in standard UCC.

2Assumption 1 is partly justified in infinite matter due to momentum conservation, and the spin-diagonal
nature of the nuclear force at NNLO. Though, we observe that Assumption 1 is weakly broken during the
Magnus-IMSRG evolution. As a consequence of Assumption 1 holding exceedingly well in nuclear matter,
the one-body components of all diagonalizers 1 and 2 are negligible.

3Assumption 2 holds well in our existing single-reference nuclear matter IMSRG. We suspect this is due
to the spin unpolarized nature of the infinite matter basis.
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5.3 Magnus-IMSRG Convergence Acceleration

Consider a given Hamiltonian H(0). In the Magnus-IMSRG formulation, we iteratively

diagonalize H(0) with unitary transformation H(s) = U(s)H(0)U(s)T by solving*

Q(s) is obtained by integrating Eq. (2.7). n(H(s)) could be considered a driving force in
the diagonalization, and is chosen as an approximate diagonalizer® of H (s). Some existing
generators include the White, Imaginary-time, and Wegner generators. Using perturbative

analysis of the flow equations with the aforementioned generators [19],

Hog(s) = Tapij(s) ~ Tapij (0) x e ¥ Pabij* Cabi (5.4a)
Aabij X Gabij >0— Sli{go Hod(s) =y (5'4b)

4U(O) = 1. Also note, n(s) is ultimately dependent on H(s).

S1deally, one could construct U (ds) (ds is some step-size) where H,;(ds) = 0. However, as we will see, this
is a highly nonlinear problem from the perspective of UCC. Thus, we construct approximate diagonalizers
(generators) of H(s), and integrate them via the Magnus expansion to construct a full diagonalizer of H(0).
Note, we view diagonalizers as operators that eliminate H,4(s) when exponentiated.
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Gapij depends on the chosen generator. White’s generator is notable due its observed nu-

merical stability so long Assumption 2 holds [20,36]. White’s generator is given by6

nWhiteMP(H(S)) _ nWhiteMP(H(s)) 3GIL%' : (5.5a)

ar
at

1 .
+ - nWhlteMP(H(s)) : a:fla;gajai . —H.c.

4 —~ abij
abij

WhiteMP(H(S) — ja{ﬁ”(s) - iﬁ (5.5b)

WhiteMP(H(s) Fabij(s) o Fabz‘j(s) (5.5¢)

ai )= faa(s)
labij )= faa(s) + fon(s) = fii(s) = fij(s)  Dapij(s)

~—

Viewing 7(H (s)) as an approximate diagonalizer of H(s), we hypothesize that the IMSRG’s
convergence can be accelerated by improving the diagonalizing power of n(H (s)) Given the
similarity of Magnus-IMSRG and UCC theory, we look towards UCC for candidate IMSRG

generators.

6This chapter uses White’s generator with energy denominators from Mgller-Plesset perturbation theory
denoted by n WhiteM P
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5.4 Unitary Coupled-Cluster Theory

Consider a given Hamiltonian H.” Single-reference UCC theory diagonalizes H via the

exponential ansatz U = €. Thus, we construct n such that [enH 6_77} od = 0.8 At the

two-body level, 7 is given by Eq. (5.1). Therefore, n = —77Jr and UUT = UTU = 1. Using the

Baker-Campbell-Hausdorff (BCH) formula,

m=0

i [ 5 B

|:777 H}(m> = |:777 [na H](m_l)i|, VYm >0

[enHe_n] od = Hod +

m=1
(2) (3)
~Hy = [n. H]Od+["”;[] d . [”’j]od N

(5.6a)

(5.6b)

(5.6¢)

(5.7)

(5.8)

"For the remainder of this chapter, we drop the flow parameter s for brevity. We also drop 7n’s dependence

on H since that is implied.

8We use od as a subscript to denote the off-diagonal sectors of the transformed Hamiltonian.

9All commutators are truncated at the two-body level.
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) T,

Eq. (5.8) is nonterminating due to the excitation (: agaya;a; :) and de-excitation (: a; a;ayaq )
structure of 7, enforced by its anti-hermiticity.!? This is unlike standard Coupled-Cluster
(CC), where n has a pure excitation structure that guarantees a fixed termination order of
Eq. (5.8) [27]. Although Eq. (5.8) is nonterminating, we truncate the expansion for H%C (1)

at some m* such that!!

< ¢ : (5.9)
* ] = *BCH
(m* +1)! }Obody

*
The operator {}O—body projects out the zero-body component of m [77, H] (m ). The
truncation parameter G/BCH = le—4 is used for this work.!? So long Eq. (5.8) is invertible,
the main task of UCC is to approximate HRG(n). In this light, UCC can be viewed as a

nonlinear commutator inversion problem.

5.5 Linearized UCC

It is important to note that n is the solution of Eq. (5.8). n is however, unknown since
HEG g dependent on 7. Moreover, Eq. (5.8) is highly nonlinear in . We can however,
linearize Eq. (5.8) using successive approximations to 1. Let k denote an iteration count.

Letting n =n {k} +0n, we can approximate HRG(n) ~ HIG (7] {k}) if dn is sufficiently small.

The choice of n{k} is thus of paramount importance. If dn is sufficiently small, and 7 is an

10A closed expression of Eq. (5.8) with a maximum power of [, H] may be possible if the rank of 7 is
known [37].

*
Hpe diagonal sectors of the 1 and two-body ranks of W [n, H ] (m*) are observed to converge at

the rate as its zero-body rank.

12Eq. (5.9) and GIBCH = le—4 is chosen to be consistent with the BCH truncation scheme in the vanilla
IMSRG.
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attractive solution of Eq. (5.8), then solving

—Hapij = [n{k“}, HRG(n{k})Lbij, (5.10)

for n{k‘H}, we can expect

gk ke lt g U2h 0y, (5.11)

The Born, UCC-Born, and Carinae generators all solve linearized UCC in some form. No-
tice, n{k} and subsequently, HRG(n {k}) = Zﬁzom n {k}, H](m) are presumed to
be known in Eq. (5.10). Thus, Eq. (5.10) is solvable if there exists a way to invert the

commutator for n{kJrl}.

5.6 Commutator Inversion via Born Series

Suppose we are tasked with inverting the following commutator!?

~Hapij = |, HRC| (5.12)

abij

13The view of UCC as a nonlinear commutator inversion problem was partly inspired by Kutzelnigg [38].

Note, H RGog dependence on 7 is dropped in Eq. (5.12) for brevity. The following derivation of the Born
HRG

series assumes is known, if not estimated.
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H is known, and H RG assumed to be known or approximated. Both operators are of the

form

H=FE+f+T — Hyj = Lapj

[RG _ pRG | fRG | TRG.

(5.13a)

(5.13Db)

7 is to be calculated, and has an operator structure given by Eq. (5.1). Eq. (5.12) can be

expanded

—Labi; :Mabij + [77, fRG} T+ [77, PRG]
abij abij

Assumption 1 implies

RG RG RG RG RG RG
[777 f } = (fm + 1557 = Jaa" — o ) X Nabij = —Agpij X Nabij »

abij

which together with Eq. (5.14) gives

_ RG - RG
_Faij - _Aabz] X nabZ] + |:777 I :|asz )

RG RG
Aubij X Nabij = Lavij + [77, I }

abij
So long Assumption 2 holds,
FRG:|
YT [77’ abij
Tabij = NRG ¥ T ARG
abij abij
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Adopting the following notation for any A-body operator O*

Oabi'

_ J

(Ox)abij = [ ma -
abijy

we can cleanly cast Eq. (5.17) into an operator form

n= Ly + |:77a FRG]
*

(5.18)

(5.19)

Eq. (5.19) is the master equation that generates the generalized Born series. It is a Lippmann-

Schwinger type of equation in operator form, and is a fixed point equation for n. Iterating

Eq. (5.19) yields

n=Ts+ s+ [n, FRG] , TRG

*

*

~ T, + [F*, FRG} n [n, FRG] TRG
*

*

*

Let us define the following adjoint for A-body operators A and B:

[terating to nth order, we assume 7 is given by

n= Zn: T., rRe] S [, TRC] s

* *
m=0

(5.20)

(5.21a)

(5.21b)

(5.22)

HMNote, all sectors of Ox other than (O*)abij are defined to be zero. For example, (Ox),peq =0 Vabed.
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We seek to prove Eq. (5.22). First, notice Eq. (5.22) cotrivially recovers Eq. (5.19) with

n =0:

T, ¢ o [, FRG]( ‘oo

*

[n, FRG] O FRG] —1. (5.23)

Likewise, Eq. (5.22) recovers Eq. (5.20) with n = 1:

(0) (1) (2)
[F*, FRG] + [F*, FRG} n [n, FRG} (5.24)
* * *
(1)
=T + [0, DRG] g |y, PRE] DRG ) g,
* * N
Inserting Eq. (5.19) into the RHS of Eq. (5.22) yields
n m n+1
n=3 [, 086) ™y oo [ ore]  pre] Y, (5.25)
m—0 * * *
+1
In Appendix G, we show adjoints of the form [F* + [77, r RG] , FRG} (1) can be cleanly
* *

separated using linearity. Utilizing Eq. (G.1),

0= En: [P*, FRG] im) + [F*, PRG} inﬂ) + Hn FRGL , 7RG . (5.26)
m:O *
AN
m=0 *
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Utilizing Eq. (G.3),

Hn, rfc) | phe " [y, TRC] in”) (5.27)
0= % T., rRe] im) + [, TRC] in+2). (5.28)
m=0

Therefore, we have demonstrated if Eq. (5.22) holds for some n > 0, it also holds for n + 1.
Since Eq. (5.22) holds for n = 0 (and n = 1), then it indeed holds for all n > 0.
Exact computation of Eq. (5.22) is nontrivial due to its RHS’s dependence on 7. Practi-

cally, we approximate 1 by summing only the convergent terms of Eq. (5.22) at a potentially

high order!®

0~ i T, TRC] im) (5.292)

m=0
H [F*, FRG] inH)H > H [F*, FRG} in)H (5.29b)
(VAR H [F*, FRG} in)H < €Bom (5.29¢)
V.1 N =N MaxBornOrder - (5.29d)

To clarify, we sum Eq. (5.29a) to some order n, such that either Eqgs. (5.29b), (5.29¢), or
(5.29d) are true. Truncation parameter € gy, = le—3 is used for this work. 7 \faxBornOrder
is a chosen maximum order of the Born series. Eq. (5.29) is called the generalized Born

series honoring Dr. Max Born for his perturbative solution to the Lippmann—Schwinger

15“||.||” denotes a Frobenius operator norm. “” is notation for “such that.” And “V” is the logical “or.”
Only a few terms of the Born series are typically needed to approximate 1st-order UCC well. Born’s generator
will be obtained with n \[axBornOrder = 9> While the UCC-Born and Carinae generator will be obtained

with 7\ faxBornOrder = 100
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equation [39]. If

Il > |[[n 07 |, (5.30)

the leading term I'y will likely be a sufficient commutator inverter, and the Born series is
considered highly perturbative.l6 If Eq. (5.30) does not hold, T'yx will likely be an insufficient
commutator inverter, and the Born series is considered nonperturbative. Hence, the Born
series likely improves on T'yx when Eq. (5.30) does not hold. Following van der Sijs et al. [40],

we introduce the parameter v to quantify the nonperturbativity of the Born series

., v 0|

.1
B )

(5.31)

Similar to the geometric series, the Born series converges or diverges if v < 1 or v > 1,

respectively [40].

5.7 Regulating the Born Series

We ultimately aim to exponentiate n given by Eq. (5.29) when performing unitary trans-
formations in the Magnus-IMSRG or UCC. Although BCH transformations with n are uni-
tary, we still need those transformations to eliminate off-diagonal components of the target
Hamiltonian. Given the immense nonlinearity of UCC seen in Eq. (5.8), all methods that are
described in this work to obtain diagonalizers are ultimately approximate. Hence, n is only

approximately known. And we run the risk of introducing large and uncontrollable errors

161 pRG ', then I'x is ezactly White’s generator with Mgller—Plesset energy denominators. Moreover,
if Eq. (5.30) holds, then  ~ 5 WhiteM P
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that hamper our diagonalization with large n.17 Therefore, to obtain the Born, UCC-Born,

and Carinae generators, we regulate Eq. (5.29) as follows:

n -
n~ 3 [r., TRG ) (5.32a)
m=0 F
[r*, FRG} > Aycc (5.32b)
m=0 ¥
+1
v H [F*, FRG] il [F*, FRG] <n)H (5.32¢)
* *
RG (n)
Voo [r*, r ]* < €Bom (5.32d)
V.1 N =N MaxBornOrder - (5'326)

To clarify, we sum Eq. (5.32a) to some order n, such that one or more conditions in Eqs.
(5.32b)—(5.32¢) are satisfied. Eq. (5.32b) ensures ||5]| < Aycc, so long ||Ts|| < Aycc.'®
Regulator cutoff A yoc = 8 is used for this work. By using Eq. (5.32) instead of Eq. (5.29),
we potentially worsen our inversion of Eq. (5.12) to avoid large errors in the Magnus-IMSRG
and UCC—which utilize n dependent transformations (such as the BCH expansion). We

detail the regulated Born series in Algorithm 1.

17 The regulation of the Born series is due to inspiration from White—who cautioned against the use of
large rotation angles when performing Jacobi canonical diagonalization [36].

I8 A better regularization scheme might instead enforce Inll/Vn < Aycc, where Vy is the number of
nonzero matrix elements of 1. This regularization scheme would account for changes in the size of the
basis—of which 7 is built upon.
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Algorithm 1 Regulated Born Series

Input: H=FE+ f+7T, e fRG + FRG7 " MaxBornOrder

Output: 7 > Approximate solution to —Hp;; = [777 H RG} abi
1: function GENERATOR::BORNSERIES(H, HTC nypBomOrder)
2 initialization
3 AaRb% = fROG 4 pRG _ phG fﬁG Y abij
4 n =Tk > Nabij = Labij/ Aﬁ% V abij
5: ad =17 > Stores Born series adjoints
6 Aycc =8 > Regulator cutoff so 7 stays small
7 €Born = le—3 > Truncation parameter for residuals in the Born series
8 end initialization
9 for m < 1 to n\axBornOrder dO

10: ad previous — ad

11: ad = [adprevious, P RG .

12: if |jad] > HadpreviouSH then

13: break > Terminate if subsequent adjoints are increasing in norm
14: end if

15: n +=ad

16: if H?]H > Aycc then

17: n —=ad > “Error” correction :)

18: break

19: end if

20: if |lad|] < epom then

21: break

22: end if

23: end for

24: return n

25: end function
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5.8 Preconditioning the Born Series

All UCC-inspired generators in this work strongly rely on the Born series; therefore, its
convergence behaviour is of paramount importance. We seek to aid its convergence using

preconditioning.!? Suppose we are again tasked with inverting the commutator given by

Guess

Eq. (5.12). Suppose we have a reasonable guess 7 as a solution to Eq. (5.12). We can

then let n = nGuess 1 gp,

—Hpij = n ., HAEC (5.33)
—~

nGuess 1o abij

_ ( Hogii + [nGuess7 HRG] abij) _ [5777 HRG} (5.34)

abij
Eq. (5.34) is then another commutator inversion problem that can be solved for dn via the

regulated Born series. Once 67 is obtained, we reconstruct n = nGuess 4 gp.20 1f ,Guess

is reasonable, then the norm of Eq. (5.34)’s LHS will be reduced—improving the rate of

Guess ig given by any existing approximation

convergence of the Born expansion for é7. n
to n when computing the UCC-Born and Carinae generators. We detail the preconditioned

Born series in Algorithm 2.

19We find it prudent to mention that the preconditioned Born series introduced in this work is somewhat
reminiscent of the Newton-Krylov method in CC, detailed by Yang et al. [41]. Yang et al. also use precon-
ditioning and regularization in differing contexts from this work [41]. This realization was made after the
completion of this work. All insights contained in this work were independently made.

20We reconstruct n = nGuess + o without ensuring [|n|| < Ao This is observed to be OK.
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Algorithm 2 Preconditioned Born Series
HRG

Guess H

Input: 7 ’ ’ » "MaxBornOrder
Output: 7 > Approximate solution to —Hp;; = [777 HRG} bii
abij
1: function GENERATOR::BORNSERIES(nGue‘SS, H, HEG, 1 MaxBornOrder)
2 initialization
3 gLHS _ H+ [nGuess HRG
4: end initialization
5 6n = GENERATOR::BORNSERIES(HLHS  HRG b Order)
6 return nCuess 1 gy
7: end function

5.9 Born Generator

Born

Detailed in Algorithm 3, Born’s generator 7 is obtained by approximating H RG (77) ~

H, then inverting —Hp;; = [77 Born } abi with the regulated Born expansion. Therefore,
Born’s generator is an approximate lst-order UCC solution. We observe that only a few
terms of the Born series are typically needed to approximate 1lst-order UCC well. Thus,
we set N \MaxBornOrder = »- Notice, the leading term of the Born series is exactly White’s

generator when riRG = . Hence, White’s generator is an approximate solution to 1st-order

UCC. We view Born’s generator as an extension of White’s generator.
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Algorithm 3 Born generator

Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)
Output: nBorn > Approximation to a 1st-order UCC diagonalizer of H

1: function GENERATOR::BORN(H)

2 initialization

3 " MaxBornOrder = ©

4: end initialization

5 nBoM — GENERATOR::BORNSERIES(H, H, N\[axBornOrder)

6 return nBorn

7: end function

5.10 UCC-Born Generator

The UCC-Born generator n YCC =B ig designed to be a cheap, yet effective high-order UCC

Born Born

diagonalizer. Initially coinciding with Born’s generator n , it determines if n is a suf-

ficient UCC diagonalizer of H using a generalized form of MBPT(2) seen in Algorithm 11. If

(m)
nBorm i deemed insufficient, H RG(?]) is approximated H11G (n) =Y o _gam(l) [7] Born g ]

using the ansitz seen in Eq. (I.16). The UCC-Born generator is then updated by invert-

ing —Hgpij = [77 UCC—Born HRG(n)] abi using 729" as a preconditioner in the Born

expansion. We detail the construction of the UCC-Born generator in Algorithm 4.
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Algorithm 4 UCC-Born generator

Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)
Output: 7 UCC—Born > Approximation to a UCC diagonalizer of H
1: function GENERATOR::UCCBORN(H)
2 initialization
3 n B — GENERATOR::BORN(H)
4 €erg = le—4 > Cutoff for series in Eq. (1.16)
5: €GMBPT = le—3 > MBPT cutoff in case 1st-order UCC is sufficient
6 1 MaxBornOrder = 100 > We want a high fidelity inversion for nV¢¢—Born
7 end initialization
8 > MBPT truncation scheme is detailed in Appendix-Section H.1.
9:  if [IMBPT2TRUNCATION(pBo™, H)‘ < eqMppT then
10: return nBorn
11: end if
12 HRG E%*:O am(l)[nBorn7 H} (m) . {am*(l)[nBOT”, H} (m*)}o bods < €Ra
13: nUCC=Born — GENERATOR::BORNSERIES(n B H, HRC nypBormOrder)
14: return nUCC—Born

15: end function

5.11 Carinae Generator

Carinae

The Carinae generator n is designed to be a potentially expensive and effective UCC

diagonalizer.2! Initially coinciding with Born’s generator n B9 the Carinae generator de-

Born

termines if n is a sufficient UCC diagonalizer of H using a generalized form of MBPT(2)

Born

seen in Algorithm 11. If n is deemed insufficient, it iterates Eq. (5.10) starting with
ni0t = pBorn The iteration of Eq. (5.10) is terminated at k*+ 1 using a standard MBPT(2)

convergence criterion seen in Algorithm 10. To better understand the termination scheme

21770&”””6 is potentially expensive since it is designed to yield convergent IMSRG results within one

flow step.
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Carinae

for the Carinae generator, notice we obtain n =7 (K1} by solving

abij = [ L RG (g })Lbij (5.35)
n{k*} + 6n
N [n{k*}7 HRG(n{k*})] _ [5777 HRG(n{k*})]abij .
H Um'tcm:;; (77 {k*}) abi
’ ) . {k*} (m)
HUmtaTy(n{k }) _ {k } Z m—i—?} ] (5.36)

- i il [n{k*}, H} . = €n{k*}He_77{k*} )
m!
m=0

Therefore, H Unitary (77 {k*}) approximates the unitary transformed Hamiltonian from a con-

verged UCC calculation! If )MBPTQTRUNCATION (H Unitary (77 {k*})) is sufficiently small,

we expect H Unitary (7] {k*+1} ) to be sufficiently diagonal.

Of the three novel generators, the Carinae generator is most traditional because it iter-
atively approximates i with a strict convergence criterion. So long the Carinae generator is
convergent, we can expect convergence of the IMSRG with this generator within one flow

step. We detail the construction of the Carinae generator in Algorithm 5.
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Algorithm 5 Carinae generator

Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)

Output: ncarmae > Approximation to a UCC diagonalizer of H
1: function GENERATOR::CARINAE(H)
2 initialization
3 ni0} = Born — GENERATOR::BORN(H)
4 maxz = 100 > Max UCC iterations
5: E/BCH = le—4 > Cutoff for H1C series from the BCH expansion
6 € oMBPT = le—3 > MBPT cutoff in case 1st-order UCC is sufficient
7 eMBPT = le—6 > MBPT cutoff for UCC transformed Hamiltonian
8 N MaxBornOrder = 100 > We want high fidelity inversions for n {k}
9 end initialization

10: > MBPT truncation schemes are detailed in Appendix-Section H.1.

11: if MBPTQTRUNCATION(U{O}, H)) < eaMBpT then

12: return 7 {0}

13: end if

14: for £ < 0 to max; — 1 do .

k (m) k (m™)

L T b ey

16: H Unitary — pr 4 [77 {k}’ HRG]

17: nk+1} — GENERATOR::BORNSERIES(n 15}, H, HEC ny1oxBormOrder)

18: nCarinae _ n{k—i—l}

19: if [MBPT2TRUNCATION (H U”“‘”“y)‘ < e\BpT then

20: break

21: end if

22: end for

23: return n Carinac

24: end function

5.12 Results

The success of the Born, UCC-Born, and Carinae generators is measured by their speedup

of the IMSRG relative to the existing White generator while maintaining small discrepan-
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cies in final predicted IMSRG energies. The evaluation of commutators with O(Ngrbitals)
time complexity (in the realistic limit) in both the BCH and Magnus expansions comprises
the most computationally expensive operation of the Magnus-IMSRG in an ideal computer

program. In addition, White’s generator has time complexity O(N 4

orbitals) in the realis-

tic limit. Therefore, the cost of constructing White’s generator is computationally cheap
compared to the rest of the IMSRG. Additionally, the computational cost of constructing
White’s generator is cheap compared to that of the construction of all three UCC-inspired
generators—which require the same O<N§rbit Jls) commutators evaluations as the IMSRG.
Therefore, computational speedup with all novel generators can only be achieved by reduc-
ing the total number of O(Ngrbit a1s) commutator evaluations throughout the lifetime of the
IMSRG program, while incurring little additional overhead.

We evaluate the success of this work by comparing Magnus-IMSRG calculations us-
ing UCC-inspired generators versus the current standard in closed shell systems—White’s
generator. IMSRG calculations are performed in infinite nuclear matter over a range of
particle numbers A = N + Z and densities p. All calculations are done within the normal-
ordered 2NF IMSRG(2) scheme using the same Magnus-IMSRG parameters: e goyg = le—4,
€Magnus = le—4, epppr = le—0, and step-size ds = 1. Results are obtained using high-
performance compute resources provided by the Institute for Cyber-Enabled Research at
Michigan State University. We measure the runtime of IMSRG calculations using all gen-
erators—since that is a key quantity of interest in this work. To its detriment, runtime
data has intrinsic variability dependent on the machine performing the IMSRG calculation.
Therefore, we also measure the total number of commutator evaluations throughout the life-
time of each IMSRG program to explain trends in runtime data. We measure differences in

converged IMSRG ground state energies using the UCC-inspired generators versus White’s
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generator to establish the extent of agreement in energies between all generators. Lastly, we
measure the convergence profile of IMSRG calculations to establish the extent of convergence
acceleration conferred by the novel generators.

Figures 5.1-5.7 show that using all novel generators, we often observe a reduction in
the total number of commutator evaluations in the IMSRG compared to using White’s
generator. This commutator reduction translates to observed computational speedups of
the IMSRG in various nuclear matter systems. We sometimes observe speedups of 2-4X in
some systems—notably seen in Figures 5.1, 5.5, and 5.6. Figures 5.1-5.7 show that IMSRG
speedup is attained using the UCC-inspired generators by reducing the total number of
commutator evaluations in the IMSRG. The UCC-inspired generators reduce commutator
evaluations by accelerating the convergence of the IMSRG—thereby reducing the number
of IMSRG iterations needed for convergence. Notably, the UCC-Born generator often yields
the best speedup of the IMSRG, as seen in Figure 5.1.

Moreover, we see little discrepancies in converged energies per particle F(s Final) =
E(8 tina1)/ A between IMSRG calculations using all UCC-inspired generators versus White’s
generator. We at most observe a ~ le—2 MeV discrepancy in E(s final) Within N = 7 = 14
symmetric nuclear matter at p = 0.1 fm 3 (see Figure 5.6). Curiously, we see the greatest
IMSRG speedups of ~ 3X — 4X using the UCC-inspired generators in this system. Lastly,
we generally observe that the IMSRG converges using the novel generators, so long v < 0.8.
We suspect that this criterion is related to the convergence criteria of the Magnus expan-
sion. Given these results, we conclude the Born, UCC-Born, and Carinae generators improve
the quality of the IMSRG integration by accelerating the convergence of the IMSRG, while

introducing little deviations in the converged IMSRG energy.
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Figure 5.7: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOgpt
interaction, N = 114, Z = 0, and N pitals = 1502 using UCC-inspired generators and

White’s generator.
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5.13 A Few Remarks

Observed IMSRG speedup with all novel generators is strongly system dependent. We
suspect this system dependence is rooted at the regulation and convergence of the Born
series. More work is currently needed to understand this. The regulation of the Born series
in Algorithm 1 is rather crude. While solving linearized UCC, we could perhaps use a
more sophisticated regulator by replacing Eq. (5.10) with —H;; X e ~(IPll/Ayce)® =
[n {k+1}7 HREG (n {k})] abii solved by an unregulated Born series. a > 0 can be viewed as
a measure of how well HEC (77 {k}) approximates H1G (77) It HRG (77 {k}) = HRG (77), we
can likely choose o = 0 without issue. Lastly, although three-body forces are not considered

in this chapter, we find that the UCC-inspired generators are still effective when using the

IMSRG(2) + normal-ordered 3NF scheme detailed in Chapter 2.

5.14 Summary

Viewing IMSRG generators as diagonalizers of IMSRG flowing Hamiltonians H (s), we looked
towards UCC to efficiently construct approximate diagonalizers of H(s). We therefore in-
troduced physics-motivated techniques to accelerate our UCC calculations. With inspira-
tion from Kutzelnigg [38], we introduced the Born expansion as a tool to invert commu-
tators in UCC—so long a renormalized Hamiltonian HEC (77) is approximated. And we
posed an ansétz for H RG (77) utilizing gradient descent in Appendix I. With inspiration from
White [36], we regulated the Born series to improve the convergence of n dependent trans-
formations in UCC and IMSRG. Lastly, we preconditioned the Born expansion to accelerate

its rate of convergence when solving high-order UCC.
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Utilizing these developments, we subsequently introduced three UCC-inspired IMSRG
generators—Born, UCC-Born, and Carinae. Approximately solving 1st-order UCC, Born’s
generator is an extension to the existing White’s generator. The UCC-Born generator,
designed to be a cheap high-order UCC solver, uses Born’s generator in conjunction with
the aforementioned H11G (?7) ansatz to approximate high-order UCC solutions. The Carinae
generator conventionally iterates linearized UCC until a strict convergence criterion is met.
Using these UCC-inspired generators, we often see noticeable speedups in the IMSRG with
little differences in converged energies—sometimes amounting to 2-4X in nuclear matter

systems.

5.15 Perspectives

Looking forward, we expect the Born, UCC-Born, and Carinae generators to be benefi-
cial in existing IMSRG(2) implementations—so long Section 5.2’s assumptions are met, if
not weakly broken. Although, not rigorously tested, we observed noticeable speedups in
our calculations for the UCC-Born and Carinae generators by using preconditioners in the
Born series. Therefore, we suspect that the use of preconditioned and regulated Born series
may confer computational speedup in existing UCC implementations—so long Section 5.2’s
assumptions are met, if not weakly broken.

Future work is needed to construct better regulation schemes of the Born series. More-
over, all calculations in this chapter were restricted to the two-body level. Going forward,
it may be lucrative to extend the Born series to invert commutators acting on three-body
operators. Perhaps, one could solve the commutator inversion at the two-body level (as is

described in this work), then use that solution to better obtain the three-body commutator
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inverter. Excitingly, we wonder if the Born series could be used to implement approximate
triples in the IMSRG. In the following chapter, we apply known data driven methods to

accelerate the IMSRG by extrapolating converged IMSRG energies.
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Chapter 6. IMSRG Post-Processors

“If you don’t know
something, pretend you do.
Then ask, what would be
consequent to you knowing
that? Sometimes guessing is

enough!”
—Hoon Hong

Moving along the IMSRG flow in s, we calculate and store approximations to the converged

IMSRG energy. We store these energies in
C = {E(O) + AE®(0), E(ds) + AE®)(ds), ..., E(s) + AE@)(S)} .

The number of elements in C' is denoted by Nggmples = 1 + s/ds. We include MBPT(2)
corrections on the IMSRG energies to obtain better approximations to the converged IMSRG
energy. And the converged IMSRG energy is given by E(oc) + AE(Z)(OO).l

We introduce the use of the Shanks and Padé methods in the IMSRG, which use elements
of C' to extrapolate the converged IMSRG energy. As described in this work, these methods

are post-processors which sit on top of the IMSRG to extrapolate the final IMSRG energy.

1 As seen in Figure 2.2, AE(2) (00) is actually zero.
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6.1 Shanks Transformation

We store the last three energies of C' in?

3 ON

¢= {CN samples_z’ CNsamples_l}' (6'1)

samples ™

C holds our best three approximations to the final IMSRG energy as we move along the

flow. The 1st-order Shanks transformation on C' is given by [42]

i 5 A2
o, _(G—C1)

= = — (6.2)
Cy —2C1 + C)y

and is taken as the extrapolated final IMSRG energy E(00)+AE2) (00). A minimum of three
samples are needed for the Ist-order Shanks transform. If Nguyuples < 3, no extrapolation

is made and S(C) is programmed to return C _1- The Shanks transform is derived

samples

by assuming that the elements of C' are exponentially related [42,43]. By using the Shanks

transform in the IMSRG, we assume that IMSRG energies converge exponentially.

6.2 Padé Approximant

We store energy differences of C' along the flow in

g0 gl 2 N, 1

5= Co C1—Cy Cy—C1 C(Nsaunples_1 N C’Nsamples_2
g q g samples ™ ’

2We index all arrays starting from 0.
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where ¢ is some dimensionless parameter—for power counting. Notice, CNsamples_
N, N,

—1
Z samples 5ng". Defining M = \\%plesJ and L = Nsamples — M — 1, the polyno-

1 =

n=0

mial coefficients a,, and by, of the Padé approximant are obtained by solving?

N, 1

L M samples™
> ang" = (1 +> bmgm> x> by, (6.3)
n=0 m=1 n=0

and discarding any induced terms with degrees greater than L in Eq. (6.3)’s RHS [44]. And

the extrapolated final IMSRG energy is then given by

L
PC) = Z”j} ang” (6.4)
I+ Zmzl bmgm

with ¢ = 1. A minimum of 2 samples are needed to use the Padé approximant. Whenever

Nsamples < 2, no extrapolation is made and P(C) is programmed to return Cy

samples ™ 1

6.3 Results

We perform multiple Magnus-IMSRG calculations testing the efficacy of the Shanks and Padé
extrapolators. All calculations are made with step-size ds = 1 using White’s generator with
Epstein—Nesbet energy denominators. The IMSRG outputs for these results are included
in the SCKY-IMSRG repository; and the resulting figures are plotted by our automated
data managers. At each step of the flow, we have three methods which give approximations

to the converged IMSRG energy: Cn _1, S(C), and P(C). We measure differences

samples

3The polynomial coefficients ayn, and by, are implicit functions of C.

4Unless otherwise stated, we employ a generalized form of MBPT(2) seen in Algorithm 6. Our MBPT
expressions are consequently, generator dependent. Using White’s generator with Epstein—Nesbet denomi-
nators, we suspect that MBPT results in this chapter are with the Epstein—Nesbet partitioning.
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C Nyamples 1 relative to E(co) + AE2)(00) to establish the baseline convergence of the
IMSRG with MBPT(2) contributions. We also measure differences of S(C), and P(C)
relative to E(0o) + AE?) (00) to measure the extrapolators’ efficacy.

In Figures 6.1, 6.2, and 6.3, we see that both the Shanks and Padé methods can extrapo-
late E(c0) + AE®) (00) with impressive accuracy. Notably, we sometimes observe 1-2 orders

of magnitude improvement over Cy _1, using the extrapolators. And both extrap-

samples
olators tend to track each other quite well. Unfortunately, both methods have numerical
instabilities, notably seen in Figures 6.3 and 6.4. These instabilities are suspected to occur
when these methods become ill-conditioned—diminishing their reliability.

The accuracy of the Shanks and Padé extrapolators is generally highest halfway through
the flow. Terminating the IMSRG flow when extrapolation accuracies are sufficiently high,
and quoting the extrapolated energies, we could obtain ~ 2X IMSRG speedup. However,
it is unclear a priori when the IMSRG is halfway through the flow, let alone when the
Shanks and Padé extrapolation accuracy is high. Alternatively, we could terminate the
IMSRG when the Shanks and Padé extrapolations are converged. This would yield a more
reliable extrapolated energy. But, we would obtain less than 2X IMSRG speedup, since both
extrapolators tend to converge much later in the flow.

The extrapolators can yield poor results, particularly seen in IMSRG calculations with the
hard Entem-Machleidt-Nosyk potential [28] (see Figure 6.5). Notably, the IMSRG’s conver-

gence behaviour is not smooth for the Entem-Machleidt-Nosyk potential with ds = 1, com-

pared to the softer N2LOgpt potential [25]. Perhaps, the lack of smoothness of Cy

samples ™ 1

is the source of failure for the Shanks and Padé extrapolators. This hypothesis is consistent
with preliminary explorations—which saw that the Shanks and Padé extrapolators work best

when taking small IMSRG step-sizes.
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Figure 6.1: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 14, p = 0.11 fm ™3, and N p;ia1s = 228. The Magnus-IMSRG is
slowly convergent in this system—and is divergent with p = 0.1 fm™3. The sharp turning
points in the Padé and Shanks curves at s/ds = 10 and s/ds = 13 respectively, are due to
the extrapolators predicting converged energies that narrowly cross £(26) + AFE (2) (26) from
above. At these turning points, we see 2 orders of magnitude improvement over the IMSRG
with MBPT(2). And terminating the IMSRG at these turning points would confer 2 — 2.6X
speedup, with little loss in accuracy.
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Figure 6.2: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 14, p = 0.14 fm ™3, and Ny,pitas = 324. The turning points in
the Shanks and Padé curves at s/ds = 6 and s/ds = 7 respectively, are due to the extrapo-
lators predicting converged energies that narrowly cross E(12) + AFE (2)(12) from above. At
these turning points, we see at least 1 order of magnitude improvement over the IMSRG
with MBPT(2). And terminating the IMSRG at these turning points would confer 1.7 — 2X
speedup, with little loss in accuracy.
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Figure 6.3: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, p = 0.16 fm ™3, and Norbitals = 924. We see numerical insta-
bilities in both extrapolators at s/ds = 3 yielding extrapolations that are roughly 1 order of
magnitude further away from the converged energy than F(3)+AFE (2) (3). The sharp turning
points in the Shanks and Padé curves at s/ds = 8 are due to the extrapolators predicting
converged energies that narrowly cross E(15) + AE(2)(15) from above. At these s/ds = 8
turning points, we see nearly 2 orders of magnitude improvement over E(8)+AE (2)(8). And
terminating the IMSRG at these turning points would confer 1.9X speedup, with little loss
in accuracy.
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Figure 6.4: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, p = 0.16 fm™3, and Ny pjias = 684. We see a numerical
instability in the Shanks extrapolator at s/ds = 4 yielding an extrapolation that is 2 orders
of magnitude further away from the converged energy than E(4) + AE (2) (4). Both extrap-
olators generally yield small improvements over the IMSRG with MBPT(2) in this system.
However, terminating the IMSRG at s/ds = 4, and taking the Padé extrapolated energy
would confer 2.2X speedup, with little loss in accuracy.
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Figure 6.5: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, p = 0.13 fm ™3, and Ny,pita1s = 3700. This result is obtained
with the Entem-Machleidt-Nosyk potential at the normal-ordered three-body level [28]. Gen-
eralized MBPT is not employed in this system, and MBPT is thus implemented with Mgller—
Plesset partitioning. Both the Shanks and Padé methods are poor extrapolators in this
system.

119



6.4 Discussion

Given the extrapolation power of the Shanks and Padé methods, we view them as noninvasive
extrapolators that can obtain converged IMSRG energies when the IMSRG’s convergence
behavior is smooth. These extrapolators could be used to invasively accelerate the IMSRG’s
convergence by terminating the flow early. However, one would need a better handle on
when these methods fail in the IMSRG. Moreover, preliminary explorations suggest that the
Shanks and Padé methods can be applied directly on the matrix elements of the Magnus
operator €(s) to successfully extrapolate Q(cc).? This would enable the extrapolation of
observables beyond energies at the cost of storing multiple temporaries of Q(s). A future
SCKY-IMSRG implementation of the Shanks and Padé extrapolations on €(s) might be
lucrative. Future work is needed to understand when these methods fail in the IMSRG, and

when they can be used to terminate the IMSRG early.

6.5 Conclusion and Perspectives

We generally observe that Shanks and Padé transforms can extrapolate converged IMSRG
energies with impressive accuracy. When these methods work, they can extrapolate con-
verged IMSRG energies within le—2 MeV accuracy. Terminating the IMSRG flow once
when the Shanks and Padé extrapolation accuracies are sufficiently high, and quoting the
extrapolated energies, we could obtain ~ 2X IMSRG speedup. However, we have yet to
devise a scheme to reliably do so. Moreover, these methods are prone to numerical instabil-

ities; and their extrapolation power can markedly vary, depending on the interaction in use.

S(Care must be taken to avoid extrapolating over matrix elements of €(s) that are purely zeros. This
would produce zeros in the denominator of Eq. (6.2).
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Thus, more work is needed to understand when these methods fail in the IMSRG.
Currently, these methods are best seen as noninvasive IMSRG extrapolators which guide
users to potential converged IMSRG energies. Going forward, one could explore ways to
reliably terminate the IMSRG early using the extrapolators. Additionally, preliminary ex-
plorations suggest that the Shanks and Padé transforms can also extrapolate on the Magnus
operator €2(s). One could explore using these methods to invasively accelerate the conver-

gence of the Magnus-IMSRG evolution.
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Chapter 7. Closing Remarks

“I got cash”

—Chief Keef, I got cash

7.1 Summary

The nuclear matter equation-of-state (NM-EOS) is of great interest to the nuclear and as-
trophysics community. Recent advances in ab initio theory have led to an explosion of
nuclear forces from Chiral Effective Field Theory (x-EFT) that are amenable to many-body
methods [1,4]. Some of such methods include Many-Body Perturbation Theory (MBPT),
and nonperturbative approaches: In-Medium Similarity Renormalization Group (IMSRG)
and Coupled-Cluster theory (CC). The IMSRG is a powerful diagonalization method that,
until now, has not been applied to study NM-EOS with x-EFT forces. We have now com-
puted various NM-EOS using the IMSRG with the N2LOgypt, Hebeler, and the harder N2LO
Entem-Machleidt-Nosyk (EMN) interactions [4,25,28].1 To achieve this goal, we developed a
state-of-the-art, high-performant nuclear matter IMSRG program with access to a multitude
of two-body and density-dependent three-body forces from Drischler et al. [1]. And we made
comparisons to MBPT and CC results, obtained in collaboration with Christian Drischler
and Gaute Hagen, respectively. We qualitatively validated our IMSRG obtained results

with CC, by comparing trends in our data to observed trends seen in finite nuclei—within

Lror clarity, we have access to significantly more forces than N2LOgpt, Hebeler, and EMN alone. The
N2LOgpt and Hebeler forces were chosen to obtain the first batch of IMSRG calculated NM-EOS, due to
their existing use with MBPT and CC [1,23]. The N2LOgpt and Hebeler forces were chosen to obtain the
first batch of IMSRG calculated NM-EOS, due to their existing use with many-body methods [1,23]. The
harder EMN potential was identified as a good candidate to probe for nonperturbative physics in nuclear
matter.
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the literature. And, we observed the presence of nonperturbative physics when using hard
interactions in symmetric nuclear matter (SNM).

Most IMSRG NM-EOS computations were done at scale, and required days to be com-
pleted. This is due to the high computational demands of the IMSRG in large systems.
Therefore, we developed novel ideas to accelerate IMSRG computations using Unitary Coupled-
Cluster (UCC) inspired IMSRG generators. In doing so, we made novel insights into the
IMSRG and UCC. Particularly, we realized that approximate solutions of UCC can be used
as IMSRG generators. Viewing UCC as a nonlinear commutator inversion problem, we re-
alized that UCC amplitudes at any order of UCC are given by a generalization of the Born
series—so long the series converges. And we used preconditioners to accelerate the con-
vergence of the Born series. Moreover, we provided a gradient descent based ansitz for a
renormalized Hamiltonian in UCC, seen in Appendix I. Using these developments, we sub-

)

sequently introduced three IMSRG generators named “Born,” “UCC-Born,” and “Carinae.”
Notably, we sometimes observed 2-4X IMSRG speedup when using the novel generators,
particularly when the IMSRG was slowly convergent.

We also applied to the IMSRG, known nonlinear methods—i.e. Shanks and Padé trans-
forms—which can remarkably accelerate slowly converging series [42,44]. We saw that both
methods can extrapolate on converged IMSRG energies with impressive 1e—2 MeV accuracy.
However, we also observed numerical instabilities in the methods. And, we were unable to
use the extrapolators to reliably terminate the IMSRG early, and obtain noticeable speedup.

Consequently, these methods are currently viewed as noninvasive IMSRG extrapolators,

which guide users to potential converged IMSRG energies.
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7.2 Outlook

Given the few chiral interactions used in this work, we look forward to IMSRG calculated
NM-EOS with a wider range of interactions. Such calculations using uncertainty quantifica-
tion tools from Drischler et al. [29], will provide nonperturbative benchmarks to the existing
literature [29]. Furthermore, we observed the growing importance of triples excitations in
CC, at higher densities of SNM. We suspect that triples may likewise be important in the
IMSRG at higher SNM densities—but perhaps to a lesser extent than CC. Thus, we also
look forward to incorporating triples excitations into our nuclear matter IMSRG program.
Developments from Stroberg et al. [22] will likely be needed in this endeavor.

We have developed an IMSRG program that is versatile, and can be used to study a
variety of interesting physics using an emerging nonperturbative method in nuclear matter.
For example, there are exciting developments on the horizon being made by Kang Yu for
IMSRG computed momentum distributions, static structure factors, and pair correlation
functions in nuclear matter. A finite temperature extension to our IMSRG program can also
be implemented using insights from Smith et al. [26]. Such an implementation would produce
an interesting nonperturbative benchmark to existing finite temperature MBPT results [1].

We connected two historically separate theories—IMSRG and UCC by using approximate
UCC solutions as generators of the IMSRG. We are curious to see the potential performance
gains of the UCC-inspired IMSRG generators in other systems beyond nuclear matter. And,
we hope that insights from this work lead to further developments of UCC and IMSRG
within many-body physics. Moreover, we are interested to see the potential value of the
Shanks and Padé IMSRG extrapolators in other systems beyond nuclear matter. Lastly, our

nuclear matter IMSRG program can also be extended to finite nuclei via a change of basis.
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Optimizations made in the program’s commutators enabled novel preliminary A = 1030
IMSRG(2) calculations. Such calculations for finite nuclei may shed light on the existence

of heavy nuclei beyond the periodic table!
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APPENDIX A. Generalized Baker-Campbell-Hausdorff Formula

Given recent interests in emulation for the IMSRG, the following quantity is of interest

(VA H|Up) = (0|4 He P |@) . (A.1)

A and B are generic A-body operators. |V 4) and |V g) are correlated wavefunctions associ-
ated with A and B, respectively. And |®) is the usual Fermi vacuum. Let x be a continuous

variable. Consider

F(z) = eA"He B (A.2)
d deAr oo 4 de BT
—F(z) = He P* TH—— A.
dx (@) dz ¢ e dx (4.:3)
= A He BT _ AT Be BT
Since [A, eAﬂ =320 %[A, A"] =0,
d Ax —Bzx
%F(x) =e¢’"(AH —HB)e . (A.4)
We define the three-argument commutator
[A,H,B] = [A,H,B"Y = AH - HB. (A.5)
Then,
d2
5 F(2) = ¢ (A[A,H,B) — [A,H,B]B) e B* (A.6)
x

— eAT[A,[A, H,B],Ble B,
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Likewise, we define the two-fold nested three-argument commutator
(A, H,B)®) = [A,[A,H,B),B]. (A7)
In general, the n-fold nested three-argument commutator is given by

(A, H,B]™ = [A, (4, H, B Y ,B] >0 (A.8a)

A,H,B]9 =q. (A.8b)

Assume that for some n > 0,

Therefore,

LY pr) = A (A (A, H,B]™ — (A, H,B]" B) e~ Be (A.10)

Thus, we have demonstrated that if Eq. (A.9) is valid for a given value of n, then the
successive n + 1 derivative of F'(z) is also guaranteed by Eq. (A.9). Since we have shown
that Eq. (A.9) is valid for n = 1 (and cotrivially valid for n = 0), then Eq. (A.9) must be
valid for all values of n.

Taylor expanding F'(z) about x = 0 using Eq. (A.9), yields a modified variant to a famous
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expression

(A.11)
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APPENDIX B. Fourier Transform of Local Two-Body Force in a Box
In this work, the IMSRG is performed in a finite box, manipulating interactions written
in momentum space. Input interactions (e.g. the Minnesota potential) may be given in
coordinate space representation. Therefore, it is essential that we know how to convert

interaction matrix elements between coordinate and momentum space representations. Con-

v

Eg/;4> , obtained in

sider some momentum space interaction matrix element <k1k2 Direct
rec

a box (of volume V = £3[fm?]) containing normalized single-particle plane wave states
given in Eq. (2.12). The subscript “Direct” is used to denote a matrix element that is not
anti-symmetrized. We aim to write the aforementioned matrix element in a position space
representation. For this derivation, we ignore spin and isospin quantum numbers—as they
are irrelevant for understanding how the Fourier transform is performed in a box.

Inserting four complete sets into <l§1/22“7’l;3124> with basis states specifying the

Direct

independent location of all incoming and outgoing particles yields

(Rofvfiais),, = [ dr [ [ @ [ (Rl ()
Direct Vv y V Vv

X <_’3_;4 771772> . (B.1)

1%

Notice our chosen boundary of integration: we assume that all relevant single-particle wave-

functions exist within our box. We assume that the interaction is local, i.e.

V|7i7) = V(i — ) |[F17h) (B.2a)
(F3a|V|F1ma) = V(7L — 72)d(F1 — 73)0(7 — 74) - (B.2b)
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It is important to emphasize that the potential V(7| — 75) is a nuclear interaction, and is
thus generated by the interacting particles. Consequently, V(7] — 75) depends only on the
relative distance between particles. This means that we can confine our particles in any
region of space, and the observables related to V(7] — 73) should be unchanged—so long
there are no external forces. For convenience in this calculation, we place our box with one

of its vertices located at the origin

Using Eq. (B.2b), we can simplify the integration:

</§1/§2 %

123124> , :/d3r1/d3r2 <I§1E2‘F1F2> <F1F2
Direct Vv Vv

Since,

P 1 il i
<k1k2 r1r2> = ——¢ Il —eT 2772 (B.4a)
VA% %
- 1 7 - 1 .7 -
<F1’FQ k3k4> = Welk?’orlﬁelk‘l'w ; (B.4b)

we can expand Eq. (B.3)

</le2§2 1%

/53754> = i/ d3r1/ PBroe—ilF1T1+Ry ) (k3 TI+ELT) Y (7 )
Direct V2 Y v

(B.5)
Since the potential is assumed to only depend on the relative distance between incident

particles, it is convenient to transform from lab coordinates into relative coordinates 7 =
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— —

71 — T and center-of-mass coordinates R= i—p Then, 1 = R+ 5 and ™ = R — 4. And

the new volume element is given by
B3rid3ry = d3Rd3r|det(J)| . (B.6)
The Jacobian is given by

ory, Ory, Ory, Ory, Ory, Ory, 1 1 0 0 0 0

arly 8r1y Brly arly 8T1y arly

1
ORy Orz ORy Ory OR, Or 00 1 3 00
8r1z 87"12 87”12 87‘12, (97’1Z 8r1z 0 O 0 0 1 1
dro, Org, Org, Org, Org, OJro, 1 _1 0 0 0 0

6r2y 8r2y 3r2y 8r2y 8T2y 6r2y

IR O 0 0 1 -+ 0 0
ORy  Orz Wy Ty R Tz 2
31"2 31"2 67"2 37”2 (97’2 37“2 1
_aRgf D 835 aryz k. Ore _0 0 0 0 1 =1
with det(J) = 1. Therefore,
o1 ko| V| gk 1 (R [ Bt B) by R D) Ry (R D) =R (BT
<k1k2‘V‘k‘3k‘4> == d3R/ d37“el( 3 [R+5)+kg-[R—5]—k1-[R+5]—ko-[R 7]>V(f‘)
Direct V2 V! i

o e o = i(ka—ky—ki+ko )7

1 (K +Ey—Fq—ko ) (3412)

:—VQ//d3ReZ<3+4 ! 2)R/ dPre 2 V()
Y

where V and V' are new boundaries of integration. The integration region over R is still

restricted to be within the box, while the integration region over r will lie outside of the box.

135



To see this, observe that

max R, = max (Tlx ;— Th) = £ _5 £ =L (B.9a)
min R, = % =0 (B.9b)

maxry = max (11, —ro,) =L —0 (B.9¢)
minry =0—-L=-L. (B.9d)

Likewise can also be concluded for the y and z Cartesian coordinates. Thus, V' = V and

V" = 23V, For convenience, let us define the incoming and outgoing relative momenta

=123 5 4 (B.10a)
- ]; - ];
=12 (B.10D)
2
The momentum transfer is given by
oy oo ki—ky k3—ky
=K k= - B.11
q 5 3 (B.11)
And center-of-mass momenta are given by
f?/ = El + EQ (B.12a)
K=ks+ky. (B.12h)
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Thus,

—

- = A= = . 1 3 i(l?—l?’)-R 3. —igT
<k1k2’v‘kz3k4>Dmct — W/Vd Re /23vd re TV (7) . (B.13)

Note, the integration boundary 23V, means that Eq. (B.13)’s integration over r is done within
the boundary of a cube (with sides of length 2£) that is centered at the origin. Eq. (B.13)’s

integration over R can be easily done in Cartesian coordinates

/ PR (R-E')-R _ /ﬁ e (KoK ) Ra /E iRye (Ky—K}) Ry /ﬁ e (Kz—KL)R: |
Y 0 0 0

(B.14)
Ry=L
r | . i( KoK} ) Ra
| Ko—Ky |R —1e
/O dRye ( . 9”) T = oy (B.15)
€T
Ry=0
7 ; _x!
_ i ez(Kx Kx)ﬂ_l |
Since
2m
Kz — K;c = k3y + kag — K1z — ko2g = 7 (n3y + nag — N1z — N2g) (B.16)
we can conveniently define
Ny =N3p + N4y — N1y — N2y €L . (B.17)
Hence,
L . gl 3 2ming 1
/ deeZ<Kx Kb)Ro _ ;E (e _ ) | (B.18)
0 m Ny
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Note that Eq. (B.18) is only non-zero when n; = 0. Therefore,

. d 2mwin
/E deei(Kx—le)Rx —il T (e Ting _ 1)
0

= [ B.19
ﬁ;go 2 dgxﬁx ( )
—iL 21
= w0 g = F0na0 = Loy i, -
Similarly,
L . /
Ky—-K
/ dRyeZ< vKy) Ry _ LS o (B.20a)
0 vy
L ( /
i(Ke-KL) R _
/0 dR.e = Loy, gor (B.20D)
Combining Egs. (B.19) and (B.20) with Eq. (B.14),
i(K-K')-R
/Vd?)Re ( ) = 535&}?, =Vog g - (B.21)
Finally, combining Eq. (B.21) with Eq. (B.13),
=2 e 5E1+E2 E3+E4 3 —i(El—EQ—E3+E4)-F
<k1k2 v k:3k;4> — g, B3R / d3re 2 V(F)  (B.22)
Direct V 23y
O 1 ,
= KX / Bre TV (7)
Vo Ja3y

Since Eq. (B.22) is derived independent of spin and isospin considerations, we can simply
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extend it

V)k3JZSTZ3k4O-Z4TZ4>Di7”ect = {/ (B23)

Box normalization

<k:10-2’1 Tzl k2022 TZQ

~

Vv <f’, a, f’) }UZSTZ3JZ4TZ4>

3. —ifF
></ dre (021 T2y 02T
43y 172192972

~
Free position space representation

o 6.[2,}%/ E/
= v 0’217'210227‘32

Vv (k: k,0,T, V) ’kaz37'z3az4724> .

Momentum space representation

For generality, Eq. (B.23) is written in a form where 1% depends on the operators K and /5,

and acts on two-particle states

K > and ’E> If the momentum space representation of the

interaction is not obtained using the partial wave expansion (seen in Appendix E), then we

~

can easily write <E’ 1% (15’, E, 3, 7%, V) ‘E> =V (l;/, E, 57, 7%, V). Most interactions used in this

work are given in a momentum space representation. Such interactions including the One
Pion Exchange (OPE), and chiral forces from Drischler et al. [1], assume that the box-size is

infinitely large. We still convert those interactions into the finite box using Eq. (B.23), and

dropping the V dependence in <E’az17'zl 029 Tz9 1% (E’, 1_5, 3’, 7:", V) ‘%0237Z3024TZ4>.1

Finally, the anti-symmetrized variant of Eq. (B.23) is given by

A

14 (B.24)

<k10217'21 k20227'22 k30237'23k40247'24>

AS

= <k1021 T21 k202929 V)kgangZS k4az47'z4>

Direct

%

Direct

lSee Egs. (D.21) and (E.12).
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APPENDIX C. Minnesota Potential in a Finite Box

The Minnesota potential is of the form [17,19]

~ A 1 o 2 VOT _ 2 ~
VMinn(r’U7T) = §<V0Re FRIT + Te kIl (1 +Pf2) (Cl)

2 A A
—i—%eksm (1= PRy)) x (1= PRP) .

Vor = 200.0MeV, Vor = —178.0MeV, Vpg = —91.85MeV, kp = 1.487fm ™2, kp =
0.639 fm~2, and kg = 0.465 fm—2. f)laz and 15172 are spin and isospin exchange operators,

respectively

(1 + (ifl . (:7'2) (C.2a)

(1 + 71 - 7_"2) . (C.2Db)

15& and ]5172 act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

Plylozy =t oz =1y = |11), PRI = 1), PLIT) =11, PLID =[1l), (C.3)
Ply|may =1, Ty =t) = 111), PRI =4, PHLITL) = [11), PLID =) .

And going forward, the following identity will be useful

PPy = PLPL, = 1. (C.4)
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We seek to compute the matrix elements of the Minnesota potential using Eq. (B.23):

5 =
> > KK’
k3Uz3Tz3k34O'z4Tz4>Dir€ct =y (C.5)

VMinn

<k:10-2’1 Tzl kQUZQ TZQ

3 a4 - - 5 5
X /z3vd re” " (021 T2 029 Tz | Viinn (r,a, 7)‘023723UZ47Z4> '

Since spin and isospin are two independent operator spaces, we can easily factor our analysis.

VMinn (7?7 5'7 7A-)

<Uz17'z1(722722 az37'z3az47'24> (C.6)

VMinn (7?7 5'7 72)

= <0'2;10'Z2| <T21T22 TZ37—Z4> |0'230'Z4> .

First, consider matrix elements between orthonormal isospin states.

1 2V 2 s
regmea) = (Vore R Wkl pg) o)

VMinn (Fa 5'7 7A—)

<7'Zl 7'2;2

2
Vos kgl (y _ 7 Pl
+ e ST (L PR) ) x (7oL = PR Py

For convenience, let us define

2
Cr= VOR@_kRm (C.8a)
2 ~
Cp = %ekﬂﬂ (1+ P (C.8b)
2 ~
O = WS ks (1 - Ppy) (C.8¢)

Combining Egs. (C.8) and (C.7), we obtain

(CR +Cp + CS) <Tzl’7'22’1 — ]5{72]5172’@3734> . (C9)

DO | —

VMinn (7?7 6—7 ’f_)

<7—Zl 7_22 TZ37—Z4> -
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Using Egs. (C.3) and (C.4) in Eq. (C.9),

DO DT _ DO DT
= 57'21 1723 57',22 Tz P10-257'Z1 1T24 57’2’2;7'2’3 :

Now, consider matrix elements of <TleZ2’1 — f’fQPfQ’TZ37'24> between orthonormal spin

states. Combining Eqs. (C.6) and (C.9),

1

DO
X (57'21 77'2357',22,7'24 B p1257'zl ,7'245722a723> }OZ3UZ4> ’

VMinn (77’ 67 72)

<‘721 721029729

Using Egs. (C.3) and (C.4), we can evaluate the individual terms of Eq. (C.11):

<0-2’1 0-2’2} CR <57'21 )Tz3 67'22 Tz PfQ(STZl 77'2457'2‘2 77'23> |UZ3UZ4> (C12)
_ —kp|i? o
- VORe RI X <021022‘ <67'2’1 1723 57'2’2 T2y P].25T2’13TZ4 57'Z2a723> ‘UZSUZ4>

(572:2 Tz 5021 1023 (5022 Ozy

br

Tz1,723 2172y (5722 723 5021 k7] 5022 702’3> :

2
— Vype FRIT® x (5
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Likewise, the C'r terms are given by

<02’1 02’2‘ Cr <5Tz1,723 5722,7'24 - Pf257'z1 ,7',2457'22 77'23) ’02’302’4> (C.13)

VT k|72 Ao Ao
= 76 T X <0-210-22| <1 + P12> (57'2’1,7'23 57’22,7'24 - P126TZ]_’TZ4 (57'22 ng) ‘UZ3OZ4>

VOT k 2 A A

— 0T —kplr] _ po po

9 € X <UZ1022| 67'Zla7'23 67—22’7—24 P12P12 57'2’1,7'2’467'2’2’723
1

DO
+ (5721,7'23 67'22;724 - 5721 T2y (5722 772'3> Py }UZ3UZ4>

Vor — k|2 .
- 9 e T X <0210Z2‘ (57'2177'2357'22,7'24 o 5721,7245T22,TZ3> <1 + P12> |023024>
Vor |72
= 2 e T‘_‘I <6Tzl 77—2357—2:277—24 - 57'21 77'2457'2277'23> (502170236022a024 + 5021302450-227023> :

Lastly, the C'g terms are given by

<02’1 02’2} CS <5Tz1,7'23 67’22,7'24 - Pf257'zl 77'2457'22 77'23> |02’302’4> (C-14)

Vos —k |ﬂ2 O Do
- Te 5 X <0-210-22’ (1 - P12> (57'21 1723 57’22 T2y P125TZ1;7'Z457'Z257'Z3> ‘0-230-24>

VOS k 2 A oA
— 205 —kglr] g po
2 € X <le 0-22’ 57—2’1 1723 57'2’2;7'2’4 + P12P12 57’21 T2y 57',22 1723

1
- 5Tz Tz 67—2 T2 +5Tz T2 572 Tz Pf? ‘UZ3UZ4>
1°°#3 20124 1°'%4 2°'%3

V0S ko2 :
= SIT* <Uzlaz2| (5721,7235722,724 + 5721,7245722,723> <1 — P&) }0230Z4>

Vs —kolm?2
2 € 57'21 77'23 57’22 T2y + 57’21 T2y 57'22 77'23 5021,023 5022,024 5021,024 5022,023 :

In conclusion, combining Egs. (C.12)-(C.14) into Eq. (C.11), we obtain the spin and isospin
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matrix elements of the Minnesota potential:

VMinn (777 5'7 7A_)

<021 T2 029 29 az37'230z47'z4> (C.15)

_ @e—’mlﬂ2 (5 S
2

T 77'2’3 7'2’2,7'2’45021@'2’35022’0'24 - 57’2’1 ;TZ457'Z2;7'Z3502170'2’45022’0'2’3>

J

Tz9,Tz4

Vor  — |2
+ 4 € T|_1 <6TZ]_’TZ3 57',2177'2’457'2277'2’3) (6021a0235022a02’4 +502150245022JZ3>

VoS —kqli?
+ 4 € S‘_’l <57_2177_2’357_227TZ4 +572177—Z457—2’277—23> (502130235022,024 - 502130245022,023> :

Going forward, we consider only pure neutron matter (PNM) calculations. This greatly

simplifies Eq. (C.15).

y 753 VOR —knli2 . YOS —keli2
(021 4 02 L Vatinn (7.6, ) 025 L 02y 1) = (%Re FRITT® 4 %Se ksl )

(C.16)

X <5021702350227024 - 5021702450,227023) :

The Minnesota potential in a finite box is then obtained using Egs. (C.5) and (C.16).

<E1021 L kyo i‘VMinn

R (s
- 2V (UZ17023

- 2 2
X /3 d3re T (V()RekR“?1 —i—VOSe*kS'Fl > :
29V

E3023 i 54024 J,> (C.17)

Direct

J

029024 50z170’2450z27023)

Let us consider just the first term of Eq. (C.17)’s integral.

L . - L . 2
X/ drye "WV Rry/ dr e 1=z =kRTZ
—L —L

L
s 2 ‘ 2
/3 dgrefzq'rVORe*kRm = VOR/ drpe 1T —kRTE (C.18)
20y L
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Eq. (C.18)’s integral over r; is given by

L . .
/ drxefiQxTx*kRT% _ Le 4kR 1 orf QEkR 4y 1 erf 2[,]{7R +1qy .
Sy kR 2 2 /kR 9 /—kR

(C.19)
And solutions to Eq. (C.18)’s integral over 7, and 7, share the same structure as Eq. (C.19).

Therefore, Eq. (C.18) is given by

- q%+q§+q§

RN ) 3 AR B!
/ (1!37"6_“1'711/0Re_kR|7T1 =Vopt|—€¢ R = (C.20)
23y k3, 2
—1 ' 2Lkp — i 2Lkp + i
x | erf 2Lk — iqs + erf 2LkR + iqz orf R~ "y L orf Rt 1qy
2/kp 2v/kg 2v/kg 2v/kr
o | ort 2LkR —iq, e 2LkR +iq, .
2\/ kR 2\ / kR
Likewise, the second term of Eq. (C.17)’s integral is given by

R Qm +Qy +Q,z

2 dx Ty Tz
/ dPre 1TV, g i - = Vs —e g L (C.21)
23y k3 23
— 1 : 2Lkg — i 2Ukg + i
x | erf 2£/<:S—qu + eorf M orf S~y ©orf S T 1qy

2/kg 21/ks 2\/ks 2\/ks

o ort 2Lkg — iq, g 2Lkg + iq, .

2\/ kS 21 / k‘S

In total, combining Egs. (C.20)-(C.21) into Eq. (C.17), the direct matrix element of the
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Minnesota potential for PNM is obtained

EéUZSi'E4JZ4‘L>Lnred (C.22)

<E1021 I EQO-ZQ i‘f/Minn

. 5,1;14#22, E3+E4
- 2£3 021,023

2
3 _Jd” . .
x | Vor %6 R g | erf 2LRR —ida ) | g ((2ERR £l
kR 2 24 /k;R 2 /kR
2Lkp — 1 2Lk ] _ .
; (erf (M> s (M» (erf (—WR W) st <_2ﬁ’€R + Q>)
2/kp 2v/kR 2v/kR 2v/kR
2
3 _ld” . ‘
kg 2 2\/kg 2/kg
2Lko — 1 2Lk ; o .
X (erf (M> + erf <—£ S +qu)> (erf (—QEkS zqz> + erf <—2£k‘5 * Zqz))]
2k 2/ks 2/ks 2/ks

. Error functions are present in Eq. (C.22), because Eq. (C.17) is integrated within a finite

J

5022#724 - 502170'24 0'22’0'23)

box. Consequently, Eq. (C.22) differs from the expression given by Jensen et al. [19]—which
perform the Eq. (C.17) integration within an infinite box. Given that we only work in a
finite box, we suspect that Eq. (C.17) should indeed be integrated with finite £. In practice,
this is likely a minor issue since we generally work in large boxes. Note, g % in Eq. (C.22).
Hence, in the limit of large £, all error functions converge to 1 in Eq. (C.22).

We can then anti-symmetrize Eq. (C.22) via subtracting the exchange matrix element

from the direct matrix element

Fyosg L Faoey L) (C.23)

<E1021 1 kg i‘Van

E30'23 ! E4UZ4 \L>

= (k102 4 k202 1|Vt -

k102, | k3o > .
4 Z4¢ 3 Z3\L Direct

- <E10'21 1 EQUZQ \L‘VMinn
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APPENDIX D. One Pion Exchange Interaction in a Finite Box

Within a finite box, we aim to calculate matrix elements of the leading order contact inter-

action, denoted “One Pion Exchange” (OPE).

<k1021721 ]{320227'22

e 5
VAW ‘ k30237—2’3 k40247—24 >

Vi (R, 5.6.20)

ORI & /o

v k 021 T2 029729
01 ¢
v (02172102972

D.1
Direct ( )

/{023723024Tz4>

A

VAT

755
(k 7k707 T,V |0—237_Z30—Z47_Z4>a

In this work, all chiral interactions will not depend on the box volume—implying that V —

oo. Thus, the box volume is dropped: ‘A/j%” (E’, E, 3, 7%, V) = Vj” </gl, E, 3, %) Moreover, the

OPE only depends on the momentum transfer!

q= 5 = _’1 — Eg ) (D.2)
Thus, V&W (E’, E, 3, %) = \A/j%” <f d, 7:"> And the OPE is given by [24]
A 2 2
. A a A2 . . 3 > . _(heq)*+ Mz
VA17T (fj, 5_»7 7—_») _( ) 2gA ( ) (01 (7)(]\0-42 J) + C(a,»l . 52) e A2 <D3a>
4F% g2+ (h_g)2
M
A(A? — 2M2) + 2¢/T M3 eﬁerfc(%/[g)
C=- A3 ) (D.3b)

gA = 1.267 is the nucleon axial-vector coupling constant. M; = 139.57 MeV is the pion mass.
Fr = 92.4MeV is the pion decay constant, and hc = 197.33 MeV x fm. The momentum

transfer ¢, is in units of fm~1: the box volume V, is in units of fm3; and C' is unitless.2 And

I'NMomentum conservation IZl + EQ = E3 + E4, is used to simplify Eq. (D.2).
2We manually set C' = 0 in this work.
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the regulator cutoff A, is in units of MeV. All spin/isospin Pauli operators are unitless; and

I7]] = ||7]| = 1. Lastly, erfc( T ) is the complimentary error function.

Since spin and isospin operators act on two independent spaces, we can easily factor our

analysis.

<_; 3, 72") }UZ3TZ30-Z4TZ4>

<Uz1 Tz1029 q
= <0Z1 0-2’2} <TZ1 7—22’ < )O::a 71:) ‘7—237—24> |JZ3UZ4>

We first consider matrix elements between orthonormal isospin states.

. A h
Aﬂ<75’?>}7237~24>: <Z:2 (Ty oy |71 - o7y 72y

5 s o _(hcq)2+M7%
Cra@d o ,52)] .
¢? + (FZ)?

<TZ1

Note, the Pauli operators can be written in terms of permutation operators

G -Gy = 2P% —1

T Ty =2Pl—1.

(D.5)

(D.6a)

(D.6b)

]5102 and ]5172 act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

P lozy =1, 0z =t) = |11), PLIL) =1, PRHITL =[11), PRI =

Pl oy =1, Ty =ty = [11), PRI =11, PRI =11, PLIM) =
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Thus, we can rewrite Eq. (D.5)

(he) g7 .
T%A <721TZ2}2P172 - 1|TZ3TZ4>

(21 T2g ‘A//%W <cj’, g, 7:") ‘Tz3T24> =—

5 5 heq)?+ M2 (D-8)
Gr @G D | popo | T
W+C(2Pl2_1) e A )
@+ (FF)
where
<7-217—32|2P17—2 o 1{723TZ4> - 257'21 ,Tz457'z277'z3 - 57',21 77'2357'22,7'24 : (D.9)
For brevity, we choose to define the overlap
O(Tz) E <7—le22 }2?{2 - 1|TZSTZ4> = 267-’21 77')2,457'/22 77'2:3 - (57'2:1 77'2,3 57'2,2 77'24 . (D].O)
Therefore,
> I (hC)SQQ
<TleZ2 VI% ( o T>‘TZ3TZ4> 4F2A O(12) (D.11)
Y
- 2 R _ (hcq)2+M%
("; G ? + C(2Pf - 1)] e A
q* + (FLF)
Revisiting Eq. (D.4), we now consider overlaps between orthonormal spin states.
(021721 029 T2y VAM ((j’, g, %) 02qTeg02y T2y ) (D.12)
5 5 heq)?+ M2
(he)>g3 (&1 - Q) (G- @) . _(quﬂ
= <Uz1<7z2| — O(ry) |———"+C2Ph—1)|e A ‘0’230'24>
AF7 ¢®+ (5E)?
he )2—1—]\/[2 - 2
(he)*s% -t A (01 - D72 -9) :
Tarz e sl Ty GO D o)
he
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(021024 (‘fqlﬂw + C2Pf — 1) | |02302,) (D.13)

d1-q)(02 - q)

= <‘721‘722| (q2 © (Mx)p |UZ3UZ4> + C<"Z1”Z2} 2Pf, — 1 |‘723024> -
he

Reminiscent of Eq. (D.9), the second term of Eq. (D.13) is easily given by

<031032}2Pf2 o 1|0230274> - 25021 ,0246022#%3 - 5021 ,Uz350227024 : (D.14)
Therefore,
G DG D | oo
<O'z10'z2{ 2+(%)2 + C(2P12—1) ‘0-230-,24> (D15)
q he
1 2, 2,
= 5 (0210 (G D (G2 - D) [02302)
¢ + (FZ)?
+ C % <2 60'2’1 702460'227023 - 60'2’1 702360227UZ4> :

Since both interacting particles are described by independent single-particle wavefunctions,

we can easily factor our analysis.

<UZ10'Z2‘ (‘%1 "7)(‘%2 +q) “723‘724> = <UZ1‘ (‘%1 +q) }UZ3> <022‘ (‘%2 - q) “724>
= [<‘721| Oy “723>q~”f + <021| Ty "723>‘Jy + <021‘621 }UZ3>QZ} (D.16)

X [<022| Ozq ‘UZ4>‘19€ + <‘722| Ty |UZ4>Qy + <022‘ Oz }024>‘12}

loz), and |ay> are spin projection states along the z-axis and y-axis, respectively. Due to

the uncertainty principle, o), and ‘ay> are unknown if o) is known. Thus, we must write
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0 and 6y in terms of raising and lowering operators that act upon |o).

1
62 = (64 +6-) (D.17a)
1
Gy = (64 —6.) (D.17b)
21
where?
6+ |0, 0.) =\/o(o+2)—o0.(0, £2) |0, 0, £2) . (D.18)
Therefore,
(o, 02 |6+ o, O'Z3> = 50217 02q%2 X \/0(0 +2) — 02902 (D.19a)
. 1
(o, azl| oy |0, 023> = 5(502,17 02g+2 T (5021’ 0-23_2) X \/a(a +2) =040z  (D.19b)
1

<O’, le| Oy }a, 023> = Z((ngl’ 02g+2 502'17 UZB,Q) X \/0(0 +2) =040z (D.19c)

<J, JZ1| 05 ’0, 023> = 50217 023 X Ozg - (D.19d)

3In this appendix, oy = 1 and likewise, 7, = £1. Therefore, spin up and spin down states are separated
by 2 units of spin. The same can also be said for isospin states.
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Using Egs. (D.16) and (D.19),

<021022| (321 @(0%2 ) (j) |023024> (D20)

= [q,zdzg)(SgZI, 023 + \/O'(O' + 2) — O'ZSO'Zl

qx dy
X [5(5021, 023-1-2 + 50217 023—2) + 2_2-(50;;17 az3+2 - 5031, 033—2)}]

X [qzaz45022, oz + \/a(a +2) — 02,0z

qx Qy
X [5(50227 az4+2 + 5022, 024—2) + 2_Z-(5022, 024-1-2 - 5022, 024—2)}] .

In conclusion,

A 17T — —
(he)’g (heg)*+ M7

4VF7% K' K x <2 6721772'45722,723 - 572'1772357'227724)

<k10217—21 ]{320227'22

X e A2

0, 0,

021:0247029:023 —

y [<0-210-22’ (3:1 : @(332 : (jj ’0-2’30'2’4>

+ Cx (26
¢+ (52)2 (

021;023 5022;UZ4>] )

where <021022‘ (@1 - )3 - Q) }0230z4> is given in Eq. (D.20). And the anti-symmetrized

OPE is then given by

(D.22)

— — ~1 — —

AS

—_ /7 _' ol I

Direct

— — A~ 1 — —

Direct
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APPENDIX E. Partial Wave Expansion for Two-Body Forces
Chiral two-body forces are typically given in terms of partial waves where the following
quantum numbers are specified: two-particle total orbital angular momentum L & L', total
spin S & S', total isospin T & T’ and isospin projection Mp & M/, total momentum J =
IIL + S|| & J' = ||L' + §'|| and respective projections My & M, and norms of relative
momenta k = ||k|| & k' = ||F|| for both incoming and outgoing particles, respectively.
Given that we primarily work in a basis where the quantum numbers of single-particle states
are decoupled (called “m-scheme”), it is essential to know how to convert matrix elements
of an interaction given in a coupled representation (called “J-scheme”) into a decoupled
representation. We will do such conversions in this appendix. Moreover, we will exploit
convenient symmetries of the nuclear force such as: charge conservation My = M’T, total
spin and isospin conservation S = S’ and T = T”, total momentum conservation J = .J',

and degeneracy in M.

i (kk: 57V)

We aim to compute <E’azl T2 029 T2 Eozg Tzg 0Z47'Z4>—Seen in Eq. (B.23),

using the partial wave expansion. In this work, all chiral interactions will not depend on the

box volume—implying that ¥V — oco. Thus, the box volume is dropped: 1% (E’ , E, 3’, 7:", V) =

1% (E’ , /;, cA?, %) Going forward, for brevity, we omit the operator dependence of K , l::, 3, and

~
~
—

7in V, since the states ‘k’azl T2 az27'22> imply as such. Hence, V=V (k/, k,a, 7'). Notice,!

‘/\/

E0'237'230247'24> (E.1)
)

We first will calculate the spin and isospin matrix elements of V. The spin and isospin

El
0-217—2’10-2’27—22

(¥

1%

<‘7217210'22 Tzg |V |023T230 Z4TZ4>

1Although 023, Tz3, Ozy, Tzy are typically integers, we use them as half-integers in this appendix.
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wavefunctions are given by

TE{O 1} 2 232 24

SE{O 1} ? 2320—24

Likewise,
7'My,
0217'210227'22 Z o !T/ MT =Tz + 7'22>
T’e{o 1) 271375
/
*
® Z C Sl ‘S/,Mg =0y +022> : (E.3)
gy 20

SMg
C, are Clebsch-Gordan coefficients for spin 1/2 particles. Likewise, C 1 are

20232924 7723 2724

Clebsch-Gordan coefficients for isospin 1/2 particles. The nuclear force V, conserves total

charge Mp = Méﬂ, total spin S = S’ and total isospin 7" = T”. Enforcing the symmetries of

A

V', we obtain

. SM’ T M SM
<Uz Te1029T2g |V (020 T2002, Tz > Z C 1 S Cl T Cl Sl (E.4)
171772772 3437 ~4 ~4 . o o r ’ o o
Te1) 373y 30X 302 BTITH 3973302
Se{0,1}

x {TMpSMG|V|TMpSMg)
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Combining Egs. (E.4) and (E.1), we obtain

<k;/0217'zlaz2722 V k:az3TZ30z4TZ4> (E.5)
T™Mp  ,SMg TMp  ,SMg — ) el
Tefo,1) 2712772 20712972 272327% 29232774

Se{0,1}

Ultimately,

ETMTSM 5> is a vector valued function. We can expand the angular compo-

nents of this function on a complete basis composed of spherical harmonics. Inserting the

identity

1= ) |LMp) (LM (E.6)
Le0,00]
—L<Mp<L
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into (K'TMpSMy

V‘ETMTSMS> from Eq. (E.5), yields

(RTMpSMg

V’ETMTSMS> (E.7)

- Y (FTMpsMg
L,L'€[0,00]
—L'<mp <t/
—~L<M[<L

= > (TMpsMy|(F
L,L €[0,0c]
—'<Mmp <l
~L<M<L

L’M’L> (L' M} |V |LM) <LML‘ETMTSM5>

L’M’L> (L' M} |V |LMp) <LML‘E> T My SMs)

= > <TMTSMg\<k;’ X~ L’M£><L’M’L}V|LML>
/ S~~~

L,L'€[0,00]

—L'<mp <t/

~L<M7<L

Unit vector

X <LML ko kit ) [TMpSMg)
—~—

Unit vector

= Z < k unit

'y ) (L

Eumt> (K TMpSMGL M| V KT MpSMgLMy),

L,L €[0,00]
—L'<mp <t/
—~L<M[<L
where <E1/1nit L'M 2> and <LM I Eunit> are spherical harmonics
. . ML
(Fowie| L' M7, ) = iy (R ) (E.8a)
- _ My - *
(LM |Funit ) = 47 (Y, F (Runie)) (E.8b)
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Therefore,

<E’TMTSM’S‘V‘/ZTMTSMS> (E.9)
N L ML Mir* -
= (47T>2 Z <2L L ) YL/L(k{miOYL L (Funit)
L,I' €[0,00]
—L'<mp <t/
~L<M<L

x (K'TMpSMGL' M|V kT MpSMgLMyp) .

If V contains a nonzero tensor force, then calculating matrix elements of V in a basis where
orbital angular momentum quantum numbers L & L’ are known will be nonoptimal because
<...L’M’L| V|...LM;) may be nondiagonal in L & L. However, V is guaranteed to be not
only diagonal in a basis of total angular momentum J =L+ S, but also independent of

projection M j = My +Mg. Thus, let us transform into total angular momentum coordinates:

JM
|SMgLMp) = > oooc Mi sarg [(LS)TM ). (E.10)
|L—S|<J<L+S
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Combining Egs. (E.10) and (E.9), we obtain

N N L MY Mr* -
viETamsms)y = (4m? Y (FE) Y E RV Runi)
L,I€[0,00]
—r/<my <t/
~L<M[<L

7! !/
(FTMpsMg

(B.11)

J' M JM
J J
X Z CL/M’ SMéCLMLS
|L—S|<J<L+S L
L —S|<J'<L'+S

Mg (K'TMp(L'S)J' M| V [kTMp(LS)J M) 85

/
9 I—1/ M5 Mr* -
= (47T) Z <Z ) YL/ L(kunit)YL L (kunit)
L,L' €[0,00]
—L’SM’LgL’
—L<M<L

JM' JM -
XD Condiaan Coar) sarg (K TMp(L'S)J| VKT Mp(LS).J) (M} | M)
|L—S|<J<L+S L™8

!/
2 L1\ ML 7 Mp*
= (471—) Z (Z ) YLIL(kunit)YL L (kunit>
L,L'€[0,00]
—L’gM’LgL’
~L<M7<L

JM JM / / o
X > Conir s CLar] S (K'TMp(L'S)J|V [KTMp(LS)J) OM Mg+ My~ Mg
|L—S|<J<L+S L=7S

Combining Egs. (B.23), (E.5) and (E.11), we obtain the partial wave decomposition for the
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momentum space matrix elements of V', in a finite box:

Direct
O~ = /
K. K/ (47T)2 Z CTMT CSMS CTMT C,SMS

v % 21 % Tzg 9921 % 929 % Tz3 % Tzy % 0z3 % Oz4

=U

L,L'€[0,00]
—L<Mp<L
T, 5€{0,1}

unit)

oL M Mir* -
X (ZL L ) YL/L(k Y, L (Funit)

JM JM ~
X > Cointr san Crarls MS</<:’TMT(L’S)J\ V kT Mp(LS)J),
|L—S|<J<IL+S L™"8

where M = Mg + My, — Mg, and My = My, + Mg. The intruder U, is an appropriate

unit conversion factor that ensures that </<:1 02Tz ]{ZQO'Z2 Tzg

units of MeV. For example, <k:’TMT(L’S)J| V |kTMp(LS)J) is given in terms of fm? from
Drischler et al. [1]; therefore, Y = hc = 197.33 MeV x fm. We can then anti-symmetrize

Eq. (E.12) via subtracting the exchange matrix element from the direct matrix element

(E.13)

AS

= <k:10Z1 T21 k2029 T29 V)kgaZSTZ?) k:40z47z4>

Direct

1%

- <k10'z17'21 k20227'22 k4(7247'24k530z?)7'23>

Direct
Notice the only difference between direct and exchange terms in Eq. (E.12):

— —

kunit - = kunit

T My SMg T My SMg
Ci 1 ¢ —-C 5 G 7y
27239724 99232924 27242723 99249923
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And we can exploit the following identities:

YL L (_kunit) = (_) YL L (kunit)
TM SM TM SM
T S _ S+T T S
Cy 51 €1 7y =(-) Ci 51 € 7y :
27249723 99249923 27239724 99232924

Therefore,

lga T EO’ T V’EO’ T ];?’O' T > =
<1z1z12z222 323234Z4Z4AS V
TM SM, TM SM
x oy e ey s e el
L,I' €[0,0c]
—L<Mp<L

T,Se{0,1}

% 721 % Tz % 921 % 929 % 723 % Tz4 % 0z3 % 024

*

T—T) M M 5
8 (ZL L) [1 B <_)L+S+T YL/L(k{lnit>YL L (kunit)

JM JM ; TMp
X Z CL’M’LSMgCLMLSMSVL’LSJ(/7€ k),
|L—-S|<J<L+S

where

My

LK k) = (K TMp(L'S)J| VKT Mp(LS)J)

ML/:Ms—I—ML—MS/

My = My + Mg.
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APPENDIX F. Optimized Particle-hole Transformation

Commutators between A-body operators A and B generally require the evaluation of so—
called “particle-hole” terms [10].!

45

pqrs = %; (e = nu) x (1= Bpg = Prs + PpgPrs) % Aptur Bugst (F.1)

We need only focus on the first term of Eq. (F.1).

[A, B] += Z (nt - nu)ApturBuqst (FQ)

pars u

The particle-hole term requires careful implementation to be computationally efficient. Ide-
ally, one would implement Eq. (F.2) maximally utilizing a computer’s cache and multi-
threading capabilities. If the contraction in Eq. (F.2) is written as a matrix product, compu-
tational optimizations in the particle-hole term can be partially offloaded to existing high-
performance matrix multiplication algorithms [19]. Eq. (F.2) can be rewritten by defining a

diagonal occupation operator O.

Orywz = (Nt — ny) X dpouz Vituwe

[A, B] += % OtutuApturBuqst (FS)

pqrs

1Eq. (F.1) assumes A and B are anti-symmetrized. Ppg and Prs exchange indices on their operand. For
example, Ppg X AptyrBugst = AgturBupst-
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Constructing A-body operators A, B such that?

Aptur = _Aprut Vtu (F.4)

Buqst = _Butsq Vtu,
Eq. (F.3) can be almost cast into a matrix product.

[A, B] += Z Otutuleprutéutsq <F5)

bgrs tu

Notice the symmetry Opyry = —Oytyt- Therefore,

[A, B] s += Z —AprutOututButsq = _(AOB)ZW‘SC] <F6)
tu

The remaining three terms of Eq. (F.1) are easily obtained.

A B| == (A0B)prsg — (AOB)grsp — (AOB)psrg + (A0B)gory (F.7)

The product AOB can be partially precomputed if there is a distinction between particle
and hole single-particle states (n; = 1 and ng = 0 Vai). If such a distinction exists, A,

O, and B can be written in an ordered two-body basis B where particle-hole states are

separated from particle-particle and hole-hole states.

lB:\{(p,q): ‘np—nqlzl} U ;{(p,q): }np—nq‘:()}: (F.8)
P Q

2A factor of —1 is included in Eq. (F.4) to be consistent with Jensen et al. [19]. This does not affect the
product AOB.
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Opp Opp =0
O— Q (F.9a)

O(QIPZO OQQZO

[ App Apg)

A— PP PR (F.9b)
Aqr  Aqq|

5 B B

P (F.9¢)
| Bar  Baq|

_ . |App x Opp x Bpp App x Opp X Bp
A0B = w (F.9d)

AQIP‘ X OIPIP X BIPIP A(QIP X OIPIP X BIPQ
dim(P) ~ Nparticies X Nholess and dim(Q) ~ N> .0+ Ni oo Typically, Nparticles >
Npoles, implying dim(Q) > dim(P). Utilizing Eq. (F.9d), the most memory and compute
demanding operations involving AQQ, and BQQ are averted. If HAQIP H is sufficiently small,

one can forgo computing the second row of Eq. (F.9d) entirely.? Likewise, if HBPQ‘ is

sufficiently small, one can forgo computing the second column of Eq. (F.9d) entirely.?
Further optimizations can be made by recognizing possible symmetries in the particle-
hole transformation. For example, symmetries in A can manifest in A, albeit differently.

Suppose A conserves centor-of-mass momenta, i.e

3For the Magnus operator,

QQIPH is generally observed to be small. Moreover, ﬁQ]PH = 0 for most
generators, by construction.

48uch situations can arise in the Magnus series where commutators between the Magnus operator and
Magnus-like operators are evaluated.
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According to Eq. (F.4), A will then conserve relative momenta.

If both A and B conserve relative momenta, one can conveniently decompose the particle-

hole basis

B=JBn (F.12)

U {(paQ)3 ‘np—nq|:OAEp—Eq:gm}y

where Ky, denotes the conserved relative momenta of the mth block By,. AOB can then be

evaluated within relative momenta conserving blocks—further reducing memory and com-
5

pute costs.

If A and B are anti-symmetrized and have definite hermiticity

qurs = —qurs = —qusr = qusr vV pqrs (F-14)
qurs = _qurs = _qusr = qusr V pgrs
Al = signyg X A

Bl = signg X B

and O* = O, hermiticity can be easily exploited in Eq. (F.6). Permuting p <» r and s < ¢,

5N0tice, if A has the same block structure as B, then (p,r), (u,t) and (s,q) must all lie in the same
block for a nonzero contribution to the RHS of Eq. (F.6).
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Eq. (F.6) becomes

tu

Using Eq. (F.4) and Eq. (F.14),

Arput = _Artup = —signy x AZprt = —signy X A;utr = signy X A;rtu (F-16)

Butqs = —Busqt = —signp x Byy,,s = —signp x By, = signp X Bt*usq'
Inserting Eq. (F.16) into Eq. (F.15), and exploiting the symmetry Oyt = —Opytu,

[A, B} rspa +=signy X signpg X ZA;rtuOtUtuB:usq (F.17)
tu

= signy x signg x (AOB)

*

prsq-

If Eq. (F.6) is computed within some block By, containing (p,r) and (s, ¢), then one can use
Eq. (F.17) instead of Eq. (F.15). The importance of this is subtle. Notice (r,p) and (g, s)
will lie in a block B, where K/ = —FKp,. Therefore, one can forgo evaluating AOB in B,

entirely—further reducing memory and compute costs.%

6 A0 B=0 in the block By, such that 7y, = 0. Due to the shelled nature of our basis, for any two-particle
state (p,q) € B, the p and ¢ single-particle states must be both on the same momentum shell. Since
all shells are closed, hole and particle states are separated in momentum. Therefore, By, can only contain
hole-hole and /or particle-particle two-particle states. And the occupation operator O, is zero in these sectors.
This may however, not hold when applying twist-averaged boundary conditions [23].
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APPENDIX G. Properties of Born Series Adjoints

We seek to prove the linearity of nested commutators of A-body operators A, B, and C

utilized by Chapter 5.6:

[As+ Be, ] L[4, 1™ 4 [Be, €], n>1. (G.1)

* *

First note, Eq. (G.1) is automatically guaranteed for n = 1 via the linearity of commutators.

This is unaffected by the coefficient-wise division of the energy denominator denoted by “x.

Assuming Eq. (G.1) holds for some n > 1, then using Eq. (5.21),

[A.+B,, ]V = [[A*+B*, c™ ¢ (G.2)

*

_ [[A*, c1™ 4 B., 1V, ©

- [[A*, ™ c] + [[B*, cl™ ¢

(nt1)

*

We have thus demonstrated if Eq. (G.1) holds for some n > 1, it also holds for n + 1. Since
Eq. (G.1) contratrivially holds for n = 1, then it indeed holds for all n > 1. B

Chapter 5.6 utilizes the following identity:

(n+1)
L4, B w0 (G.3)

* )

[4.8],. 8

*

We seek to prove Eq. (G.3). As a base case, observe Eq. (G.3) is guaranteed for n = 0 using
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Eq. (5.21)

, B

(G.4)

Therefore, we have demonstrated if Eq. (G.3) holds for some n > 0, it also holds for n + 1.

Since Eq. (G.3) holds for n = 0, then it indeed holds for all n > 0. B
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APPENDIX H. MBPT Expressed in Terms of IMSRG Commutators
We aim to write MBPT(2) and MBPT(3) evaluated at the two-body level in terms of commu-
tators between a target Hamiltonian and IMSRG’s White generator. Consequently, we can
offload compute costs—most apparent in MBPT(3)—to an optimized commutator routine.
Moreover, we can consequently cache and reuse a commutator in MBPT(3)—significantly
improving MBPT(3)’s compute performance.
For a target Hamiltonian H = F + f + ', MBPT’s improvement to the ground state

energy F is given by
E=EFE+ AED + AE? 4+ AEB). (H.1)

Momentum conservation in infinite nuclear matter implies AE 1) =, Going forward, note

that the s dependence of all operators in this appendix are suppressed for brevity. At the
two-body level, 2nd-order MBPT corrections to E are given by [45]

2

Ap@ _ L Favi]”

abij —ijab

(H.2)

ANijab = fii + [jj — faa — Jop Y abij
Apij = faa + foo — fii — fjj = —Dijap Vabij
Ajjab = Djiah = Djjba = Djipe Y abij

Aavii = Dpaij = Dapji = Dpgji ¥ abij.
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We aim to demonstrate

59 2 Y1), o

N | —

7 is White’s generator with Mgller-Plesset energy denominators in Eq. (5.5).1 And the

operator {}O—body projects out the zero-body component of [77, F]. Using Eq. (A.14) of

Hergert et al. [10],

1
{[77; F} }O body " Z (nzjab Fabzg FZ'jab nabij) (H.4)

zgab r Fabij
abij — tijab N
abm zyab abij

:_ZA

( ijab Fabij + Fz'jab Fabz’j)

abij ijab
*
_ 1 Z zgab Fabzg o l I‘abij Fabzy _ 1 Z | abzg} QAE( )
= =3 AL = =
abzg Z_jab abij ijab abzg zgab

At the two-body level, 3rd order MBPT corrections to E are given by [45]

Ap® 1 Uijab Uabed Uedij +} Z Uijab Uavkt Ukiij Z Lijab Vackj Lkbic
B Ajjab Dijed 8 Ajjab Dkiab Aijab Dkjac
abedij tjab e abijkl 1)a a abeijk ija jac
(H.5)

We aim to demonstrate

?

AE®G)

N | —

{ [77, [n, F]] }ObOdy : (H.6)

IThe one-body component of 7 is assumed to be zero.
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assuming Im{AE (3)} = 0. n is again White’s generator with Mgller—Plesset energy denom-

inators. Using Eq. (A.14) and Eq. (A.12) of Hergert et al. [10],

{ [n, [n, F]] }ObOdy = i > <Th'jab [77, F} abii [77, F} ijab nabij) (H.7)

abij

1 *
=1 jab [T T
4 2 (mﬂab [77 abij U iy Tidab

abijy

1 *
4 E (771]ab [77 abij + Mijab |M abij

abij

*
1 1
(s, LS lnt] )
<4 Mijab [77, F] abij) + <4 Nijab [77; abz’j)

abij abij
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1
[ F] abij ~ 9 Z (nabpq Upgij — Fabpq npqij) X (1 —np — nq)
pq
+ Z —1q) X (Mpagi Cabpj — Mpbgi Vgapj — Mpaqj Labpi + Tpbgs T gapi)
1 1
Y Znabkl Priij — 9 Z Labed Nedi (H.8b)
Kl cd
- Z Neaki L kbej — Nebki Lkacj — Meaky Lkbei & Nebkj Fkacz)
ck
Lapkt 1 Lcaij
5 2 Tabed (H.8c)
Ueaki L oppi Leak; L
- A Vkbej ~ Pracj — Crbei + ~— Traci
%c: (Acaki “ Acpki @l Acakj “ Acbkij “
Uabki L1 Leaij
Triij +5 2 Tabed (H.8d)
Z Ay M9 T3 %: P N
Leaki U eppi cakj cbkj
% (Aca ; kbcj A kcwj Aca y kbci + Ac ; kaci
Lapki L1 Ledij
) Uriij +5 2 Tabed (H.8e)
Z Ay M9 T3 %z: P Nied
Locki Uperi FaCkJ bekj
- Lipi I, T Lpi I}
%f: (Aadﬂ 7 A e Aack] v A ckj e
2 % Ak 1] 2 ” aoc chd
T .
+ acki T bje — beki Tpie — ackj Tppie + bekj T
ck Akiac Akibc Akjac A jbe
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Let us focus on the first term of Eq. (H.7).

1 Tiias Cubit Crtii 1 T iab Dabed Dedi
Z ijab + abkl * klij L= Z ijab + abed * cdij (H.9)

1
—Z%’ab[nﬂ =2 ~ SN
4 abij abij 8 abijkl Azyab Aklab 8 abijed Azyab Aljcd
i 1 I-‘ijab Lacki Fkbjc _ 1 Z Fijab Dpeki 1-‘/mjc
4 < o Ajjab Akiac 4 < o Ajjab Akibe
Term 2 Term 3

1 Z Fijabrack;j Lrebic 1 Z Fijabrbckj Laic

4 ahijeh Ajiab Dkjac 4 ahijeh Ajjab Dkje
Term 4 Term 5

Since all indices are summed over in Eq. (H.9), we can freely interchange a <> b and i <+ j.

T 9 — Z Fijab Lacki Fk‘bjc . Z Fjiab Fackj Libic _ Z Fijab Fack;j Ubic
e 2 = Ajiab Aki o NTRY.NY B TRV
abijck ijab =kiac abijck Jiab =kjac abijck ijab =kjac
(H.10a)
T 3 — Fz'jab Dpeki I‘kajc . 1—‘jiba Fack‘j Lrbic . Fijab Fackj Lkbic
o3 = Aijab Drive 2 Ajiba Dkjae Aijab Ak
abijck Ljab =ribe abijck Jiba =kjac abijck Ljab =kjac
(H.10Db)
Liiav Dacki Urbi
Term 4 = UAab aCAk] LN Conveniently kept unchanged! (H.10c)
abijck ijab = kjac
T 5 — Fijab Fbckj Laic . Fijba Fack:j Lbic o Fijab I‘ac,li:j Lrbic
e o= Apiab Dpive Z INTINY - INTRYNY
abijck 1jab =kjbe abijck Ljba =kjac abijck Ljab =kjac
(H.10d)
Term 2 = —Term 3 = —Term 4 = Term 5 . (H.10e)
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Therefore, using Eq. (H.9) and Eq. (H.10),

1 Tiiab Cavpt Tt 1 T b Cabed edii
AE(3) _ = Z zlzl‘)‘ alﬁl klij i = Z zgzb” abgdﬂ cdij (H.11)
abijkl ijab =klab abijed ijab Sijed
Fijab Fackj Lkbic 1
- Z NN :Zznijab[n’r] bii
abijek  —ijabSkjac abij aw

Utilizing Eq. (H.7),

{["’ 2 F]] }ObOdy — AE®) 4 (AE<3>)* = 2Re{AED)}. (H.12)

It Im{AE<3>} —0,

{ [n, [n, r]] } — oAE®) (H.13)
0—body

|

Using Eq. (H.13), we cache and reuse [n, F} —significantly reducing the compute cost of
MBPT(3). Given these developments, one wonders if higher-order MBPT expressions can
also be written in terms of commutators between IMSRG operators.2 Notice that we could
relax the requirement that 7 is White’s generator with Mgller—Plesset energy denominators.
We could use White’s generator with Epstein—Nesbet energy denominators, perhaps giving
canonical MBPT with Epstein-Nesbet partitioning. We could also use the novel IMSRG
generators introduced in Chapter 5. To this end, we include generalized MBPT functions

detailed in Algorithm 6 and Algorithm 7.

2Pelrhaups7 triples excitations present in MBPT(4) may be accounted for by introducing auxiliary com-
mutators (and potentially departing n from White’s generator), while still truncating n at the two-body
level.
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Algorithm 6 Generalized MBPT(2)
Imput: n, H=FEF + f + T > Approximate diagonalizer, and target Hamiltonian

Output: { [77, F} /2} > Generalized AE(2)
0—body

1: function MBPT2(n, H)

2: return { [77, F} /2

0—body
3: end function

Algorithm 7 Generalized MBPT(3)
Imput: n, H=FEF + f + T > Approximate diagonalizer, and target Hamiltonian

Output: { [n, [77, F}] /2} > Generalized AEG)
0—body

1: function MBPT3(n, H)
2: return MBPT?2 <77, [77, T])

3. end function

Algorithm 8 Standard MBPT(2)
Input: H=F + f + T > Target Hamiltonian

Output: [77 WhiteMP(pr), F} /2} > Standard AE(?)
0—body

1: function MBPT2(H)
2: return MBPT2(n WhiteM P (pr), H) > Using White’s generator from Eq. (5.5)

3: end function

Algorithm 9 Standard MBPT(3)
Input: H=F + f + T > Target Hamiltonian

Output: { pWhiteMP () [77 WhiteMP(pr), F}] /2} > Standard AE®)
0—body

1: function MBPT3(H)
2: return MBPT3 (7 WhiteMP (pr), H) > Using White’s generator from Eq. (5.5)

3: end function
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H.1 MBPT Truncation for UCC-Inspired (GGenerators

We utilize 2nd-order many body perturbation theory (MBPT) to terminate iterative cal-
culations for the UCC-Born and Carinae generators in Chapter 5. Particularly, we use a
generalized form of MBPT(2) seen in Algorithm 6. And, we detail an overloaded truncation
function using the standard and generalized MBPT(2) in Algorithm 10 and Algorithm 11,

respectively.

Algorithm 10 Standard MBPT(2) Truncation
Input: H=E+ f+ T > Target Hamiltonian for MBPT(2)

Output: [nWhiteMPw), r] /(2E)} > AE?/E
0—body
1: function MBPT2TRUNCATION(H)
2: return MBPT2TRUNCATION (n WhiteMP(H), H) > Using White’s generator from
Eq. (5.5)
3: end function

Algorithm 11 Generalized MBPT(2) Truncation
Input: n, H=F + f + T > Approximate diagonalizer, and target Hamiltonian

Output: { [77, F} /(2E)} > Generalized AE) /E
0—body
1: function MBPT2TRUNCATION(n, H)
2: return MBPT2(n, H)/FE

3: end function
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APPENDIX I. UCC Renormalized Hamiltonian Ansatz

We aim to pose an ansétz for H12G(n) seen in Eq. (5.8). To do so, we must first tabulate
commutator expressions between an approximate diagonalizer 1 and generic Hamiltonians
A that satisfy Assumption 1. Let n be given by Eq. (5.1). Using Eq. (A.8) and Eq. (A.13)

of Hergert et al. [10],

[n, A} = ;M X éﬁg/ Nsara (I.1a)

App X drg

1
Ty Z (npngir + Apfigny) X (Nrapg Apgra — Arapq Tlpgra)
pqr

7
rs
Apy X drg

1
5 Z (npngfir + Aipligne) X (Nripg Apgri — Aripg Mpgri) -
pqr

Enforcing the operator structure of 1 seen in Eq. (5.1),

1
[777 A} w3 > ('f}bakz Apiba = Abakl nklba) (I.2a)
Klb
1
. 4] 032 (i Aabji = Ajiat Mabs) - (I.2b)
abj
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Using Eq. (A.12) of Hergert et al. [10],

[”’ A} abij (Aii + Ajj = Aaa — App) X Tlabij (I.3a)
1
Ty Z (Mabpg Apqij — Aabpq Tlpgis) * (L= np — 1)
pq
+ Z (mp — ng) * (pagi Aqbpj — Mpbgi Aqapj — Mpagj Aqbpi + Mpbgj Aqapi)
pq
[ A] = (Aji + Ace — Aaa — Akk) X Nakic (I.3b)
akic
1
5 Z nak;pq pgic — Aakpq npqic) X (1 —Np — nQ)
pq
™ Z - nq X npaqz Aqkpc Npkqi Aqape — NMpage Aqkpi + Npkqge Aqapi)
[777 A] = (Ace + Ajj — Aaa — App) X Nabe; (1.3¢)
abcj
1
Ty Z (abpg Apgej — Aabpg Mpae) < (1= np = ng)
pq
+ Z o nq "Paqc Aqbpj — Tpbge Agapj — Mpaqj Agbpe + Tipbqj AanC)
[n, A} g = (Ace + Ada = Aaa = App) X Tlabed (1.3d)
1
s Z (Tabpg Apged = Aabpg Mpged) % (1= 1p = ng)
pq
+ Z - nq npaqc Aqbpd — Npbgc Aqapd — Npaqgd Aqbpc + Npbqd Aqapc)
. 4] g = (i Ay = Aaa = Agg) s (I.3¢)
1
T3 > (lakpg Apgis — Aakpq Mpais) > (1= np = 1g)
pq
+ Z —1q) X (Mpagi Agkpj — Mpkqi Agapj — Mpagj Agkpi + Mpkgj Aqapi)
[n, A} i (Aii + Ajj — Ay — Agr) X Migij (1.3f)
1
Ty Z (ukpg Apgis — Atkpg Mpais) * (1= 1p = ng)
Pq
- Z —1q) X (Mplgi Agkpj — Mpkqi Aqipj — Mplaj Agkpi + pkqj Agipi) -
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Enforcing the operator structure of 7 seen in Eq. (5.1),

[777 A} = (Aji + Ajj — Aga — App) X Tabij

abij
1 1
~3 > Navkt Akt — 3 > Aabed Nedij
ki cd

- Z (ncakji Ak;bcj — Nebki Akacj — Neakj Appei + Tlebkj Ak;aci)
ck

[777 A] = (Aji + Ace — Aaa — Akk) X Nadic
akic
T3 Z (Makpg Apgic — Aakpg Tpgic) % (1 —np —ng)

+ Z —Ndaji Ajkde — Npkqi Aqape — Npaqe Agkpi + Njkde Adaji)

1
-3 > (Mavkt Akic; — Aabpg pacr)
il

+ Z (MAqbpj _ﬂpbq/chapj + Ndaij Ajpde — Ndbij Aiadc)
di

[77, A} = (Ace + Aga — Aaa — Avp) X Napea
abed

1
~3 > Mavkt Akicd — Aabki Mhicd)
¥

+ Z = nq) X (Mpage Aqvpd — WAqapd — Npegd Agbpe + Npbgd Agape)
10 A s = (i + Ajj = Ao = Agi) X ey
1
+ 5 2 kg Apaij = Aakea Medi)
cd
+ Z (=Ndati Atkdj — Dpkgi Aqapj + Mdal; Atkdi + kg Aqapi)
[77, A} ij (Aji + Ajj — Ay — Agg) X Nikiy
1
b Z (kab Aabij — Atkab Nabij)

ab
+ Y (np = ng) X (Mpig Aqhpj — Tpkar Aqipj — ots Aqkpi + Dpkar Aqipi)

bq
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In conclusion, the tabulated one- and two-body components of [77, A} are given by

1
[77, A} TS > (ﬁbakz Akiba — Abaki 77k:lba> (I.5a)
klb
1
[77, A} =3 > (ﬁjmb Aavji — Ajiab 77abji> (1.5b)
abj
[?77 A} wbij (Aii + Ajj — Aga — App) X Ngbij (1.5¢)
1 1
~5 > bk Akt — 3 > Aubed Nedi
Kl od
- Z (ncakzi Akzbcj — Nebki Akacj — Neakj Agpei + Nebkj Akaci)
ck
n Al = (—Ndaji Ajkde + Njkde Adaji) (I.5d)
akic T
j
1
m Al === Nkl Akic; + O (Ndaij Aivde — Nabij Aiade) (I.5¢)
abcyj 2
Kl di
1
[7% A} ded=" 3 > (Nabkt Akled — Aabkl Mklcd) (1.5f)
Kl
1
[77, A} wii= T3 > AgkedNedij + > (“Ndati Aikdaj + Ndat; Atkai) (I.5g)
J od dl
1
m Al == (Mkab Aabij — Alkab Nabij) - (1.5h)
lkij 2 ;
a

Going forward, we use the following notation: O,q, O4 and O y to denote linear combinations

of differing sectors of A-body operator O, wherel

Oud =07 + Oabij (1.6)
O4 = 0aa + Oii + Oggic + Oabed + Olkij

Od’ = Oabcj + Oakij .

L A1l sectors in Eq. (I1.6) include their antisymmetric and/or symmetric counterparts. For example, O

and Ozgab

abij
corresponds to all matrix elements O, j
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The UCC constraint in Eq. (5.8) can be rewritten

—Hgpij = [77, H{O}Lbij (1.7a)
g0 =24 [y, g (L7h)
=24 [y, m®] (L7¢)
g% zg + [y, B3] (L.7d)

1
i = CES [, HE (L.7¢)

. Using Eq. (I.5¢), notice Hd{o} is only relevant in Eq. (I.7a)’s RHS. This implies that H {0}

is not unique. Therefore,

—Hod = [777 H{O}} od - [777 Hd{o}} od (1.8)
Hd{o}:% + [777 H{l}}d, (1.9)

In Egs. (I.ba), (I.bb), (1.5d), (1.5f), (I.5h), notice Ho{dl} is only relevant in Eq. (1.9)’s RHS.

Therefore,

Hd{o}:% . [,7’ HoEil}}d (L.10)
(m)
O LA PR )
Ho{dl}: 2!d + 3! ‘4 mZZQ (m—|—2)6!l ' (111)
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So long 7 satisfies Eq. (5.7),

(m)
00 7, H
["’H}od:_ Od_mZ_Q [ m!Ld ' (1.12)
Let

(m) (m)

T H 1 < | ], < | ],
Ho{dl}zz_!d n §<_H0d_mZQTd) +m22(m—+2)«'i (1.13)

1 1 > 1 1 (m)
() S () bl

If n fully satisfies Eq. (5.7), then HO{;} and Ho{dl} will be ezactly equal. In practice however, n
is our best approximation to a solution of Eq. (5.7). Therefore, there will be some deviations

between Ho{dl} and Ho{dl}. We seek to exploit these deviations using gradient descent. Let

R 777H 0 m
o) <t S ()

Using gradient descent with step-size ds,2 we can extrapolate Ho{dl}

Extrapolated
H =ul) + dsxom ] (.15)

e.¢]

1 ds 1 ds 1 ds (m)
B (5 * ?) Hoa + (5 * 5) [77, H]od * mz::2<(m+2)! T3 Xm!) [77, H]od

> 1 ds (m)
> (ot + ) b ]l

m=0

2Step—size ds = 1.0 is sufficient for this work.
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Revisiting Eq. (1.7), we can now solve
{1}Eact7“apolated
—Hyg=|n, Hg + [UaHod ]d
od

d (m+1)
ln’Hd+ Z<m+2 3!><8m!) [777 H]d ] d
ds (m)
[”’HdJF Z<m+1 S!X(m—l)!> [7% H}d ]od
= |n, Z am(d5> [777 H};m)
L m=0

= -77, i am/(ds) [n, H} o
L m=0

J

Jdod

Jdod

HRG(n) ansitz

1 ds
am(ds) = ((m+1)! + 3!><(m—1)!)’ vm 2 0.

Some numerical values of a,(ds = 1.0) can be seen in Table 1.1.3

Table 1.1: First 7 series coefficients for H11C(n) ansitz

am(ds =1.0) | 1|2/3|1/3|1/8 | 13/360 | 1/120 | 1/630

3a1(ds = 1.0) appears in Koide’s formula. Coincidence??!!
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