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ABSTRACT

The study of quantum optics is principally concerned with investigating light-matter interactions.

Within the discipline, computational simulation is a burgeoning field that can lend new insights into

optical phenomena previously uncovered by theory or experiment. Collective emission effects such

as superradiance serve as one prominent example. In contrast to ordinary emissions, superradiance

involves dipolar coupling within optical ensembles and produces a coherent burst of radiation whose

intensity scales with the square of the number of emitters. Whereas theoretical results involving

superradiance are often shoehorned into small, ideal systems, numerical simulations permit the

examination of much larger realistic systems, and can further aid in verifying experimental results.

Studies of other phenomena, such as polarization enhancement, inhomogenenous broadening, and

subradiance, benefit similarly.

To design new systems that exploit quantum optical effects, we devise in this thesis a new

numerical approach that can faithfully simulate dynamics of optical active media. Such material are

characterized by their ability to modify and re-emit radiation. Nanoscale semiconductor particles

known as quantum dots serve as a prime example. Their larger dipole moments–compared to atoms–

enable them to experience strong interactions with radiation fields, and permit the observation of a

variety of optical phenomena, including superradiance. Despite this merit, numerical simulation

of large ensembles of quantum dots–and for long time periods–is challenging. In contrast to

previous counterparts, our computational model, which involves the solution to the Maxwell-Bloch

equations via integral operator electric fields, is massively scalable in both time and space. This

is facilitated by the Adaptive Integral Method (AIM), which effects FFT-based convolutions to

evaluate the field. This allows us to perform large scale simulations that reproduce optical effects

such as superradiance.

To demonstrate the fidelity of our approach, we evaluate the rate of photon emission from our

ensemble and show that it reproduces the quadratic scaling of superradiance. In simulations of

medium-sized (𝑁 = 50 − 300 ensembles of quantum dots in a Gaussian cloud, we confirm this

quadratic scaling by subtracting independent emissions from total emissions. We also observe



anisotropy of emission–another hallmark of superradiance–in the field radiated by the Gaussian

cloud. Subradiance is revealed in steady state plots of the population excitation, which display

diminished emissions. This effect is amplified by inhomogeneous broadening, which induces

greater disorder and thus interference within the ensemble, but diminished by the presence of

collective Lamb shifts.

Additionally, we compare the results of this calculation to those using another formalism, the

Master equation. By applying zero-averaging random initial conditions to the polarization, we

achieve strong numerical agreement between the two approaches. We observe both superradiant

scaling, and destructive interference among dots separated by half-wavelengths. We remark,

however, that the Maxwell-Bloch model is superior to the Master equation in resolving time delays

and capturing propagation and memory effects. Hence, simulations involving ensembles of emitters

separated far apart in space should opt for the Maxwell-Bloch approach to accurately account for

delay effects.
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CHAPTER 1

INTRODUCTION

1.1 Active media and secondary radiation

In contrast to conventional matter which scatters light directly, the term active media refers

to matter which modify propagating waves by absorbing and re-emitting radiation. Such media

consist of nanoscale elements, typically atoms and semiconductor quantum dots, characterized by

strong optical resonances. These materials see applications as diverse as gain media for lasers,

optical amplifiers, and components for quantum technologies. In this respect, quantum dots possess

salient advantages over their atomic counterparts. Their nanoscale size tightly confines electrons

and induces energy quantization. By further tuning their size, shape, and composition, dots can

be engineered to emit light at a wide range of desired frequencies. For instance, smaller sizes

yield larger differences in energy between the valence and conduction bands, which increases

the frequency of secondary radiation. Additionally, dots experience stronger dipolar transitions

than atoms; this permits more pronounced coupling via secondary radiated (re-emitted) fields

and enables the observation of nonlinear effects, such as Rabi oscillations [3, 4, 5], at lower laser

intensities. In light of these merits, we focus our analysis of active media in this thesis on quantum

dots.

The consequences of secondary radiation in quantum dots have been studied recently in both

experimental [6] and theoretical/computational [7, 8] works. In the latter, Maxwell-Bloch equations

[9] are typically used to describe interactions among an ensemble of dots, each modeled as a many-

level quantum system. Such a description may be semiclassical, wherein the dots absorb and re-emit

classical Maxwellian fields, or the fields may be fully quantized. Regardless, the innate coupling

of quantum mechanics to electrodynamics results in a set of equations which are highly formidable

to solve. Theoretical calculations are thus limited to systems with very small numbers (< 10)

of emitters, and neglect effects due to the quantization of the electromagnetic fields. Numerical

solutions, on the other hand, have witnessed an evolution from continuum models [10, 11] to models
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employing spatial homogeneity [12] and mesh-based PDE solvers [13, 14]. These methods share

common shortcomings: they are neither able to resolve short-ranged effects, nor are practically

scalable to larger systems. In Chapter 2, we describe a computation approach to the semiclassical

Maxwell-Bloch equations that remedies these shortcomings, enabling the simulation of a variety

of radiation-induced phenomena with ensembles of more than 104 dots.

1.2 Collective emission effects

A major consequence of secondary radiation is the existence of collective emission, wherein

an ensemble of active media cooperates to emit radiation coherently. In contrast to light from

independent emitters, superradiance is defined by a greater intensity, as well as anisotropy [9, 10]

of radiation. The dual phenomena, in which destructive coupling diminishes the intensity of

radiation, is termed subradiance.

Following Dicke’s seminal work [15] in the 1950s, superradiance has been examined extensively

in the theoretical literature [16, 17, 18, 19, 20]. In theory, the occurrence of superradiance is deeply

connected to the nonlinear coupling of quantum states with their radiated fields. It involves the

coherent “alignment" of dipoles, producing a short radiation burst whose intensity scales as the

square of the number of emitters. Thus, the phenomenon can be regarded as a process in which a

disordered system builds up order via the correlation amongst dipoles. It can also be viewed as a

process in which an initially quantum mechanical state takes on a classical character, i.e. in which

a set of correlated dipoles emits radiation akin to that of a classical antenna [9]. In this regard, the

representation of the radiation as a classical electric field is a fitting one, and sufficient to capture

the intricacies of collective emission for many applications.
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Figure 1.1 Illustration of superradiance: post-excitation, dipoles establish correlation via their
radiation fields and emit a superradiant pulse. For this to occur, the separation between emitters
must be sufficiently small compared to the wavelength of excitation (not to scale).

Experimental observation of superradiance became widespread after the invention of dye-laser

systems, which produce short, narrow bursts that enable excitation of a collection of media to

specific energy levels [9]. Early studies in the 1970s revealed superradiance in atoms [21, 22]

and gas molecules [23]; more recently, it has been observed in lead halide perovskite lattices [24],

atomic lattices [25], and isolated quantom dots [26]. In a typical study, a pulsed laser that is resonant

with the transition frequency of the material is used to initially excite the system. The resulting

secondary radiation is emitted with characteristic intensity curves (Fig. 1.2). Whereas independent

emissions decay exponentially, superradiant emissions occur in a transient time window. Thereafter,

one typically observes a diminished emission rate. This characterizes subradiance, in which dipoles

anti-align to cause destructive interference and the suppression of emission. In Chapter 3, we shall

numerically explore both collective effects in large ensembles of quantum dots.
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Figure 1.2 Illustration of post-excitation emission rates in a hypothetical scenario. Uncoupled
emissions display a simple exponential decay. In contrast, coupled emissions occur in a short
window and decay transiently. Additionally, whereas uncoupled emissions scale linearly with
number of emitters 𝑁 , the superradiant contribution to coupled emissions scales as 𝑁2 (not shown).

Despite the breadth of theoretical and experimental literature, numerical simulation of collective

emission in large systems is a relatively unexplored area. To induce transitions, simulations typically

mimic experiments and incorporate a resonant pulsed laser. Modeling the subsequent re-radiation

is a much more arduous task. In general, this can be approached from the semiclassical Maxwell-

Bloch or quantum Master equation models. Each formulation poses distinct challenges while

offering certain advantages. The former involves the solution of a system of 𝑁 coupled, nonlinear,

delayed differential equations, each describing the evolution of a simple 2 × 2 density matrix

representing the state of each quantum dot (𝑁 is the total number of dots in the system). As

such, it is readily scalable to large systems of dots. In contrast, the Master equation is a linear

differential equation for the enormous 2𝑁×2𝑁 density matrix of the entire ensemble, which impedes

large-scale simulations. Moreover, the Born-Markov approximation implies that delays are absent

from the Master equation, a feature that simplifies calculations but makes this formulation ill-suited

for modeling propagation and memory effects in cases when the electromagnetic field is far from

equilibrium. We elaborate on these remarks in Chapters 3 and 4, which are devoted to simulations

involving the Maxwell-Bloch equations and Master equation, respectively.
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CHAPTER 2

DYNAMICS OF QUANTUM DOTS VIA MAXWELL-BLOCH EQUATIONS

A theory involving the coupling of quantum mechanics to electrodynamics has several realizations.

Fully quantized theories of the electromagnetic field are able to capture quantum statistics, and

faithfully describe such phenomenon as sub-Poissonian photon emissions. However, in analyses

of dense ensembles of discrete emitters such as quantum dots, which involve measurements of

macroscopic quantities such as field intensity or spontaneous emission [27], a classical treatment

of the field is often sufficient. The interplay between a classical field and an ensemble of dots

represented by many-level quantum states, defines the semiclassical model and is the crux of this

chapter.

The semiclassical model permits us to draw upon techniques from classical electrodynamics

to analyze the electric field. It represents the field in terms of propagating waves emanating from

a source distribution. Mathematically, we write the field as the action of a wave equation Green’s

function on the source. This integral operator approach–so called because of the integral kernel

that appears in the Maxwell-Bloch equations–has several merits. It readily admits a numerical

discretization in terms of spatial and temporal basis functions. The former encodes the spatial

distribution of dots, while capturing their mesoscopic local structure; the latter resolves time

derivatives and captures retardation. Our method also delineates near- and farfield regions of

interaction, and facilitates the tracking of data in both regimes. Compared to predecessors such as

mesh-based PDE solvers [13, 14], nearfield interactions can be resolved at a practical computational

cost. Hence, our method enables the simulation of superradiance due to large numbers (𝑁 > 100)

of dots separated by distances far smaller than the excitation wavelength.

Despite the superior scalability of the integral operator approach, a direct implementation is

still hampered by the 𝑂 (𝑁2) cost of computing matrix-vector products in convolutions. In Section

2.3, we describe an acceleration technique for reducing the computation cost to𝑂 (𝑁 log 𝑁). In this

Adaptive Integral Method (AIM), source data is projected onto a set of auxiliary basis functions

representing grid points, through which interactions are evaluated and then projected back onto
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observers. We demonstrate both the expected𝑂 (𝑁 log 𝑁) performance scaling, and convergence of

the algorithm based on error scaling with grid density and expansion order. By applying AIM to the

integral-operator Maxwell-Bloch equations, we run large scale (𝑁 > 10000) simulations displaying

effects due to secondary radiation, including oscillatory patterns, polarization modulations, and

ultimately super- and subradiant emissions.

2.1 Semiclassical Maxwell-Bloch model

In what follows, we outline a self-consistent model of quantum dot ensembles, and later provide

insight into the physics. In the context of this thesis, we restrict ourselves to two-level systems (a

generalization to three-level systems will briefly be discussed in the Conclusion) with associated

transition frequency 𝜔0. In a typical process, stimulation by a resonant light pulse induces electric

dipole transitions from the ground to excited state, and generates a coherent polarization, which,

in turn, induces re-emission of secondary radiation. The two-level system admits a geometric

interpretation in the Bloch vector s = (𝑢, 𝑣, 𝑤)𝑇 , with the configuration space of Bloch vectors

known as the Bloch sphere (Fig. 2.1).

|𝜓⟩

û

v̂

ŵ = |1⟩

−ŵ = |0⟩

𝜑

𝜃

Figure 2.1 Bloch sphere representation of a two-level quantum system. Equation (2.2) describes
the evolution of |𝜓⟩ on the surface of this unit sphere. The “poles" |0⟩ and |1⟩ represent the ground
and excited levels, respectively [1].

An equivalent formulation in terms of a 2 × 2 density matrix �̂� is given by the one-to-one

correspondence:

𝜌 =
©«
𝜌00 𝜌01

𝜌10 𝜌11

ª®®¬ =
1
2

©«
1 − 𝑤 𝑢 + 𝑖𝑣

𝑢 − 𝑖𝑣 1 + 𝑤

ª®®¬ (2.1)
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In the 𝜌 basis, the Liouville equation describes the time evolution of each dot:

d𝜌
d𝑡

=
−𝑖
ℏ
[H (𝑡), 𝜌] − D[𝜌] . (2.2)

where the dot Hamiltonian

H(𝑡) ≡
©«

0 −ℏ𝜒(𝑡)

−ℏ𝜒∗(𝑡) ℏ𝜔0

ª®®¬ (2.3)

governs the interaction with an electric field E(r, 𝑡). It consists of diagonal terms representing the

internal energies ℏ𝜔0 of each state, and off-diagonal terms containing the interaction with fields via

𝜒(𝑡) = d · E(r, 𝑡)/ℏ. Here d is the dipole moment of the transition, which determines the strength

and direction of the induced polarization. Additionally, one typically uses a decoherence matrix

D[𝜌] ≡
©«
(𝜌00 − 1)/𝑇1 𝜌01/𝑇2

𝜌10/𝑇2 𝜌11/𝑇1

ª®®¬ (2.4)

to describe the effects of spontaneous emission on each dot. Here 𝑇1 and 𝑇2 are time constants,

related to the spontaneous decay rate Γ0 via 𝑇1 = 1/Γ0, 𝑇2 = 2𝑇1 = 2/Γ0.

Equation (2.2) has a physical interpretation in terms of Bloch vectors. Using eq. (2.1) and

assuming real fields, rewriting eq. (2.2) in terms of Bloch components yields:

¤𝑢 = −𝜔0𝑣 − 𝑢/𝑇2

¤𝑣 = 𝜔0𝑢 − 2𝜒𝑤 − 𝑣/𝑇2

¤𝑤 = 2𝜒𝑣 − (𝑤 + 1)/𝑇1

(2.5)

Disregarding the damping terms, this can be written as a precession equation:

¤s = 𝛀 × s (2.6)

where the effective torque 𝛀 = (2𝜒, 0, 𝜔0)𝑇 acts as the axis of rotation of the Bloch vector s. In the

absence of electric fields (𝜒 = 0), 𝛀 is parallel to the 𝑤-axis, and the system rotates in a plane of

constant 𝑤; thus there are no transitions between states. The presence of fields tilts 𝛀 away from

the 𝑤-axis, stimulating transitions (see fig. 2.2). These oscillate between the two states at a rate

equal to the Rabi frequency 𝜒, hence the term Rabi oscillations.
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û

v̂

ŵ

s

𝛀

Figure 2.2 Precession of a Bloch vector s about a torque 𝛀 lying in the 𝑢𝑤 plane. The presence
of field excitations tilts 𝛀 away from the 𝑤-axis, causing the 𝑤-component of s to depart from its
initial value and inducing a transition between states.

To stimulate transitions, E(r, 𝑡) typically includes an incident laser field E𝐿 (r, 𝑡) oscillating at

frequency 𝜔𝐿 . In all relevant scenarios, this laser is nearly resonant with the transition frequency:

𝜔0 ∼ 𝜔𝐿 , which lies in the optical frequency band (∼ 2278 ps−1), for the type of dots considered

in this thesis). Resolving such fast oscillations requires the choice of a very small timestep;

hence integrating eq. (2.2) directly on the timescale of typical Rabi dynamics (∼ 1 ps) becomes

computationally laborious. We therefore introduce �̃� = 𝑈𝜌𝑈† where 𝑈 = diag(1, 𝑒𝑖𝜔𝐿 𝑡) and 𝑈†

denotes the conjugate transpose of 𝑈, transforming to a frame rotating with the frequency of the

incident laser. In this rotating frame, (2.2) becomes:

d�̃�
d𝑡

=
−𝑖
ℏ

[
H̃ (𝑡), �̃�

]
− D[ �̃�] . (2.7)

where the rotating frame Hamiltonian:

�̃� (𝑡) =
©«

0 −ℏ𝜒(𝑡)𝑒−𝑖𝜔𝐿 𝑡

−ℏ𝜒∗(𝑡)𝑒𝑖𝜔𝐿 𝑡 ℏ(𝜔0 − 𝜔𝐿)

ª®®¬ (2.8)

contains only terms proportional to 𝑒𝑖(𝜔0±𝜔𝐿)𝑡 if E𝐿 (𝑡) ∼ Ẽ𝐿 (𝑡) cos(𝜔𝐿𝑡). The rotating wave

approximation (RWA) neglects the high frequencies 𝜔0 +𝜔𝐿 , assuming that terms containing them

will integrate to zero in solving (2.7) over appreciable timescales.

In the presence of interactions among dots, their secondary radiated fields E𝑟𝑎𝑑 are added to

the laser field in calculating the total electric field experienced by each dot:

E(r, 𝑡) ≡ E𝐿 (r, 𝑡) + E𝑟𝑎𝑑 (r, 𝑡) (2.9)
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Here we assume the radiation field E𝑟𝑎𝑑 (r, 𝑡) = 𝔉{P(r, 𝑡)} arises from a polarization density

P(r, 𝑡) = ∑
𝑖 𝛿(r − r𝑖) d Re

{
2𝜌𝑖01(𝑡))

}
, where 𝑖 labels each dot located at r𝑖. The radiated field can

then be written in integral operator form as (see Appendix A):

𝔉{P(r, 𝑡)} ≡ −𝜇0

(
𝜕2
𝑡 − 𝑐2∇∇

)
𝑔(r, 𝑡) ★𝑠𝑡 P(r, 𝑡)

=
−1
4𝜋𝜖

∫ [
(I − r̄ ⊗ r̄) ·

𝜕2
𝑡 P(r′, 𝑡𝑅)
𝑐2𝑅

+ (I − 3r̄ ⊗ r̄) ·
(
𝜕𝑡P(r′, 𝑡𝑅)

𝑐𝑅2 + P(r′, 𝑡𝑅)
𝑅3

)]
𝑑3r′

(2.10)

Here, 𝑔(r, 𝑡) = 𝛿(𝑡𝑅)/𝑅 is the retarded wave equation Green’s function, R = r − r′, r̄ = R/𝑅, ⊗ is

a tensor product, and 𝑡𝑅 = 𝑡 − 𝑅/𝑐. As the polarization density P(r, 𝑡) arises from the off-diagonal

elements of �̂�, this formulation effectively couples the evolution of all quantum dots via their

radiated fields 𝔉{P(r, 𝑡)}. Furthermore, it depicts the propagation of electric signals through space

with finite velocity, such that each dot receives the field radiated by another dot at the retarded time

𝑡𝑅.

In the rotating frame, the source distribution must also be transformed. Writing P(r, 𝑡) =

Re{P̃(r, 𝑡)𝑒𝑖𝜔𝐿 𝑡} and substituting into (2.10) gives the rotating frame equivalent of the radiated

field:

𝔉{P̃(r, 𝑡)} ≡ −1
4𝜋𝜖

∫ [
(I − r̄ ⊗ r̄) ·

𝜕2
𝑡 P̃(r′, 𝑡𝑅) + 2𝑖𝜔𝐿𝜕𝑡P̃(r′, 𝑡𝑅) − 𝜔2

𝐿
P̃(r′, 𝑡𝑅)

𝑐2𝑅

+ (I − 3r̄ ⊗ r̄) ·
(
𝜕𝑡P̃(r′, 𝑡𝑅) + 𝑖𝜔𝐿P̃(r′, 𝑡𝑅)

𝑐𝑅2 + P̃(r′, 𝑡𝑅)
𝑅3

)]
𝑒−𝑖𝜔𝐿𝑅/𝑐𝑑3r′

(2.11)

In most scenarios, the incident laser E𝐿 is sharply peaked and decays transiently in a time 𝑡∗.

Thereafter, the polarization density P̃(𝑡) varies appreciably slower than the laser. In that case, we

may disregard the derivative terms and write for the Rabi energy of a dot at r and for 𝑡 ≫ 𝑡∗:

𝜒(r, 𝑡) ≡ d · 𝔉{P̃(r, 𝑡)}/ℏ

≈ −3Γ0
4

∫ [
(I − r̄ ⊗ r̄) · −

ˆ̃P(r′, 𝑡𝑅)
𝑘𝑅

+ (I − 3r̄ ⊗ r̄) ·
(
𝑖 ˆ̃P(r′, 𝑡𝑅)
(𝑘𝑅)2

+
ˆ̃P(r′, 𝑡𝑅)
(𝑘𝑅)3

)]
𝑒−𝑖𝜔𝐿𝑅/𝑐𝑑3r′

(2.12)
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where 𝑘 = 𝜔𝐿/𝑐, P̃ = ˆ̃P𝑑 and:

Γ0 ≡
𝑑2𝜔3

𝐿

3𝜋𝜖ℏ𝑐3 (2.13)

is the spontaneous decay rate (we have further assumed that all dipole strengths are equal).

2.1.1 Radiation reaction field

Expressions (2.10-2.12) appear singular in the limit 𝑅 → 0. However, it is possible to

approximate this limit such that the resulting quantity is finite. This leads to the radiation reaction

field, a self-field which an emitter experiences due to its own emitted radiation. We may derive

such a field E𝑅𝑅 from (2.10) via Taylor expansion (see Appendix A for details). The result in the

rotating frame is [28]:

E𝑅𝑅 (r, 𝑡) ≡ −
1

4𝜋𝜖
2

3𝑐3

∫ [
𝜕3
𝑡 P̃(r′, 𝑡) + 3𝑖𝜔𝐿𝜕

2
𝑡 P̃(r′, 𝑡) − 3𝜔2

𝐿𝜕𝑡P̃(r′, 𝑡) − 𝑖𝜔3
𝐿P̃(r′, 𝑡)

]
𝑑r′ (2.14)

As before, the last term in the above expression will dominate after the laser decays in 𝑡∗.

Substitution this term into (2.7) via (2.8) and (2.9) yields the following term to the RHS of that

equation:

¤̃𝜌𝑅𝑅 ≈
𝛽

2
©«
−
(
(1 − 2𝜌00)2 − 1

)
2𝜌01(1 − 2𝜌00)

2𝜌10(1 − 2𝜌00) (1 − 2𝜌00)2 − 1

ª®®¬ (2.15)

Here 𝛽 = (1/4𝜋𝜖) (2𝑑2𝜔3
𝐿
/3ℏ𝑐3) is a parameter that measures the strength of radiation reaction

[29]. As suggested by the simple relation 𝛽 = Γ0/2, the radiation reaction field functions similarly

to (2.4) and serves to dampen the system, albeit in a nonlinear manner and with an overall magnitude

half that of the spontaneous decay.

[The self-field E𝑅𝑅 further induces a “residual" nearfield around the vicinity of each dot, i.e.

we may write for the total nearfield:

E𝑁𝐹 (r, 𝑡) = E𝑅𝑅 (r, 𝑡) + E𝑁𝐹−𝑅𝑅 (r, 𝑡) (2.16)

where the support of E𝑁𝐹−𝑅𝑅 extends beyond the location of the point source (see Appendix A).

Thus,] the inclusion of the radiation reaction field constitutes a model of superradiance where this
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field strongly couples dots separated by distances much smaller than the excitation wavelength.

This idea has been explored in several works such as [12, 29]. However our simulations have not

definitively shown that including E𝑅𝑅 at the location of each dot necessarily reproduces superra-

diance. Nonetheless, it is illustrative of an interesting physical effect that can be incorporated into

our integral operator model.

2.2 Computational approach

We now consider the numerical solution of (2.7). To start, let us represent P̃(r, 𝑡) in terms of

space and time basis functions such that:

P̃(r, 𝑡) ≈
𝑁𝑠−1∑︁
ℓ=0

𝑁𝑡−1∑︁
𝑚=0
Ã (𝑚)

ℓ
sℓ (r)𝑇 (𝑡 − 𝑚 Δ𝑡), (2.17)

Assuming that the dots are point sources, we take s𝑙 (r) = d𝑙𝛿(r − r𝑙). Here 𝛿(r) is a 3-D delta

function, d𝑙 and r𝑙 denote respectively the dipole moment and position of the ℓth dot, while

Ã (𝑚)
ℓ

= 2 Re( �̃�ℓ,01(𝑚 Δ𝑡)) represents its polarization at the 𝑚th timestep.

The time basis functions 𝑇 (𝑡) interpolate the function of interest at each timestep, and are

required to have finite support and obey the causality clause 𝑇 (𝑡) = 0 if 𝑡 < −Δ𝑡. Additionally they

must be at least twice-differentiable to recover the time derivatives in eq. (2.10). To this end we

elect to use shifted, backwards-looking Lagrange polynomials:

𝜆 𝑗 (𝑡) =
𝑗∏

𝑖=1

𝑡 − (𝑝 − 𝑗) − 𝑖
−𝑖 ×

𝑝− 𝑗∏
𝑖=1

𝑡 − (𝑝 − 𝑗) + 𝑖
𝑖

(2.18)

of order 𝑝 = 3 or higher, in terms of which [30]:

𝑇 (𝑡) =
𝑝∑︁
𝑗=0

𝜆 𝑗 (𝑡) (2.19)

Figure 2.3 illustrates a set of Lagrange polynomials.
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b r
c∆t c − 3 b r

c∆t c − 2 b r
c∆t c − 1 b r

c∆t c

0

0.5

1

Figure 2.3 A set of Lagrange polynomials, serving as time basis functions for the polarization
source P̃(r, 𝑡)

Substituting (2.17) into (2.9) via (2.10) and projecting the result onto the 𝛿(𝑡 −𝑚 Δ𝑡)sℓ (r) basis

yields a set of discrete convolution equations:

Ẽ (𝑚) = Ẽ (𝑚)L +
𝑚∑︁

𝑚′=0
F̃ (𝑚−𝑚′) · Ã (𝑚′) (2.20)

where

Ẽ (𝑚)
ℓ
≡

〈
sℓ (r), Ẽ(r, 𝑚 Δ𝑡)

〉
; 0 ⩽ ℓ < 𝑁𝑠 (2.21a)

Ẽ (𝑚)L,ℓ ≡
〈
sℓ (r), ẼL(r, 𝑚 Δ𝑡)

〉
; 0 ⩽ ℓ < 𝑁𝑠 (2.21b)

and F̃ (𝑘) gives a sparse matrix of dimension 𝑁𝑠 × 𝑁𝑠 such that

F̃ (𝑘)
ℓℓ′ ≡

〈
sℓ (r), �̃�{sℓ′ (r)𝑇 (𝑘 Δ𝑡)}

〉
. (2.21c)

Note that due to the finite support of the 3-D retarded potential, F̃ (𝑘) has a sparse, Toeplitz

lower-triangular structure. This facilitates a cost complexity of O(𝑁𝑡), as only a fixed number of

multiplications need to be performed at each timestep 𝑚Δ𝑡 [30].

Equation (2.20) defines a marching-on-time scheme for evaluating the total electric field. The

determination of the polarization Ã (𝑚+1) thus proceeds from integrating the equation of motion

(2.7) from 𝑡𝑖 = 𝑚Δ𝑡 to 𝑡 𝑓 = (𝑚 + 1)Δ𝑡 for every quantum dot. To solve this system, we use a

numerical predictor-corrector approach derived in [31]. Defining 𝑡𝑚 ≡ 𝑚Δ𝑡 and approximating �̃�(𝑡)
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as a weighted sum of exponentials, the predictor-corrector scheme proceeds with an extrapolation

predictor step:

�̃�ℓ (𝑡𝑚+1) ←
𝑊−1∑︁
𝑤=0
P (0)𝑤 �̃�ℓ (𝑡𝑚−𝑤) + P (1)𝑤 𝜕𝑡 �̃�ℓ (𝑡𝑚−𝑤), (2.22)

and iterated corrector steps:

�̃�ℓ (𝑡𝑚+1) ←
𝑊−1∑︁
𝑤=−1
C (0)𝑤 �̃�ℓ (𝑡𝑚−𝑤) + C (1)𝑤 𝜕𝑡 �̃�ℓ (𝑡𝑚−𝑤) (2.23)

Such an integrator has significantly better convergence properties than Runge-Kutta integrators for

equations of the type seen in (2.7) and naturally accommodates basis functions within 𝑐 Δ𝑡 of each

other.

A self-consistent solution to eq. (2.7) has the following prescription for any timestep: (i) de-

termine Ã (𝑚)
ℓ

= 2 Re( �̃�ℓ,01(𝑚 Δ𝑡)) from the known history of the system, (ii) compute Ẽ (𝑚)
ℓ

using

eq. (2.20), (iii) find 𝜕𝑡 �̃�ℓ,01(𝑚 Δ𝑡) using eq. (2.7), and (iv) correct �̃�ℓ,01(𝑚 Δ𝑡) and iterate steps (ii)

through (iv) until converged [30].

2.3 Acceleration techniques

It is apparent that the discrete convolution in eq. (2.20) involves a matrix-vector product with

spatial complexity 𝑂 (𝑁2). This step bottlenecks the naive algorithm, which has limited scalability

in terms of number of emitters. Techniques for effecting a sub-quadratic complexity are varied, but

general fall into two regimes. In kernel-type solvers, nearby sources are aggregated and propagated

far away via an appropriate series representation of the Green’s function. In contrast, source-type

solvers transform the source distribution independently of the kernel. As they are adaptable to

a much wider range of kernels, such as the rotating frame kernels encountered in Section 2.2,

source-type solvers will be employed to accelerate the simulation of dot dynamics.

The Time Domain Adaptive Integral Method (TD-AIM, or simply AIM) is a source-type solver

that represents the discrete convolution of eq. (2.20) in terms of near- and farfield contributions.

Nearfield interactions are computed directly, where transformation of the sources would incur undue

approximation errors. Meanwhile, farfield sources are transformed by projecting onto auxiliary

basis functions representing points on a regular Cartesian grid. Farfield interactions are then

13



computed via auxiliary sources, which offer two advantages: (i) they compress the interaction

matrix by representing sources within the same spatial region in terms of the same auxiliary set,

and (ii) they impose a Toeplitz structure on the resulting interaction matrix that lends itself to

efficient diagonalization through application of a multidimensional FFT.

The projection to and from the auxiliary basis is accomplished via auxiliary matrices Λ and

Λ†. In terms of this basis, they may be presented as:

𝜓ℓ (r) ≈
∑︁
u∈𝐶ℓ

Λ
†
ℓu𝛿(r − u). (2.24)

Here 𝜓ℓ (r) ∈ {sℓ (r) · x̂, sℓ (r) · ŷ, sℓ (r) · ẑ} and 𝐶ℓ denotes the collection of grid points within the

expansion region of sℓ (r) (Figure 2.4 illustrates the relevant geometry). For an expansion of order

𝑀 , the sum (2.24) contains (𝑀 + 1)3 terms corresponding to the (𝑀 + 1)3 grid points nearest to

sℓ (r). Additionally, the border parameter 𝛾 separates near- and farfield interactions based upon

𝑅ℓℓ′ , which gives the minimum distance in units of the grid spacing between expansion regions

enclosing dot ℓ and ℓ′ :

𝑅
grid
ℓℓ′ = min{∥u − u′∥∞ | u ∈ 𝐶ℓ, u′ ∈ 𝐶ℓ′}. (2.25)

The matrix elements Λ†
ℓu are then determined via the multipole moment matching scheme:∫

(𝑥 − 𝑥0)𝑚𝑥 (𝑦 − 𝑦0)𝑚𝑦 (𝑧 − 𝑧0)𝑚𝑧

[
𝜓ℓ (r) −

∑︁
u∈𝑐ℓ

Λ
†
ℓu𝛿(r − u)

]
d3r = 0. (2.26)

(r0 ≡ 𝑥0x̂ + 𝑦0ŷ + 𝑧0ẑ denotes the origin about which we compute the multipoles) and solving for

those elements via least squares.

In short, the algorithm effects the convolution (2.20) via:

Ẽ (𝑚) ≈ Ẽ (𝑚)L + Ẽ (𝑚)direct + Ẽ
(𝑚)
FFT (2.27)
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𝛾 Δ𝑠

𝛾 Δ𝑠

𝛾 Δ𝑠

𝛾 Δ𝑠

(𝛾 + 1) Δ𝑠

𝛾 Δ𝑠

r0

r𝑎

r𝑏

r𝑐

Figure 2.4 Illustration of the nearfield criterion for a third order expansion 𝑀 = 3 corresponding to
(3 + 1)2 = 16 gridpoints in this 2D illustration, and 𝛾 = 2. The dashed line indicates the complete
nearfield of the box associated with r0—i.e. all boxes that have an expansion point within 𝛾Δ𝑠

(infinity norm) of the expansion around r0. Consequently, all of the sℓ (r) within the central dark
blue square have a pairwise interaction with the sℓ′ (r) inside the dashed box.

where

Ẽ (𝑚)direct =


∑𝑚

𝑚′=0 F̃
(𝑚−𝑚′)

direct · Ã (𝑚) − Ẽ (𝑚)FFT 𝑅ℓℓ′ ⩽ 𝛾

0 otherwise,

F̃ (𝑚)direct,ℓℓ′ =


F (𝑚)
ℓℓ′ 𝑅ℓℓ′ ⩽ 𝛾

0 otherwise,

(2.28)

Farfield interactions are evaluated by computing the FFT-facilitated convolution Ẽ (𝑚)FFT between

auxiliary sources, while nearfield interactions are evaluated by computing interactions between

sources directly (as in (2.20)), then subtracting the contribution to the nearfield interaction due to

Ẽ (𝑚)FFT. This procedure mitigates approximation errors between nearby auxiliary sources by replacing

their contribution with contributions from the original sources.
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2.3.1 Error analysis

A simulation was run to analyze errors incurred in evaluating the convolution eq. (2.20). We

set up two domains with sufficient separation such that the interactions between these occur only

via AIM. Each domain contains 64 randomly distributed dots, we prescribe the temporal variation

of the polarization of each dot, and we measure the total radiated field at each dot. Finally, we fix

the temporal interpolation basis order at 3 and the polarization of each dots varies as

𝑃(𝑡) = 𝑒
− (𝑡−𝑡0 )

2

2𝜎2 . (2.29)

The simulation runs for 1024 timesteps of size Δ𝑡 = 0.1 ps, the width of the Gaussian 𝜎 =

1024Δ𝑡/12 and its center 𝑡0 = 1024Δ𝑡/2. This method admits a straightforward analytic solution

via (2.10). ℓ2 norm differences between analytic and numerical solutions are then calculated as

a function of grid size Δ𝑠 for different expansion orders. As Figure (2.5) suggests, we observe

excellent convergence; indeed, the error scales as 𝑂 (Δ𝑠𝑀−1), consistent with the results of previous

convergence analysis [30].

2.3.2 Performance analysis

Next, we present a set of experiments that demonstrate the 𝑂 (𝑁 log(𝑁)) complexity scaling

of AIM. For this, we perform simulations in both the fixed frame with prescribed polarizations,

and the rotating frame with full Liouville equation dynamics. To ensure proper examination of

computational complexity, we start with a box of side length 6Δ𝑠 (chosen to minimize the number

of nearfield pairs), and filled with dots at random locations. We obtain each successive value of 𝑁

by doubling the sidelength and in effect, increasing the number of dots by a factor of eight. We

use a third order expansion 𝑀 = 3 with AIM spacings Δ𝑠 = 𝜆/400 and Δ𝑠 = 𝜆/10 for the fixed

and rotating wave cases, respectively. Timesteps mirror those used in Section 2.3.1. Figure 2.6

gives runtimes for both cases, demonstrating that the two FFT-accelerated simulations outpace their

direct counterparts near 𝑁 = 1000 and 𝑁 = 2000, respectively.
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Figure 2.5 𝑙2 error of the Rabi frequency magnitude |𝜒 |with respect to grid spacingΔ𝑠 for expansion
orders 𝑀 = 2 through 6 and 𝛾 = 1, using source and observer boxes of volume 𝜆3 separated by
Δ𝑟 = 2𝜆(𝑥 + �̂� + 𝑧), each containing 64 randomly generated dots. For an expansion order 𝑀 one
expects the overall error to scale as 𝑂 (Δ𝑠𝑀−1).
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Figure 2.6 FFT runtime (excluding setup time) using a third-order expansion. (Top) 1024 timesteps
with Δ𝑠 = 𝜆/400 and prescribed polarizations in the fixed frame. (Bottom) 1000 timesteps
with Δ𝑠 = 𝜆/10 and Liouville-dynamics polarization in the rotating frame. Both cases have a
quasi-quadratic scaling in the direct calculation, whereas the FFT-accelerated calculation performs
slightly worse than linear.

2.4 Large scale simulations

Having analyzed both its error scaling and performance complexity, we apply AIM to the

simulation of large ensembles (𝑁 > 10000) of dots, where AIM performance outpaces that of the

basic algorithm. Fig (2.7) shows a simulation employing AIM that reproduces features displayed in

18



a previous work. The figure displays the polarization of each dot in a cylinder as a function of their

z-coordinate (the axis of the cylinder), under the effect of a resonant 𝜋 pulse. Each of the dots has

an identical (fixed) dipole moment (see [2] for the details of the simulation parameters). Evidently,

the secondary radiation produces random shifts in the polarization due to short-range effects in the

local neighborhood of each dot. Also present is oscillation of the polarization due to long-range

collective effects. This oscillation reflects the role of boundary conditions in the confinement of

the macroscopic electric field in the system.
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Figure 2.7 ẑ-distribution of polarization | �̃�01 | for a 10 000-dot cylindrical simulation, replicating
the parameters in [2]. The AIM calculation recovers the oscillatory long-range pattern that we
obtained using a direct calculation [2].

In Figures 2.8-2.9 we examine the response of a system of 100 000 dots—randomly distributed

throughout a cuboid—to an applied laser pulse of the form:

EL(r, 𝑡) = 𝐸0 𝑒
− (k·r−𝜔𝐿 (𝑡−𝑡0 ) )2

2𝜎2 cos(k · r − 𝜔𝐿𝑡) x̂. (2.30)

The laser amplitude 𝐸0 is chosen to produce a 𝜋-pulse on each dot in the absence of interactions.

The transition dipole moment of each dot has a fixed magnitude but random orientation: d = 𝑑ê,

where ê is sampled from the uniform distribution on the unit sphere. Tables 2.1-2.2 list additional

simulation parameters.
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Quantity Symbol Value
Speed of light 𝑐 300 𝜇m ps −1

Dipole moment 𝑑/𝑒 10 𝑎0
Transition frequency 𝜔0 1500 meV/ℏ
Laser frequency 𝜔𝐿 1500 meV/ℏ
Laser wavevector k 𝜔𝐿/𝑐 ẑ
Pulse width 𝜎/𝜔𝐿 1 ps
Pulse delay 𝑡0 5 ps
Decoherence times 𝑇1, 𝑇2 10 ps, 20 ps

Table 2.1 Simulation parameters for Section 3.5. Here 𝑐, 𝑒, and 𝑎0 denote the vacuum speed of light,
elementary charge, and Bohr radius respectively. The decoherence times here, while shorter than
those typical of optical resonance experiments, afford a shorter computational time but preserve
dynamical emission phenomena

Quantity Symbol Value
Simulation timestep Δ𝑡 0.02 ps
AIM spacing Δ𝑠 0.040𝜆 = 33.06 nm
AIM expansion order 𝑀 5
Nearfield border parameter 𝛾 1
Transverse domain length — 16 Δ𝑠 = 529 nm
Longitudinal domain length — 1500 Δ𝑠 = 49.59 𝜇m

Table 2.2 AIM parameters for Section 3.5.

Fig 2.8 displays a color map of | �̃�01 | as an indicator of the polarization |P̃| of each quantum dot

at different timesteps after the pulse peak. The figure shows only dots located in a central segment of

about 4 µm of the entire cuboid. The random orientation of the dipole moments creates a variation

in the amplitude of the polarization with dots whose dipole moments (anti-)align with the laser

field having greatest amplitude. In addition, despite each dot resonantly coupling to the pulse,

inhomogeneity arises due to the inter-dot coupling. These simulation can resolve inhomogeneities

at the microscopic level, taking into account the orientation of the transition dipole moment of each

quantum dot, as well as the effect of local secondary fields.
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Figure 2.8 Coloration of | �̃�01 | as an indicator of |P̃| at 𝑡1 = 6.0 ps (top), 𝑡2 = 7.0 ps (middle),
𝑡3 = 8.0 ps (bottom) relative to the peak of a 1 ps-wide pulse, for a system of 100 000 dots.

To visualize long-range effects, Fig. (2.9) shows | �̃�01 | as a function of the z coordinate of each

dot, corresponding to the color plots of fig. 2.8. Here we show the entire cuboid having sides of

20 µm. In contrast to the results of fig. 2.7, no oscillations due to confinement are observed, since

the length of the system far exceeds the radiation wavelength. Moreover, we observe a dispersion

of the polarization due to the random orientation of the transition dipoles. Since the strength of the

coupling scales with d ·E ∝ cos(𝜃), the distribution peaks at the value of | �̃�01 | when 𝜃 = 0 or 𝜃 = 𝜋,

with a tail corresponding to all the intermediate values. Only a few dots, for which the secondary

fields constructively interfere, have a polarization larger than the peak value. Finally, note how the

value of the peak polarization slightly increases from left to right due to pulse propagation.

2.5 Concluding remarks

In this chapter, we described a flexible, self-consistent model for simulating the dynamics of

quantum dots. This model, wherein an integral operator electric field couples to density matrices

representing the dot dynamics, permits the simulation of dense ensembles, characterized by strongly
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Figure 2.9 Scatterplots of | �̃�01 | corresponding to the bottom two color plots of fig. 2.8. There exists
a single preferred polarization, represented by the linear region of greatest density, arising from
dots whose transition dipole moments (anti-)align with the laser field. Radiative coupling produces
polarizations that exceed this value. The changes in the red line reflect pulse propagation.
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nonlinear optical effects. To examine these effects in large ensembles, we applied the Adaptive

Integral Method (AIM) to facilitate computing matrix-vector products involved in the discretization

of the electric field. Simulations revealed both short range oscillatory behavior resulting from

confinement of the field, and long range effects, including polarization dispersion.
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CHAPTER 3

COLLECTIVE EMISSION EFFECTS IN ENSEMBLES OF QUANTUM DOTS

A major application of nonlinear quantum optics is the analysis of collective emission effects such

as superradiance and subradiance. Theoretical descriptions of these phenomena often rely on

effective Hamiltonians, such as the Dicke model, where interaction with one or few cavity modes

is assumed and emitters are homogeneous. For extended systems, Maxwell-Bloch equations can

be used where the electric field couples to a continuous local-averaged polarization field. However,

to understand these collective phenomena, it is essential to consider the role of the emitters’ local

configuration and their spatial and energy distribution. In fact, the disorder in the local distribution

of the emitters can strongly affect the superradiant and subradiant dynamics. The coupling between

emitters resulting from the exchange of virtual photons, known as van-der-Waals coupling [9], has

been recognized for a long time to be an obstacle to the experimental observation of superradiant

behavior [32]. Far from being a limitation, subradiance has been recently proposed as a mechanism

for photon storage in quantum memories [33, 34]. As superradiance and subradiance are highly

sensitive to underlying parameters, yet their analysis provides crucial insights for other research

areas, it becomes important to devise methods to replicate these effects numerically.

In this chapter, we detail the theory of superradiance and subradiance, starting with Dicke’s

original model, then elaborating into a quantized field Maxwell-Bloch formalism. From this

formalism, we derive an expression for the photon emission rate as a summation of pairwise emission

terms, and show that this implies superradiance. Using the Maxwell-Bloch model of the previous

chapter, we run simulations that reproduce superradiance, which we verify by calculating the photon

emission rate and showing that it scales quadratically with number of emitters. Simultaneously, we

observe subradiance in the steady state solution of these simulations. We then examine patterns in

the radiated field that result from collective coupling, and conclude with studies on the Lamb shift

and inhomogeneous broadening, and their effects on emission dynamics.
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3.1 Dicke model of superradiance

In Dicke’s original model, an ensemble of 𝑁 identical emitters are represented by 𝑁 two-level

states |𝜓𝑖⟩, with associated transition energy ℏ𝜔0 and transition operators 𝜎±
𝑖

and diagonal operator

𝜎𝑧
𝑖
. In terms of transition operators, the electric dipole of the 𝑖th emitter can be represented as:

d̂𝑖 = (𝜎+𝑖 + 𝜎−𝑖 ) di (3.1)

Rather than viewing each two-level state separately, we may consider the tensor product of all

states as constituting a single ensemble state |𝜓⟩ with initial value |𝜓(𝑡 = 0)⟩ =
⊗𝑁

𝑖=1 |𝜓𝑖 (𝑡 = 0)⟩.

In doing so, we make two crucial assumptions: (i) the volume in which the emitters are embedded

has dimensions much smaller than the transition wavelength 𝜆0 = 2𝜋𝑐/𝜔0, and (ii) the coupling of

the emitters to the radiation field, which governs the evolution of the ensemble, is symmetric with

respect to the pairwise exchange of emitters. The first assumption ensures emitters are confined to

sufficiently small a volume that they experience non-negligible effects due to their radiation fields.

This strong coupling assumption drives the coherent alignment of dipoles that ultimately yields

superradiance. The second assumption imposes an equivalence relation on the Hilbert space of

all combinations of tensor products of states |𝜓𝑖⟩. The system is thus confined to evolve within a

Hilbert subspace invariant under permutations of emitters, i.e. the emitters remain indiscernible

with respect to their emissions at all times.

Under this assumption, it is permissible to represent each two-level state as a spin-1/2 state,

and the entire 𝑁-state ensemble as a symmetric combination of 𝑁 such states, i.e. a spin angular

momentum eigenstate with maximum angular momentum 𝑆 = 𝑁/2. Defining the spin angular

momentum operators:

𝑆± =
∑︁
𝑖

𝜎±𝑖 (3.2)

𝑆𝑧 =
∑︁
𝑖

𝜎𝑧
𝑖

(3.3)

𝑆2 = (𝑆+𝑆− + 𝑆−𝑆+)/2 + 𝑆2
𝑧 (3.4)
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these eigenstates may be labeled |𝑆, 𝑀⟩ with associated eigenvalues given by:

𝑆2 |𝑆, 𝑀⟩ = 𝑆(𝑆 + 1) |𝑆, 𝑀⟩

𝑆𝑧 |𝑆, 𝑀⟩ = 𝑀 |𝑆, 𝑀⟩

where 𝑀 ∈ {−𝑆,−𝑆 + 1, ..., 𝑆 − 1, 𝑆}.

Suppose that we initialize all emitters in the excited state |↑⟩, i.e. |𝜓𝑖 (𝑡 = 0)⟩ = |↑⟩ for all 𝑖.

The ensemble thus begins in the state |𝑆, 𝑀 = 𝑆⟩ and descends down the “chain" of 2𝑆 + 1 discrete

energy levels, emitting a photon of energy ℏ𝜔0 at each transition. The rate of emission may be

calculated by treating each emitter as an independent dipole, so that the ensemble has total dipole

moment:

d̂ =
∑︁
𝑖

d̂𝑖 =
∑︁
𝑖

(𝜎+𝑖 + 𝜎−𝑖 ) di (3.5)

The emission rate for a single emitter is given by 𝑊𝑖 = Γ0⟨𝜎+𝑖 𝜎−𝑖 ⟩, where Γ0 is the spontaneous

emission rate (as in 2.13) and ⟨·⟩ denotes an expectation value. Using expressions (3.2-3.4), we

find a corresponding expression for the emission rate from an ensemble of 𝑁 emitters:

𝑊𝑁 = Γ0⟨𝑆+𝑆−⟩ = Γ0(𝑆 + 𝑀) (𝑆 − 𝑀 + 1) (3.6)

wherein it is evident that the emission rate starts at the low value 𝑁Γ0 for 𝑀 = 𝑆, increases to a

maximum Γ0𝑆(𝑆 + 1) at 𝑀 = 0, then decreases to zero at the ground state 𝑀 = −𝑆.

It is also informative to calculate correlations between different emitters due to their dipole

moments. Assuming symmetry under pairwise exchanges, we may write ⟨𝜎+
𝑖
𝜎−
𝑗
⟩ = ⟨𝜎+𝜎−⟩ for all

𝑖, 𝑗 . Thus:

⟨𝑆+𝑆−⟩ =
∑︁
𝑖

⟨𝜎+𝑖 𝜎−𝑖 ⟩ + 𝑁 (𝑁 − 1)⟨𝜎+𝜎−⟩ (3.7)

It follows that:

⟨𝜎+𝜎−⟩ = 𝑆2 − 𝑀2

𝑁 (𝑁 − 1) (3.8)

which shows that dipole-dipole correlations grow as the system decays to the half-excited state

𝑀 = 0, then decrease as further energy is lost down to the ground state. Comparing to (3.6), we

see that the enhancement of emission rates parallels the buildup of correlations amongst dipoles.
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Notice, however, that the symmetry assumption is crucial to the derivation of this result, without

which expression (3.7) would be invalid.

For the simple case of 𝑁 = 2, explicit expressions for 𝑊 (𝑡) can be found, assuming either

independent or correlated emissions. The result, originally derived by Haroche, can be written:

𝑊2(𝑡) = 2Γ0𝑒
−2Γ0𝑡 (1 + 2Γ0𝑡) (3.9)

𝑊
(𝑖𝑛𝑑)
2 (𝑡) = 2Γ0𝑒

−Γ0𝑡 (3.10)

Curves for both types of emission are shown in Figure 3.1, where it is apparent that the system of

coupled emitters experiences a higher initial emission rate.
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Figure 3.1 Comparison of photon emission rates for coupled and uncoupled emitters. Superradiance
is described by the enhanced emission rate for the case of coupled emitters.

3.1.1 Subradiance

Subradiance, in which destructive interference among emitters induces suppression of emission,

may be expressed as a generalization of the Dicke model. Consider the state of all possible single

excitation states |𝑘⟩ where only the 𝑘th emitter is excited:

|𝑆, 𝑀 = −𝑆 + 1⟩ = 1
√
𝑁

∑︁
𝑘

𝜎+𝑘 |↓⟩ =
1
√
𝑁

∑︁
𝑘

|𝑘⟩ (3.11)

27



which is clearly a spin angular momentum eigenstate, i.e. a Dicke state. However, the subradiant

states:

|𝑆, 𝑀 = −𝑆 + 1⟩− =
1
√
𝑁

(
𝑁+∑︁
𝑘=1
|𝑘⟩ −

𝑁∑︁
𝑘=𝑁0+1

|𝑘⟩
)

(3.12)

with 𝑁 − 𝑁+ destructively interfering emitters, do not lie in this eigenspace. More generally,

consider the state of all possible excitation states with 𝑆 + 𝑀 emitters excited:

|𝑆, 𝑀⟩ = 1
√
N

(∑︁
𝑘

𝜎+𝑘

)𝑆+𝑀
|↓⟩ = 1

√
N

∑︁
k
|k⟩ (3.13)

where k = (𝑘1, 𝑘2, ..., 𝑘𝑆+𝑀) labels each of theN = 𝑁!
(𝑆+𝑀)!(𝑆−𝑀)! possible states. The corresponding

subradiant states are:

|𝑆, 𝑀⟩− =
1
√
N

( N+∑︁
k
|k⟩ −

N∑︁
k
|k⟩

)
(3.14)

and is similarly no longer an element of the eigenspace. Indeed, the states |𝑆, 𝑀⟩− form a non-

orthogonal basis for the space of subradiant states. Moreover, as the Dicke states are characterized by

their symmetry under pairwise exchange of particles, the emergence of subradiant states constitutes

a form of symmetry breaking. Compared to the emission rate of a Dicke state with 𝑁 emitters

(𝛾 = 𝑁Γ0), the emission rate of a subradiant state is diminished: 𝛾 = (2𝑁+ − 𝑁)Γ0 and is precisely

zero when 𝑁+ = 𝑁/2, i.e. when there are an equal number of constructively and destructively

interfering emitters.

In systems exhibiting superradiance, subradiance dominates the steady state, as the components

of the superradiant eigenstate decay on transient timescales. This behavior, which is mediated by

Lamb shifts (see Subsection 3.4.1), shall be replicated in the numerical simulations of Section 3.5.

3.2 Quantization of electric field

The Dicke model offers a theoretical explanation of superradiance posed in the familiar terms

of addition of angular momentum. Yet as a simplified model, it neither captures the intricate

interaction between a system of emitters and their radiated fields, nor faithfully represents mixed

state ensembles of emitters. To account for these deficiencies, we return to the Maxwell-Bloch

formalism, and analyze the coupling of density matrices to a quantized electric field. As our
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computational model is based on classical fields, our ultimate goal is to derive an expression for the

photon emission rate, analogous to (3.7) of the Dicke model. This would establish the consistency

of the two models, and allow us to quantify the observation of superradiance in terms of the

emission rate.

We prescribe a quantized electric field as the superposition of modes with wavevector k and

polarization n̂, defined in terms of photon creation and annihilation operators 𝑎†k,n̂, 𝑎k,n̂:

E+(r) = −𝑖
∑︁
k,n̂

E𝑘,n̂ 𝑎k,n̂𝑒
𝑖k·r (3.15)

E−(r) = 𝑖
∑︁
k,n̂

E𝑘,n̂ 𝑎
†
k,n̂𝑒

−𝑖k·r (3.16)

where E𝑘,n̂ = 𝐸𝑘 n̂ and 𝐸𝑘 =

√︃
ℏ𝑐𝑘
2𝜖0𝑉

is the per-photon field amplitude, and 𝑉 is a quantization

volume. The total Hamiltonian may then be separated into three terms H = 𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡

representing the dots, radiated field, and interactions respectively:

𝐻𝑑𝑜𝑡 = ℏ𝜔0
∑︁
𝑖

𝜎𝑧
𝑖

(3.17)

𝐻𝑟𝑎𝑑 = ℏ
∑︁
k,n̂

𝜔𝑘 (𝑎†k,n̂𝑎k,n̂ + 1/2) (3.18)

𝐻𝑖𝑛𝑡 = −
∑︁
𝑖

d𝑖 · (E+(r𝑖) + E−(r𝑖)) ⊗ (𝜎+𝑖 + 𝜎−𝑖 )

RWA≈ −
∑︁
𝑖

d𝑖 · (E+(r𝑖) ⊗ 𝜎+𝑖 + E−(r𝑖) ⊗ 𝜎−𝑖 )
(3.19)

where the last step invokes the Rotating Wave Approximation, retaining only energy-conserving

terms (those in which a photon is created from decay to the ground state, and vice versa). The

similarity with the Hamiltonian (2.3) of Section 2.1 is apparent, with 𝐻𝑑𝑜𝑡 comprising the diagonal

elements and 𝐻𝑖𝑛𝑡 the off-diagonal coherences (The field Hamiltonian 𝐻𝑟𝑎𝑑 is absent, as the photon

modes are decoupled from the density matrices in the semiclassical model).
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3.3 Maxwell-Bloch equations

Rather than tracking the evolution of the density operators, we may transfer the time dependence

onto the observables, yielding the Heisenberg picture. It is in this representation that the Maxwell-

Bloch equations can be derived, consistent with the semiclassical model. As the Heisenberg picture

essentially “forgets" about the global configuration, it permits the definition of observables E±(r, 𝑡)

representing local fields. To determine the evolution of the field, note that the time dependence of

E±(r, 𝑡) is carried by the operators 𝑎(𝑡) and 𝑎†(𝑡). Inserting these operators into the Heisenberg

equation of motion for observable 𝐴:

d𝐴
d𝑡

= − 𝑖
ℏ
[𝐴,H] (3.20)

withH = 𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡 as defined by eqs. (3.17-3.19) gives:

d𝑎k,n̂

d𝑡
= − 𝑖

ℏ
[𝑎k,n̂(𝑡), 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡]

= − 𝑖
ℏ

[
𝑎k,n̂, ℏ

∑︁
k′,n̂′

𝜔𝑘 ′𝑎
†
k′,n̂′𝑎k′,n̂′ − 𝑖

∑︁
𝑖

∑︁
k′,n̂′

d𝑖 · E𝑘 ′,n̂′𝑎
†
k′,n̂′𝑒

−𝑖k′·r𝑖 𝜎−𝑖

]
= −𝑖𝜔𝑘𝑎k,n̂(𝑡) −

1
ℏ

∑︁
𝑖

d𝑖 · E𝑘,n̂𝑒
−𝑖k·r𝑖 𝜎−𝑖 (𝑡)

(3.21)

and similarly for 𝑎†(𝑡). Additionally, let us define the local polarization and population inversion

operators P(r, 𝑡) and 𝑊 (r, 𝑡):

P±(r, 𝑡) = d
∑︁
𝑖

𝛿(r − r𝑖) 𝜎±𝑖 (𝑡) (3.22)

𝑊 (r, 𝑡) =
∑︁
𝑖

𝛿(r − r𝑖) 𝜎𝑧
𝑖
(𝑡) (3.23)

from which the motion of P±(r, 𝑡) is given by:

𝜕

𝜕𝑡
P±(r, 𝑡) = − 𝑖

ℏ
( [P±, 𝐻𝑑𝑜𝑡] + [P±, 𝐻𝑖𝑛𝑡])

= − 𝑖
ℏ
(−ℏ𝜔P±(r, 𝑡)) ∓ 2d(d · E∓(r, 𝑡))𝑊 (r, 𝑡)

= 𝑖𝜔P±(r, 𝑡) ± 2𝑖
ℏ

d(d · E∓(r, 𝑡))𝑊 (r, 𝑡)

(3.24)
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Deriving (3.21-3.24) again with respect to time and equating terms yields the Maxwell-Bloch

equations in the Heisenberg picture (see Appendix B for a derivation):

(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇2

)
E±(r, 𝑡) = 1

𝜖
∇ × ∇ × P∓(r, 𝑡) = −1

𝜖
(∇2 − ∇∇)P∓(r, 𝑡) (3.25)

This resembles the classical equations (from which (2.10) follows, see Appendix A):(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇2

)
E(r, 𝑡) = −1

𝜖

(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇∇

)
P(r, 𝑡) (3.26)

with the difference 1/𝑐2𝜕2
𝑡 → ∇2 on the RHS, a discrepancy which has been explored, for instance

in [35]. This discrepancy vanishes when the fields are cast in integral operator form (2.10),

which is equivalent to either set of equations (see Appendices A-B). Nonetheless, the mathematical

objects representing the fields E+ and E− (and polarization sources P+ and P−) in (3.25) become

non-commuting operators acting on photon states.

3.4 Photon emission rate, Superradiance

We now derive an expression for the emission rate, analogous to expression (3.6) of the Dicke

model, via the Heisenberg equation of motion. To start, reconsider (3.21) and transform to the

rotating basis 𝑎𝑘 (𝑡) = �̃�𝑘 (𝑡)𝑒−𝑖𝜔𝑘 𝑡 and 𝜎−
𝑖
(𝑡) = �̃�𝑖 (𝑡)𝑒−𝑖𝜔𝑡 . The first term is eliminated:

d�̃�k,n̂

d𝑡
= −

∑︁
𝑖

𝜒𝑖
𝑘,n̂ 𝑒−𝑖(k·r𝑖−(𝜔𝑘−𝜔)𝑡) �̃�−𝑖 (𝑡) (3.27)

where 𝜒𝑖
𝑘,n̂ = d𝑖 ·E𝑘,n̂/ℏ is the Rabi energy of the 𝑖th emitter due to a radiated field of mode (𝑘, n̂).

Integrating, and assuming that no photons exist initially (�̃�k,n̂(𝑡 = 0) = 0) yields:

�̃�k,n̂(𝑡) = −
∑︁
𝑖

𝜒𝑖
𝑘,n̂𝑒

−𝑖k·r𝑖
∫ 𝑡

0
𝑑𝑡′ 𝑒𝑖(𝜔𝑘−𝜔)𝑡′ �̃�−𝑖 (𝑡′) (3.28)

The rate of photon emission may then be equated to the gain in number of photons, defined by

the photon number operator:

𝑁𝑝 (𝑡) =
∑︁
k,n̂

𝑎
†
k,n̂𝑎k,n̂ (3.29)
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Substituting in (3.28) gives (R = r𝑖 − r 𝑗 )

𝑁𝑝 (𝑡) =
∑︁
k,n̂

∑︁
𝑖, 𝑗

(𝜒𝑖
𝑘,n̂)
∗𝜒 𝑗

𝑘,n̂𝑒
−𝑖k·R

∫ 𝑡

0
𝑑𝑡′ 𝑒−𝑖(𝜔𝑘−𝜔)𝑡′ �̃�+𝑖 (𝑡′)

∫ 𝑡

0
𝑑𝑡′′ 𝑒𝑖(𝜔𝑘−𝜔)𝑡′′ �̃�−𝑗 (𝑡′′)

=
𝑐

16𝜋3𝜖0ℏ

∑︁
𝑖, 𝑗

d𝑖 ·
∫

𝑑k 𝑘 (I − k̂ ⊗ k̂)𝑒−𝑖k·R · d 𝑗

∫ 𝑡

0
𝑑𝑡′

∫ 𝑡

0
𝑑𝑡′′ 𝑒−𝑖(𝜔𝑘−𝜔) (𝑡′−𝑡′′) �̃�+𝑖 (𝑡′) �̃�−𝑗 (𝑡′′)

(3.30)

where we have replaced
∑

𝑘 → 𝑉

(2𝜋)3
∫
𝑑k and used the completeness relation

∑
n̂ n̂n̂ = I − k̂ ⊗ k̂.

Further replacing I − k̂ ⊗ k̂→ I + ∇∇
𝑘2 and integrating over angles gives:

𝑁𝑝 (𝑡) =
𝜔

8𝜋3𝜖0ℏ

∑︁
𝑖, 𝑗

d𝑖 ·
∫ ∞

0
𝑑𝜔𝑘

𝜔2
𝑘

𝑐3

(
I + ∇∇

𝑘2

)
sin 𝑘𝑅

𝑅
·d 𝑗

∫ 𝑡

0
𝑑𝑡′

∫ 𝑡

0
𝑑𝑡′′𝑒−𝑖(𝜔𝑘−𝜔) (𝑡′−𝑡′′)�̃�+𝑖 (𝑡′)�̃�−𝑗 (𝑡′′)

(3.31)

To eliminate one time integral, the Wigner-Weisskopf approximation is invoked, in which the term

�̃�+
𝑖
(𝑡′) �̃�−

𝑗
(𝑡′′) is assumed to vary on a timescale much smaller than 𝜔−1, thus is effectively constant.

Thus:∫ 𝑡

0
𝑑𝑡′′𝑒−𝑖(𝜔𝑘−𝜔) (𝑡′−𝑡′′)�̃�+𝑖 (𝑡′)�̃�−𝑗 (𝑡′′) ≈ �̃�+𝑖 (𝑡′)�̃�−𝑗 (𝑡′)

∫ ∞

0
𝑑𝑡′′𝑒−𝑖(𝜔𝑘−𝜔) (𝑡′−𝑡′′) ≈ 𝜋𝛿(𝜔𝑘−𝜔)�̃�+𝑖 (𝑡′)�̃�−𝑗 (𝑡′)

(3.32)

where the Cauchy Principle Value (PV) of the integral over 𝑡′′ yields a Lamb shift, and will be

considered in the following subsection. Ignoring the PV, the result is:

𝑁𝑝 (𝑡) =
𝜔3

4𝜋𝜖0ℏ𝑐3

∑︁
𝑖, 𝑗

2d𝑖 ·
(
I + ∇∇

𝑘2

)
sin 𝑘𝑅

𝑅
· d 𝑗

∫ 𝑡

0
𝑑𝑡′ �̃�+𝑖 (𝑡′) �̃�−𝑗 (𝑡′) (3.33)

The photon emission rate is thus:

𝛾(𝑡) =
d𝑁𝑝 (𝑡)

d𝑡
=

𝜔3

4𝜋𝜖0ℏ𝑐3

∑︁
𝑖, 𝑗

2d𝑖 ·
(
I + ∇∇

𝑘2

)
sin 𝑘𝑅

𝑅
· d 𝑗 �̃�

+
𝑖 (𝑡) �̃�−𝑗 (𝑡)

=
∑︁
𝑖 𝑗

2 𝜖𝑖 · 𝚪𝑖 𝑗 · 𝜖 𝑗 ⟨𝜎+𝑖 (𝑡)𝜎−𝑗 (𝑡)⟩
(3.34)

where d𝑖 = 𝑑𝜖𝑖, and the expectation value is taken with respect to the initial state of the system

|Ψ0⟩:

⟨𝜎+𝑖 (𝑡)𝜎−𝑗 (𝑡)⟩ = ⟨Ψ0 |𝜎+𝑖 (𝑡)𝜎−𝑗 (𝑡) |Ψ0⟩ (3.35)
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Additionally:

𝚪𝑖 𝑗 =
3Γ0
4

[
(1 − r̂ ⊗ r̂) sin 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
cos 𝑘𝑅
(𝑘𝑅)2

− sin 𝑘𝑅

(𝑘𝑅)3

)]
(3.36)

Γ0 =
𝑑2𝜔3

3𝜋𝜖0ℏ𝑐3 =
𝜇0𝑑

2𝜔3

3𝜋ℏ𝑐
(3.37)

where we have recovered expression (2.13) for the spontaneous decay rate Γ0, and𝚪𝑖 𝑗 is a correlation

tensor that describes the pairwise rate of emission induced by the interaction between the 𝑖th and

𝑗 th emitters. This is related to the total emission rate of the dot ensemble via (3.34).

To see that eq. (3.34) implies superradiance, we separately write the diagonal and off-diagonal

elements of the RHS:

𝛾(𝑡) = 2
∑︁
𝑖

Γ𝑖𝑖 ⟨𝜎+𝑖 𝜎−𝑖 ⟩ + 2
∑︁
𝑖≠ 𝑗

Γ𝑖 𝑗 ⟨𝜎+𝑖 𝜎−𝑗 ⟩ (3.38)

where Γ𝑖 𝑗 = 𝜖𝑖 · 𝚪𝑖 𝑗 · 𝜖 𝑗 and it can easily be shown that lim𝑅→0 Γ𝑖𝑖 = Γ0/2. Thus:

𝛾(𝑡) = Γ0
∑︁
𝑖

⟨𝜎+𝑖 𝜎−𝑖 ⟩ + 2
∑︁
𝑖≠ 𝑗

Γ𝑖 𝑗 ⟨𝜎+𝑖 𝜎−𝑗 ⟩

= 𝛾0(𝑡) + 𝛾𝐼 (𝑡)
(3.39)

which is reminiscent of expression (3.7) of the Dicke model. Eq. 3.39 asserts that the total emission

consists of independent emissions 𝛾0, plus emission from coupling due to secondary radiated fields

𝛾𝐼 . Moreover, the magnitude of this off-diagonal term scales approximately as 𝑁 (𝑁 − 1); hence

we uncover the characteristic quadratic scaling of superradiance.

3.4.1 Collective Lamb shift

Previously, we had discarded the Cauchy Principle Value of the Wigner-Weisskopf approximated

integral (3.32), as we were solely interested in calculating the photon emission rate. Evaluating the

PV by contour integration yields the following expression (see also Appendix C):

𝛀𝑖 𝑗 (r) =
3Γ0
4

[
−(1 − r̂ ⊗ r̂) cos 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
sin 𝑘𝑅

(𝑘𝑅)2
+ cos 𝑘𝑅
(𝑘𝑅)3

)]
(3.40)

It can be shown that (3.40) induces a collective energy shift between pairs of emitters 𝑖 and 𝑗 ,

corresponding to an additional term for the emitter Hamiltonian (3.17), which is a Lamb shift. This
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Quantity Symbol Value
Refractive index 𝑛 1.54
Speed of light 𝑐 = 𝑐0/𝑛 194.6704 𝜇m ps −1

(Reference) Dipole moment 𝑑0/𝑒 2.536 × 10−3𝜇m
Transition frequency 𝜔0 3175 meV/ℏ
Laser frequency 𝜔𝐿 3175 meV/ℏ
Laser wavevector k 𝜔𝐿/𝑐 ẑ
Pulse width 𝜎/𝜔𝐿 0.3446 ps
Pulse delay 𝑡0 5 ps
Decoherence time 𝑇1 8.31 ps

Table 3.1 Simulation parameters for Section 3.5. Here 𝑐0 and 𝑒 are the vacuum speed of light
and elementary charge, respectively. The decoherence (spontaneous emission) time 𝑇1 = 1/Γ0 is
obtained as the inverse of the spontaneous emission parameter Γ0 (2.13), hence is proportional to
𝑑−2.

will become more apparent in Chapter 4, where we recast this phenomenon in the formalism of the

Master equation.

In the context of collective emissions, the Lamb shift has the effect of degrading subradiance

[36]; that is, the purely subradiant states (3.12 or 3.14) are split into a combination of subradiant and

superradiant states. The latter decay on transient timescales, leaving the slowly decaying subradiant

states which are observed in the steady state. In Subsection 3.5.3, we exemplify purely subradiant

states that occur in the absence of Lamb shifts.

3.5 Numerical simulation

Here we describe the results of simulations that, using the Maxwell-Bloch model expounded

thus far, demonstrate the consequences of collective emission. As in Section 2.4, we apply an

incident field with the shifted Gaussian waveform:

EL(r, 𝑡) = 𝐸0 𝑒
− (k·r−𝜔𝐿 (𝑡−𝑡0 ) )2

2𝜎2 cos(k · r − 𝜔𝐿𝑡) x̂. (3.41)

to excite an ensemble of dots lying initially in the ground state ( �̃�00, �̃�01) |𝑡=0 = (1, 0). The dots

are Gaussian distributed in space with a standard deviation along each dimension of 0.5𝜆. The

laser amplitude 𝐸0 is adjusted to produce a 𝜋-pulse on each dot in the absence of interactions. The

systems of 𝑁 quantum dots are assumed to be embedded in a NaCl medium with refractive index

𝑛. Each dot has an identical dipole moment d = 𝑑x̂, which is varied based on a reference dipole
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moment 𝑑0. For 𝑑 = 𝑑0, decay times 𝑇1 and 𝑇2 = 2𝑇1 are chosen, and modified for other values

of 𝑑 to satisfy the 𝑑−2 dependence. Values for simulation parameters, which mirror those in an

experimental study [37], are shown in Table 3.1.

3.5.1 Population excitation

Fig. 3.2a depicts the time behavior of a set of ten dots chosen from a simulation with 𝑁 = 200

dots, portraying a rich phenomenology of oscillations following the initial excitation. The figure

shows the excited state population of each dot as a function of time, i.e. 𝜌𝑖11(𝑡). These oscillations

result from local energy shifts induced by randomly distributed neighboring dots and are dominated

by the 1/𝑅3 contribution from Eq. (2.10). After excitation, we observe a superradiant behavior,

which occurs on the time scale of 𝑇1. This can be seen in Fig. 3.2b where we show the population

dynamics averaged over all dots, ⟨𝜌11⟩ for different 𝑁 . The figure and inset show a faster re-emission

after pulse excitation in configurations with a greater density of emitters. To better quantify this

behavior, we evaluate the off-diagonal contribution 𝛾𝐼 to the emission rate via Eq. (3.39). However,

as the response to the incident pulse obfuscates a direct calculation, it is more enlightening to obtain

𝛾𝐼 by subtracting independent emissions 𝛾0 from the total emission rate 𝛾, which we equate to the

rate of decay in total number of excited states 𝑁 (𝑡) = ∑
𝑖 ⟨𝜎+𝑖 (𝑡)𝜎−𝑖 (𝑡)⟩ =

∑
𝑖 𝜌

𝑖
11(𝑡). That is:

𝛾𝐼 (𝑡) = −
d𝑁 (𝑡)

d𝑡
− 𝛾0(𝑡) = −

∑︁
𝑖

(
d𝜌𝑖11(𝑡)

d𝑡
+ Γ0𝜌

𝑖
11(𝑡)

)
(3.42)

Figure 3.3 shows the results of calculating both the total and off-diagonal emission rates. Apparent

is the quadratic scaling of superradiant emissions with 𝑁 . In contrast, the total emission does not

scale quadratically, but becomes increasingly dominated by the superradiant contribution.

As the superradiant states decay transiently, the system settles into a subradiant regime where re-

emission slows down. This transition is visible in both per-dot (Fig. 3.2a) and averaged (Fig. 3.2b)

plots. Higher emitter density also leads to more subradiance, resulting in a larger population

decaying at long times.

Increasing the dipole strength 𝑑, while increasing the strength of interactions, induces shorter

decay times 𝑇1. The overall effect, as captured by Figure 3.4, is an enhancement of superradiance,
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at the cost of population of slowly decaying states. Figure 3.5 summarizes the effects of 𝑁 and 𝑑

on the average population at 1 ns. The subradiant slowly decaying states are enhanced by larger 𝑁

and lower 𝑑, corresponding to dense systems of weakly interacting dots.

3.5.2 Radiated field patterns

Other signatures of superradiance, such as anisotropy, emerge when examining the radiated field

of Eq. (2.10). Field intensities in the region external to the dot cloud show patterns with a period

of half the wavelength (Fig. 3.7-3.6). The intensity along the 𝑦-axis, shown in Figure 3.7, indicates

that the patterns persist for stronger dipole values. As the excitation pulse propagates along 𝑧, we

also observe a clear enhancement of the emission along the positive 𝑧 axis, a well-known signature

of collective radiative emission [10]. It is worth noting that the three terms of Eq. (2.10) are not

commensurate. While the near-field interaction terms produce a random pattern near the origin,

the far-field 1/𝑅 term produces a regular pattern characterized by phase shifts in some directions.

Time-space plots reveal the synchronization of groups of dots into temporal oscillations in

Fig. 3.8, where we plot the intensity along the 𝑦-axis as a function of time. These oscillations

become more pronounced and irregular with increased dipole strength and dot density. This

effect is captured in Fig. 5, which illustrates temporal and spatial Fourier transforms of the

field intensity along the 𝑦-axis for different dipole strengths. These plots display considerable

spectral broadening with increasing dipole strength. In time, this broadening is suggested by

the emergence of additional peaks corresponding to new oscillation periods in the dot ensemble.

Peaks corresponding to characteristic lengths also appear in space, which are nonetheless strongly

dependent on the random spatial configuration chosen.
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Figure 3.2 Population excitation 𝜌11 for a Gaussian distribution of 𝑁 dots with 𝑑/𝑑0 = 1.0 and
various 𝑁 . (a) Per-dot time evolution for 𝑁 = 200. We show here 𝜌𝑖11, with 𝑖 corresponding
to ten randomly chosen dots. Data for the three dots closest to the center are shown in color.
(b) Dot-averaged values ⟨𝜌11⟩ for different 𝑁 . (c) Immediately post-excitation, a faster decay is
observed for larger 𝑁 , as evidenced by the crisscrossing of curves.
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Figure 3.3 Total emission rates 𝛾(𝑡) (dashed) and off-diagonal emission rates 𝛾𝐼 (𝑡) (solid) calculated
from (3.42), for the simulations of Figure 3.2. Only the latter, which is associated with superradiant
emissions, displays quadratic scaling with number of emitters 𝑁 . The superradiant burst lies
between 𝑡 ≈ 5 and 15 ps, independently of 𝑁 . Overall, the curves bear a strong resemblance to
Figure 1.2.
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Figure 3.4 Time evolution of space-averaged population excitation 𝜌11 for 𝑁 = 200 at various
dipole strengths. For larger 𝑑 we observe: (a) a faster decay post-excitation and (b) a reduction in
the number of subradiant, slowly-decaying states, as suggested by smaller populations at 1 ns.
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Figure 3.5 Log-plot of averaged-over-trials population ⟨𝜌11⟩ at 1 ns as a function of dipole strength
and 𝑁 .
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Figure 3.8 Plot of logarithmic radiated field intensities for 𝑁 = 100, 𝑑/𝑑0 = 1.0 (a, b), 𝑁 = 200,
𝑑/𝑑0 = 1.0 (c), 𝑑/𝑑0 = 2.0 (d) in time and space. Evident are not only spatial but temporal
oscillations, becoming enhanced for larger values of the dipole moment. It is also evident that the
intensity amplitude increases with the number of emitters. Groups of dots in the cloud (𝑦 ∼ 0)
undergo emission synchronization leading to periodic oscillations that become more irregular as
the density increase. Finally, (b) displays emission enhancement in the laser propagation direction
(cf. Fig 3).
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Figure 3.6 Colormaps of logarithmic field intensity (field norm squared) for a configuration with
𝑁 = 100 and 𝑑/𝑑0 = 1.00 after 20 ps, on the 𝑥 − 𝑦 (top) and 𝑥 − 𝑧 (bottom) planes. The spatial
oscillations occur with a period about half the wavelength of 253 nm. Also note the enhancement
along the laser propagation direction in the positive 𝑧 axis.
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Figure 3.7 Plot of logarithmic field intensity along the 𝑦 axis for 𝑑/𝑑0 = 1.0 (Blue) and 𝑑/𝑑0 = 2.0
(Magenta), corresponding to Fig. 3 (a). The Fourier data is normalized against the 𝑑/𝑑0 = 2.0
series.

3.5.3 Collective Lamb shift

Next we consider the effect of disregarding the pairwise Lamb shift, represented by (3.40).

Comparing (3.40) to (2.12) we notice that 𝛀𝑖 𝑗 arises from the real part of the Rabi energy via:

𝜒 𝑗 (r𝑖) = d · �̃�{P̃(r 𝑗 )} = 𝜖𝑖 · (𝛀𝑖 𝑗 + 𝑖𝚪𝑖 𝑗 ) · 𝜖 𝑗 (3.43)

where 𝜖𝑖 is the unit dipole vector for the 𝑖th dot. Hence writing our radiated field as E𝑟𝑎𝑑 (r, 𝑡) =

𝑖 Im
{
�̃�{P̃(r, 𝑡)}

}
, where �̃�{P̃(r, 𝑡)} is defined as in (2.11), effectively excludes the shift. Results

of this simulation are shown in Figures 3.10 and 3.11; parameters follow those in Subsection 3.5.1.

Evident is the appearance of purely subradiant states in the absence of Lamb shifts, characterized

by a complete suppression of emission, thus a higher population of excited states at long times. We

further observe from Figure 3.11 that superradiance is degraded by the shift as well.

3.5.4 Inhomogeneous broadening

Lastly, we studied the effect of inhomogeneous broadening by considering dots with energy

ℏ𝜔𝑖
0 that follow a Gaussian distribution of width 𝛿 centered at 𝜔𝐿 . Increasing 𝛿 affects the

dynamics in two ways: (1) the excitation induced by the 𝜋 pulse is less efficient, so the population

inversion decreases, and (2) the population of subradiant modes increases due to increased disorder.

These two competing effects can be seen in Figure 3.12. The average excitation of the dots right
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Figure 3.9 Temporal (top) and spatial (bottom) Fourier plots of field intensity 𝐼 (𝑦, 𝑡) = |E(𝑦, 𝑡) |2
along the 𝑦 axis (as in Fig. 4) for 𝑁 = 200 and various dipole strengths, normalized by maximum
intensity: 𝐼1( 𝑓 ) = 𝐼 (𝑘 = 0, 𝑓 )/𝐼 (0, 0) (top), 𝐼2(𝑘) = 𝐼 (𝑘, 𝑓 = 0)/𝐼 (0, 0) (bottom). Spectral
broadening with increasing dipole strength is evident in both cases.
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Figure 3.10 Averaged population excitation curves for 𝑁 = 200 including and excluding the
collective Lamb shift. In the latter (Magenta dashed), the occurrence of purely subradiant states is
suggested by the complete suppression of emission following the period of superradiant decay. For
reference, a plot for uncoupled emitters is also shown, exhibiting only spontaneous decay.
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Figure 3.11 Off-diagonal emission rates 𝛾𝐼 (𝑡) calculated from (3.42) for 𝑁 = 200, including and
excluding the collective Lamb shift. We observe that superradiant emissions (𝑡 ≈ 5 and 15 ps) are
diminished by the shift.
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after excitation decreases with 𝛿, but at longer times, its dependence on the inhomogeneity is

characterized by a peak around ℏ𝛿 = 0.1 meV. The resonant pulse is chosen to peak at 𝑡0 = 5 ps.
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Figure 3.12 Time evolution of space-averaged population excitation ⟨𝜌11⟩ for 𝑁 = 200, for different
inhomogeneous broadening values 𝛿 (in meV). (Inset) Excitation values as a function of 𝛿, at
𝑡 = 500 ps (blue circles) and 𝑡 = 1000 ps (red squares).

3.6 Concluding remarks

Using the Maxwell-Bloch model, we discovered signatures of collective emissions in both the

population excitation and radiated fields of medium-sized ensembles of quantum dots. A crucial

step of our study involved calculation of the photon emission rate, which we used to measure the

scaling of superradiant emission with number of dots. Our expression for the emission rate (3.39)

was derived in the Heisenberg picture, in which the fields are assumed to be time dependent, while

the density operators representing the ensemble state are held constant. Of course, it is equally valid

to transfer the time dependence to the density matrices, leading to the Schrödinger picture. While

the two pictures offer an equivalent description of superradiance in terms of secondary radiated

fields, their regimes of validity are dependent on both the spatial and temporal characteristics of

the system. Details are considered in the next chapter, where we compare superradiant systems

governed by the Maxwell-Bloch equations (3.25) to that under the Master equation–which originates
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from the Schrödinger picture.
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CHAPTER 4

MASTER EQUATION DESCRIPTION OF EMISSION DYNAMICS

In the last chapter, we presented the theory and simulation of collective emission in the language of

the Maxwell-Bloch equations. As it is grounded on Heisenberg’s equation of motion for operators

representing photons and local polarization, the Maxwell-Bloch approach is innately well-suited

for capturing memory and propagation effects due to electromagnetic fields arising from localized

emitters. In contrast, a global description of all emitters and their aggregate quantum state requires

an alternative approach based on the Schrödinger picture. This motivates the Master Equation,

which prescribes the evolution of the global 2𝑁 × 2𝑁 density matrix representing the quantum state

of all emitters in a large Hilbert space.

In this chapter, we first derive the Master Equation from the Schrödinger equation of motion.

This entails the Born-Markov approximation [38, 39], in which correlations between quantum

dots and their radiated fields are assumed to occur on a short timescale. Afterward, we compare

the results of simulations using both approaches. The purpose of this is threefold. First, we

demonstrate that our numerical model is consistent with established algorithms for solving the

Master equation. Second, we numerically demonstrate that the Born-Markov approximation is

equivalent to disregarding effects due to the finite propagation speed of the electromagnetic field.

Lastly, we elucidate a method for inducing decays in perfectly inverted states, which corresponds

to an unstable equilibrium for the Maxwell-Bloch model. We conclude with a discussion of merits

and drawbacks of both approaches.

4.1 Master equation formulation

Consider a global density matrix 𝜚 for 𝑁 dots with initial state 𝜌(𝑡0) =
⊗𝑁

𝑖=1 𝜌𝑖 (𝑡0), which also

tracks the degrees of freedom of the field:

𝜚(𝑡) = 𝜌(𝑡) ⊗ 𝜌𝑟𝑎𝑑 (𝑡) (4.1)

In the Schrödinger picture, the Liouville equation of motion for 𝜚 is given by:

d𝜚
d𝑡

=
−𝑖
ℏ
[H (𝑡), 𝜚] (4.2)
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where the total Hamiltonian H = 𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡 is defined by (3.17-3.19). Via the unitary

operator 𝑈 = exp(−𝑖(𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑)𝑡/ℏ), we transform to the interaction picture:

d �̃�
d𝑡

=
−𝑖
ℏ
[𝐻𝑖𝑛𝑡 (𝑡), �̃�] (4.3)

Tracing out over field variables, we obtain the reduced density matrix:

�̃�(𝑡) = Tr𝑟𝑎𝑑 �̃�(𝑡)

which enables us to examine the evolution of the emitters independently of the degrees of freedom

of the field. Integrating eq. (4.2), and iterating the procedure to second-order yields:

d
d𝑡
�̃�(𝑡) = −1

ℏ2 Tr𝑟𝑎𝑑
∫ 𝑡

0
𝑑𝑡′[𝐻𝑖𝑛𝑡 (𝑡), [𝐻𝑖𝑛𝑡 (𝑡 − 𝑡′), �̃�(𝑡 − 𝑡′)]] (4.4)

As the right-hand-side still contains the total density operator �̃�, the Born approximation is invoked,

wherein the coupling between emitters and field is assumed sufficiently weak that the field density

operator is constant, and �̃�(𝑡) = �̃�(𝑡) ⊗ �̃�𝑟𝑎𝑑 . Integration still requires knowledge of the state of the

system at all previous times, so a further simplification is made. Assuming that the emitter-field

correlation lasts much shorter than the time in which the system varies appreciably, the Markov

approximation replaces 𝑡 − 𝑡′→ 𝑡, yielding the Born-Markov (or Redfield) master equation:

d
d𝑡
�̃�(𝑡) = −1

ℏ2 Tr𝑟𝑎𝑑
∫ ∞

0
𝑑𝑡′[𝐻𝑖𝑛𝑡 (𝑡), [𝐻𝑖𝑛𝑡 (𝑡 − 𝑡′), �̃�(𝑡) ⊗ �̃�𝑟𝑎𝑑]] (4.5)

where we have assumed that the total system is initialized as the product of a field in its vacuum

state with all emitters excited:

�̃�(0) = �̃�(0) ⊗ �̃�𝑟𝑎𝑑 =
∏
𝑖

|+⟩𝑖 ⟨+|𝑖 ⊗ |0⟩ ⟨0| (4.6)

We may now substitute in the expression for 𝐻𝑖𝑛𝑡 in terms of field modes and transform back to

the Schrödinger picture via 𝜌(𝑡) = 𝑈�̃�(𝑡)𝑈†, which ultimately yields the Lindblad master equation.

Steps of this derivation, which follow those in [39] and involve projection onto the eigenbasis of

𝐻𝑑𝑜𝑡 , are detailed in Appendix C. The result is:
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¤𝜌 = − 𝑖
ℏ
[𝐻𝑑𝑜𝑡 + 𝐻𝑠ℎ𝑖 𝑓 𝑡 , 𝜌] −

∑︁
𝑖 𝑗

Γ𝑖 𝑗

2
({𝜎+𝑖 𝜎−𝑗 , 𝜌} − 2𝜎−𝑗 𝜌)

= − 𝑖
ℏ
[𝐻𝑑𝑜𝑡 + 𝐻𝑠ℎ𝑖 𝑓 𝑡 , 𝜌] −

∑︁
𝑖 𝑗

Γ𝑖 𝑗

2
(𝜎+𝑖 𝜎−𝑗 𝜌 − 2𝜎−𝑗 𝜌𝜎

+
𝑖 + 𝜌𝜎+𝑖 𝜎−𝑗 )

(4.7)

where:

Γ𝑖 𝑗 (r) =
3Γ0
4

𝜖𝑖 ·
[
(1 − r̂ ⊗ r̂) sin 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
cos 𝑘𝑅
(𝑘𝑅)2

− sin 𝑘𝑅

(𝑘𝑅)3

)]
· 𝜖 𝑗 (4.8)

Ω𝑖 𝑗 (r) =
3Γ0
4

𝜖𝑖 ·
[
−(1 − r̂ ⊗ r̂) cos 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
sin 𝑘𝑅

(𝑘𝑅)2
+ cos 𝑘𝑅
(𝑘𝑅)3

)]
· 𝜖 𝑗 (4.9)

𝐻𝑠ℎ𝑖 𝑓 𝑡 =
∑︁
𝑖 𝑗

Ω𝑖 𝑗𝜎
+
𝑖 𝜎
−
𝑗 (4.10)

Expression (4.8) describes the pairwise rate of emission induced by the interaction between the

𝑖th and 𝑗 th emitters, and reproduces (3.36). Similarly, (4.9) describes a pairwise Lamb shift, and

reproduces (3.40); furthermore, it is now apparent that the Lamb shift contributes an additional

term (4.10) to the Hamiltonian 𝐻𝑑𝑜𝑡 . Equivalently, Ω and Γ can be derived from the real and

imaginary parts of the Rabi energy of a classical radiated field (cf. 2.10) due to a polarization

density P(r, 𝑡). Explicitly we may write:

𝜒 𝑗 (r𝑖) = d · �̃�{P̃(r 𝑗 )}/ℏ = −(Ω𝑖 𝑗 + 𝑖𝛾𝑖 𝑗 ) (4.11)

where 𝜒 𝑗 (r𝑖) labels the Rabi energy of the 𝑖th dot due to the polarization of the 𝑗 th dot. In this way,

we establish the equivalence of the Master equation model and semiclassical model of Chapter 2.

In Section 3.4, it was shown that the pairwise emission terms Γ𝑖 𝑗 give rise to superradiant

emissions that scale quadratically as the number of emitters. As Γ𝑖 𝑗 plays an identical role in the

Master equation, that result is equally valid here:

𝛾(𝑡) = Γ0
∑︁
𝑖

⟨𝜎+𝑖 𝜎−𝑖 ⟩ + 2
∑︁
𝑖≠ 𝑗

Γ𝑖 𝑗 ⟨𝜎+𝑖 𝜎−𝑗 ⟩(𝑡)

= 𝛾0(𝑡) + 𝛾𝐼 (𝑡)
(4.12)

As previously shown, the term 𝛾𝐼 (𝑡), which describes emission from off-diagonal interactions

among dots, corresponds to superradiant emissions, whereas 𝛾0 measures independent emissions.
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4.2 Comparison of formulations

We now describe results of simulations of quantum dot ensembles that employ both Maxwell-

Bloch and Master equation approaches. As a differential equation for a 2𝑁 × 2𝑁 density matrix,

the Master equation incurs an exponential computational cost and prohibits the simulation of large

(𝑁 > 100) numbers of emitters, and for extended periods of time. Nonetheless, this global density

matrix contains much more information on the quantum state of the system than what is typically

measured in experiments. As such, we focus on transient dynamics of smaller systems of emitters.

Using expression (4.12), we compute the off-diagonal contribution to the photon emission rate

𝛾𝐼 (𝑡) under both approaches. In the Master equation approach, the time-dependent expectation

values ⟨𝜎+
𝑖
𝜎−
𝑗
⟩ are calculated as Tr[𝜌(𝑡) 𝜎+

𝑖
𝜎−
𝑗
] after solving for 𝜌(𝑡) using (4.7). In the Maxwell-

Bloch approach, ⟨𝜎+
𝑖
𝜎−
𝑗
⟩ are calculated as in (3.35):

⟨𝜎+𝑖 𝜎−𝑗 ⟩ = ⟨Ψ0 |𝜎+𝑖 (𝑡)𝜎−𝑗 (𝑡) |Ψ0⟩ (4.13)

where |Ψ0⟩ is the state of the system at 𝑡 = 0 and the 𝜎+
𝑖
(𝑡) are operators in the Heisenberg

representation. This can be approximated in the semiclassical model as ⟨Ψ0 |𝜎+𝑖 (𝑡)𝜎−𝑖 (𝑡) |Ψ0⟩ ∼

𝜌𝑖11(𝑡) and ⟨0|𝜎+
𝑖
(𝑡)𝜎−

𝑗
(𝑡) |0⟩ ∼ 𝜌𝑖10(𝑡)𝜌

𝑗

01(𝑡), where 𝜌𝑖 (𝑡) is the two-level density matrix for the 𝑖th

dot.

Fig.4.1 show a comparison of 𝛾𝐼 (𝑡) calculated for an initial state of the system in which each dot

is in the ( |0⟩ + |1⟩)/
√

2 state, corresponding to the maximum initial polarization. Eight dots are in

a chain along the 𝑦-axis, equally separated by distances given by 𝑠/𝜆, in a configuration studied in

Ref. [40] with the Master equation method. There is a tight agreement between the approaches, and

slight deviations are visible only in the 𝑑/𝜆 = 0.1 case. Also evident is the destructive interference

that occurs when the dots are separated by a half-wavelength. As expected, for dots separated by 𝜆

the off-diagonal term becomes negligible in both cases.

A special treatment has to be made if every dot is initially in the |1⟩ state. In this case, the initial

polarization of the system is zero and remains zero at all times. This initial condition is equivalent

to setting the Bloch vector of each dot in the equilibrium “up" initial position, which is unstable.

The semiclassical approximation would then give no contribution to 𝛾𝐼 (𝑡) in (4.12). This limitation
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Figure 4.1 Comparison of the off-diagonal term of the emission rate, 𝛾𝐼 (𝑡) using the semiclassical
Maxwell Bloch (solid) and the Master equation (dashed). Eight quantum dots are initially prepared
in the maximum polarization state ( |0⟩ + |1⟩)/

√
2. Curves for different dot separations 𝑠 compared

to 𝜆 are shown.

has been addressed by Haake et al. [41] who showed that semiclassical Maxwell-Bloch equations

can describe superradiant pulses if Gaussian-distributed zero-averaging random initial conditions

for the polarization are used. The random initial conditions provide the necessary tipping angle

leading to spontaneous emission, and can be seen as the effect of a polarization measurement on

the fully inverted state, which gives noise since the population and polarization operators do not

commute.

Fig. 4.2 shows a comparison of 𝛾𝐼 (𝑡) for an initial state of the system in which each dot is in

the |1⟩ state, corresponding to the maximum initial population inversion. We added a complex

zero-averaging polarization following a Gaussian distribution with 𝜎 = 1/
√︁
𝑁/𝑁𝑔 according to

the method of Ref. [41]. Here 𝑁𝑔 is the number of groups into which the dots are divided, each

receiving a different random polarization. In general the profile of the emission, consisting of a

sharp rise post-excitation followed by decay to a steady low-emission state, resembles that of the

Master equation. The methodology of Ref. [41] becomes exact in the limit 𝑁/𝑁𝑔 ≫ 1 and 𝑁𝑔 ≫ 1,

therefore the discrepancies observed are due to the fact that we are considering a small system with

𝑁 = 8. Small values of 𝑁𝑔 lead to spurious non-zero values for 𝛾𝐼 (𝑡) at 𝑡 = 0. However, we observe
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Figure 4.2 Comparison of 𝛾𝐼 (𝑡) between the semiclassical Maxwell Bloch and the Master equation.
Eight quantum dots equally spaced by 0.1𝜆 are considered. Each dot is initially in the maximum
population state with the addition of a random polarization (the average has been taken over 500
random initial conditions). Additionally, the dots are divided into 𝑁𝑔 groups each receiving a
different random polarization phase.

that the averaged initial emission rate correctly tends to zero as the number of groups is increased.

Using the same zero-averaging of initial conditions, emission rates were finally calculated

for the Gaussian distributed dot configurations of Section III. In Fig. 4.3, superradiant emission is

evidenced by both the characteristic rise and decay profile, as well as the 𝑁2 scaling, of the emission

rate. We also observed high variability of the emission for different random configurations in the

Gaussian cloud. Of course, a comparison to the Master equation here is infeasible due to the

exponential computation cost of that approach.

4.2.1 Time retardation effects

Whereas the Maxwell-Bloch equations are a set of delayed differential equations that express

their solution in terms of the polarization at previous times, the solution to the Master equation

is essentially local in time. This feature, which leads to causality violation on small scales, is

ultimately due to the Markov approximation.

A simple simulation demonstrates that the Markov approximation amounts to disregarding

delays in the Maxwell-Bloch equations. Reconsider a chain of dots, but where only the first dot is

initially excited with the addition of random polarization. In the absence of delays, we would expect

51



0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Time (𝑝𝑠)

Em
is

si
on

ra
te
𝛾
𝐼
(𝑡)
(u

ni
ts

of
Γ

0)

Figure 4.3 The second term of the emission rate, 𝛾𝐼 (𝑡), via the semiclassical Maxwell Bloch
equations is shown, for the Gaussian distributed dot configurations of Sect. III and all dots starting
in the excited state (no pulse, 𝑁𝑔 = 1). Solid curves are calculated directly from (4.12), while
dashed curves are calculated by subtracting independent emissions from the total emission as in
(3.42). The average has been taken over 500 random initial conditions.

instantaneous excitation of the other dots by re-radiation from the first dot, a feature which violates

causality. Figure 4.4 shows the results of this simulation. The Markov approximated solution is in

strong agreement with the Maxwell-Bloch solution without delay: we observe excitation at 𝑡 = 0

as this dot immediately receives a signal from the first dot. In contrast, the delayed Maxwell-Bloch

solution is briefly unexcited, as the signal propagates down the chain, exciting each dot in an

inverted “domino" fashion before arriving at the final dot. However, as this solution is convergent

to that of the Master equation, the effect of the delay is negligible for simulation times much longer

than the propagation time of the ensemble. Likewise, the Markov approximation becomes valid in

that regime. Simulations of superradiance, for instance, which occur on the time scale 𝑇1 of the

spontaneous decay, and involve tightly packed ensembles of dots, generally fall under this regime.
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Figure 4.4 Comparison of short time behavior of the population excitation ⟨𝜌01⟩ using the Master
equation and Maxwell-Bloch equations with and without delays. 𝑁 = 2 (top) and 𝑁 = 8 (bottom)
quantum dots are separated by 1.0𝜆, with the first dot initialized in the excited state with a random
initial polarization, and the rest lying initially in the ground state. Shown is the population inversion
⟨𝜌01⟩ for the last dot in the chain, i.e. the one that would receive a retarded signal the latest. The
delay in excitation corresponds to the time 𝑅/𝑐 for the signal to propagate to the last dot (for a total
separation 𝑅 = 1.0𝜆, 𝑅/𝑐 ≈ 0.157 𝑇1).
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4.3 Concluding remarks

In simulations of quantum dot ensembles, we have shown that the Maxwell-Bloch and Master

equation approaches yield similar results and solid quantitative agreement. An inherent limitation

of the Maxwell-Bloch model is the existence of an unstable equilibrium solution, corresponding

to a state with perfect population inversion. This was overcome by applying zero-averaging of

initial random polarizations. Indeed, when the initial polarization is non-zero, or when an exciting

pulse induces a non-zero polarization, the Maxwell-Bloch solution never converges to this unstable

equilibrium.

In contrast, the Master equation is limited by the Markov approximation, which was shown to

be equivalent to assuming the absence of delays in the Maxwell-Bloch model. However, this effect

is negligible for simulations lasting much longer than the time for an electromagnetic signal to

propagate through the medium. Additionally, we invoked the Born approximation, and assumed

that the field is in “thermal" equilibrium and is weakly coupled to the ensemble. This is a reasonable

assumption after strong excitations (such as a pulsed laser) have passed and the emitters are allowed

to equilibrate with their radiated fields.
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CHAPTER 5

CONCLUSION

5.1 Summary

We began by outlining a theoretical framework for analyzing the interaction of semiconductor

quantum dots with their radiated fields. We expressed such fields as classically propagating waves,

and the dots as point polarization sources which generate these waves. The fields are coupled

to density matrices representing each dot as a quantum two-level system, which evolve according

to the Liouville equation. Numerically integrating this equation involved discretization in terms

of spatial and temporal basis functions, and application of a Predictor-Corrector algorithm. Our

computational model afforded us several advantages: (a) it permits fields to be resolved within near

vicinities of each other, (b) it is scalable as𝑂 (𝑁 log 𝑁) to large ensembles of dots with the assistance

of the Adaptive Integral Method (AIM), which effects FFT-based convolutions to evaluate the field.

This enabled large scale (𝑁 > 104) simulations that revealed both short range oscillatory behavior

resulting from confinement of the field, and long range effects such as polarization dispersion.

Having demonstrated the fidelity of our computational model, we focused in Chapter 3 on

simulations of superradiance and subradiance. To enrich the analysis, we described the theory of

quantized electric fields as a generalization of Dicke’s model. From this, we derived the Maxwell-

Bloch equations and in turn, an expression for the photon emission rate. We showed that this

consists of two terms, representing independent and coupled emissions respectively, and concluded

that the latter corresponds to superradiance emissions, which scale quadratically with number of

emitters. In simulations of medium-sized ensembles of quantum dots in a Gaussian cloud, we

confirmed this quadratic scaling by subtracting independent emissions from total emissions. We

also observed anisotropy of emission–another hallmark of superradiance–in the field radiated by

the Gaussian cloud. Subradiance was discovered in steady state plots of the population excitation,

which displayed diminished emissions. This effect was amplified by inhomogeneous broadening,

which induced greater disorder and thus interference within the ensemble, but diminished by the
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presence of collective Lamb shifts.

In Chapter 4, we sought to validate our theoretical model by running in tandem simulations

using an alternative formulation, the Master equation. Here we recovered the expression for the

pairwise and total emission rates–first derived from the Maxwell-Bloch equations in Chapter 3. By

applying zero-averaging random initial conditions to the polarization, we achieved strong numerical

agreement between the two approaches. We observed both superradiant scaling, and destructive

interference among dots separated by half-wavelengths. Lastly, we compared merits and drawbacks

of both approaches. In particular, we showed that the Markov approximation, implicit in the Master

equation, is equivalent to neglecting delays due to finite propagation speeds. Hence, simulations

involving ensembles of emitters separated far apart in space should opt for the Maxwell-Bloch

approach to accurately account for delay effects.

5.2 Future work

5.2.1 Multi-level systems

In outlining our semiclassical model, we explicitly restricted ourselves to two-level systems,

as this is sufficient to accurately describe a range of phenomena–such as superradiance–while

simplifying calculations. For other scenarios, however, it may be convenient–or even necessary–to

consider states with more than two energy levels.

For instance, a three-level state can be represented by the density matrix:

�̂� ≡
©«
𝜌00 𝜌01 𝜌02

𝜌∗01 𝜌11 𝜌12

𝜌∗02 𝜌∗12 𝜌22

ª®®®®®¬
(5.1)

The Hamiltonian (2.3) and dissipation matrix (2.4) in the Maxwell-Bloch model generalizes natu-

rally to:

Ĥ (𝑡) ≡ ℏ

©«
0 −ℏ𝜒01(𝑡) −ℏ𝜒02(𝑡)

−ℏ𝜒∗01(𝑡) 𝜔1 −ℏ𝜒12(𝑡)

−ℏ𝜒∗02(𝑡) −ℏ𝜒
∗
12(𝑡) 𝜔2

ª®®®®®¬
(5.2)
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D̂ [ �̂�] ≡
©«
𝜌11𝛾1 + 𝜌22𝛾2 − 𝜌01𝛾1

2 − 𝜌02 (𝛾2+𝛾3)
2

−𝜌∗01𝛾1
2 −𝜌11𝛾1 + 𝜌22𝛾3

−𝜌12 (𝛾1+𝛾2+𝛾3)
2

−𝜌∗02 (𝛾2+𝛾3)
2

−𝜌∗12 (𝛾1+𝛾2+𝛾3)
2 −𝜌22𝛾2 − 𝜌22𝛾3

ª®®®®®¬
(5.3)

where 𝜒𝑖 𝑗 labels the Rabi energy associated with transitions between the 𝑖th and 𝑗 th levels, and 𝛾𝑖

is the spontaneous decay rate of the 𝑖th level.

The generalization to three-levels can be applied to the study of quantum information. For

instance, it can be used to model higher harmonic generation and electromagnetic induced trans-

parency (EIT), which can be applied to the design of quantum devices.

5.2.2 Collective effects in waveguides and cavities

Our prior investigations considered an ensemble of quantum dots embedded in vacuum or some

homogeneous dielectric medium. In such free space, the re-emitted radiation can be represented as

an infinite summation of eigenmodes with distinct wavevectors, propagating out to infinity. This

enabled us to observe a variety of optical effects in a controlled, idealistic setting, while disregarding

other effects that unnecessarily burden the analysis. A more realistic scenario has the ensemble

contained within some waveguide or other closed conductive object. There, boundary conditions

impose restrictions on the possible eigenmodes, and the form of the fields is highly dependent on

the geometry of the system. The analysis therefore becomes far more complex, often requiring

numerical Green’s functions or other numerical techniques to simulate such fields.

Nonetheless, the representation of the emitters remains intact. Within the Maxwell-Bloch

formalism, the Hamiltonian for each emitter can be written in the form (2.3) or (5.2). Alternatively,

it can be written in the context of the Master equation for 𝑁 emitters:

Ĥ (𝑡) ≡
𝑁∑︁
𝑖

𝜔𝑖𝜎
+
𝑖 𝜎
−
𝑖 −

∑︁
𝑖≠ 𝑗

𝜎+𝑖 𝜎
−
𝑗 𝜒𝑖 𝑗 (𝑡) (5.4)

where 𝜎±
𝑖

are the usual raising and lowering operators for the 𝑖th emitter. In both cases, ℏ𝜒𝑖 𝑗 =

d𝑖 · G(r𝑖, r 𝑗 ) · d 𝑗 describes the Rabi energy of the 𝑖th emitter due to radiation from the 𝑗 emitter.

As mentioned, the form of the Green’s function G is constrained by the underlying boundary

conditions, and admits an analytical solution only for the simplest geometries. For instance, for a
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perfectly cylindrical waveguide along 𝑧 with a single guided mode with longitudinal wavenumber

𝑘𝑧, the Green’s function takes the form [42]:

𝐺 (r, r′) = 𝑖𝑔0 ×


𝐸1(𝜌)𝐸2(𝜌′) 𝑒𝑖𝑘𝑧 (𝑧−𝑧

′) , 𝑧 > 𝑧′

𝐸1(𝜌)𝐸2(𝜌′) 𝑒−𝑖𝑘𝑧 (𝑧−𝑧
′) , 𝑧 < 𝑧′

(5.5)

where 𝜌 = (𝑥, 𝑦) labels transverse coordinates, and 𝑔0 is a constant [43]. Such a mode propagates

if |𝑘𝑧 | is smaller than 𝜔/𝑐 where 𝑐 = 𝑐0/𝑛 is the speed of light in the material; otherwise it is

attenuated transverse to the direction of the waveguide. In that case, emissions are completely

suppressed for an infinite array, or are strongly subradiant for finite arrays [43]. This simple

example shows that confinement of propagating waves can strongly affect the presence and degree

of coupled emissions. Now consider a recent experiment, in which waveguide coupling induced

superradiance in atoms separated by large distances hence weakly coupled via their dipoles [44].

The existence of such entanglement phenomenon motivates their numerical simulation [etc...]
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APPENDIX A

INTEGRAL OPERATOR ELECTRIC FIELDS

A.1 Electric field due to polarization sources

Starting from Maxwell’s equations, one may express a time-varying electric field in terms of

scalar and vector potentials 𝜙 and A as:

E(r, 𝑡) = −∇𝜙 − 𝜕A
𝜕𝑡

(A.1)

Differentiating with respect to time, and applying the Lorenz gauge condition:

∇ · A + 1
𝑐2

𝜕𝜙

𝜕𝑡
= 0 (A.2)

to eliminate 𝜙 yields:

𝜕E
𝜕𝑡

= −∇(−𝑐2∇ · A) − 𝜕2A
𝜕𝑡2

=

(
𝑐2∇∇ − 𝜕2

𝜕𝑡2

)
A (A.3)

where ∇∇ is a dyadic operator.

The retarded potential due to a current source J(r, 𝑡) is given by:

A(r, 𝑡) = 𝜇

4𝜋

∫
𝛿(𝑡𝑅 − 𝑡′)
|r − r′| J(r′, 𝑡′) 𝑑r′𝑑𝑡′ =

𝜇

4𝜋

∫
𝛿(𝑡𝑅 − 𝑡′)
|r − r′|

𝜕P
𝜕𝑡′

𝑑r′𝑑𝑡′ (A.4)

where 𝛿 is a delta function, 𝑡𝑅 = 𝑡 − |r − r′|/𝑐, P is a polarization density, related to the current

density by J = 𝜕𝑡P. This can be written in terms of the Green’s function for the wave operator(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇2

)
:

𝑔(r, 𝑡) = 𝛿(𝑡 − 𝑟/𝑐)
4𝜋𝑟

(A.5)

as:

A(r, 𝑡) = 𝜇𝑔(r, 𝑡) ★𝑠𝑡 𝜕𝑡P(r, 𝑡) (A.6)

where ★𝑠𝑡 denotes both spatial and temporal convolution. Substituting this expression back into

(A.3) and canceling one time derivative we obtain:

E(r, 𝑡) ≡ −𝜇 (𝜕2
𝑡 − 𝑐2∇∇)𝑔(r, 𝑡) ★𝑠𝑡 P(r, 𝑡)

= −𝜇
(
𝜕2

𝜕𝑡2
− 𝑐2∇∇

) ∫
𝛿(𝑡𝑅 − 𝑡′)
4𝜋 |r − r′| P(r

′, 𝑡′) 𝑑r′𝑑𝑡′
(A.7)
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Alternatively, one may start by deriving eq. (3.26) from Maxwell’s equations as follows:

∇ × ∇ × E = ∇(∇ · E) − ∇2E = ∇
(
−∇ · P

𝜖0

)
− ∇2E = − 𝜕

𝜕𝑡
∇ × B = −𝜇𝜕

2P
𝜕𝑡2
− 1
𝑐2

𝜕2E
𝜕𝑡2

(A.8)

where again J = 𝜕𝑡P and we assume only a bound charge density 𝜌 = −∇ · P exists. Rearranging

yields (3.26), reproduced here:(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇2

)
E(r, 𝑡) = −𝜇

(
𝜕2

𝜕𝑡2
− 𝑐2∇∇

)
P(r, 𝑡) (A.9)

As the wave operator appears on the LHS and has associated Green’s function 𝑔(r, 𝑡), the result

(A.7) immediately follows. This approach has several merits. First, it passes directly from source

to field, thus eschews gauge fixing; second, it draws upon a set of equations (A.9) which have

a counterpart in the quantum Heisenberg picture, namely (3.25). The derivation of that set of

equations is the subject of Appendix B.

While we have obtained an expression for the field radiated by a polarization source P, direct

evaluation of the convolution (A.7) is intractable, as it involves taking spatial derivatives of a delta

function. To obtain an explicit analytic expression, we make a foray into Fourier space. For the

problem of dipole radiation, we assume time-harmonic fields, i.e. E(r, 𝑡) = E(r)𝑒𝑖𝜔𝑡 and similarly

for the potential and sources. Substitution into (A.3) yields a Fourier space representation of the

field:

𝑖𝜔E(r, 𝜔) = 𝜔2
(
I + ∇∇

𝑘2

)
A (A.10)

The time-harmonic equivalent of (A.4) is:

A(r, 𝜔) = 𝜇

4𝜋

∫
𝑒𝑖𝑘 |r−r′ |

|r − r′| J(r′) 𝑑r′ =
𝑖𝜔𝜇

4𝜋

∫
𝑒𝑖𝑘 |r−r′ |

|r − r′| P(r′) 𝑑r′ (A.11)

Inserting back into (A.3) we obtain:

E(r, 𝜔) = 𝜔2𝜇

(
I + ∇∇

𝑘2

) ∫
𝑒𝑖𝑘 |r−r′ |

4𝜋 |r − r′| P(r
′, 𝜔) 𝑑r′ ≡ 𝜔2𝜇 𝐺 (r, 𝜔) ★P(r, 𝜔) (A.12)

where ★ denotes spatial convolution and:

𝐺 (r, 𝜔) =
(
I + ∇∇

𝑘2

)
𝑒𝑖𝑘𝑟

4𝜋𝑟
(A.13)
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is the dyadic Green’s function for the Helmholtz equation.

By explicitly expanding the Helmholtz Green’s function (A.13) in spherical coordinates we

obtain (r̂ = r/𝑟): (
I + ∇∇

𝑘2

)
𝑒𝑖𝑘r

4𝜋r
=

[
(𝐼 − r̂r̂) − (𝐼 − 3r̂r̂)

(
1
𝑖𝑘𝑟
+ 1
(𝑘𝑟)2

)]
𝑒𝑖𝑘𝑟

4𝜋𝑟
(A.14)

which facilitates evaluating the convolution in (A.12). The result is:

E(r, 𝜔) = − 𝜇

4𝜋

∫ [
(𝐼 − r̄r̄) − (𝐼 − 3r̄r̄)

(
1

𝑖𝑘𝑅
+ 1
(𝑘𝑅)2

)]
𝑒𝑖𝑘𝑅

𝑅
· P(r′, 𝜔) 𝑑r′ (A.15)

where R = r − r′ and r̄ = R/𝑅. Transforming back to the time domain by replacing each factor of

𝑖𝜔 by a time derivative, and 𝑒𝑖𝑘𝑅/𝑅 by 𝛿(𝑡 − 𝑅/𝑐)/𝑅 = 𝛿(𝑡𝑅)/𝑅 gives:

E(r, 𝑡) = − 𝜇

4𝜋

∫ [
(𝐼 − r̄r̄)

𝜕2
𝑡 𝛿(𝑡𝑅 − 𝑡′)

𝑅
− (𝐼 − 3r̄r̄)

(
𝑐𝜕𝑡𝛿(𝑡𝑅 − 𝑡′)

𝑅2 + 𝑐2𝛿(𝑡𝑅 − 𝑡′)
𝑅3

)]
·P(r′, 𝑡′)𝑑r′𝑑𝑡′

(A.16)

Linearity permits us to transfer the derivatives acting on the 𝛿-functions to the polarization. The

final result is (cf. (2.10)):

E(r, 𝑡) = −1
4𝜋𝜖

∫ [
(I − r̄r̄) ·

𝜕2
𝑡 P(r′, 𝑡𝑅)
𝑐2𝑅

+ (I − 3r̄r̄) ·
(
𝜕𝑡P(r′, 𝑡𝑅)

𝑐𝑅2 + P(r′, 𝑡𝑅)
𝑅3

)]
𝑑3r′ (A.17)

B.2 Radiation reaction field

The singularity of (A.17) at 𝑅 = 0 can be resolved by Taylor expanding (A.12) and retaining

specific terms. This ultimately yields the radiation reaction field.

To start, let us separate out the two terms in parentheses from (A.12):

E(r, 𝜔) = 𝜔2𝜇

∫
𝑒𝑖𝑘 |r−r′ |

4𝜋 |r − r′| P(r
′, 𝜔) 𝑑r′ + 𝜔2𝜇

𝑘2 ∇∇
∫

𝑒𝑖𝑘 |r−r′ |

4𝜋 |r − r′| P(r
′, 𝜔) 𝑑r′ (A.18)

and Taylor expand each in 𝑘𝑟 in the limit of small 𝑘𝑟. Expanding the first term to first order we

obtain:

E𝑅𝑅1(r, 𝜔) ≈
𝑖𝜔2𝜇

4𝜋
𝑘

∫
P(r′, 𝜔) 𝑑r′ (A.19)
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For the second term, the two spatial derivatives eliminate two powers of 𝑟, so we expand to

third order:

E𝑅𝑅2(r, 𝜔) ≈ −
𝜔2𝜇

4𝜋

∫ ∇∇
𝑘2

(
𝑖𝑘3 |r − r′|2

3!

)
P(r′, 𝜔) 𝑑r′

= −𝑖𝜔
2𝜇

4𝜋
𝑘

3

∫
P(r′, 𝜔) 𝑑r′

(A.20)

The total nearfield is thus:

E𝑅𝑅 (r, 𝜔) =
𝑖𝜔2𝜇

4𝜋
2𝑘
3

∫
P(r′, 𝜔) 𝑑r′ (A.21)

Transforming back to time by replacing 𝑖𝜔 with time derivatives, we arrive at the radiation

reaction field (cf. [45], note the minus sign convention):

E𝑅𝑅 (r, 𝑡) ≡
1

4𝜋𝜖
2

3𝑐3

∫
𝜕3
𝑡 P(r′, 𝑡) 𝑑r′ (A.22)

The rotating frame equivalent is:

E𝑅𝑅 (r, 𝑡) = −
1

4𝜋𝜖
2

3𝑐3

∫ [
𝜕3
𝑡 P̃(r′, 𝑡) + 3𝑖𝜔𝐿𝜕

2
𝑡 P̃(r′, 𝑡) − 3𝜔2

𝐿𝜕𝑡P̃(r′, 𝑡) − 𝑖𝜔3
𝐿P̃(r′, 𝑡)

]
𝑑r′ (A.23)

As these expressions were obtained by assuming the limit 𝑘𝑟 → 0, which is no longer valid as one

moves away from the vicinity of an emitter, the radiation reaction field is felt exclusively by the

emitter and those in its nearfield. The force due to the radiation reaction field is the well-known

Abraham-Lorentz force. This parallels a similar derivation in the context of Heisenberg’s equations

[46].

In the derivation of (A.20) we have ignored the contributions of the zeroth through second order

terms, which are obvious non-negligible in the limit of small 𝑘𝑟 . Evaluating their contribution

leads to an expression for the leftover nearfield:

E𝑁𝐹−𝑅𝑅 (r, 𝜔) =
𝜔2𝜇

4𝜋

(
I
𝑟
+ ∇∇

𝑘2

(
1 + 𝑖𝑘𝑟 − (𝑘𝑟)2/2

𝑟

))
★P(r, 𝜔) (A.24)

Via the expansion:

∇∇
𝑘2

(
1 + 𝑖𝑘𝑟 − 𝑘2𝑟2/2

𝑟

)
=

1
𝑘2

(
− 1
𝑟3 (I − 3𝑟𝑟)

)
− 1

2

(
1
𝑟
(I − 𝑟𝑟)

)
(A.25)
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one obtains, after substituting back into (A.24):

E𝑁𝐹−𝑅𝑅 (r, 𝜔) = −
1

4𝜋𝜖

∫ [
(𝑖𝜔)2(I + 𝑟𝑟)P(r

′, 𝜔)
2𝑐2𝑅

+ (I − 3𝑟𝑟)P(r
′, 𝜔)
𝑅3

]
𝑑r′ (A.26)

Replacing 𝑖𝜔 by time derivatives, restoring the temporal convolution, and applying the resulting

𝛿-functions to P(r′, 𝑡) gives:

E𝑁𝐹−𝑅𝑅 (r, 𝑡) = −
1

4𝜋𝜖

∫ [
(I + 𝑟𝑟)

𝜕2
𝑡 P(r′, 𝑡)
2𝑐2𝑅

+ (I − 3𝑟𝑟)P(r
′, 𝑡)

𝑅3

]
𝑑r′ (A.27)

The total nearfield is then approximated as:

E𝑁𝐹 (r, 𝑡) = E𝑅𝑅 (r, 𝑡) + E𝑁𝐹−𝑅𝑅 (r, 𝑡) (A.28)

Note that for both terms the retarded time 𝑡𝑅 has been replaced by the present time 𝑡, which is a

suitable approximation when the source and observer are sufficiently close.
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APPENDIX B

DERIVATION OF MAXWELL-BLOCH EQUATIONS

We seek to derive the Maxwell-Bloch equation:

(
1
𝑐2

𝜕2

𝜕𝑡2
− ∇2

)
E±(r, 𝑡) = 1

𝜖
∇ × ∇ × P∓(r, 𝑡) = −1

𝜖
(∇2 − ∇∇)P∓(r, 𝑡) (B.1)

Recall from Section (3.2) the definitions of the quantized fields:

E+(r) = −𝑖
∑︁
𝑘,n̂

E𝑘,n̂ 𝑎𝑘,n̂𝑒
𝑖k·r (B.2)

E−(r) = 𝑖
∑︁
𝑘,n̂

E𝑘,n̂ 𝑎
†
𝑘,n̂𝑒

−𝑖k·r (B.3)

(here E𝑘,n̂ is the vector amplitude for a mode with wavevector 𝑘 and polarization n̂). For simplicity

let us assume, in addition to the RWA, that the interaction is between the field and a single emitter

located at r0. Hence the Hamiltonians are:

𝐻𝑑𝑜𝑡 = ℏ𝜔 𝜎𝑧 (B.4)

𝐻𝑟𝑎𝑑 = ℏ
∑︁
𝑘,n̂

𝜔𝑘 (𝑎†𝑘,n̂𝑎𝑘,n̂ + 1/2) (B.5)

𝐻𝑖𝑛𝑡

RWA≈ −d · (E+(r) ⊗ 𝜎+ + E−(r) ⊗ 𝜎−) (B.6)

which implies that (cf. 3.21):

d𝑎𝑘,n̂
d𝑡

= −𝑖𝜔𝑘𝑎𝑘,n̂(𝑡) −
1
ℏ

d · E𝑘,n̂𝑒
−𝑖k·r𝜎−(𝑡) (B.7)

Now let us evaluate:

𝜕2

𝜕𝑡2
P−(r, 𝑡) = 𝑖𝜔

𝜕

𝜕𝑡
P−(r, 𝑡) + 𝑖

ℏ

[
2𝑖
𝑑2

ℏ
dd · E∓(r, 𝑡)𝑊 (r, 𝑡),H

]
(B.8)
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The first term is simply:

𝑖𝜔
𝜕

𝜕𝑡
P−(r, 𝑡) = −𝜔2P−(r, 𝑡) + 2𝜔

𝑑2

ℏ
dd · E+(r, 𝑡)𝑊 (r, 𝑡)

while the second term is (recalling the commutation relations [𝜎𝑧, 𝜎±] = 𝜎±, [𝜎+, 𝜎−] = 2𝜎𝑧, [𝑎𝑘 , 𝑎†𝑘 ′] =

𝛿𝑘,𝑘 ′]:

− 2
ℏ2

[
dd · E+𝑊, 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡

]
= − 2

ℏ2 dd ·
(
−𝑖

∑︁
𝑘

E𝑘

[
𝑎𝑘 , ℏ

∑︁
𝑘 ′

𝜔𝑘 ′𝑎
†
𝑘 ′𝑎𝑘 ′

]
𝑒𝑖k·r

)
𝑊 (r, 𝑡)

− 2
ℏ2 dd ·

(
−𝑖

∑︁
𝑘

E𝑘

[
𝑎𝑘 , d · 𝑖

∑︁
𝑘 ′

E𝑘 ′𝑎
†
𝑘 ′𝑒
−𝑖k′·r

]
𝑒𝑖k·r

)
𝛿(r − r0) [𝜎𝑧, 𝜎−]

= − 2
ℏ2 dd ·

[(
−𝑖ℏ

∑︁
𝑘

𝜔𝑘E𝑘𝑎𝑘𝑒
𝑖k·r

)
𝑊 (r, 𝑡) +

∑︁
𝑘

E𝑘 (P−(r, 𝑡) · E𝑘 )
]

(B.9)

Putting the two terms together:

𝜕2

𝜕𝑡2
P−(r, 𝑡) = −𝜔2P−(r, 𝑡) + 2

ℏ
dd ·

(
−𝑖

∑︁
𝑘

(𝜔 − 𝜔𝑘 )E𝑘𝑎𝑘𝑒
𝑖k·r

)
𝑊 (r, 𝑡) − 2

ℏ
dd ·

∑︁
𝑘

E𝑘 (P−(r, 𝑡) · E𝑘 )

= −𝜔2P−(r, 𝑡) + 2
ℏ

d

(
−𝑖

∑︁
𝑘

(𝜔 − 𝜔𝑘 )d · E𝑘𝑎𝑘𝑒
𝑖k·r

)
𝑊 (r, 𝑡) − 2

ℏ
d
∑︁
𝑘

d · E𝑘 (P−(r, 𝑡) · E𝑘 )

(B.10)

We also evaluate:

d2𝑎𝑘

d𝑡2
= − 𝑖

ℏ

[
−𝑖𝜔𝑘𝑎𝑘 −

1
ℏ

d · E𝑘𝑒
−𝑖k·r𝜎−, 𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡

]
(B.11)

The first term evaluates to:

− 𝑖
ℏ
[−𝑖𝜔𝑘𝑎𝑘 , 𝐻𝑟𝑎𝑑 + 𝐻𝑖𝑛𝑡] = −

𝜔𝑘

ℏ

[
𝑎𝑘 , ℏ

∑︁
𝑘

𝜔𝑘𝑎
†
𝑘
𝑎𝑘

]
− 𝜔𝑘

ℏ

[
𝑎𝑘 , d · 𝑖

∑︁
𝑘 ′

E𝑘 ′𝑎
†
𝑘 ′𝑒
−𝑖k′·r ⊗ 𝜎−

]
= −𝜔2

𝑘𝑎𝑘 −
𝑖

ℏ
𝜔𝑘d · E𝑘𝑒

−𝑖k·r𝜎−

(B.12)

while the second term evaluates to:
𝑖

ℏ2

[
d · E𝑘𝑒

−𝑖k·r𝜎−, 𝐻𝑑𝑜𝑡 + 𝐻𝑖𝑛𝑡

]
=

𝑖

ℏ2 d · E𝑘𝑒
−𝑖k·r (

[𝜎−, ℏ𝜔𝜎𝑧] + [𝜎−,−d · E+ ⊗ 𝜎+]
)

=
𝑖

ℏ
𝜔 d · E𝑘𝑒

−𝑖k·r𝜎− + 2𝑖
ℏ2 (d · E𝑘 )𝑒−𝑖k·rd · E+ ⊗ 𝜎𝑧

(B.13)
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Together we have:

d2𝑎𝑘

d𝑡2
= −𝜔2

𝑘𝑎𝑘 +
𝑖

ℏ
(𝜔 − 𝜔𝑘 )d · E𝑘𝑒

−𝑖k·r𝜎− + 2𝑖
ℏ2 (d · E𝑘 )𝑒−𝑖k·rd · E+ ⊗ 𝜎𝑧 (B.14)

Thus:

𝜕2E+

𝜕𝑡2
= −𝑖

∑︁
𝑘

E𝑘

d2𝑎𝑘

d𝑡2
𝑒𝑖k·r

= −𝑖
∑︁
𝑘

(−𝜔2
𝑘 )E𝑘𝑎𝑘𝑒

𝑖k·r + 1
ℏ

∑︁
𝑘

E𝑘 (𝜔 − 𝜔𝑘 )d · E𝑘𝑒
−𝑖k·r 𝜎− + 2

ℏ2

∑︁
𝑘

𝐸𝑘 (d · E𝑘 )d · E+ ⊗ 𝜎𝑧

= 𝑐2∇2E+ + 1
ℏ

∑︁
𝑘

E𝑘 (𝜔 − 𝜔𝑘 )d · E𝑘𝑒
−𝑖k·r 𝜎− + 2

ℏ2

∑︁
𝑘

𝐸𝑘 (d · E𝑘 )d · E+ ⊗ 𝜎𝑧

(B.15)

and:

𝜕2E+

𝜕𝑡2
+ 𝑐2(−∇2E+ + ∇(∇ · E+)) = (B.16)

[Rewrite this section in terms of (3.25)]
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APPENDIX C

DERIVATION OF LINDBLAD MASTER EQUATION

In Section 4.1, we saw that invoking the Born-Markov approximation yields an integro-differential

master equation for the density matrix in the interaction picture:

d
d𝑡
�̃�(𝑡) = −1

ℏ2 Tr𝑟𝑎𝑑
∫ ∞

0
𝑑𝑡′[𝐻𝑖𝑛𝑡 (𝑡), [𝐻𝑖𝑛𝑡 (𝑡 − 𝑡′), �̃�(𝑡) ⊗ �̃�𝑟𝑎𝑑]] (C.1)

where 𝐻𝑖𝑛𝑡 (𝑡) is the interaction Hamiltonian.

Now observe that the interaction Hamiltonian in the Schrödinger picture:

𝐻𝑖𝑛𝑡 = −
∑︁
𝑖

d𝑖 · (E+(r𝑖) + E−(r𝑖)) ⊗ (𝜎+𝑖 + 𝜎−𝑖 )

= −
∑︁
𝑖

d̂𝑖 · E𝑖 =
∑︁
𝛼

𝐴𝛼 ⊗ 𝐵𝛼

(C.2)

can be written as a product of operators 𝐴𝛼 = −∑
𝑖 (𝑑𝛼)𝑖 and 𝐵𝛼 =

∑
𝑖 (𝐸𝛼)𝑖 acting on the dots and

field, respectively (here 𝛼 indexes each of the three Cartesian components of d̂𝑖 or E𝑖).

Let us now decompose the 𝐴𝛼 in terms of the eigenstates of 𝐻𝑑𝑜𝑡 , which are precisely the Dicke

states |𝑆, 𝑀⟩:

𝐻𝑑𝑜𝑡 |𝑆, 𝑀⟩ = ℏ𝜔𝜎𝑧 |𝑆, 𝑀⟩ = 𝑀ℏ𝜔 |𝑆, 𝑀⟩ (C.3)

It therefore suffices to project 𝐴𝛼 onto subspaces defined by an energy differenceℏ𝜔 (or equivalently,

a difference in number of excited states 𝑀′ − 𝑀 = 1):

𝐴𝛼 (𝜔) =
∑︁

𝑀 ′−𝑀=1
⟨𝑆, 𝑀 | 𝐴𝛼 |𝑆, 𝑀′⟩ (C.4)

By the completeness of the eigenstates of 𝐻𝑑𝑜𝑡 we may write:

𝐴𝛼 =
∑︁
𝜔

𝐴𝛼 (𝜔) =
∑︁
𝜔

𝐴𝛼 (𝜔)† (C.5)

Thus:

𝐻𝑖𝑛𝑡 =
∑︁
𝛼,𝜔

𝐴𝛼 (𝜔) ⊗ 𝐵𝛼 =
∑︁
𝛼,𝜔

𝐴𝛼 (𝜔)† ⊗ 𝐵†𝛼 (C.6)
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To transform 𝐻𝑖𝑛𝑡 to the interaction picture, recall that 𝑈 (𝑡) = exp(−𝑖(𝐻𝑑𝑜𝑡 + 𝐻𝑟𝑎𝑑)𝑡/ℏ), so

𝑈†(𝑡)𝐴𝛼 (𝜔)𝑈 (𝑡) = 𝑒−𝑖𝜔𝑡𝐴𝛼 (𝜔), and:

𝐻𝑖𝑛𝑡 (𝑡) =
∑︁
𝛼,𝜔

𝑒−𝑖𝜔𝑡𝐴𝛼 (𝜔) ⊗ 𝐵𝛼 (𝑡) =
∑︁
𝛼,𝜔

𝑒𝑖𝜔𝑡𝐴𝛼 (𝜔)† ⊗ 𝐵†𝛼 (𝑡) (C.7)

where 𝐵𝛼 (𝑡) = 𝑒𝑖𝐻𝑟𝑎𝑑 𝑡𝐵𝛼𝑒
−𝑖𝐻𝑟𝑎𝑑 𝑡 . We can finally substitute this expression into the Born-Markov

master equation (C.1). After expanding out the commutators one obtains:

d
d𝑡
�̃�(𝑡) = 1

ℏ2 Tr𝑟𝑎𝑑
∫ ∞

0
𝑑𝑡′[𝐻𝑖𝑛𝑡 (𝑡 − 𝑡′) �̃�(𝑡) �̃�𝑟𝑎𝑑 𝐻𝑖𝑛𝑡 (𝑡) − 𝐻𝑖𝑛𝑡 (𝑡)𝐻𝑖𝑛𝑡 (𝑡 − 𝑡′) �̃�(𝑡) �̃�𝑟𝑎𝑑] + etc.

=
∑︁
𝜔,𝜔′

∑︁
𝛼,𝛽

𝑒−𝑖(𝜔−𝜔
′)𝑡𝛾𝛼𝛽 (𝜔) [𝐴𝛽 (𝜔) �̃�(𝑡)𝐴𝛼 (𝜔′)† − 𝐴𝛼 (𝜔′)†𝐴𝛽 (𝜔) �̃�(𝑡)] + etc.

(C.8)

where:

𝛾𝛼𝛽 =
1
ℏ2 Tr𝑟𝑎𝑑

∫ ∞

0
𝑑𝑡′𝑒𝑖𝜔𝑡

′
𝐸𝛼 (𝑡)𝐸𝛽 (𝑡 − 𝑡′) �̃�𝑟𝑎𝑑 =

1
ℏ2

∫ ∞

0
𝑑𝑡′𝑒𝑖𝜔𝑡

′ ⟨𝐸𝛼 (𝑡)𝐸𝛽 (𝑡 − 𝑡′)⟩ (C.9)

defines elements of a spectral correlation tensor.

To reduce the double sum over frequencies, the secular approximation is invoked, in which all

terms with 𝜔 ≠ 𝜔′ are neglected due to their fast oscillations averaging out their contribution (this

step is equivalent to invoking the Rotating Wave Approximation to the interaction Hamiltonian

(C.2)). The result is:

d
d𝑡
�̃�(𝑡) =

∑︁
𝜔

∑︁
𝛼,𝛽

𝛾𝛼𝛽 (𝜔) [𝐴𝛽 (𝜔) �̃�(𝑡)𝐴𝛼 (𝜔)† − 𝐴𝛼 (𝜔)†𝐴𝛽 (𝜔) �̃�(𝑡)] + etc. (C.10)

After taking the continuum limit
∑

𝜔 =
∑

𝑘 → 𝑉

(2𝜋)3
∫
𝑑k, we must write 𝛾𝛼𝛽 in terms of the

fields defined by (3.15 - 3.16), then evaluate the time and k-space integrals. This mirrors steps

in the derivation of the photon emission rate (see Section 3.4). However, in the evaluation of the

Wigner-Weisskopf approximated integral (3.32), the contribution from the Cauchy Principle Value

can in general be retained, giving rise to a Lamb shift. Assuming all dipole strengths are equal

(𝑑𝑖 = 𝑑 𝑗 = 𝑑 for all 𝑖, 𝑗), the result is:

𝛾 =
1
𝑑2

∑︁
𝑖 𝑗

(
𝚪𝑖 𝑗

2
+ 𝑖𝛀𝑖 𝑗

)
(C.11)
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where:

𝚪𝑖 𝑗 (r) =
3Γ0
4

[
(1 − r̂ ⊗ r̂) sin 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
cos 𝑘𝑅
(𝑘𝑅)2

− sin 𝑘𝑅

(𝑘𝑅)3

)]
(C.12)

𝛀𝑖 𝑗 (r) =
3Γ0
4

[
−(1 − r̂ ⊗ r̂) cos 𝑘𝑅

𝑘𝑅
+ (1 − 3r̂ ⊗ r̂)

(
sin 𝑘𝑅

(𝑘𝑅)2
+ cos 𝑘𝑅
(𝑘𝑅)3

)]
(C.13)

Γ0 =
2𝑑2𝜔3

3𝜋𝜖0ℏ𝑐3 (C.14)

Substituting this back into (C.10), transforming back to the Schrödinger picture via 𝜌(𝑡) = 𝑈�̃�(𝑡)𝑈†,

and using:

A = −
∑︁
𝑖

d̂𝑖 = −𝑑
∑︁
𝑖

𝜖𝑖 (𝜎+𝑖 + 𝜎−𝑖 ) (C.15)

for each component 𝐴𝛼 yields the Lindblad master equation:

d
d𝑡
𝜌(𝑡) = − 𝑖

ℏ
[𝐻𝑑𝑜𝑡 + 𝐻𝑠ℎ𝑖 𝑓 𝑡 , 𝜌] −

∑︁
𝑖 𝑗

Γ𝑖 𝑗

2
(𝜎+𝑖 𝜎−𝑗 𝜌 − 2𝜎−𝑗 𝜌𝜎

+
𝑖 + 𝜌𝜎+𝑖 𝜎−𝑗 ) (C.16)

where Γ𝑖 𝑗 = 𝜖𝑖 · 𝚪𝑖 𝑗 · 𝜖 𝑗 , Ω𝑖 𝑗 = 𝜖𝑖 ·𝛀𝑖 𝑗 · 𝜖 𝑗 and:

𝐻𝑠ℎ𝑖 𝑓 𝑡 =
∑︁
𝑖 𝑗

Ω𝑖 𝑗𝜎
+
𝑖 𝜎
−
𝑗 (C.17)

describes a Lamb (energy) shift. (It is apparent that the Cauchy Principle value termΩ is responsible

for this shift.)
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