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ABSTRACT

Nuclear charge-exchange reactions at intermediate energies are powerful probes of the

isovector response of nuclei. They provide an opportunity to study isovector giant reso-

nances, such as the Gamow-Teller resonance and the isovector giant monopole and dipole

resonances. The properties of these giant resonances provide important insights into the

bulk properties of nuclear matter and have important implications for neutrino and astro-

physics. In this work, the focus is on the investigation of the properties of isovector giant

resonances excited via the 60Ni(3He,𝑡) reaction at 140 MeV/u up to excitation energies

of 60 MeV to study the Gamow-Teller resonance, isobaric analog state, isovector (spin)

monopole, dipole, and quadrupole giant resonances.

The (3He,𝑡) reaction was used as an isovector probe to investigate the properties of

isovector giant resonances in 60Cu. To investigate these isovector giant resonances, the

analysis was done through a multiple decomposition analysis (MDA). The differential cross

sections were fitted with a linear combination of the distorted wave Born approximation

(DWBA) angular distributions associated with different angular momentum transfer Δ𝐿.

The angular distributions were calculated in DWBA by using the code package FOLD

code. Different giant resonances were seen at different excitation energies. The results

were compared with shell-model, and normal-mode calculations.

It was found that the Gamow-Teller strengths extracted from the experiment could

be reproduced reasonably well by the shell-model calculations. The extraction of the

isovector dipole and monopole resonances was complicated by the presence of the quasi-

free continuum. A detailed extraction of the isovector monopole resonances was not

possible. For isovector dipole resonance, a reasonable consistency was found with the



normal-mode calculations, after applying a simple estimate for the contributions from the

quasifree continuum.

Overall, this work provides valuable insights into the properties of isovector giant

resonances, highlights the importance of continuum subtraction, and provides a detailed

analysis of the (3He,𝑡) reaction for probing these resonances at high excitation energies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Charge-exchange (CE) reactions involve the exchange of charge between a target nucleus

and a nucleus of the incoming beam. CE reactions studies at intermediate beam energies

(∼ 100 MeV/𝑢) provide insight into isovector excitations, and isovector giant resonances

in particular. These CE reactions are associated with a change in isospin (Δ𝑇 = 1). By

selecting specific types of CE reactions, such as (n,p) or (p,n)-type CE reactions, one can

define the projection of the isospin quantum number as 𝑇𝑧 = ±1. A variety of excitations,

associated with the transfer of different units of angular momentum and spin, can be probed.

Generally, measurements of the properties of the isovector giant resonances serve as

a stringent test of microscopic models of nuclei at high excitation energy. These studies

provide valuable insights into the bulk properties of nuclear matter and have far-reaching

applications in fields like astrophysics and neutrino physics. To understand neutron stars,

we need to understand the bulk properties of asymmetric (very neutron-rich) nuclear matter.

The investigation of isovector giant resonances for nuclei with increasing excess of neutrons

can provide insights into these bulk properties as a function of increasing proton-neutron

asymmetry [1, 2]. By studying giant resonances, one can test the underlying assumptions

of the models, such as the residual interactions [2].

Experimentally, there are few data sets where spectra are obtained up to high excitation

energies. The motivation behind the present work is to investigate the 60Ni(3He,𝑡) reaction

at 140 MeV/𝑢 up to excitation energies of 60 MeV to study the:

• Gamow-Teller Resonance and Isobaric Analog State,
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• Isovector (spin) monopole resonances,

• Isovector (spin) dipole resonances.

1.2 Thesis Organization

This work is divided into 6 chapters. Chapter 2 provides an overview of both micro-

scopic and macroscopic perspectives on giant resonances. It discusses the isospin structure

of nuclei and its significance in the isovector response. The chapter delves into the prop-

erties of isovector giant resonances as they serve as tests of the microscopic model of

nuclei at high excitation energies. Additionally, it introduces the hydrodynamic model

of giant resonances as a macroscopic model describing a nucleus as a liquid drop of the

proton and neutron fluids oscillating in different modes around its equilibrium shape. The

chapter further explores isovector giant resonances within the charge-exchange spectrum.

and concludes with an overview of the charge-exchange reaction probes.

Chapter 3 discusses a brief overview of the theoretical tools used to extract information

about charge-exchange (CE) excitations and the properties of the isovector giant resonances

using the distorted wave Born approximation in the code package FOLD. A brief overview

of the Eikonal approximation and the unit cross section for GT and IAS will be discussed

in this chapter.

Chapter 4 provides an overview of the experimental setup and procedures used to in-

vestigate isovector giant resonances in 60Ni up to excitation energy of 60 MeV by using

the (3He,𝑡) reaction at 140 MeV/𝑢. The experiment was performed with the Grand Raiden

Spectrometer (GRS) at the Research Center for Nuclear Physics (RCNP) in Osaka Uni-

versity. Furthermore, this chapter describes the procedures used to extract the differential

cross sections from the three rigidity settings (low, medium, and high) of the GRS.
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Chapter 5 presents the results from the multiple decomposition analysis (MDA), where

the spectra were decomposed into contributions from resonances with different angular

momentum transfers. It shows the location of the isovector giant resonances investigated

via the 60Ni(3He, 𝑡) reaction. This chapter details the findings for the Gamow-Teller

strength, B(GT), and the study of the B(GT) for the 𝑇0 + 1 states at 14.4 MeV and above

in 60Cu, compared with known 𝑇0 + 1 states from 60Ni(𝑝, 𝑝′) and 60Ni(𝑒, 𝑒′) reactions. It

elucidates the techniques for subtracting a quasifree-continuum from the measured data.

It underscores the significance of the continuum subtraction. Finally, it delves into the

extraction of isovector spin giant monopole and dipole strengths. Comparisons with

theoretical calculations are made

Chapter 6 marks the conclusion of the thesis with a general summary and future outlook.
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CHAPTER 2

GIANT RESONANCES

2.1 Definitions and Classification of the Giant Resonances

2.1.1 Microscopic View of the Giant Resonances

In the microscopic picture, giant resonances are described as a coherent superposition

of one-particle one-hole (1p-1h) transitions excited from the ground state[3, 4], where the

particle is a proton (neutron), and the hole is neutron (proton). Charge-exchange reactions

are associated with the transfer of isospin (ΔT = 1). The projection of the isospin quantum

number (ΔTz) can be lowered (ΔTz = −1) or raised (ΔTz = +1 ) in the (𝑝, 𝑛) or (𝑛, 𝑝)- type

charge-exchange reactions, respectively. This is illustrated in Figure 2.1. The transitions

to excited states from the ground state for a certain giant resonance are characterized by

the operator O𝜇

JM [5]:

O𝜇

JM = r𝜆 [−→𝜎 ⊗ −→
𝑌𝐿]J

M𝜏𝜇 (2.1)

where J is the total angular momentum transfer (−→𝐽 =
−→
𝐿 + −→

𝑆 ) and M is the projection of

J, L is the orbital angular momentum transfer, 𝜆 defines the radial operator and is defined

by 𝜆 = Δ𝐿 + 2Δ𝑛, where Δ𝐿 is the orbital angular momentum transfer, and 𝑛 is the

change in the major oscillator for transition. If the excitation goes across a major oscillator

shell, 𝜆 will be increased by 2. This is, for example, the case for the isovector giant

monopole resonance (IVGMR) and its spin-transfer partner, the isovector spin-transfer

giant monopole resonance (IVSGMR). −→𝑌𝐿 is the spherical harmonic associated with 𝐿, −→𝜎

is the spin-transfer operator, and 𝜏 is the isospin operator, with 𝜇 = ±1 for charge-exchange

reactions.

The total transition strength is constrained by the most coherent superposition of the
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Figure 2.1 Schematic representation of collective one-particle one-hole (1p-1h) excitations
of the isovector giant resonances for Δ𝑇𝑧 = −1 reactions (e.g., (p,n), (3He,𝑡)) (left) and
Δ𝑇𝑧 = +1 reactions (e.g., (n,p), (𝑡,3He) ) (right). Figure taken from [5].

particle-hole excitations associated with a specific one-body operator as described through

[4, 5, 6, 7, 8, 9]. The strength function described the response of a nucleus to an arbitrary

one-body operator 𝑂 connecting the ground state of a nucleus to the excited states:

SO =
∑︁

f

��⟨Φf |O|Φi⟩
��2𝛿(Ef − Ei) MeV (2.2)

where
��Φ𝑖⟩ and

��Φ 𝑓 ⟩ stands for the ground (𝑖) and final ( 𝑓 ) states respectively. For

continuum states, the sum turns into an integral.

2.1.2 Macroscopic View of the Giant Resonances

In the macroscopic picture, giant resonances are defined as a collective motion of

nucleons involving many if not all the particles in the nucleus, causing density oscillations

in the proton and neutron nuclear fluids [10]. Such collective oscillations are categorized
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into two types: isoscalar (Δ𝑇 = 0) if the proton and neutron fluids oscillate in-phase, and

isovector (Δ𝑇 = 1), if they oscillate out-of-phase. In addition, the collective motion can

be associated with spin. If nucleons with opposite spin oscillate in phase the resonances

are referred to as electric (Δ𝑆 = 0). If nucleons with opposite spin oscillate out-of-phase,

the oscillations are referred to as magnetic (Δ𝑆 = 1). They are depicted schematically in

Figure 2.2. In this work, we will focus on the isovector giant resonances. Table 2.1 lists

the acronyms used to describe these resonances in this thesis, although other variations

exist (for example, the acronym SDR can represent the IVSGDR). The table also includes

the relevant quantum numbers for each of these giant resonances. The list of isovector

giant resonances in Table 2.1 can be extended to resonances of higher multipolarity, but

identifying such excitations is difficult since they are situated on top of the continuum

background and their angular distributions are not very distinctive. The IAS and GTR

cannot be associated with a hydrodynamic motion as there is no radial component to the

operator (𝑟𝜆 = 1).
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Figure 2.2 Schematic of the macroscopic depiction of giant resonance modes. The symbols
p and n represent proton and neutron fluids, and the small triangles indicate spin direction
and refer to either up or down. The arrows show the direction of motion of the fluid
components. Single asterisks indicate resonances for which a second contribution exists in
which spin directions are reversed. The double asterisk indicates that this resonance does
not exist in first order. The figure was modified from Ref [5]

2.2 Isospin Picture

The symmetry between protons and neutrons can be described by using the isospin

operator t, which is a vector quantity that behaves identically to the ordinary spin vectors.

The protons are defined as having isospin projection 𝑡𝑧 = −1/2, while neutrons have

𝑡𝑧 = +1/2. The total isospin T of a nucleus is the vector sum of the isospins of its

constituent nucleons (T =
A∑
t=i

ti) [11]. The isospin projection 𝑇𝑧, calculated by 𝑇𝑧 = 𝑁−𝑍
2

can be positive, for 𝑁 > 𝑍 , or negative, for 𝑁 < 𝑍 . The value of 𝑇𝑧 determines the states

that can be populated in the daughter nucleus. The concept of isospin is key for describing
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Table 2.1 Overview of the isovector giant resonances and their quantum numbers. Δ𝑇

stands for isospin-transfer, Δ𝐿 for angular momentum, Δ𝑆 for spin, Δ𝐽 for total angular
momentum transfer, and 𝜋 for the charge in parity. If the charge-exchange reaction is
associated with angular momentum and spin transfer, the excited giant resonance has
several components with different total spins. Δ𝑛 is the change in the major oscillator shell,
and Δ𝜆 = Δ𝐿 + 2Δ𝑛

Transition name Δ𝑇 Δ𝐿 Δ𝑆 Δ𝐽𝜋 Δ𝑛 Δ𝜆(ℏ𝑤)
Fermi/Isobaric Analog State (Fermi/IAS) 1 0 0 0+ 0 0
Gamow-Teller Resonance (GTR) 1 0 1 1+ 0 0
Isovector Giant Monopole Resonance (IVGMR) 1 0 0 1+ 0 2
Isovector Spin Giant Monopole Resonance (IVSGMR) 1 0 1 1+ 1 2
Isovector Giant Dipole Resonance (IVGDR) 1 1 0 1− 0 1
Isovector Spin Giant Dipole Resonance (IVSGDR) 1 1 1 (0, 1, 2)− 0 1
Isovector Giant Quadrupole Resonance (IVGQR) 1 2 0 2+ 0 2
Isovector Spin Giant Quadrupole Resonance(IVSGQR) 1 2 1 (1, 2, 3)+ 0 2

charge-exchange reactions as isovector probes. There are two types of charge-exchange

reactions. The first one is 𝛽−-type or (p,n)-type, for which the change in isospin projection

Δ𝑇𝑧 = −1. In the Δ𝑇𝑧 = −1 direction, for nuclei with 𝑁 > 𝑍 , states in residual nucleus

(with 𝑇𝑧 = 𝑇0 − 1, where 𝑇0 is the ground state isospin of another nucleus i.e. ground state

of the target nucleus) with isospin 𝑇0 − 1, 𝑇0, and 𝑇0 + 1 can be populated. The second

one is 𝛽+-type or (n,p)-type charge-exchange reaction. For nuclei with 𝑁 > 𝑍 states in the

residual nucleus (with 𝑇𝑧 = 𝑇0 + 1) have isospin 𝑇0 + 1; this occurs because the minimum

isospin in the residual nucleus is equal to 𝑇𝑧. This is shown in Figure 2.3. Here we focus on

(3He,𝑡) reactions, which are of 𝛽−-type or (p,n)-type. It is possible to write the transition

strength to the final states in terms of reduced matrix elements for which the dependence on

isospin quantum numbers is made explicit. These isospin factors are 1
(2T0+1) (T0+1) for final

states with isospin 𝑇0 + 1, 1
𝑇0+1 for final states with isospin 𝑇0 and 2𝑇0−1

2𝑇0+1 for states with final

isospin of 𝑇0 − 1. In the case of 60Ni, the isospin of the target nucleus is 2, and the isospin

weights are 1
15 , 1

3 and 3
5 for final states with isospin 𝑇0 + 1, 𝑇0 and 𝑇0 − 1, respectively.
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Figure 2.3 Schematic depiction of the isospin scheme associated with charge-exchange
reactions for the excited states in both (p,n) and (n,p) directions. The dotted lines indicate
the analog states and the arrows show the possible transitions. For charge-exchange
reactions with 𝑁 = 𝑍 ( 𝑇 = 𝑇𝑧 = 0 ) nuclei, only final states with 𝑇 = 1 can be populated
in both Δ𝑇𝑧 = ±1 directions. Figure modified from Ref [5].

As discussed for the IAS (section 2.3.1), because of isospin symmetry, analogs of states

with the same isospin can be found in isobaric nuclei. Besides the analog of the ground

states, other states can have analogs as well. This is illustrated in Figure 2.4. Δ𝑇𝑧 = −1

charge-exchange reactions on a target nucleus with isospin 𝑇0 will populate states with

𝑇0 − 1, 𝑇0, and 𝑇0 + 1. States with isospin 𝑇0, and 𝑇0 + 1 have analogs in the target nucleus.

These analogs can be populated through inelastic scattering reactions. States with isospin

𝑇0 + 1 have analogs in the nucleus that can be reached through Δ𝑇𝑧 = +1 charge-exchange

reactions. Hence, in principle, it is possible to learn about the 𝑇0 + 1 states by performing

Δ𝑇𝑧 = +1 and Δ𝑇𝑧 = −1 charge-exchange reactions. Unfortunately, it is not easy to study
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the 𝑇0 +1 states in Δ𝑇𝑧 = −1 charge-exchange reactions, in part because they are disfavored

due to the clebsch-Gordan isospin coefficients for 𝑁 > 𝑍 discussed above. In addition,

they are situated at excitation energies where there are many states that have lower isospin.

Still, the studies of analog states have been used to extract GT strengths for 𝛽+ direction

from (p,n) charge-exchange data, including for the case of 60Ni(3He,𝑡) reaction. In this

work, it is attempted to improve on that previous effort.

Figure 2.4 Schematic depiction of isospin symmetry in charge-exchange reactions. The
dotted lines indicate states of like isospin (analog states) in both Δ𝑇𝑧 = ±1 directions. In
the Δ𝑇𝑧 = −1 direction, the IAS is populated from 𝑇0 to 𝑇0 transition, but no such transition
can occur in Δ𝑇𝑧 = +1 direction.
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2.3 Isovector Giant Resonances

2.3.1 Isobaric Analogue State

The experimental measurements of nuclear spectra have shown that families of isobaric

nuclei, which have the same mass number (𝐴), but different neutron (𝑁) and proton (𝑍)

numbers have analog energy levels. The neutron and proton have similar masses and are

up/down states of a system with isospin 1/2 and have approximately identical behavior

under the strong nuclear force. Ignoring the electromagnetic and weak interactions, nuclear

spectra with identical spins are therefore similar, which is known as isospin symmetry. The

IAS excited in charge-exchange reactions is the analog of the ground state of the mother

nucleus. It has the same structure, but with one neutron (proton) replaced by a proton

(neutron). The states have the same isospin 𝑇0, but differ by one unit in 𝑇𝑧, same quantum

numbers, and the same microscopic properties.

Focusing on nuclei with 𝑁 > 𝑍 , the IAS of the mother ground state can only be

excited in Δ𝑇𝑧 = −1 charge-exchange reactions: in the Δ𝑇𝑧 = +1 direction, no states

with isospin identical to that of the mother ground state are available, as shown in Figure

2.3. The excitation of the IAS is characterized with the transfer of quantum numbers

Δ𝐽 = Δ𝐿 = Δ𝑆 = 0 and Δ𝑇 = 1. In terms of the shell-model, to excite the IAS, a target

neutron is replaced with a proton that fills the same single-particle orbit. The excitation

strength of IAS exhausts the model-independent Fermi sum rule [12] given by:

S(𝛽−) − S(𝛽+) = N − Z, (2.3)

where 𝑆(𝛽−) and 𝑆(𝛽+) indicate the total strength of the 𝛽− and 𝛽+ decays for the Fermi

transitions, respectively. For 𝑁 − 𝑍 > 0, 𝑆(𝛽+) = 0. The simple structure of IAS can help

in the understanding of the neutron skins [13] and the nuclear equation of state [14].
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For charge-exchange reactions at intermediate energies (∼ 100 MeV/𝑢 and above), it

has been shown [15] that the differential cross section at small momentum transfer is

proportional to the Fermi strength, B(F):(
d𝜎
dΩ

(q = 0)
)

IAS
= �̂�𝜏B(F), (2.4)

where �̂�𝜏 is the unit cross section. Since this excitation is due to the central isospin transfer

(𝑉𝜏) component of the nucleon-nucleon interaction (see Chapter 3), the measurement of

the IAS provides direct information about this component of the interaction [15].

The IAS has an attraction property: it can be used to measure the charge-exchange cross

section at forward momentum transfers that are proportional to the 𝑁−𝑍 transition strength.

It provide a direct probe of the strength of the isospin component of the nucleon-nucleon.

2.3.2 Gamow-Teller Resonances

Over the past decades, Gamow-Teller (GT) transitions have been one of the main

motivations for performing charge-exchange experiments at intermediate beam energies.

The GT transition populated through charge-exchange reactions are associated with the 𝜎𝜏

operator and have Δ𝐿 = 0, and Δ𝑆 = 1, and Δ𝑇 = 1. The GT transitions populates the

same final states as in allowed 𝛽/electron-capture (𝛽/EC) decays. Due to the proportionality

between cross section at 𝑞 = 0, and B(GT), the Gamow-Teller transition strength can be

extracted from charge-exchange reactions (see section 5.3.1), even though CE reactions are

mediated by the strong nuclear force, and 𝛽/EC decay is mediated by the weak nuclear force.

However, by using charge-exchange reactions, one can populate states that are outside of

the𝑄-value window available for 𝛽/EC decay (more details seen [4, 6, 16, 17, 18, 19, 20]).

The ability to extract the GT transition strength model-independently from charge-

exchange reactions allows for a stringent test of nuclear structure models. This ability has
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many applications in nuclear astrophysics and neutrino physics. The well-known model-

independent proportionality relationship between GT transitions cross section and B(GT)

from the charge-exchange reactions [21, 15, 22] is given by:(
d𝜎
dΩ

(q = 0)
)
ΔL=0

= �̂�GTB(GT) (2.5)

where �̂�GT is the Gamow-Teller unit cross sections, and on the left-hand side, the Gamow-

Teller cross section is extracted at zero momentum transfer (q = 0, where q = kf − ki),

from theoretical calculations by setting the 𝑄-value of the reaction used to 0 MeV and

considering the cross section at zero degrees. Experimentally, the measured cross section

is the combination of all possible charge-exchange transitions. Multiple decomposition

analysis (MDA) is performed to extract the Δ𝐿 = 0 component by fitting the experimental

angular distribution with a linear combination of various curves ( this will be discussed in

more details, see Chapters 3 and 5).

The total amount of Gamow-Teller strength, including both the 𝛽+ and 𝛽− directions

for a particular nucleus, is constrained by the model-independent sum rule [12]:

S(𝛽−) − S(𝛽+) = 3(N − Z), (2.6)

where N is the number of neutrons present in the target nucleus, and Z is the number

of protons. In nuclei in which N is appreciably larger than Z, Equation 2.6 reduces in a

shell-model picture to :

S(𝛽−) ≈ 3(N − Z), (2.7)

since 𝑆(𝛽+) ∼ 0 due to Paul blocking [4]. Experimentally, only 50-60% of the estimated

sum-rule strength can be accounted for in the excitation-energy range including the GTR.
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This is known as the quenching of the sum rule [23, 24, 25, 26].

2.3.3 Isovector-Spin & Non-Spin-Transfer Giant Monopole Resonances

The IVGMR and IVSGMR resonances can be described as breathing modes in which

the proton and neutron fluids oscillate out-of-phase. They are of fundamental interest

as collective excitations at high excitation energies that are described microscopically by

coherent 2ℏ𝜔, 1𝑝−1ℎ excitations [27, 28, 1]. Their properties serve as tests for microscopic

model calculation with effective nucleon-nucleon interactions [29]. The excitation energy

of the IVGMR and IVSGMR can be used to understand the bulk properties of nuclei and

nuclear matter [3, 4, 29, 30, 31, 32]. The strength distribution of the IVGMR provides

a useful tool for better understanding the neutron skin properties from which the density

dependence of the symmetry energy for asymmetric nuclear matter can be constrained

[33, 34].

The isovector giant monopole resonance (IVGMR) is characterized by no change in

the orbital angular momentum (Δ𝐿 = 0), non-spin-transfer (Δ𝑆 = 0), and isospin-transfer

of one unit (Δ𝑇 = 1). The properties of the IVGMR resonance provide insight into the

fundamental understanding of the isovector part of the residual nuclear interaction and

isospin symmetry breaking and isospin mixing in nuclei [32]. The IVGMR and IAS differ

by the change in principal quantum number (n) between the particles and holes. The

IVGMR (2ℏ𝑤 excitation) is the overtone of the IAS (0ℏ𝑤). To investigate the IVGMR

experimentally, a probe for non-spin-transfer excitations is required, because its spin-flip

partner has a much larger cross section than the IVGMR at intermediate beam energies

[35, 36, 37, 38, 39, 40, 41, 42]. Therefore, the experimental evidence for the IVGMR is
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limited to the results from the small number of charge-exchange experiments. Convincing

evidence for the IVGMR has been found via the spinless pion charge-exchange reaction

(𝜋+, 𝜋0) [43, 44, 45, 46]. In addition, evidence for the IVGMR has been reported in
60Ni(7Li, 7Be) charge-exchange reaction [47]. Recently, the (10Be, 10B + 𝛾[1.74 MeV])

charge-exchange reaction at E(10Be)=100 AMeV was reported as a new probe for isolating

the isovector non-spin transfer excitations, and thus a useful probe for studying the IVGMR,

as evidenced by the successful extraction of the IVGMR and IVGDR cross sections from
28Si(10Be, 10B + 𝛾) [30].

For probes that are not selective for spin-transfer, the spin-transfer partner of the

IVGMR, the IVSGMR is much more strongly excited than the IVGMR at intermediate

beam energies (100 < 𝐸𝑥 < 300 AMeV ) [35, 38]. This is because the spin-isospin

(𝜎𝜏) component of the nucleon-nucleon interaction is much stronger than the isospin

(𝜏) component [5, 38, 42]. The operator of the IVSGMR carries the same Δ𝐿,Δ𝑆, and

Δ𝑇 as the operator of the GTR. However, the IVSGMR is a 2ℏ𝜔 excitation, and the GT

excitation is of 0ℏ𝜔 nature. So far, the progress in the experimental studies of the IVSGMR

is more advanced than for the IVSGMR due to the much higher cross section, which

makes it easier to identify charge-exchange experiments with light ion probes. [48, 49].

In general, isolating and observing the IVSGMR in Δ𝑇𝑧 = +1 charge-exchange reactions

is easier than in the Δ𝑇𝑧 = −1 charge-exchange reactions. This is because the IVSGMR

in the Δ𝑇𝑧 = +1 direction is located at lower excitation energies, where the continuum

background is lower [36, 50]. The exothermic heavy-ion charge-exchange reactions have

been applied to enhance the signature of the IVSGMR through 90Zr(12N, 12C) reaction at

175 MeV/𝑢 [51]. The exothermic nature of this reaction reduces the momentum transfer
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for excitations at high excitation energy which is beneficial for enhancing the cross section

for the Δ𝐿 = 0 giant resonances.

2.3.4 Isovector-Spin & Non-spin-Transfer Giant Dipole Resonance

Significant effort to investigate the other isovector giant resonances through charge-

exchange reaction has been made, including the isovector spin giant dipole resonances

(IVSGDR, Δ𝐿 = 1, Δ𝑆 = 1, Δ𝑇 = 1) and non-spin-transfer giant dipole resonances

(IVGDR, Δ𝐿 = 1, Δ𝑆 = 0, Δ𝑇 = 1). The IVGDR was the first resonance that could be

explained in a macroscopic picture in which the neutron fluid oscillates against the proton

fluid [52].

The IVSGDR consists of 3 components associated with the three possible couplings

from its spin transfer and angular momentum transfer: 𝐽𝜋
𝑓
= 0−, 1−, 2−, assuming 𝐽𝜋

𝑖
= 0+,

as shown in Table 2.1. In the experimental data analysis, it is not easy to isolate the

three spin-parity components of the IVSGDR. All three components are associated with

angular momentum transfer Δ𝐿 = 1. Their angular distributions are therefore similar,

and they peak approximately at the same scattering angle. It is beneficial to separate

the three components to perform a detailed test of the theoretical calculations, but it

requires the measurement of polarization observables, which has only been done a few

times (see e.g., [53]). The IVSGDR is more strongly excited in charge-exchange reactions

at intermediate beam energies compared to the IVGDR. This is because the spin-isospin

(𝜎𝜏) component of the nucleon-nucleon interaction is much stronger than the isospin (𝜏)

component [5, 38, 42]. However, there is no well-established proportionality between

transition strength and differential cross section for dipole resonances. There is also no

model-independent sum rule for the IVSGDR that can be used to characterize the amount
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of strength found in spectra [36, 37].

2.4 Hydrodynamic Model of Giant Resonances

The hydrodynamic or macroscopic model that has been applied to isovector giant

resonances describes a nucleus as a liquid drop of the proton and neutron fluids oscillating

in different modes around its equilibrium shape. The spins of the nucleons serve as an

additional degree of freedom. When describing a nucleus as an oscillation of a liquid drop,

two main modes can be distinguished: a surface-vibrational mode and a compressional

mode. It is worth noting that a vibrating drop can have a superposition of both modes [5].

The amplitude of the oscillations is small. For the surface-vibrational mode, harmonic

oscillations about a mean spherical shape are assumed (see more theoretical discussions

of the surface-vibrational and compressional modes for giant resonances in the References

[5, 54, 8, 55, 56]).

The macroscopic description of giant resonances provides a picture that connects to the

bulk properties of the nucleus and nuclear matter. Therefore, the study of giant resonances

can help constrain models of these bulk properties. An example is the simple vibrational

giant resonance mode known as the ISGMR observed for the first time in 1977 by Harakeh et

al. [57, 2] and confirmed in the same year by Youngblood et al.[58, 59]. They used inelastic

𝛼-scattering measurements at forward scattering angles. This properties of the ISGMR

yields insights into the bulk properties of the nucleus, in particular the incompressibility

of nuclear matter (Knm) [60, 56]. The location of the excitation energy of the ISGMR was

estimated for the first time by Bohr and Mottelson [8]. The energy of the isoscalar giant

monopole resonance was determined as a function of the mass of nucleus (A) [61] to be:

E1,0 =
ℏk1,0

1.2

√︂
Knm
9m

A−1/3 MeV (2.8)
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where k1,0 stands for eigenvalues of the motion for principal quantum number 𝑛 = 1

and multipolarity l = 0, and m is the nucleon mass. Knm was not known at the time of

derivation, and was estimated to be Knm = 135 MeV [8]. The solution for the ISGMR

(E1,0) is:

EISGMR
X = 65A−1/3 MeV (2.9)

When the experimental data became available, the value of knm was determined to be

231 ± 5 MeV [60, 56].

For the IVGMR, assuming that a nucleus consists of two inter-penetrating, incompress-

ible fluids [52, 5, 54, 8, 55, 56] of protons and neutrons, the restoring force is proportional

to the surface of the nucleus (R2). The frequency of the resulting harmonic oscillations

is proportional to the square root of a constant force over mass parameter (A). Therefore,

this assumption leads to a behavior that is linear with R−1/2 or linear with A−1/6, since

R = roA1/3 [5].

In general, the vibrational frequency and excitation energy of a particular giant reso-

nances can be determined come from linearized Navier-Stokes equations [62]. For example,

solving for the IVGMR, the excitation energy is:

EIVGMR
x = 170A−1/3 MeV (2.10)

However, this model with volume terms only does not accurately describe the excitation

energies of the isovector giant resonances. A study by Bowman et al. [31] indicated that

besides the volume terms, surface tension effects must be taken into account as well to

describe the properties of isovector giant resonances. Therefore, a more precise estimate
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of the excitation energy of the IVGMR was found to be:

EIVGMR
x = 88A−1/6

(
1 + 14

3
A−1/3

)−1/2
MeV (2.11)

and the systematic study of experimental results for nuclei gives the excitation energy of

the IVGDR as a function of mass umber (A) [5, 63] to be:

EIVGDR
x = 31A−1/3 + 20A−1/6 MeV (2.12)

2.5 Isovector Giant Resonances in the Charge-Exchange Spectrum

In the microscopic picture, the excitation energies of giant resonances can be estimated

from the energy differences between the shells in which the particles and holes that partic-

ipate in the coherent one-particle one-hole (1p-1h) excitations are located. The excitation

energy for giant resonances is related to the difference in the major shell (Δ𝑁) of the

particles and the holes. The energy difference between each major shell is estimated to be

ℏ𝜔 = 41A−1/3. This simple approximation provides a basic understanding of the relative

excitation energies of the isovector giant resonances. This is illustrated in Figure 2.5(a),

which displays the excitation-energy spectrum in 60Cu obtained from the 60Ni(3He,t) reac-

tion at 140 MeV/𝑢 for 3 ranges in scattering angle, as discussed in more detail in Chapter

4 and 5. Different giant resonances appear at different excitation energies. The angular

distribution provides a characteristic of the angular momentum transfer associated with a

particular excitation.
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Figure 2.5 The typical Δ𝑇𝑧 = −1 charge-exchange energy spectrum from the full range
of excitation energy (60 MeV) used for the three angular settings from the 60Ni(3He,𝑡)
reaction. Various isovector giant resonances and their corresponding spin and parity
(𝐽𝜋) are indicated. Figure (a) include the Isobaric Analog State (IAS), Gamow-Teller
Resonance (GTR), the isovector spin, and non-spin giant dipole, monopole, and quadrupole
resonances (IVSGDR/IVGDR, IVSGMR/IVGMR, and IVSGQR/IVGQR). Their features
can be identified by comparing spectra at different scattering angles. Figure (b), the
visualization of the IAS state at the lower excitation energy range between 0 to 5 MeV.
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For example, the GTR, IAS, and monopole excitations are associated with Δ𝐿 = 0, so

they peak at 0◦ scattering angle. For the (3He,𝑡) reaction at 140 MeV/𝑢, their presence

is enhanced in the spectrum gated on scattering angles between 0 and 5 mrad. Dipole

excitations peak at small but finite angles and their features are enhanced at scattering

angles between 35 and 45 mrad. The IAS is known to reside at Ex(60Cu) = 2.55 MeV, and

the main component of GTR appears at excitation energies of ∼ 10 MeV. The IVSGDR

peaks at an excitation energy of about 18 MeV. The difference in the excitation energy

between ΔN = 1ℏ𝜔 dipole resonances and the ΔN = 0ℏ𝜔 IAS is about 16 MeV, higher than

estimated value of 1ℏ𝜔 = 41A−1/3 = 10.5 MeV. The ΔN = 2ℏw IVSGMR and IVGMR are

located at excitation energies of about 35 MeV and are not easy to identify due to their large

widths. The IVSGQR and IVGQR resonances are located at similar excitation energies,

but their angular distributions are relatively flat at forwarding scattering angles. Therefore,

their contributions are difficult to observe when comparing spectra at different scattering

angles.

At lower excitation energies, up to 5 MeV (Figure 2.5(b)), the most dominant peak is

the IAS, and it is possible to identify individual states in 60Cu. However, the level density

increases as a function of the excitation energy and even at 4-5 MeV it becomes difficult to

identify individual states. These low-lying states are non-collective in nature.

2.6 Overview of the Charge-Exchange Reaction Probes

Over the past decades, charge-exchange reactions have been used to investigate various

phenomena in nuclear physics with applications in nuclear structure and astrophysics.

Charge-exchange reactions have been developed since the last half-century [64, 65], and

they are used to probe the spin-isospin response of nuclei.

21



As discussed above, in terms of the isospin formalism, charge-exchange reactions are

characterized by an isospin-transfer by one unit, Δ𝑇 = 1 (isovector), meaning that occur

with Δ𝑇𝑧 = ±1 as shown in Figure 2.3. Δ𝑇𝑧 = −1 corresponds to the (p,n)-type, causing

the residual nucleus to become more proton-rich nucleus, while Δ𝑇𝑧 = +1 corresponds

to the (n,p)-type, from which the residual nucleus become more neutron-rich. Both

probes, involve spin 1
2 particles and can mediate Δ𝑆 = 0 and Δ𝑆 = 1 excitations. In

charge-exchange reactions, any amount of angular momentum can be transferred, Δ𝐿 = 0

(monopole), Δ𝐿 = 1 (dipole), Δ𝐿 = 2 (quadrupole), etc. At intermediate beam energies,

the excitations with spin-transfer are strongly favored compared to non-spin transfer.

In 𝛽-decay experiments, states may be measured in an excitation energy region from 0

MeV up to the Q-value of the reaction, but higher-lying states will not be accessible via this

reaction. In contrast, charge-exchange reactions are not limited by the Q-value, and highly

excited states can be studied using different charge-exchange probes, such as (𝑝, 𝑛)/(3He,𝑡),

(𝑛, 𝑝)/(𝑡,3He), (𝑑, 2He), and other reactions (see Table 2.2). A variety of probes are used

with different advantages for the study of isovector excitations. The choice depends

on the experimental considerations and the sensitivity to different resonances (see more

experimental discussions about the IVGRs probes used in References [66, 67, 6, 4, 16]).

The analysis of data obtained from the (n,p) or (p,n)-like reactions benefits from the

reduced complexity of the reaction mechanism compared to using composite probes such

as (𝑡,3He) or (3He,𝑡) reactions [68]. However, to achieve a better energy resolution, it is

preferred that both the projectile and ejectile are charged so that their momenta can be well

constrained and analyzed. For example, with the (3He,𝑡) reaction an excellent resolution of

as low as 30 keV or less can be achieved [69, 70, 71, 72]. Achieving a better resolution is
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Table 2.2 Various charge-exchange reaction probes are classified by: 𝛽−-type or (p,n)-like
reactions (left side) and 𝛽+-type or (n,p)-like reactions (right side).

𝛽−-type 𝛽+-type
(p,n) (n,p)
(3He,𝑡) (𝑡,3He)
(6Li,6He) (d,2He)
(12C,12Be) (12C,12N)
(10C,10B) (13C,13N)
(10Be,10B) (7Li,7Be)
𝜋+ , 𝜋0 𝜋− , 𝜋0

useful for studying the reaction mechanism for which it is preferable to isolate individual

transitions, or for the study of the fine structure of giant resonances [73].

The main difference between the (n,p) and (p,n) reactions and reactions induced by

composite probes such as (𝑡,3He) and (3He,𝑡) reactions is that the former probe the target

nucleus relatively deeply, while the lather predominantly probe the surface of the target

nucleus. The strong absorption near the surface of the target nucleus is a general char-

acteristic of composite probes used for charge-exchange reactions at intermediate beam

energies. Therefore, it has been used to isolate the excitations associated with radial nodes

near the nuclear surface such as the IVSGMR and IVGMR [74]. This specific property

was used to compare the (𝑡,3He) and (n,p) reactions by measuring the double-differential

cross sections at 300 MeV/𝑢 on 208Pb and 92Zr targets at the rare isotope beam factory of

RIKEN [41].

Experiments using the (d,2He) reaction as a probe are relatively complex compared

to (𝑡,3He) and (n,p) reactions, but such experiments have been successful in tracking the

isovector spin-transfer strength for many nuclei [75, 76, 77, 78, 79, 20]. The complex-

ity of the (d,2He) reaction is due to the simultaneous measurement of the two emitted

protons from the unbound 2He particle. The energy and angles of both protons need to
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be measured accurately in order to achieve good energy and scattering angle resolutions

in the reconstructed spectra and to allow for making a precise cut on the relative energy

(𝜖𝑝𝑝) between the two emitted protons. [68]. However, there is a disadvantage to using

the (d,2He) reaction to study giant resonances in medium-heavy and heavy nuclei because

of the background from deuteron-breakup reactions occurring in the Coulomb fields of

the target nuclei. Consequently, the studies of the isovector giant resonances through the

(d,2He) reaction have been limited to light and medium-heavy nuclei [68].

The (6Li,6He) reaction probe has also been used as a selective filter for spin-transfer

excitations because of the transitions from the 𝐽𝜋 = 0+ ground state in 6Li to the 𝐽𝜋 = 1+

ground state in 6He. Since 6He has no particle-stable excited states, effects from ejectile

excitation can be avoided [80]. Experiments with the (6Li,6He) reaction were performed

at ∼ 100 MeV/𝑢 on 12C, 13C, 58Ni, and 90Zr target nuclei [81]. While it was not possible

to measure the scattering angle, this reaction was successful in terms of isolating the

spin-transfer of giant resonances [80].

The (7Li,7Be) and (7Li,7Be+𝛾) reactions have been used at beam energy of 𝐸/𝐴 = 50

MeV on 6Li, 12C, 90Zr, 120Sn, 208Pb and polystyrene targets [82]. The gamma rays detected

from excited states in 7Be via (7Li,7Be+𝛾) were successfully used to isolate excitations

associated with and without spin-transfers. With this probe, either the 3/2− ground state

or the 1/2− excited state at 429 keV in 7Be can be populated making it possible to separate

excitations associated with Δ𝑆 = 0 and Δ𝑆 = 1. This technique has been applied to

investigate the isovector giant resonances in forwarding kinematics at beam energies of

50 − 70 AMeV [82, 83, 84, 47].

The (12C,12B) and (12C,12N) reactions also have selective spin-transfer properties and
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they can be used to investigate Δ𝑇𝑧 = −1 and Δ𝑇𝑧 = +1 transitions, respectively. The

(12C,12B) reaction has been used to measure GT transitions on 12C, 26Mg, 54Fe, 58Ni,

and 90Zr targets, and the (12C,12N) reaction have been used on 56Fe targets at a beam

energy of 𝐸/𝐴 = 70 MeV [85], 135 AMeV [86], and others [51, 87, 88]. However, with

large negative reaction Q-values, the significant momentum transfers associated with these

reactions make them less useful to study the isovector transitions, specifically the monopole

excitations.

The charge-exchange probe (13C,13N) has been studied to locate isovector (Δ𝑇 = 1)

non-spin-transfer (Δ𝑆 = 0) giant resonances via 60Ni(13C,13N)60Co reaction at 𝐸/𝐴 = 100

MeV [89]. Through a distorted wave Born approximation analysis, the isovector dipole

resonance was found at 𝐸𝑥 = 8.7 MeV and quadrupole resonance was found at 𝐸𝑥 = 20

MeV. The proton separation energy in 13N is less than the excitation energy of the first

excited state, the only transition contributed was the one from the 13C(1
2
−) ground state

to the 13N(1
2
−) [89, 90]. This transition is dominated by the large Fermi matrix element,

which is why this reaction provides some selectivity for ΔS = 0.

The pion (𝜋±, 𝜋0) charge-exchange reactions are another probe used to investigate the

isovector excitations. Since pions are spinless particles, they are used as an ideal tool

for studying spinless-transfer excitations [91]. The (𝜋+, 𝜋0) and (𝜋−, 𝜋0) reactions were

used to investigate the properties (energies, widths, and cross sections) of the isovector

monopole, and the other isovector giant resonances in nuclei between 14C and 208Pb [44].

The production of pion beams is complicated and it is difficult to achieve a high resolution

in the 𝜋0 exit channel through the analysis of the 𝜋0 → 𝛾𝛾 decay [5]. However, at Los

Alamos Meson Physics Facility (LAMPF) successful the pion charge-exchange reactions
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have been performed with aim of extracting information on the IVGMR [44, 45, 43].

The availability of rare-isotope beams has resulted in the use of new unstable charge-

exchange reaction probes in forward kinematics. Rare-isotope beams provide new possi-

bilities to selectively excite specific giant resonances, for example, the (10C,10B(0+,IAS))

reaction [92, 93] and the (10Be,10B(0+,IAS)) reaction [30] have been used to selectively ex-

cite the non-spin-transfer excitations. In addition, by using rare isotope beams it is possible

to create exothermic reactions. The released energy can offset the energy needed for the

excitation of the target nucleus. Therefore, this reduces the linear momentum transferred

between the projectile and the target nucleus and results in creating more favorable condi-

tions to study monopole excitations. For example, the (12N,12C) charge-exchange reaction

at 175 MeV/𝑢 was successfully developed and applied to 90Zr as a novel probe for studying

the excitation of the IVSGMR [51]. This probe comes with an additional advantage of

spin-transfer transitions that are selectively excited.

As charge-exchange reactions probe the spin-isospin response of nuclei, they are very

attractive for studying the excitations from nuclei with asymmetric neutron-to-proton ratios.

By impinging the rare-isotope beam on a hydrogen target, the (p,n) reaction in inverse

kinematics can be used to study unstable nuclei. In the first experiments, the neutron from

the (p,n) reaction was not detected. This method relies on measuring the residual nuclei

from the projectile only and avoided the detection of the recoil neutron from the proton

target in the process [94, 95, 96, 97, 98, 99, 100, 101]

More recently, inverse-kinematics (p,n) experiments using the missing-mass method in

which the neutrons are detected have been developed at NSCL [102] and at RIBF group

[92]. The NSCL group has used the setup called Low Energy Neutron Detection Array
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(LENDA) designed to facilitate the study of (p,n) charge-exchange reactions in inverse

kinematics at intermediate energies using unstable beams. The LENDA detector was

successfully developed and used to study the 56Ni(p,n) and 55Co(p,n) reactions at 110

MeV/𝑢 in inverse kinematics in order to extract GT strengths for transitions to 56Cu and
55Ni, respectively [103], which are of astrophysical importance. Other experiments where

this technique has been utilized are 132Sn(p,n) and 12Be(p,n) reactions at RIBF [104] and
16C(p,n) at NSCL [105].

The development of a new technique to perform charge-exchange experiments in inverse

kinematics using the (n,p) reaction has been more complicated. This is because a neutron

target is not available. Therefore, one of the other probes in Δ𝑇𝑧 = +1 direction must be

used [68]. The first successful attempt to study (n,p) reactions in iverse kinematics used

the 34P(7Li,7Be + 𝛾(429 keV)) charge-exchange reaction in inverse kinematics at 100A

MeV to measure GT transition strengths in the 𝛽+ direction from 34P, populating states

in 34Si [106]. Meharchand et al. (2010) used (7Li,7Be) reaction in inverse kinematics to

study the spectroscopy of 12Be [107]. This technique relies on tagging the charge-exchange

reactions with 𝛾-rays emitted from the decay of the 1/2− excited state at 429 keV from 7Be

and use the measurement of the projectile-like residual in a spectrometer to learn about

reaction kinematics and be able to extract scattering angles and the excitation energies. As

a consequence, its use is limited to relatively light nuclei and to excitation energies below

the particle-decay threshold.

The most recent (n,p)-type charge-exchange reaction developed by Giraud et al. (2021)

[108] uses the (d,2He) reaction in inverse kinematics to study exotic nuclei. This was

done by using an active-target time-projection chamber (AT-TPC). The inner volume of
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the AT-TPC was filled with deuterium gas, which serves as the target and the detector

medium for the tracking of the two protons emitted from the unbound 2He nucleus. The

charge-exchange residual nuclei were detected in the 𝑆800 spectrometer, and served as a

trigger for the time-projection chamber data acquisition system [109, 110].
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CHAPTER 3

CHARGE-EXCHANGE REACTION TECHNIQUES

Charge-exchange (CE) reactions involve the exchange of a proton and neutron between

a target nucleus and an incoming beam nucleus. In these reactions, the isospin changes

by Δ𝑇 = 1 (isovector), with the potential for Δ𝑆 = 1 (spin transfer) or Δ𝑆 = 0 (non

spin transfer) and the ability to transfer various units of angular momentum: Δ𝐿 = 0

(monopole), Δ𝐿 = 1 (dipole), Δ𝐿 = 2 (quadrupole), Δ𝐿 = 3 (octupole), and so forth. This

chapter gives a brief overview of CE reactions and associated techniques.

The theoretical cross sections calculated in this thesis were performed using the dis-

torted wave Born approximation (DWBA) method discussed in section 3.3 and 3.4 with the

FOLD code [111]. The DWBA calculations were used to perform a multiple decomposi-

tion analysis for extracting the isovector response associated with different units of angular

momentum transfer. To convert extracted cross sections into Gamow-Teller strength, the

Eikonal approximation is applied as discussed in section 3.5.

3.1 Introduction into Charge-Exchange Reaction Techniques

To extract information about charge-exchange excitations and giant resonances from

measured excitation-energy spectra, such as the one shown in Figure 2.5, several steps are

required. The experimental differential cross sections are determined from the data with:(
d𝜎
dΩ

)exp
=

Y
NbNt𝜖1𝜖2dΩ

mb/sr, (3.1)

where Y represents the total number of counts in a specific angular bin, Nb is the total

number of nuclei that struck the target foil, Nt is the number of nuclei in the target, dΩ is

the opening angle, 𝜖1 is the correction for the lifetime of the data acquisition system (DAQ)

and 𝜖2 is the correction for the target purity.
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To extract the contribution from transitions associated with the transfer of different units

of angular momentum transfers (ΔL) a multiple decomposition analysis (MDA) [112, 113]

is performed. The measured differential cross section for each peak or energy bin is fitted

with a linear combination of theoretical angular distributions associated with these different

angular momentum transfers:(
d𝜎
dΩ

)
exp

= a0

(
d𝜎
dΩ

)DWBA

ΔL=0
+ a1

(
d𝜎
dΩ

)DWBA

ΔL=1
+ a2

(
d𝜎
dΩ

)DWBA

ΔL=2
+ ..., (3.2)

where
(

d𝜎
dΩ

)DWBA

ΔL=i
are the theoretical differential cross sections for ΔL = i and ai are their

corresponding fit parameters.

In this work, the theoretical differential cross sections are calculated in Distorted Wave

Born Approximation (DWBA), which will be discussed in more details in the following

sections, focusing on the case of the 60Ni(3He,𝑡) reaction at 140 MeV/𝑢.

3.2 Calculation of Differential Cross Sections

Theoretical calculations for the differential reaction cross section in the (3He,𝑡) ex-

periment were performed using the FOLD code package [111, 114]. This code uses the

Distorted Wave Born Approximation (DWBA), discussed in section 3.3, where both in-

coming and outgoing waves are distorted by the mean field of the target nucleus. Details

regarding the inputs and outputs for the DWBA calculations are provided in section 3.4.

The FOLD code was used to calculate the differential cross sections for charge-exchange

(CE) reactions involving composite particles composed of three component codes, includ-

ing the WSAW, FOLD, and DWHI. The WSAW code was used for computing radial wave

functions for relevant shell-model orbitals, as discussed in section 3.4. The second com-

ponent, FOLD, was used to calculate the form factor based on a double folding of the

one-body transition densities, providing structural information for the target and projec-
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tile system based on the nucleon-nucleon interaction. The third component, DWHI, was

employed to calculate the differential cross section while considering the distortion of

incoming and outgoing particles due to the mean field of the target nucleus, incorporating

optical potentials. Additionally, more details about the DWHI code were discussed in

section 3.4.3

For the 60Ni(3He,𝑡) reaction, one-body transition densities (OBTDs) were obtained

within the normal-modes (NM) formalism using the NORMOD code [115], as detailed

in section 3.4.2. The folding procedure was executed using the Love-Franey effective

nucleon-nucleon (NN) interaction at 140 MeV/𝑢 [42, 38].
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3.3 Brief Description of the DWBA

Above beam energies of about ∼ 100 MeV/𝑢, the charge-exchange reaction predomi-

nantly proceeds in a single step. Therefore, to good approximation, two-step (or more-step)

processes do not have to be taken into account. Here, we assume that the nucleons of the

projectile and target system are non-identical. Participating nucleons of the target and the

projectile systems are treated equally and the initial and final states have definite isospins.

For the reaction:

projectile(p) + target(t) = ejectile(e) + residual(R), (3.3)

the Hamiltonian in the prior form can be written as:

H = Hp + Ht + Tpt + Vpt, (3.4)

where Hp and Ht are the internal Hamiltonians for the projectile and target, Tpt is the kinetic

energy of the relative motion of projectile and target, and Vpt is the interaction potential.

The scattering potential Vpt is divided into two parts: one with known solution, which

contains the elastic scattering potential (Uelastic) including the Coulomb potential, and one

that contains any residual potential, which mediate the charge-exchange (Wcharge−exchange):

Vpt = Uelastic + Wcharge−exchange. (3.5)

The transition between the initial and final states is described by a T-matrix [5, 116]:

Tfi = ⟨Φ|Uelastic |𝜒+⟩ + ⟨𝜒− |Wcharge−exchange |Ψ+⟩, (3.6)

where 𝜒+ and 𝜒− represent incoming and outgoing waves distorted by the mean field of

the target. Ψ+ is the solution of the Schr ¥𝑜dinger equation in prior form, with an incoming
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plane wave and outgoing spherical wave. Φ is the incoming plane wave. The first term

in equation 3.6, which is of isoscalar type, drops out because it does not connect the

initial and final states of a charge-exchange reaction. Potential U is still used to determine

the distortion of the incoming and outgoing waves. The remaining term describes the

charge-exchange reaction.

Tfi is used to calculate the theoretical differential cross sections of the nuclear reaction.

d𝜎
dΩ

=

( 𝜇

2𝜋ℏ2

)2 kf
ki

|Tfi |2. (3.7)

where ki and kf are momenta of incoming and outgoing channels, respectively, 𝜇 is the

reduced energy. For the charge-exchange reactions, Tfi is usually calculated by using:

Tfi = ⟨𝜒+𝑓 ( ®𝑘 𝑓 , ®𝑅′) |𝐹 ( ®𝑅′) |𝜒−𝑖 ( ®𝑘𝑖, ®𝑅′). (3.8)

Equation 3.8 consists of the incoming and outgoing distorted waves 𝜒+
𝑓

and 𝜒−
𝑖

, respec-

tively, and a form factor, 𝐹 ( ®𝑅′), that describes the interaction between the projectile and

the nucleons in the target.

The form factor is a double folding of the nucleon-nucleon (𝑁𝑁) interaction over the

projectile and target-system transition densities. The transition densities for projectile and

target systems contain the overlap between the initial and final states of these separate

systems and directly relate to the transition strengths, such as the Gamow-Teller transition

strengths. The transition densities and strengths are calculated in a nuclear structure model.

The DWBA calculations for the charge-exchange reactions used in this work are done

by using the package known as FOLD [111], which consists of three modules: WSAW,

FOLD, and DWHI. The module FOLD calculates the form factor 𝐹 ( ®𝑅′). Besides the

nuclear-structure information obtained from a structure model, it requires a single-particle
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radial wave function of the orbitals of the nucleus involved in the calculation. These

single-particle wave functions are calculated in WSAW. In addition, FOLD requires a 𝑁𝑁-

potential. In this work, we use the 𝑁𝑁-interaction of Love and Franey [42, 38]. The form

factor calculated in FOLD serves as input for DWHI, which is used for the distorted-wave

calculation resulting in the transition matrix 𝑇 𝑓 𝑖 and the cross sections.

3.4 Inputs & Outputs for the DWBA Calculations

3.4.1 Single-Particle Wave Functions (WSAW)

As mentioned in the above section 3.3, one of the important ingredients needed to

calculate form factor 𝐹 ( ®𝑅′) include single-particle wave functions calculated through the

first module from the FOLD package known as WSAW [111]. WSAW is used to calculate

the radial part of the single-particle wave functions for the one-particle and one-hole states

connected by the relevant transition operator. A Woods-Saxon potential is assumed, and

for protons, the Coulomb potential is also included. In addition, a spin-orbit potential is

included for both protons and neutrons. The necessary nuclear physics inputs to the WSAW

calculations are the nuclear charge of the target nucleus, core mass, and the binding energies

(BEs) of every single proton and neutron in orbitals that participate in the excitation. These

BEs were obtained through the shell-model code NUSHELLX@MSU [115, 117] with the

DENS function, employing the SK20 [118] interaction in 60Ni and 60Cu.

In WSAW, the depth of the Woods-Saxon potentials are varied to match binding energies

for each of the single-particle orbitals separately. The Woods-Saxon potential has the

general form:

f (R; rn, an) =
V0

1 + exp
(
R − rnA1/3) /an

, (3.9)

where V0 is the maximum depth of the volume potential, rn is the radius of the potential,
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A is the mass number of the target nucleus, and an is diffuseness of the potential [119].

In this work, the starting value of the Woods-Saxon potential is set to 60 MeV. The radius

parameter rn is fixed to 1.25 fm, and the diffuseness is fixed to 0.6 fm. The Coulomb

potential has a radius parameter of 1.25 fm. The spin-orbit potential has a radial form that

goes with 1
r times the derivative of the Woods-Saxon potential. The spin-orbit potential

strength is set to 7 MeV. Note that, the program assumes a spin-operator of the form ®𝐿 · ®𝜎

and that a factor of
(

ℏ
m𝜋c

)2
≈ 2 is already included.

Table 3.1 describes input parameters used in the WSAW program for target (60Ni) and

residual (60Cu) system . The full input files are included in the Appendix A, Table A.1.

The outputs are the radial wave functions for each of the orbitals involved in the calculation.

The plots of these relevant single-particle wave functions are shown in Figure 3.1. Note

that all wave functions are positive near r = 0 (by design) and are normalized such that∫ ∞
0 𝜓(𝑟)𝑟2 𝑑𝑟 = 1. The densities for 3He-projectile and 3H-ejectile system are calculated

from Variational Monte-Carlo results [120].
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Table 3.1 Description of the input parameters in the WSAW file for calculating single-
particle wave functions as shown in the Appendix A, Table A.1- A.3.

Particle Input parameters Meaning of the input values

line number 1 0.1 fm Step size for radius
20 fm Maximum value of radius
1 Step size (first point)
150 Total number of points needed to plot radius

line number 2 Ni60Cu60 File name containing radial wave functions

line number 3 59 Core mass of target nucleus
60 Starting value of the volume potential depth
.65 fm Diffuseness of the potential
1.25 fm Radius parameter of the potential
1.25 fm Coulomb radius parameter
7.0 MeV Spin-orbit potential strength

For each orbital a line with x MeV Binding energy of paricle (proton or neutron)
1. Mass number of particle
l Orbital angular momentum of proton
n Number of interior nodes for this particular particle
1. Charge of particle (either 0 or 1)
j Total angular momentum of the particle orbit
s Spin of the particle
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Figure 3.1 The Woods-Saxon radial single-particle wave functions calculated from the
WSAW program for n=0 (top), n=1 (middle) and n=2 (bottom). The left panels show
single-particle wave functions for protons and on right panels, for neutrons.
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3.4.2 Calculation of the Formfactor (FOLD)

The FOLD program [111] is used to calculate the form factor 𝐹 ( ®𝑅′):

𝐹 ( ®𝑅′) = ⟨ΦeΦr |Veff |ΦtΦp⟩ (3.10)

where Φe, Φr, Φt, and Φp are the wave functions of the ejectile, residual, target, and

projectile, respectively, and Veff is the effective nucleon-nucleon (𝑁𝑁) interaction between

nucleons in the target and projectile nuclei. The ingredients for the calculation of the

formfactor are the single particle wave functions from WSAW, the effective 𝑁𝑁 interaction,

and one-body transition densities (OBTDs) calculated in the NORMOD code [121], which

is discussed later in this section. The formfactors are calculated from these ingredients by a

double-folding of the effective 𝑁𝑁 interaction over the transition densities of the projectile-

ejectile and target-residual systems. The double-folding over the transition densities of the

participant nuclei in the reaction is necessary to account for the composite nature of the

nuclei involved.

The phenomenological nucleon-nucleon interaction used to model charge-exchange

reactions were described by Love and Franey in 1981 through a phaseshift analysis of 𝑁𝑁

scattering data [38]. Later on, with an updated data set, this interaction was improved

by Franey and Love in 1985 [42]. The Love and Franey interaction is particularly useful

in the charge-exchange studies since Veff is parameterized in terms of the central (VC),

spin-orbit (VLS), and tensor (VT) terms contributing to the interactions that are of interest

for charge-exchange reactions. It takes the following form:

𝑉𝑖 𝑗 = 𝑉𝐶 (𝑟𝑖 𝑗 ) +𝑉𝐿𝑆 (𝑟𝑖 𝑗 ) ®𝐿 · ®𝑆 +𝑉𝑇 (𝑟𝑖 𝑗 )𝑆𝑖 𝑗 , (3.11)
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where 𝑆𝑖 𝑗 is the tensor operator, defined as

𝑆𝑖 𝑗 = 3
(®𝜎𝑖 · ®𝑟𝑖 𝑗 ) (®𝜎𝑗 · ®𝑟𝑖 𝑗 )

𝑟2
𝑖 𝑗

− ®𝜎𝑖 · ®𝜎𝑗 (3.12)

The radial dependence of each term is expanded as a sum of Yukawa potentials,

𝑉 (𝑟) =
∑︁
𝑖

𝑉𝑖𝑌 (𝑟/𝑅𝑖), (3.13)

where 𝑌 (𝑥) = 𝑒−𝑥

𝑥
. The parameters 𝑉𝑖 and the ranges 𝑅𝑖 are fit to nucleon-nucleon

scattering data. The result of the work by Love and Franey provides effective 𝑁𝑁 T-matrix

interaction strengths applicable at various incident beam energies. For the case of the
60Ni(3He,𝑡) reaction at the Ex = 420 MeV, the Love and Franey interaction at 140 MeV/𝑢

was used.

Information about the transitions for which differential cross sections are calculated

come in the form of one-body transition densities (OBTDs), which are amplitudes for

one-particle one-hole (1p-1h) excitations that are connected by the specific operators of

Eq. 2.1 for each of the transitions. The OBTDs for all giant resonances being investigated

in the 60Ni(3He,𝑡) reaction were calculated in a normal-modes formalism and the calcu-

lations were performed with the NORMOD code [121]. In the normal-modes formalism,

the OBTDs are calculated by producing the most coherent superposition of the 1p-1h

excitations, thereby maximizing the transition strength.

For the normal-modes calculations, it was assumed that the 28 protons fill all single-

particle shells up to 0 𝑓7/2. The 32 neutrons are assumed to also fill the 0 𝑓7/2 shell and the

1𝑝3/2 shell, as shown in Figure 3.2(a). Figure 3.2(b) and (c) show examples for the exciting

of two isovector transitions in the 60Ni(3He,𝑡) reaction.

Table 3.2 describes the input parameters of the NORMOD input file. The full NOR-

MOD input file and the output tables of the OBTDs for each giant resonance being inves-
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tigated in this work are included in the appendix B, Table B.1-B.2 and Tables B.3-B.15

respectively. The plots of the radial transition densities for all giant resonances being

investigated in this work as listed in Table 2.1 are shown in Figure 3.3. These are obtained

from FOLD.

Figure 3.2 Figure (a) shows the configuration of 60Ni ground state assumed in the NORMOD
calculations. Protons are in red color, they fill single particle shells up to 0 𝑓7/2, while
neutrons are in blue color and fills up to the 1𝑝3/2 shell. Figures(b) and (c) are examples
of the exciting GT and IVSGMR transitions respectively. The GT transition can only
populate states in 60Cu with pf-shell contributions (60Ni[g.s] → 60Cu[0ℏ𝑤]) while IVGMR
transition can populate states in 60Cu with pf, sdg and pfh-shell contributions (60Ni[g.s] →
60Cu[2ℏ𝑤])).
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Table 3.2 Description of the input parameters in the NORMOD input file for calculating
OBTDs useful for FOLD input files for each giant resonance being investigated as shown
in the Appendix C, Tables C.1 - C.7

Line number Input parameters Meaning of the input values
line number 1 1 Wave functions are defined to be

positive near origin
line number 2 14 Number of proton shells
line number 3 to 16: Protons Describing parameters of every single proton orbit
Column number 1 n-value Number of nodes in particular wave Function
Column number 2 L-value Angular momentum of proton
Column number 3 2J-value Twice total angular momentum of

single particle wave function
Column number 4 1.0 Fullness of proton-shell
Column number 5 1 or 0 1 for proton, 0 for neutron
Column number 6 nℏ𝜔 n is major shell number of proton
Column number 7 x-value x is an arbitrary number for each shells
line number 17 11 Number of neutron shells
line number 18 to 28: Neutrons Same as 3 to 16 Same description as line 3 to 16
line number 29 IAS Parameters describing IAS
line number 30 GT Parameters describing GT transition
line number 31-33 Dipoles Parameters describing Dipoles transition
line number 34 IVGQR Parameters describing IVGQR transition
line number 35-37 IVSGQR Parameters describing IVSGQR transition
line number 38 IVGMR Parameters describing IVGMR transition
line number 39 IVSGMR Parameters describing IVSGMR transition
line number 40 Octupole Parameters describing Octupole transition
Column 1 M-value Discussed in operator of Eq. 2.1
Column 2 ΔJ Total transferred angular momentum
Column 3 J𝜋 Product of parities
Column 4 m Mass number of target
Column 5 T Isospin transfer
Column 6 1 reaction type (T=1) for CE reactions
Column 7 and 8 Δnℏ𝜔 Minimum and Maximum difference

between major shells number

Finally, the formfactors for each giant resonance are calculated. Given the total angular

momentum transfer in the projectile (3He,𝑡) system, ΔJp, and the total angular momentum

transfer in the target (60Ni,60Cu) system, ΔJT, the relative angular momentum transfer is
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calculated with:

Δ𝐽𝑅 = Δ𝐽𝑝 ⊕ Δ𝐽𝑇 , (3.14)

whereΔJp = ΔLp + ΔSp equals either 0 (Sp = 0) or 1 (Sp = 1), sinceΔLp = 0. ΔJT is defined

by the type of giant resonance excited. Since ΔLp = 0, the orbital angular momentum

transfer in the target system ΔLT, defines the charge in parity:

(−1)Δ𝐿𝑇 = (𝜋𝑖 · 𝜋 𝑓 )Δ𝑇 , (3.15)

where 𝜋𝑖 is the parity of the 60Ni ground state and 𝜋 𝑓 is the parity of the final state in
60Cu. Since the 60Ni ground state has a spin-parity of 0+, 𝜋i = 1. 𝜋f is negative (positive) if

ΔLT = odd (even). Note that for certain excitations, two sets of formfactors contribute. For

example for 0+ → 1+ excitations, ΔJp = 1 and ΔJT = 1, allowing for both ΔJR = ΔLT = 0

and ΔJR = ΔLT = 2. Because of the tensor interaction in the nucleon-nucleon interaction,

the two components interfere with each other. However, for strong excitations such as

the giant resonances, the impact of such interferences is small [22]. For the MDA, only

formfactors with pure ΔJR = ΔLT are used, as its purpose is to decompose contributions

with different ΔLT. Each type of transition as listed in Table 2.1 requires its own FOLD

input file. Table 3.3 describes the input parameters of the FOLD input file. Example of

FOLD input files for several transitions are included in the Appendix C, Tables C.1 - C.7.

The outputs of each FOLD input file are the formfactors as discussed above, which are

shown in Figures 3.4 and 3.5. Since the 𝑁𝑁 interaction has real and imaginary terms, the

formfactors also have real and imaginary components. Note that excitations involving the

transfer of spin (ΔS = 1) have strong real formfactors, while those without the transfer of

spin (ΔS = 0) have strong imaginary formfactors.
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Figure 3.3 Transition densities calculated from FOLD code for a target nucleus (60Ni) of the
IAS, GTR, monopoles, dipoles, quadrupoles, and octupoles transitions being investigated
in this work as all listed in Table 2.1.

43



Table 3.3 Description of the input parameters in the FOLD files for calculating transition
densities and formfactors as shown in the Appendix C, Tables C.1 - C.7

Line number Input parameters Meaning of the input values

line number 1 1 Selects CE reaction type
1FOLDNI File name to save formfactors

line number 2 to 7 600 Total number of integration steps
parameters of (3He,𝑡) 0.03 Step size (fm)

420 Beam energy (MeV)
3 Mass of projectile (3He)
1 set to be 1 for printout for r-space densities
1 set to be 1 for printout for q-space densities
1 set to be 1 for printout for formfactors

line number 3 0.5+ Spin and parity (J𝜋) of ejectile (3H)
0.5+ Spin and parity (J𝜋) of projectile (3He)

line number 4 0.5 Isospin (T) of ejectile (3H)
+0.5 Isospin projection (Tz) of ejectile (3H)
0.5 Isospin of projectile particle (3He)
-0.5 Isospin projection of projectile particle (3He)

line number 5 3 3 0.000 Selection of format of OBTDs particle
line number 6 1 Single-particle wave function (ex: 0𝑠1/2)

1 hole-particle wave function (ex: 0𝑠1/2)
ΔJp 1 for spin transfer and 0 for no spin transfer
0.707 OBTD for (3He,𝑡) system

line number 7 -1 -1 fixed end line
line number 8 HE3H3 File name of projectile and ejectile
line 9 to 10 same as ΔJ𝜋R = 1+ for GT Relative final spin and parity of each transition
3 to 4 but for (60Ni,60Cu) J𝜋 = 0+ for 60Ni Initial (ground) spin and parity of target
line number 10 1 (2 for IAS) Isospin (T) of residual (60Cu)

1 Isospin projection (Tz) of residual (60Cu)
2 Isospin (T) of target (60Ni)
2 Isospin projection of target (60Ni)

line 11 same as 5 3 3 0.000 Selection of format of OBTDs
line number 13 to x-line OBTDs (1p-1h) Values calculated from NORMOD code
Column 1 1p Single-particle wave function
Column 2 1h hole-particle wave function
Column 3 ΔJT Depends on type of giant resonance excited
Column 4 0.0 ignored
Column 5 value OBTD
line number 14 -1 -1 fixed end line
line number 15 Ni60Cu60 File name containing radial wave functions
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Table 3.4 Description of the input parameters in the FOLD file for calculating transition
densities and formfactors, continuation of Table 3.3

line number 16 0.939 Scaling parameter for transformation
of interaction strengths from NN system
to nucleon-nucleon system

2.650 Momentum parameter used to calculate
exchange contribution.

1.000 Not used.
Love and Franey Filename contains parameters at 140 MeV/𝑢.
NN interaction

line number 17 1 or 2 Number of formfactor(s).
line number 18 ΔJR Relative spin transfer

JP Total angular momentum for each formfactor
JT Total angular momentum transfer in

the target system
−1 Select components of NN interaction

(the -1 is all components)
line number 19-20 or 19-22 Fixed values Scaling factors for formfactor components.

(Usually set to 1)
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Figure 3.4 The real (left panels) and imaginary (right panels) part of the formfactors for
transitions listed in the panels. They were calculated in the FOLD code. The excitations
with spin transfer (ΔS = 1) have strong real formfactors, while these without spin transfer
(ΔS = 0) have strong imaginary formfactors.
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Figure 3.5 The real (left panels) and imaginary (right panels) part of the formfactors for
transitions listed in the panels. They were calculated in the FOLD code. The excitations
with spin transfer (ΔS = 1) have strong real formfactors, while these without spin transfer
(ΔS = 0) have strong imaginary formfactors.
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3.4.3 Calculation of Differential Cross Section (DWHI)

The final part of the FOLD package, called DWHI, calculates the transition matrix

elements, 𝑇 𝑓 𝑖 in Eq. 3.7 and the differential cross sections. The DWHI code uses the

previously calculated formfactor (see Eq. 3.10) together with the optical model potential

(Eq. 3.9) as the ingredients. The optical potential distorts the incoming and outgoing

waves. The real and imaginary optical potential parameters (depths of the potential, radius

and diffuseness) used in this work for the 60Ni-3He and 60Cu-3H systems, were taken from

measurement of 3He elastic scattering on 58Ni at 443 MeV [119]. The potential depths

of 60Cu-3H system were scaled to 85% of the one of 60Ni following the procedure in Ref.

[122], while the other parameters remain the same. The potential parameters are shown in

Table 3.5.

Table 3.5 Optical potential parameters used in DWHI calculations for 60Ni(3He,𝑡)60Cu
reaction at 140 MeV/𝑢. These values were taken from Ref. [119]. and defined for 3H
following Ref. [122]

Nuclides V rv av W rw aw
[MeV] (fm) [fm] [MeV] [fm] [fm]

60Ni + 3He 35.16 1.32 0.84 44.43 1.021 1.018
60Cu + 3H 29.89 1.32 0.84 37.77 1.021 1.018

As discussed in section 3.4.2, each giant resonance listed in Table 2.1 requires its

own DWHI input file. Table 3.6 describes the input parameters of the DWHI input files.

Examples of DWHI input files for several transitions are included in the Appendix D,

Tables D.1 - D.14. The output of each DWHI calculation file is shown in Figure 3.6. The

differential cross sections will be used in the data analysis and serve as inputs for the MDA

(Eq. 3.2. The results from MDA calculation are discussed in Chapter 5.
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Table 3.6 Description of the input parameters in the DWHI files for calculating the angular
distributions for each giant resonance as shown in the Appendix D, Tables D.1 - D.14

Line number Input parameters Meaning of the input values

line number 1 1210000041000000 Options for calculation and plotting
cross sections for each form factor

line number 2 FOLDNI File name containing form factor
line number 3 40 Total number of angle used

0 Initial angle
0.2 Angle step size

line number 4 value-1=160 Number of partial waves for elastic
value-2=1 or 2 Number of form factors to expect

must match number produced by FOLD
value-3=1 2 × ΔJ-projectile spin in initial channel (3He)
value-4=1 2 × ΔJ-ejectile spin in final channel (𝑡)
value-5=0 2 × ΔJ-target spin initial channel (60Ni)
value-6 2 × ΔJ-residual transfer (60Cu)

line number 5 value-1=0.03 Step size
value-2=600 Total number of integration steps

line number 6 value1= 420 Beam/lab energy
(For incoming channel) value-2 = 3 Projectile (3He) mass number

value-3 = 2 Projectile proton number
value-4 = 60 Target (60Ni) mass number
value-5 = 28 Target proton number
value-6 = 1.25 Coulomb radius
value-7=1 Twice the spin value of the incident projectile
value-8=0 Not used in entrance channel

line number 7 value-1=1 Woods-Saxon potential (WS)
(Real part of optical value-2=-35.16 Real well depths of WS potential
potential parameters value-3=1.32 Radius
of 60Ni-target) value-4=0.84 Diffuseness

value-5=0 Indicate that beam energy used (420 MeV)
is the lab energy or reaction Q-value

(Imaginary part of value-6=-44.43 Imaginary well depths of WS potential
optical potential value-7=1.021 Radius
parameters of 60Ni-target) value-8=1.018 Diffuseness

value-9=0 Imaginary spin-orbit factor (not used)
value-10=0 Computing factor (not used)

line number 8 value=0 Fixed end line
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Table 3.7 Description of the input parameters in the DWHI file for calculating the angular
distributions. Continuation of Table 3.6

line number 9 value-1= −6.2 Q-value
(For outgoing channel) value-2 = 3 Ejectile (𝑡) mass number

value-3= 1 Ejectile proton number
value-4= 60 Residual (60Cu) mass number
value-5= 29 Residual proton number
value-6= 1.25 Coulomb radius
value-7=1 Twice the spin value of the ejectile
value-8=0 Not used in entrance channel

line number 10 Value-1=1 Wood-Saxon potential
(Real part of optical value-2=-37.77 Real depth of WS potential
potential parameters value-3=1.021 Radius
of 60Cu-residual ) value-4=1.018 Diffuseness

value-5=0 Indicate that beam energy used (420 MeV)
is the lab energy or reaction Q-value

(Imaginary part of value-6=-44.43 Imaginary depth of WS potential
optical potential value-7=1.021 Radius
parameters of 60Cu) value-8=1.018 Diffuseness

value-9=0 Imaginary spin-orbit factor
value-10=0 Computing factor

line number 11 value=0 Fixed end line
line number 12 ΔJR Relative spin transfer

2 × JP Same as JP in FOLD
2 × ΔJT Same as JT in FOLD

line number 13 0 0 0 1 Fixed line ending form factor,
where 0. terminate further form factor
and 1. enter data for single form factor

line number 14 Plot filename Filename of output
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Figure 3.6 Differential cross sections calculated for the following giant resonances excited
via the 60Ni(3He,𝑡) reaction: the isobaric analog state (top-left), Gamow-Teller resonance
(top-right), isovector(spin) monopole resonances (middle-left), isovector (spin) dipole res-
onances (middle-right), isovector (spin) quadrupole resonances (bottom-left) and isovetor
(spin) octupole giant resonances (bottom-right)
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3.5 Eikonal Approximation and the Unit Cross Section for GT and IAS

The extraction of Gamow-Teller strength, 𝐵(GT), can be performed directly via a 𝛽/EC

decay half-life measurement. However, 𝛽-decay can only populate states in the daughter

nucleus that are energetically accessible given the 𝑄-value of the transition. As shown in

Figure 3.7, CE reactions are not limited by a 𝑄-value, and transitions to high-lying states

can be studied. CE reactions are mediated by the strong force, and the weak force mediates

𝛽-decay. However, the operators involved in each process are both of the same 𝜎𝜏𝜎𝜏𝜎𝜏 type

and the initial and final states that are connected by this operator are the same. It turns

out that, at intermediate beam energies, the differential cross sections,
(

d𝜎
dΩ

)
ΔL=0

, at small

momentum transfer (q ≈ 0) measured via charge-exchange reactions is proportional to the

Gamow-Teller strength of the transition [123]. This proportionality was experimentally

shown by Taddeucci 𝑒𝑡 𝑎𝑙 [123, 21, 22, 124], and is given by:(
𝑑𝜎

𝑑Ω
(q = 0)

)
Δ𝐿=0

= �̂�𝐵(GT), (3.16)

where the �̂� is the proportionality constant, called the unit cross section. For this pro-

portionality to hold, the ΔL = 0 component of the differential cross section must be used,

which can be obtained through the multipole decomposition analysis described in section

3.1 and 5.2. In the Eikonal approximation, the unit cross section can be decomposed:

�̂�GT = 𝐾𝑁 |𝐽𝜎𝜏 |2, (3.17)

where �̂�GT is the Gamow-Teller unit cross sections, K is a kinematical factor, carrying

information about masses and energies of particles, and is expressed in terms of incoming

and outgoing wave momenta ( ki and kf) and their corresponding initial and final reduced
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Figure 3.7 Schematic representation of both 𝛽-decay (red colors) and CE reactions (blue
colors) from parent nucleus Y to the daughter nucleus X. 𝛽-decay can only populate states
in the daughter nucleus that are energetically accessible with the Q-value of the decaying
nucleus. However, CE reactions are not limited by Q-value, and highly excited states
(nuclei that do not 𝛽-decay) can be studied via CE reactions.

energies (Ei and Ef):

K =
EiEf

(𝜋ℏ2c2)2
kf
ki
, (3.18)

N is a distortion factor defined by the ratio of the DWBA to the PWBA (plane-wave Born

approximation) cross sections [123, 21]:

N =

(
𝜎DWBA

𝜎PWBA

)
, (3.19)

and J𝜎𝜏 (or J𝜏) is the volume integral of the corresponding effective 𝑁𝑁 interaction

(see Eq. 3.11) between the projectile and target nucleons. In practice, 𝜎GT is conveniently
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calibrated by using transitions for which the transition strengths are known from 𝛽/EC

decay and one does not have to rely on a calculation. This makes the extraction of GT

strength model independent, which is very important for testing theoretical models. Of

course, not for all nuclei are measured GT strength from 𝛽/EC decay available. However,

the unit cross sections for Gamow-Teller transitions in such cases can be calculated by

using expressions that only depend only on the mass number (𝐴) of the nucleus which have

been established experimentally. For (3He,𝑡) reactions at 𝐸 ≈ 420 MeV, this relationship

is �̂�GT = 109/A0.65 as shown in Figure 3.8. The proportionality described above for GT

transitions also hold for the Fermi transition to the IAS and the mass dependent �̂�𝐹 is also

included in Figure 3.8.

Figure 3.8 Figures (a) and (b) are measured of Fermi and Gamow-Teller unit cross sections
respectively, as a function of mass number (𝐴) for (3He,𝑡) reaction at 420 MeV. Both figures
are taken and modified from Ref. [21].

54



The proportionality between strength and differential cross sections holds for beam

energies of 𝐸 ≳ 100 MeV/𝑢. This energy is sufficiently high to strongly reduce the

contribution of multistep processes to the CE reaction. The proportionality has the least

uncertainty for strong transitions. For weak transition, interference between the𝑉𝜎𝜏 and𝑉𝑇𝜏

components of the 𝑁𝑁 interaction become significant [21]. The uncertainty as a function

of B(GT) was estimated to be 𝜎𝑟𝑒𝑙.𝑠𝑦𝑠𝑡.𝑒𝑟𝑟𝑜𝑟 ≈ 0.03− 0.035𝑙𝑛[𝐵(GT)]. For example, states

at 𝐸𝑥 = 2.07[𝐵(GT) = 0.091] and 𝐸𝑥 = 2.74[𝐵(GT) = 0.113], standard deviations of

11.4% and 10.6% were expected, respectively [22].
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CHAPTER 4

DATA ANALYSIS: 60NI(3HE,𝑡) REACTION AT RCNP

This dissertation focuses on probing isovector giant resonances in 60Ni up to high excitation

energies (60 MeV) using the (3He,𝑡) reaction at 140 MeV/𝑢. The experiment was performed

at the Grand Raiden Spectrometer (GRS) at Osaka University’s Research Center for Nuclear

Physics (RCNP). The method involved directing a 3He beam at 420 MeV produced by the

RCNP Ring Cyclotron with an intensity of ∼ 4 pnA on a 60Ni foil target of 2 mg/cm2.

Section 4.1 describes the experimental setup, procedures, and devices. An overview of

the GRS and its focal plane detectors are discussed in section 4.2 and 4.3, respectively.

The method used to extract the excitation energy spectrum from 60Ni(3He,𝑡) reaction was

the missing-mass method, discussed in section 4.4. The magnetic fields of GRS and

the angular acceptance are discussed in section 4.6 and 4.5, respectively. The measured

differential cross sections from 60Ni(3He,𝑡) data are discussed in section 4.7.

4.1 Experimental Setup, Procedures & Devices

The 60Ni(3He,𝑡) experiment was performed at the Research Center for Nuclear Physics

(RCNP) in Osaka University, Japan by using a primary 3He beam of 140 MeV/𝑢 and the

high-resolution QQDD-type Grand Raiden Spectrometer described in section 4.2. The

spectrometer was set at −0.5◦ relative to the beam axis. The intermediate-energy 3He2+

beam at the RCNP facility has been used extensively in various experiments for studying

the Gamow-Teller strength distribution and other giant resonances via (3He,𝑡) reactions

at intermediate beam energies [21, 119, 125, 126, 127]. The Azimuthally Varying Field

(AVF) and Ring cyclotrons shown on Figure 4.1 were coupled to accelerate a beam of 3He

nuclei to 420 MeV and transported to the target through the WS beam line [128] connecting
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the separated-sector Ring Cyclotron and the GRS. Beam intensities of up to 4 pnA were

impinged on a 60Ni-target foil of 2 mg/cm2 installed in the scattering chamber. The 60Ni

target was 98% pure.

Figure 4.1 Schematic layout of the RCNP Ring Cyclotron facility.
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4.2 Grand Raiden Spectrometer

The Grand Raiden Spectrometer (GRS) shown in Figure 4.2, is used to identify and

analyze the momentum of tritons produced in (3He,𝑡) reactions [129]. The GRS was

designed for high-resolution measurements. The GRS contains three dipoles magnets

(D1, D2 and DSR), two quadrupoles (Q1 and Q2), one sextupole (SX), and one multipole

(MP) magnet as shown in Figure 4.2. The multipole magnet can produce fields that are

dipole, quadrupole, octupole, sextupole, and decapole. It is used to correct for aberrations

in the ion optics. The Dipole Magnet for Spin Rotation (DSR), is meant for polarized

beam experiments and not used in this experiment. The GRS can achieve a momentum

resolution of Δp/p = 2.7 × 10−5 and operate at magnetic rigidity of up to 5.4 Tm allowing

the measurement of tritons at 140 MeV/𝑢 (𝐵𝜌 = 5.31 Tm ) [130, 128]. Specification

parameters of the GRS are shown in Table 4.1.

4.3 Focal-Plane Detectors for Grand Raiden Spectrometer

The Focal-plane (FP) detectors for the GRS contain two sets of Multi-Wire Drift Cham-

bers (MWDCs, see Figure 4.3 and Table 4.2) placed in the focal plane of the spectrometer.

They are used to collect information about the positions and angles of the particles. Each

MWDC is filled with a gas mixture typically composed of argon (71.4%), and isobutane

(28.6%). They have two anode-wire planes known as X and U anode-wire planes. The

X layer has wires perpendicular to the medium plane of the spectrometer, and the U layer

has wires at an angle of 48.19◦ [129] with respect to the X plane. The potential wires are

charged and serve to generate a uniform electrical field between the cathode and anode

planes [131]. Charged particles ionize the gas atoms in the trajectory and the ionized

electrons drift perpendicularly to the anode plane and are detected by the grounded sense
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Figure 4.2 Schematic representation of the Grand Raiden Spectrometer set at 0◦. The
position and angle are measured in the focal plane detectors. The momentum vector of the
ejectile is deduced, from which the excitation energy in the residual nucleus and scattering
angles are determined. Figure modified from Ref. [131].

wires. Drift times from the four sets of anode wires were measured and particle trajectories

were determined with a position resolution of around 100 𝜇m in each plane.

Event rates were such that the corrections for the lifetime of the data acquisition system

(DAQ) were ≈ 95%.

The energy loss and time-of-flight information for each hit were measured by using

a set of 10-mm thick plastic scintillators (PS1 and PS2), which are mounted behind the

drift chambers. The first scintillator triggers the data acquisition system, serves as the start

of the time-of-flight measurement, and benefits particle identification. The stop signal is
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Table 4.1 Specification parameters of Grand Raiden Spectrometer

Parameters Value
Intrinsic momentum resolution (ΔP/P) 2.7 × 10−5

Intrinsic energy resolution (ΔE/E) 4.5 × 10−5

Position resolution 300 𝜇𝑚 (both horizontal and vertical)
Maximum B𝜌 5.4 Tm
Maximum B (D1, D2 ) 1.8T
Maximum magnetic gradient (Q1) 0.13 T/cm
Maximum magnetic gradient (Q2) 0.033 T/cm
Momentum range 5%
Focal plane tilt 45%
Mean orbit radius 3 m
Total deflection angle 160◦
Angular range −5◦ to 90◦
Horizontal magnification (x|x) −0.417
Vertical magnification (y|y) 5.98
Maximum momentum dispersion 15.45 m
Horizontal acceptance angle ±20 mr
Vertical acceptance angle ±40 mr (in over-focus mode)
Solid angle 5.6 msr ( 3.2 in over-focus mode)
Weight 600 tons
Flight path for the central ray 20 m

provided by the cyclotron radio frequency (RF) signal. A 1-mm thick aluminum plate

placed between the scintillators improves the particle identification (PID) by increasing

the energy loss in the second scintillator. At the highest rigidity setting, beside the tritons,

singly-charged 3He+ ions enter the focal plane, as they have the same mass-to-charge ratio

as the tritons. The 3He+ ions are produced when the 3He2+ beam particles pick up an

electron in the reaction target. The particle-identification plot for this situation is shown

in Figure 4.4. The gates used for selecting the 3H+ and 3He+ events are also indicated.

The vertical bands associated with each species are due to pile-up. The 3He+ particles

produced via the atomic charge-exchange in target material [132] can be used for the

calibration of scattering angles. Since the 3He+ particles have the same rigidity as the

tritons but have negligible scattering angles, they are useful for determining the central
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Figure 4.3 Schematic structure of an X-plane of the MWDCs for Grand Raiden Spectrom-
eter. Anode wires and Cathode planes are represented with a typically charged particle
track.

beam axis, corresponding to 0◦ scattering angle. The 3He+ measurement is also helpful to

obtain reliable energy calibration.
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Figure 4.4 Particle identification from the plastic scintillator signals at Grand Raiden focal
plane. Gates used to select tritons (3H+) and 3He (3He+) charge-state particles are indicated.
Particles near channel 0 in both axes are due to cosmic rays and noise in the scintillators.

The 3He2+ beam transport to the GRS target location was achromatic. More details

about the ion-optical modes for experiments at the GRS can be found in Ref. [126].
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Table 4.2 Specification parameters of the MWDC for Grand Raiden Spectrometer

Parameters Value
Anode:

Wire configuration X(0◦ = vertical ), U(48.2◦)
Sense wire 𝜙 20 𝜇𝑚 gold-plated tungsten wire
Potential wires 𝜙 50 𝜇𝑚 gold-plated beryllium-copper wire
Number of sense wires 192 (X) and 208 (U)
Anode wire spacing 2 mm
Sense wire spacing 6 mm (X) and 4 mm (U)

Cathode:
Material 10 𝜇𝑚-thick carbon-aramid film
Supplied voltage −5.6 keV

Cathode-anode gap 10 mm
Active area 1200𝐻 mm × 120𝑊 mm
Gas mixture: Argon (71.4%) + Isobutane (28.6%) +

Isopropyl alcohol (vapor pressure at 2◦C)
Distance between two MWDCs 250 𝜇𝑚

4.4 Missing-Mass Calculation

From the measured positions and angles in the MWDC detectors at the focal plane,

the momentum vector of the triton is deduced, from which the excitation energies in the

residual nucleus and scattering angle are determined from the missing-mass calculation

[133]. The ray-trace matrix that is used to reconstruct the momenta and scattering angles

from the positions and angles measured in the focal plane is determined empirically by

using a sieve slit measurements [134]. The sieve slit is a block of a distinctive hole pattern

(see Figure 4.5). It is installed 60 mm downstream from the target and runs with this sieve

slit are taken for every setting of the spectrometer for calibration purposes. To reconstruct

horizontal and vertical scattering angles based on the hole pattern in the sieve slit, 6𝑡ℎ order

polynomials relying on XFP,YFP,Θ
horizontal
FP and Θvertical

FP are used. Then, the sieve slit is

removed from the beam-line and the polynomials are used to reconstruct the target angles

for the rest of the data. For the momentum calibrations, excitation energy spectra of nuclei
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with states for which the excitation energies are well known are used. For this experiment

the 26Mg(3He,t) reaction was the primary calibration reaction.

Figure 4.5 An example of the structure of sieve slit of the GRS for calibration of scattering
angles. Figure taken from [135]
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The missing-mass is calculated using the missing energy and momentum after recon-

struction:

𝑚𝑚𝑖𝑠𝑠 =

√︃
𝐸2
𝑚𝑖𝑠𝑠

− 𝑃2
𝑚𝑖𝑠𝑠

(4.1)

The excitation energy is determined based on the mass of the residual nucleus;

𝐸𝑥 (60Cu) = 𝑚𝑚𝑖𝑠𝑠 − 𝑚(60Cu), (4.2)

where m(60Cu) is the ground-state mass of 60Cu. The missing energy (𝐸𝑚𝑖𝑠𝑠) is defined as

the excess energy in the 60Ni(3He,𝑡) reaction:

𝐸𝑚𝑖𝑠𝑠 = 𝐸𝑖 − 𝐸 𝑓

= 𝐸𝑘 (3He) + 𝑚(3He) + 𝑚(60Ni) − 𝐸𝑘 (3H) − 𝑚(3H)
(4.3)

where 𝐸𝑘 is the kinetic energy. 𝐸𝑘 (3H) is determined from the reconstructed momentum

of the triton.

𝐸𝑘 (3H) =
√︃
𝑝2(3H) − 𝑚2(3H) − 𝑚(3H) (4.4)

The missing momentum is calculated from:

𝑝𝑚𝑖𝑠𝑠 =

√︃
𝑝2
𝑚𝑖𝑠𝑠,𝑥

+ 𝑝2
𝑚𝑖𝑠𝑠,𝑦

+ 𝑝2
𝑚𝑖𝑠𝑠,𝑧

(4.5)

where,

𝑝𝑚𝑖𝑠𝑠,𝑖 = 𝑝𝑖 (3He) − 𝑝𝑖 (3H) (4.6)

In this calculation 𝑝𝑥(3He) and 𝑝𝑦(3He) are assumed to be 0. The x,y, and z components

of the 3H momentum are calculated from the measured momenta and scattering angle of
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the 3H on the 𝐺𝑅𝑆: 

𝑝𝑥 (3H) = 𝑝𝑧 (3H) · 𝑡𝑎𝑛(Θ𝑥)

𝑝𝑦 (3H) = 𝑝𝑧 (3H) · 𝑡𝑎𝑛(Θ𝑦)

𝑝𝑧 (3H) = 𝑃𝑥 (3H) · 𝑐𝑜𝑠(Θ)

(4.7)

where,

Θ = 𝑎𝑡𝑎𝑛

(√︃
𝑡𝑎𝑛2(Θ𝑥) + 𝑡𝑎𝑛2(Θ𝑦)

)
(4.8)

and Θ𝑥 and Θ𝑦 are the reconstructed horizontal and vertical components of the scattering

angle.

4.5 Magnetic Fields of Grand Raiden Spectrometer

As discussed in section 2.1, the strength distribution of the isovector-spin and non-spin-

transfer giant monopole and dipole resonances are expected to extend up to high excitation

energies. These features require experimental measurements with an energy range that

covers the whole width of the resonances, approximately up to 60 MeV.

The momentum acceptance of the GRS is ≈ 5%. Therefore, the energy acceptance for

a setting of the magnetic field is ≃ 10% (this is shown in Appendix E, since 𝑑𝑝

𝑝
≈ 𝑑𝑘

2𝑘 ). This

implies that the energy range for a 140 MeV/𝑢 (420 MeV) triton covered in a single setting

is about 40 MeV. In order to cover the range of excitation energies above 40 MeV, three

overlapping settings of the magnetic field were used. Examples of the measured spectra at

these three settings are shown in Figure 4.6, for scattering angles between 25 and 30 mrad.
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Figure 4.6 Singles spectra obtained for the 60Ni(3He,𝑡) reaction for scattering angles be-
tween 25 and 30 mrad. Top: high magnetic field for the low excitation energy setting;
Middle: medium magnetic field for the medium excitation energy setting; Bottom: low
magnetic field for the high excitation energy setting.
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4.6 Angular Acceptance and Resolution

The 3He+ charge state provides a convenient way to determine the angular resolution. In

Figure 4.7(a) and (b), theΘ𝑥 andΘ𝑦 distribution for the charge state are shown, respectively.

The width (FWHM) of these distributions are 2.4 mrad (x) and 3.3 mrad (y), which

constitute the angular resolutions in each direction.

The angular acceptance of the GRS has an irregular shape as shown in Figure 4.8, which

displays Θ𝑥 versus Θ𝑦 for the low excitation energy runs. Near the edges of the acceptance,

the angular acceptance is uncertain and depends on the momentum of the tritons. For

Θℎ ≤ −6 mrad, the ray tracing of Θ𝑣 is uncertain, especially at low triton momentum (high

excitation energy), resulting in too many events at Θ ≈ 0. To ensure that only events with

well-reconstructed angles are utilized and the acceptance is well understood, only the data

with −6 ≤ Θ𝑥 ≤ 21 mrad and −36 ≤ Θ𝑦 ≤ 36 mrad were used, as indicated by the black

box in Figure 4.8. Within the angular range defined by this box, 8 angular slices, each of 5

mrad wide, were used to create angular distributions as shown in Figure 4.9.

The solid angle of each of these 8 angular bins was determined in a simple Monte-Carlo

integration. The result is shown in Figure 4.10. Due to the finite angular resolution, the

effective solid angle of each angular bin is slightly distorted. The effect was included in

the Monte-Carlo integration.

The estimated excitation energy resolution in 60Cu via the 60Ni(3He,𝑡) was 0.11 MeV,

see Figure 4.11.
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Figure 4.7 Figures(a) and (b) are the distribution of angular widths [FWHM] in horizontal
(Θ𝑥 = 2.4 mrad) and vertical (Θ𝑦 = 3.3 mrad) projection, respectively. The angular
resolution [FWHM] is ∼ 3 mrad
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Figure 4.8 Reconstructed angles from the highest magnetic field setting. The black box
indicates the angular ranges used in the further analysis.
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Figure 4.9 Figure illustrating vertical and horizontal angular acceptance of the GRS for the
three angular settings used for 60Ni(3He,𝑡) reaction. The 8 angular slices, each of 5 mrad
wide are shown in circles.
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Figure 4.10 Calculated effective opening angles (𝑑Ω) for the angular bins used in the
analysis of the 60Ni(3He,𝑡) data.
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Figure 4.11 The estimated energy resolution [FWHM] from the analysis of the 60Ni(3He,𝑡)
data was 0.11 MeV
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4.7 Differential Cross Sections Calculation

As discussed in section 4.5, data from the three angular settings (low, medium, and

high excitation energies) of the GRS were merged for every scattering angle bin of 5 mrad

in order to have one spectrum from the full range of excitation energies up to 60 MeV. The

differential cross-sections of the 60Ni(3He,𝑡) reaction at 140 MeV were calculated using

the following equation:
𝑑𝜎

𝑑Ω
=

𝑌

𝑁𝑏𝑒𝑎𝑚𝑁𝑡𝑔𝑡𝜖1𝜖2𝑑Ω
, (4.9)

where 𝑌 is the total number of counts in an angular bin, 𝑁𝑏𝑒𝑎𝑚 is the number of beam

particles (3He2+) on target, 𝑁𝑡𝑔𝑡 is the number of nuclei in the target 60Ni foil of 2 mg/c𝑚2,

𝜖1 is the correction for the lifetime of the data acquisition system (95%), 𝜖2 is the correction

for the target purity (98%), and 𝑑Ω = 2𝜋
∫ 𝜃 𝑓

𝜃𝑖
sin 𝜃𝑑𝜃 is the solid angle for angular bin as

shown in Figure 4.10, where 𝜃𝑖 and 𝜃 𝑓 are the lower and upper angular bin limits.

Figure 4.12 and 4.13 shows results of the measured differential cross sections for

different angular bins of 5 mrad from 60Ni(3He,𝑡) data. The dominant observed peaks in

the spectra are IAS and GTR, which can be seen at excitation energies of 2.55 MeV and 10

MeV, respectively. As the angle increases, the height of these peaks decreases, suggesting

that they are associated with Δ𝐿 = 0 and correspond to GT transitions. At higher excitation

energies, the flat structure is a combination of states related to different angular momentum

transfers. The statistical uncertainties are represented in the spectra.
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Figure 4.12 Extracted differential cross sections for each 5-mrad wide angular bin for the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢. Angles are in the laboratory frame. The uncertainties
presented in the data are statistical.
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Figure 4.13 Extracted differential cross sections for each 5-mrad wide angular bin for the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢. Angles are in the laboratory frame. The uncertainties
presented in the data are statistical.
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CHAPTER 5

RESULTS AND COMPARISON WITH THEORY

5.1 Calculated and Measured IAS

The next step in the analysis of the experimental data is to investigate the contribution

from different types of transitions and to identify the location of the giant resonances. As

discussed in Chapter 2, resonances associated with different units of angular momentum

transfer peak at different scattering angles, and we can use a multipole decomposition

analysis (MDA) to separate these contributions. In the following, we first look to the IAS,

before performing a MDA of the whole excitation energy spectrum.

In 60Cu, it is possible to identify individual states at low excitation energies. In Figure

5.1 (a) the excitation energy spectrum for 𝐸𝑥 < 5 MeV is shown, at scattering angles of

Θ𝑡,𝑙𝑎𝑏 < 5 mrad. Figure 5.1 (b) shows the differential cross section for the transition to the

IAS of the 60Ni: ground state, located at an excitation energy of 2.55 MeV as indicated

in Figure 5.1 (a). The error bars show statistical errors. The measured differential cross

section is compared with the theory, based on the distorted wave Born approximation

(DWBA) see section 3.4.3. The theoretical cross section was higher than the measured

cross-section and scaled down by a factor of 1.35 to match the measured cross sections.

The likely reason for this overestimation by the theory is the use of an approximation to

the exchange contribution in the 𝑁𝑁 interaction used in the calculation [38]. Other than

this scaling factor, the theoretical calculation matches well with the experimental data,

indicating the ability of the DWBA calculation to accurately describe the experimental

angular distributions.
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Figure 5.1 Figure (a) shows the excitation-energy spectrum between 0 and 5 MeV for the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢. Figure (b) shows the comparison of the measured
differential cross section for the IAS with theory, based on the DWBA calculation as shown
with the black solid line. The DWBA calculation was scared down by a factor of 1.35
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5.2 Multiple Decomposition Analysis Results

As discussed in chapter 3, the MDA is a method used to extract contributions to

the measured spectra that are associated with the transfer of different units of angular

momentum (Δ𝐿). The MDA was performed by fitting the measured differential cross

section shown in Figures 4.12 and 4.13 for each energy bin with a linear combination of

theoretical angular distributions (see Eq. 3.2), each associated with a different value of

Δ𝐿, as discussed in section 3.4.3.

Figures 5.2 and 5.3 illustrates the MDA fits for a few selected excitation energy bins. A

bin size of 40 keV was used in order to ensure adequate statistics for the MDA. In DWBA,

the Δ𝐿=0, 1, and 2 shapes were computed with matching excitation energy for each bin.

The top four figures in Figure 5.2 depict a fit at excitation energies below 14 MeV,

where the monopole (Δ𝐿 = 0) contribution dominates over other Δ𝐿 values. However, as

the scattering angles increase, the dipole (Δ𝐿 = 1) contribution becomes significant. The

bottom two panels in Figure 5.2 show fits around 20 MeV, whereΔ𝐿 = 1 and 2 contributions

are relatively strong. Below 1◦, the Δ𝐿 = 2 component dominates, while above 1◦, the

dipole contributions dominate.

Figure 5.3 (top two figures) shows fits around 30 MeV, where all Δ𝐿 values contribute

to the total strength. Below 1.25◦, the monopole contribution dominates, while above

1.25◦, the dipole contribution dominates. For the fit around 47 and 48 MeV in Figure 5.3

(middle two figures), the Δ𝐿 = 2 component dominates at all scattering angles, but other

Δ𝐿 = 0 and 1 values also contribute to the total strength. Finally, the bottom two panels of

Figure 5.3 show the fit around 54 and 57 MeV, where all Δ𝐿 values contribute to the total

strength. Below 1.25◦, a significant contribution of the Δ𝐿 = 0 component was observed,
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while above 1.25◦, the Δ𝐿 = 1 component dominates.

Please note that the components Δ𝐿 = 2 likely also include contributions from ex-

citations with higher Δ𝐿, but given the relatively narrow angular range covered in the

experiment, these cannot be separated.

The results from the MDA for each individual bin can now be combined to obtain a

picture of the multipole response as a function of excitation energy. The combined plots

are shown in Figure 5.4 and 5.5 for each of the angular bins. Figure 5.4 shows the results

for angular bins below 20 mrad. Each figure contains the contributions from each Δ𝐿

component, the sum of these three components, and the experimental data.

The Δ𝐿 = 0 contributions are enhanced at low scattering angles and below 𝐸𝑥 = 12

MeV it is the dominant contribution to the spectrum. This strength can be attributed to

Gamow-Teller transitions, aside from the IAS at 2.55 MeV. Note that the 0+ → 1+ GT

transitions have a Δ𝐿 = 0 and Δ𝐿 = 2 component. Therefore, in regions where GT

transitions are strong, a Δ𝐿 = 2 contribution must be present as well. Of course, Δ𝐿 = 2

contributions can also come from transitions to 2+ and 3+ final states as well. At higher

excitation energies, contributions to the Δ𝐿 = 0 response from the IVGMR and IVSGMR

are expected. Indeed, Δ𝐿 = 0 strength is observed above 20 MeV, but the interpretation is

complicated by contributions from quasifree reactions, as discussed below.

Dipole strength (with Δ𝐿 = 1) peaks at a larger scattering angle. Indeed a broad

resonance that peaks at about 19 MeV is visible at the largest scattering angles. This broad

structure is due to a combination of the IVSGDR (𝐽𝜋 = 0−, 1−, 2−) and IVGDR 𝐽𝜋 = 1−.

Because the extracted Δ𝐿 = 2 distribution also contains contributions from transitions

with Δ𝐿 > 2, the interpretation of this distribution is ambiguous. It doesn’t display a clear
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resonance like structure even though the IVGQR and IVSGQR should contribute to the

spectrum at high excitation energies. This is due to the fact that the quasifree reactions

contribute significantly to the Δ𝐿 = 2 response, as discussed below. In the next sections,

the responses will be examined in more detail.
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Figure 5.2 Figures show the MDA fit for a few selected measured center-of-mass angular
distributions in 0.04 MeV bins between 0 and 60 MeV in 60Cu. The experimental data are
represented by black dots, while the dashed red, blue, and yellow lines correspond to the
Δ𝐿=0,1,2 components respectively of each fit determined from the MDA. The green solid
line is the sum of the three MDA fit components. For more details, see the text.
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Figure 5.3 𝐶𝑜𝑛𝑡 Figures show the MDA fit for a few selected measured center-of-mass
angular distributions in 0.04 MeV bins between 0 and 60 MeV in 60Cu. The experimental
data are represented by black dots, while the dashed red, blue, and yellow lines correspond
to the Δ𝐿=0,1,2 components respectively of each fit determined from the MDA. The green
solid line is the sum of the three MDA fit components. For more details, see the text.
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Figure 5.4 MDA results presented as the differential cross sections of 60Ni(3He,𝑡) reaction
at 140 MeV/𝑢 for scattering angle bin from 0 up to 20 mrad angular distribution. Each
0.04 MeV energy bin’s associated angular distribution was fit in the MDA with Δ𝐿 =0, 1
and 2 theoretical angular distribution. 84
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Figure 5.5 MDA results presented as the differential cross sections of 60Ni(3He,𝑡) reaction
at 140 MeV/𝑢 for scattering angle bin from 25 up to 40 mrad angular distribution. Each
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5.3 Gamow-Teller Strength B(GT) Extraction

5.3.1 Extrapolation to q=0

Section 3.5 introduced a relationship between charge-exchange cross sections extracted

to zero momentum transfer and Gamow-Teller strength, B(GT), as shown in Eq. 3.16.

The top four figures in Figure 5.2 and Figure 5.4 indicate that the cross-section at forward

angles is dominated by Δ𝐿 = 0 transitions, which enables the extraction of B(GT) as a

function of excitation energy. Firstly, the cross section needs to be extrapolated to zero

linear momentum transfer (𝑞 → 0). For this purpose the cross section at 0◦ for the Δ𝐿 = 0

component from the MDA was extracted from finite Q value to 𝑄 = 0, using the DWBA

calculations:

d𝜎
dΩ

(q = 0)
����
ΔL=0

=

[
d𝜎
dΩ (Q = 0, 𝜃 = 0◦)
d𝜎
dΩ (Q = Q, 𝜃 = 0◦)

]
DWBA

×
[
d𝜎
dΩ

(𝜃 = 0◦,Q)
]ΔL=0

experiment
(5.1)

The DWBA scaling factor is displayed in Figure 5.6. Finally, after extracting the experimen-

tal cross section at 𝑞 = 0 and by using the Gamow-Teller unit cross section (�̂�𝐺𝑇 = 7.614,

see Figure 3.8): the B(GT) was calculated by dividing the differential cross section at 𝑞 = 0

by the unit cross section.

B(GT) =

d𝜎
dΩ (q = 0)

����
ΔL=0

�̂�GT
(5.2)

A 10% uncertainty that scales all GT strengths attributed to the uncertainty in �̂�𝐺𝑇 was

taken into consideration in the further analysis [136, 21, 49]. Figure 5.7(a) presents the

B(GT) distribution extracted as a function of excitation energy, while Figure 5.7(b) shows

the cumulative B(GT) strength up to 20 MeV. In the subsequent section, the comparison

with the shell-model calculation for the same excitation energy range is discussed.

86



For excitation energies up to 20 MeV, the MDA analysis yielded a total GT strength of

11.90 ± 0.56 (stat) ± 1.19 (sys). At higher excitation energy additional strength is found

that is associated with Δ𝐿 = 0 and likely contains some additional GT strength. However,

at high excitation energies contributions from the isovector giant monopole resonances are

expected to dominate the Δ𝐿 = 0 response.
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Figure 5.6 The ratio of the differential cross sections at 𝜃 = 0◦ and at zero Q-value (𝑄 = 0)
to that of 𝜃 = 0 and 𝑄 = 𝑄 as calculated in DWBA
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Figure 5.7 Figure (a) shows the extracted B(GT) in 60Cu up to 20 MeV excitation energy,
while Figure (b) displays the cumulative B(GT) strengths. The uncertainties shown are
statistical. An additional uncertainty of 10% that scales all GT strengths is due to the
uncertainty in �̂� [136, 21, 49].

88



5.3.2 Comparison with Theory, Shell-Model Calculations

The B(GT) distributions as a function of the excitation energy extracted from 60Ni(3He,𝑡)

reaction were compared to the strengths distributions calculated in shell-model calculations

performed in pf-shell-model space using the GXPF1A interaction [137]. Truncations in

the shell-model space were necessary to calculate the strength up to high excitation energy.

The calculations were performed with the code NushellX [117]. Three calculations were

performed, one in which the pf-shell-model space was not truncated, one in which at least

7 neutrons and protons were in 𝑓7/2 orbit (strong truncation), and one in which at least

6 neutrons and protons were in the 𝑓7/2 orbit (mild truncation). Calculations with no

truncation could be performed up to an excitation energy of 6.5 MeV. Calculations with a

mild truncation could be performed up to ∼ 15 MeV. Calculations with a strong truncation

were performed up to 20 MeV. All shell-model calculations were scaled by a factor of 0.56

(see section 2.3.2) to account for a well-known quenching of the GT strength [138].

The comparisons of the experimental and theoretical GT strengths are shown in Figure

5.8 and 5.9. The theoretical strength distributions shown in Figure 5.8 match the overall

structure of the experimental spectra quite well. There are several relatively strength

transitions at low excitation energies and a broad distribution of strength between 5 and 15

MeV. On the other hand, it is not possible to make a one-to-one correspondence between

experimental and theoretical transitions even at low excitation energies, and reducing the

truncation does not provide a significantly better result, even though the theoretical spectra

change significantly with different levels of truncation. Above 17 MeV more strength is

found than in theory. Some of this strength might be attributed to the quenched strength at

low excitation energy. However, some of this strength could also be due to the excitation
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of the isovector giant monopole resonances and to the quasifree-continuum as discussed in

later sections.

To compare the total strength, the cumulative strengths are plotted in Figure 5.9. The

level of truncation modifies the summed strength, and the total strength is lower with

reduced truncation. Slightly more strength is found in the experiment compared to the

theoretical calculations. The shell-model calculations plateau above 15 MeV, whereas

some GT strength is observed. As discussed above, this could be due to quenched strength

at low excitation energies shifting to higher excitation energies or due to misinterpreted

isovector monopole strength or contributions from the quasifree-continuum.
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Figure 5.8 The comparison of the measured B(GT) strength and these from shell-model
calculations. Figure (a) shows the measured B(GT) strengths up to 20 MeV. Figure
(b) to Figure (d) shows theoretical shell-model calculations in green, red, and black for
no truncation, mild truncation, and strong truncation, respectively. Note that the IAS is
visible in the extracted strengths from the experiment, but does not appear in the theoretical
calculations (Gamow-Teller only). 91
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Figure 5.9 The extracted cumulative B(GT) distribution was compared to theoretical shell-
model calculations depicted in blue, green, and red for no truncation, mild truncation, and
strong truncation, respectively. All shell-model calculations were scaled by a factor of 0.55
[138] to account for a well-known quenching of the GT strength.
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5.3.3 Extracted B(GT) at 14.4 MeV for 𝑇> State

Studying𝑇0+1 excitations is of interest as these states are the analogs of states populated

in the 60Ni(n,p) reaction, see Figure 2.3. These transitions can be used to estimate the

electron-capture rate in core-collapse supernovae [139] for which GT strengths in the 𝛽+

direction are important. The extraction of the first 𝑇0 + 1 state, located at 𝐸𝑥 (60Cu) = 14.4

MeV was previously analyzed through the 60Ni(p,n) reaction [139], see Figure 5.10. The

extracted B(GT) for the 60Ni(n,p) reaction after taking into consideration the isospin scaling

factor as discussed in section 2.2 to scale the strength from the 60Ni(p,n) reaction to
60Ni(n,p) reaction was 0.95 ± 0.15. The scaling factor was 15 calculated by using the

equation in section 2.2 [139]. A similar analysis but with the (3He, 𝑡) reaction was

performed in this thesis.

The process of extracting the B(GT) for the transition to the 𝑇0 + 1 state around 14.4

MeV in the 60Ni(3He,𝑡) reaction at 140 MeV/𝑢 is shown in Figure 5.11. Figure 5.11(a)

illustrates the differential cross section between 13.5 and 16 MeV at forward scattering

angles emphasizing the prominent 𝑇0 + 1 state at an excitation energy of 𝐸𝑥 (60Cu) = 14.4

MeV. Figure 5.11(b) displays the fitted data using a first-order polynomial background

and a Gaussian function. Following background subtraction, Figure 5.11(c) visualizes the

resulting peak centered around 14.4 MeV. Subsequently, a MDA was performed to extract

the cross section at 0◦ and the B(GT) following the same process as in section 5.3.1.

In order to convert the cross-section from data to B(GT), the cross sections were

extrapolated to 𝑞 = 0 momentum transfer and divided by unit cross-section (�̂�𝐺𝑇 = 7.614).

In this work, the extracted B(GT) of 𝑇0 + 1 state at 14.4 MeV is 0.88 ± 0.03 (stat.)±0.09

(syst.). The value is consistent with the result from the 60Ni(p,n) experiment [139].
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Figure 5.10 Spectra for 58,60,62,64Ni(p,n) reactions at 134.4 MeV, the 𝑇0 + 1 state in 60Ni
nucleus is shown at 14.4 MeV. Figure taken from [139].
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Figure 5.11 Extracting B(GT) for the transition to the 𝑇0 + 1 state at 14.4 MeV in the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢 . Figure (a) depicts the differential cross section
between 13.5 and 16 MeV. Figure (b) shows the fitted peak, while Figure (c) displays the
background subtracted peak centered at 𝐸𝑥 = 14.4 MeV. Figure (d) presents the angular
distribution and the MDA.
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5.3.4 Comparison with Theory, (𝑝, 𝑝′) and (𝑒, 𝑒′)

In addition to the transition to the 𝑇0 + 1 state at 14.4 MeV, it is likely that are other

GT transitions to 𝑇0 + 1 states above 14.4 MeV. In this work, it was attempted to extract the

strength of these transitions by using a simple background subtraction, as shown in Figure

5.12. Figure 5.12(a) shows the differential cross section between 𝐸𝑥 = 13 MeV and 𝐸𝑥 = 20

MeV for scattering angles below 5 mrad, where GT transitions are dominant. Besides the

peak at 14.4 MeV, several other weaker peaks are visible. A simple linear background

was subtracted, as shown in Figure 5.12(b), where the red dashed lines indicates the

estimated uncertainty in this background model. The background-subtracted differential

cross sections are shown in Figure 5.12(c). The extracted B(GT) strengths are shown in

Figure 5.12(d). To verify that these states are 𝑇0 + 1 states, the excitation energies of the

states were compared with known corresponding 𝑇0 + 1 states measured in the 60Ni(𝑝, 𝑝′)

and 60Ni(𝑒, 𝑒′) reactions [140, 141], these excitation energies are indicated in red and green

arrows, respectively, in Figure 5.12(d). Up to about 16.5 MeV, it appears that several 𝑇0 + 1

states can be identified. At higher excitation energies, no (𝑝, 𝑝′) or (𝑒, 𝑒′) data are available

and it cannot be proven that the peaks found are transitions to 𝑇0 + 1 states. The results

were compared with shell-model calculations with the GXPF1A interaction in the pf-shell

model space (no truncation) in the (n,p) direction. They are shown as the black dots in

Figure 5.12(d).

Aside from the transition to the first 𝑇0 + 1 states, it is not possible to find a one-to-one

correspondence between states found in the experiment and states calculated in the shell-

model. In addition, more strength is found in the theoretical calculations than observed in

the experiment.
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Figure 5.12 Extraction of the B(GT) for the transitions to possible 𝑇0 + 1 states. Figure
(a) illustrates the differential cross sections between 13 and 20 MeV. Figure (b) shows
the background estimation, while Figure (c) shows the differential cross sections of the
same spectrum after the background has been subtracted. Figure (d) presents the extracted
B(GT) from the measured in the 60Ni(3He,𝑡) data in blue dots and shell-model calculations
in the (n,p) direction in black dots. The location of the states are compared with available
data for the location of the 𝑇0 + 1 states in (𝑝, 𝑝′) in red and (𝑒, 𝑒′) in green data [140, 141].
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5.4 Background or quasifree-continuum Estimation

Extracting the Isovector Spin Giant Monopole Resonance (IVSGMR), Isovector Spin

Giant Dipole Resonance (IVSGDR), and other isovector giant resonances with higher mul-

tipolarities at higher excitation energies is complicated by the presence of the quasifree-

continuum in charge-exchange reactions. As the excitation energy increases, the quasifree-

continuum becomes more pronounced, making it difficult to observe and analyze the

resonant structures of interest. The quasifree-continuum arises from non-resonant pro-

cesses. At energies of an excess of 100 MeV/𝑢 the dominant component of the continuum

are quasifree reactions in which the projectile interacts with a single nucleon and the other

nucleons in the target are spectators.

In quasifree reactions in the (3He,𝑡) reaction, the 3He projectile interacts with a single

neutron in the target, where the rest of the nucleus acts as a spectator, and the neutron

behaves as a free particle, except for its binding energy. This CE process involves the

transformation of this neutron into a proton, leading to its "knockout" from the nucleus.

The process must occur above the proton separation energy to facilitate this knockout.

As the transferred energy increases, removing neutrons from deeper shells with higher

binding energies becomes possible. More details about the quasifree-continuum origin can

be found in Refs. [142, 143, 144, 145, 146, 147, 43, 145, 148].

The contribution of quasifree reactions is uncertain. If quasifree reactions do not

peak at forward scattering angles, the MDA conveniently includes contributions from

the continuum into components associated Δ𝐿 ≥ 2, making the extraction of Δ𝐿 = 0

and Δ𝐿 = 1 strength straightforward. However, if the continuum contribution peaks at

forward scattering angles, it will impact the strength extraction of Δ𝐿 = 0 and Δ𝐿 =
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1 resonances and it is better to remove the continuum contribution before the MDA.

In this work, we will compare the two approaches. The quasifree-continuum has been

estimated using a phenomenological approach. Initially, Erell et al. [43] introduced

this description for 𝜋 charge-exchange reactions, and later, it was also applied to (3He,𝑡)

reactions [145, 146, 147, 148]. For the case of (3He,𝑡) reaction, it has the following form:

𝑑2𝜎

𝑑Ω𝑑𝐸
= 𝑁

1 − 𝑒𝑥𝑝 [(𝐸 − 𝐸0)/𝑇]
1 + [(𝐸 − 𝐸𝑄𝐹)/𝑊]2 , (5.3)

where 𝐸𝑄𝐹 is the centroid energy of a Lorentzian distribution that undergoes a shift relative

to the energy of the free process, 𝐸𝑡 ( 𝑓 𝑟𝑒𝑒) , due to various contributing factors. These factors

include the proton binding energy 𝑆𝑝, the excitation energy 𝐸𝑥 of the neutron-hole state,

and the Coulomb barrier 𝐵𝐶𝑜𝑢𝑙 experienced by the proton:

𝐸𝑄𝐹 = 𝐸𝑡 ( 𝑓 𝑟𝑒𝑒) − (𝑆𝑝 + 𝐸𝑥 + 𝐵𝐶𝑜𝑢𝑙), (5.4)

The energy 𝐸𝑥 becomes zero only when the neutron is removed from the orbit closest to

the Fermi level. The width 𝑊 is attributed to the Fermi motion inside the nucleus, while

the exponential term arises from Pauli blocking effects. The cut-off energy 𝐸0 is defined

by:

𝐸0 = 𝐸𝑡 (𝑔𝑠) − 𝑆𝑝, (5.5)

and 𝐸 is derived from 𝐸𝑥 by:

𝐸 = 𝐸𝑝𝑟𝑜 𝑗 +𝑄𝑔𝑠 − 𝐸𝑥 (5.6)

99



The parameter T is a temperature parameter. The normalization (N) is typically

selected to match the full cross section at high excitation energies, which likely leads to

an overestimation of the quasifree-continuum due to the contribution from non-quasifree

reactions at high excitation energies.

In this work, equation 5.3 was used to estimate the quasifree-continuum in spectra

from 60Ni(3He,𝑡) reaction as shown in Figure 5.13 and Figure 5.14. The parameters in Eq.

5.3 used in calculating the quasifree curves are described in Table 5.1. The value of the

normalization factor N as a function of the scattering angle is shown in Figure 5.15. It

was determined by scaling the calculated quasifree curve to the experimental differential

cross sections for excitation energies above 55 MeV. N peaks at forward scattering angles,

although the angular dependence is weak.

In order to extract monopole and dipole strengths from 60Ni(3He,𝑡) data, the estimated

quasifree-continuum was removed from data as shown in Figures 5.16 to 5.19. A compar-

ison was made between the MDA results for 1 MeV bins up through 60 MeV in excitation

energy before and after removing the quasifree-continuum in the 60Ni(3He,𝑡) data for a

scattering angle bin ranging from 0 to 40 mrad as shown in Figure 5.16 to 5.17. The top

figure displays the MDA results before removing the quasifree-continuum, whereas the

bottom figure displays the MDA after the quasifree-continuum removal within the same

angular range. It is observed that, after the subtraction of the quasifree-continuum, tails

that extend to high excitation energies for Δ𝐿 = 0 and Δ𝐿 = 1 components are strongly

reduced.

100



0 20 40
 Ex (MeV) 

0

2

4

6

8

d2
/d

dE
 (m

b/
sr

 M
eV

) 

5 mrad

Continuum
Data

0 20 40
 Ex (MeV) 

0

2

4

6

8

d2
/d

dE
 (m

b/
sr

 M
eV

) 

10 mrad

Continuum
Data

0 20 40
 Ex (MeV) 

0

2

4

6

8

d2
/d

dE
 (m

b/
sr

 M
eV

) 

15 mrad

Continuum
Data

0 20 40
 Ex (MeV) 

0

2

4

6

d2
/d

dE
 (m

b/
sr

 M
eV

) 

20 mrad

Continuum
Data

Figure 5.13 Estimating quasifree-continuum for each 5 mrad wide angular bin via the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢 for scattering angle bin from 5 to 20 mrad angular
distribution. The black dots in the figure represents the experimental data, while the blue
dots illustrate the quasi-free curve used for comparison.
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Figure 5.14 Estimating quasifree-continuum for each 5 mrad wide angular bin via the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢 for scattering angle bin from 25 to 40 mrad angular
distribution. The black dots in the figure represents the experimental data, while the blue
dots illustrate the quasi-free curve used for comparison.

102



0 10 20 30 40
 Scatering Angle ( ) in mrad 

0

5

10

15

20

25

30

 S
ca

lin
g 

pa
ra

m
et

er
 

Figure 5.15 Normalizing parameters (N) from fit was used to match the full cross-section
at high excitation energies for each 5 mrad wide angular bin in (3He,𝑡) data.

Table 5.1 Parameters used in calculating the quasi-free curve/quasifree-continuum via the
60Ni(3He,𝑡) reaction at 140 MeV/𝑢.

N Normalization, fit fit
𝑄 (𝑔𝑠) Q value for 60Ni(3He,𝑡) -6.147
nQ Q value for n(3He,𝑡)p 0.762 MeV
𝐸𝑝𝑟𝑜 𝑗 Beam energy (3He) 420 MeV
𝐸𝑡 ( 𝑓 𝑟𝑒𝑒) Energy of the free triton,

[
𝐸𝑡 ( 𝑓 𝑟𝑒𝑒) = 𝐸𝑝𝑟𝑜 𝑗 + 𝑛𝑄

]
420.762 MeV

𝐸𝑡 (𝑔𝑠) Ground state energy of the triton,
[
𝐸𝑡 (𝑔𝑠) = 𝐸𝑝𝑟𝑜 𝑗 −𝑄

]
413.852

𝑆𝑝 Proton separation energy for 60Ni 9.922 MeV
𝐵𝐶𝑜𝑢𝑙 Coulomb barrier for the proton 7.3 MeV
𝐸𝑥 Excitation energy of the neutron hole state 2 MeV
𝐸𝑄𝐹 Quasi-free energy, 𝐸𝑄𝐹 = 𝐸𝑡 ( 𝑓 𝑟𝑒𝑒) − (𝑆𝑝 + 𝐸𝑥 + 𝐵𝐶𝑜𝑢𝑙) 401.932 MeV
𝐸0 𝐸𝑡 (𝑔𝑠) − 𝑆𝑝 404.3196 MeV
𝑊 Width of resonance, fit fit
𝑇 Temperature parameter 100
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Figure 5.16 The MDA results at 1 MeV bin from 60Ni(3He,𝑡) data for a scattering angle bin
ranging from 0 to 10 mrad. The top figure illustrates the MDA results before removing the
quasifree-continuum, while the bottom figure shows the same results after the quasifree-
continuum removal within the same angular range.
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Figure 5.17 The MDA results at 1 MeV bin from 60Ni(3He,𝑡) data for a scattering angle bin
ranging from 10 to 20 mrad. The top figure illustrates the MDA results before removing the
quasifree-continuum, while the bottom figure shows the same results after the quasifree-
continuum removal within the same angular range.
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Figure 5.18 The MDA results at 1 MeV bin from 60Ni(3He,𝑡) data for a scattering angle bin
ranging from 20 to 20 mrad. The top figure illustrates the MDA results before removing the
quasifree-continuum, while the bottom figure shows the same results after the quasifree-
continuum removal within the same angular range.
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Figure 5.19 The MDA results at 1 MeV bin from 60Ni(3He,𝑡) data for a scattering angle bin
ranging from 30 to 40 mrad. The top figure illustrates the MDA results before removing the
quasifree-continuum, while the bottom figure shows the same results after the quasifree-
continuum removal within the same angular range.
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5.5 Extraction of the Isovector Spin Giant Monopole Strength

Due to the common transition ofΔ𝐿 = 0 for the GT, IVGMR, and IVSGMR excitations,

their strength contributions cannot be distinguished solely through the MDA. Although

some GT strength can be situated at excitation energies above 20 MeV, it is of a non-resonant

nature and is expected to be weakly excited compared to the IVGMR and IVSGMR. In

this work, separating the strength contribution of the IVSGMR/IVGMR from that of GT

transition was done by a simple assumption that the cross sections associated with Δ𝐿 = 0

at low (≤ 20 MeV) and high (> 20 MeV) excitation energies correspond to the excitations

of GT states and the IVSGMR/IVGMR, respectively. The extraction of the B(GT) strength

was discussed in section 5.3.

To make an assessment of how much of the expected resonance strength for the IVS-

GMR/IVGMR is found in the analysis, the extracted cross sections associated with Δ𝐿 = 0

in the MDA at 0◦ were compared with the calculated cross sections in DWBA with tran-

sition densities calculated in normal modes (see section 3.4.2). Figure 5.20 shows the

extracted ratio of 𝜎(0◦)
��𝑒𝑥𝑝
𝑑𝐿=0 to 𝜎(0◦)

��𝐷𝑊𝐵𝐴
𝐼𝑉𝑆𝐺𝑀𝑅/𝐼𝑉𝐺𝑀𝑅 for the MDA analysis performed

before and after the removal of the quasifree-continuum contributions. Figure 5.20 also

includes the summed fractions as a function of excitation energy, which provides a measure

of how much of the expected normal-modes strength is observed in the analysis. Figure

5.20(a) and (b) show the extracted ratios after quasifree-continuum subtraction, while Fig-

ure 5.20(c) and (d) shows the same analysis before quasifree-continuum subtraction. In

the former case, monopole contribution at excitation energy between 20 to 50 MeV was

found to be 8% of the expected strength from the normal-modes calculation. It is therefore

likely the background subtraction removed a fraction of the isovector spin giant monopole
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strength.

In the latter case, the strength distribution shows no sign of resonance structure, and

three times the expected strength is extracted. This indicates that the removal of the

quasifree-continuum is important. We conclude that in order to extract strengths for the

IVGMR and IVSGMR, an experimental method for removing the quasifree-continuum is

required. In the past, this has been achieved by requiring a coincidence between the (3He,𝑡)

and protons at backward angles [3, 35, 149]. The reactions that contribute to the quasifree-

continuum are associated with a proton emitted at the forward scattering angles. Protons

emitted follow the excitation of the IVGMR/IVSGMR and are distributed isotropically.

Hence the coincidence with protons at backward angles provides a good filter for reactions

in which the giant resonances are excited.
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Figure 5.20 Figure (a) and (b) shows the extracted ratios of 𝜎(0◦)
��𝑒𝑥𝑝
𝑑𝐿=0 to

𝜎(0◦)
��𝐷𝑊𝐵𝐴
𝐼𝑉𝑆𝐺𝑀𝑅,𝐼𝑉𝐺𝑀𝑅

from 60Ni(3He,𝑡) reaction at 140 MeV/𝑢 after the quasifree-
continuum subtraction. Conversely, Figures (c) and (d) illustrate the same ratios derived
from the original data without the quasifree-continuum subtraction. In Figure (b) we ob-
serve that the anticipated resonance strength for IVSGMR/IVGMR is 8% of the expected
normal-modes strength, while in Figure (d) more than 300% of expected normal-modes
strength is observed.
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5.6 Extraction of the Isovector Spin Giant Dipole Strength

As previously discussed in section 2.5, the IV(S)GDR consists of three components

(0−, 1−, and 2−). However, in the data, these components are not distinguishable from one

another due to their overlap and equal Δ𝐿 value and angular distribution. The summed

strength peaks at around 18 MeV.

Here, we compared the differential cross sections extracted for Δ𝐿 = 1 transitions

with the DWBA calculations using the normal-mode framework. The comparison is

performed for 35≤ Θ𝑡,𝑙𝑎𝑏 < 40 mrad, where the dipole transitions peak. As was done in

the previous section 5.5 for the IVGMR/IVSGMR, the results from the analysis with and

without subtraction of the quasifree-continuum were compared. The results are shown in

Figure 5.21. With the removal of the quasifree-continuum, a strong resonance is observed

that peaks at 𝐸𝑥 = 18 MeV. The ratio between the extracted and theoretical cross sections

is about 1.25, suggesting that the quasifree-continuum subtraction works quite well. Since,

theΔ𝐿 = 1 excitations peak at backward angles, unlike the quasifree-continuum, systematic

uncertainties induced by the subtraction of the quasifree-continuum appear less severe than

for the monopole transitions. Without the subtraction of the quasifree-continuum, a large

amount of excess cross section above 𝐸𝑥 = 30 MeV is seen, indicating that the subtraction

of the quasifree-continuum is necessary.
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Figure 5.21 The isovector spin giant dipole strength was extracted from the 60Ni(3He,𝑡)
reaction at 140 MeV/𝑢. In Figure (a), we depict the ratios of 𝑑𝐿 = 1 components at
0◦ derived from both the measured differential cross sections (MDA) and the theoretical
calculation using DWBA. Figure (b) showcases the cumulative ratio of the results presented
in Figure (a).
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Summary

This dissertation focused on probing isovector giant resonances in 60Cu up to high

excitation energies (60 MeV) using the (3He,𝑡) reaction at 140 MeV/𝑢. The experiment

was performed at the Grand Raiden Spectrometer at Osaka University’s Research Center

for Nuclear Physics (RCNP). The method involved directing a 3He beam of 420 MeV with

an intensity of 4 pnA onto a 60Ni foil target of 2 mg/cm2. The tritons were identified and

analyzed in the focal plane. From the measured position and angles in the focal plane, the

momentum vector of the triton was deduced, from which the excitation energy in 60Cu and

scattering angle were determined.

To investigate the Gamow-Teller strengths, the isobaric analog state, the isovector

(spin) monopole, and dipole giant resonances, a multiple decomposition analysis (MDA)

was performed. The differential cross sections were fitted with a linear combination of

the angular distributions associated with different angular momentum transfer Δ𝐿 (Δ𝐿 =

0, 1, 2, ...) calculated in distorted wave Born approximation.

Different giant resonances were observed at different excitation energies. For the

(3He,𝑡) reaction at 140 MeV/𝑢, the GTR, IAS, and monopole excitations are associated

with Δ𝐿 = 0, so they peak at 0◦ scattering angle and their presence is strongly enhanced in

the spectrum gated on scattering angles between 0 and 5 mrad. Dipole excitations peak at

small but finite angles and their features are enhanced at scattering angles between 35 and

45 mrad. The IAS was found to reside at Ex(60Cu) = 2.55 MeV, and the main component

of the GTR appears at excitation energies of ∼ 10 MeV. The IVSGDR peaks at an excitation
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energy of about 18 MeV. The IVSGMR and IVGMR were seen at the excitation energies

of about 35 MeV and are not easy to identify due to their large widths.

For excitation energies up to 20 MeV, the MDA analysis resulted in a total GT strength of

11.90 ± 0.56 (stat.) ± 1.19 (syst.). At higher excitation energy additional strength is found

that is associated with Δ𝐿 = 0 and likely contains additional GT strength. However, at high

excitation energies contributions from IVSGMR are also expected. The study compared the

extracted Gamow-Teller Strength B(GT) running sum with shell-model calculations using

the GXPF1A interaction. Various truncation levels were applied to calculate strength

distributions, and all calculations were scaled by a factor of 0.56 to address quenching

effects. The comparison of the GT strengths revealed reasonable agreement between

experiment and shell-model calculations.

Gamow-Teller strengths for 𝑇0 + 1 states were extracted. The extracted B(GT) for the

𝑇0 + 1 state at 14.4 MeV was found to be 0.88 ± 0.03 (stat.) ± 0.09 (syst.), consistent with

results from the 60Ni(p,n) experiment. Additional GT transitions to 𝑇0 + 1 states above

14.4 MeV in 60Cu were investigated. Several peaks, apart from the 14.4 MeV peak, were

observed. To confirm that these states are 𝑇0 + 1 states, their excitation energies were

compared with known 𝑇0 + 1 states from 60Ni(𝑝, 𝑝′) and 60Ni(𝑒, 𝑒′) reactions. Up to about

16.5 MeV, multiple 𝑇0 + 1 states were identified. However, beyond this energy, there is

no available data to conclusively determine if the observed peaks via 60Ni(3He,𝑡) data and

shell-model calculations correspond to 𝑇0 + 1 states.

The contributions from the GT and IVGMR/IVSGMR excitations were extracted si-

multaneously as all are characterized byΔ𝐿 = 0 transitions. While some GT strength likely

appears above 20 MeV, it lacks a resonant nature. To separate the IVSGMR/IVGMR from
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GT transitions, an assumption was made that at low excitation energy (≤ 20 MeV) Δ𝐿 = 0

cross sections correspond to GT states, Δ𝐿 = 0 strength at high excitation energies (> 20

MeV) is due to the excitation of the IVSGMR/IVGMR. After quasifree-continuum sub-

traction, monopole contributions at 20-50 MeV were found to be 8% of the normal-mode

strength, indicating that the continuum removal also removed a portion of the isovector

spin giant monopole strength. Without the quasifree-continuum subtraction, the strength

distribution lacks resonance structure and is three times the expected strength highlighting

the importance of continuum removal. To obtain a better result for the IVSGMR, an ex-

perimental technique to remove the continuum must be used. This is possible by requiring

coincidences with protons from the decay of the IVSGMR, as pursued in the experiments.

The contributions from the dipole resonances were extracted, and the differential cross

sections for Δ𝐿 = 1 transitions were compared with DWBA calculations using the normal-

mode framework. Similar to the analysis for the IVGMR/IVSGMR, results with and without

quasifree-continuum subtraction were compared. With continuum subtraction, a strong

resonance around 𝐸𝑥 = 18 MeV was observed, with a ratio of extracted to theoretical cross

sections at about 1.25, suggesting that the continuum subtraction is reasonable. Systematic

uncertainties from continuum subtraction are less severe for Δ𝐿 = 1 excitations due to their

backward-angle peaking behavior, in contrast to monopole transitions. Without continuum

subtraction, significant excess cross section above 𝐸𝑥 = 30 MeV emphasizes the necessity

of the subtraction.
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6.2 Future Outlook

In this work, it has been shown that the (3He,𝑡) reaction at 140 MeV/𝑢 is a valuable

tool for extracting information about isovector giant resonances. However, the analysis

is complicated by the presence of the quasifree-continuum, and future studies with this

probe would benefit from the measurement of protons emitted from the excited nucleus.

While the quasifree-continuum is associated with protons directed at forward scattering

angles, the decay after the excitation of isovector monopole giant resonances is associated

with protons emitted isotropically. Therefore a coincidence measurement with protons

at backward angles removes the contribution from the continuum. Such experiments

have been performed successfully in the past, but require thick silicon detectors that are

difficult to produce. It is well-kown that the extraction of the Gamow-Teller strengths via the

(3He,𝑡) reaction provides high-quality tests of theoretical models. In the experiment studied

here, the excitation energy resolution was modest (0.11 MeV) [FWHM]. By applying the

dispersion matching techniques [130], superior resolutions can be achieved (∼ 30 keV),

which would be helpful for the study of 𝑇0 + 1 Gamow-Teller states observed at high

excitation energies.

The CE group at FRIB is preparing for the next (3He,𝑡) experiment at RCNP. The target

will be 92Zr and the goals will be to study transitions that are important for understanding

the production site of 92Nb in the universe. Due to its long lifetime (92Nb) is a potential

cosmochronometer, but the production site is still unknown, which makes its use as a

cosmochronometer difficult. Many of the techniques used in this thesis will also be used

in the next experiment.
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APPENDIX A

FULL INPUT FILE IN THE WSAW CODE

Table A.1 The file with full input parameters in WSAW input program for 60Ni(3He,𝑡)
reaction as described in Table 3.1

0.1 20. 1 150 0
Ni60Cu60
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 5. 0. 1. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 5. 0. 1. 5.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 0. 2. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 1. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
2.9 1. 1. 1. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
4.8 1. 1. 1. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.9 1. 3. 0. 1. 2.5 .5
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Table A.2 The file with full input parameters in WSAW input program continuation

59. 28. 60. .65 1.25 1.25 7.0
8.6 1. 3. 0. 1. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
14.7 1. 0. 1. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
13.4 1. 2. 0. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
17.9 1. 2. 0. 1. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
24.7 1. 1. 0. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
26.8 1. 1. 0. 1. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
35.4 1. 0. 0. 1. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 1. 2. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 3. 1. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
3.0 1. 5. 0. 0. 4.5 .5
59. 28. 60. .65 1.25 1.25 7.0
3.0 1. 5. 0. 0. 5.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 0. 2. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 2. 1. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
1.0 1. 4. 0. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
5.4 1. 4. 0. 0. 4.5 .5
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Table A.3 The file with full input parameters in WSAW input program continuation

59. 28. 60. .65 1.25 1.25 7.0
8.3 1. 1. 1. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
10.2 1. 1. 1. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
8.7 1. 3. 0. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
15.4 1. 3. 0. 0. 3.5 .5
59. 28. 60. .65 1.25 1.25 7.0
20. 1. 0. 1. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
20.1 1. 2. 0. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
24.6 1. 2. 0. 0. 2.5 .5
59. 28. 60. .65 1.25 1.25 7.0
30.7 1. 1. 0. 0. 0.5 .5
59. 28. 60. .65 1.25 1.25 7.0
32.9 1. 1. 0. 0. 1.5 .5
59. 28. 60. .65 1.25 1.25 7.0
40. 1. 0. 0. 0. 0.5 .5
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APPENDIX B

INPUT AND OUTPUT FILES IN THE NORMOD CODE

B.1 Full input File in the NORMOD Program

Table B.1 The file with full input parameters in NORMOD input program for 60Ni(3He, 𝑡)
reaction as described in Table 3.2. The outputs are One-body transition densities (OBTDs).

1
14
1 1 3 1.0 1 3 10
0 3 5 1.0 1 3 11
1 1 1 1.0 1 3 12
0 4 9 1.0 1 4 13
0 4 7 1.0 1 4 14
1 2 5 1.0 1 4 15
1 2 3 1.0 1 4 16
2 0 1 1.0 1 4 17
0 5 11 1.0 1 5 18
0 5 9 1.0 1 5 19
1 3 7 1.0 1 5 20
1 3 5 1.0 1 5 21
2 1 3 1.0 1 5 22
2 1 1 1.0 1 5 23
11
0 0 1 1.0 0 0 1
0 1 3 1.0 0 1 2
0 1 1 1.0 0 1 3
0 2 5 1.0 0 2 4
1 0 1 1.0 0 2 5
0 2 3 1.0 0 2 6
0 3 7 1.0 0 3 7
1 1 3 1.0 0 3 8
0 3 5 0.0 0 3 9
1 1 1 0.0 0 3 10
0 4 9 0.0 0 4 11
0 0 1 60 1 1 0 0
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Table B.2 The file with full input parameters in NORMOD input program

0 1 1 60 1 1 0 0
0 0 -1 60 1 1 1 1
0 1 -1 60 1 1 1 1
0 2 -1 60 1 1 1 1
0 2 1 60 1 1 0 2
0 1 1 60 1 1 0 2
0 2 1 60 1 1 0 2
0 3 1 60 1 1 0 2
2 0 1 60 1 1 2 2
2 1 1 60 1 1 2 2
0 3 -1 60 1 1 1 1

B.2 Full output Files in the NORMOD Program

Table B.3 The OBTDs for IAS , ΔJ = 0+. P stand for proton and H is hole (neutron). The
NP stand for principle quantum (n) number of a single-particle (proton), LP is the orbital
quantum number of particle, 2JP is twice total angular momentum of particle and LP, 2JH
have the same meaning but for hole (neutron). TYPE =1, for proton and 0 for neutron.

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S= 1 S=1 S=1
L=0 L=-1 L=0 L=1

1 1 3 1 1 1 3 0 -1.0000 0.0000 0.0000 0.0000
0 3 5 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 1 1 1 1 1 1 0 -0.0000 0.0000 0.0000 0.0000
0 4 9 1 0 4 9 0 -0.0000 0.0000 0.0000 0.0000
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Table B.4 The OBTDs for Gamow-Teller transition, ΔJ = 1+

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 1 3 1 1 1 3 0 0.0000 -0.5092 0.0000 -0.2267
1 1 3 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
1 1 3 1 1 1 1 0 0.0000 0.0000 0.0000 -0.0000
0 3 5 1 0 3 7 0 0.0000 -0.7303 0.0000 0.4064
0 3 5 1 1 1 3 0 0.0000 -0.0000 0.0000 0.8481
0 3 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 1 1 1 1 1 3 0 0.0000 -0.4554 0.0000 0.2534
1 1 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
0 4 9 1 0 4 9 0 0.0000 -0.0000 0.0000 -0.0000
0 4 7 1 0 4 9 0 0.0000 -0.0000 0.0000 0.0000

Table B.5 The OBTDs for dipole transition, ΔJ = 0−

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=0 L=-1 L=0 L=1

1 1 3 1 0 2 3 0 0.0000 0.0000 0.0000 0.2236
0 3 5 1 0 2 5 0 0.0000 0.0000 0.0000 -0.5123
1 1 1 1 1 0 1 0 0.0000 0.0000 0.0000 0.2500
0 4 7 1 0 3 7 0 0.0000 0.0000 0.0000 -0.6708
1 2 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 3 0 0.0000 0.0000 0.0000 -0.4183
2 0 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
0 5 9 1 0 4 9 0 0.0000 0.0000 0.0000 -0.0000
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Table B.6 The OBTDs for dipole transition, ΔJ = 1−, where values of states with ΔS = 1,
ΔL = 1 and ΔS = 0, ΔL = 1 were used

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 1 3 1 0 2 5 0 -0.2108 0.0000 -0.1338 0.0000
1 1 3 1 1 0 1 0 -0.2485 0.0000 0.1577 0.0000
1 1 3 1 0 2 3 0 -0.0703 0.0000 0.1784 0.0000
0 3 5 1 0 2 5 0 0.1054 0.0000 0.4015 0.0000
0 3 5 1 0 2 3 0 -0.3944 0.0000 -0.2504 0.0000
1 1 1 1 1 0 1 0 0.1757 0.0000 0.2230 0.0000
1 1 1 1 0 2 3 0 -0.1571 0.0000 0.0998 0.0000
0 4 9 1 0 3 7 0 -0.6086 0.0000 0.3863 0.0000
0 4 7 1 0 3 7 0 0.1029 0.0000 0.5224 0.0000
0 4 7 1 0 3 5 0 -0.0000 0.0000 -0.0000 0.0000
1 2 5 1 0 3 7 0 -0.2520 0.0000 -0.1600 0.0000
1 2 5 1 1 1 3 0 -0.3944 0.0000 0.2504 0.0000
1 2 5 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 3 0 0.1315 0.0000 0.3338 0.0000
1 2 3 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 1 0 -0.0000 0.0000 -0.0000 0.0000
2 0 1 1 1 1 3 0 -0.2222 0.0000 -0.1411 0.0000
2 0 1 1 1 1 1 0 -0.0000 0.0000 0.0000 0.0000
0 5 11 1 0 4 9 0 -0.0000 0.0000 0.0000 0.0000
0 5 9 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 3 7 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
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Table B.7 The OBTDs for dipole transition, ΔJ = 2− (ΔL = 1)

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=2 L=1 L=2 L=3

1 1 3 1 0 2 5 0 0.0000 -0.2024 0.0000 -0.0597
1 1 3 1 1 0 1 0 0.0000 -0.3492 0.0000 0.0000
1 1 3 1 0 2 3 0 0.0000 0.0883 0.0000 -0.1367
0 3 5 1 0 2 5 0 0.0000 -0.2164 0.0000 0.2152
0 3 5 1 1 0 1 0 0.0000 -0.0000 0.0000 0.3537
0 3 5 1 0 2 3 0 0.0000 0.1623 0.0000 0.2870
0 3 5 1 0 4 9 0 0.0000 0.0000 0.0000 -0.0000
1 1 1 1 0 2 5 0 0.0000 -0.2164 0.0000 0.0558
1 1 1 1 0 2 3 0 0.0000 0.0442 0.0000 0.2734
0 4 9 1 0 3 7 0 0.0000 -0.4795 0.0000 -0.2120
0 4 9 1 0 3 5 0 0.0000 0.0000 0.0000 -0.0000
0 4 7 1 0 3 7 0 0.0000 -0.2892 0.0000 0.3515
0 4 7 1 1 1 3 0 0.0000 0.0000 0.0000 0.6213
0 4 7 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 2 5 1 0 3 7 0 0.0000 -0.2125 0.0000 -0.1252
1 2 5 1 1 1 3 0 0.0000 -0.3787 0.0000 -0.1036
1 2 5 1 0 3 5 0 0.0000 0.0000 0.0000 -0.0000
1 2 5 1 1 1 1 0 0.0000 0.0000 0.0000 -0.0000
1 2 3 1 0 3 7 0 0.0000 -0.2833 0.0000 0.0939
1 2 3 1 1 1 3 0 0.0000 -0.1653 0.0000 0.2374
1 2 3 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 2 3 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
2 0 1 1 1 1 3 0 0.0000 -0.3123 0.0000 0.0000
2 0 1 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
0 5 11 1 0 4 9 0 0.0000 -0.0000 0.0000 -0.0000
0 5 9 1 0 4 9 0 0.0000 -0.0000 0.0000 0.0000
1 3 7 1 0 4 9 0 0.0000 -0.0000 0.0000 -0.0000
1 3 5 1 0 4 9 0 0.0000 -0.0000 0.0000 0.0000
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Table B.8 The OBTDs for the IVGQR and IVSGQR transitions with Δ𝐽 = 2+

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=2 L=1 L=2 L=3

1 1 3 1 0 1 3 0 -0.0746 0.0000 0.0000 0.0000
1 1 3 1 0 1 1 0 -0.0746 0.0000 0.0844 0.0000
1 1 3 1 0 3 7 0 0.2830 0.0000 0.2136 0.0000
1 1 3 1 1 1 3 0 0.2122 0.0000 -0.0000 0.0000
1 1 3 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
1 1 3 1 1 1 1 0 0.0000 0.0000 -0.0000 0.0000
0 3 5 1 0 1 3 0 0.0913 0.0000 0.1724 0.0000
0 3 5 1 0 1 1 0 -0.1709 0.0000 -0.1290 0.0000
0 3 5 1 0 3 7 0 -0.1134 0.0000 -0.2997 0.0000
0 3 5 1 1 1 3 0 -0.1155 0.0000 -0.2180 0.0000
0 3 5 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
0 3 5 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
1 1 1 1 0 1 3 0 0.0746 0.0000 0.0844 0.0000
1 1 1 1 1 1 3 0 -0.2122 0.0000 -0.2403 0.0000
1 1 1 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
0 4 9 1 0 2 5 0 -0.3537 0.0000 0.2670 0.0000
0 4 9 1 0 4 9 0 0.0000 0.0000 -0.0000 0.0000
0 4 7 1 0 2 5 0 0.1001 0.0000 0.2643 0.0000
0 4 7 1 0 2 3 0 -0.3002 0.0000 -0.2266 0.0000
0 4 7 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
1 2 5 1 0 2 5 0 -0.1155 0.0000 -0.0000 0.0000
1 2 5 1 1 0 1 0 -0.1709 0.0000 0.1290 0.0000
1 2 5 1 0 2 3 0 -0.0578 0.0000 0.1090 0.0000
1 2 5 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 2 3 1 0 2 5 0 0.0578 0.0000 0.1090 0.0000
1 2 3 1 1 0 1 0 0.1395 0.0000 0.1580 0.0000
1 2 3 1 0 2 3 0 -0.0882 0.0000 -0.0000 0.0000
2 0 1 1 0 2 5 0 -0.0817 0.0000 -0.0617 0.0000
2 0 1 1 0 2 3 0 -0.0667 0.0000 0.0755 0.0000
0 5 11 1 0 3 7 0 -0.5003 0.0000 0.3776 0.0000
0 5 9 1 0 3 7 0 0.1092 0.0000 0.3708 0.0000
0 5 9 1 0 3 5 0 -0.0000 0.0000 -0.0000 0.0000
1 3 7 1 0 3 7 0 -0.1544 0.0000 -0.0000 0.0000
1 3 7 1 1 1 3 0 -0.3002 0.0000 0.2266 0.0000
1 3 7 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
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Table B.9 The OBTDs for the IVGQR and IVSGQR transitions with Δ𝐽 = 2+ continuation

1 3 5 1 0 3 7 0 0.0535 0.0000 0.1413 0.0000
1 3 5 1 1 1 3 0 0.1225 0.0000 0.2312 0.0000
1 3 5 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
1 3 5 1 1 1 1 0 -0.0000 0.0000 -0.0000 0.0000
2 1 3 1 0 3 7 0 -0.1070 0.0000 -0.0807 0.0000
2 1 3 1 1 1 3 0 -0.1248 0.0000 0.0000 0.0000
2 1 3 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
2 1 3 1 1 1 1 0 -0.0000 0.0000 0.0000 0.0000
2 1 1 1 1 1 3 0 0.1248 0.0000 0.1413 0.0000
2 1 1 1 0 3 5 0 -0.0000 0.0000 0.0000 0.0000
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Table B.10 The OBTDs for the IVSGQR transition, ΔJ = 1+

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 1 3 1 0 1 3 0 0.0000 -0.0000 0.0000 0.0314
1 1 3 1 0 1 1 0 0.0000 0.0000 0.0000 0.0351
1 1 3 1 1 1 3 0 0.0000 -0.5092 0.0000 -0.0894
1 1 3 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
1 1 3 1 1 1 1 0 0.0000 0.0000 0.0000 -0.0000
0 3 5 1 0 1 3 0 0.0000 0.0000 0.0000 -0.2644
0 3 5 1 0 3 7 0 0.0000 -0.7303 0.0000 0.1603
0 3 5 1 1 1 3 0 0.0000 -0.0000 0.0000 0.3345
0 3 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 1 1 1 0 1 3 0 0.0000 -0.0000 0.0000 -0.0351
1 1 1 1 0 1 1 0 0.0000 0.0000 0.0000 -0.0993
1 1 1 1 1 1 3 0 0.0000 -0.4554 0.0000 0.0999
1 1 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
0 4 9 1 0 4 9 0 0.0000 -0.0000 0.0000 -0.0000
0 4 7 1 0 2 5 0 0.0000 -0.0000 0.0000 -0.4240
0 4 7 1 0 4 9 0 0.0000 -0.0000 0.0000 0.0000
1 2 5 1 0 2 5 0 0.0000 0.0000 0.0000 0.0596
1 2 5 1 0 2 3 0 0.0000 -0.0000 0.0000 0.0557
1 2 3 1 0 2 5 0 0.0000 0.0000 0.0000 -0.0557
1 2 3 1 1 0 1 0 0.0000 -0.0000 0.0000 -0.1971
1 2 3 1 0 2 3 0 0.0000 -0.0000 0.0000 -0.1115
2 0 1 1 1 0 1 0 0.0000 0.0000 0.0000 0.0000
2 0 1 1 0 2 3 0 0.0000 -0.0000 0.0000 0.0942
0 5 9 1 0 3 7 0 0.0000 0.0000 0.0000 -0.6051
1 3 7 1 0 3 7 0 0.0000 0.0000 0.0000 0.0872
1 3 7 1 0 3 5 0 0.0000 -0.0000 0.0000 0.0000
1 3 5 1 0 3 7 0 0.0000 0.0000 0.0000 -0.0755
1 3 5 1 1 1 3 0 0.0000 0.0000 0.0000 -0.3547
1 3 5 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
2 1 3 1 1 1 3 0 0.0000 -0.0000 0.0000 0.0526
2 1 3 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
2 1 3 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
2 1 1 1 1 1 3 0 0.0000 -0.0000 0.0000 -0.0588
2 1 1 1 1 1 1 0 0.0000 0.0000 0.0000 -0.0000
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Table B.11 The OBTDs for IVSGQR transition, ΔJ = 3+ (ΔL = 2)

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=3 L=2 L=3 L=4

1 1 3 1 0 1 3 0 0.0000 -0.1321 0.0000 -0.0000
1 1 3 1 0 3 7 0 0.0000 0.2445 0.0000 0.0541
1 1 3 1 1 1 3 0 0.0000 0.3758 0.0000 0.0000
1 1 3 1 0 3 5 0 0.0000 -0.0000 0.0000 0.0000
0 3 5 1 0 1 3 0 0.0000 -0.0576 0.0000 0.0956
0 3 5 1 0 1 1 0 0.0000 0.0322 0.0000 0.1710
0 3 5 1 0 3 7 0 0.0000 0.2264 0.0000 -0.1377
0 3 5 1 1 1 3 0 0.0000 0.0729 0.0000 -0.1814
0 3 5 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
0 3 5 1 1 1 1 0 0.0000 -0.0000 0.0000 -0.0000
1 1 1 1 0 3 7 0 0.0000 0.2823 0.0000 -0.0468
1 1 1 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
0 4 9 1 0 2 5 0 0.0000 -0.2617 0.0000 -0.0772
0 4 9 1 0 2 3 0 0.0000 0.3866 0.0000 -0.0522
0 4 9 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
0 4 7 1 0 2 5 0 0.0000 -0.0998 0.0000 0.2023
0 4 7 1 1 0 1 0 0.0000 0.0000 0.0000 0.3258
0 4 7 1 0 2 3 0 0.0000 0.0865 0.0000 0.2337
0 4 7 1 0 4 9 0 0.0000 0.0000 0.0000 -0.0000
1 2 5 1 0 2 5 0 0.0000 -0.1339 0.0000 -0.0395
1 2 5 1 1 0 1 0 0.0000 -0.2255 0.0000 -0.0000
1 2 5 1 0 2 3 0 0.0000 0.0729 0.0000 -0.0725
1 2 5 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 2 3 1 0 2 5 0 0.0000 -0.0729 0.0000 0.0725
1 2 3 1 0 2 3 0 0.0000 0.0223 0.0000 0.2369
1 2 3 1 0 4 9 0 0.0000 0.0000 0.0000 -0.0000
2 0 1 1 0 2 5 0 0.0000 -0.1078 0.0000 0.0000
0 5 11 1 0 3 7 0 0.0000 -0.3401 0.0000 -0.1504
0 5 11 1 0 3 5 0 0.0000 0.0000 0.0000 -0.0000
0 5 9 1 0 3 7 0 0.0000 -0.1461 0.0000 0.3501
0 5 9 1 1 1 3 0 0.0000 -0.0000 0.0000 0.6238
0 5 9 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
1 3 7 1 0 3 7 0 0.0000 -0.1533 0.0000 -0.0904
1 3 7 1 1 1 3 0 0.0000 -0.2594 0.0000 -0.0722
1 3 7 1 0 3 5 0 0.0000 0.0000 0.0000 -0.0000
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Table B.12 The OBTDs for IVSGQR transition, ΔJ = 3+ (ΔL = 2) Continuation

1 3 5 1 0 3 7 0 0.0000 -0.1067 0.0000 0.1298
1 3 5 1 1 1 3 0 0.0000 -0.0773 0.0000 0.2422
2 1 3 1 0 3 7 0 0.0000 -0.0924 0.0000 -0.0409
2 1 3 1 1 1 3 0 0.0000 -0.2210 0.0000 -0.0000
2 1 1 1 0 3 7 0 0.0000 -0.1067 0.0000 0.0354

Table B.13 The OBTDs for IVGMR transition, ΔJ = 0+, where only values of state with
ΔS = 0 and ΔL = 0 was used

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=0 L=-1 L=0 L=1

1 1 3 1 0 1 3 0 0.2840 0.0000 0.0000 0.0000
1 1 1 1 0 1 1 0 0.2008 0.0000 0.0000 0.0000
1 2 5 1 0 2 5 0 0.4115 0.0000 0.0000 0.0000
1 2 3 1 0 2 3 0 0.3360 0.0000 0.0000 0.0000
2 0 1 1 1 0 1 0 0.2840 0.0000 0.0000 0.0000
1 3 7 1 0 3 7 0 0.5388 0.0000 0.0000 0.0000
1 3 5 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
2 1 3 1 1 1 3 0 0.4752 0.0000 0.0000 0.0000
2 1 1 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
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Table B.14 The OBTDs for IVSGMR transition, ΔJ = 1+

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=1 L=0 L=1 L=2

1 1 3 1 0 1 3 0 0.0000 0.2117 0.0000 0.0350
1 1 3 1 0 1 1 0 0.0000 -0.1893 0.0000 0.0392
0 3 5 1 0 1 3 0 0.0000 0.0000 0.0000 -0.1896
1 1 1 1 0 1 3 0 0.0000 0.1893 0.0000 -0.0392
1 1 1 1 0 1 1 0 0.0000 -0.0669 0.0000 -0.1108
0 4 7 1 0 2 5 0 0.0000 -0.0000 0.0000 -0.3715
1 2 5 1 0 2 5 0 0.0000 0.2811 0.0000 0.0854
1 2 5 1 0 2 3 0 0.0000 -0.3005 0.0000 0.0799
1 2 3 1 0 2 5 0 0.0000 0.3005 0.0000 -0.0799
1 2 3 1 1 0 1 0 0.0000 -0.0000 0.0000 -0.2355
1 2 3 1 0 2 3 0 0.0000 -0.1503 0.0000 -0.1599
2 0 1 1 1 0 1 0 0.0000 0.2840 0.0000 0.0000
2 0 1 1 0 2 3 0 0.0000 -0.0000 0.0000 0.1576
0 5 9 1 0 3 7 0 0.0000 0.0000 0.0000 -0.6267
1 3 7 1 0 3 7 0 0.0000 0.3527 0.0000 0.1529
1 3 7 1 0 3 5 0 0.0000 -0.0000 0.0000 0.0000
1 3 5 1 0 3 7 0 0.0000 0.4073 0.0000 -0.1324
1 3 5 1 1 1 3 0 0.0000 0.0000 0.0000 -0.4804
1 3 5 1 0 3 5 0 0.0000 -0.0000 0.0000 -0.0000
2 1 3 1 1 1 3 0 0.0000 0.3542 0.0000 0.0921
2 1 3 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
2 1 3 1 1 1 1 0 0.0000 -0.0000 0.0000 0.0000
2 1 1 1 1 1 3 0 0.0000 0.3168 0.0000 -0.1030
2 1 1 1 1 1 1 0 0.0000 -0.0000 0.0000 -0.0000
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Table B.15 The OBTDs for the IVSGOR and IVGOR with ΔJ = 3−

NP LP 2JP TYPE NH LH 2JH TYPE S=0 S=1 S=1 S=1
L=3 L=2 L=3 L=4

1 1 3 1 0 2 5 0 0.1606 0.0000 0.0466 0.0000
1 1 3 1 0 2 3 0 0.1967 0.0000 -0.2281 0.0000
1 1 3 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
0 3 5 1 0 2 5 0 -0.1577 0.0000 -0.2744 0.0000
0 3 5 1 1 0 1 0 -0.2277 0.0000 -0.2640 0.0000
0 3 5 1 0 2 3 0 0.1932 0.0000 0.0560 0.0000
0 3 5 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 1 1 1 0 2 5 0 -0.1796 0.0000 -0.2083 0.0000
0 4 9 1 0 3 7 0 0.4037 0.0000 -0.1170 0.0000
0 4 9 1 1 1 3 0 0.4554 0.0000 -0.3960 0.0000
0 4 9 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
0 4 7 1 0 3 7 0 -0.1805 0.0000 -0.4186 0.0000
0 4 7 1 1 1 3 0 -0.2037 0.0000 -0.3542 0.0000
0 4 7 1 0 3 5 0 0.0000 0.0000 0.0000 0.0000
0 4 7 1 1 1 1 0 0.0000 0.0000 0.0000 0.0000
1 2 5 1 0 3 7 0 0.2666 0.0000 0.0773 0.0000
1 2 5 1 1 1 3 0 0.2791 0.0000 -0.0809 0.0000
1 2 5 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
1 2 5 1 1 1 1 0 0.0000 0.0000 -0.0000 0.0000
1 2 3 1 0 3 7 0 -0.1539 0.0000 -0.2678 0.0000
1 2 3 1 1 1 3 0 -0.3418 0.0000 -0.3963 0.0000
1 2 3 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
2 0 1 1 0 3 7 0 0.2352 0.0000 0.2045 0.0000
2 0 1 1 0 3 5 0 0.0000 0.0000 -0.0000 0.0000
0 5 11 1 0 4 9 0 0.0000 0.0000 -0.0000 0.0000
0 5 9 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
1 3 7 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
1 3 5 1 0 4 9 0 -0.0000 0.0000 -0.0000 0.0000
2 1 3 1 0 4 9 0 0.0000 0.0000 0.0000 0.0000
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APPENDIX C

FULL INPUT FILES IN THE FOLD CODE

Table C.1 The file with full input parameters in FOLD input program for GT transition as
described in Table 3.3

1 1FOLDNIB
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1

HE3H3
1.0+ 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 8 1 0.0 -0.5092
9 10 1 0.0 -0.7303
7 8 1 0.0 -0.4554

-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140
2
0 1 1 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1 1 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.2 The file with full input parameters in FOLD input program for IAS as described
in Table 3.3

1 1FOLDNIA
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 0 0.0 0.707
-1 -1

HE3H3
0.0+ 0.0+

2.0 1.0 2.0 2.0
3 3 0.000
8 8 0 0.0 -1.0

-1 -1
Ni60Cu60
0.939 2.650 1.000 love_140
1
0 0 0 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.3 The file with full input parameters in FOLD input program for IVSGDR with
ΔJ = 1,ΔS = 1 as described in Table 3.3

1 1FOLDNIE
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1

HE3H3
1.0- 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 6 1 0.0 -0.1338
8 4 1 0.0 0.1577
8 5 1 0.0 0.1784
9 6 1 0.0 0.4015
9 5 1 0.0 -0.2504
7 4 1 0.0 0.2230
7 5 1 0.0 0.0998
15 10 1 0.0 0.3863
14 10 1 0.0 0.5224
13 10 1 0.0 -0.1600
13 8 1 0.0 0.2504
12 8 1 0.0 0.3338
11 8 1 0.0 -0.1411
-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140
1
1 1 1 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.4 The file with full input parameters in FOLD input program for IVSGQR with
ΔJ = 3 as described in Table 3.3

1 1FOLDNIM
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1

HE3H3
3.0+ 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 3 3 0.0 -0.1321
8 10 3 0.0 0.2445
8 8 3 0.0 0.3758
9 3 3 0.0 -0.0576
9 2 3 0.0 0.0322
9 10 3 0.0 0.2264
9 8 3 0.0 0.0729
7 10 3 0.0 0.2823
15 6 3 0.0 -0.2617
15 5 3 0.0 0.3866
14 6 3 0.0 -0.0998
14 5 3 0.0 0.0865
13 6 3 0.0 -0.1339
13 4 3 0.0 -0.2255
13 5 3 0.0 0.0729
12 6 3 0.0 -0.0729
. . . . .
. . . . .
-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140
1
2 1 3 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.5 The file with full input parameters in FOLD input program for IVGMR as
described in Table 3.3

1 1FOLDNIN
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 0 0.0 0.707
-1 -1

HE3H3
0.0+ 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 3 0 0.0 0.2840
7 2 0 0.0 0.2008
13 6 0 0.0 0.4115
12 5 0 0.0 0.3360
11 4 0 0.0 0.2840
19 10 0 0.0 0.5388
17 8 0 0.0 0.4752
-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140
1
0 0 0 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.6 The file with full input parameters in FOLD input program for IVSGMR as
described in Table 3.3

1 1FOLDNIO
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1

HE3H3
1.0+ 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 3 1 0.0 0.2117
8 2 1 0.0 -0.1893
7 3 1 0.0 0.1893
7 2 1 0.0 -0.0669
13 6 1 0.0 0.2811
13 5 1 0.0 -0.3005
12 6 1 0.0 0.3005
12 5 1 0.0 -0.1503
11 4 1 0.0 0.2840
19 10 1 0.0 0.3527
18 10 1 0.0 0.4073
17 8 1 0.0 0.3542
16 8 1 0.0 0.3168
-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140
2
0 1 1 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1 1 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table C.7 The file with full input parameters in FOLD input program for IVSGOR with
ΔJ = 3,ΔS = 1 transition as described in Table 3.3

1 1FOLDNIP
600 0.03 420. 3. 1 1 1

0.5+ 0.5+
0.5 +0.5 0.5 -0.5
3 3 0.000
1 1 1 0.0 0.707
-1 -1

HE3H3
3.0- 0.0+

1.0 1.0 2.0 2.0
3 3 0.000
8 6 3 0.0 0.0466
8 5 3 0.0 -0.2281
9 6 3 0.0 -0.2744
9 4 3 0.0 -0.2640
9 5 3 0.0 0.0560
7 6 3 0.0 -0.2083
15 10 3 0.0 -0.1170
15 8 3 0.0 -0.3960
14 10 3 0.0 -0.4186
14 8 3 0.0 -0.3542
13 10 3 0.0 0.0773
13 8 3 0.0 -0.0809
12 10 3 0.0 -0.2678
12 8 3 0.0 -0.3963
11 10 3 0.0 0.2045
-1 -1

Ni60Cu60
0.939 2.650 1.000 love_140
1
3 1 3 -1

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00
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APPENDIX D

FULL INPUT FILES IN THE DWHI CODE

Table D.1 The file with full input parameters in DWHI input program for IAS transition as
described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIA
40. 0. 0.2

160 1 1 1 0 0
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 0 0
0. 0. 0. 1.
IAS.plot
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Table D.2 The file with full input parameters in DWHI input program for GT transition as
described in Table 3.3

210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIB
40. 0. 0.2

160 2 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 2 2
0. 0. 0. 1.
2 2 2
0. 0. 0. 1.
GTA.plot

Table D.3 The file with full input parameters in DWHI input program for IVGMR with
ΔJ = 0,ΔS = 0 transition as described in Table 3.3

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIN
40. 0. 0.2

160 1 1 1 0 0
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 0 0
0. 0. 0. 1.
IVGMR.plot
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Table D.4 The file with full input parameters in DWHI input program for IVSGMR with
ΔJ = 1, ΔS = 1 as described in Table 3.3

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIO
40. 0. 0.2

160 2 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
0 2 2
0. 0. 0. 1.
2 2 2
0. 0. 0. 1.
IVSGMRa.plot

Table D.5 The file with full input parameters in DWHI input program for IVSGDR with
ΔJ = 0, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNID
40. 0. 0.2

160 1 1 1 0 0
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
1 2 0
0. 0. 0. 1.
DT0.plot
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Table D.6 The file with full input parameters in DWHI input program for IVSGDR with
ΔJ = 1, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIE
40. 0. 0.2

160 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
1 2 2
0. 0. 0. 1.
DT1A.plot

Table D.7 The file with full input parameters in DWHI input program for IVSGDR with
ΔJ = 1, ΔS = 0 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIF
40. 0. 0.2

160 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
1 0 2
0. 0. 0. 1.
DT1B.plot
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Table D.8 The file with full input parameters in DWHI input program for IVSGDR with
ΔJ = 2, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIZ
40. 0. 0.2

160 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
1 2 4
0. 0. 0. 1.
DT2.plot

Table D.9 The file with full input parameters in DWHI input program for IVSGQR with
ΔJ = 1, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIJ
40. 0. 0.2

160 1 1 1 0 2
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
2 2 2
0. 0. 0. 1.
IVSGQR1.plot
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Table D.10 The file with full input parameters in DWHI input program for IVSGQR with
ΔJ = 2, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIK
40. 0. 0.2

160 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
2 2 4
0. 0. 0. 1.
IVSGQR2a.plot

Table D.11 The file with full input parameters in DWHI input program for IVSGQR with
ΔJ = 2, ΔS = 0 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIG
40. 0. 0.2

160 1 1 1 0 4
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
2 0 4
0. 0. 0. 1.
IVGQRa.plot
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Table D.12 The file with full input parameters in DWHI input program for IVSGQR with
ΔJ = 3, ΔS = 1 as described in Table 3.6

1210000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIM
40. 0. 0.2

160 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
2 2 6
0. 0. 0. 1.
IVSGQR3.plot

Table D.13 The file with full input parameters in DWHI input program for IVGOR with
ΔJ = 3, ΔS = 0 as described in Table 3.6

1220000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIL
40. 0. 0.2

160 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
3 0 6
0. 0. 0. 1.
Octupole3b.plot
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Table D.14 The file with full input parameters in DWHI input program for IVSGOR with
ΔJ = 3, ΔS = 1 as described in Table 3.6

1220000041000000 MG26(C,B) STATE 1 ROUSSEL-CHOMAZ (O+SI) POTL
FOLDNIP
40. 0. 0.2

160 1 1 1 0 6
0.03 600
420. 3. 2. 60. 28. 1.25 1. 0.
1. -35.16 1.32 0.84 0. -44.43 1.021 1.018 0. 0.
0.
-6.2 3. 1. 60. 29. 1.25 1. 0.
1. -29.89 1.32 0.84 0. -37.77 1.021 1.018 0. 0.
0.
3 2 6
0. 0. 0. 1.
Octupole3a.plot
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APPENDIX E

PROPORTIONALITY RELATION BETWEEN 𝑑𝑝 AND 𝑑𝑘

We can show that 𝑑𝑝
𝑝
≈ 𝑑𝑘

2𝑘 : where 𝑝 is the momentum and 𝑘 is kinetic energy.

For 𝑝 =
√
𝐸2 − 𝑚2 and 𝐸 = 𝑘 + 𝑚

𝑝 =
√︁
(𝑘 + 𝑚)2 − 𝑚2 =

√︁
𝑘2 + 2𝑘𝑚 (E.1)

If m >> k, then: 𝑝 ≈
√

2𝑘𝑚 =⇒ 𝑚 =
𝑝2

2𝑘

𝑑𝑝

𝑑𝑘
=

2𝑚
2
√

2𝑘𝑚
=

𝑚
√

2𝑘𝑚
=

𝑝2

2𝑘 𝑝
=
𝑝

2𝑘
(E.2)

𝑑𝑝

𝑝
=
𝑑𝑘

2𝑘
(E.3)
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