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ABSTRACT

The nuclear matter equation-of-state (NM-EOS) determines the stability and bulk proper-

ties of nuclear matter, and is thus, directly linked to astrophysical phenomena—e.g. neutron

star physics. Moreover, a tightly constrained NM-EOS opens an avenue to test and improve

nuclear force models. The NM-EOS is therefore, of great interest to the physics commu-

nity. Recent advances in ab initio nuclear theory have led to an explosion of nuclear forces

amenable to many-body methods—which scale polynomially in time. Some of such meth-

ods include Many-Body Perturbation Theory (MBPT), and nonperturbative approaches:

In-Medium Similarity Renormalization Group (IMSRG), and Coupled-Cluster theory (CC).

Unlike MBPT and CC, the IMSRG has not been applied to study NM-EOS with realistic

nucleon forces. Therefore, we apply the IMSRG to calculate NM-EOS using multiple real-

istic forces. To accomplish this goal, we develop a state-of-the-art, high-performant nuclear

matter IMSRG program with access to a multitude of two and three-body nuclear forces. We

compare NM-EOS obtained from MBPT, IMSRG, and CC to benchmark the methods. And

we observe disparities between the methods in symmetric nuclear matter that are due to non-

perturbative physics. IMSRG NM-EOS computations are done at scale, and are therefore,

highly computationally demanding. Consequently, we introduce novel ideas to accelerate

IMSRG computations using Unitary Coupled-Cluster (UCC)-inspired IMSRG generators,

and Shanks and Padé IMSRG extrapolators. We realize that approximate UCC solutions

can be used as IMSRG generators. And, viewing UCC as a nonlinear commutator inversion

problem, we realize that UCC amplitudes are given by a generalized Born series—so long the

series converges. Using these developments, we introduce three IMSRG generators named

“Born,” “UCC-Born,” and “Carinae.” Using the novel generators, we sometimes observe

2–4X IMSRG speedup, particularly when the IMSRG is slowly convergent.
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Chapter 1. Background and Introduction

“Everything is fine!”

—Periphery

1.1 Importance of the Nuclear Matter Equation-of-State

The nuclear matter equation-of-state (NM-EOS) is given by E(ρ)/A where E(ρ) is the total

energy of a system containing A → ∞ interacting nucleons confined in a V → ∞ volume

at density ρ. It determines the stability and bulk properties of nuclear matter, such as

its response to gravitational compression. Consequently, the NM-EOS is directly linked to

astrophysical phenomena—e.g. neutron star physics [1–3]. And it is indicative of possible

new states of ultra-compressed matter [1–3]. Moreover, a tightly constrained NM-EOS allows

the testing and improvement of nuclear force models [4–6]. There are known deficiencies in

χ-EFT in heavy nuclei (overbinding with radii that are too small) that are linked to poor

nuclear saturation [6].

1.2 Recent Advances in Ab Initio Nuclear Theory

Ab initio nuclear theory predicts properties of nuclear systems using the most fundamental

building blocks that are accessible to theorists [7]. Recent advancements in ab initio nuclear

theory have led to an explosion of two- and three-body nuclear forces from Chiral Effective

Field Theory (χ-EFT) that can be used by many-body methods to compute observables in

nuclear systems [1, 4, 8, 9]. Some of such methods include Many-Body Perturbation Theory

(MBPT), and nonperturbative approaches: In-Medium Similarity Renormalization Group

1



(IMSRG) and Coupled-Cluster theory (CC). These many-body methods scale polynomially

in time, and consequently, have been used to target heavy nuclei [10–12]. Unlike MBPT

and CC, the IMSRG has not been applied to study NM-EOS with realistic nucleon forces.

Therefore, the application of the IMSRG in nuclear matter is still in its infancy.

1.3 Thesis Outline

We introduce the IMSRG in Chapter 2, and detail how it can be applied to study an infinite

lattice of nuclear matter. We subsequently introduce the computer program in Chapter 3

that is used to perform all nuclear matter IMSRG calculations in this work. And we show

the program’s performance capabilities. In Chapter 4, we calculate and exhibit various

NM-EOS using three chiral forces. Observing the large runtimes needed to obtain NM-

EOS using the IMSRG at scale, we then look towards developing techniques to accelerate

IMSRG computations. In Chapter 5, we introduce novel physics-motivated techniques to

accelerate IMSRG computations. And, we apply known data driven methods in Chapter 6, to

extrapolate converged IMSRG energies. This thesis is accompanied by a graphic presentation

located in the supplemental materials. The graphic presentation offers visual explanations

of the ideas in this work, which may enhance the reader’s understanding. Therefore, we

employ the reader to seek it according to their preference.

2



Chapter 2. IMSRG Theory for Nuclear Matter

“Sometimes you have to be

willing to accept ‘good

enough’”

—Scott K. Bogner

The In-Medium Similarity Renormalization Group (IMSRG) is a powerful computational

tool that has been used to calculate nuclear structure observables for a wide range of finite

nuclei starting from realistic inter-nucleon forces [10,11,13–15]. However, prior to the present

work, the IMSRG had never been adapted to carry out large-scale EOS calculations of infi-

nite nuclear matter starting from realistic Hamiltontians—it had only been used to perform

small, proof-of-principle calculations of pure neutron matter with the aged and godforsaken

Minnesota two-nucleon potential [16,17].1 In this work, we develop a nuclear matter IMSRG

program built from the ground up to be performant and thus, usable for large-scale calcu-

lations using modern chiral two- and three-nucleon forces. In this chapter, we describe the

basic formalism of the IMSRG, and how it can be extended and applied to carry out micro-

scopic EOS calculations of nuclear matter as well as other infinite homogeneous many-body

systems such as the electron gas.

1We jest, and hope that the Minnesota force, which has served its role well as a highly simplified (and
hence only semi-realistic) model, is without offense.
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2.1 SRG Theory

The Similarity Renormalization Group (SRG) is the al-Qa’idah (foundation) of the IMSRG.

The SRG performs a sequence of continuous unitary transformations on a given Hamiltonian

to construct unitarily equivalent Hamiltonians with desired properties determined by the

transformations’ generators. Simply stated, the SRG enables the shaping or manipulation

of a given Hamiltonian while preserving its eigenvalues.2 Consider a bare interaction3,4

H =
∑
pq

Tpq a
†
paq +

1

(2!)2

∑
pqrs

V
(2)
pqrs a

†
pa
†
qasar +

1

(3!)2

∑
pqrstu

V
(3)
pqrstu a

†
pa
†
qa
†
rauatas . (2.1)

H is an A-body operator that is truncated at the three-body level. And V (2) and V (3)

are anti-symmetrized body-operators. Notice that H is normal-ordered relative to the true

vacuum, i.e. ⟨0|H|0⟩ = 0.

The SRG transforms H via

H(s) = U(s)H(0)U(s)† (2.2a)

U(s = 0) ≡ 1 =⇒ H(s = 0) = H (2.2b)

U(s)U(s)† = U(s)†U(s) = 1 (2.2c)

η(s) ≡ dU(s)

ds
U(s)† = −η(s)† (2.2d)

dH(s)

ds
=
[
η(s), H(s)

]
(2.2e)

2Unitarity in the SRG and IMSRG are theoretically guaranteed. However, approximations within each
method—such as many-body truncations for computational feasibility—can break unitarity.

3The two-body and higher-body ranks of H in Eq. (2.1) are typically determined from Chiral Effective
Field Theory (χ-EFT) [18].

4The p,...,u subscripts in Eq. (2.1) label single-particle states.
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[19]. Eq. (2.2e) is commonly referred to as the “flow equation.” s is a continuous parameter

that labels the stage of the SRG evolution.5 And η(s) is an anti-Hermitian A-body operator

(η(s) = −η†(s)) that is also truncated at the three-body level. η(s) is called the generator of

the SRG since it implicitly defines the SRG transformation [20]. Let H(s) = Hd(s)+Hod(s),

where Hd(s) and Hod(s) denote the diagonal and off-diagonal sectors of H(s), respectively.6

The SRG is typically used to diagonalize H. To that end, η(s) is chosen via perturbative

analysis of Eq. (2.2e) such that lims→∞Hod(s) = 0. The SRG evolution is then iterated

until
dH(s)
ds = 0. Some notable generators include the White, Imaginary-time, and Wegner

generators [20].

Although we truncatedH at the three-body level, Eq. (2.2e)’s commutator induces many-

body forces above the three-body level in
dH(s)
ds . If there are A particles in the system of

interest,
dH(s)
ds will contain operator ranks up the the A-body level. These induced higher-

body operators are not only computationally troublesome to handle, but can also have

important effects on the convergence and unitarity of the SRG in many-body systems [19].

Therefore, we are motivated to find alternatives that avoid the explicit handling of such

induced higher-body operators. This leads us to the IMSRG, which we turn to next.

5The flow parameter s, should not be confused with the generic single-particle index s—since the latter
will always be shown as a subscript.

6In the matrix formulation of the SRG, Hd (s) and Hod (s) correspond to the conventional definition
of diagonal and off-diagonal matrices of H in a given basis, respectively [19]. In this work, the notions
of “diagonal” and “off-diagonal” are kept general. This is will convenient when we employ the minimal
decoupling scheme in Subsection 2.2.2.
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2.2 IMSRG Theory

The IMSRG improves on the SRG by rewriting H = H(0) exactly into a normal-ordered

form, based on a Hartree-Fock reference state—called the Fermi vacuum |Φ⟩ [20].7

H = E +
∑
pq

fpq : a
†
paq : +

1

4

∑
pqrs

Γpqrs : a
†
pa
†
qasar : (2.3a)

+
1

36

∑
pqrstu

Wpqrstu : a
†
pa
†
qa
†
rauatas :

E =
∑
q

Tqq nq +
1

2

∑
qr

V
(2)
qrqr nqnr +

1

6

∑
qrs

V
(3)
qrsqrs nqnrns (2.3b)

fpq = Tpq +
∑
r

V
(2)
prqr nr +

1

2

∑
rs

V
(3)
prsqrs nrns (2.3c)

Γpqrs = V
(2)
pqrs +

∑
t

V
(3)
pqtrst nt (2.3d)

Wpqrstu = V
(3)
pqrstu ∀ pqrstu. (2.3e)

: a†a† . . . aa : denotes the normal-ordered form of a†a† . . . aa with respect to |Φ⟩, such that

⟨Φ| : a†a† . . . aa : |Φ⟩ = 0. And np = θ(ϵFermi − ϵp) is the occupation of the pth single-

particle state with energy ϵp embedded in |Φ⟩ with energy ϵFermi. Since H is normal-

ordered relative to |Φ⟩, H(s) and η(s) are likewise normal-ordered relative to |Φ⟩.8 Therefore,

the commutator in Eq. (2.2e) is written to act on normal-ordered operators using Wick’s

theorem [10,15,19–21]. In conclusion, the IMSRG solves Eq. (2.2e) using a commutator that

acts on normal-ordered operators H(s) and η(s) [10].

By rewriting H into a normal-ordered form in Eq. (2.3), we propagate terms from T ,

7When modeling infinite nuclear matter, fia = fai = 0 is guaranteed in Eq. (2.3c) due to momentum
conservation seen in Eqs. (2.15) and (2.17). Therefore, Hartree-Fock conditions on f are automatically
satisfied [19].

8See Eqs. (2.4a–2.4c).
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V (2), and V (3) into their respective lower operator ranks of H. This is the appeal of normal-

ordering. If the target wavefunction |Ψ⟩, of H is approximated well by |Φ⟩, we can truncate

induced high-body forces while mitigating the violation of unitarity. Simply stated—for

example, the IMSRG allows the inclusion of three-body forces without explicitly evolving

three-body operators [15,19].

In this work, we utilize the IMSRG(2) scheme—meaning that all IMSRG operators and

induced commutators are truncated at the two-body level. The IMSRG(2) truncation is

employed because the computational cost needed to store and evolve three-body operators

at scale is immense. Additionally, we utilize two normal-ordering truncation schemes denoted

“normal-ordered 2NF” and “normal-ordered 3NF.” Within the normal-ordered 2NF scheme,

H is truncated at the two-body level by assuming V (3) = 0 in Eq. (2.3). Within the normal-

ordered 3NF scheme, V (3) is preserved in Eqs.(2.3b)–(2.3e). Consequent to the IMSRG(2)

truncation, W is however, discarded in Eq. (2.3a). Thus, we render the V (3) dependence

in W , inconsistent with the V (3) dependence in E, f , and Γ. Hence, the IMSRG(2) +

normal-ordered 3NF scheme certainly violates unitarity. Despite this drawback, three-body

correlations are still propagated to the lower operator ranks E, f , and Γ.

The IMSRG(2) scales roughly as N6
orbitals, where Norbitals is the number of single-particle

orbitals. The next level of truncation, the IMSRG(3), is intractable for large scale problems

as it scales as N9
orbitals. However, recently Stroberg, Morris and He introduced an approxi-

mate IMSRG(3) scheme that captures the dominant three-body correlations and only scales

as N7
orbitals [22]. Going forward, insights from Stroberg et al. [22] will likely improve the

handling of three-body correlations in this work. Lastly, note that the IMSRG(2) + normal-

ordered 3NF scheme can also be called the IMSRG(2) with density-dependent three-body
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nuclear forces (DD3NF).9

2.2.1 Flow Implementation

Within both normal-ordered 2NF and 3NF IMSRG(2) schemes, H(s),
dH(s)
ds , and η(s) are

given by10

H(s) = E(s) +
∑
pq

fpq(s) : a
†
paq :︸ ︷︷ ︸

f(s)

+
1

4

∑
pqrs

Γpqrs(s) : a
†
pa
†
qasar :︸ ︷︷ ︸

Γ(s)

(2.4a)

dH(s)

ds
=
dE(s)

ds
+
∑
pq

dfpq(s)

ds
: a
†
paq : +

1

4

∑
pqrs

dΓpqrs(s)

ds
: a
†
pa
†
qasar : (2.4b)

η(s) = scalar +
∑
pq

ηpq(s) : a
†
paq : +

1

4

∑
pqrs

ηpqrs(s) : a
†
pa
†
qasar : . (2.4c)

Utilizing Eqs. (2.2e, 2.4a–2.4c), and derived expressions for commutators of normal-ordered

operators from Hergert et al. [10], a set of coupled differential equations for the individual

body-operator components of
dH(s)
ds —i.e.

dE(s)
ds ,

df(s)
ds , and

dΓ(s)
ds —called “flow equations,”

9In Eqs.(2.3b)–(2.3d), V (3) enters E, f , and Γ with occupation factors (density matrices).
10The zero-body component of η(s) does not affect the dynamics of the IMSRG. Since it is has no physical

relevance, it is usually neglected.
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can be derived [10,15,19,20].11

dE

ds
=
∑
pq

(
nq − nr

)
× ηpqfqp +

1

2

∑
pqrs

npnqn̄rn̄s × ηpqrsΓrspq (2.5a)

dfpq
ds

=
∑
r

(
1 + Ppq

)
× ηprfrq +

∑
rs

(
nr − ns

)
×
(
ηrsΓsprq − frsηsprq) (2.5b)

+
1

2

∑
rst

(
nrnsn̄t + n̄rn̄snt

)
×
(
1 + Ppq

)
× ηtprsΓrstq

dΓpqrs
ds

=
∑
t

(
1− Ppq

)
×
(
ηptΓtqrs − fptηtqrs

)
(2.5c)

−
∑
t

(
1− Prs

)
×
(
ηtrΓpqts − ftrηpqts

)
+

1

2

∑
tu

(
1− nt − nu

)
×
(
ηpqtuΓturs − Γpqtuηturs

)
−
∑
tu

(
nt − nu

)
×
(
1− Ppq

)
×
(
1− Prs

)
× ηuqtsΓtpur .

Note that the flow parameter s, is suppressed in Eq. (2.5) for brevity. The permutation

operators Ppq and Prs, exchange indices on their operand; e.g., Ppq×ηuqtsΓtpur ≡ ηuptsΓtqur.

And np ≡ 1− np.

In this work, we chose to instead solve the flow implementation of the IMSRG directly

in Eq. (2.2e)’s form, on the condition that η(s) and H(s) are normal-ordered relative to |Φ⟩.

Thus, we let our highly optimized commutators handle the tensor contractions between the

body-operator components of η(s) and H(s) seen in the RHS of Eq. (2.5) (see Listing 3.1).

The flow equation is numerically integrated with high-order adaptive ordinary differential

equation solvers to preserve the unitary equivalence between H and H(s). Such high-order

solvers require the storage of multiple solution vectors calculated at different step sizes. The

flow implementation of the IMSRG can therefore be memory expensive, especially in large

11Heinz et al. [15] notably corrected some expressions of three-body commutators from Hergert et al. [10].
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systems [20]. And the flow equations can become stiff when using potentials with a hard core

[19]. Lastly, the flow equation was specifically engineered to evolve H(s). Therefore, we must

simultaneously evolve other operators beyond H(s) to obtain observables beyond energies

[20]. This is prohibitively expensive since the IMSRG solution vector doubles in size for

each additional operator that is evolved. Observables beyond E(s) may converge at different

time scales than E(s). This would introduce complications in our performance tuning of

the IMSRG, since we would like to avoid storing and evolving operators for observables that

are effectively converged. We look towards the Magnus expansion to cure some of these

aforementioned ailments.

2.2.2 Magnus Expansion

We seek to describe the Magnus formulation of the IMSRG, denoted “Magnus-IMSRG,”

which bypasses some issues of the IMSRG flow implementation [20]. Multiplying both sides

of Eq. (2.2d) with U(s), the SRG/IMSRG dynamics can be rewritten

η(s)U(s) =
dU(s)

ds
. (2.6)
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If the Magnus expansion is convergent, one can write U(s) = eΩ(s) where Ω(s) = −Ω(s)†

and Ω(0) ≡ 0. And Ω(s) is obtained by numerically integrating the Magnus series [20]:

Ω(s) =
∑
pq

Ωpq(s) : a
†
paq : +

1

4

∑
pqrs

Ωpqrs(s) : a
†
pa
†
qasar : (2.7a)

dΩ(s)

ds
=
∞∑

m=0

bm
m!

[
Ω(s), η(s)

](m)
(2.7b)

[
Ω(s), η(s)

](m)
≡

[
Ω(s),

[
Ω(s), η(s)

](m−1)]
, ∀m > 0 (2.7c)

[
Ω(s), η(s)

](0)
≡ η(s) , (2.7d)

where bm are Bernoulli numbers of the 1st-kind. Eq. (2.7b) can be integrated with a 1st-

order Euler solver with the benefit of H(s) being unitarily equivalent to H, regardless of

errors incurred in Ω(s) [20].12 And the unitary transformed Hamiltonian H(s), is given by

the Baker-Campbell-Hausdorff (BCH) formula

H(s) = eΩ(s)H(0)︸ ︷︷ ︸
H

e−Ω(s) =
∞∑

m=0

1

m!

[
Ω(s), H(0)

](m)
. (2.8)

In this work, we utilize the minimal decoupling scheme detailed by Jensen et al. [19]

to eliminate all one-particle-one-hole (1p1h) excitations
∣∣Φa

i

〉
, and 2p2h excitations

∣∣∣Φab
ij

〉
,

generated by H acting once on |Φ⟩.13 We work in the single reference picture [19]; and the

12While a nice feature, the built-in unitarity of the Magnus-IMSRG does not permit arbitrarily large
errors in Ω(s). This may yield divergent calculations of H(s) that are although unitary, but do not yield
physically meaningful observables.

13Although we describe the minimal decoupling scheme in this subsection, its use is not restricted to the
Magnus-IMSRG. It can also be applied to the flow implementation of the IMSRG [19].
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off-diagonal sectors of H(s) are given by

Hod(s) =
∑
ai

⟨Φ|H(s) |Φa
i ⟩ : a

†
aai : +

1

4

∑
abij

〈
Φ
∣∣∣H(s)

∣∣∣Φab
ij

〉
: a
†
aa
†
bajai : + H.c. (2.9)

where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (2.9). Note

that ⟨Φ|H(s)
∣∣Φa

i

〉
= 0 in infinite nuclear matter—due to momentum conservation seen in

Eqs. (2.15) and (2.17) in conjunction with Eq. (2.3c).14 Therefore, |Φ⟩ is a Hartree-Fock

reference state. Figure 2.1 illustrates that so long the ground state wavefunction
∣∣Ψg.s

〉
, of

H is approximated well by |Φ⟩, we can obtain the ground state energy of H by employing

the minimal decoupling scheme. Consequently,

∣∣Ψg.s
〉
= lim

s→∞
e−Ω(s) |Φ⟩ . (2.10)

If the Magnus-IMSRG is convergent—i.e. lims→∞Hod(s) = 0, we take the scalar component

of lims→∞H(s) as the ground state energy of H

Eg.s ≡
〈
Ψg.s

∣∣H ∣∣Ψg.s
〉
= lim

s→∞
⟨Φ| eΩ(s)He−Ω(s) |Φ⟩ (2.11)

= ⟨Φ| lim
s→∞

H(s) |Φ⟩ =

{
lim
s→∞

H(s)

}
0−body

= lim
s→∞

E(s) .

Therefore, E(s) approximates Eg.s; and lims→∞E(s) is the ground state energy of H. For

brevity in this work, we sometimes employ the notation: E(∞) ≡ lims→∞E(s).

Figure 2.2 shows iterative IMSRG(2) approximations of the ground state energy. And

the zero temperature (T = 0) equation-of-state (EOS) is taken as the converged IMSRG

ground state energy per particle E(∞)/A, over various particle densities ρ. Figure 2.2

14The flow equations also preserve momentum conservation.

12



Figure 2.1: Schematic of the ground state decoupling of H carried out by the IMSRG(2)
within the single-reference context. H is represented in a basis spanned by Slater determinant
|Φ⟩, and its particle-hole excitations

∣∣Φa...
i...

〉
. In the limit of s→∞, the IMSRG(2) eliminates

the coupling of |Φ⟩ to
∣∣Φa

i

〉
and

∣∣∣Φab
ij

〉
through H. Since H is truncated at the two-body level

in Eq. (2.4a), it can generate at most 2p2h excitations by acting once on |Φ⟩. Consequently,
the ground state energy of H is given by ⟨Φ| lims→∞H(s) |Φ⟩. This figure is obtained
courtesy of Jensen et al. [19].
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Figure 2.2: Iterative IMSRG(2) approximations to the ground state energy of H for sym-
metric N = Z = 66 nuclear matter at density ρ = 0.11 fm−3. This calculation is done in a
model space of size Norbitals = 3700. We include MBPT(2) correlations ∆E(2)(s). Notice

that lims→∞∆E(2)(s) = 0. Therefore, the IMSRG obviates MBPT(2) correlations as it
converges in s.
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includes 2nd-order Many-Body Perturbation Theory (MBPT) correlations from H(s) to

demonstrate that the IMSRG eliminates said correlations in the limit of s→∞. Therefore,

the IMSRG generates a unitary equivalent H(∞), to H, such that 2nd-order MBPT on

H(∞) is converged [10].

We utilize the Magnus-IMSRG in this work due to its many appealing features.15 By

using a 1st-order Euler solver, the Magnus-IMSRG bypasses the needed storage of multiple

solution vectors used by high-order solvers [20]. Once lims→∞Ω(s) is computed, it permits

unitary transformations to obtain observables of interest beyond energies [20]. Lastly, sim-

ilarities between the Magnus-IMSRG and Unitary Coupled-Cluster theory (UCC) inspire

novel IMSRG generators seen in Chapter 5 of this work.

2.3 Modeling Infinite Nuclear Matter in a Cubic Box

All operators in this work are represented within an infinite matter basis. In this section,

we describe the single-, two-, and three-particle bases—which comprise the infinite matter

basis.

2.3.1 Single-Particle Basis

We model nuclear matter following the work of Jensen et al. [19]. All calculations in this

work are performed in a finite 3-dimensional box of volume V = L3
[
fm3
]
with periodic

boundary conditions, containingN identical neutrons and Z identical protons.16 The density

of particles in the box is given by ρ = A/V
[
fm−3

]
, where A = N + Z. The single-particle

15All IMSRG results in this work are procured using the Magnus-IMSRG formulation.
16We use periodic boundary conditions to model an infinite system. Also, L denotes the box-size.
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basis is composed of normalized plane wave states:

ψ
k⃗, σz, τz

(r⃗) =
e−ik⃗·r⃗√
V︸ ︷︷ ︸〈

k⃗
∣∣∣r⃗〉
× |σz⟩ × |τz⟩ , (2.12)

|σz = 1⟩ = |↑⟩ , |σz = 0⟩ = |↓⟩ ,

|τz = 1⟩ = |↑⟩ , |τz = 0⟩ = |↓⟩ ,

k⃗ =
2π

L
n⃗, ∥n⃗∥2 ≤ Nmax, n⃗ ∈ Z3 .

|σz⟩, and |τz⟩ are spin and isospin projection states on the z-axis. τz = 1 labels proton

states, while τz = 0 labels neutron states. And Nmax ≥ 0 is a proxy for the upper-bound

of momenta k⃗, in the basis. We work in spin unpolarized systems; therefore, each orbital

is at least 2-fold degenerate. Our basis is also isospin unpolarized, so long min(N,Z) > 0.

If min(N,Z) = 0, we can work in an isospin polarized basis—if we can guarantee that all

body-operators built on top of the basis will conserve total charge. By storing only isospin

polarized orbitals, we reduce the overall basis size by a factor of 2. Furthermore, each orbital

ψ
k⃗, σz, τz

(r⃗), has an associated kinetic energy ϵ
k⃗, σz, τz

, dependent on the nucleon mass mτz

ϵ
k⃗, σz, τz

=
(ℏc)2

2mτz
k⃗ · k⃗ . (2.13)

mτz=1 = 938.272 MeV, and mτz=0 = 939.565 MeV. And each orbital ψ
k⃗, σz, τz

(r⃗), has an

associated occupation number Occ
k⃗, σz, τz

—which measures the number of particles located

in its respective orbital. This work is done at zero temperature; therefore, the occupation of

all orbitals is binary.
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Nmax is used to truncate the size of the single-particle basis into a closed shell structure.17

A shell is a collection of orbitals with the same kinetic energies. Every shell has an associated

modevector n⃗Shell such that ∥n⃗Shell∥2 ≤ Nmax. We choose to either completely fill each

shell with particles, or leave each shell empty. This is done to model the wavefunction when

it is believed to have a closed shell structure. N and Z are magic numbers with sample

values: 0, 2, 14, 38, 54, 66, 114, 162, 186, 246, 294, 342, 358, 406, 502, 514, . . . .18 And,

the total number of single-particle states in the basis is denoted Norbitals. We include an

example single-particle basis in Table 2.1. Notice, we fill our basis such that all nucleons

sit in orbitals with the lowest possible energies consistent with the Pauli exclusion principle.

This is done to model the ground state wavefunction. Thus, the basis contains baked-in

information regarding the overall system’s wavefunction.

Table 2.1: Single-particle basis with Norbitals = 76 containing N = 2 and Z = 14 nucleons
in a box sized L = 4.308 fm at density ρ = 0.20 fm−3.

Index Occ nx ny nz σz τz k
[
fm−1

]
ϵ
[
MeV

]
0 1 0 0 0 ↓↑ ↓ 0.000 0.000

2 1 0 0 0 ↓↑ ↑ 0.000 0.000

4 1 -1 0 0 ↓↑ ↑ 1.458 44.121

6 1 0 -1 0 ↓↑ ↑ 1.458 44.121

8 1 0 0 -1 ↓↑ ↑ 1.458 44.121

10 1 0 0 1 ↓↑ ↑ 1.458 44.121

12 1 0 1 0 ↓↑ ↑ 1.458 44.121

14 1 1 0 0 ↓↑ ↑ 1.458 44.121

17Practically, we must truncate the number of orbitals in our basis. This introduces artifacts in our
many-body calculations that we try to minimize using a large number of orbitals.

18Practically, we must truncate the number of particles in our basis. This introduces finite-size artifacts
in our many-body calculations. See Subsection 2.3.3 for how we address this issue.
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Table 2.1 (cont’d)

Index Occ nx ny nz σz τz k
[
fm−1

]
ϵ
[
MeV

]
16 0 -1 -1 0 ↓↑ ↑ 2.062 88.242

18 0 -1 0 -1 ↓↑ ↑ 2.062 88.242

20 0 -1 0 1 ↓↑ ↑ 2.062 88.242

22 0 -1 1 0 ↓↑ ↑ 2.062 88.242

24 0 0 -1 -1 ↓↑ ↑ 2.062 88.242

26 0 0 -1 1 ↓↑ ↑ 2.062 88.242

28 0 0 1 -1 ↓↑ ↑ 2.062 88.242

30 0 0 1 1 ↓↑ ↑ 2.062 88.242

32 0 1 -1 0 ↓↑ ↑ 2.062 88.242

34 0 1 0 -1 ↓↑ ↑ 2.062 88.242

36 0 1 0 1 ↓↑ ↑ 2.062 88.242

38 0 1 1 0 ↓↑ ↑ 2.062 88.242

40 0 -1 0 0 ↓↑ ↓ 1.458 44.060

42 0 0 -1 0 ↓↑ ↓ 1.458 44.060

44 0 0 0 -1 ↓↑ ↓ 1.458 44.060

46 0 0 0 1 ↓↑ ↓ 1.458 44.060

48 0 0 1 0 ↓↑ ↓ 1.458 44.060

50 0 1 0 0 ↓↑ ↓ 1.458 44.060

52 0 -1 -1 0 ↓↑ ↓ 2.062 88.121

54 0 -1 0 -1 ↓↑ ↓ 2.062 88.121

56 0 -1 0 1 ↓↑ ↓ 2.062 88.121

58 0 -1 1 0 ↓↑ ↓ 2.062 88.121

60 0 0 -1 -1 ↓↑ ↓ 2.062 88.121
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Table 2.1 (cont’d)

Index Occ nx ny nz σz τz k
[
fm−1

]
ϵ
[
MeV

]
62 0 0 -1 1 ↓↑ ↓ 2.062 88.121

64 0 0 1 -1 ↓↑ ↓ 2.062 88.121

66 0 0 1 1 ↓↑ ↓ 2.062 88.121

68 0 1 -1 0 ↓↑ ↓ 2.062 88.121

70 0 1 0 -1 ↓↑ ↓ 2.062 88.121

72 0 1 0 1 ↓↑ ↓ 2.062 88.121

74 0 1 1 0 ↓↑ ↓ 2.062 88.121

2.3.2 Two- and Three-Particle Bases

The two- and three-particle bases are subsequently built on top of the single-particle basis.

The two-particle basis stores all tuples (p, q) ∀ pq, and categorizes them into blocks that

conserve symmetries of the two-body Hamiltonian. Particularly, two-particle blocks contain

two-particle states (p, q) and (r, s) such that

(τz)p + (τz)q = (τz)r + (τz)s, (2.14)

k⃗p + k⃗q = k⃗r + k⃗s ∀ pqrs. (2.15)

Likewise, the three-particle basis stores all triples (p, q, r) ∀ pqr, and categorizes them into

blocks that conserve symmetries of the three-body Hamiltonian. Particularly, three-particle
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blocks contain three-particle states (p, q, r) and (s, t, u) such that

(τz)p + (τz)q + (τz)r = (τz)s + (τz)t + (τz)u, (2.16)

k⃗p + k⃗q + k⃗r = k⃗s + k⃗t + k⃗u ∀ pqrstu. (2.17)

The two- and three-particle blocks are then used to create block matrices of two- and three-

body operators seen in Chapter 3.19 The two- and three-particle bases also store metadata

such as the numbers and locations of two- and three-particle states for our IMSRG program’s

administration.

2.3.3 Errors Due to Finite Size and Incomplete Basis Sets

To obtain many-body quantities that are free from finite size and incomplete basis set arti-

facts, we must approach the thermodynamic and complete basis set limit [23]. Approaching

the thermodynamic limit requires the use of a sufficiently large number of particles at fixed

particle density. Likewise, approaching the complete basis set limit requires the use of a

sufficiently large number of single-particle orbitals. IMSRG calculations with large parti-

cle numbers and basis sizes are computationally expensive. Therefore, we must balance

the need to maximize particle numbers and basis sizes, with constraints from our available

computational resources. Although we do not study how finite size and finite basis errors

affect equation-of-state calculations in this work, we take reasonable measures to reduce

such errors. Equations-of-state are computed in Chapter 4 using A = 66 and A = 132

in pure neutron and symmetric matter, respectively. This is done following Hagen et al.’s

observation that finite size artifacts are particularly small in pure N = 66 neutron and sym-

19The single-particle basis is also used to create one-body operators composed of one matrix block with
shape Norbitals ×Norbitals.
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metric N = Z = 66 matter [23].20 Moreover, we perform IMSRG calculations with large

values of Norbitals, such that results are obtained within days, using < 1 terabyte memory

consumption.

2.4 Conclusion

We model an infinite lattice of nuclear matter, by placing nucleons in a finite-sized box

with periodic boundary conditions. This finite box contains states which form the basis

of our calculations. Nuclear Hamiltonians are thus, represented within the infinite matter

basis, and diagonalized using the IMSRG to extract ground state energies of nuclear matter.

Therefore, we can obtain zero temperature nuclear equations-of-state, by computing ground

state energies that are normalized to the number of nucleons in our model—over various

nucleon densities. In the following chapter, we describe the IMSRG program that is used to

extract nuclear equations-of-state.

20We only utilize periodic boundary conditions in this work. Following insights from Hagen et al., it might
be lucrative to implement twist-averaged boundary conditions—to further reduce finite size effects [23].
We also have the computational horsepower to perform A ∼ 1000 IMSRG(2) calculations—which have
significantly less finite size effects than their A ∼ 132 counterparts [23]. However, we believe such calculations
might require significantly more orbitals than their A ∼ 132 counterparts—to sufficiently reduce incomplete
basis set artifacts. Thus, we consider A ∼ 1000 EOS calculations in this work to be preliminary.
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Chapter 3. Nuclear Matter IMSRG Program

“You think too much. Why

not go do something?”

—Donald Fear

We need high performant and reliable codes to achieve our physics objectives. Therefore, we

have developed a C++ IMSRG program (dubbed “SCKY-IMSRG”) that calculates ground

state energies of nuclear matter with the following features:1

1. Carefully designed—verbose, unit-tested, and sufficiently general for future needs

2. Compatible with various proton fractions Z/A, and extendable to other systems (e.g.

finite nuclei, e− gas)

3. Based on Eigen C++ library with BLAS, Intel MKL, OpenMP multi-threading, and

The Message Passing Interface (MPI) support2

4. Optimized for high-performance calculations: ∼ 10 hour runtime and < 1 terabyte

memory consumption for A = 132 and Norbitals ∼ 3700, without three-body forces

5. Integrated with a variety of chiral forces from Drischler et al. [1], including density-

dependent three-body forces

6. Equipped with canonical and novel generators from Chapter 5

7. Equipped with Shanks + Padé extrapolators from Chapter 6

8. Modernized with automated data compilation—file parsing for plots

We detail the most salient components of the SCKY-IMSRG in this chapter.

1The name SCKY-IMSRG is chosen as a homage to the founders of this project: Yani Udiani, Kang Yu,
Christian Drischler and Scott Bogner; and the incredible journey we took to complete it.

2Although available, MPI is not used in this project. Our MPI implementation in the SCKY-IMSRG
assumes that all nodes store all IMSRG operators. Given the high memory demands needed just to do a
single large-scale IMSRG calculation on one node, the use of MPI with multiple nodes is intractable in this
project.
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3.1 SCKY-IMSRG Program Output

We include a sample program output below:3

cmd: ./imsrg -N 66 -Z 0 -gen born -rho 0.12 -numshells 1

hostname: Urmum

date (month/day/year): 10/08/2024 : 15:04:23

Warning: EOS_NNPWBASEPATH hasn’t been set.

Warning: EOS_NNEFFPWBASEPATH hasn’t been set.

+++++++++++++++++++++++++++++++++++

overall configuration

+++++++++++++++++++++++++++++++++++

N....................................................66

Z.....................................................0

numShells.............................................1

rho................................................0.12

temperature...........................................0

ConserveTz............................................1

usePH.................................................1

boxDimension..........................................3

ds....................................................1

ODE_threshold.....................................1e-06

useSCKYTrunc..........................................0

saveMISCResults.......................................0

noIMSRG...............................................0

bornOrder.............................................5

genRefOrder..........................................14

genTargOrder.........................................14

generator_choice......................................6

imsrgRunConfig........................................0

3One might wonder why MBPT before the IMSRG starts differs from MBPT at s = 0. This is because
we employ a generalized form of MBPT during the IMSRG seen in Appendix H—which depends on the
chosen IMSRG generator. Standard MBPT can be restored using White’s generator.
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imsrgSolver...........................................0

useSCKYInteraction....................................1

interaction...............................OptimizedN2LO

[NOTIFICATION]: Anti-symmetrized components of all BodyOps will be omitted.

--------------------------------------------------------------------------------------------------------------

----------------------------------------- SINGLE PARTICLE BASIS INFO -----------------------------------------

Neutron number (N): 66

Proton number (Z): 0

Total particle number (A): 66

Neutron fraction (xn): 1

Proton fraction (xp): 0

[NOTIFICATION]: Only storing neutron containing orbitals.

[ACTION]: Generating and populating single particle states (SPS)...

[SUCCESS!]: The single particle basis (SPB) has been constructed.

[UNIT SYSTEM]: Length[fm], Density[fm^-3], Momentum[fm^-1], Mass/Energy[MeV]

[NOTIFICATION]: Using SPB composed of plane waves in a 3-D box with periodic boundary conditions.

Number of shells above max(N,Z) occupied orbits (numShells): 1

SPS obtained using box cutoff: n_x^2 + n_y^2 + n_z^2 <= nmax

Number of single particle states (numSPS): 114

Box size (L): 8.19321271 [fm]

Particle density (A/L^3): 0.12000000 [fm^-3]

Neutron fermi momentum (kfn): 1.53375374 [fm^-1], 302.65099380 [MeV]

Momentum cutoff (kmax): 1.71478881 [fm^-1], 338.37409780 [MeV]

Modevector cutoff: 2 1 0

[NOTIFICATION]: All 66 fermions have the lowest possible kinetic energies consistent with the

exclusion principle.

--------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------

[NOTIFICATION]: When handling: Two Particle Basis.

The 2-particle basis has been successfully constructed!
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Number of stored physical 2-particle states: 6441

Number of blocks in the 2-particle basis: 341

Time taken to create standard basis --- 18.669 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H

This 0.003973 [GB] HamiltonianOp is populating itself up to at most the 2-Body level.

Time taken to populate HamiltonianOp --- 135.176 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H

This ABodyOp is normal ordering itself at the 2-Body level.

Time taken to normal order ABodyOp --- 0.378 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H

Measuring how much this ABodyOp deviates from its stated hermiticity.

||H[0]-H[0]^{dag}|| = 0.000000000000

||H[1]-H[1]^{dag}|| = 0.000000000000

||H[2]-H[2]^{dag}|| = 0.000000000000

||H-H^{dag}|| = 0.000000000000

[NOTIFICATION]: When handling: A-Body Operator: H

Printing available norms over this ABodyOp’s differing sectors.

||H[0]|| = 892.54185704

||H[1]|| = 316.91701542, ||H[1]_ai|| = 0.00000000, ||H[1](p!=q)|| = 0.00000000

||H[2]|| = 415.26158947, ||H[2]_abij|| = 111.54291337, ||H[2]_abcj+ijka|| = 258.75293935,

||H[2]_iajb|| = 204.29038345, ||H[2]_abcd|| = 98.37469423, ||H[2]_ijkl|| = 204.04690958

[NOTIFICATION]: When handling: MBPT solver.

Doing many body perturbation theory up to 3rd order.

-------------------------------------------

E_{Reference} / A = (13.52336147,0.00000000)

dE2 / A = (-0.35265909,-0.00000000)

dE3 / A = (0.07796819,-0.00000000)

E_{Correlation} / A = (-0.27469090,-0.00000000)

(E_{Reference} + dE2) / A = (13.17070238,-0.00000000)

(E_{Reference} + dE) / A = (13.24867057,-0.00000000)

Time taken to do MBPT --- 55.860 --- milliseconds.
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[NOTIFICATION]: When handling commutator routine.

Constructing particle-hole basis.

Time taken to construct the particle-hole basis --- 40.622 --- milliseconds.

Using mirror block symmetry in particle-hole commutators.

[NOTIFICATION]: When handling: A-Body Operator: Eta

Generating Born generator.

Born series order: 5

[NOTIFICATION]: When handling: IMSRG ODE Solver.

All 10 needed A-Body operators have been created costing a total 0.043906 [GB].

Time taken to construct operators and commutator --- 208.859 --- milliseconds.

Initiating IMSRG(2) evolution...

Flow (s) E/A (E+DE2)/A (E+DE2+DE3)/A Shanks(1) Pade ||Eta[2]|| ||Gammaod||

-----------------------------------------------------------------------------------------------------------

0.00000000 13.52336147 13.22700538 13.26500506 13.22700538 13.22700538 1.52374776 111.54291337

1.00000000 13.23030104 13.23009147 13.23008626 13.23009147 13.23009219 0.05139831 2.33940529

2.00000000 13.23011774 13.23011762 13.23011761 13.23011785 13.23011785 0.00134170 0.04758731

Correlation energy per particle: -0.29324373

Nonperturbativity (smaller is better): 0.40019827

Time taken to perform IMSRG transformations --- 913.521 --- milliseconds.

[NOTIFICATION]: When handling commutator routine.

Printing any existing performance statistics:

-----------------------------------------------------------------------------------------------------------

Commute(): 35 calls | <duration> = 25.6995 milliseconds | total duration = 899.4820 milliseconds

Commute1_1_0(): 16 calls | 0.0288 % of total duration

Commute1_1_1(): 16 calls | 2.2612 % of total duration

Commute1_2_2(): 32 calls | 0.9749 % of total duration

Commute2_2_0(): 32 calls | 0.1937 % of total duration

Commute2_2_1(): 26 calls | 31.1108 % of total duration
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Commute2_2_2(): 29 calls | 65.0163 % of total duration

Commute2_2_2_Ladder(): 29 calls | 48.4970 % of total duration

Commute2_2_2_Ladder()’s DotProd(): 29 calls | 47.5244 % of total duration

Commute2_2_2_Ladder()’s hermitize: 29 calls | 0.4340 % of total duration

Commute2_2_2_PH(): 29 calls | 16.5101 % of total duration

Commute2_2_2_PH()’s DotProd(): 29 calls | 13.9360 % of total duration

PH-Transform: 29 calls | 1.0833 % of total duration

PH-Inverse Transform: 29 calls | 1.4822 % of total duration

Anti-Symmetrization: 26 calls | 0.0002 % of total duration

BornSeriesCommute(): 10 out of 35 Commute() calls | 35.6947 % of total duration

MBPT(2) Commute(): 6 out of 35 Commute() calls | 0.0481 % of total duration

MBPT(3) Commute(): 3 out of 35 Commute() calls | 3.7414 % of total duration

There were 2 Anti-Hermitian commute calls.

There were 33 Hermitian commute calls.

Operators for approximate particle-hole cost a total 0.00824678 [GB].

[NOTIFICATION]: When handling: Rank 2-Body Operator: 1st Internal Commutator Temporary

Printing distribution of blocks:

There are a total of 235337 matrix elements.

There are 24 blocks shaped (1, 1)

There are 60 blocks shaped (4, 4)

There are 72 blocks shaped (8, 8)

There are 6 blocks shaped (9, 9)

There are 24 blocks shaped (12, 12)

There are 8 blocks shaped (13, 13)

There are 54 blocks shaped (20, 20)

There are 12 blocks shaped (25, 25)

There are 48 blocks shaped (36, 36)

There are 6 blocks shaped (45, 45)

There are 8 blocks shaped (52, 52)

There are 12 blocks shaped (68, 68)

There are 6 blocks shaped (72, 72)

There is 1 block shaped (113, 113)

-----------------------------------------------------------------------------------------------------------

Time taken to run entire program --- 1.184 --- seconds.
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The SCKY-IMSRG is descriptive. For example, certain class instances are named. This is

because the code does runtime checks, and alerts the user to information unique to each

instance. Care is taken to ensure that runtime checks do not affect the program’s perfor-

mance. These runtime alerts provide generic information, warnings, and errors. Alerts with

named class instances are incorporated to help developers pinpoint sources of runtime errors,

or worse yet, unusual behaviour. Although mundane, a logging system is important to give

developers runtime debugging tools, in addition to confidence that the program is working

as intended.

3.2 Big Data Management: Parsing IMSRG Outputs

Each IMSRG output contains a trove of interesting data. Moreover, a large amount of

IMSRG output files are created when generating the EOS. It is thus paramount that data

are properly labeled, sorted, and accessible to everyone with access to the project. To

achieve these goals, the SCKY-IMSRG is equipped with scripts that label and parse all

program outputs, aggregate parsed data, and plot quantities of interest such as the EOS,

performance statistics, and IMSRG flow data.

3.3 Nuclear Forces

The SCKY-IMSRG contains momentum space representations of the One Pion Exchange

(OPE) [24], N2LOopt [23, 25],4 and Minnesota [17, 19] potentials—implemented directly

within a finite box. Moreover, the SCKY-IMSRG has wrappers to convert free space two-

4The SCKY-IMSRG uses wrappers to a Fortran implementation of N2LOopt in a finite box, proudly
stolen from Ekström et al. [23, 25].
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and three-body interactions from Drischler et al. [1], into their respective box representa-

tions (see Eq. (E.14)). Free space interactions from Drischler et al. [1] are obtained using the

partial wave expansion (PWE). And the machinery of Drischler et al. [1] has been validated

by comparing matrix elements of the One Pion Exchange interaction (OPE) summed into

a finite box using the PWE (see Eq. (E.12)) from Drischler et al. [1], to matrix elements

of OPE implemented directly in a finite box—seen in Eq. (D.21). See Appendices D and

E for additional details. Although the partial wave expansion is not directly utilized by

the SCKY-IMSRG, we include its derivation for two-body interactions in Appendix E. We

hope that Appendix E clarifies the derivation of the partial wave expansion given by Jensen

et al. [19]. In Appendix B, we derive momentum space representations—within a finite

box—of local interactions, originally given in coordinate space. Subsequently, we derive the

momentum space representation of the Minnesota potential [17] in Appendix C. Although

the Minnesota potential is not used in this work, it is included due its historical significance

in nuclear matter calculations [16,19,23]. And, we add a correction to its momentum space

representation within a finite box, given by Jensen et al. [19], by including the appropriate

error functions in Eq. (C.22).

3.4 SCKY-IMSRG Program Hierarchy

The SCKY-IMSRG creates an A-particle basis—which currently stores zero-, one-, two-, and

up to three-particle bases.5 The zero-particle basis contratrivially contains only one block

with one state (for scalars). The one-particle basis stores the physical single-particle states, in

addition to metadata such as the number of occupied (hole) and unoccupied (particle) states

5The three-particle basis is omitted if three-body operators are not present.
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in the system, with locations of hole and particle states. Data from the one-particle basis are

propagated to higher rank bases to form two- and three-particle states, and organize them

into blocks according to symmetries of the Hamiltonian—i.e. center-of-mass momentum

and charge conservation. Data stored in the A-particle basis are then propagated to the

programs’ many-body functions such as normal orderings, commutators, generators, and

norms for ground state decoupling. See Jensen et al. [19] and Hergert et al. [10] for more

details regarding these many-body functions.

ABodyOps (meaningA-body operators) are the foundational data structure of the SCKY-

IMSRG. Representing a linear combination of body-operators, each ABodyOp stores an ar-

ray of BodyOps. BodyOps (meaning body-operators) store blocks of complex-double Eigen

matrices of varying sizes. BodyOps contain block matrices to store only the symmetry pre-

serving parts of our operators—conserving memory. ABodyOps and BodyOps are imbued

with arithmetic operations for series expansions. And commutators are defined between

ABodyOps. ABodyOps are designed to abstract away administration of the individual body

components of the IMSRG (and UCC). For example, we solve the flow implementation of

the IMSRG directly in Eq. (2.2e)’s form, and the Magnus expansion in Eq. (2.7b)’s form.

By doing so, we let the commutators handle the individual components of ABodyOps—so

long the input ABodyOps are normal-ordered (see Listing 3.1). Thus, extensions to four-

and higher-body forces can be implemented without rewriting the SCKY-IMSRG’s admin-

istration. Users can specify the individual BodyOp components of an ABodyOp to be

constructed. Therefore, if an ABodyOp is guaranteed to only have one nonzero BodyOp,

users can only store that nonzero rank of the ABodyOp—conserving memory. Moreover, all

ABodyOps provide access to their individual BodyOps for users that need to work directly

with BodyOps.
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Operators in the SCKY-IMSRG are built with the following hierarchy:6

Hamiltonian Magnus Operator Generator

Transformer

Has access to commutators

ABodyOp

Inherit

In
h
er
it

In
h
er
it

In
he
rit

Data

Functions

❖ Name: “H”, “Omega”, “Eta”, “Richard”, ...

❖ A-particle basis

❖ Array of rank 0, 1, 2, ... -BodyOps

❖ Hermitized, normal-ordered and anti-symmetrized status

❖ Normal-ordering

❖ Commutators defined between ABodyOps

❖ Arithmetic: += (with ABodyOps), ∗= (with scalars), . . .

❖ Indexing operator [ ] to grab a particular BodyOp

❖ Norms, anti-symmetrization

6Commutators are actually defined outside of ABodyOps, but they could be placed inside the class!
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All BodyOps have the following design pattern:

BodyOp

Data

Functions

❖ Name: “E”, “f”, “Gamma”, “Brawndo”, ...

❖ Rank, number of blocks, and array of block sizes

❖ Array of Eigen::MatrixXcd:

❖ Arithmetic: += (with BodyOps), ∗= (with scalars), . . .

❖ Indexing operator [ ] to nab a particular matrix block

❖ Norms

Symmetry preserving

blocks
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Listing 3.1: Commutators handle the individual operator components of ABodyOps.

void Commutator::Commute(const ABodyOp &op1, const ABodyOp &op2, ABodyOp &buffer){

VerifyInputs(op1, op2, buffer);

PrepareBuffer(op1, op2, buffer);

const unsigned maxRank = pBasis−>maxRank;

const std::vector<unsigned> rankStatus1 = op1.GetRankStatus();

const std::vector<unsigned> rankStatus2 = op2.GetRankStatus();

for(unsigned i = 0U; i <= maxRank; i++){

for(unsigned j = 0U; j <= maxRank; j++){

if(rankStatus1[i] == 1U and rankStatus2[j] == 1U){

Commute(op1[i], op2[j], buffer);

}

}

}

}

Transformers are ABodyOps with access to commutators. And commutators are defined in

Listing 3.1. Using the ABodyOp data structure, series expansions involving nested commu-

tators of A-body operators (e.g. BCH and Magnus) become easily abstracted. We include

the transformation function used to compute the BCH and Magnus expansions in Listing 3.2.

Listing 3.2: Transform used by Transformers for expansions involving nested commutators

void Transformer::Transform(const ABodyOp &operand, ABodyOp &buffer,

const std::vector<double> &seriesCoeffs,

const std::vector<double> &coeffsForConvergenceCheck,

const unsigned rankForConvergenceCheck,

const double tolerance, const double seriesCoeffTolerance){

if(temps−>GetNumTemps() < 2U){

Error(std::string("Failure in Transformer::Transform(): temps only contains ")

+ std::to string(temps−>GetNumTemps())

+ std::string(" ABodyOps. A minimum of 2 is needed to store results "

"from the nested commutators.")

);

}
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if(seriesCoeffs.empty()){

Error("Failure in Transformer::Transform(): Input series has no coefficients.");

}

if(seriesCoeffs.size() != coeffsForConvergenceCheck.size()){

Error("Failure in Transformer::Transform(): "

"seriesCoeffs.size != coeffsForConvergenceCheck.size().");

}

if(&operand == &buffer and seriesCoeffs[0U] != 1.0){

Error("Failure in Transformer::Transform(): &operand == &buffer,"

" yet seriesCoeffs[0U] != 1.0.");

}

CollectionOfTemps &arrayOfTemps = ∗temps; // We’ll treat temps like an array!

const std::vector<double> &cvgCoeff = coeffsForConvergenceCheck;

const unsigned maxOrder = seriesCoeffs.size()−1U;

const unsigned rank = rankForConvergenceCheck;

// Set C = c_0 * B

buffer = operand;

buffer ∗= seriesCoeffs[0U];

// Run checks to see if we need to go past 0th order

if(maxOrder == 0U) {return;}

if(maxOrder == 1U and abs(seriesCoeffs[1U]) <= seriesCoeffTolerance) {return;}

// Now, compute 1st order adjoint = [A,B]

ABodyOp &adjoint = arrayOfTemps[0U];

commutator−>Commute(∗this, operand, adjoint);

if(maxOrder == 1U){

adjoint ∗= seriesCoeffs[1U];

buffer += adjoint;

return;

}

// Now, sum remaining terms into C

for(unsigned n = 2U; n <= maxOrder; n++){

ABodyOp &previousAdjoint = arrayOfTemps[n % 2U]; // Stores [A, B]^(n-1)
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ABodyOp &currentAdjoint = arrayOfTemps[(n + 1U) % 2U]; // Ready to store [A, B]^(n)

// Compute [A, [A, B]^(n-1)] if [A, B]^(n-1) != "0"

const auto prevNorm = abs(cvgCoeff[n−1U] ∗ previousAdjoint[rank].FrobeniusNorm());

if(prevNorm > tolerance){

commutator−>Commute(∗this, previousAdjoint, currentAdjoint);

}

// Sum: C += c_{n-1} * [A, B]^(n-1) if c_{n-1} != "0"

if(abs(seriesCoeffs[n−1U]) > seriesCoeffTolerance){

previousAdjoint ∗= seriesCoeffs[n−1U];

buffer += previousAdjoint;

}

// If [A, B]^(n-1) = "0", then the series has converged

if(prevNorm <= tolerance) {

break;

}

// If the series hasn’t yet converged, but we’re at n = maxOrder,

// sum: C += c_{maxOrder} * [A, B]^(maxOrder)

if(n == maxOrder){

if(abs(seriesCoeffs[maxOrder]) > seriesCoeffTolerance){

currentAdjoint ∗= seriesCoeffs[maxOrder];

buffer += currentAdjoint;

}

}

}

}

With these developments, the BCH and Magnus series are easily given by Listing 3.3 and

Listing 3.4, respectively.
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Listing 3.3: Implementation of BCH expansion

void Transformer::BCHOptimized(const ABodyOp &operand, ABodyOp &buffer) {

const unsigned maxOrder = 12U;

const double tolerance = 1.0e−4;

const unsigned rankForConvergenceCheck = 0U;

const double seriesCoeffTolerance = 1.0e−10;

const std::vector<double> expCoeffs = ExpXPowerSeriesCoeffs(maxOrder);

const std::vector<double> invFactorial = this−>ExpXPowerSeriesCoeffs(maxOrder);

this−>Transform(operand, buffer, expCoeffs, invFactorial,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);

}

Listing 3.4: Implementation of Magnus series

void MagnusOp::MagnusSeriesOptimized(const Generator &Eta, ABodyOp &dOmegads){

const unsigned maxOrder = 12U;

double tolerance = 1e−6;

const unsigned rankForConvergenceCheck = 2U;

const double seriesCoeffTolerance = 1.0e−10;

const std::vector<double> bernoulliCoeffs1stKind = BernoulliCoeffs1stKind(maxOrder);

const std::vector<double> invFactorial = this−>ExpXPowerSeriesCoeffs(maxOrder);

std::vector<double> coeffsForConvergenceCheck = invFactorial;

if(useMorrisBognerTruncation){

tolerance = 1e−4;

double normOmega = abs((∗this)[rankForConvergenceCheck].FrobeniusNorm());

if(normOmega == 0.0){ normOmega = 1.0;}

for(unsigned k = 0U; k <= maxOrder; k++) {

double bernoulliWeight = abs(bernoulliCoeffs1stKind[k]);

if(bernoulliWeight == 0.0){ bernoulliWeight = 1.0;}

coeffsForConvergenceCheck[k] ∗= bernoulliWeight / normOmega;

}

}

this−>Transform(Eta, dOmegads, bernoulliCoeffs1stKind, coeffsForConvergenceCheck,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);

}
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We denote the variable “tolerance” as ϵBCH = 1e−4 and ϵMagnus = 1e−4 in the BCH

and Magnus series, respectively. We truncate the BCH and Magnus expansions accord-

ing to Morris et al. [20]. The Magnus-IMSRG evolution is likewise, easily implemented in

Listing 3.5.

Listing 3.5: Implementation of Magnus-IMSRG Evolution

for (int i = 0; i < maxiterations; i++){

// Evolve

Omega−>MagnusSeriesOptimized(∗Eta, ∗dOmegads); // Eta initialized outside

∗dOmegads ∗= ds;

∗Omega += ∗dOmegads;

Omega−>BCHOptimized(H0, ∗Hs); // H0 is the original Hamiltonian being diagonalized

Eta−>Update(∗Hs);

// Extract energies

E = (∗Hs)[0U][0U](0,0);

mbptResultBuffer = Eta−>DEFromMBPT(∗Hs, useGeneralizedMBPT);

DE2 = mbptResultBuffer[2U];

DE3 = mbptResultBuffer[3U];

CheckForImagEnergies(E, DE2 + DE3);

// Print data

PrintFlowResults(i+1, ds, A);

// Convergence check

if (abs(DE2)/abs(E) < epsilon){ // MBPT(3) unused since it is generally bad for UCC generators

break;

}

}
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3.5 High-Performance Optimizations

It is essential to be efficient with memory and compute utilization to perform large-scale

IMSRG calculations. The SCKY-IMSRG is optimized to that effect. Although we forgo

including the internals of commutators between BodyOps in Listing 3.1 (for brevity), we

describe the many optimizations made to such commutators in this section.

Since we only work with anti-symmetrized two-body operators, we only store one quad-

rant of each operator. Consider a two-body operator O. We partition O into Ostored =

Op<q, r<s and Oomitted ∈ {Op>q, r<s, Op<q, r>s, Op>q, r>s}. This cuts memory costs of

the two-body operators by a factor of 4X. Moreover, we can recover Oomitted using Ostored

with the appropriate sign—if needs be. Better yet, if we know the operation (such as a

matrix product) that utilizes Oomitted, we can likely determine the result of the operation

from Ostored with the appropriate sign. This saves an additional 4X in compute, modulo

administrative costs.

Commutators between two-body operators are the most expensive computations in the

IMSRG, if no three- or higher-body forces are present. Such commutators can be decomposed

between so-called “ladder” and “particle-hole” terms. Ladder terms given by [10]

[
A, B

]
pqrs

+=
∑
t<u

(
1− nt − nu

)
×
(
ApqtuBturs −BpqtuAturs

)
(3.1)

are already in matrix multiplication form, and are easily evaluated using Eigen’s optimized

BLAS/MKL interface. Particle-hole terms are not given in matrix multiplication form, and

are thus much harder to optimize. We detail the many optimizations on the particle-hole

terms used in the SCKY-IMSRG in Appendix F, in addition to this thesis’ supporting graphic
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presentation.

Commutators are further optimized using multiple strategies. We strategically reuse

data as much as possible while minimizing function calls. We exploit hermiticity and anti-

symmetry to avoid matrix products that can be deduced through symmetries. We avoid

unnecessary copying of large objects through aliasing; and we write expressions in ways fa-

vorable to Eigen’s lazy evaluator. Moreover, OpenMP multi-threading directives are strate-

gically placed to avoid threads writing to the same cache line—thus invalidating it. We

assume that all rank 1 BodyOps are diagonal to eliminate summations in commutators in-

volving one-body operators, while casting those expressions into more cache friendly forms.

Lastly, we store all two-body occupation operators as diagonal matrices to save memory, and

further minimize cache misses.

3.5.1 Performance Results

We perform multiple SCKY-IMSRG calculations while increasing the single-particle basis size

to see general trends of the SCKY-IMSRG’s computational scaling. Results are obtained

using high-performance compute resources provided by the Institute for Cyber-Enabled Re-

search (ICER) at Michigan State University. The IMSRG outputs for these results are

included in the project’s repository; and the resulting figures are plotted by our automated

data managers.

Figure 3.1 displays the growing memory cost needed to create nine ABodyOps, in ad-

dition to all diagonal occupation matrices, and temporaries for particle-hole terms. Three

ABodyOps are internally used to evaluate one commutator.7 Two temporaries are needed to

7Of the three ABodyOps stored in a commutator, one ABodyOp is used to store a one-body occupation
operator. Only the one-body rank of said ABodyOp is allocated to save memory.
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Figure 3.1: Memory cost of all operators in the SCKY-IMSRG as we increase the basis size.
The majority of the SCKY-IMSRG’s memory requirements come from ABodyOps.
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Figure 3.2: Growing memory cost needed to do SCKY-IMSRG calculations in model spaces
composed of 1030 particles. We can easily need up to 1 terabyte of memory, depending on
the basis size. These calculations use Born’s generator seen in Chapter 5. Born’s generator
creates an additional ABodyOp to store energy denominators used in the generalized Born
expansion. Therefore, 10 ABodyOps are created. Here is a fun fact: the IMSRG calculation
with Norbitals = 3102 stores and evolves ∼ 5e10 complex-double matrix elements.
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cache intermediate commutator evaluations when doing nested commutators. The remaining

four ABodyOps are H, H(s), η(s) and Ω(s).8 Additional temporaries are needed to calcu-

late particle-hole terms. Those temporaries are not written as ABodyOps (or BodyOps) to

avoid storing zeros in sectors that can be eliminated within the particle-hole transformation.

The memory cost of particle-hole temporaries are also included in Figure 3.1. We prefer to

store all SCKY-IMSRG objects in random access memory (RAM) to reduce latency in our

calculations. In Figures 3.1 and 3.2, notice that we utilize hundreds of gigabytes of RAM to

do IMSRG calculations in large model spaces.

Figure 3.3 shows that we can obtain SNM calculations in large model spaces within hours,

so long density-dependent three-body nuclear forces (DD3NF) are omitted. However, it is

apparent in Figure 3.4 that the use of DD3NF noticeably worsens the performance of the

SCKY-IMSRG. This is partly due to the many invocations of computationally expensive

three-body force functions when normal-ordering. Despite the many optimizations in the

SCKY-IMSRG, large-scale NM-EOS computations using DD3NF still require several days

to complete.

Without DD3NF, commutator evaluations account for the majority of IMSRG runtimes.

This is desired, since our commutator implementation is highly optimized. Figure 3.5 exhibits

total commutator runtimes, in addition to runtimes needed to evaluate ladder and particle-

hole terms. Runtimes for ladder terms dominate particle-hole terms. This is preferred since

particle-hole terms require significantly more administration (and potential overhead) to

implement compared to ladder terms. Figure 3.5 shows the payoff of the optimizations made

in the particle-hole terms.

Given the many optimizations made in the commutators, we can do novel IMSRG(2)

8We store
dΩ(s)
ds

in η(s).
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Figure 3.3: Runtime of the SCKY-IMSRG as we increase the basis size. We include the
total time needed to evaluate all commutators in each program, as well as the time needed
to normal-order without three-body forces. We can obtain converged calculations (in terms
of the basis size) within hours when omitting density-dependent three-body forces.
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Figure 3.4: Runtime of the SCKY-IMSRG, varying the particle density ρ. We include the
total time needed to evaluate all commutators in each program, as well as the time needed to
normal-order with three-body forces included. Normal-ordering accounts for nearly half of
each program’s total runtime. In theory, the normal-order runtime should remain unaffected
by changes in ρ. This is largely seen here—barring runtime variability from the operating
machines. Likewise, the time needed to evaluate one commutator should be insensitive to
changes in ρ. However, the number of iterations (and likewise, commutator evaluations)
needed for the IMSRG to converge, can vary depending on ρ. Barring variability from the
operating machines, variations in total commutator runtimes are due to the varying amount
of IMSRG iterations.
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Figure 3.5: Breakdown of the time taken to evaluate all commutators throughout the lifetime
of each IMSRG program seen in Figure 3.3. Ladder commutators account for the majority of
commutator runtimes, while particle-hole commutators account for a minority of runtimes.
This is desired since ladder commutators primarily involve matrix products optimized by
Eigen’s BLAS/MKL interface, while particle-hole commutators require administration to be
evaluated as matrix products.
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Figure 3.6: Runtime of the SCKY-IMSRG in model spaces composed of 1030 particles. We
can do these calculations within hours, without the presence of density-dependent three-
body forces.
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Figure 3.7: Breakdown of the time taken to evaluate all commutators throughout the lifetime
of each IMSRG program seen in Figure 3.6. The gains from the optimizations made in the
particle-hole commutators seen in Eq. (F.9d), are lessened in these systems since the number
of particles is comparable to the number of orbitals. Consequently, runtimes of the ladder
and particle-hole commutators are also comparable.
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calculations simulating 1030 neutrons in large model spaces.9 Figure 3.2 and Figure 3.6

respectively show that these calculations require hundreds of gigabytes of RAM, and can

be completed within a few hours. Figure 3.7 shows that runtime costs of the ladder and

particle-hole commutators are comparable when using 1030 neutrons. This is expected since

we optimize particle-hole commutators by exploiting the fact that the number of orbitals in

the basis is typically much larger than the number of particles.

The largest calculations performed with 1030 neutrons utilize 3102 basis orbitals, requir-

ing 876 gigabytes of RAM (seen in Figure 3.2). By using 1030 particles, we reduce errors

in the IMSRG incurred by the use of a finite number of particles. However, we also reduce

the maximum momentum in the basis—worsening errors in the IMSRG related to the use

of a truncated single-particle basis.10 Subsequently, we suspect that we need significantly

more orbitals than 3102 to sufficiently reduce artifacts from the incomplete basis. However,

such calculations would exceed 1 terabyte of RAM consumption—complicating our ability

to obtain the needed resources on ICER. We expect this barrier to be obviated when clusters

with > 1 terabyte of RAM are easily accessible. We include IMSRG(2) calculations with

1030 particles in this work as a proof-of-principle. There are ongoing questions regarding

the existence of super heavy elements (and isotopes) beyond the periodic table. The IMSRG

may shed light on such questions. Since IMSRG calculations simulating 1030 particles in

infinite nuclear matter are possible, the same may also be possible in finite nuclear matter!

9A = 1030 calculations need not be restricted to pure neutron matter alone!
10The box-size is given by L = (A/ρ)1/3. By increasing the number of particles at a fixed particle density,

we subsequently increase the box-size—lowering all momenta in the basis.
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3.6 Concluding Remarks with Perspectives

We have developed a state-of-the-art, high-performant nuclear matter IMSRG(2) program

(dubbed “SCKY-IMSRG”) with a multitude of two-body and density-dependent three-body

forces from Drischler et al. [1]. The program is verbose, unit-tested, and sufficiently general

for future needs. Moreover, the SCKY-IMSRG is equipped with automated data managers

(to ensure that data is preserved and easily accessible), novel IMSRG generators from Chap-

ter 5, and novel IMSRG extrapolators seen in Chapter 6. Commutators in the program are

highly optimized for large-scale computations. And such calculations can be executed in

within hours to days—depending on the inclusion of density-dependent three-body forces.

The SCKY-IMSRG exploits operator symmetries to be efficient with memory. Despite mem-

ory optimizations, the program consumes hundreds of gigabytes of computer memory in large

systems.

Given the program’s many features, we hope that the SCKY-IMSRG becomes a foun-

dation for future IMSRG and many-body developments. Operators in the SCKY-IMSRG

are versatile, and can be used to compute quantities beyond energies—e.g. momentum dis-

tributions, static structure factors, etc. Furthermore, the SCKY-IMSRG is written at zero

temperature. Future developers can add finite temperature extensions using insights from

Smith et al. [26].11 The SCKY-IMSRG can also be extended to finite nuclei via a change of

basis. Optimizations made in the program’s commutators enable novel A = 1030 IMSRG(2)

calculations. Such calculations in finite nuclear systems may shed light on the existence of

heavy nuclei beyond the periodic table. Lastly, the SCKY-IMSRG implements 3rd-order

11Beware, the distinction between particles and holes, exploited in Appendix F, is lost if occupation
operators become continuously valued.
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Many-Body Perturbation Theory (MBPT) using nested commutators seen in Appendix H.

This enables intermediaries within MBPT(3) diagrams to be cached and reused—significantly

improving the compute performance of MBPT(3). If higher-order MBPT expressions can be

similarly written in terms of commutators, then they can be implemented without explicit

handling of the exploding number of MBPT diagrams [27]. We exhibit equations-of-state

that are calculated from the SCKY-IMSRG program in the next chapter.
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Chapter 4. Nuclear Matter Equation-of-State

“Only when it is dark enough

can you see the stars”

—Carl & MLK, Jr.

We utilize the SCKY-IMSRG to calculate the zero temperature nuclear matter equation-

of-state (NM-EOS) using the N2LOopt, Hebeler, and the N2LO Entem-Machleidt-Nosyk

(EMN) inter-nucleon interactions derived from chiral EFT [4, 25, 28]. We compare results

from the IMSRG(2) to those of Many-Body Perturbation Theory (MBPT). And when nec-

essary, we also make comparisons to IMSRG’s nonperturbative relative—Coupled-Cluster

(CC) theory. We do so to establish similarities and differences between the perturbative and

nonperturbative many-body methods using multiple inter-nucleon forces. These interactions

are chosen due to their wide use in the literature [1, 23], and because they run the gamut

from the very soft and perturbative Hebeler and N2LOopt interactions, to the significantly

harder and less perturbative EMN potentials.

As will be seen, the disagreement between IMSRG(2) and 3rd-order MBPT (denoted

“MBPT(3)”) is noticeably larger in symmetric nuclear matter (SNM), as correlations play

a much greater role than they do for pure neutron matter (PNM), even for soft interac-

tions.1 To better investigate these differences, we include data from CC, whenever available.

Particularly, we include CC results containing doubles excitations “CCD,” and approximate

triples excitations “CCD(T)”—obtained in collaboration with Gaute Hagen.2 This serves

as a useful consistency check, as it is empirically known that IMSRG(2) ground state en-

1This is primarily because the iterated tensor force in the 3S1 −3 D1 channel, which is active in SNM
but inactive in PNM, is known to produce significant correlations. Additionally, certain short-range terms
vanish in pure neutron matter due to the Pauli Principle that are non-vanishing in symmetric matter.

2As a consequence of momentum conservation, singles excitations should be zero in infinite nuclear
matter.
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ergies almost always fall between the CCSD and CCSD(T) results in finite nuclei that are

of single-reference (i.e., closed-shell) character [10]. We therefore expect a similar pattern

for our nuclear matter calculations, which are carried out for “magic” particle numbers

corresponding to closed-shell configurations in the periodic box.

We also include MBPT(4) results to compare against the IMSRG(2) results. MBPT(4) is

the lowest order of perturbation theory that contains triples excitations [27]. If correlations

from triples excitations are large, MBPT might not be well-converged. Lastly, we include

results from a reduced version of MBPT(4)—which subtracts from MBPT(4), diagrams that

are excluded or undercounted by IMSRG(2). This is based on the earlier work of Titus

Morris, who carried out a diagrammatic analysis of the perturbative content of IMSRG(2)

[10]. This analysis showed that the IMSRG(2) is “3rd-order exact”, which means that

the IMSRG(2) energy contains all MBPT diagrams up to 3rd-order.3 At 4th-order, the

IMSRG(2) starts to miss some diagrams. For instance, MBPT(4) diagrams that correspond

to triple excitations (i.e., 3p3h intermediate states) are missed completely, see diagrams T1

thru T16 in Fig. 4.1. Additionally, the so-called asymmetric quadruple-excitation diagrams,

Q6 and Q7 in Fig. 4.1, are under-counted by a factor of 1/2 [10].

Like the IMSRG(2), CCD can be shown to contain all MBPT(3) contributions, while miss-

ing the MBPT(4) triples-excitation diagrams completely. However, unlike the IMSRG(2),

CCD correctly counts the asymmetric quadruples diagrams Q6 and Q7 with their full weight.

Similarly, CCD(T) can be shown to be “4th-order exact”, as it includes the 4th-order triples-

excitation diagrams. Lastly, we stress that while CCD and CCD(T) are 3rd- and 4th-order

exact from the perspective of MBPT, both also include infinite partial summations of higher-

3It is important to stress that the IMSRG(2) is an intrinsically non-perturbative method. While it
correctly includes MBPT contributions up to 3rd-order, it also includes bits and pieces of all higher-orders
of perturbation theory. For example, it can be shown that particle-particle and hole-hole ladder diagrams,
as well as particle-hole ring diagrams, are summed to all orders in the IMSRG(2).
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order MBPT diagrams [27]. For instance, CCD (like the IMSRG(2)) sums up all two-particle

ladder and ring diagrams, while CCD(T) sums up analogous diagrams involving three par-

ticles.

We note that the IMSRG(2)’s undercounting of the asymmetric quadruple-excitation

diagrams explains the empirical observation that IMSRG(2) results tend to fall between

CCD and CCD(T). This is because diagrams Q6 and Q7 are positive-definite, while the

dominant 4th-order triples diagrams,4 T15 and T16, can be shown to be negative-definite.

Note also that the asymmetric quadruples diagrams and the two dominant triples diagrams

have a similar structure—i.e., they look like a MBPT(2) diagram where one of the internal

lines has a self-energy insertion. Therefore, undercounting diagrams Q6 and Q7 roughly

mimics some of the attraction that would be gained if the triple-excitation contributions

were included.

The reduced version of MBPT(4) is obtained by subtracting from MBPT(4): all diagrams

associated with triples excitations ∆E
(4)
triples (diagrams T1-T16 in Fig. 4.1), as well as half the

asymmetric quadruples contributions (diagrams Q6 and Q7 in Fig. 4.1) ∆E
(4)
asymmQ.

∆E
(4)
reduced ≡ ∆E(4) −∆E

(4)
triples −

1

2
∆E

(4)
asymmQ . (4.1)

We therefore expect the reduced MBPT(4) to yield energies that are closer to that of IM-

SRG(2) than the unmodified MBPT(4), since they are now equivalent thru 4th-order. Any

discrepancy between the reduced MBPT(4) and the IMSRG(2) results are therefore due to

the higher-order contributions that are summed by the IMSRG.

The true NM-EOS is only obtained with a full accounting of the uncertainties in the

4For the interactions studied here, these two diagrams accounted for more than 95% of the total triples-
excitation energy contribution.
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Figure 4.1: A subset of the MBPT(4) Hughenholtz diagrams corresponding to irreducible
triples (3p3h) and quadruples (4p4h) excitations. The IMSRG(2) misses the triples diagrams
T1-T16 completely, and undercounts the asymmetric quadruples diagrams Q6 and Q7 by a
factor of 1/2. This figure is obtained courtesy of Hergert et al. [10].

nuclear forces arising from the EFT truncation errors and the uncertainties in the fitted

low-energy constants, as well as the truncation errors in the many-body methods used to

calculate the NM-EOS. While we get a qualitative feeling for the many-body uncertainties

by comparing the energies obtained from different orders and truncations of MBPT, IMSRG,

and CC, we do not assess the uncertainties arising from EFT truncation errors and/or the

uncertainties in the low-energy constants that appear in the chiral interactions. We view cal-

culations provided in this work as the first step towards obtaining an uncertainty-quantified

NM-EOS using the IMSRG. Eventually, we are hopeful that the uncertainty-quantified NM-

EOS using the IMSRG can be obtained by generating sample NM-EOS calculations for a

multitude of forces. Such equations-of-state can then be utilized by the Bayesian approach
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of Drischler et al. to determine EFT truncation errors [29]. Moreover, emulation of the low

energy constants of the nuclear force using techniques such as Eigenvector Continuation, will

likely be useful in obtaining an uncertainty-quantified IMSRG-calculated EOS [30,31].

All results presented below are obtained using high-performance compute resources pro-

vided by the Institute for Cyber-Enabled Research at Michigan State University. And, all

figures stylized in Matplotlib’s “ggplot” are plotted by our automated data handlers.5

4.1 Results

We start by discussing our calculations of pure neutron matter, which as mentioned above has

much weaker correlations to contend with compared to symmetric nuclear matter. Figure 4.2

shows that IMSRG(2) and MBPT(3) with the N2LOopt two-nucleon potential, produce sim-

ilar NM-EOS in pure N = 66 neutron matter. This is expected since many-body methods

in PNM are considered to be highly convergent when using most typical chiral EFT interac-

tions6. Likewise, Figure 4.3 shows the near identical NM-EOS produced by IMSRG(2) and

MBPT(3) in pure N = 1030 neutron matter. Consequent to using such a large number of

particles, we note that the 3102 orbitals used are insufficient to eliminate errors due to the

truncated single-particle basis. Despite concerns regarding the sufficiency of the number of

orbitals, we include Figure 4.3 to highlight the payoff of the SCKY-IMSRG optimizations

made in Chapter 3.

5The ggplot style is used as a throwback to my early days learning how to program using R!
6Possible exceptions are for chiral interactions at higher resolution scales that are constructed to be local

in coordinate space. Such interactions are generally difficult to handle in CC or IMSRG calculations as they
require an excessively large single-particle basis to reach convergence.
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Figure 4.2: Pure N = 66 neutron matter sample EOS obtained using IMSRG(2) and
MBPT(3) with the N2LOopt two-nucleon potential [25]. In this system, we consider 2618
orbitals to be sufficiently large to reduce errors due to the truncated single-particle basis.
A total of 9.55 hours is taken to do all seven SCKY-IMSRG calculations over the various
density points. And, each calculation requires the same 432.76 gigabytes amount of memory.
MBPT(3), acquired using Algorithm 9, tracks IMSRG(2) quite well, with slight discrepan-
cies at low densities.
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Figure 4.3: Pure N = 1030 neutron matter sample EOS obtained using IMSRG(2) and
MBPT(3) with the N2LOopt two-nucleon potential [25]. A total of 38.86 hours is taken to
do all seven SCKY-IMSRG calculations over the various density points. And, each calcu-
lation requires the same 876.74 gigabytes amount of memory. MBPT(3), acquired using
Algorithm 9, tracks IMSRG(2) exceedingly well in this system.
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The MBPT calculated ground state energy per particle in the thermodynamic limit

EThermo
MBPT /A, and in the finite box EBox

MBPT/A, are defined in Eqs. (4.2a) and (4.2b), re-

spectively.

EThermo
MBPT /A ≡ EThermo

HF /A + ∆EThermo/A (4.2a)

EBox
MBPT/A ≡ EBox

HF /A + ∆EBox/A (4.2b)

EBox
MBPT/A ≈ EBox

HF /A + ∆EThermo/A . (4.2c)

The thermodynamic limit and box-acquired Hartree-Fock energies per particle are denoted

by EThermo
HF /A and EBox

HF /A, respectively. And the thermodynamic limit and box-acquired

MBPT correlation energies per particle are denoted by ∆EThermo/A and ∆EBox/A, respec-

tively. MBPT(3) was not implemented in the finite box at the time of data collection for

this work. However, EThermo
MBPT /A is available through collaboration with Christian Drischler.

We can thus approximate EBox
MBPT/A by assuming ∆EBox/A ≈ ∆EThermo/A in Eq. (4.2c).

All MBPT results in Figures 4.4–4.12 are procured in the finite box using Eq. (4.2c). After

implementing MBPT(3) in the finite box, we observe differences between the box acquired

MBPT(3) correlation energy per particle and its thermodynamic limit counterpart to be at

most 0.1 MeV per particle using N = 66 and/or Z = 66 nucleons. Thus, we consider ther-

modynamic limit MBPT(3) correlation energies per particle to be sufficiently representative

of their box-acquired counterparts.

The IMSRG(2) and MBPT(3) agreement in pure N = 66 neutron matter is further seen

in Figures 4.4 and 4.5—which feature NM-EOS from the λ = 1.8 fm−1 and λ = 2.8 fm−1

SRG evolved Hebeler force, respectively. The λ = 2.8 fm−1 Hebeler force is less SRG

softened than its λ = 1.8 fm−1 counterpart, and is thus a harder force. Hence, Figures 4.4
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Figure 4.4: Pure N = 66 neutron matter sample EOS for the λ = 1.8 fm−1 SRG evolved
Hebeler force with Λ3N = 2.0 fm−1 regulator cutoff [4]. The three-body force is used when
normal-ordering, but is subsequently truncated after normal-ordering. In other words, the
Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation. We see
excellent agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.5: Pure N = 66 neutron matter sample EOS for the λ = 2.8 fm−1 SRG evolved
Hebeler force with Λ3N = 2.0 fm−1 regulator cutoff [4]. This figure compliments Figure 4.4,
with the primary difference being in the utilized Hebeler force with increased SRG resolution
scale λ. Thus, see Figure 4.4 for additional details. We see excellent agreement between
energies obtained from IMSRG(2) and MBPT(3).
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and 4.5 show that IMSRG(2) and MBPT(3) are in excellent agreement in PNM, regardless

of the hardness of the Hebeler force.

Figures 4.6 and 4.7 also feature the same IMSRG(2) and MBPT(3) NM-EOS agreement in

pure N = 66 neutron matter. Figure 4.6 is obtained using the N2LO EMN potential with low

energy constant cD = 2.5, and a 450 MeV regulator cutoff. Likewise, Figure 4.7 is obtained

using the N2LO EMN potential with cD = −1.5, and a 500 MeV regulator cutoff [28].

The regulator cutoff is the interaction resolution scale. Thus, the EMN potential is harder

using a 500 MeV regulator cutoff versus a 450 MeV cutoff. Furthermore, given that the

EMN potential is not SRG softened, it is considered to have a harder core than the Hebeler

force. Again, consistent with our expectations, Figures 4.4–4.7 confirm that IMSRG(2) and

MBPT(3) coincide in PNM— regardless of the hardness of the employed inter-nucleon force.

We include Figure 4.8 to demonstrate that the SCKY-IMSRG can compute NM-EOS for

nuclear matter beyond PNM and SNM alone.7 We again see excellent agreement between

IMSRG(2) and MBPT(3) in nuclear matter with a 0.05 proton fraction.

The disagreement between IMSRG(2) and MBPT(3) is however, substantially larger in

SNM. This is prominently seen in Figures 4.10–4.12, which employ the Hebeler and harder

N2LO EMN forces. To better investigate these differences, we also make comparisons to

CC in Figures 4.9, 4.10, and 4.12.8 Lastly, we include Figure 4.13 to convey the large

computational expenses needed to generate the NM-EOS seen in Figure 4.11. All NM-EOS

calculations (particularly for SNM) in this chapter are highly computationally demanding.

Note, for IMSRG(2), and all CC and MBPT variants, the three-body force is used when

7By working in a closed shell system, the SCKY-IMSRG is restricted to only use particle numbers that
are magic. However, by using large particle numbers, we can obtain NM-EOS for a variety of proton fractions.
Going forward, we might be able to interpolate IMSRG-acquired NM-EOS between proton fractions using
the insights of Drischler et al. [29].

8CC results are excluded in Figure 4.11, since they are currently unavailable.
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Figure 4.6: Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-
nucleon potential with low energy constant cD = 2.5, and 450 MeV regulator cutoff [28].
The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation. This
figure compliments Figure 4.4, with the primary difference being in the harder EMN force
in use. Thus, see Figure 4.4 for additional details. Despite using a harder force than the
Hebeler force, we still see excellent agreement between energies obtained from IMSRG(2)
and MBPT(3).

62



Figure 4.7: Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-
nucleon potential with low energy constant cD = −1.5, and 500 MeV regulator cutoff [28].
The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation.This
figure compliments Figure 4.6, with two main differences: the lowered value of cD, and the
increased resolution scale Λ. Thus, see Figure 4.6 for additional details. Despite increasing
Λ, we still see excellent agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.8: N = 38, Z = 2 nuclear matter sample EOS for the λ = 2.8 fm−1 SRG evolved
Hebeler force with Λ3N = 2.0 fm−1 regulator cutoff [4]. The three-body force is used when
normal-ordering, but is subsequently truncated after normal-ordering. And we see excellent
agreement between energies obtained from IMSRG(2) and MBPT(3).
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Figure 4.9: Symmetric N = Z = 66 nuclear matter sample EOS for the λ = 1.8 fm−1 SRG
evolved Hebeler force with Λ3N = 2.0 fm−1 regulator cutoff [4]. These results are obtained
in the same system as Figure 4.4, with the difference being in the utilized Z = 66 protons
and the sampled density range. As expected, Reduced MBPT(4) is closer to IMSRG(2) than
MBPT(4). And, IMSRG(2) energies fall between CCD and CCD(T) energies. All methods
predict energies that saturate near ρ = 0.19 fm−3, but not at the empirical saturation
point ρsat = 0.16 fm−3. The largest difference in E/A between the methods is 0.67 MeV
per particle—seen between CCD and MBPT(4) at ρ = 0.08 fm−3. IMSRG(2) and CCD
energies differ from MBPT(3) energies by 0.02–0.14 MeV per particle and 0.21–0.38 MeV
per particle, respectively. CCD(T) and MBPT(4) energies differ by 0.03–0.09 MeV per
particle. And CCD(T) and CCD energies differ by 0.35–0.59 MeV per particle.
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Figure 4.10: Symmetric N = Z = 66 nuclear matter sample EOS for the λ = 2.8 fm−1 SRG
evolved Hebeler force with Λ3N = 2.0 fm−1 regulator cutoff [4]. These results are obtained
in the same system as Figure 4.5, with the difference being in the utilized Z = 66 protons
and the sampled density range. All methods predict nuclear saturation around the empirical
saturation point ρsat = 0.16 fm−3. The largest difference in E/A between the methods is
1.48 MeV per particle—seen between CCD and MBPT(4) at ρ = 0.08 fm−3. This disparity
between CCD and MBPT(4) is more than twice that of the disparity seen in Figure 4.9.
Moreover, IMSRG(2) energies differ from both MBPT(4) and CCD(T) energies by at most
0.54 MeV per particle. Notably, reduced MBPT(4) energies effectively coincide with IM-
SRG(2) energies, but differ from both MBPT(3) and MBPT(4) energies by 0.36–0.55 MeV
per particle, while MBPT(3) and MBPT(4) effectively coincide. IMSRG(2) and CCD en-
ergies differ from MBPT(3) energies by 0.5–0.56 MeV per particle and 1.37–1.49 MeV per
particle, respectively. CCD(T) and MBPT(4) energies differ by 0.07–0.6 MeV per particle.
CCD(T) and CCD energies differ by 0.88–1.45 MeV per particle. And IMSRG(2) energies
fall between CCD and CCD(T) energies. Notably, energy differences between CCD and
CCD(T) grow in increasing ρ and are largest at ρ = 0.22 fm−3.
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Figure 4.11: Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN
potential with low energy constant cD = 2.5, and 450 MeV regulator cutoff [28]. These results
are obtained in the same system as Figure 4.6, with the difference being in the utilized Z = 66
protons, and the sampled density range. CCD and CCD(T) results are currently unavailable
in this system. Note, this system’s MBPT(2) energies calculated within a finite box, can also
be seen in Figure 4.13. All methods predict nuclear saturation near the empirical saturation
point ρsat = 0.16 fm−3. MBPT(3) and MBPT(4) are nearly converged. And notably,
MBPT(3) and MBPT(4) energies are 0.72–1.72 MeV per particle and 0.63–1.71 MeV per
particle more bound than IMSRG(2), respectively. Using the reduced MBPT(4), we still see
0.3–1.29 MeV per particle more attraction than IMSRG(2).
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Figure 4.12: Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN
potential with low energy constant cD = −1.5, and 500 MeV regulator cutoff [28]. These
results are obtained in the same system as Figure 4.7, with the difference being in the utilized
Z = 66 protons, and the sampled density range. This figure also compliments Figure 4.11,
with two main differences: the lowered value of cD, and the increased resolution scale Λ. Most
methods predict nuclear saturation near the empirical saturation point ρsat = 0.16 fm−3,
with CCD being the main exception. MBPT(4) energies are 0.59–1.47 MeV per particle more
bound than IMSRG(2). Using the reduced MBPT(4), we still see 0.23–0.88 MeV per particle
more attraction than IMSRG(2). IMSRG(2) and CCD energies differ fromMBPT(3) energies
by 0.73–1.64 MeV per particle and 1.85–4.32 MeV per particle, respectively. CCD(T) and
MBPT(4) energies differ by 0.16–0.92 MeV per particle. CCD(T) and CCD energies differ by
0.77–3.99 MeV per particle. And IMSRG(2) energies often fall between CCD and CCD(T)
energies. Notably, energy differences between CCD and CCD(T) grow in increasing ρ, and
are largest at ρ = 0.21 fm−3.
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Figure 4.13: Symmetric N = Z = 66 nuclear matter sample EOS obtained using IMSRG(2)
and MBPT(2), with the N2LO EMN potential with low energy constant cD = 2.5, and
450 MeV regulator cutoff [28]. This figure is made in the same system as Figure 4.11.
The three-body force is used when normal-ordering, but is subsequently truncated after
normal-ordering. In this system, we consider 3700 orbitals to be sufficiently large to reduce
errors due to the truncated single-particle basis. A total of 11.01 days is taken to do all
eight SCKY-IMSRG calculations over the various density points. And the breakdown of
the runtime is seen in Figure 3.4. Each SCKY-IMSRG calculation requires the same 867.06
gigabytes amount of memory. MBPT(2), acquired using Algorithm 8, predicts saturation
near IMSRG(2), but yields energies that significantly disagree with energies from IMSRG(2).
MBPT(3) is not included since these results were obtained before its implementation.
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normal-ordering, but is subsequently truncated after normal-ordering. In other words, the

Hamiltonian is treated at the NO2B approximation for all reported calculations.

We summarize some notable differences in NM-EOS calculated from IMSRG(2), CC and

MBPT below. We see at most a 1.72 MeV per particle difference between IMSRG and

MBPT(3) computed energies (found in Figure 4.11). Likewise, we see at most a 4.32 MeV

per particle difference between CCD and MBPT(3) computed energies (seen in Figure 4.12).

Comparing CCD(T) and MBPT(4), we observe at most a 0.92 MeV per particle difference in

computed energies (seen in Figure 4.12). Lastly, we observe at most a 3.99 MeV per particle

difference between CCD and CCD(T) computed energies (found in Figure 4.12). These

discrepancies between the many-body methods are significant, and must be understood.

Although, we observe discrepancies in energies computed from the methods, we however,

see that all methods share similar predictions of nuclear saturation. This is noticeably seen

in Figures 4.10–4.12, where most many-body methods predict saturation near the empirical

saturation point ρsat = 0.16 fm−3. Curiously, all methods predict saturation near ρ =

0.19 fm−3 with the softened λ = 1.8 fm−1 Hebeler force in Figure 4.9.

Figures 4.9–4.12 confirm that energies from reduced MBPT(4) are indeed closer to those

of IMSRG(2), than energies from MBPT(4). Notably, energies from the reduced MBPT(4)

effectively coincide with IMSRG(2) energies in Figure 4.10. This means that the missing

triples and undercounted asymmetric quadruples in IMSRG(2), primarily account for the IM-

SRG(2)–MBPT(4) disparity in that system. However, energies from the reduced MBPT(4)

do not always coincide with those of IMSRG(2). This is notably seen in Figure 4.11 where

the reduced MBPT(4) yields energies that are 0.3–1.29 MeV per particle more bound than

IMSRG(2) energies. Interestingly, the disparity between energies from the reduced MBPT(4)

and IMSRG(2) is slightly lower when using the harder N2LO EMN force with an increased
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resolution scale Λ = 500 MeV, in Figure 4.12. However, it should be stressed that the two

EMN potentials have different two- and three-nucleon contact interactions associated with

them, so simply comparing the two resolution scales to infer that one should be more non-

perturbative than the other is likely misguided. For instance, the low-energy 3N constant

cD is somewhat stronger for the Λ = 450 MeV interaction.

As expected, IMSRG(2) energies generally fall between CCD and CCD(T) energies in

Figures 4.9, 4.10, and 4.12. In Figures 4.10 and 4.12, we see that the disagreement between

the many-body methods—with the exception of MBPT(3) and MBPT(4)—tends to widen

as the SNM nucleon density ρ, is increased. This behavior is prominently seen between CCD

and CCD(T) in Figure 4.12, where energies from both methods differ by at most 3.99 MeV

per particle (at ρ = 0.21 fm−3). This suggests that correlations from triples excitations are

increasingly dominant in CC (and perhaps IMSRG) as ρ is increased. As seen in Figures 4.9,

4.10, and 4.12, the energies of IMSRG(2) are close to those of CCD(T) when ρ < 0.13 fm−3,

but with larger deviations at higher densities—albeit to a smaller extent than CCD. We

suspect that triples also account for the overbinding of IMSRG(2) relative to CCD(T) at

higher density. Conversely, energies from MBPT are farthest from those of CCD(T) at the

low-end of the density range ρ ∼ 0.08 fm−3, but become notably closer as ρ is increased.

Recall that CCD(T) contains all MBPT diagrams up to 4th-order and includes infinite par-

tial summations of higher-order diagrams [27]. Therefore, the 0.07–0.6 MeV per particle

and 0.16–0.92 MeV per particle disparities between MBPT(4) and CCD(T) in Figures 4.10

and 4.12, respectively, are due to correlations in CCD(T) beyond 4th-order. Interestingly,

these higher-order correlations in CCD(T) are most dominant when ρ < 0.13 fm−3, but

become less prominent at higher densities ρ ∼ 0.2 fm−3. Turning our attention to IM-

SRG(2) and CCD, recall that both methods contain all MBPT diagrams up to 3rd-order
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and include infinite partial summations of higher-order diagrams [10, 27]. Therefore, the

IMSRG(2)–MBPT(3) and CCD–MBPT(3) disparities seen in Figures 4.9–4.12, are due to

correlations in IMSRG(2) and CCD beyond 3rd-order. Converse to the CCD(T)–MBPT(4)

relationship, these higher-order correlations in IMSRG(2) and CCD are most dominant at

the high-end of our sampled density range ρ ∼ 0.2 fm−3, but become less prominent when

ρ < 0.13 fm−3.

Unlike CC (and perhaps IMSRG), the net effect of triples correlations in MBPT is gen-

erally small. This is reflected in the decent MBPT convergence from 3rd to 4th-order—seen

in Figures 4.9–4.12. For example, MBPT(3) and MBPT(4) are effectively converged in Fig-

ure 4.10. However, energies from the reduced MBPT(4) differ from those of MBPT(3) and

MBPT(4) by 0.36–0.55 MeV per particle. This implies that in Eq. (4.1), there are sub-

stantial 0.36–0.55 MeV per particle cancellations within MBPT(4) between ∆E
(4)
reduced and

∆E
(4)
triples +

1
2∆E

(4)
asymmQ.

4.2 Discussion

Given the excellent agreement seen between IMSRG(2) and MBPT(3) in PNM, we expect

to see the same agreement when also considering MBPT(4) and CC. Therefore, we turn our

attention towards the more interesting SNM results. Consistent with observations in finite

nuclei [10], IMSRG(2) generally falls between CCD and CCD(T) energies in Figures 4.9,

4.10, and 4.12. We consider this a validation of our IMSRG(2) implementation. As is the

case in finite nuclei, the correlations from 4th-order triples and asymmetric quadruples are

attractive and repulsive, respectively [10]. While both IMSRG(2) and CCD miss attrac-

tive correlations from 4th-order triples, the IMSRG(2) undercounts repulsive asymmetric
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quadruples—yielding to more attraction than CCD. Therefore, IMSRG(2) mimics the at-

traction of triples by undercounting the repulsive asymmetric quadruples. CCD(T) is exact

at 4th-order MBPT and thus includes all attractive 4th-order correlations due to triples [10].

Consequently, CCD(T) tends to yield more attraction than both CCD and IMSRG(2).

Figures 4.9, 4.10, and 4.12 imply that correlations from attractive triples become larger in

CC and IMSRG as the density of SNM is increased. This observation can be interpreted using

the old hole-line expansion arguments of Brueckner theory for nuclear matter [32]. Methods

like CC and IMSRG have superseded Brueckner theory in recent years, though intuition

from the latter is still useful since the dominant contributions to CC and IMSRG correlation

energies are of the Brueckner type. Brueckner’s hole-line expansion is an expansion in the

“diluteness” of the many-body system, where the small parameter is the ratio of the range

of the repulsive core of the NN potential divided by the average interparticle spacing. The

leading term in the hole-line expansion sums the particle-particle ladders between pairs of

particles to all orders, while the next term in the expansion treats the particle-particle ladders

between interacting triplets of particles to all orders, and so on. In CC theory, for example,

CCD and CCDT reduces to leading-order and next-to-leading order Brueckner theory if one

drops the terms with particle-hole intermediate states. Therefore, it is quite reasonable that

we find the attractive triples contributions are becoming rather large as the density increases,

since the expansion parameter of the hole-line expansion is becoming large.

It is important to mention that we are inclined to most trust CCD(T) results since from

the perspective of MBPT, it completely sums all 4th-order correlations, it partially sums

higher-order correlations, and it incorporates triples excitations. However, the non-iterative

implementation of triples in CCD(T) assumes that the effect of triples in the CC correlation

energy is small [23]. This is clearly not the case in Figures 4.10 and 4.12, which show
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that triples introduce substantial 1.45–3.99 MeV per particle attraction in CCD(T) over

CCD. Therefore, a full treatment of triples in CCDT (or perhaps IMSRG(3)) is needed to

properly account for triples correlations using a nonperturbative method. Unfortunately, it

is currently intractable to store and evolve three-body operators at scale.

Figures 4.9, 4.10, and 4.12 show that energies from CCD(T) and MBPT(4) are closest

(around ρ = 0.2 fm−3) when triples correlations are highest in CC. We are unsure of how

to interpret this observation. Given that MBPT seems relatively converged from 3rd- to

4th-order, perhaps both methods are converging to the true NM-EOS (for the Hebeler and

EMN forces) around ρ = 0.2 fm−3. Or perhaps both methods happen to cross around

ρ = 0.2 fm−3, but may diverge at further densities. It is important to note that the observed

trends between the many-body methods are not guaranteed to hold outside of our sampled

density range. Going forward, it will be interesting to compare the many-body methods at

densities going up to 2ρsat. It will also be very interesting to implement the approximate

(and hence computationally viable) IMSRG(3) scheme outlined in Ref. [22].

4.3 Conclusion

We find that NM-EOS computed using IMSRG(2) and MBPT(3) coincide in PNM, irrespec-

tive of the hardness of the employed inter-nucleon force. And we expect similar agreement in

NM-EOS obtained using CC in PNM. However, within SNM, we find substantial disagree-

ments in energies computed from IMSRG(2), MBPT, and CC using the Hebeler and harder

N2LO EMN forces [4, 28]. At most, we observe energy differences of 1.72, 4.32, 0.92, and

3.99 MeV per particle between the following methods, respectively: IMSRG(2)–MBPT(3),

CCD–MBPT(3), CCD(T)–MBPT(4), and CCD(T)–CCD. Despite the significant energy dis-
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agreements between the methods, we find that the methods often predict energies that sat-

urate near the empirical saturation point ρsat = 0.16 fm−3.

Consistent with findings in finite nuclei [10], we observe that IMSRG(2) energies generally

fall between those of CCD and CCD(T). We consider this a validation of our nuclear matter

IMSRG(2) implementation. Therefore, as is the case in finite nuclei, we conclude that

the correlations from 4th-order triples and asymmetric quadruples are also attractive and

repulsive, respectively, in nuclear matter. IMSRG(2) and CCD are not only 3rd-order exact

from the perspective of MBPT but also include infinite partial summations of higher-order

MBPT diagrams [10, 27]. Also, CCD(T) is 4th-order exact from the perspective of MBPT

and includes infinite partial summations of higher-order MBPT diagrams [27]. Hence, we

conclude that observed IMSRG(2)–MBPT(3) and CCD–MBPT(3) energy disparities are due

to correlations in IMSRG(2) and CCD beyond 3rd-order. Likewise, we also conclude that

observed CCD(T)–MBPT(4) energy disparities are due to correlations in CCD(T) beyond

4th-order. Though, given that triples account for at most 3.99 MeV per particle more

attraction in CCD(T) over CCD, we worry that CCD(T) may not be fully converged, and a

full treatment of triples in CCDT may be needed.

Comparing CCD to CCD(T), we see that correlations from attractive triples become

larger in CC and IMSRG as the density of SNM is increased. And we realize that this

observation can be qualitatively understood using Brueckner’s hole-line expansion [32]. We

find that MBPT is decently converged from 3rd to 4th-order. Though, we see substantial

0.36–0.55 MeV per particle cancellations between diagrammatic terms of MBPT(4). We

also observe that energies from CCD(T) and MBPT(4) are closest (at the higher-end of

our density range) when triples correlations are highest in CC. And we are unsure of how

to interpret this observation. Given that MBPT seems relatively converged from 3rd- to
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4th-order, perhaps both methods are converging to the true NM-EOS at the higher-end of

our density range. This needs further investigation.

4.4 Outlook

The disparity between energies obtained from IMSRG, CC and MBPT in SNM need to be

further investigated by extending the sampled density range, going up to perhaps 2ρsat.

Moreover, all IMSRG calculations in this work are done using normal-ordered 2NF and

3NF IMSRG(2) schemes. Given the large discrepancy observed between CCD and CCD(T)

calculated NM-EOS in Figures 4.9, 4.10, and 4.12, we look towards a future nuclear matter

IMSRG implementation with approximate triples. And developments from Stroberg et al.

[22] will likely be needed in this endeavor. We suspect that the inclusion of approximate

triples in the IMSRG should yield more attractive energies at higher densities.

NM-EOS are acquired using only three chiral forces at next-to-next-to leading-order

(N2LO) of χ-EFT in this work. The true NM-EOS is only obtained with a full accounting

of the uncertainties in the nuclear force. We do no such accounting in this work. Therefore,

going forward, IMSRG computed NM-EOS will be acquired using a much larger number

of forces—perhaps ten, with some at next-to-next-to-next-to leading-order (N3LO) of χ-

EFT—in the immediate continuation of this project. Subsequent acquired NM-EOS can

then be fed into the Bayesian machine-learning approach of Drischler et al., to determine

EFT truncation errors [29].

As seen in Figure 4.13, the computational cost needed to obtain NM-EOS using the

IMSRG for one force alone is massive. Therefore, there is great interest in using emulation

techniques including Eigenvector Continuation (EC) [30], Dynamical Mode Decomposition
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(DMD) [33], and Parametric Matrix Models (PMM) [34] to emulate results from the IMSRG,

while varying the low energy constants of the nuclear force. This interest follows the work

of Ekström et al. [31]—which saw great success emulating binding energies in finite nuclei,

obtained from Coupled-Cluster theory using EC. Perhaps these methods could be applied

to obtain an uncertainty-quantified NM-EOS that is calculated with the IMSRG—while

using less computational resources. While doing preliminary explorations of a potential

EC application in the IMSRG, we realized that a generalized form of the Baker-Campbell-

Hausdorff expansion (BCH) might a useful tool in such an endeavor. Subsequently, we derive

the generalized BCH in Appendix A. Given the large computational costs needed to obtain

NM-EOS using the IMSRG, we look towards novel ideas to accelerate IMSRG calculations

using Unitary Coupled-Cluster (UCC)-inspired IMSRG generators in Chapter 5, and Shanks

and Padé IMSRG extrapolators in Chapter 6.
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Chapter 5. UCC-Inspired IMSRG Generators

“I call it Coupled-Cluster

-Fock theory”

—Robert Branson

We view IMSRG generators η
(
H(s)

)
as approximate diagonalizers ofH(s) within the Magnus-

IMSRG formulation. Therefore, the IMSRG’s convergence can be accelerated by improving

the diagonalizing power of η
(
H(s)

)
. Given the striking similarities between the Magnus-

IMSRG and Unitary Coupled-Cluster theory (UCC), we improve on existing IMSRG gener-

ators by constructing approximate UCC diagonalizers. We view UCC as a nonlinear inverse

problem; and we realize that UCC amplitudes at any order of UCC, are given by a gener-

alization of the Born series—so long the series converges. We introduce three UCC-inspired

IMSRG generators named the Born, UCC-Born, and Carinae generators, which use regu-

lated Born expansions to approximately solve UCC. Born’s generator targets 1st-order UCC,

while UCC-Born and Carinae target high-order UCC. UCC-Born is iteratively constructed

using a gradient descent based UCC ansätz seen in Appendix I. Carinae is constructed by

iteratively solving UCC with a strict convergence criterion. UCC-Born and Carinae are

obtained using preconditioners to improve the convergence of the Born series. Using all

novel generators with the Magnus-IMSRG, we often observe noticeable reductions in com-

mutator evaluations needed for IMSRG’s convergence compared to using the existing White

generator—translating to observed IMSRG speedups. We sometimes observe 2–4X IMSRG

speedup using the novel generators, particularly when the IMSRG with White’s generator is

slowly convergent. In all, we connect two historically separate theories—IMSRG and UCC

by using approximate UCC solutions as generators of the IMSRG. We introduce the Born
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expansion as a tool to solve UCC. And we use preconditioners to aid the convergence of the

Born series. Moreover, we provide an ansätz for a renormalized Hamiltonian in UCC. We

hope this work leads to further developments of these methods within many-body physics.

5.1 Motivation

The IMSRG is a powerful, yet computationally expensive method—especially in large sys-

tems. We dub the “realistic limit” as the combination of the thermodynamic and the com-

plete basis set limit in infinite nuclear matter calculations. Approaching the realistic limit

is essential to obtain results that are free from finite size and incomplete basis set arti-

facts, in nuclear matter. Approaching the realistic limit, we must increase the number of

orbitals Norbitals in the infinite matter basis and increase the number of particles—which

are computationally costly.

Commutator evaluations are the most computationally limiting operations of the IMSRG

and UCC methods. The computational cost to evaluate a commutator at the two-body level

in the IMSRG and UCC scales as O(N6
orbitals) [19]. Moreover, the IMSRG can sometimes

require hundreds of commutator evaluations to converge, especially in strongly correlated

systems. This can significantly hamper IMSRG runtimes in large systems. Therefore, there

is growing interest in efficiently accelerating the convergence of the IMSRG—obtaining more

converged results with fewer commutator evaluations.

Recent ideas have centered around utilizing data driven methods including the Shanks

and Padé transformation (seen in Chapter 6 of this work), and machine learning to extrap-

olate on the IMSRG flow. Yoshida notably used neural networks to accurately extrapolate

IMSRG operators with great success [35]. We aim to expand on this emerging research
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area by taking a different approach. Particularly, we combine the IMSRG with UCC in the

form of novel UCC-inspired IMSRG generators. We then introduce physics-motivated tech-

niques in UCC to accelerate the generator calculations—translating to an efficient IMSRG

convergence acceleration.1

5.2 Assumptions

All generator calculations in this chapter make the following assumptions:

All Hamiltonians H = E + f + Γ satisfy Assumption 1, and Assumption 2.

Assumption 0 All A-body operators are truncated at the two-body level.

Assumption 1 fpq = δpq × fpq ∀ pq −→ Hod =�
�fai + Γabij ∀ abij .2

Assumption 2 ∆abij ≡ faa + fbb − fii − fjj ̸= 0 ∀ abij .3

Assumption 3 We denote approximate diagonalizers of H by

η(H) ≡
∑
ai

����ηai(H) : a
†
aai : +

1

4

∑
abij

ηabij(H) : a
†
aa
†
bajai : − H.c. (5.1)

where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (5.1). η(H) is

assumed to be zero in its diagonal sectors. We also assume ηai(H) ∝ fai, and fai = 0 under

Assumption 1.

1The computational performance of the IMSRG and UCC at similar truncation levels are generally
considered to be similar. The exact performance difference between both methods is however, not investigated
in this work due to the lack of a computer program using existing state-of-the-art UCC techniques in infinite
nuclear matter. The success of this work is measured by efficient convergence acceleration seen in the IMSRG.
We however, suspect that the introduced UCC techniques should also confer improvements in standard UCC.

2Assumption 1 is partly justified in infinite matter due to momentum conservation, and the spin-diagonal
nature of the nuclear force at NNLO. Though, we observe that Assumption 1 is weakly broken during the
Magnus-IMSRG evolution. As a consequence of Assumption 1 holding exceedingly well in nuclear matter,
the one-body components of all diagonalizers η and Ω are negligible.

3Assumption 2 holds well in our existing single-reference nuclear matter IMSRG. We suspect this is due
to the spin unpolarized nature of the infinite matter basis.
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5.3 Magnus-IMSRG Convergence Acceleration

Consider a given Hamiltonian H(0). In the Magnus-IMSRG formulation, we iteratively

diagonalize H(0) with unitary transformation H(s) = U(s)H(0)U(s)† by solving4

dU(s)

ds
= η
(
H(s)

)
U(s) (5.2)

U(s) ≡ eΩ(s). (5.3)

Ω(s) is obtained by integrating Eq. (2.7). η
(
H(s)

)
could be considered a driving force in

the diagonalization, and is chosen as an approximate diagonalizer5 of H(s). Some existing

generators include the White, Imaginary-time, and Wegner generators. Using perturbative

analysis of the flow equations with the aforementioned generators [19],

Hod(s) = Γabij(s) ≈ Γabij(0)× e
−s×∆abij×Gabij (5.4a)

∆abij ×Gabij ≥ 0 −→ lim
s→∞

Hod(s) = 0. (5.4b)

4U(0) ≡ 1. Also note, η(s) is ultimately dependent on H(s).
5Ideally, one could construct U(ds) (ds is some step-size) whereHod (ds) = 0. However, as we will see, this

is a highly nonlinear problem from the perspective of UCC. Thus, we construct approximate diagonalizers
(generators) of H(s), and integrate them via the Magnus expansion to construct a full diagonalizer of H(0).
Note, we view diagonalizers as operators that eliminate Hod (s) when exponentiated.
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Gabij depends on the chosen generator. White’s generator is notable due its observed nu-

merical stability so long Assumption 2 holds [20,36]. White’s generator is given by6

ηWhiteMP (H(s)
)
=
∑
ai

ηWhiteMP
ai

(
H(s)

)
: a
†
aai : (5.5a)

+
1

4

∑
abij

ηWhiteMP
abij

(
H(s)

)
: a
†
aa
†
bajai : − H.c.

ηWhiteMP
ai

(
H(s)

)
≡ ����fai(s)

faa(s)− fii(s)
= ��

��fai(s)

∆ai(s)
(5.5b)

ηWhiteMP
abij

(
H(s)

)
≡

Γabij(s)

faa(s) + fbb(s)− fii(s)− fjj(s)
=

Γabij(s)

∆abij(s)
. (5.5c)

Viewing η
(
H(s)

)
as an approximate diagonalizer of H(s), we hypothesize that the IMSRG’s

convergence can be accelerated by improving the diagonalizing power of η
(
H(s)

)
. Given the

similarity of Magnus-IMSRG and UCC theory, we look towards UCC for candidate IMSRG

generators.

6This chapter uses White’s generator with energy denominators from Møller–Plesset perturbation theory

denoted by ηWhiteMP .
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5.4 Unitary Coupled-Cluster Theory

Consider a given Hamiltonian H.7 Single-reference UCC theory diagonalizes H via the

exponential ansatz U = eη. Thus, we construct η such that
[
eηHe−η

]
od = 0.8 At the

two-body level, η is given by Eq. (5.1). Therefore, η = −η† and UU† = U†U = 1. Using the

Baker-Campbell-Hausdorff (BCH) formula,

[
eηHe−η

]
od =

[ ∞∑
m=0

[
η, H

](m)

m!

]
od

= 0 (5.6a)

[
η, H

](m) ≡
[
η, [η, H](m−1)

]
, ∀m > 0 (5.6b)[

η, H
](0) ≡ H. (5.6c)

Expanding Eq. (5.6a), then utilizing the linearity of commutators,9

[
eηHe−η

]
od

= Hod +

[ ∞∑
m=1

[
η, H

](m)

m!

]
od

= 0 (5.7)

−Hod =
[
η , H

]
od

+

[
η , H

](2)
od

2!
+

[
η , H

](3)
od

3!
+ . . .

−Hod =

η,
∞∑

m=0

[η, H](m)

(m+ 1)!︸ ︷︷ ︸
HRG(η)


od

. (5.8)

7For the remainder of this chapter, we drop the flow parameter s for brevity. We also drop η’s dependence
on H since that is implied.

8We use od as a subscript to denote the off-diagonal sectors of the transformed Hamiltonian.
9All commutators are truncated at the two-body level.
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Eq. (5.8) is nonterminating due to the excitation (: a
†
aa
†
bajai :) and de-excitation (: a

†
ia
†
jabaa :)

structure of η, enforced by its anti-hermiticity.10 This is unlike standard Coupled-Cluster

(CC), where η has a pure excitation structure that guarantees a fixed termination order of

Eq. (5.8) [27]. Although Eq. (5.8) is nonterminating, we truncate the expansion for HRG(η)

at some m∗ such that11

∣∣∣∣∣∣
{[

η, H
](m∗)

(m∗ + 1)!

}
0−body

∣∣∣∣∣∣ ≤ ϵ′BCH . (5.9)

The operator
{}

0−body projects out the zero-body component of 1
(m∗+1)!

[
η, H

](m∗)
. The

truncation parameter ϵ′BCH = 1e−4 is used for this work.12 So long Eq. (5.8) is invertible,

the main task of UCC is to approximate HRG(η). In this light, UCC can be viewed as a

nonlinear commutator inversion problem.

5.5 Linearized UCC

It is important to note that η is the solution of Eq. (5.8). η is however, unknown since

HRG is dependent on η. Moreover, Eq. (5.8) is highly nonlinear in η. We can however,

linearize Eq. (5.8) using successive approximations to η. Let k denote an iteration count.

Letting η = η {k}+δη, we can approximate HRG(η) ≈ HRG
(
η {k}

)
if δη is sufficiently small.

The choice of η {k} is thus of paramount importance. If δη is sufficiently small, and η is an

10A closed expression of Eq. (5.8) with a maximum power of [η, H] may be possible if the rank of η is
known [37].

11The diagonal sectors of the 1 and two-body ranks of 1
(m∗+1)!

[
η, H

](m∗) are observed to converge at

the rate as its zero-body rank.
12Eq. (5.9) and ϵ′BCH = 1e−4 is chosen to be consistent with the BCH truncation scheme in the vanilla

IMSRG.
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attractive solution of Eq. (5.8), then solving

−Habij =
[
η {k+1}, HRG(η {k})]

abij
, (5.10)

for η {k+1}, we can expect

η {k}, η {k+1}, η {k+2}, . . . → η . (5.11)

The Born, UCC-Born, and Carinae generators all solve linearized UCC in some form. No-

tice, η {k} and subsequently, HRG
(
η {k}

)
=
∑∞

m=0
1

(m+1)!
[η {k}, H](m) are presumed to

be known in Eq. (5.10). Thus, Eq. (5.10) is solvable if there exists a way to invert the

commutator for η {k+1}.

5.6 Commutator Inversion via Born Series

Suppose we are tasked with inverting the following commutator13

−Habij =
[
η, HRG

]
abij

. (5.12)

13The view of UCC as a nonlinear commutator inversion problem was partly inspired by Kutzelnigg [38].

Note, HRG’s dependence on η is dropped in Eq. (5.12) for brevity. The following derivation of the Born

series assumes HRG is known, if not estimated.
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H is known, and HRG assumed to be known or approximated. Both operators are of the

form

H = E + f + Γ −→ Habij = Γabij (5.13a)

HRG = ERG + fRG + ΓRG. (5.13b)

η is to be calculated, and has an operator structure given by Eq. (5.1). Eq. (5.12) can be

expanded

−Γabij =
���

���[
η, ERG

]
abij +

[
η, fRG

]
abij

+
[
η, ΓRG

]
abij

. (5.14)

Assumption 1 implies

[
η, fRG

]
abij

=
(
fRG
ii + fRG

jj − f
RG
aa − fRG

bb

)
× ηabij = −∆RG

abij × ηabij , (5.15)

which together with Eq. (5.14) gives

−Γabij = −∆RG
abij × ηabij +

[
η, ΓRG

]
abij

, (5.16)

∆RG
abij × ηabij = Γabij +

[
η, ΓRG

]
abij

.

So long Assumption 2 holds,

ηabij =
Γabij

∆RG
abij

+

[
η, ΓRG

]
abij

∆RG
abij

. (5.17)
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Adopting the following notation for any A-body operator O14

(O∗)abij ≡
Oabij

∆RG
abij

, (5.18)

we can cleanly cast Eq. (5.17) into an operator form

η = Γ∗ +
[
η, ΓRG

]
∗
. (5.19)

Eq. (5.19) is the master equation that generates the generalized Born series. It is a Lippmann-

Schwinger type of equation in operator form, and is a fixed point equation for η. Iterating

Eq. (5.19) yields

η = Γ∗ +

[
Γ∗ +

[
η, ΓRG

]
∗
, ΓRG

]
∗

(5.20)

= Γ∗ +
[
Γ∗ , ΓRG

]
∗
+

[[
η, ΓRG

]
∗
, ΓRG

]
∗
.

Let us define the following adjoint for A-body operators A and B:

[
A , B

](m)
∗ ≡

[[
A , B

](m−1)
∗ , B

]
∗
, ∀m ≥ 1 (5.21a)

[
A , B

](0)
∗ ≡ A . (5.21b)

Iterating to nth order, we assume η is given by

η
?
=

n∑
m=0

[
Γ∗ , ΓRG

](m)

∗
+
[
η , ΓRG

](n+1)

∗
, n ≥ 0. (5.22)

14Note, all sectors of O∗ other than (O∗)abij are defined to be zero. For example, (O∗)abcd ≡ 0 ∀abcd.
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We seek to prove Eq. (5.22). First, notice Eq. (5.22) cotrivially recovers Eq. (5.19) with

n = 0:

[
Γ∗ , ΓRG

](0)
∗

+
[
η , ΓRG

](1)
∗

= Γ∗ +

[[
η , ΓRG

](0)
∗︸ ︷︷ ︸

η

, ΓRG

]
∗
= η. (5.23)

Likewise, Eq. (5.22) recovers Eq. (5.20) with n = 1:

[
Γ∗ , ΓRG

](0)
∗

+
[
Γ∗ , ΓRG

](1)
∗

+
[
η , ΓRG

](2)
∗

(5.24)

= Γ∗ +
[
Γ∗ , ΓRG

]
∗
+

[[
η , ΓRG

](1)
∗

, ΓRG

]
∗
= η.

Inserting Eq. (5.19) into the RHS of Eq. (5.22) yields

η =
n∑

m=0

[
Γ∗ , ΓRG

](m)

∗
+
[
Γ∗ +

[
η, ΓRG

]
∗
, ΓRG

](n+1)

∗
. (5.25)

In Appendix G, we show adjoints of the form
[
Γ∗ +

[
η, ΓRG

]
∗
, ΓRG

](n+1)

∗
can be cleanly

separated using linearity. Utilizing Eq. (G.1),

η =
n∑

m=0

[
Γ∗ , ΓRG

](m)

∗
+
[
Γ∗ , ΓRG

](n+1)

∗
+

[[
η, ΓRG

]
∗
, ΓRG

](n+1)

∗
(5.26)

η =
n+1∑
m=0

[
Γ∗ , ΓRG

](m)

∗
+

[[
η, ΓRG

]
∗
, ΓRG

](n+1)

∗
.
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Utilizing Eq. (G.3),

[[
η, ΓRG

]
∗
, ΓRG

](n+1)

∗
=
[
η , ΓRG

](n+2)

∗
(5.27)

η =
n+1∑
m=0

[
Γ∗ , ΓRG

](m)

∗
+
[
η , ΓRG

](n+2)

∗
. (5.28)

Therefore, we have demonstrated if Eq. (5.22) holds for some n ≥ 0, it also holds for n+ 1.

Since Eq. (5.22) holds for n = 0 (and n = 1), then it indeed holds for all n ≥ 0.

Exact computation of Eq. (5.22) is nontrivial due to its RHS’s dependence on η. Practi-

cally, we approximate η by summing only the convergent terms of Eq. (5.22) at a potentially

high order15

η ≈
n∑

m=0

[
Γ∗ , ΓRG

](m)

∗
(5.29a)

:

∥∥∥∥[Γ∗ , ΓRG
](n+1)

∗

∥∥∥∥ > ∥∥∥∥[Γ∗ , ΓRG
](n)
∗

∥∥∥∥ (5.29b)

∨ :

∥∥∥∥[Γ∗ , ΓRG
](n)
∗

∥∥∥∥ ≤ ϵBorn (5.29c)

∨ : n = nMaxBornOrder . (5.29d)

To clarify, we sum Eq. (5.29a) to some order n, such that either Eqs. (5.29b), (5.29c), or

(5.29d) are true. Truncation parameter ϵBorn = 1e−3 is used for this work. nMaxBornOrder

is a chosen maximum order of the Born series. Eq. (5.29) is called the generalized Born

series honoring Dr. Max Born for his perturbative solution to the Lippmann–Schwinger

15“∥.∥” denotes a Frobenius operator norm. “:” is notation for “such that.” And “∨” is the logical “or.”
Only a few terms of the Born series are typically needed to approximate 1st-order UCC well. Born’s generator
will be obtained with nMaxBornOrder = 5, while the UCC-Born and Carinae generator will be obtained
with nMaxBornOrder = 100.
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equation [39]. If

∥Γ∗∥ ≫
∥∥∥[η, ΓRG

]
∗

∥∥∥ , (5.30)

the leading term Γ∗ will likely be a sufficient commutator inverter, and the Born series is

considered highly perturbative.16 If Eq. (5.30) does not hold, Γ∗ will likely be an insufficient

commutator inverter, and the Born series is considered nonperturbative. Hence, the Born

series likely improves on Γ∗ when Eq. (5.30) does not hold. Following van der Sijs et al. [40],

we introduce the parameter γ to quantify the nonperturbativity of the Born series

γ ≡

∥∥∥∥[Γ∗ , ΓRG
](2)
∗

∥∥∥∥∥∥∥[Γ∗ , ΓRG
](1)
∗

∥∥∥ . (5.31)

Similar to the geometric series, the Born series converges or diverges if γ < 1 or γ > 1,

respectively [40].

5.7 Regulating the Born Series

We ultimately aim to exponentiate η given by Eq. (5.29) when performing unitary trans-

formations in the Magnus-IMSRG or UCC. Although BCH transformations with η are uni-

tary, we still need those transformations to eliminate off-diagonal components of the target

Hamiltonian. Given the immense nonlinearity of UCC seen in Eq. (5.8), all methods that are

described in this work to obtain diagonalizers are ultimately approximate. Hence, η is only

approximately known. And we run the risk of introducing large and uncontrollable errors

16If ΓRG = Γ, then Γ∗ is exactly White’s generator with Møller–Plesset energy denominators. Moreover,

if Eq. (5.30) holds, then η ≈ ηWhiteMP .

90



that hamper our diagonalization with large η.17 Therefore, to obtain the Born, UCC-Born,

and Carinae generators, we regulate Eq. (5.29) as follows:

η ≈
n∑

m=0

[
Γ∗ , ΓRG

](m)

∗
(5.32a)

:

∥∥∥∥∥
n+1∑
m=0

[
Γ∗ , ΓRG

](m)

∗

∥∥∥∥∥ > ΛUCC (5.32b)

∨ :

∥∥∥∥[Γ∗ , ΓRG
](n+1)

∗

∥∥∥∥ > ∥∥∥∥[Γ∗ , ΓRG
](n)
∗

∥∥∥∥ (5.32c)

∨ :

∥∥∥∥[Γ∗ , ΓRG
](n)
∗

∥∥∥∥ ≤ ϵBorn (5.32d)

∨ : n = nMaxBornOrder . (5.32e)

To clarify, we sum Eq. (5.32a) to some order n, such that one or more conditions in Eqs.

(5.32b)–(5.32e) are satisfied. Eq. (5.32b) ensures ∥η∥ ≤ ΛUCC, so long ∥Γ∗∥ ≤ ΛUCC.
18

Regulator cutoff ΛUCC = 8 is used for this work. By using Eq. (5.32) instead of Eq. (5.29),

we potentially worsen our inversion of Eq. (5.12) to avoid large errors in the Magnus-IMSRG

and UCC—which utilize η dependent transformations (such as the BCH expansion). We

detail the regulated Born series in Algorithm 1.

17The regulation of the Born series is due to inspiration from White—who cautioned against the use of
large rotation angles when performing Jacobi canonical diagonalization [36].

18A better regularization scheme might instead enforce ∥η∥/Vη ≤ ΛUCC, where Vη is the number of
nonzero matrix elements of η. This regularization scheme would account for changes in the size of the
basis—of which η is built upon.
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Algorithm 1 Regulated Born Series

Input: H = E + f + Γ, HRG = ERG + fRG + ΓRG, nMaxBornOrder

Output: η ▷ Approximate solution to −Habij =
[
η, HRG

]
abij

1: function Generator::BornSeries(H, HRG, nMaxBornOrder)

2: initialization

3: ∆RG
abij = fRG

aa + fRG
bb − f

RG
ii − fRG

jj ∀ abij
4: η = Γ∗ ▷ ηabij = Γabij/∆

RG
abij ∀ abij

5: ad = η ▷ Stores Born series adjoints

6: ΛUCC = 8 ▷ Regulator cutoff so η stays small

7: ϵBorn = 1e−3 ▷ Truncation parameter for residuals in the Born series

8: end initialization

9: for m← 1 to nMaxBornOrder do

10: adprevious = ad

11: ad =
[
adprevious , Γ

RG
]
∗

12: if ∥ad∥ >
∥∥adprevious

∥∥ then

13: break ▷ Terminate if subsequent adjoints are increasing in norm

14: end if

15: η += ad

16: if ∥η∥ > ΛUCC then

17: η −= ad ▷ “Error” correction :)

18: break

19: end if

20: if ∥ad∥ ≤ ϵBorn then

21: break

22: end if

23: end for

24: return η

25: end function
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5.8 Preconditioning the Born Series

All UCC-inspired generators in this work strongly rely on the Born series; therefore, its

convergence behaviour is of paramount importance. We seek to aid its convergence using

preconditioning.19 Suppose we are again tasked with inverting the commutator given by

Eq. (5.12). Suppose we have a reasonable guess ηGuess as a solution to Eq. (5.12). We can

then let η = ηGuess + δη,

−Habij =

 η︸︷︷︸
ηGuess + δη

, HRG


abij

(5.33)

−
(
Habij +

[
ηGuess, HRG

]
abij

)
=
[
δη, HRG

]
abij

. (5.34)

Eq. (5.34) is then another commutator inversion problem that can be solved for δη via the

regulated Born series. Once δη is obtained, we reconstruct η = ηGuess + δη.20 If ηGuess

is reasonable, then the norm of Eq. (5.34)’s LHS will be reduced—improving the rate of

convergence of the Born expansion for δη. ηGuess is given by any existing approximation

to η when computing the UCC-Born and Carinae generators. We detail the preconditioned

Born series in Algorithm 2.

19We find it prudent to mention that the preconditioned Born series introduced in this work is somewhat
reminiscent of the Newton-Krylov method in CC, detailed by Yang et al. [41]. Yang et al. also use precon-
ditioning and regularization in differing contexts from this work [41]. This realization was made after the
completion of this work. All insights contained in this work were independently made.

20We reconstruct η = ηGuess + δη without ensuring ∥η∥ ≤ ΛUCC. This is observed to be OK.
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Algorithm 2 Preconditioned Born Series

Input: ηGuess, H, HRG, nMaxBornOrder

Output: η ▷ Approximate solution to −Habij =
[
η, HRG

]
abij

1: function Generator::BornSeries(ηGuess, H, HRG, nMaxBornOrder)

2: initialization

3: HLHS = H +
[
ηGuess, HRG

]
4: end initialization

5: δη = Generator::BornSeries(HLHS , HRG, nMaxBornOrder)

6: return ηGuess + δη

7: end function

5.9 Born Generator

Detailed in Algorithm 3, Born’s generator ηBorn is obtained by approximating HRG
(
η
)
≈

H, then inverting −Habij =
[
ηBorn, H

]
abij

with the regulated Born expansion. Therefore,

Born’s generator is an approximate 1st-order UCC solution. We observe that only a few

terms of the Born series are typically needed to approximate 1st-order UCC well. Thus,

we set nMaxBornOrder = 5. Notice, the leading term of the Born series is exactly White’s

generator when ΓRG = Γ. Hence, White’s generator is an approximate solution to 1st-order

UCC. We view Born’s generator as an extension of White’s generator.
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Algorithm 3 Born generator

Input: H ▷ Hamiltonian to be diagonalized—this is IMSRG’s H(s)

Output: ηBorn ▷ Approximation to a 1st-order UCC diagonalizer of H

1: function Generator::Born(H)

2: initialization

3: nMaxBornOrder = 5

4: end initialization

5: ηBorn = Generator::BornSeries(H, H, nMaxBornOrder)

6: return ηBorn

7: end function

5.10 UCC-Born Generator

The UCC-Born generator η UCC−Born is designed to be a cheap, yet effective high-order UCC

diagonalizer. Initially coinciding with Born’s generator ηBorn, it determines if ηBorn is a suf-

ficient UCC diagonalizer of H using a generalized form of MBPT(2) seen in Algorithm 11. If

ηBorn is deemed insufficient,HRG(η) is approximatedHRG(η) ≈
∑∞

m=0 am(1)
[
ηBorn, H

](m)

using the ansätz seen in Eq. (I.16). The UCC-Born generator is then updated by invert-

ing −Habij =
[
η UCC−Born, HRG(η)

]
abij

using ηBorn as a preconditioner in the Born

expansion. We detail the construction of the UCC-Born generator in Algorithm 4.
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Algorithm 4 UCC-Born generator

Input: H ▷ Hamiltonian to be diagonalized—this is IMSRG’s H(s)

Output: η UCC−Born ▷ Approximation to a UCC diagonalizer of H

1: function Generator::UCCBorn(H)

2: initialization

3: ηBorn = Generator::Born(H)

4: ϵRG = 1e−4 ▷ Cutoff for series in Eq. (I.16)

5: ϵGMBPT = 1e−3 ▷ MBPT cutoff in case 1st-order UCC is sufficient

6: nMaxBornOrder = 100 ▷ We want a high fidelity inversion for η UCC−Born

7: end initialization

8: ▷ MBPT truncation scheme is detailed in Appendix-Section H.1.

9: if
∣∣∣MBPT2Truncation(ηBorn, H)

∣∣∣ < ϵGMBPT then

10: return ηBorn

11: end if

12: HRG =
∑m∗

m=0 am(1)
[
ηBorn, H

](m)
:

∣∣∣∣{am∗(1)[ηBorn, H
](m∗)}

0−body

∣∣∣∣ ≤ ϵRG

13: η UCC−Born = Generator::BornSeries(ηBorn, H, HRG, nMaxBornOrder)

14: return η UCC−Born

15: end function

5.11 Carinae Generator

The Carinae generator ηCarinae is designed to be a potentially expensive and effective UCC

diagonalizer.21 Initially coinciding with Born’s generator ηBorn, the Carinae generator de-

termines if ηBorn is a sufficient UCC diagonalizer of H using a generalized form of MBPT(2)

seen in Algorithm 11. If ηBorn is deemed insufficient, it iterates Eq. (5.10) starting with

η {0} = ηBorn. The iteration of Eq. (5.10) is terminated at k∗+1 using a standard MBPT(2)

convergence criterion seen in Algorithm 10. To better understand the termination scheme

21η Carinae is potentially expensive since it is designed to yield convergent IMSRG results within one
flow step.
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for the Carinae generator, notice we obtain ηCarinae = η {k
∗+1} by solving

−Habij =
[
η {k
∗+1}︸ ︷︷ ︸

η {k
∗} + δη

, HRG(η {k∗})]
abij

(5.35)

−

 H +
[
η {k
∗}, HRG(η {k∗})]︸ ︷︷ ︸

H Unitary(η {k∗})


abij

=
[
δη, HRG(η {k∗})]

abij
.

H Unitary(η {k∗}) = H +

[
η {k
∗},

∞∑
m=0

[
η {k
∗}, H

](m)

(m+ 1)!

]
(5.36)

=
∞∑

m=0

1

m!

[
η {k
∗}, H

](m)
= eη

{k∗}
He−η

{k∗}
.

Therefore, H Unitary
(
η {k
∗}) approximates the unitary transformed Hamiltonian from a con-

verged UCC calculation! If
∣∣∣MBPT2Truncation

(
H Unitary

(
η {k
∗}))∣∣∣ is sufficiently small,

we expect H Unitary
(
η {k
∗+1}) to be sufficiently diagonal.

Of the three novel generators, the Carinae generator is most traditional because it iter-

atively approximates η with a strict convergence criterion. So long the Carinae generator is

convergent, we can expect convergence of the IMSRG with this generator within one flow

step. We detail the construction of the Carinae generator in Algorithm 5.
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Algorithm 5 Carinae generator

Input: H ▷ Hamiltonian to be diagonalized—this is IMSRG’s H(s)

Output: ηCarinae ▷ Approximation to a UCC diagonalizer of H

1: function Generator::Carinae(H)

2: initialization

3: η {0} = ηBorn = Generator::Born(H)

4: maxk = 100 ▷ Max UCC iterations

5: ϵ′BCH = 1e−4 ▷ Cutoff for HRG series from the BCH expansion

6: ϵGMBPT = 1e−3 ▷ MBPT cutoff in case 1st-order UCC is sufficient

7: ϵMBPT = 1e−6 ▷ MBPT cutoff for UCC transformed Hamiltonian

8: nMaxBornOrder = 100 ▷ We want high fidelity inversions for η {k}

9: end initialization

10: ▷ MBPT truncation schemes are detailed in Appendix-Section H.1.

11: if
∣∣∣MBPT2Truncation(η {0}, H)

∣∣∣ < ϵGMBPT then

12: return η {0}

13: end if

14: for k ← 0 to maxk − 1 do

15: HRG =
∑m∗

m=0

[
η {k}, H

](m)

(m+1)!
:

∣∣∣∣∣{
[
η {k}, H

](m∗)
(m∗+1)!

}
0−body

∣∣∣∣∣ ≤ ϵ′BCH

16: H Unitary = H +
[
η {k}, HRG

]
17: η {k+1} = Generator::BornSeries(η {k}, H, HRG, nMaxBornOrder)

18: ηCarinae = η {k+1}

19: if
∣∣∣MBPT2Truncation

(
H Unitary

)∣∣∣ < ϵMBPT then

20: break

21: end if

22: end for

23: return ηCarinae

24: end function

5.12 Results

The success of the Born, UCC-Born, and Carinae generators is measured by their speedup

of the IMSRG relative to the existing White generator while maintaining small discrepan-
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cies in final predicted IMSRG energies. The evaluation of commutators with O(N6
orbitals)

time complexity (in the realistic limit) in both the BCH and Magnus expansions comprises

the most computationally expensive operation of the Magnus-IMSRG in an ideal computer

program. In addition, White’s generator has time complexity O(N4
orbitals) in the realis-

tic limit. Therefore, the cost of constructing White’s generator is computationally cheap

compared to the rest of the IMSRG. Additionally, the computational cost of constructing

White’s generator is cheap compared to that of the construction of all three UCC-inspired

generators—which require the same O(N6
orbitals) commutators evaluations as the IMSRG.

Therefore, computational speedup with all novel generators can only be achieved by reduc-

ing the total number of O(N6
orbitals) commutator evaluations throughout the lifetime of the

IMSRG program, while incurring little additional overhead.

We evaluate the success of this work by comparing Magnus-IMSRG calculations us-

ing UCC-inspired generators versus the current standard in closed shell systems—White’s

generator. IMSRG calculations are performed in infinite nuclear matter over a range of

particle numbers A = N + Z and densities ρ. All calculations are done within the normal-

ordered 2NF IMSRG(2) scheme using the same Magnus-IMSRG parameters: ϵBCH = 1e−4,

ϵMagnus = 1e−4, ϵMBPT = 1e−6, and step-size ds = 1. Results are obtained using high-

performance compute resources provided by the Institute for Cyber-Enabled Research at

Michigan State University. We measure the runtime of IMSRG calculations using all gen-

erators—since that is a key quantity of interest in this work. To its detriment, runtime

data has intrinsic variability dependent on the machine performing the IMSRG calculation.

Therefore, we also measure the total number of commutator evaluations throughout the life-

time of each IMSRG program to explain trends in runtime data. We measure differences in

converged IMSRG ground state energies using the UCC-inspired generators versus White’s

99



generator to establish the extent of agreement in energies between all generators. Lastly, we

measure the convergence profile of IMSRG calculations to establish the extent of convergence

acceleration conferred by the novel generators.

Figures 5.1–5.7 show that using all novel generators, we often observe a reduction in

the total number of commutator evaluations in the IMSRG compared to using White’s

generator. This commutator reduction translates to observed computational speedups of

the IMSRG in various nuclear matter systems. We sometimes observe speedups of 2–4X in

some systems—notably seen in Figures 5.1, 5.5, and 5.6. Figures 5.1–5.7 show that IMSRG

speedup is attained using the UCC-inspired generators by reducing the total number of

commutator evaluations in the IMSRG. The UCC-inspired generators reduce commutator

evaluations by accelerating the convergence of the IMSRG—thereby reducing the number

of IMSRG iterations needed for convergence. Notably, the UCC-Born generator often yields

the best speedup of the IMSRG, as seen in Figure 5.1.

Moreover, we see little discrepancies in converged energies per particle E(sfinal) ≡

E(sfinal)/A between IMSRG calculations using all UCC-inspired generators versus White’s

generator. We at most observe a ∼ 1e−2 MeV discrepancy in E(sfinal) within N = Z = 14

symmetric nuclear matter at ρ = 0.1 fm−3 (see Figure 5.6). Curiously, we see the greatest

IMSRG speedups of ∼ 3X − 4X using the UCC-inspired generators in this system. Lastly,

we generally observe that the IMSRG converges using the novel generators, so long γ < 0.8.

We suspect that this criterion is related to the convergence criteria of the Magnus expan-

sion. Given these results, we conclude the Born, UCC-Born, and Carinae generators improve

the quality of the IMSRG integration by accelerating the convergence of the IMSRG, while

introducing little deviations in the converged IMSRG energy.
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(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.05 fm−3.

Figure 5.1: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = 66, Z = 0, and Norbitals = 1478 using UCC-inspired generators and White’s
generator.
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(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.11 fm−3.

Figure 5.2: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = Z = 66, and Norbitals = 1460 using UCC-inspired generators and White’s
generator. Calculations with ρ < 0.11 fm−3 are not included due to the divergence of the
Magnus-IMSRG regardless of generator choice.

102



(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.05 fm−3.

Figure 5.3: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = 66, Z = 54, and Norbitals = 1460 using UCC-inspired generators and
White’s generator.

103



(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.05 fm−3.

Figure 5.4: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = 66, Z = 38, and Norbitals = 1460 using UCC-inspired generators and
White’s generator.
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(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.05 fm−3.

Figure 5.5: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = 66, Z = 14, and Norbitals = 1460 using UCC-inspired generators and
White’s generator.
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(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.1 fm−3.

Figure 5.6: Money-plot comparison of Magnus-IMSRG nuclear matter calculations with the
NNLOopt interaction, N = 14, Z = 14, and Norbitals = 1556 using UCC-inspired generators
and White’s generator.
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(a) Total number of commutator evaluations
throughout the lifetime of IMSRG programs
varying particle density, and using all genera-
tors.

(b) IMSRG runtimes varying particle density,
and using all generators.

(c) Differences in E(sfinal) using all novel gen-
erators relative to White’s generator.

(d) Convergence profile of E(s) using all gen-
erators at ρ = 0.05 fm−3.

Figure 5.7: Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOopt
interaction, N = 114, Z = 0, and Norbitals = 1502 using UCC-inspired generators and
White’s generator.
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5.13 A Few Remarks

Observed IMSRG speedup with all novel generators is strongly system dependent. We

suspect this system dependence is rooted at the regulation and convergence of the Born

series. More work is currently needed to understand this. The regulation of the Born series

in Algorithm 1 is rather crude. While solving linearized UCC, we could perhaps use a

more sophisticated regulator by replacing Eq. (5.10) with −Habij × e −(∥Γ∗∥/ΛUCC)
α

=[
η {k+1}, HRG

(
η {k}

)]
abij

— solved by an unregulated Born series. α ≥ 0 can be viewed as

a measure of how well HRG
(
η {k}

)
approximates HRG

(
η
)
. If HRG

(
η {k}

)
= HRG

(
η
)
, we

can likely choose α = 0 without issue. Lastly, although three-body forces are not considered

in this chapter, we find that the UCC-inspired generators are still effective when using the

IMSRG(2) + normal-ordered 3NF scheme detailed in Chapter 2.

5.14 Summary

Viewing IMSRG generators as diagonalizers of IMSRG flowing HamiltoniansH(s), we looked

towards UCC to efficiently construct approximate diagonalizers of H(s). We therefore in-

troduced physics-motivated techniques to accelerate our UCC calculations. With inspira-

tion from Kutzelnigg [38], we introduced the Born expansion as a tool to invert commu-

tators in UCC—so long a renormalized Hamiltonian HRG
(
η
)
is approximated. And we

posed an ansätz for HRG
(
η
)
utilizing gradient descent in Appendix I. With inspiration from

White [36], we regulated the Born series to improve the convergence of η dependent trans-

formations in UCC and IMSRG. Lastly, we preconditioned the Born expansion to accelerate

its rate of convergence when solving high-order UCC.
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Utilizing these developments, we subsequently introduced three UCC-inspired IMSRG

generators—Born, UCC-Born, and Carinae. Approximately solving 1st-order UCC, Born’s

generator is an extension to the existing White’s generator. The UCC-Born generator,

designed to be a cheap high-order UCC solver, uses Born’s generator in conjunction with

the aforementioned HRG
(
η
)
ansätz to approximate high-order UCC solutions. The Carinae

generator conventionally iterates linearized UCC until a strict convergence criterion is met.

Using these UCC-inspired generators, we often see noticeable speedups in the IMSRG with

little differences in converged energies—sometimes amounting to 2–4X in nuclear matter

systems.

5.15 Perspectives

Looking forward, we expect the Born, UCC-Born, and Carinae generators to be benefi-

cial in existing IMSRG(2) implementations—so long Section 5.2’s assumptions are met, if

not weakly broken. Although, not rigorously tested, we observed noticeable speedups in

our calculations for the UCC-Born and Carinae generators by using preconditioners in the

Born series. Therefore, we suspect that the use of preconditioned and regulated Born series

may confer computational speedup in existing UCC implementations—so long Section 5.2’s

assumptions are met, if not weakly broken.

Future work is needed to construct better regulation schemes of the Born series. More-

over, all calculations in this chapter were restricted to the two-body level. Going forward,

it may be lucrative to extend the Born series to invert commutators acting on three-body

operators. Perhaps, one could solve the commutator inversion at the two-body level (as is

described in this work), then use that solution to better obtain the three-body commutator
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inverter. Excitingly, we wonder if the Born series could be used to implement approximate

triples in the IMSRG. In the following chapter, we apply known data driven methods to

accelerate the IMSRG by extrapolating converged IMSRG energies.
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Chapter 6. IMSRG Post-Processors

“If you don’t know

something, pretend you do.

Then ask, what would be

consequent to you knowing

that? Sometimes guessing is

enough!”

—Hoon Hong

Moving along the IMSRG flow in s, we calculate and store approximations to the converged

IMSRG energy. We store these energies in

C =

{
E(0) + ∆E(2)(0), E(ds) + ∆E(2)(ds), . . . , E(s) + ∆E(2)(s)

}
.

The number of elements in C is denoted by Nsamples = 1 + s/ds. We include MBPT(2)

corrections on the IMSRG energies to obtain better approximations to the converged IMSRG

energy. And the converged IMSRG energy is given by E(∞) + ∆E(2)(∞).1

We introduce the use of the Shanks and Padé methods in the IMSRG, which use elements

of C to extrapolate the converged IMSRG energy. As described in this work, these methods

are post-processors which sit on top of the IMSRG to extrapolate the final IMSRG energy.

1As seen in Figure 2.2, ∆E(2)(∞) is actually zero.
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6.1 Shanks Transformation

We store the last three energies of C in2

C̃ =
{
CNsamples−3, CNsamples−2, CNsamples−1

}
. (6.1)

C̃ holds our best three approximations to the final IMSRG energy as we move along the

flow. The 1st-order Shanks transformation on C is given by [42]

S(C) ≡ C̃2 −
(C̃2 − C̃1)

2

C̃2 − 2C̃1 + C̃0
, (6.2)

and is taken as the extrapolated final IMSRG energy E(∞)+∆E(2)(∞). A minimum of three

samples are needed for the 1st-order Shanks transform. If Nsamples < 3, no extrapolation

is made and S(C) is programmed to return CNsamples−1. The Shanks transform is derived

by assuming that the elements of C̃ are exponentially related [42, 43]. By using the Shanks

transform in the IMSRG, we assume that IMSRG energies converge exponentially.

6.2 Padé Approximant

We store energy differences of C along the flow in

δ =

{
C0

g0
,
C1 − C0

g1
,
C2 − C1

g2
, . . . ,

CNsamples−1 − CNsamples−2

g
Nsamples−1

}
,

2We index all arrays starting from 0.
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where g is some dimensionless parameter—for power counting. Notice, CNsamples−1 =∑Nsamples−1
n=0 δng

n. Defining M ≡
⌊
Nsamples

2

⌋
and L ≡ Nsamples − M − 1, the polyno-

mial coefficients an and bm of the Padé approximant are obtained by solving3

L∑
n=0

ang
n =

(
1 +

M∑
m=1

bmg
m
)
×

Nsamples−1∑
n=0

δng
n, (6.3)

and discarding any induced terms with degrees greater than L in Eq. (6.3)’s RHS [44]. And

the extrapolated final IMSRG energy is then given by

P (C) ≡
∑L

n=0 ang
n

1 +
∑M

m=1 bmg
m
, (6.4)

with g = 1. A minimum of 2 samples are needed to use the Padé approximant. Whenever

Nsamples < 2, no extrapolation is made and P (C) is programmed to return CNsamples−1.

6.3 Results

We perform multiple Magnus-IMSRG calculations testing the efficacy of the Shanks and Padé

extrapolators. All calculations are made with step-size ds = 1 using White’s generator with

Epstein–Nesbet energy denominators.4 The IMSRG outputs for these results are included

in the SCKY-IMSRG repository; and the resulting figures are plotted by our automated

data managers. At each step of the flow, we have three methods which give approximations

to the converged IMSRG energy: CNsamples−1, S(C), and P (C). We measure differences

3The polynomial coefficients an and bm, are implicit functions of C.
4Unless otherwise stated, we employ a generalized form of MBPT(2) seen in Algorithm 6. Our MBPT

expressions are consequently, generator dependent. Using White’s generator with Epstein–Nesbet denomi-
nators, we suspect that MBPT results in this chapter are with the Epstein–Nesbet partitioning.
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of CNsamples−1 relative to E(∞) + ∆E(2)(∞) to establish the baseline convergence of the

IMSRG with MBPT(2) contributions. We also measure differences of S(C), and P (C)

relative to E(∞) + ∆E(2)(∞) to measure the extrapolators’ efficacy.

In Figures 6.1, 6.2, and 6.3, we see that both the Shanks and Padé methods can extrapo-

late E(∞)+∆E(2)(∞) with impressive accuracy. Notably, we sometimes observe 1-2 orders

of magnitude improvement over CNsamples−1, using the extrapolators. And both extrap-

olators tend to track each other quite well. Unfortunately, both methods have numerical

instabilities, notably seen in Figures 6.3 and 6.4. These instabilities are suspected to occur

when these methods become ill-conditioned—diminishing their reliability.

The accuracy of the Shanks and Padé extrapolators is generally highest halfway through

the flow. Terminating the IMSRG flow when extrapolation accuracies are sufficiently high,

and quoting the extrapolated energies, we could obtain ∼ 2X IMSRG speedup. However,

it is unclear a priori when the IMSRG is halfway through the flow, let alone when the

Shanks and Padé extrapolation accuracy is high. Alternatively, we could terminate the

IMSRG when the Shanks and Padé extrapolations are converged. This would yield a more

reliable extrapolated energy. But, we would obtain less than 2X IMSRG speedup, since both

extrapolators tend to converge much later in the flow.

The extrapolators can yield poor results, particularly seen in IMSRG calculations with the

hard Entem-Machleidt-Nosyk potential [28] (see Figure 6.5). Notably, the IMSRG’s conver-

gence behaviour is not smooth for the Entem-Machleidt-Nosyk potential with ds = 1, com-

pared to the softer N2LOopt potential [25]. Perhaps, the lack of smoothness of CNsamples−1

is the source of failure for the Shanks and Padé extrapolators. This hypothesis is consistent

with preliminary explorations—which saw that the Shanks and Padé extrapolators work best

when taking small IMSRG step-sizes.
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Figure 6.1: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 14, ρ = 0.11 fm−3, and Norbitals = 228. The Magnus-IMSRG is
slowly convergent in this system—and is divergent with ρ = 0.1 fm−3. The sharp turning
points in the Padé and Shanks curves at s/ds = 10 and s/ds = 13 respectively, are due to

the extrapolators predicting converged energies that narrowly cross E(26)+∆E(2)(26) from
above. At these turning points, we see 2 orders of magnitude improvement over the IMSRG
with MBPT(2). And terminating the IMSRG at these turning points would confer 2− 2.6X
speedup, with little loss in accuracy.
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Figure 6.2: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 14, ρ = 0.14 fm−3, and Norbitals = 324. The turning points in
the Shanks and Padé curves at s/ds = 6 and s/ds = 7 respectively, are due to the extrapo-

lators predicting converged energies that narrowly cross E(12) +∆E(2)(12) from above. At
these turning points, we see at least 1 order of magnitude improvement over the IMSRG
with MBPT(2). And terminating the IMSRG at these turning points would confer 1.7− 2X
speedup, with little loss in accuracy.
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Figure 6.3: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, ρ = 0.16 fm−3, and Norbitals = 324. We see numerical insta-
bilities in both extrapolators at s/ds = 3 yielding extrapolations that are roughly 1 order of

magnitude further away from the converged energy than E(3)+∆E(2)(3). The sharp turning
points in the Shanks and Padé curves at s/ds = 8 are due to the extrapolators predicting

converged energies that narrowly cross E(15) + ∆E(2)(15) from above. At these s/ds = 8

turning points, we see nearly 2 orders of magnitude improvement over E(8)+∆E(2)(8). And
terminating the IMSRG at these turning points would confer 1.9X speedup, with little loss
in accuracy.
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Figure 6.4: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, ρ = 0.16 fm−3, and Norbitals = 684. We see a numerical
instability in the Shanks extrapolator at s/ds = 4 yielding an extrapolation that is 2 orders

of magnitude further away from the converged energy than E(4) + ∆E(2)(4). Both extrap-
olators generally yield small improvements over the IMSRG with MBPT(2) in this system.
However, terminating the IMSRG at s/ds = 4, and taking the Padé extrapolated energy
would confer 2.2X speedup, with little loss in accuracy.
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Figure 6.5: Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé ex-
trapolators with N = Z = 66, ρ = 0.13 fm−3, and Norbitals = 3700. This result is obtained
with the Entem-Machleidt-Nosyk potential at the normal-ordered three-body level [28]. Gen-
eralized MBPT is not employed in this system, and MBPT is thus implemented with Møller–
Plesset partitioning. Both the Shanks and Padé methods are poor extrapolators in this
system.
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6.4 Discussion

Given the extrapolation power of the Shanks and Padé methods, we view them as noninvasive

extrapolators that can obtain converged IMSRG energies when the IMSRG’s convergence

behavior is smooth. These extrapolators could be used to invasively accelerate the IMSRG’s

convergence by terminating the flow early. However, one would need a better handle on

when these methods fail in the IMSRG. Moreover, preliminary explorations suggest that the

Shanks and Padé methods can be applied directly on the matrix elements of the Magnus

operator Ω(s) to successfully extrapolate Ω(∞).5 This would enable the extrapolation of

observables beyond energies at the cost of storing multiple temporaries of Ω(s). A future

SCKY-IMSRG implementation of the Shanks and Padé extrapolations on Ω(s) might be

lucrative. Future work is needed to understand when these methods fail in the IMSRG, and

when they can be used to terminate the IMSRG early.

6.5 Conclusion and Perspectives

We generally observe that Shanks and Padé transforms can extrapolate converged IMSRG

energies with impressive accuracy. When these methods work, they can extrapolate con-

verged IMSRG energies within 1e−2 MeV accuracy. Terminating the IMSRG flow once

when the Shanks and Padé extrapolation accuracies are sufficiently high, and quoting the

extrapolated energies, we could obtain ∼ 2X IMSRG speedup. However, we have yet to

devise a scheme to reliably do so. Moreover, these methods are prone to numerical instabil-

ities; and their extrapolation power can markedly vary, depending on the interaction in use.

5Care must be taken to avoid extrapolating over matrix elements of Ω(s) that are purely zeros. This
would produce zeros in the denominator of Eq. (6.2).
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Thus, more work is needed to understand when these methods fail in the IMSRG.

Currently, these methods are best seen as noninvasive IMSRG extrapolators which guide

users to potential converged IMSRG energies. Going forward, one could explore ways to

reliably terminate the IMSRG early using the extrapolators. Additionally, preliminary ex-

plorations suggest that the Shanks and Padé transforms can also extrapolate on the Magnus

operator Ω(s). One could explore using these methods to invasively accelerate the conver-

gence of the Magnus-IMSRG evolution.
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Chapter 7. Closing Remarks

“I got cash”

—Chief Keef, I got cash

7.1 Summary

The nuclear matter equation-of-state (NM-EOS) is of great interest to the nuclear and as-

trophysics community. Recent advances in ab initio theory have led to an explosion of

nuclear forces from Chiral Effective Field Theory (χ-EFT) that are amenable to many-body

methods [1, 4]. Some of such methods include Many-Body Perturbation Theory (MBPT),

and nonperturbative approaches: In-Medium Similarity Renormalization Group (IMSRG)

and Coupled-Cluster theory (CC). The IMSRG is a powerful diagonalization method that,

until now, has not been applied to study NM-EOS with χ-EFT forces. We have now com-

puted various NM-EOS using the IMSRG with the N2LOopt, Hebeler, and the harder N2LO

Entem-Machleidt-Nosyk (EMN) interactions [4,25,28].1 To achieve this goal, we developed a

state-of-the-art, high-performant nuclear matter IMSRG program with access to a multitude

of two-body and density-dependent three-body forces from Drischler et al. [1]. And we made

comparisons to MBPT and CC results, obtained in collaboration with Christian Drischler

and Gaute Hagen, respectively. We qualitatively validated our IMSRG obtained results

with CC, by comparing trends in our data to observed trends seen in finite nuclei—within

1For clarity, we have access to significantly more forces than N2LOopt, Hebeler, and EMN alone. The
N2LOopt and Hebeler forces were chosen to obtain the first batch of IMSRG calculated NM-EOS, due to
their existing use with MBPT and CC [1, 23]. The N2LOopt and Hebeler forces were chosen to obtain the
first batch of IMSRG calculated NM-EOS, due to their existing use with many-body methods [1, 23]. The
harder EMN potential was identified as a good candidate to probe for nonperturbative physics in nuclear
matter.
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the literature. And, we observed the presence of nonperturbative physics when using hard

interactions in symmetric nuclear matter (SNM).

Most IMSRG NM-EOS computations were done at scale, and required days to be com-

pleted. This is due to the high computational demands of the IMSRG in large systems.

Therefore, we developed novel ideas to accelerate IMSRG computations using Unitary Coupled-

Cluster (UCC) inspired IMSRG generators. In doing so, we made novel insights into the

IMSRG and UCC. Particularly, we realized that approximate solutions of UCC can be used

as IMSRG generators. Viewing UCC as a nonlinear commutator inversion problem, we re-

alized that UCC amplitudes at any order of UCC are given by a generalization of the Born

series—so long the series converges. And we used preconditioners to accelerate the con-

vergence of the Born series. Moreover, we provided a gradient descent based ansätz for a

renormalized Hamiltonian in UCC, seen in Appendix I. Using these developments, we sub-

sequently introduced three IMSRG generators named “Born,” “UCC-Born,” and “Carinae.”

Notably, we sometimes observed 2–4X IMSRG speedup when using the novel generators,

particularly when the IMSRG was slowly convergent.

We also applied to the IMSRG, known nonlinear methods—i.e. Shanks and Padé trans-

forms—which can remarkably accelerate slowly converging series [42,44]. We saw that both

methods can extrapolate on converged IMSRG energies with impressive 1e−2 MeV accuracy.

However, we also observed numerical instabilities in the methods. And, we were unable to

use the extrapolators to reliably terminate the IMSRG early, and obtain noticeable speedup.

Consequently, these methods are currently viewed as noninvasive IMSRG extrapolators,

which guide users to potential converged IMSRG energies.
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7.2 Outlook

Given the few chiral interactions used in this work, we look forward to IMSRG calculated

NM-EOS with a wider range of interactions. Such calculations using uncertainty quantifica-

tion tools from Drischler et al. [29], will provide nonperturbative benchmarks to the existing

literature [29]. Furthermore, we observed the growing importance of triples excitations in

CC, at higher densities of SNM. We suspect that triples may likewise be important in the

IMSRG at higher SNM densities—but perhaps to a lesser extent than CC. Thus, we also

look forward to incorporating triples excitations into our nuclear matter IMSRG program.

Developments from Stroberg et al. [22] will likely be needed in this endeavor.

We have developed an IMSRG program that is versatile, and can be used to study a

variety of interesting physics using an emerging nonperturbative method in nuclear matter.

For example, there are exciting developments on the horizon being made by Kang Yu for

IMSRG computed momentum distributions, static structure factors, and pair correlation

functions in nuclear matter. A finite temperature extension to our IMSRG program can also

be implemented using insights from Smith et al. [26]. Such an implementation would produce

an interesting nonperturbative benchmark to existing finite temperature MBPT results [1].

We connected two historically separate theories—IMSRG and UCC by using approximate

UCC solutions as generators of the IMSRG. We are curious to see the potential performance

gains of the UCC-inspired IMSRG generators in other systems beyond nuclear matter. And,

we hope that insights from this work lead to further developments of UCC and IMSRG

within many-body physics. Moreover, we are interested to see the potential value of the

Shanks and Padé IMSRG extrapolators in other systems beyond nuclear matter. Lastly, our

nuclear matter IMSRG program can also be extended to finite nuclei via a change of basis.
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Optimizations made in the program’s commutators enabled novel preliminary A = 1030

IMSRG(2) calculations. Such calculations for finite nuclei may shed light on the existence

of heavy nuclei beyond the periodic table!
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APPENDIX A. Generalized Baker-Campbell-Hausdorff Formula

Given recent interests in emulation for the IMSRG, the following quantity is of interest

⟨ΨA|H |ΨB⟩ = ⟨Φ| eAHe−B |Φ⟩ . (A.1)

A and B are generic A-body operators. |ΨA⟩ and |ΨB⟩ are correlated wavefunctions associ-

ated with A and B, respectively. And |Φ⟩ is the usual Fermi vacuum. Let x be a continuous

variable. Consider

F (x) = eAxHe−Bx (A.2)

d

dx
F (x) =

deAx

dx
He−Bx + eAxH

de−Bx

dx
(A.3)

= AeAxHe−Bx − eAxHBe−Bx .

Since
[
A, eAx

]
=
∑∞

n=0
xn

n!

[
A, An

]
= 0,

d

dx
F (x) = eAx (AH −HB) e−Bx . (A.4)

We define the three-argument commutator

[A,H,B] ≡ [A,H,B](1) ≡ AH −HB . (A.5)

Then,

d2

dx2
F (x) = eAx (A [A,H,B]− [A,H,B]B) e−Bx (A.6)

= eAx [A, [A,H,B] , B] e−Bx .
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Likewise, we define the two-fold nested three-argument commutator

[A,H,B](2) ≡ [A, [A,H,B] , B] . (A.7)

In general, the n-fold nested three-argument commutator is given by

[A,H,B](n) ≡
[
A, [A,H,B](n−1) , B

]
, n > 0 (A.8a)

[A,H,B](0) ≡ H . (A.8b)

Assume that for some n ≥ 0,

dn

dxn
F (x) = eAx [A,H,B](n) e−Bx . (A.9)

Therefore,

d

dx

dn

dxn
F (x) = eAx

(
A [A,H,B](n) − [A,H,B](n)B

)
e−Bx (A.10)

= eAx
[
A, [A,H,B](n) , B

]
e−Bx

= eAx [A,H,B](n+1) e−Bx .

Thus, we have demonstrated that if Eq. (A.9) is valid for a given value of n, then the

successive n + 1 derivative of F (x) is also guaranteed by Eq. (A.9). Since we have shown

that Eq. (A.9) is valid for n = 1 (and cotrivially valid for n = 0), then Eq. (A.9) must be

valid for all values of n.

Taylor expanding F (x) about x = 0 using Eq. (A.9), yields a modified variant to a famous
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expression

F (x) =
∞∑
n=0

dn

dxn
F (x)

∣∣∣∣∣
x=0

xn

n!
=
∞∑
n=0

xn [A,H,B](n)

n!

=⇒ F (1) = eAHe−B =
∞∑
n=0

[A,H,B](n)

n!
. (A.11)

132



APPENDIX B. Fourier Transform of Local Two-Body Force in a Box

In this work, the IMSRG is performed in a finite box, manipulating interactions written

in momentum space. Input interactions (e.g. the Minnesota potential) may be given in

coordinate space representation. Therefore, it is essential that we know how to convert

interaction matrix elements between coordinate and momentum space representations. Con-

sider some momentum space interaction matrix element
〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

, obtained in

a box (of volume V = L3 [fm3]) containing normalized single-particle plane wave states

given in Eq. (2.12). The subscript “Direct” is used to denote a matrix element that is not

anti-symmetrized. We aim to write the aforementioned matrix element in a position space

representation. For this derivation, we ignore spin and isospin quantum numbers—as they

are irrelevant for understanding how the Fourier transform is performed in a box.

Inserting four complete sets into
〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

with basis states specifying the

independent location of all incoming and outgoing particles yields

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=

∫
V
d3r3

∫
V
d3r4

∫
V
d3r1

∫
V
d3r2

〈
k⃗1k⃗2

∣∣∣r⃗3r⃗4〉〈r⃗1r⃗2∣∣∣⃗k3k⃗4〉
×
〈
r⃗3r⃗4

∣∣∣V̂ ∣∣∣r⃗1r⃗2〉 . (B.1)

Notice our chosen boundary of integration: we assume that all relevant single-particle wave-

functions exist within our box. We assume that the interaction is local, i.e.

V̂ |r⃗1r⃗2⟩ = V (r⃗1 − r⃗2) |r⃗1r⃗2⟩ (B.2a)w�
⟨r⃗3r⃗4|V̂ |r⃗1r⃗2⟩ = V (r⃗1 − r⃗2)δ(r⃗1 − r⃗3)δ(r⃗2 − r⃗4) . (B.2b)
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It is important to emphasize that the potential V (r⃗1 − r⃗2) is a nuclear interaction, and is

thus generated by the interacting particles. Consequently, V (r⃗1 − r⃗2) depends only on the

relative distance between particles. This means that we can confine our particles in any

region of space, and the observables related to V (r⃗1 − r⃗2) should be unchanged—so long

there are no external forces. For convenience in this calculation, we place our box with one

of its vertices located at the origin

0 ≤ r1x ≤ L

0 ≤ r2x ≤ L .

Using Eq. (B.2b), we can simplify the integration:

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=

∫
V
d3r1

∫
V
d3r2

〈
k⃗1k⃗2

∣∣∣r⃗1r⃗2〉〈r⃗1r⃗2∣∣∣⃗k3k⃗4〉V (r⃗1 − r⃗2) . (B.3)

Since,

〈
k⃗1k⃗2

∣∣∣r⃗1r⃗2〉 =
1√
V
e−ik⃗1·r⃗1

1√
V
e−ik⃗2·r⃗2 (B.4a)〈

r⃗1r⃗2

∣∣∣⃗k3k⃗4〉 =
1√
V
eik⃗3·r⃗1

1√
V
eik⃗4·r⃗2 , (B.4b)

we can expand Eq. (B.3)

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=
1

V2

∫
V
d3r1

∫
V
d3r2e

−i(k⃗1·r⃗1+k⃗2·r⃗2)ei(k⃗3·r⃗1+k⃗4·r⃗2)V (r⃗1 − r⃗2) .

(B.5)

Since the potential is assumed to only depend on the relative distance between incident

particles, it is convenient to transform from lab coordinates into relative coordinates r⃗ ≡
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r⃗1 − r⃗2 and center-of-mass coordinates R⃗ ≡ r⃗1+r⃗2
2 . Then, r⃗1 = R⃗+ r⃗

2 and r⃗2 = R⃗− r⃗
2 . And

the new volume element is given by

d3r1d
3r2 = d3Rd3r|det(J)| . (B.6)

The Jacobian is given by

J =



∂r1x
∂Rx

∂r1x
∂rx

∂r1x
∂Ry

∂r1x
∂ry

∂r1x
∂Rz

∂r1x
∂rz

∂r1y
∂Rx

∂r1y
∂rx

∂r1y
∂Ry

∂r1y
∂ry

∂r1y
∂Rz

∂r1y
∂rz

∂r1z
∂Rx

∂r1z
∂rx

∂r1z
∂Ry

∂r1z
∂ry

∂r1z
∂Rz

∂r1z
∂rz

∂r2x
∂Rx

∂r2x
∂rx

∂r2x
∂Ry

∂r2x
∂ry

∂r2x
∂Rz

∂r2x
∂rz

∂r2y
∂Rx

∂r2y
∂rx

∂r2y
∂Ry

∂r2y
∂ry

∂r2y
∂Rz

∂r2y
∂rz

∂r2z
∂Rx

∂r2z
∂rx

∂r2z
∂Ry

∂r2z
∂ry

∂r2z
∂Rz

∂r2z
∂rz



=



1 1
2 0 0 0 0

0 0 1 1
2 0 0

0 0 0 0 1 1
2

1 −1
2 0 0 0 0

0 0 1 −1
2 0 0

0 0 0 0 1 −1
2



, (B.7)

with det(J) = 1. Therefore,

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=
1

V2

∫
V′
d3R

∫
V′′

d3re
i
(
k⃗3·[R⃗+ r⃗

2 ]+k⃗4·[R⃗−
r⃗
2 ]−k⃗1·[R⃗+ r⃗

2 ]−k⃗2·[R⃗−
r⃗
2 ]
)
V (r⃗)

(B.8)

=
1

V2

∫
V′
d3Re

i
(
k⃗3+k⃗4−k⃗1−k⃗2

)
·R⃗
∫
V′′

d3re

i
(
k⃗3−k⃗4−k⃗1+k⃗2

)
·r⃗

2 V (r⃗) ,

where V and V ′ are new boundaries of integration. The integration region over R is still

restricted to be within the box, while the integration region over r will lie outside of the box.
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To see this, observe that

maxRx = max

(
r1x + r2x

2

)
=
L+ L

2
= L (B.9a)

minRx =
0 + 0

2
= 0 (B.9b)

max rx = max (r1x − r2x) = L − 0 (B.9c)

min rx = 0− L = −L . (B.9d)

Likewise can also be concluded for the y and z Cartesian coordinates. Thus, V ′ = V and

V ′′ = 23V . For convenience, let us define the incoming and outgoing relative momenta

k⃗ ≡ k⃗3 − k⃗4
2

(B.10a)

k⃗′ ≡ k⃗1 − k⃗2
2

. (B.10b)

The momentum transfer is given by

q⃗ ≡ k⃗′ − k⃗ =
k⃗1 − k⃗2

2
− k⃗3 − k⃗4

2
. (B.11)

And center-of-mass momenta are given by

K⃗ ′ ≡ k⃗1 + k⃗2 (B.12a)

K⃗ ≡ k⃗3 + k⃗4 . (B.12b)
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Thus,

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=
1

V2

∫
V
d3Re

i
(
K⃗−K⃗′

)
·R⃗
∫
23V

d3re−iq⃗·r⃗V (r⃗) . (B.13)

Note, the integration boundary 23V , means that Eq. (B.13)’s integration over r is done within

the boundary of a cube (with sides of length 2L) that is centered at the origin. Eq. (B.13)’s

integration over R can be easily done in Cartesian coordinates

∫
V
d3Re

i
(
K⃗−K⃗′

)
·R⃗

=

∫ L
0
dRxe

i
(
Kx−K′x

)
Rx
∫ L
0
dRye

i
(
Ky−K′y

)
Ry
∫ L
0
dRze

i
(
Kz−K′z

)
Rz

.

(B.14)

∫ L
0
dRxe

i
(
Kx−K′x

)
Rx

=
−iei

(
Kx−K′x

)
Rx

Kx −K ′x

∣∣∣∣∣∣∣
Rx=L

Rx=0

(B.15)

=
−i

Kx −K ′x

(
e
i
(
Kx−K′x

)
L − 1

)
.

Since

Kx −K ′x = k3x + k4x − k1x − k2x =
2π

L
(n3x + n4x − n1x − n2x) , (B.16)

we can conveniently define

n̄x ≡ n3x + n4x − n1x − n2x ∈ Z . (B.17)

Hence, ∫ L
0
dRxe

i
(
Kx−K′x

)
Rx

=
−iL
2π

(
e2πin̄x − 1

)
n̄x

. (B.18)
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Note that Eq. (B.18) is only non-zero when n̄x = 0. Therefore,

∫ L
0
dRxe

i
(
Kx−K′x

)
Rx

= lim
n̄x→0

−iL
2π

d
dn̄x

(
e2πin̄x − 1

)
d

dn̄x
n̄x

(B.19)

= δn̄x,0
−iL
2π

2πi

1
= Lδn̄x,0 = LδKx,K′x

.

Similarly,

∫ L
0
dRye

i
(
Ky−K′y

)
Ry

= LδKy,K′y
(B.20a)∫ L

0
dRze

i
(
Kz−K′z

)
Rz

= LδKz,K′z
. (B.20b)

Combining Eqs. (B.19) and (B.20) with Eq. (B.14),

∫
V
d3Re

i
(
K⃗−K⃗′

)
·R⃗

= L3δ
K⃗,K⃗′ = VδK⃗,K⃗′ . (B.21)

Finally, combining Eq. (B.21) with Eq. (B.13),

〈
k⃗1k⃗2

∣∣∣V̂ ∣∣∣⃗k3k⃗4〉
Direct

=
δ
k⃗1+k⃗2, k⃗3+k⃗4

V
×
∫
23V

d3re
− i
2

(
k⃗1−k⃗2−k⃗3+k⃗4

)
·r⃗
V (r⃗) (B.22)

=
δ
K⃗,K⃗′

V

∫
23V

d3re−iq⃗·r⃗ V (r⃗) .

Since Eq. (B.22) is derived independent of spin and isospin considerations, we can simply
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extend it

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
=

δ
K⃗,K⃗′

V︸ ︷︷ ︸
Box normalization

(B.23)

×
∫
23V

d3re−iq⃗·r⃗
〈
σz1τz1σz2τz2

∣∣V̂ (r⃗, ˆ⃗σ, ˆ⃗τ)∣∣σz3τz3σz4τz4〉︸ ︷︷ ︸
Free position space representation

=
δ
K⃗,K⃗′

V

〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ (ˆ⃗k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V)∣∣∣⃗kσz3τz3σz4τz4〉︸ ︷︷ ︸
Momentum space representation

.

For generality, Eq. (B.23) is written in a form where V̂ depends on the operators
ˆ⃗
k′ and ˆ⃗

k,

and acts on two-particle states
∣∣∣⃗k′〉 and

∣∣∣⃗k〉. If the momentum space representation of the

interaction is not obtained using the partial wave expansion (seen in Appendix E), then we

can easily write
〈
k⃗′
∣∣∣V̂ (ˆ⃗k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V)∣∣∣⃗k〉 = V̂

(
k⃗′, k⃗, ˆ⃗σ, ˆ⃗τ,V

)
. Most interactions used in this

work are given in a momentum space representation. Such interactions including the One

Pion Exchange (OPE), and chiral forces from Drischler et al. [1], assume that the box-size is

infinitely large. We still convert those interactions into the finite box using Eq. (B.23), and

dropping the V dependence in
〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ (ˆ⃗k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V)∣∣∣⃗kσz3τz3σz4τz4〉.1
Finally, the anti-symmetrized variant of Eq. (B.23) is given by

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉AS
(B.24)

≡
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct

−
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k4σz4τz4 k⃗3σz3τz3〉Direct
.

1See Eqs. (D.21) and (E.12).
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APPENDIX C. Minnesota Potential in a Finite Box

The Minnesota potential is of the form [17,19]

V̂Minn(r⃗, σ̂, τ̂) =
1

2

(
V0Re

−kR|r⃗|
2
+
V0T
2
e−kT |r⃗|

2(
1 + P̂σ

12

)
(C.1)

+
V0S
2
e−kS |r⃗|

2(
1− P̂σ

12

))
×
(
1− P̂σ

12P̂
τ
12

)
.

V0R = 200.0MeV, V0T = −178.0MeV, V0S = −91.85MeV, kR = 1.487 fm−2, kT =

0.639 fm−2, and kS = 0.465 fm−2. P̂σ
12 and P̂ τ

12 are spin and isospin exchange operators,

respectively

P̂σ
12 =

1

2

(
1 + ˆ⃗σ1 · ˆ⃗σ2

)
(C.2a)

P̂ τ
12 =

1

2

(
1 + ˆ⃗τ1 · ˆ⃗τ2

)
. (C.2b)

P̂σ
12 and P̂

τ
12 act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

P̂σ
12

∣∣σz1 =↑, σz2 =↑
〉
= |↑↑⟩ , P̂σ

12 |↓↓⟩ = |↓↓⟩ , P̂σ
12 |↑↓⟩ = |↓↑⟩ , P̂σ

12 |↓↑⟩ = |↑↓⟩ , (C.3)

P̂ τ
12

∣∣τz1 =↑, τz2 =↑
〉
= |↑↑⟩ , P̂ τ

12 |↓↓⟩ = |↓↓⟩ , P̂ τ
12 |↑↓⟩ = |↓↑⟩ , P̂ τ

12 |↓↑⟩ = |↑↓⟩ .

And going forward, the following identity will be useful

P̂σ
12P̂

σ
12 = P̂ τ

12P̂
τ
12 = 1. (C.4)
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We seek to compute the matrix elements of the Minnesota potential using Eq. (B.23):

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂Minn

∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
=
δ
K⃗,K⃗′

V
(C.5)

×
∫
23V

d3re−iq⃗·r⃗
〈
σz1τz1σz2τz2

∣∣V̂Minn

(
r⃗, ˆ⃗σ, ˆ⃗τ

)∣∣σz3τz3σz4τz4〉 .
Since spin and isospin are two independent operator spaces, we can easily factor our analysis.

〈
σz1τz1σz2τz2

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣σz3τz3σz4τz4〉 (C.6)

=
〈
σz1σz2

∣∣ 〈τz1τz2∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣τz3τz4〉 ∣∣σz3σz4〉 .

First, consider matrix elements between orthonormal isospin states.

〈
τz1τz2

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣τz3τz4〉 = 1

2

(
V0Re

−kR|r⃗|
2
+
V0T
2
e−kT |r⃗|

2(
1 + P̂σ

12

)
(C.7)

+
V0S
2
e−kS |r⃗|

2(
1− P̂σ

12

))
×
〈
τz1τz2

∣∣1− P̂σ
12P̂

τ
12

∣∣τz3τz4〉 .
For convenience, let us define

CR ≡ V0Re
−kR|r⃗|

2
(C.8a)

CT ≡
V0T
2
e−kT |r⃗|

2(
1 + P̂σ

12

)
(C.8b)

CS ≡
V0S
2
e−kS |r⃗|

2(
1− P̂σ

12

)
. (C.8c)

Combining Eqs. (C.8) and (C.7), we obtain

〈
τz1τz2

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣τz3τz4〉 = 1

2

(
CR + CT + CS

) 〈
τz1τz2

∣∣1− P̂σ
12P̂

τ
12

∣∣τz3τz4〉 . (C.9)
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Using Eqs. (C.3) and (C.4) in Eq. (C.9),

〈
τz1τz2

∣∣1− P̂σ
12P̂

τ
12

∣∣τz3τz4〉 = δτz1 ,τz3
δτz2 ,τz4

− P̂σ
12

〈
τz1τz2

∣∣P̂ τ
12

∣∣τz3τz4〉 (C.10)

= δτz1 ,τz3
δτz2 ,τz4

− P̂σ
12δτz1 ,τz4

δτz2 ,τz3
.

Now, consider matrix elements of
〈
τz1τz2

∣∣1− P̂σ
12P̂

τ
12

∣∣τz3τz4〉 between orthonormal spin

states. Combining Eqs. (C.6) and (C.9),

〈
σz1τz1σz2τz2

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣σz3τz3σz4τz4〉 = 1

2

〈
σz1σz2

∣∣ (CR + CT + CS)

×
(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉 .
(C.11)

Using Eqs. (C.3) and (C.4), we can evaluate the individual terms of Eq. (C.11):

〈
σz1σz2

∣∣CR

(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉 (C.12)

= V0Re
−kR|r⃗|

2
×
〈
σz1σz2

∣∣ (δτz1 ,τz3δτz2 ,τz4 − P̂σ
12δτz1 ,τz4

δτz2 ,τz3

) ∣∣σz3σz4〉
= V0Re

−kR|r⃗|
2
×
(
δτz1 ,τz3

δτz2 ,τz4
δσz1 ,σz3

δσz2 ,σz4
− δτz1 ,τz4δτz2 ,τz3δσz1 ,σz4δσz2 ,σz3

)
.
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Likewise, the CT terms are given by

〈
σz1σz2

∣∣CT

(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉 (C.13)

=
V0T
2
e−kT |r⃗|

2
×
〈
σz1σz2

∣∣ (1 + P̂σ
12

)(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉
=
V0T
2
e−kT |r⃗|

2
×
〈
σz1σz2

∣∣δτz1 ,τz3δτz2 ,τz4 − P̂σ
12P̂

σ
12︸ ︷︷ ︸

1

δτz1 ,τz4
δτz2 ,τz3


+
(
δτz1 ,τz3

δτz2 ,τz4
− δτz1 ,τz4δτz2 ,τz3

)
P̂σ
12

∣∣σz3σz4〉
=
V0T
2
e−kT |r⃗|

2
×
〈
σz1σz2

∣∣ (δτz1 ,τz3δτz2 ,τz4 − δτz1 ,τz4δτz2 ,τz3)(1 + P̂σ
12

) ∣∣σz3σz4〉
=
V0T
2
e−kT |r⃗|

2 (
δτz1 ,τz3

δτz2 ,τz4
− δτz1 ,τz4δτz2 ,τz3

)(
δσz1 ,σz3

δσz2 ,σz4
+ δσz1 ,σz4

δσz2 ,σz3

)
.

Lastly, the CS terms are given by

〈
σz1σz2

∣∣CS

(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉 (C.14)

=
V0S
2
e−kS |r⃗|

2
×
〈
σz1σz2

∣∣ (1− P̂σ
12

)(
δτz1 ,τz3

δτz2 ,τz4
− P̂σ

12δτz1 ,τz4
δτz2 ,τz3

) ∣∣σz3σz4〉
=
V0S
2
e−kS |r⃗|

2
×
〈
σz1σz2

∣∣δτz1 ,τz3δτz2 ,τz4 + P̂σ
12P̂

σ
12︸ ︷︷ ︸

1

δτz1 ,τz4
δτz2 ,τz3


−
(
δτz1 ,τz3

δτz2 ,τz4
+ δτz1 ,τz4

δτz2 ,τz3

)
P̂σ
12

∣∣σz3σz4〉
=
V0S
2
e−kS |r⃗|

2
×
〈
σz1σz2

∣∣ (δτz1 ,τz3δτz2 ,τz4 + δτz1 ,τz4
δτz2 ,τz3

)(
1− P̂σ

12

) ∣∣σz3σz4〉
=
V0S
2
e−kS |r⃗|

2 (
δτz1 ,τz3

δτz2 ,τz4
+ δτz1 ,τz4

δτz2 ,τz3

)(
δσz1 ,σz3

δσz2 ,σz4
− δσz1 ,σz4δσz2 ,σz3

)
.

In conclusion, combining Eqs. (C.12)–(C.14) into Eq. (C.11), we obtain the spin and isospin
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matrix elements of the Minnesota potential:

〈
σz1τz1σz2τz2

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣σz3τz3σz4τz4〉 (C.15)

=
V0R
2
e−kR|r⃗|

2 (
δτz1 ,τz3

δτz2 ,τz4
δσz1 ,σz3

δσz2 ,σz4
− δτz1 ,τz4δτz2 ,τz3δσz1 ,σz4δσz2 ,σz3

)
+
V0T
4
e−kT |r⃗|

2 (
δτz1 ,τz3

δτz2 ,τz4
− δτz1 ,τz4δτz2 ,τz3

)(
δσz1 ,σz3

δσz2 ,σz4
+ δσz1 ,σz4

δσz2 ,σz3

)
+
V0S
4
e−kS |r⃗|

2 (
δτz1 ,τz3

δτz2 ,τz4
+ δτz1 ,τz4

δτz2 ,τz3

)(
δσz1 ,σz3

δσz2 ,σz4
− δσz1 ,σz4δσz2 ,σz3

)
.

Going forward, we consider only pure neutron matter (PNM) calculations. This greatly

simplifies Eq. (C.15).

〈
σz1 ↓ σz2 ↓

∣∣V̂Minn (r⃗, σ̂, τ̂)
∣∣σz3 ↓ σz4 ↓〉 = (V0R2 e−kR|r⃗|

2
+
V0S
2
e−kS |r⃗|

2
)

×
(
δσz1 ,σz3

δσz2 ,σz4
− δσz1 ,σz4δσz2 ,σz3

)
.

(C.16)

The Minnesota potential in a finite box is then obtained using Eqs. (C.5) and (C.16).

〈
k⃗1σz1 ↓ k⃗2σz2 ↓

∣∣∣V̂Minn

∣∣∣⃗k3σz3 ↓ k⃗4σz4 ↓〉Direct
(C.17)

=
δ
K⃗,K⃗′

2V

(
δσz1 ,σz3

δσz2 ,σz4
− δσz1 ,σz4δσz2 ,σz3

)
×
∫
23V

d3re−iq⃗·r⃗
(
V0Re

−kR|r⃗|
2
+ V0Se

−kS |r⃗|
2
)
.

Let us consider just the first term of Eq. (C.17)’s integral.

∫
23V

d3re−iq⃗·r⃗V0Re
−kR|r⃗|

2
= V0R

∫ L
−L

drxe
−iqxrx−kRr2x (C.18)

×
∫ L
−L

drye
−iqyry−kRr2y

∫ L
−L

drze
−iqzrz−kRr2z .
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Eq. (C.18)’s integral over rx is given by

∫ L
−L

drxe
−iqxrx−kRr2x =

√
π

kR
e
− q2x
4kR

1

2

(
erf

(
2LkR − iqx

2
√
kR

)
+ erf

(
2LkR + iqx

2
√
kR

))
.

(C.19)

And solutions to Eq. (C.18)’s integral over ry and rz, share the same structure as Eq. (C.19).

Therefore, Eq. (C.18) is given by

∫
23V

d3re−iq⃗·r⃗V0Re
−kR|r⃗|

2
= V0R

√
π3

k3R
e
−
q2x+q2y+q2z

4kR
1

23
(C.20)

×

(
erf

(
2LkR − iqx

2
√
kR

)
+ erf

(
2LkR + iqx

2
√
kR

))(
erf

(
2LkR − iqy

2
√
kR

)
+ erf

(
2LkR + iqy

2
√
kR

))

×

(
erf

(
2LkR − iqz

2
√
kR

)
+ erf

(
2LkR + iqz

2
√
kR

))
.

Likewise, the second term of Eq. (C.17)’s integral is given by

∫
23V

d3re−iq⃗·r⃗V0Se
−kS |r⃗|

2
= V0S

√
π3

k3S
e
−
q2x+q2y+q2z

4kS
1

23
(C.21)

×

(
erf

(
2LkS − iqx

2
√
kS

)
+ erf

(
2LkS + iqx

2
√
kS

))(
erf

(
2LkS − iqy

2
√
kS

)
+ erf

(
2LkS + iqy

2
√
kS

))

×

(
erf

(
2LkS − iqz

2
√
kS

)
+ erf

(
2LkS + iqz

2
√
kS

))
.

In total, combining Eqs. (C.20)–(C.21) into Eq. (C.17), the direct matrix element of the
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Minnesota potential for PNM is obtained

〈
k⃗1σz1 ↓ k⃗2σz2 ↓

∣∣∣V̂Minn

∣∣∣⃗k3σz3 ↓ k⃗4σz4 ↓〉Direct
(C.22)

=
δ
k⃗1+k⃗2, k⃗3+k⃗4

2L3
(
δσz1 ,σz3

δσz2 ,σz4
− δσz1 ,σz4δσz2 ,σz3

)
×

V0R
√
π3

k3R
e
− |q⃗|

2

4kR
1

23

(
erf

(
2LkR − iqx

2
√
kR

)
+ erf

(
2LkR + iqx

2
√
kR

))

×

(
erf

(
2LkR − iqy

2
√
kR

)
+ erf

(
2LkR + iqy

2
√
kR

))(
erf

(
2LkR − iqz

2
√
kR

)
+ erf

(
2LkR + iqz

2
√
kR

))

+V0S

√
π3

k3S
e
− |q⃗|

2

4kS
1

23

(
erf

(
2LkS − iqx

2
√
kS

)
+ erf

(
2LkS + iqx

2
√
kS

))

×

(
erf

(
2LkS − iqy

2
√
kS

)
+ erf

(
2LkS + iqy

2
√
kS

))(
erf

(
2LkS − iqz

2
√
kS

)
+ erf

(
2LkS + iqz

2
√
kS

))]

. Error functions are present in Eq. (C.22), because Eq. (C.17) is integrated within a finite

box. Consequently, Eq. (C.22) differs from the expression given by Jensen et al. [19]—which

perform the Eq. (C.17) integration within an infinite box. Given that we only work in a

finite box, we suspect that Eq. (C.17) should indeed be integrated with finite L. In practice,

this is likely a minor issue since we generally work in large boxes. Note, q ∝ 1
L in Eq. (C.22).

Hence, in the limit of large L, all error functions converge to 1 in Eq. (C.22).

We can then anti-symmetrize Eq. (C.22) via subtracting the exchange matrix element

from the direct matrix element

〈
k⃗1σz1 ↓ k⃗2σz2 ↓

∣∣∣V̂Minn

∣∣∣⃗k3σz3 ↓ k⃗4σz4 ↓〉AS
(C.23)

≡
〈
k⃗1σz1 ↓ k⃗2σz2 ↓

∣∣∣V̂Minn

∣∣∣⃗k3σz3 ↓ k⃗4σz4 ↓〉Direct

−
〈
k⃗1σz1 ↓ k⃗2σz2 ↓

∣∣∣V̂Minn

∣∣∣⃗k4σz4 ↓ k⃗3σz3 ↓〉Direct
.
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APPENDIX D. One Pion Exchange Interaction in a Finite Box

Within a finite box, we aim to calculate matrix elements of the leading order contact inter-

action, denoted “One Pion Exchange” (OPE).

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ 1π
Λ

∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
(D.1)

=
δ
K⃗′,K⃗
V

〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ 1π
Λ

(
ˆ⃗
k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V

)∣∣∣⃗kσz3τz3σz4τz4〉
=
δ
K⃗′,K⃗
V

〈
σz1τz1σz2τz2

∣∣V̂ 1π
Λ

(
k⃗′, k⃗, ˆ⃗σ, ˆ⃗τ,V

)∣∣σz3τz3σz4τz4〉 ,
In this work, all chiral interactions will not depend on the box volume—implying that V →

∞. Thus, the box volume is dropped: V̂ 1π
Λ

(
k⃗′, k⃗, ˆ⃗σ, ˆ⃗τ,V

)
= V̂ 1π

Λ

(
k⃗′, k⃗, ˆ⃗σ, ˆ⃗τ

)
. Moreover, the

OPE only depends on the momentum transfer1

q⃗ ≡ k⃗1 − k⃗2 − k⃗3 + k⃗4
2

= k⃗1 − k⃗3 . (D.2)

Thus, V̂ 1π
Λ

(
k⃗′, k⃗, ˆ⃗σ, ˆ⃗τ

)
= V̂ 1π

Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)
. And the OPE is given by [24]

V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)
= −

(ℏc)3g2A
4F 2

π
(ˆ⃗τ1 · ˆ⃗τ2)

[
(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(ˆ⃗σ1 · ˆ⃗σ2)

]
e
− (ℏcq)2+M2

π
Λ2 (D.3a)

C = −
Λ(Λ2 − 2M2

π) + 2
√
πM3

π e
M2
π

Λ2 erfc(Mπ
Λ )

3Λ3
. (D.3b)

gA = 1.267 is the nucleon axial-vector coupling constant. Mπ = 139.57MeV is the pion mass.

Fπ = 92.4MeV is the pion decay constant, and ℏc = 197.33MeV × fm. The momentum

transfer q⃗, is in units of fm−1; the box volume V , is in units of fm3; and C is unitless.2 And

1Momentum conservation k⃗1 + k⃗2 = k⃗3 + k⃗4, is used to simplify Eq. (D.2).
2We manually set C = 0 in this work.
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the regulator cutoff Λ, is in units of MeV. All spin/isospin Pauli operators are unitless; and

||ˆ⃗τ || = ||ˆ⃗σ|| = 1. Lastly, erfc(Mπ
Λ ) is the complimentary error function.

Since spin and isospin operators act on two independent spaces, we can easily factor our

analysis.

〈
σz1τz1σz2τz2

∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣σz3τz3σz4τz4〉 (D.4)

=
〈
σz1σz2

∣∣ 〈τz1τz2∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣τz3τz4〉 ∣∣σz3σz4〉

We first consider matrix elements between orthonormal isospin states.

〈
τz1τz2

∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣τz3τz4〉 = −(ℏc)3g2A
4F 2

π

〈
τz1τz2

∣∣ˆ⃗τ1 · ˆ⃗τ2∣∣τz3τz4〉
×

[
(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(ˆ⃗σ1 · ˆ⃗σ2)

]
e
− (ℏcq)2+M2

π
Λ2 .

(D.5)

Note, the Pauli operators can be written in terms of permutation operators

ˆ⃗σ1 · ˆ⃗σ2 = 2P̂σ
12 − 1 (D.6a)

ˆ⃗τ1 · ˆ⃗τ2 = 2P̂ τ
12 − 1 . (D.6b)

P̂σ
12 and P̂

τ
12 act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

P̂σ
12

∣∣σz1 =↑, σz2 =↑
〉
= |↑↑⟩ , P̂σ

12 |↓↓⟩ = |↓↓⟩ , P̂σ
12 |↑↓⟩ = |↓↑⟩ , P̂σ

12 |↓↑⟩ = |↑↓⟩ , (D.7)

P̂ τ
12

∣∣τz1 =↑, τz2 =↑
〉
= |↑↑⟩ , P̂ τ

12 |↓↓⟩ = |↓↓⟩ , P̂ τ
12 |↑↓⟩ = |↓↑⟩ , P̂ τ

12 |↓↑⟩ = |↑↓⟩ .
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Thus, we can rewrite Eq. (D.5)

〈
τz1τz2

∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣τz3τz4〉 = −(ℏc)3g2A
4F 2

π

〈
τz1τz2

∣∣2P̂ τ
12 − 1

∣∣τz3τz4〉
×

[
(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

]
e
− (ℏcq)2+M2

π
Λ2 ,

(D.8)

where 〈
τz1τz2

∣∣2P̂ τ
12 − 1

∣∣τz3τz4〉 = 2 δτz1 ,τz4
δτz2 ,τz3

− δτz1 ,τz3δτz2 ,τz4 . (D.9)

For brevity, we choose to define the overlap

O(τz) ≡
〈
τz1τz2

∣∣2P̂ τ
12 − 1

∣∣τz3τz4〉 = 2 δτz1 ,τz4
δτz2 ,τz3

− δτz1 ,τz3δτz2 ,τz4 . (D.10)

Therefore,

〈
τz1τz2

∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣τz3τz4〉 = −(ℏc)3g2A
4F 2

π
O(τz) (D.11)

×

[
(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

]
e
− (ℏcq)2+M2

π
Λ2 .

Revisiting Eq. (D.4), we now consider overlaps between orthonormal spin states.

〈
σz1τz1σz2τz2

∣∣V̂ 1π
Λ

(
q⃗, ˆ⃗σ, ˆ⃗τ

)∣∣σz3τz3σz4τz4〉 (D.12)

=
〈
σz1σz2

∣∣− (ℏc)3g2A
4F 2

π
O(τz)

[
(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

]
e
− (ℏcq)2+M2

π
Λ2

∣∣σz3σz4〉
= −

(ℏc)3g2A
4F 2

π
O(τz) e

− (ℏcq)2+M2
π

Λ2
〈
σz1σz2

∣∣ [(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

] ∣∣σz3σz4〉 .
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〈
σz1σz2

∣∣ [(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

] ∣∣σz3σz4〉 (D.13)

=
〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2

∣∣σz3σz4〉 + C
〈
σz1σz2

∣∣ 2P̂σ
12 − 1

∣∣σz3σz4〉 .
Reminiscent of Eq. (D.9), the second term of Eq. (D.13) is easily given by

〈
σz1σz2

∣∣2P̂σ
12 − 1

∣∣σz3σz4〉 = 2 δσz1 ,σz4
δσz2 ,σz3

− δσz1 ,σz3δσz2 ,σz4 . (D.14)

Therefore,

〈
σz1σz2

∣∣ [(ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗)
q2 + (Mπ

ℏc )2
+ C(2P̂σ

12 − 1)

] ∣∣σz3σz4〉 (D.15)

=
1

q2 + (Mπ
ℏc )2

〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗) ∣∣σz3σz4〉
+ C ×

(
2 δσz1 ,σz4

δσz2 ,σz3
− δσz1 ,σz3δσz2 ,σz4

)
.

Since both interacting particles are described by independent single-particle wavefunctions,

we can easily factor our analysis.

〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗) ∣∣σz3σz4〉 = 〈σz1∣∣ (ˆ⃗σ1 · q⃗) ∣∣σz3〉 〈σz2∣∣ (ˆ⃗σ2 · q⃗) ∣∣σz4〉
=
[〈
σz1

∣∣ σ̂x1 ∣∣σz3〉 qx +
〈
σz1

∣∣ σ̂y1 ∣∣σz3〉 qy + 〈σz1∣∣ σ̂z1 ∣∣σz3〉 qz]
×
[〈
σz2

∣∣ σ̂x2 ∣∣σz4〉 qx +
〈
σz2

∣∣ σ̂y2 ∣∣σz4〉 qy + 〈σz2∣∣ σ̂z2 ∣∣σz4〉 qz]
(D.16)

|σx⟩, and
∣∣σy〉 are spin projection states along the x-axis and y-axis, respectively. Due to

the uncertainty principle, |σx⟩, and
∣∣σy〉 are unknown if |σz⟩ is known. Thus, we must write
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σ̂x and σ̂y in terms of raising and lowering operators that act upon |σz⟩.

σ̂x =
1

2
(σ̂+ + σ̂−) (D.17a)

σ̂y =
1

2i
(σ̂+ − σ̂−) , (D.17b)

where3

σ̂± |σ, σz⟩ =
√
σ(σ + 2)− σz(σz ± 2) |σ, σz ± 2⟩ . (D.18)

Therefore,

〈
σ, σz1

∣∣ σ̂± ∣∣σ, σz3〉 = δσz1 , σz3±2 ×
√
σ(σ + 2)− σz3σz1 (D.19a)〈

σ, σz1
∣∣ σ̂x ∣∣σ, σz3〉 = 1

2
(δσz1 , σz3+2 + δσz1 , σz3−2)×

√
σ(σ + 2)− σz3σz1 (D.19b)〈

σ, σz1
∣∣ σ̂y ∣∣σ, σz3〉 = 1

2i
(δσz1 , σz3+2 − δσz1 , σz3−2)×

√
σ(σ + 2)− σz3σz1 (D.19c)〈

σ, σz1
∣∣ σ̂z ∣∣σ, σz3〉 = δσz1 , σz3

× σz3 . (D.19d)

3In this appendix, σz = ±1 and likewise, τz = ±1. Therefore, spin up and spin down states are separated
by 2 units of spin. The same can also be said for isospin states.
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Using Eqs. (D.16) and (D.19),

〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗) ∣∣σz3σz4〉 (D.20)

=

[
qzσz3δσz1 , σz3

+
√
σ(σ + 2)− σz3σz1

×
[qx
2
(δσz1 , σz3+2 + δσz1 , σz3−2) +

qy
2i
(δσz1 , σz3+2 − δσz1 , σz3−2)

]]

×

[
qzσz4δσz2 , σz4

+
√
σ(σ + 2)− σz4σz2

×
[qx
2
(δσz2 , σz4+2 + δσz2 , σz4−2) +

qy
2i
(δσz2 , σz4+2 − δσz2 , σz4−2)

]]
.

In conclusion,

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ 1π
Λ

∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
(D.21)

= −
(ℏc)3g2A
4VF 2

π
× δ

K⃗′,K⃗ ×
(
2 δτz1 ,τz4

δτz2 ,τz3
− δτz1 ,τz3δτz2 ,τz4

)
× e

− (ℏcq)2+M2
π

Λ2

×

[〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗) ∣∣σz3σz4〉
q2 + (Mπ

ℏc )2
+ C ×

(
2 δσz1 ,σz4

δσz2 ,σz3
− δσz1 ,σz3δσz2 ,σz4

)]
,

where
〈
σz1σz2

∣∣ (ˆ⃗σ1 · q⃗)(ˆ⃗σ2 · q⃗) ∣∣σz3σz4〉 is given in Eq. (D.20). And the anti-symmetrized

OPE is then given by

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ 1π
Λ

∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉AS
(D.22)

≡
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ 1π
Λ

∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct

−
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ 1π
Λ

∣∣∣⃗k4σz4τz4 k⃗3σz3τz3〉Direct
.
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APPENDIX E. Partial Wave Expansion for Two-Body Forces

Chiral two-body forces are typically given in terms of partial waves where the following

quantum numbers are specified: two-particle total orbital angular momentum L & L′, total

spin S & S′, total isospin T & T ′ and isospin projection MT & M ′T , total momentum J =

||L⃗ + S⃗|| & J ′ = ||L⃗′ + S⃗′|| and respective projections MJ & M ′J , and norms of relative

momenta k = ||⃗k|| & k′ = ||⃗k′|| for both incoming and outgoing particles, respectively.

Given that we primarily work in a basis where the quantum numbers of single-particle states

are decoupled (called “m-scheme”), it is essential to know how to convert matrix elements

of an interaction given in a coupled representation (called “J-scheme”) into a decoupled

representation. We will do such conversions in this appendix. Moreover, we will exploit

convenient symmetries of the nuclear force such as: charge conservation MT = M ′T , total

spin and isospin conservation S = S′ and T = T ′, total momentum conservation J = J ′,

and degeneracy in MJ .

We aim to compute
〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ (ˆ⃗k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V)∣∣∣⃗kσz3τz3σz4τz4〉—seen in Eq. (B.23),

using the partial wave expansion. In this work, all chiral interactions will not depend on the

box volume—implying that V → ∞. Thus, the box volume is dropped: V̂
(
ˆ⃗
k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ,V

)
=

V̂
(
ˆ⃗
k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ

)
. Going forward, for brevity, we omit the operator dependence of

ˆ⃗
k′, ˆ⃗k, ˆ⃗σ, and

ˆ⃗τ in V̂ , since the states
∣∣∣⃗k′σz1τz1σz2τz2〉 imply as such. Hence, V̂ ≡ V̂

(
ˆ⃗
k′, ˆ⃗k, ˆ⃗σ, ˆ⃗τ

)
. Notice,1

〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ ∣∣∣⃗kσz3τz3σz4τz4〉 (E.1)

=
〈
k⃗′
∣∣∣ 〈σz1τz1σz2τz2∣∣V̂ ∣∣σz3τz3σz4τz4〉 ∣∣∣⃗k〉

We first will calculate the spin and isospin matrix elements of V̂ . The spin and isospin

1Although σz3 , τz3 , σz4 , τz4 are typically integers, we use them as half-integers in this appendix.
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wavefunctions are given by

∣∣σz3τz3σz4τz4〉 = ∑
T∈{0,1}

CTMT
1
2τz3

1
2τz4

∣∣T,MT = τz3 + τz4
〉

⊗
∑

S∈{0,1}
CSMS
1
2σz3

1
2σz4

∣∣S,MS = σz3 + σz4
〉
. (E.2)

Likewise,

∣∣σz1τz1σz2τz2〉∗ = ∑
T ′∈{0,1}

C
T ′M ′T
1
2τz1

1
2τz2

∣∣T ′,M ′T = τz1 + τz2
〉∗

⊗
∑

S′∈{0,1}
C
S′M ′S
1
2σz1

1
2σz2

∣∣S′,M ′S = σz1 + σz2
〉∗
. (E.3)

CSMS
1
2σz3

1
2σz4

are Clebsch-Gordan coefficients for spin 1/2 particles. Likewise, CTMT
1
2τz3

1
2τz4

are

Clebsch-Gordan coefficients for isospin 1/2 particles. The nuclear force V̂ , conserves total

charge MT =M ′T , total spin S = S′ and total isospin T = T ′. Enforcing the symmetries of

V̂ , we obtain

〈
σz1τz1σz2τz2

∣∣V̂ ∣∣σz3τz3σz4τz4〉 = ∑
T∈{0,1}
S∈{0,1}

CTMT
1
2τz1

1
2τz2

C
SM ′S
1
2σz1

1
2σz2

CTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

(E.4)

×
〈
TMTSM

′
S

∣∣V̂ ∣∣TMTSMS
〉
.
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Combining Eqs. (E.4) and (E.1), we obtain

〈
k⃗′σz1τz1σz2τz2

∣∣∣V̂ ∣∣∣⃗kσz3τz3σz4τz4〉 (E.5)

=
∑

T∈{0,1}
S∈{0,1}

CTMT
1
2τz1

1
2τz2

C
SM ′S
1
2σz1

1
2σz2

CTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

×
〈
k⃗′TMTSM

′
S

∣∣∣V̂ ∣∣∣⃗kTMTSMS

〉
.

Ultimately,
∣∣∣⃗kTMTSMS

〉
is a vector valued function. We can expand the angular compo-

nents of this function on a complete basis composed of spherical harmonics. Inserting the

identity

1 ≡
∑

L∈[0,∞]
−L≤ML≤L

|LML⟩ ⟨LML| (E.6)
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into
〈
k⃗′TMTSM

′
S

∣∣∣V̂ ∣∣∣⃗kTMTSMS

〉
from Eq. (E.5), yields

〈
k⃗′TMTSM

′
S

∣∣∣V̂ ∣∣∣⃗kTMTSMS

〉
(E.7)

=
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

〈
k⃗′TMTSM

′
S

∣∣∣L′M ′L〉 〈L′M ′L∣∣ V̂ |LML⟩
〈
LML

∣∣∣⃗kTMTSMS

〉

=
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

〈
TMTSM

′
S

∣∣ 〈k⃗′∣∣∣L′M ′L〉 〈L′M ′L∣∣ V̂ |LML⟩
〈
LML

∣∣∣⃗k〉 |TMTSMS⟩

=
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

〈
TMTSM

′
S

∣∣〈k′ k⃗′unit︸︷︷︸
Unit vector

∣∣∣∣∣∣∣L′M ′L
〉〈

L′M ′L
∣∣ V̂ |LML⟩

×

〈
LML

∣∣∣∣∣∣k k⃗unit︸︷︷︸
Unit vector

〉
|TMTSMS⟩

=
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

〈
k⃗′unit

∣∣∣L′M ′L〉〈LML

∣∣∣⃗kunit〉 〈k′TMTSM
′
SL
′M ′L

∣∣ V̂ |kTMTSMSLML⟩ ,

where
〈
k⃗′unit

∣∣∣L′M ′L〉 and
〈
LML

∣∣∣⃗kunit〉 are spherical harmonics

〈
k⃗′unit

∣∣∣L′M ′L〉 ≡ 4πi−L
′
Y
M ′L
L′ (k⃗′unit) (E.8a)〈

LML

∣∣∣⃗kunit〉 ≡ 4πiL
(
Y
ML
L (k⃗unit)

)∗
. (E.8b)
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Therefore,

〈
k⃗′TMTSM

′
S

∣∣∣V̂ ∣∣∣⃗kTMTSMS

〉
(E.9)

= (4π)2
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

(
iL−L

′)
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

×
〈
k′TMTSM

′
SL
′M ′L

∣∣ V̂ |kTMTSMSLML⟩ .

If V̂ contains a nonzero tensor force, then calculating matrix elements of V̂ in a basis where

orbital angular momentum quantum numbers L & L′ are known will be nonoptimal because〈
...L′M ′L

∣∣ V̂ |...LML⟩ may be nondiagonal in L & L′. However, V̂ is guaranteed to be not

only diagonal in a basis of total angular momentum J⃗ = L⃗ + S⃗, but also independent of

projectionMJ =ML+MS . Thus, let us transform into total angular momentum coordinates:

|SMSLML⟩ =
∑

|L−S|≤J≤L+S

CJMJ
LMLSMS

|(LS)JMJ ⟩ . (E.10)
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Combining Eqs. (E.10) and (E.9), we obtain

〈
k⃗′TMTSM

′
S

∣∣∣V̂ ∣∣∣⃗kTMTSMS

〉
= (4π)2

∑
L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

(
iL−L

′)
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

(E.11)

×
∑

|L−S|≤J≤L+S

|L′−S|≤J ′≤L′+S

C
J ′M ′J
L′M ′LSM

′
S
CJMJ
LMLSMS

〈
k′TMT (L

′S)J ′M ′J
∣∣ V̂ |kTMT (LS)JMJ ⟩ δJ,J ′

= (4π)2
∑

L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

(
iL−L

′)
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

×
∑

|L−S|≤J≤L+S

C
JM ′J
L′M ′LSM

′
S
CJMJ
LMLSMS

〈
k′TMT (L

′S)J
∣∣ V̂ |kTMT (LS)J⟩

〈
M ′J
∣∣MJ

〉
= (4π)2

∑
L,L′∈[0,∞]

−L′≤M ′L≤L
′

−L≤ML≤L

(
iL−L

′)
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

×
∑

|L−S|≤J≤L+S

CJMJ
L′M ′LSM

′
S
CJMJ
LMLSMS

〈
k′TMT (L

′S)J
∣∣ V̂ |kTMT (LS)J⟩ δML′ ,MS+ML−MS′

Combining Eqs. (B.23), (E.5) and (E.11), we obtain the partial wave decomposition for the
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momentum space matrix elements of V̂ , in a finite box:

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
(E.12)

= U
δ
K⃗,K⃗′

V
(4π)2

∑
L,L′∈[0,∞]
−L≤ML≤L
T, S∈{0,1}

CTMT
1
2τz1

1
2τz2

C
SM ′S
1
2σz1

1
2σz2

CTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

×
(
iL−L

′)
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

×
∑

|L−S|≤J≤L+S

CJMJ
L′M ′LSM

′
S
CJMJ
LMLSMS

〈
k′TMT (L

′S)J
∣∣ V̂ |kTMT (LS)J⟩,

where ML′ = MS +ML −MS′ , and MJ = ML +MS . The intruder U , is an appropriate

unit conversion factor that ensures that
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct
is in

units of MeV. For example,
〈
k′TMT (L

′S)J
∣∣ V̂ |kTMT (LS)J⟩ is given in terms of fm2 from

Drischler et al. [1]; therefore, U = ℏc = 197.33MeV × fm. We can then anti-symmetrize

Eq. (E.12) via subtracting the exchange matrix element from the direct matrix element

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉AS
(E.13)

≡
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉Direct

−
〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k4σz4τz4 k⃗3σz3τz3〉Direct
.

Notice the only difference between direct and exchange terms in Eq. (E.12):

k⃗unit → − k⃗unit

CTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

→ CTMT
1
2τz4

1
2τz3

CSMS
1
2σz4

1
2σz3

.
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And we can exploit the following identities:

Y
ML
L

∗
(−k⃗unit) = (−)LYML

L

∗
(k⃗unit)

CTMT
1
2τz4

1
2τz3

CSMS
1
2σz4

1
2σz3

= (−)S+TCTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

.

Therefore,

〈
k⃗1σz1τz1 k⃗2σz2τz2

∣∣∣V̂ ∣∣∣⃗k3σz3τz3 k⃗4σz4τz4〉AS
= U

δ
K⃗,K⃗′

V
(4π)2 (E.14)

×
∑

L,L′∈[0,∞]
−L≤ML≤L
T, S∈{0,1}

CTMT
1
2τz1

1
2τz2

C
SM ′S
1
2σz1

1
2σz2

CTMT
1
2τz3

1
2τz4

CSMS
1
2σz3

1
2σz4

×
(
iL−L

′) [
1− (−)L+S+T

]
Y
M ′L
L′ (k⃗′unit)Y

ML
L

∗
(k⃗unit)

×
∑

|L−S|≤J≤L+S

CJMJ
L′M ′LSM

′
S
CJMJ
LMLSMS

V
TMT
L′LSJ (k

′, k),

where

M ′S = σz1 + σz2

MS = σz3 + σz4

MT = τz1 + τz2 = τz3 + τz4

V
TMT
L′LSJ (k

′, k) ≡
〈
k′TMT (L

′S)J
∣∣ V̂ |kTMT (LS)J⟩

ML′ =MS +ML −MS′

MJ =ML +MS .
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APPENDIX F. Optimized Particle-hole Transformation

Commutators between A-body operators A and B generally require the evaluation of so–

called “particle-hole” terms [10].1

[
A, B

]
pqrs

+=
∑
tu

(
nt − nu

)
×
(
1− Ppq − Prs + PpqPrs

)
× ApturBuqst (F.1)

We need only focus on the first term of Eq. (F.1).

[
A, B

]
pqrs

+=
∑
tu

(nt − nu)ApturBuqst (F.2)

The particle-hole term requires careful implementation to be computationally efficient. Ide-

ally, one would implement Eq. (F.2) maximally utilizing a computer’s cache and multi-

threading capabilities. If the contraction in Eq. (F.2) is written as a matrix product, compu-

tational optimizations in the particle-hole term can be partially offloaded to existing high-

performance matrix multiplication algorithms [19]. Eq. (F.2) can be rewritten by defining a

diagonal occupation operator O.

Otuwx ≡ (nt − nu)× δtwδux ∀ tuwx[
A, B

]
pqrs

+=
∑
tu

OtutuApturBuqst (F.3)

1Eq. (F.1) assumes A and B are anti-symmetrized. Ppq and Prs exchange indices on their operand. For
example, Ppq ×ApturBuqst ≡ AqturBupst.
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Constructing A-body operators Ã, B̃ such that2

Aptur = −Ãprut ∀ tu (F.4)

Buqst = −B̃utsq ∀ tu,

Eq. (F.3) can be almost cast into a matrix product.

[
A, B

]
pqrs

+=
∑
tu

OtutuÃprutB̃utsq (F.5)

Notice the symmetry Otutu = −Outut. Therefore,

[
A, B

]
pqrs

+=
∑
tu

−ÃprutOututB̃utsq = −(ÃOB̃)prsq (F.6)

The remaining three terms of Eq. (F.1) are easily obtained.

[
A, B

]
pqrs

−= (ÃOB̃)prsq − (ÃOB̃)qrsp − (ÃOB̃)psrq + (ÃOB̃)qsrp (F.7)

The product ÃOB̃ can be partially precomputed if there is a distinction between particle

and hole single-particle states (ni = 1 and na = 0 ∀ ai). If such a distinction exists, Ã,

O, and B̃ can be written in an ordered two-body basis B where particle-hole states are

separated from particle-particle and hole-hole states.

B = { (p, q) :
∣∣np − nq∣∣ = 1 }︸ ︷︷ ︸
P

⋃
{ (p, q) :

∣∣np − nq∣∣ = 0 }︸ ︷︷ ︸
Q

(F.8)

2A factor of −1 is included in Eq. (F.4) to be consistent with Jensen et al. [19]. This does not affect the
product ÃOB̃.
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O =

 OPP OPQ = 0

OQP = 0 OQQ = 0

 (F.9a)

Ã =

ÃPP ÃPQ

ÃQP ÃQQ

 (F.9b)

B̃ =

B̃PP B̃PQ

B̃QP B̃QQ

 (F.9c)

ÃOB̃ =

ÃPP ×OPP × B̃PP ÃPP ×OPP × B̃PQ

ÃQP ×OPP × B̃PP ÃQP ×OPP × B̃PQ

 (F.9d)

dim(P) ∼ Nparticles × Nholes, and dim(Q) ∼ N2
particles + N2

holes. Typically, Nparticles ≫

Nholes, implying dim(Q) > dim(P). Utilizing Eq. (F.9d), the most memory and compute

demanding operations involving ÃQQ, and B̃QQ are averted. If
∥∥∥ÃQP∥∥∥ is sufficiently small,

one can forgo computing the second row of Eq. (F.9d) entirely.3 Likewise, if
∥∥∥B̃PQ∥∥∥ is

sufficiently small, one can forgo computing the second column of Eq. (F.9d) entirely.4

Further optimizations can be made by recognizing possible symmetries in the particle-

hole transformation. For example, symmetries in A can manifest in Ã, albeit differently.

Suppose A conserves centor-of-mass momenta, i.e

k⃗p + k⃗t ̸= k⃗u + k⃗r =⇒ Aptur = 0 ∀ ptur. (F.10)

3For the Magnus operator,
∥∥∥Ω̃QP∥∥∥ is generally observed to be small. Moreover,

∥∥∥η̃QP∥∥∥ = 0 for most

generators, by construction.
4Such situations can arise in the Magnus series where commutators between the Magnus operator and

Magnus-like operators are evaluated.
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According to Eq. (F.4), Ã will then conserve relative momenta.

k⃗p − k⃗r ̸= k⃗u − k⃗t =⇒ Ãprut = 0 ∀ prut (F.11)

If both Ã and B̃ conserve relative momenta, one can conveniently decompose the particle-

hole basis

B =
⋃
m

Bm (F.12)

Bm ≡ { (p, q) :
∣∣np − nq∣∣ = 1 ∧ k⃗p − k⃗q = κ⃗m } (F.13)⋃

{ (p, q) :
∣∣np − nq∣∣ = 0 ∧ k⃗p − k⃗q = κ⃗m } ,

where κ⃗m denotes the conserved relative momenta of the mth block Bm. ÃOB̃ can then be

evaluated within relative momenta conserving blocks—further reducing memory and com-

pute costs.5

If A and B are anti-symmetrized and have definite hermiticity

Apqrs = −Aqprs = −Apqsr = Aqpsr ∀ pqrs (F.14)

Bpqrs = −Bqprs = −Bpqsr = Bqpsr ∀ pqrs

A† = signA × A

B† = signB ×B

and O∗ = O, hermiticity can be easily exploited in Eq. (F.6). Permuting p↔ r and s↔ q,

5Notice, if Ã has the same block structure as B̃, then (p, r), (u, t) and (s, q) must all lie in the same
block for a nonzero contribution to the RHS of Eq. (F.6).
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Eq. (F.6) becomes

[
A, B

]
rspq

+=
∑
tu

−ÃrputOututB̃utqs = −(ÃOB̃)rpqs. (F.15)

Using Eq. (F.4) and Eq. (F.14),

Ãrput = −Artup = −signA × A∗uprt = −signA × A∗putr = signA × Ã∗prtu (F.16)

B̃utqs = −Busqt = −signB ×B∗qtus = −signB ×B∗tqsu = signB × B̃∗tusq.

Inserting Eq. (F.16) into Eq. (F.15), and exploiting the symmetry Outut = −Otutu,

[
A, B

]
rspq

+= signA × signB ×
∑
tu

Ã∗prtuOtutuB̃
∗
tusq (F.17)

= signA × signB × (ÃOB̃)∗prsq.

If Eq. (F.6) is computed within some block Bm containing (p, r) and (s, q), then one can use

Eq. (F.17) instead of Eq. (F.15). The importance of this is subtle. Notice (r, p) and (q, s)

will lie in a block Bm′ where κ⃗m′ = −κ⃗m. Therefore, one can forgo evaluating ÃOB̃ in Bm′

entirely—further reducing memory and compute costs.6

6ÃOB̃=0 in the block Bm such that κ⃗m = 0⃗. Due to the shelled nature of our basis, for any two-particle
state (p, q) ∈ Bm, the p and q single-particle states must be both on the same momentum shell. Since
all shells are closed, hole and particle states are separated in momentum. Therefore, Bm can only contain
hole-hole and/or particle-particle two-particle states. And the occupation operator O, is zero in these sectors.
This may however, not hold when applying twist-averaged boundary conditions [23].
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APPENDIX G. Properties of Born Series Adjoints

We seek to prove the linearity of nested commutators of A-body operators A, B, and C

utilized by Chapter 5.6:

[
A∗ +B∗ , C

](n)
∗

?
=
[
A∗ , C

](n)
∗ +

[
B∗ , C

](n)
∗ , n ≥ 1. (G.1)

First note, Eq. (G.1) is automatically guaranteed for n = 1 via the linearity of commutators.

This is unaffected by the coefficient-wise division of the energy denominator denoted by “∗.”

Assuming Eq. (G.1) holds for some n ≥ 1, then using Eq. (5.21),

[
A∗ +B∗ , C

](n+1)
∗ ≡

[ [
A∗ +B∗ , C

](n)
∗ , C

]
∗

(G.2)

=

[ [
A∗ , C

](n)
∗ + [B∗ , C ]

(n)
∗ , C

]
∗

=

[ [
A∗ , C

](n)
∗ , C

]
∗
+

[ [
B∗ , C

](n)
∗ , C

]
∗

=
[
A∗ , C

](n+1)
∗ +

[
B∗ , C

](n+1)
∗ .

We have thus demonstrated if Eq. (G.1) holds for some n ≥ 1, it also holds for n+ 1. Since

Eq. (G.1) contratrivially holds for n = 1, then it indeed holds for all n ≥ 1. ■

Chapter 5.6 utilizes the following identity:

[[
A , B

]
∗ , B

](n+1)

∗

?
=
[
A , B

](n+2)
∗ , n ≥ 0. (G.3)

We seek to prove Eq. (G.3). As a base case, observe Eq. (G.3) is guaranteed for n = 0 using
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Eq. (5.21)

[[
A , B

]
∗ , B

](1)
∗

=

[[
A , B

](1)
∗ , B

]
∗
≡
[
A , B

](2)
∗ . (G.4)

Assuming Eq. (G.3) holds for some n ≥ 0, then using Eq. (5.21),

[[
A , B

]
∗ , B

](n+2)

∗
≡

[[[
A , B

]
∗ , B

](n+1)

∗
, B

]
∗

(G.5)

=

[[
A , B

](n+2)
∗ , B

]
∗
≡
[
A , B

](n+3)
∗ .

Therefore, we have demonstrated if Eq. (G.3) holds for some n ≥ 0, it also holds for n + 1.

Since Eq. (G.3) holds for n = 0, then it indeed holds for all n ≥ 0. ■
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APPENDIX H. MBPT Expressed in Terms of IMSRG Commutators

We aim to write MBPT(2) and MBPT(3) evaluated at the two-body level in terms of commu-

tators between a target Hamiltonian and IMSRG’s White generator. Consequently, we can

offload compute costs—most apparent in MBPT(3)—to an optimized commutator routine.

Moreover, we can consequently cache and reuse a commutator in MBPT(3)—significantly

improving MBPT(3)’s compute performance.

For a target Hamiltonian H = E + f + Γ, MBPT’s improvement to the ground state

energy E is given by

E′ = E + ∆E(1) + ∆E(2) + ∆E(3) . (H.1)

Momentum conservation in infinite nuclear matter implies ∆E(1) = 0. Going forward, note

that the s dependence of all operators in this appendix are suppressed for brevity. At the

two-body level, 2nd-order MBPT corrections to E are given by [45]

∆E(2) =
1

4

∑
abij

∣∣Γabij∣∣2
∆ijab

(H.2)

∆ijab ≡ fii + fjj − faa − fbb ∀ abij

∆abij ≡ faa + fbb − fii − fjj = −∆ijab ∀ abij

∆ijab = ∆jiab = ∆ijba = ∆jiba ∀ abij

∆abij = ∆baij = ∆abji = ∆baji ∀ abij.
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We aim to demonstrate

∆E(2) ?
=

1

2

{[
η, Γ

]}
0−body

. (H.3)

η is White’s generator with Møller–Plesset energy denominators in Eq. (5.5).1 And the

operator
{}

0−body projects out the zero-body component of
[
η, Γ

]
. Using Eq. (A.14) of

Hergert et al. [10],

{[
η, Γ

]}
0−body

=
1

4

∑
abij

(
ηijab Γabij − Γijab ηabij

)
(H.4)

=
1

4

∑
abij

(
Γijab
∆ijab

Γabij − Γijab
Γabij
∆abij

)

=
1

4

∑
abij

1

∆ijab

(
Γijab Γabij + Γijab Γabij

)

=
1

2

∑
abij

Γijab Γabij
∆ijab

=
1

2

∑
abij

Γ ∗abij Γabij
∆ijab

=
1

2

∑
abij

∣∣Γabij∣∣2
∆ijab

= 2∆E(2) .

At the two-body level, 3rd order MBPT corrections to E are given by [45]

∆E(3) =
1

8

∑
abcdij

Γijab Γabcd Γcdij
∆ijab∆ijcd

+
1

8

∑
abijkl

Γijab Γabkl Γklij
∆ijab∆klab

−
∑

abcijk

Γijab Γackj Γkbic
∆ijab∆kjac

.

(H.5)

We aim to demonstrate

∆E(3) ?
=

1

2

{[
η,
[
η, Γ

]]}
0−body

, (H.6)

1The one-body component of η is assumed to be zero.
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assuming Im
{
∆E(3)

}
= 0. η is again White’s generator with Møller–Plesset energy denom-

inators. Using Eq. (A.14) and Eq. (A.12) of Hergert et al. [10],

{[
η,
[
η, Γ

]]}
0−body

=
1

4

∑
abij

(
ηijab

[
η, Γ

]
abij
−
[
η, Γ

]
ijab

ηabij

)
(H.7)

=
1

4

∑
abij

(
ηijab

[
η, Γ

]
abij

+
[
η, Γ

]∗
abij

η ∗ijab

)

=
1

4

∑
abij

(
ηijab

[
η, Γ

]
abij

+
(
ηijab

[
η, Γ

]
abij

)∗)

=

(
1

4

∑
abij

ηijab

[
η, Γ

]
abij

)
+

(
1

4

∑
abij

ηijab

[
η, Γ

]
abij

)∗
.
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[
η, Γ

]
abij

=
1

2

∑
pq

(
ηabpq Γpqij − Γabpq ηpqij

)
×
(
1− np − nq

)
(H.8a)

+
∑
pq

(
np − nq

)
×
(
ηpaqi Γqbpj − ηpbqi Γqapj − ηpaqj Γqbpi + ηpbqj Γqapi

)
= −1

2

∑
kl

ηabkl Γklij −
1

2

∑
cd

Γabcd ηcdij (H.8b)

−
∑
ck

(
ηcaki Γkbcj − ηcbki Γkacj − ηcakj Γkbci + ηcbkj Γkaci

)

= −1

2

∑
kl

Γabkl
∆abkl

Γklij −
1

2

∑
cd

Γabcd
Γcdij
∆cdij

(H.8c)

−
∑
ck

(
Γcaki
∆caki

Γkbcj −
Γcbki
∆cbki

Γkacj −
Γcakj
∆cakj

Γkbci +
Γcbkj
∆cbkj

Γkaci

)

=
1

2

∑
kl

Γabkl
∆klab

Γklij +
1

2

∑
cd

Γabcd
Γcdij
∆ijcd

(H.8d)

−
∑
ck

(
Γcaki
∆caki

Γkbcj −
Γcbki
∆cbki

Γkacj −
Γcakj
∆cakj

Γkbci +
Γcbkj
∆cbkj

Γkaci

)

=
1

2

∑
kl

Γabkl
∆klab

Γklij +
1

2

∑
cd

Γabcd
Γcdij
∆ijcd

(H.8e)

−
∑
ck

(
Γacki
∆acki

Γkbjc −
Γbcki
∆bcki

Γkajc −
Γackj
∆ackj

Γkbic +
Γbckj
∆bckj

Γkaic

)

=
1

2

∑
kl

Γabkl
∆klab

Γklij +
1

2

∑
cd

Γabcd
Γcdij
∆ijcd

(H.8f)

+
∑
ck

(
Γacki
∆kiac

Γkbjc −
Γbcki
∆kibc

Γkajc −
Γackj
∆kjac

Γkbic +
Γbckj
∆kjbc

Γkaic

)
.
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Let us focus on the first term of Eq. (H.7).

1

4

∑
abij

ηijab

[
η, Γ

]
abij

=
1

8

∑
abijkl

Γijab Γabkl Γklij
∆ijab∆klab

+
1

8

∑
abijcd

Γijab Γabcd Γcdij
∆ijab∆ijcd

(H.9)

+
1

4

∑
abijck

Γijab Γacki Γkbjc
∆ijab∆kiac︸ ︷︷ ︸
Term 2

− 1

4

∑
abijck

Γijab Γbcki Γkajc
∆ijab∆kibc︸ ︷︷ ︸
Term 3

− 1

4

∑
abijck

Γijab Γackj Γkbic
∆ijab∆kjac︸ ︷︷ ︸
Term 4

+
1

4

∑
abijck

Γijab Γbckj Γkaic
∆ijab∆kjbc︸ ︷︷ ︸
Term 5

.

Since all indices are summed over in Eq. (H.9), we can freely interchange a↔ b and i↔ j.

Term 2 =
∑

abijck

Γijab Γacki Γkbjc
∆ijab∆kiac

=
∑

abijck

Γjiab Γackj Γkbic
∆jiab∆kjac

= −
∑

abijck

Γijab Γackj Γkbic
∆ijab∆kjac

(H.10a)

Term 3 =
∑

abijck

Γijab Γbcki Γkajc
∆ijab∆kibc

=
∑

abijck

Γjiba Γackj Γkbic
∆jiba∆kjac

=
∑

abijck

Γijab Γackj Γkbic
∆ijab∆kjac

(H.10b)

Term 4 =
∑

abijck

Γijab Γackj Γkbic
∆ijab∆kjac

−→ Conveniently kept unchanged! (H.10c)

Term 5 =
∑

abijck

Γijab Γbckj Γkaic
∆ijab∆kjbc

=
∑

abijck

Γijba Γackj Γkbic
∆ijba∆kjac

= −
∑

abijck

Γijab Γackj Γkbic
∆ijab∆kjac

(H.10d)

Term 2 = −Term 3 = −Term 4 = Term 5 . (H.10e)
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Therefore, using Eq. (H.9) and Eq. (H.10),

∆E(3) =
1

8

∑
abijkl

Γijab Γabkl Γklij
∆ijab∆klab

+
1

8

∑
abijcd

Γijab Γabcd Γcdij
∆ijab∆ijcd

(H.11)

−
∑

abijck

Γijab Γackj Γkbic
∆ijab∆kjac

=
1

4

∑
abij

ηijab

[
η, Γ

]
abij

.

Utilizing Eq. (H.7),

{[
η,
[
η, Γ

]]}
0−body

= ∆E(3) +
(
∆E(3)

)∗
= 2Re

{
∆E(3)

}
. (H.12)

If Im
{
∆E(3)

}
= 0 ,

{[
η,
[
η, Γ

]]}
0−body

= 2∆E(3) . (H.13)

■

Using Eq. (H.13), we cache and reuse
[
η, Γ

]
—significantly reducing the compute cost of

MBPT(3). Given these developments, one wonders if higher-order MBPT expressions can

also be written in terms of commutators between IMSRG operators.2 Notice that we could

relax the requirement that η is White’s generator with Møller–Plesset energy denominators.

We could use White’s generator with Epstein–Nesbet energy denominators, perhaps giving

canonical MBPT with Epstein–Nesbet partitioning. We could also use the novel IMSRG

generators introduced in Chapter 5. To this end, we include generalized MBPT functions

detailed in Algorithm 6 and Algorithm 7.

2Perhaps, triples excitations present in MBPT(4) may be accounted for by introducing auxiliary com-
mutators (and potentially departing η from White’s generator), while still truncating η at the two-body
level.
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Algorithm 6 Generalized MBPT(2)

Input: η, H = E + f + Γ ▷ Approximate diagonalizer, and target Hamiltonian

Output:

{[
η, Γ

]
/2

}
0−body

▷ Generalized ∆E(2)

1: function MBPT2(η, H)

2: return

{[
η, Γ

]
/2

}
0−body

3: end function

Algorithm 7 Generalized MBPT(3)

Input: η, H = E + f + Γ ▷ Approximate diagonalizer, and target Hamiltonian

Output:

{[
η,
[
η, Γ

]]
/2

}
0−body

▷ Generalized ∆E(3)

1: function MBPT3(η, H)

2: return MBPT2
(
η,
[
η, Γ

])
3: end function

Algorithm 8 Standard MBPT(2)

Input: H = E + f + Γ ▷ Target Hamiltonian

Output:

{[
ηWhiteMP (H), Γ

]
/2

}
0−body

▷ Standard ∆E(2)

1: function MBPT2(H)

2: return MBPT2
(
ηWhiteMP (H), H

)
▷ Using White’s generator from Eq. (5.5)

3: end function

Algorithm 9 Standard MBPT(3)

Input: H = E + f + Γ ▷ Target Hamiltonian

Output:

{[
ηWhiteMP (H),

[
ηWhiteMP (H), Γ

]]
/2

}
0−body

▷ Standard ∆E(3)

1: function MBPT3(H)

2: return MBPT3
(
ηWhiteMP (H), H

)
▷ Using White’s generator from Eq. (5.5)

3: end function
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H.1 MBPT Truncation for UCC-Inspired Generators

We utilize 2nd-order many body perturbation theory (MBPT) to terminate iterative cal-

culations for the UCC-Born and Carinae generators in Chapter 5. Particularly, we use a

generalized form of MBPT(2) seen in Algorithm 6. And, we detail an overloaded truncation

function using the standard and generalized MBPT(2) in Algorithm 10 and Algorithm 11,

respectively.

Algorithm 10 Standard MBPT(2) Truncation

Input: H = E + f + Γ ▷ Target Hamiltonian for MBPT(2)

Output:

{[
ηWhiteMP (H), Γ

]
/(2E)

}
0−body

▷ ∆E(2)/E

1: function MBPT2Truncation(H)

2: return MBPT2Truncation
(
ηWhiteMP (H), H

)
▷ Using White’s generator from

Eq. (5.5)

3: end function

Algorithm 11 Generalized MBPT(2) Truncation

Input: η, H = E + f + Γ ▷ Approximate diagonalizer, and target Hamiltonian

Output:

{[
η, Γ

]
/(2E)

}
0−body

▷ Generalized ∆E(2)/E

1: function MBPT2Truncation(η, H)

2: return MBPT2(η, H)/E

3: end function
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APPENDIX I. UCC Renormalized Hamiltonian Ansätz

We aim to pose an ansätz for HRG(η) seen in Eq. (5.8). To do so, we must first tabulate

commutator expressions between an approximate diagonalizer η and generic Hamiltonians

A that satisfy Assumption 1. Let η be given by Eq. (5.1). Using Eq. (A.8) and Eq. (A.13)

of Hergert et al. [10],

[
η, A

]
aa

= −
∑
rs �

���
��(

nr − ns
)
× Ars︸︷︷︸

Arr × δrs

ηsara (I.1a)

+
1

2

∑
pqr

(
npnqn̄r + n̄pn̄qnr

)
×
(
ηrapq Apqra − Arapq ηpqra

)
[
η, A

]
ii
= −

∑
rs �

���
��(

nr − ns
)
× Ars︸︷︷︸

Arr × δrs

ηsiri (I.1b)

+
1

2

∑
pqr

(
npnqn̄r + n̄pn̄qnr

)
×
(
ηripq Apqri − Aripq ηpqri

)
.

Enforcing the operator structure of η seen in Eq. (5.1),

[
η, A

]
aa

=
1

2

∑
klb

(
ηbakl Aklba − Abakl ηklba

)
(I.2a)

[
η, A

]
ii
=

1

2

∑
abj

(
ηjiabAabji − Ajiab ηabji

)
. (I.2b)
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Using Eq. (A.12) of Hergert et al. [10],

[
η, A

]
abij

=
(
Aii + Ajj − Aaa − Abb

)
× ηabij (I.3a)

+
1

2

∑
pq

(
ηabpq Apqij − Aabpq ηpqij

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηpaqiAqbpj − ηpbqiAqapj − ηpaqj Aqbpi + ηpbqj Aqapi

)
[
η, A

]
akic

= (Aii + Acc − Aaa − Akk)× ηakic (I.3b)

+
1

2

∑
pq

(
ηakpq Apqic − Aakpq ηpqic

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηpaqiAqkpc − ηpkqiAqapc − ηpaqcAqkpi + ηpkqcAqapi

)
[
η, A

]
abcj

=
(
Acc + Ajj − Aaa − Abb

)
× ηabcj (I.3c)

+
1

2

∑
pq

(
ηabpq Apqcj − Aabpq ηpqcj

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηpaqcAqbpj − ηpbqcAqapj − ηpaqj Aqbpc + ηpbqj Aqapc

)
[
η, A

]
abcd

= (Acc + Add − Aaa − Abb)× ηabcd (I.3d)

+
1

2

∑
pq

(
ηabpq Apqcd − Aabpq ηpqcd

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηpaqcAqbpd − ηpbqcAqapd − ηpaqdAqbpc + ηpbqdAqapc

)
[
η, A

]
akij

=
(
Aii + Ajj − Aaa − Akk

)
× ηakij (I.3e)

+
1

2

∑
pq

(
ηakpq Apqij − Aakpq ηpqij

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηpaqiAqkpj − ηpkqiAqapj − ηpaqj Aqkpi + ηpkqj Aqapi

)
[
η, A

]
lkij

=
(
Aii + Ajj − All − Akk

)
× ηlkij (I.3f)

+
1

2

∑
pq

(
ηlkpq Apqij − Alkpq ηpqij

)
×
(
1− np − nq

)
+
∑
pq

(
np − nq

)
×
(
ηplqiAqkpj − ηpkqiAqlpj − ηplqj Aqkpi + ηpkqj Aqlpi

)
.
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Enforcing the operator structure of η seen in Eq. (5.1),

[
η, A

]
abij

=
(
Aii + Ajj − Aaa − Abb

)
× ηabij (I.4a)

− 1

2

∑
kl

ηabkl Aklij −
1

2

∑
cd

Aabcd ηcdij

−
∑
ck

(
ηcakiAkbcj − ηcbkiAkacj − ηcakj Akbci + ηcbkj Akaci

)
[
η, A

]
akic

= (Aii + Acc − Aaa − Akk)×���ηakic (I.4b)

+
1

2

∑
pq

(
���ηakpq Apqic − Aakpq���ηpqic

)
×
(
1− np − nq

)
+
∑
dj

(
−ηdajiAjkdc −���ηpkqiAqapc −���ηpaqcAqkpi + ηjkdcAdaji

)
[
η, A

]
abcj

=
(
Acc + Ajj − Aaa − Abb

)
×���ηabcj (I.4c)

− 1

2

∑
kl

(
ηabkl Aklcj − Aabpq���ηpqcj

)
+
∑
di

(
���ηpaqcAqbpj −�

��ηpbqcAqapj + ηdaij Aibdc − ηdbij Aiadc

)
[
η, A

]
abcd

= (Acc + Add − Aaa − Abb)×���ηabcd (I.4d)

− 1

2

∑
kl

(ηabkl Aklcd − Aabkl ηklcd)

+
∑
pq

(
np − nq

)
×
(
���ηpaqcAqbpd −�

��ηpbqcAqapd −���ηpaqdAqbpc +���ηpbqdAqapc
)

[
η, A

]
akij

=
(
Aii + Ajj − Aaa − Akk

)
×���ηakij (I.4e)

+
1

2

∑
cd

(
���ηakpq Apqij − Aakcd ηcdij

)
+
∑
dl

(
−ηdaliAlkdj −���ηpkqiAqapj + ηdalj Alkdi +���ηpkqj Aqapi

)
[
η, A

]
lkij

=
(
Aii + Ajj − All − Akk

)
×

���ηlkij (I.4f)

+
1

2

∑
ab

(
ηlkabAabij − Alkab ηabij

)
+
∑
pq

(
np − nq

)
×
(
�
��ηplqiAqkpj −���ηpkqiAqlpj −���ηplqj Aqkpi +���ηpkqj Aqlpi

)
.
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In conclusion, the tabulated one- and two-body components of
[
η, A

]
are given by

[
η, A

]
aa

=
1

2

∑
klb

(
ηbakl Aklba − Abakl ηklba

)
(I.5a)

[
η, A

]
ii
=

1

2

∑
abj

(
ηjiabAabji − Ajiab ηabji

)
(I.5b)

[
η, A

]
abij

=
(
Aii + Ajj − Aaa − Abb

)
× ηabij (I.5c)

− 1

2

∑
kl

ηabkl Aklij −
1

2

∑
cd

Aabcd ηcdij

−
∑
ck

(
ηcakiAkbcj − ηcbkiAkacj − ηcakj Akbci + ηcbkj Akaci

)
[
η, A

]
akic

=
∑
dj

(
−ηdajiAjkdc + ηjkdcAdaji

)
(I.5d)

[
η, A

]
abcj

= − 1

2

∑
kl

ηabkl Aklcj +
∑
di

(
ηdaij Aibdc − ηdbij Aiadc

)
(I.5e)

[
η, A

]
abcd

= − 1

2

∑
kl

(ηabkl Aklcd − Aabkl ηklcd) (I.5f)

[
η, A

]
akij

= − 1

2

∑
cd

Aakcd ηcdij +
∑
dl

(
−ηdaliAlkdj + ηdalj Alkdi

)
(I.5g)

[
η, A

]
lkij

=
1

2

∑
ab

(
ηlkabAabij − Alkab ηabij

)
. (I.5h)

Going forward, we use the following notation: Ood, Od and Od′ to denote linear combinations

of differing sectors of A-body operator O, where1

Ood ≡�
��Oai + Oabij (I.6)

Od ≡ Oaa + Oii + Oakic + Oabcd + Olkij

Od′ ≡ Oabcj + Oakij .

1All sectors in Eq. (I.6) include their antisymmetric and/or symmetric counterparts. For example, Oabij
corresponds to all matrix elements Oabij and Oijab.
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The UCC constraint in Eq. (5.8) can be rewritten

−Habij =
[
η , H {0}

]
abij

(I.7a)

H {0} ≡ H

1!
+
[
η , H {1}

]
(I.7b)

H {1} ≡ H

2!
+
[
η , H {2}

]
(I.7c)

H {2} ≡ H

3!
+
[
η , H {3}

]
(I.7d)

↓

...

H {n} ≡ H

(n+ 1)!
+
[
η , H {n+1}

]
(I.7e)

...

. Using Eq. (I.5c), notice H
{0}
d is only relevant in Eq. (I.7a)’s RHS. This implies that H {0}

is not unique. Therefore,

−Hod =
[
η , H {0}

]
od

=
[
η , H

{0}
d

]
od

(I.8)

H
{0}
d =

Hd

1!
+
[
η , H {1}

]
d
. (I.9)

In Eqs. (I.5a), (I.5b), (I.5d), (I.5f), (I.5h), notice H
{1}
od is only relevant in Eq. (I.9)’s RHS.

Therefore,

H
{0}
d =

Hd

1!
+
[
η , H

{1}
od

]
d

(I.10)

H
{1}
od =

Hod

2!
+

[
η , H

]
od

3!
+

∞∑
m=2

[
η, H

](m)

od

(m+ 2)!
. (I.11)
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So long η satisfies Eq. (5.7),

[
η , H

]
od

= −Hod −
∞∑

m=2

[
η, H

](m)

od

m!
. (I.12)

Let

H
{1}
od ≡ Hod

2!
+

1

3!

(
−Hod −

∞∑
m=2

[
η, H

](m)

od

m!

)
+

∞∑
m=2

[
η, H

](m)

od

(m+ 2)!
(I.13)

=

(
1

2!
− 1

3!

)
Hod +

∞∑
m=2

(
1

(m+ 2)!
− 1

3!×m!

)[
η, H

](m)

od
.

If η fully satisfies Eq. (5.7), then H
{1}
od and H

{1}
od will be exactly equal. In practice however, η

is our best approximation to a solution of Eq. (5.7). Therefore, there will be some deviations

between H
{1}
od and H

{1}
od . We seek to exploit these deviations using gradient descent. Let

δH
{1}
od ≡ H

{1}
od −H

{1}
od =

Hod

3!
+

[
η , H

]
od

3!
+

∞∑
m=2

(
1

3!×m!

)[
η, H

](m)

od
(I.14)

Using gradient descent with step-size ds,2 we can extrapolate H
{1}
od

H
{1}
od

Extrapolated
≡ H

{1}
od + ds× δH {1}od (I.15)

=

(
1

2!
+

ds

3!

)
Hod +

(
1

3!
+

ds

3!

)[
η , H

]
od

+
∞∑

m=2

(
1

(m+ 2)!
+

ds

3!×m!

)[
η, H

](m)

od

=
∞∑

m=0

(
1

(m+ 2)!
+

ds

3!×m!

)[
η, H

](m)

od
.

2Step-size ds = 1.0 is sufficient for this work.
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Revisiting Eq. (I.7), we can now solve

−Hod =

[
η , Hd +

[
η , H

{1}
od

Extrapolated ]
d

]
od

(I.16)

=

[
η , Hd +

∞∑
m=0

(
1

(m+ 2)!
+

ds

3!×m!

)[
η, H

](m+1)

d

]
od

=

[
η , Hd +

∞∑
m=1

(
1

(m+ 1)!
+

ds

3!× (m− 1)!

)[
η, H

](m)

d

]
od

=

[
η ,

∞∑
m=0

am(ds)
[
η, H

](m)

d

]
od

=

[
η ,

∞∑
m=0

am(ds)
[
η, H

](m)

︸ ︷︷ ︸
HRG(η) ansätz

]
od

am(ds) ≡
(

1

(m+ 1)!
+

ds

3!× (m− 1)!

)
, ∀m ≥ 0 . (I.17)

Some numerical values of am(ds = 1.0) can be seen in Table I.1.3

Table I.1: First 7 series coefficients for HRG(η) ansätz

m 0 1 2 3 4 5 6

am(ds = 1.0) 1 2/3 1/3 1/8 13/360 1/120 1/630

3a1(ds = 1.0) appears in Koide’s formula. Coincidence??!!

182


	List Of Symbols
	List Of Abbreviations
	Chapter 1Background and Introduction
	Importance of the Nuclear Matter Equation-of-State
	Recent Advances in Ab Initio Nuclear Theory
	Thesis Outline

	Chapter 2IMSRG Theory for Nuclear Matter
	SRG Theory
	IMSRG Theory
	Flow Implementation
	Magnus Expansion

	Modeling Infinite Nuclear Matter in a Cubic Box
	Single-Particle Basis
	Two- and Three-Particle Bases
	Errors Due to Finite Size and Incomplete Basis Sets

	Conclusion

	Chapter 3Nuclear Matter IMSRG Program
	SCKY-IMSRG Program Output
	Big Data Management: Parsing IMSRG Outputs
	Nuclear Forces
	SCKY-IMSRG Program Hierarchy
	High-Performance Optimizations
	Performance Results

	Concluding Remarks with Perspectives

	Chapter 4Nuclear Matter Equation-of-State
	Results
	Discussion
	Conclusion
	Outlook

	Chapter 5UCC-Inspired IMSRG Generators
	Motivation
	Assumptions
	Magnus-IMSRG Convergence Acceleration
	Unitary Coupled-Cluster Theory
	Linearized UCC
	Commutator Inversion via Born Series
	Regulating the Born Series
	Preconditioning the Born Series
	Born Generator
	UCC-Born Generator
	Carinae Generator
	Results
	A Few Remarks
	Summary
	Perspectives

	Chapter 6IMSRG Post-Processors
	Shanks Transformation
	Padé Approximant
	Results
	Discussion
	Conclusion and Perspectives

	Chapter 7Closing Remarks
	Summary
	Outlook

	Bibliography
	APPENDIX A Generalized Baker-Campbell-Hausdorff Formula
	APPENDIX B Fourier Transform of Local Two-Body Force in a Box
	APPENDIX C Minnesota Potential in a Finite Box
	APPENDIX D One Pion Exchange Interaction in a Finite Box
	APPENDIX E Partial Wave Expansion for Two-Body Forces
	APPENDIX F Optimized Particle-hole Transformation
	APPENDIX G Properties of Born Series Adjoints
	APPENDIX H MBPT Expressed in Terms of IMSRG Commutators
	MBPT Truncation for UCC-Inspired Generators

	APPENDIX I UCC Renormalized Hamiltonian Ansätz

