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ABSTRACT

Circular accelerators, such as the ones in the Fermilab Accelerator Complex, are indispensable tools

driving scientific discovery by propelling particles to high energies and high intensities. In the

context of the Proton Improvement Plan II (PIP-II) at Fermilab, the Recycler Ring (RR) is confronted

with the challenge of high-intensity operation. The space charge tune shifts at these intensities

necessitate the mitigation of third-order resonances. By measuring the Resonance Driving Terms

(RDTs) for each resonance line, their strengths and damaging effects can be quantified.

The study is focused on the utilization of dedicated normal and skew sextupoles for the com-

pensation of these resonance lines. By employing the response matrix method to measure the

Resonance Driving Terms (RDTs) relative to the currents in these sextupoles, a methodical ap-

proach to simultaneously compensate individual and multiple third-order resonances has been

developed and assessed. The assessment and verification incorporate mapping out beam losses

through dynamic and static tune scans, along with the utilization of the Ion Profile Monitor (IPM)

system for beam size measurements.

Furthermore, optimization algorithms have been explored and incorporated into the resonance

compensation scheme. Parallel, to the work done at Fermilab, the study extends its scope by

performing related experiments at the CERN Proton Synchrotron Booster (PSB). For these experi-

ments, multiple resonance lines in the tune diagram were compensated by optimizing the currents

in the compensation elements with the aid of advanced optimization algorithms.

High-intensity operation of the Recycler Ring involves understanding the interplay between the

space charge tune spread, resonance lines, and specialized subsystems such as transverse dampers.

The following study also delves into experiments that try to discern each of these phenomena, while

highlighting challenges still ahead. Overall, these studies indicate the feasibility of compensating

for multiple third-order resonances, contributing to the objectives of PIP-II for the reliable delivery

of a 1.2 MW proton beam to experimental facilities.
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CHAPTER 1

INTRODUCTION

Particle accelerators are the workhorses for modern scientific discoveries. Experimental nuclear

and particle physics research benefit greatly from the progress of accelerator physics and technology.

Accelerator physics is a rich field of applied physics living on the intersection of electromagnetism,

solid-state and atomic physics, nonlinear mechanics, plasma physics, quantum mechanics, just to

name a few [1]. Furthermore, the design and operation of modern accelerator projects require

costly enterprises of scientists, engineers, operators, and politicians coming together under one

single metaphorical roof. Everyone coming together to perform “megascience” [2].

The scientific principle of particle accelerators involves the acceleration, steering and/or storage

of charged particles through electromagnetic manipulations. These manipulations occur through a

plethora of devices and components that can control electromagnetic fields, e.g., magnets, electrical

cavities. The group of particles that is subject to this electromagnetic handling is referred to as

"the beam". The field of beam dynamics studies the interaction between the beam and the steering

devices, as well as the Coulomb interactions between the beam itself—this is known as space charge

physics. An additional distinction can be made when these steering devices are configured in a

circular or linear fashion. This gives rise to the distinction between circular accelerators and linear

accelerators (Linacs).

Furthermore, particle accelerators can be categorized by the type of elementary particles that

compose the beam and how close to the speed of light they are traveling. The first category refers to

the distinction between hadrons and leptons—particles that interact or do not interact through the

strong force, respectively [3]. For example, protons and heavy ions are considered hadrons, while

electrons and muons are considered leptons. The second category can be summarized if particles

in the machine travel at a high or low energy. An example of a low-energy hadron machine is the

heavy ion Linac at FRIB (Facility for Rare Isotope Beams) [4]. An example of a high-energy lepton

machine was the Stanford Linear Accelerator located at SLAC National Accelerator Laboratory [5].

The two most famous high-energy hadron machines in history are the Tevatron [6], which operated
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at Fermilab, and the LHC (Large Hadron Collider), operating at CERN [7]. Furthermore, there

are accelerator projects that encompass several categories such as the future EIC (Electron-Ion

Collider) being built at Brookhaven National Laboratory [8], which will use an electron ring—a

lepton machine—and a heavy-ion circular accelerator—a hadron machine—to probe new physics.

This is just to name a few. There’s a plethora of accelerator projects around the world that are either

operational, under commissioning or being designed.

The following thesis will explore the beam dynamics of a circular machine. The research results

are applied to the Fermilab Recycler Ring, which is used to store high-energy protons.

1.1 Circular Accelerators and Storage Rings

As will become more apparent on Ch. 2, a particle accelerator can be thought of as a composition

of accelerator-themed LEGO® bricks [9]. Each elemental LEGO® brick can be thought of as an

accelerator component performing some mapping on the charged particles entering it. As it turns

out, these LEGO® bricks can be assembled together circularly to give rise to circular accelerators.

The assembly of these blocks in a particular shape gives rise to what is known as the lattice of the

accelerator.

The acceleration part of these structures comes from elements inside the lattice that introduce

some sort of electromotive force in the longitudinal direction. The most common example for these

blocks are radio-frequency (rf) cavities [1], with super-conducting rf cavities also as an established

technology [10]. Particles that go through these elements gain energy on every pass. For the case

where there are no acceleration blocks on these structures, a storage ring arises. Nevertheless,

storage rings can also have rf cavities just for longitudinal beam manipulation, but no overall

acceleration—such is the case of the Recycler Ring.

Circular accelerators are special due to the fact that particles have to pass thousands or even

millions of turns through the same LEGO® blocks. This gives birth to very interesting and complex

dynamics inside these machines. One of these phenomena are called betatron resonances. The

most simple lattice of a high energy machine is composed of focusing and steering blocks, and

they are dipole and quadrupole magnets, i.e. the lowest-order multipole magnets. For reasons that
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will become apparent in Ch. 2, these elements, in combination with free drift spaces, represent

linear blocks. For the simplest circular machine, these linear LEGO® bricks are assembled

together to create a linear lattice. A linear lattice is designed to have stable particle orbits all

around the accelerator. Nevertheless, accounted or unaccounted elements, described by linear or

nonlinear blocks, around the machine can perturb the stable orbits. Ultimately, the effect of these

perturbations can add up coherently over many turns to push the beam out of the acceptance of

the lattice. This whole process is known as a betatron resonance in a circular accelerator. A

mathematical description of this process is described on Ch. 2.

The following thesis describes an effort to mitigate the deleterious effect of these resonances in

the Recycler Ring. After dipole and quadrupole, the third order of multipole magnetic fields is the

sextupole component. Therefore, sextupole fields around the lattice are the source of third order

betatron resonances. Specifically, this thesis explores mitigation techniques to these third order

resonances, mainly in the Fermilab Recycler Ring (see Ch. 3, Ch. 5 and Ch. 6), but also with some

experiments done at the CERN Proton Synchrotron Booster (see Ch. 4).

1.2 Fermilab

The best introduction to Fermilab is to cite an excerpt from Ref. [2]:

[...] A passenger peers through the window of an airplane. As his plane flies into

Chicago’s O’Hare Field from the west, he notices a large ring on the ground below

(see Fig. 1.1). Near it he sees a towering white structure, a group of colorful smaller

buildings, an expanse of forest, open fields, and lakes.

"What is that ring?" he asks his neighbor.

"Fermilab," she replies. "It’s a physics laboratory. The government supports research

there into what the universe is made of."

"Why the ring?"

"It’s the four-mile-round main ring of a machine called the Tevatron. It turns protons

into tools for looking inside the atomic nucleus. Huge magnets steer the protons
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around the ring, while high voltages accelerate them. [...]" (pp. 1)

Figure 1.1 Aerial view of the Fermi National Accelerator Laboratory (FNAL) located in Batavia,
IL, USA [11].

The Fermi National Accelerator Laboratory (FNAL), better known as Fermilab, has a long and

rich history of designing, building and operating high-energy particle accelerators. Ever since the

founding director of Fermilab, Robert R. Wilson, envisioned the 400 GeV Main Ring back in 1967,

Fermilab has been at the forefront of accelerator physics [2, 6, 12]. The most famous accelerator

project hosted by Fermilab has been the Tevatron, a proton-antiproton circular collider with a

circumference of around 6.28 km. This machine was injected protons and antiprotons from smaller

machines, that are still in operation or have been repurposed as of 2024, e.g. the Recycler Ring.

The Tevatron operated up until 2011, leaving an indelible legacy in the field of high energy and

accelerator physics. Nostalgia aside, Fermilab still hosts a deluge of particle physics experiments

connected to its main accelerator complex.
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The current layout of the Fermilab Accelerator Complex is summarized in Fig. 1.2. As of

2024, the Fermilab Accelerator Complex is composed of an 𝐻− source that connects to a linear

accelerator, accelerating the ions to an energy of 400 MeV. This linear accelerator feeds to the

first circular machine—the Booster—where protons are achieved and accelerated to an energy of 8

GeV. After the Booster, the protons are transported to the Recycler Ring (RR), which is the second

circular machine. In the RR, protons are stacked and stored in order to increase the beam intensity

delivered to the Main Injector (MI). This last circular accelerator is where protons are accelerated

from an energy of 8 GeV to 120 GeV. Once at this energy, the protons are transported the Neutrinos

at the Main Injector (NuMI) experiment, in order to create the world’s most intense neutrino beam

[13]. Nevertheless, all throughout the chain of accelerators, beam is also delivered to a plethora

of other experiments being conducted at Fermilab. Therefore, the facility has several modes of

operation depending on the experiments that are online. A more detailed and technical study of the

current Fermilab Accelerator Complex, focusing on the Recycler Ring, is given on Ch. 3.

Figure 1.2 Schematic layout of the Fermilab Accelerator Complex as of 2024. Original plot
provided by R. Ainsworth, first published on Ref. [14].
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1.3 Outline

The following thesis will explore the compensation of third-order resonances in the Fermilab

Recycler Ring. Chapter 1 introduces the motivation behind this thesis work. Chapter 2 summarizes

single particle dynamics with the help of exponential Lie operators and moves forward to introduce

a relevant concept of collective beam dynamics: the space charge tune shift. This theoretical

overview gives segue into the Ch. 3 of this thesis, where the Recycler Ring is introduced and

described in detail. Motivation for the compensation of third order resonances is given in this

chapter under the framework of current and future operation of the RR. With the basic physics

concepts and the description of the machine put in place, Ch. 4 describes in full detail the scheme

and experiments developed in order to compensate third order resonances at low intensities. Before

moving to explore the Recycler Ring at high intensities, Ch. 5 provides an interlude in order to

show a series of experiments done at the CERN PS Booster. These experiments explore the use of

advanced optimization algorithms to compensate multiple resonance lines simultaneously. Coming

back to Fermilab, Ch. 6 showcases the studies and experiments done at high intensities in the RR

in order to understand the interplay between the compensation of resonance lines and space charge

effects. Finally, Ch. 7 brings down the curtain by providing some general conclusions and future

work stemming from this thesis.
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CHAPTER 2

BEAM DYNAMICS IN RINGS

2.1 Introductory Accelerator Physics

The basic building blocks of a particle accelerator are the elements that steer and focus the

beam in the transverse direction. This is done by utilizing and manipulating the Lorentz force ®𝐹𝐿

by means of the electromagnetic fields ®𝐸 and ®𝐵 to act on some particle with charge 𝑞 and velocity ®𝑣,

i.e., ®𝐹𝐿 = 𝑞

(
®𝐸 + ®𝑣 × ®𝐵

)
. While there are a handful of electromagnetic devices that can do this, the

most prominent ones in high-energy accelerators are magnets which have no electric field, ®𝐸 = 0.

In particular, there are pure dipole magnets for steering and pure quadrupole magnets for focusing.

Nevertheless, some machines such as the Recycler Ring have combined function magnets which can

have both types of magnets—and even higher order magnets—embedded in one, in order to steer

and focus the particles. The previous information assumes that every magnet can be expanded and

described as a decomposition of magnetic multipoles, where dipole and quadrupole components

are the lowest order terms of the expansion. Therefore, using the Beth representation [1], the

multipole expansion for an arbitrary multipole magnet reads:

1
[𝐵𝜌]

(
𝐵𝑦 (𝑥, 𝑦) + 𝑖𝐵𝑥 (𝑥, 𝑦)

)
= −1

𝜌

∞∑︁
𝑛=0

(𝑏𝑛 + 𝑖𝑎𝑛) (𝑥 + 𝑖𝑦)𝑛 , (2.1)

where 𝑏𝑛 and 𝑎𝑛 are the multipole coefficients defined by

𝑏𝑛 =
1

𝐵0𝑛!
𝜕𝑛𝐵𝑦

𝜕𝑥𝑛

����
𝑥=𝑦=0

, 𝑎𝑛 =
1

𝐵0𝑛!
𝜕𝑛𝐵𝑥

𝜕𝑥𝑛

����
𝑥=𝑦=0

. (2.2)

For Eqs. 2.1 and 2.2, 𝑥 and 𝑦 represent the Cartesian coordinates, the product [𝐵𝜌] represents

the magnetic rigidity of the beam with 𝐵0 being the main dipole field and 𝜌 is the bending radius,

while 𝐵𝑥 and 𝐵𝑦 are the transverse magnetic fields in the magnets. Specifically, the coefficients

𝑏𝑛 and 𝑎𝑛 represent the multipole coefficient of the magnet with the dipole coefficient defined as

𝑏0 = 1, such that 𝐵0𝑏0 = − [𝐵𝜌] /𝜌. Following the expansion, the term 𝑎0 is referred to as the

dipole roll coefficient, 𝑏1 as the quadrupole coefficient, 𝑎1 as the skew quadrupole coefficient, 𝑏2

as the sextupole coefficient, 𝑎2 for the skew sextupole coefficient, 𝑏3 for the octupole coefficient,

𝑎3 for the skew octupole coefficient, etc. This is all following the U.S. convention.
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The most basic circular accelerator of circumference 𝐶 is composed of LEGO® blocks chosen

from a pile of dipoles, quadrupoles and free drift spaces. Each of these elements are described by

Eqs. 2.1 and 2.2, i.e., for the quadrupole case, the only nonzero coefficient is 𝑏1. The particles

inside this ring have a longitudinal relativistic velocity of 𝑣 = 𝛽𝐿𝑐, and therefore have a revolution

frequency of 𝑓𝑟𝑒𝑣 = 𝛽𝐿𝑐/𝐶. The Hamiltonian of a single particle with position coordinates 𝑥, 𝑦 and

momentum coordinates 𝑝𝑥 , 𝑝𝑦 traversing through such a system at an independent time coordinate

𝑠 is:

𝐻 =
1
2

(
𝐾𝑥 (𝑠)𝑥2 + 𝐾𝑦 (𝑠)𝑦2 + 𝑝2

𝑥 + 𝑝2
𝑦

)
, (2.3)

where 𝐾𝑥 (𝑠), 𝐾𝑦 (𝑠) are the effective focusing functions, and are defined as:

𝐾𝑥 (𝑠) =
1
𝜌2 − 𝑏1(𝑠)

𝜌
, 𝐾𝑦 (𝑠) =

𝑏1(𝑠)
𝜌

(2.4)

assuming the definition of 𝑏1(𝑠) in 2.2 has been extended to describe the distribution of the

horizontal quadrupole coefficient around the ring. For the case where 𝜌 ≫ 1 (high-energy limit),

the function 𝐾𝑦 (𝑠) = −𝐾𝑥 (𝑠), i.e., horizontally focusing quadrupoles will have a defocusing effect

in the vertical direction and vice versa.

In classic accelerator references, such as Refs. [1, 15, 16], the equations of motion derived from

the Hamiltonian in Eq. 2.3 are known as Hill’s equations. The usual accelerator-physics method

to solve this type of equations is to introduce transfer matrices for each type of linear element.

This will define linear mappings bringing some initial state vector ®𝑋0 =

(
𝑥0, 𝑥

′
0, 𝑦0, 𝑦

′
0

)
to a final

vector ®𝑋 𝑓 =
(
𝑥 𝑓 , 𝑥

′
𝑓
, 𝑦 𝑓 , 𝑦

′
𝑓

)
using a symplectic matrix 𝑀 , i.e., ®𝑋 𝑓 = 𝑀 ®𝑋0. Table 2.1 shows the 4D

transfer matrices for common linear elements found in accelerators. It is worth noting that these

4D matrices can be used to include coupling elements that couple the 𝑥 − 𝑦 plane. For this case, the

off-block coefficients of the matrices would be non-zero. An example of this last case is shown in

Table 2.1 by means of the thin skew quadrupole case. Nevertheless, the starting point of this work

is to consider a circular accelerator built from linear non-coupling elements, while other coupling

or nonlinear elements are considered perturbative. In Sec. 2.2, Lie operators are used in order to

extend these mappings to the nonlinear regime.
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Table 2.1 Transfer matrices for common accelerator elements in the high-energy regime and paraxial
approximation

Element 4D Transfer Matrix

Drift space
of length 𝐿 𝑀 =


1 𝐿 0 0
0 1 0 0
0 0 1 L
0 0 0 1


Dipole

of bending radius 𝜌,
length ℓ and

orbiting angle 𝜃 = ℓ/𝜌

𝑀 =


cos 𝜃 𝜌 sin 𝜃 0 0

− 1
𝜌

sin 𝜃 cos 𝜃 0 0
0 0 1 ℓ

0 0 0 1


Thin quadrupole
of focal length

𝑓 = lim
ℓ→0

1
𝑘ℓ

> 0
𝑀 =


1 0 0 0

−1/ 𝑓 1 0 0
0 0 1 0
0 0 1/ 𝑓 1



Thick quadrupole
of strength 𝑘 > 0

and length ℓ
𝑀 =



cos
√
𝑘ℓ 1√

𝑘
sin

√
𝑘ℓ 0 0

−
√
𝑘 sin

√
𝑘ℓ cos

√
𝑘ℓ 0 0

0 0 cosh
√︁
|𝑘 |ℓ 1√

|𝑘 |
sinh

√︁
|𝑘 |ℓ

0 0
√︁
|𝑘 | sinh

√︁
|𝑘 |ℓ cosh

√︁
|𝑘 |ℓ


Thin skew quadrupole

of focal length

𝑓𝑠 = lim
ℓ→0

1
𝑘𝑠ℓ

> 0
𝑀 =


1 0 0 0
0 1 1/ 𝑓𝑠 0
0 0 1 0

1/ 𝑓𝑠 0 0 1


Just like stacking LEGO® bricks together, these transfer matrices can be stacked up in order to

calculate the total mapping through a stack of elements. The total linear mapping of a consecution

of accelerator elements is just the matrix multiplication of the corresponding transfer matrices, i.e.,
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for a lattice with 𝑁 linear blocks the total transfer matrix reads:

𝑀𝑇𝑜𝑡𝑎𝑙 = 𝑀𝑁𝑀𝑁−1...𝑀1. (2.5)

Taking linear lattices one step further, the Courant-Snyder (CS) parametrization can be intro-

duced. This parametrization employs the fact that any linear element or stack of linear elements

can be parametrized by the Twiss functions 𝛽𝑢 (𝑠), 𝛼𝑢 (𝑠) and 𝛾𝑢 (𝑠) and a phase advance defined

as 𝜙𝑢 (𝑠) =
∫ 𝑠

0 𝑑𝑠/𝛽𝑢 (𝑠), where 𝑢 stands for either the 𝑥 or 𝑦 plane. This results in the following

transfer matrix from location 𝑠 = 0 to an arbitrary location 𝑠:

𝑀 (𝑠) =

𝑀𝑥 (𝑠) 02×2

02×2 𝑀𝑦 (𝑠)

 , (2.6)

where 𝑀𝑢 is a square matrix defined as:

𝑀𝑢 =


√︃

𝛽𝑢 (𝑠)
𝛽𝑢 (0) (cos 𝜙𝑢 (𝑠) + 𝛼𝑢 (0) sin 𝜙𝑢 (𝑠))

√︁
𝛽𝑢 (𝑠)𝛽𝑢 (0) sin 𝜙𝑢 (𝑠)

𝛼𝑢 (0)−𝛼𝑢 (𝑠)
𝛽𝑢 (𝑠)𝛽𝑢 (0) cos 𝜙𝑢 (𝑠) − 1+𝛼𝑢 (0)𝛼𝑢 (𝑠)

𝛽𝑢 (𝑠)𝛽𝑢 (0) sin 𝜙𝑢 (𝑠)
√︃
𝛽𝑢 (0)
𝛽𝑢 (𝑠) (cos 𝜙𝑢 (𝑠) − 𝛼𝑢 (𝑠) sin 𝜙𝑢 (𝑠))

 ,
(2.7)

and 02×2 is a square matrix of size 2 × 2 with zeros in all of its entries. As a consequence of

the Twiss parametrization, the position coordinate at an arbitrary 𝑠 along a linear lattice may be

expressed as:

𝑢(𝑠) =
√︁

2𝐽𝑢𝛽𝑢 (𝑠) cos (𝜙𝑢 (𝑠) + 𝜙𝑢0) , (2.8)

where 𝐽𝑢 is a constant of motion known as the action and 𝜙𝑢0 is an arbitrary phase constant.

Equation 2.8 describes what is known as betatron oscillations. Additionally, the action 𝐽𝑢 can be

calculated as

2𝐽𝑢 = 𝛾𝑢𝑢2 + 2𝛼𝑢𝑢𝑢′ + 𝛽𝑢𝑢′2, (2.9)

for any 𝑠 using the property 𝛽𝑢𝛾𝑢 = 1+𝛼2
𝑢. Therefore, the particles traversing through the lattice will

exhibit oscillatory motion, with amplitude dictated by the 𝛽𝑢 (𝑠) function and frequency dictated

by the 𝜙𝑢 (𝑠) function.

Up until now, all of this formalism can be applied to either a linear or circular accelerator.

No assumption has been made on how the stacking of the LEGO® bricks in the lattice affects
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this formalism. Nevertheless, in a circular accelerator of circumference 𝐶 there is an additional

constraint on the Twiss functions given that there exists periodic boundary conditions, i.e., 𝛽(𝑠) =

𝛽(𝑠 + 𝐶), and similarly for the other Twiss functions. Another important parameter for a circular

lattice is the tune 𝑄𝑢, defined as the total phase advance over one turn of the machine, i.e.,

2𝜋𝑄𝑢 = 𝜙𝑢 (𝐶) =
∫ 𝑠+𝐶

𝑠

𝑑𝑠

𝛽𝑢 (𝑠)
. (2.10)

With the definition of the tune 𝑄𝑢, Eq. 2.7 can be rewritten in order to calculate the one-turn

matrix 𝑀 (𝐶) of the circular accelerator, such that:

𝑀 (𝐶) =

𝑀𝑥 (𝐶) 02×2

02×2 𝑀𝑦 (𝐶)

 , (2.11)

where each plane will have its own one-turn transfer matrix reading:

𝑀𝑢 (𝐶) =

cos 2𝜋𝑄𝑢 + 𝛼𝑢 (𝐶) sin 2𝜋𝑄𝑢 𝛽𝑢 (𝐶) sin 2𝜋𝑄𝑢

−𝛾𝑢 (𝐶) sin 2𝜋𝑄𝑢 cos 2𝜋𝑄𝑢 − 𝛼𝑢 (𝐶) sin 2𝜋𝑄𝑢

 . (2.12)

Ultimately, Eq. 2.12 can be used to calculate the particle’s state vector after 𝑁 turns, where the total

transfer matrix 𝑀𝑢 (𝑁𝐶) will just be 𝑀𝑢 (𝑁𝐶) = 𝑀𝑢 (𝐶)𝑁 . In fact, if a particle with some initial

conditions is tracked for enough turns and its geometrical coordinates (𝑥, 𝑥, 𝑦, 𝑦′) are recorded

through some diagnostic device every turn, the resulting trajectory would lie on an ellipse—the

phase space ellipse. The astute reader would have already identified that Eq. 2.9 hinted to this fact,

given that this is just the implicit definition for an ellipse. In essence, the Twiss parametrization

will give the geometry in order to fully describe the ellipse. These statements are illustrated in

Fig. 2.1, where the phase space ellipse is drawn with geometrical quantities associated to the Twiss

functions.

11



Figure 2.1 Phase space ellipse in geometrical coordinates with Twiss parametrization and its
counterpart transformation in normalized phase space.

Figure 2.1 also hints at the fact that a linear transformation 𝑇𝑢 (𝑠) can be done in order to

transform the phase space ellipse into a circle. This is referred to as a Floquet transformation.

Therefore, a change of coordinates from geometrical coordinates (𝑢, 𝑢′) to normalized coordinates

(�̂�, 𝑝𝑢) can be achieved through the following linear transformation:
�̂�

𝑝𝑢

 =


1√
𝛽𝑢

0
𝛼𝑢√
𝛽𝑢

√
𝛽𝑢



𝑢

𝑢′

 =
√︁

2𝐽𝑢


cos 𝜙𝑢 (𝑠)

− sin 𝜙𝑢 (𝑠)

 . (2.13)

Ultimately, Floquet and his transformations show that the one-turn Hamiltonian for circular accel-

erators can be expressed as:

𝐻0 = 2𝜋𝑄𝑥𝐽𝑥 + 2𝜋𝑄𝑦𝐽𝑦, (2.14)

which is simpler and more succinct than the Hamiltonian in Eq. 2.3. Conclusively, all the dynamics

of a linear circular accelerator with all of its intricacies can be mapped to rotations on a simple

circle. The dynamics in normalized phase space is just parametrized by a rotation matrix 𝑅(𝑠),

that will depend on the lattice itself, and is analogous to the transfer matrices 𝑀 (𝑠) in geometrical

space. Therefore, linear dynamics in a circular accelerator can be summarized with the following
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commutative diagram: ©«
𝑥, 𝑥′

𝑦, 𝑦′

ª®®¬0

©«
𝑥, 𝑥′

𝑦, 𝑦′

ª®®¬ 𝑓

©«
𝐽𝑥 , 𝜙𝑥

𝐽𝑦, 𝜙𝑦

ª®®¬0

©«
𝐽𝑥 , 𝜙𝑥

𝐽𝑦, 𝜙𝑦

ª®®¬ 𝑓 .

𝑀 (𝑠)

𝑇 (𝑠)

𝑅(𝑠)

𝑇 (𝑠)
(2.15)

Before proceeding to the next sections, where Lie operators are introduced in order to generalize

to non-linear mappings, a short summary is adequate. For a linear circular accelerator, the last

section has shown that starting from Hill’s equation, linear transformations can be applied to a

complex machine such as an accelerator in order to end up with a simple mathematical equation

such as the one described in Eq. 2.14. Simply put, nonlinear elements will distort the phase

space circle of Fig. 2.1, destroying the linearity of the system. The premise here is that non-linear

elements in circular accelerators are inevitable, and they will come from anywhere and everywhere

in the lattice, either from accounted or unaccounted sources. Therefore, higher-tier mathematical

tools have to be used in order to describe non-linear dynamics in a circular accelerator. Linear

matrices will only get you so far.

2.2 Lie Maps in Accelerator Physics

The most basic element of a particle accelerator can be thought of as a LEGO® brick acting

as a black box transformation for a single particle. This black box takes some single charged

particle with initial transverse coordinates
(
𝑥0, 𝑥

′
0, 𝑦0, 𝑦

′
0

)
, as defined in a Frenet-Serret coordinate

system, and maps them to some final coordinates
(
𝑥 𝑓 , 𝑥

′
𝑓
, 𝑦 𝑓 , 𝑦

′
𝑓

)
. For simplicity, any longitudinal

effect will not be taken into account for this analysis, but can be easily incorporated. By gathering

the initial coordinates into a vector, i.e. ®𝑋0 =

(
𝑥0, 𝑥

′
0, 𝑦0, 𝑦

′
0

)
, and doing the same for the final

coordinates, i.e., ®𝑋 𝑓 =
(
𝑥 𝑓 , 𝑥

′
𝑓
, 𝑦 𝑓 , 𝑦

′
𝑓

)
, one can define the mapping M that relates both vectors,

13



such that:

®𝑋 𝑓 = M ®𝑋0. (2.16)

Different from the previous section, M need not be a linear mapping. For a charged particle inside

some accelerator element that can be described using Hamiltonian dynamics, the mapping M can

be understood in terms of Poisson brackets and exponential Lie operators [9, 15, 17–19].

Let ®𝑋 = (𝑞1, 𝑝1, . . . , 𝑞𝑛, 𝑝𝑛) be a 2n dimensional vector, made from 𝑛 pairs of canonical coordinates

(𝑞𝑖, 𝑝𝑖) that make up the 2𝑛 dimensional phase space. And let two arbitrary functions 𝑓
(
®𝑋; 𝑠

)
and

𝑔

(
®𝑋; 𝑠

)
be functions of ®𝑋 and 𝑠, where 𝑠 plays the role of the independent "time" coordinate. The

Poisson brackets [•, •] can be defined as:

[ 𝑓 , 𝑔] =
𝑛∑︁
𝑖=1

𝜕 𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
− 𝜕 𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖
. (2.17)

Using this definition, one can explicitly write out the Poisson bracket definition for a 4 dimensional

phase space described by state vector ®𝑋 = (𝑥, 𝑥′, 𝑦, 𝑦′). This reads:

[ 𝑓 , 𝑔] = 𝜕 𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑥′
− 𝜕 𝑓

𝜕𝑥′
𝜕𝑔

𝜕𝑥
+ 𝜕 𝑓
𝜕𝑦

𝜕𝑔

𝜕𝑦′
− 𝜕 𝑓

𝜕𝑦′
𝜕𝑔

𝜕𝑦
. (2.18)

The Lie operator : 𝑓 : acts on some function 𝑔 and is the adjoint operator of the Poisson bracket

operator. Its definition reads:

: 𝑓 : 𝑔 = [ 𝑓 , 𝑔] . (2.19)

This specific : • : notation allows for a compact notation in order to define the exponential Lie

operator. The exponential Lie operator of an arbitrary function 𝑓 is defined as

𝑒: 𝑓 :• =

∞∑︁
𝑘=0

1
𝑘!

(: 𝑓 :)𝑘 • . (2.20)

For a Hamiltonian system, the mapping of coordinates from ®𝑋0 to ®𝑋 𝑓 follows the expression:

®𝑋 𝑓 = 𝑒−ℓ:𝐻: ®𝑋
���� ®𝑋= ®𝑋0

, (2.21)

which is known as a Lie Map [17]. In this case, ℓ corresponds to the integration length of the

independent coordinate. For example, for a particle traversing a magnet which has length 𝐿, the
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integration length is ℓ = 𝐿. When looking at the one-turn map, the integration length corresponds

to the circumference 𝐶 of the accelerator over an effective Hamiltonian 𝐻𝑒 𝑓 𝑓 . Furthermore, if

working with action-angle variables, the integration length ℓ would just be the phase advance 𝜇.

An implementation of exponential Lie operators using Mathematica [20] in order to calculate 2D

and 4D mappings is presented in Appendix A and in Appendix B, respectively.

2.3 One-turn Map and Normal Form

Such as LEGO® bricks can be put together to create complex structures, accelerator elements

can be assembled together to create complex ring-shaped structures such as circular accelerators.

In such structures, particles will experience the same one-turn mapping over thousands or even

millions of turns. The one-turn mapM1 of a circular accelerator is the composition (◦) of mappings

from every LEGO® element in the ring. Choosing an arbitrary initial point at 𝑠 = 0 and going

around the ring, the one-turn map describes the transformation of coordinates after one turn, i.e.,

®𝑋𝑁=1 = M1 ®𝑋0. This map composition reads:

M1 = 𝑀𝑁+1 ◦ 𝑒:ℎ𝑁 : ◦ · · · ◦ 𝑒:ℎ2: ◦ 𝑀2 ◦ 𝑒:ℎ1: ◦ 𝑀1 = 𝑀𝑁+1𝑒
:ℎ𝑁 : . . . 𝑒:ℎ2:𝑀2𝑒

:ℎ1:𝑀1, (2.22)

where 𝑀𝑖 is the matrix representation of a linear mapping, that does not couple 𝑥 − 𝑦 plane, e.g.,

drift space mapping, quadrupole mapping. On the other hand, the map 𝑒:ℎ𝑖 : represents any linear

or non-linear mapping that can be found around the machine and can be considered a perturbation

to the ideal lattice including coupling elements, e.g., skew quadrupoles, higher order multipole

elements. Figure 2.2 illustrates the procedure to build the one-turn map for a circular accelerator.
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Figure 2.2 Diagram of an arbitrary circular accelerator in order to illustrate the one-turn map.

Through the use of the Baker-Campbell-Hausdorff formula [21], Eq. 2.22 can be collapsed to

the expression

M1 = 𝑒−𝐶:𝐻𝑒 𝑓 𝑓 :, (2.23)

where 𝐶 is the circumference of the ring and 𝐻𝑒 𝑓 𝑓 is the effective Hamiltonian of the machine over

one turn. As mentioned earlier, for most cases, it is of interest to look at the perturbations to the

linear uncoupled dynamics of the design lattice. With this in mind, Eq. 2.23 can be rewritten as:

M1 = 𝑒:ℎ:𝑅, (2.24)

where 𝑅 is a rotation matrix encoding the linear uncoupled dynamics of the ideal lattice. On the

other hand, the term 𝑒:ℎ: encodes the perturbations to this ideal situation. It is worth pointing out

that for the case ℎ = 0, the traditional Courant-Snyder variables are recovered.
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The Courant-Snyder variables (𝑥,𝑝𝑥 ,�̂�,𝑝𝑦) or normalized phase space coordinates can be written

for a linear uncoupled case as:

�̂� =
√︁

2𝐽𝑢 cos
(
𝜙𝑢 + 𝜙𝑢0

)
; (2.25)

𝑝𝑢 = −
√︁

2𝐽𝑢 sin
(
𝜙𝑢 + 𝜙𝑢0

)
, (2.26)

where 𝑢 can stand either for the 𝑥 or 𝑦 coordinate, 𝐽𝑢 and 𝜙𝑢 correspond to the action-angle variables

and 𝜙𝑢0 corresponds to the initial phase. For the case where perturbations exist, i.e., ℎ ≠ 0, the

action 𝐽𝑢 is not constant anymore and will be a function of 𝜙𝑢.

The Normal Form formalism is introduced at this point in order to find action-angle coordinates

𝐼𝑢 and 𝜓𝑢, such that the motion just depends on 𝜓𝑢 at a constant 𝐼𝑢, with some initial phase 𝜓𝑢0 .

These are known as non-linear action-angle variables. The variables 𝐼𝑢 and 𝜓𝑢 are calculated

from the transformation 𝑒−:𝐹: acting on 𝐽𝑢 and 𝜙𝑢. The whole point is to find these variables that

allow for the Hamiltonian to be only amplitude dependent. These Normal Form gymnastics can be

summarized by the following commutative diagram:

©«
𝐽𝑥 , 𝜙𝑥

𝐽𝑦, 𝜙𝑦

ª®®¬0

©«
𝐽𝑥 , 𝜙𝑥

𝐽𝑦, 𝜙𝑦

ª®®¬ 𝑓

©«
𝐼𝑥 , 𝜓𝑥

𝐼𝑦, 𝜓𝑦

ª®®¬0

©«
𝐼𝑥 , 𝜓𝑥

𝐼𝑦, 𝜓𝑦

ª®®¬ 𝑓 .

𝑒:ℎ (𝐽𝑢,𝜙𝑢 ):𝑅

𝑒−:𝐹:

𝑒:𝐻 (𝐼𝑢 ):

𝑒−:𝐹: (2.27)

Without loss of generality, the generating function 𝐹 can be written as a Fourier expansion over

the objective space (𝐼𝑥 , 𝜓𝑥 , 𝐼𝑦, 𝜓𝑦) such that:

𝐹 =
∑︁
𝑗 𝑘𝑙𝑚

𝑓 𝑗 𝑘𝑙𝑚 (2𝐼𝑥)
𝑗+𝑘
2
(
2𝐼𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜓𝑥+𝜓𝑥0)+(𝑙−𝑚)(𝜓𝑦+𝜓𝑦0)] . (2.28)

Similarly, the argument of the Lie operator 𝑒:ℎ: from Eq. 2.24 can be expanded as:

ℎ =
∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 (2𝐽𝑥)
𝑗+𝑘
2
(
2𝐽𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.29)
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For Eqs. 2.28 and 2.29, the integer indices 𝑗 , 𝑘, 𝑙, 𝑚 run from 0 to infinity, and correspond to the

four degrees of freedom for transverse phase space.

The terms 𝑓 𝑗 𝑘𝑙𝑚 are known as generating function coefficients. The terms ℎ 𝑗 𝑘𝑙𝑚 are known as

Hamiltonian coefficients or resonance driving terms (RDTs). Section 2.5 will take a closer look

into how RDTs can be used to characterize the non-linear dynamics of accelerators. The generating

function coefficients 𝑓 𝑗 𝑘𝑙𝑚 can be related to the Hamiltonian resonance driving terms ℎ 𝑗 𝑘𝑙𝑚 through

the following relation [18, 22]:

𝑓 𝑗 𝑘𝑙𝑚 =
ℎ 𝑗 𝑘𝑙𝑚

1 − 𝑒2𝜋𝑖[( 𝑗−𝑘)𝑄𝑥+(𝑙−𝑚)𝑄𝑦] , (2.30)

where𝑄𝑥 and𝑄𝑦 represent the transverse uncoupled and unperturbed tunes of the accelerator. The

transverse tunes of a circular accelerator are defined as the phase advances in each plane over one

turn, in units of 2𝜋, i.e., 𝑄𝑢 = 𝜙𝑢 (𝑠 = 𝐶)/2𝜋.

In general, the terms ℎ 𝑗 𝑘𝑙𝑚 are defined by the order in which they enter the one-turn normal form

Hamiltonian [22]. With the assumption of thin elements around the ring, the general expression to

define RDTs reads:

ℎ 𝑗 𝑘𝑙𝑚 = Ξ 𝑗 𝑘𝑙𝑚

∑︁
𝑖

𝐿𝑖𝐾𝑛−1,𝑖𝛽
𝑗+𝑘
2
𝑥,𝑖
𝛽

𝑙+𝑚
2
𝑦,𝑖
𝑒𝑖[( 𝑗−𝑘)𝜙𝑥,𝑖+(𝑙−𝑚)𝜙𝑦,𝑖] , (2.31)

where Ξ 𝑗 𝑘𝑙𝑚 is just a constant defined as:

Ξ 𝑗 𝑘𝑙𝑚 = − 1
2𝑛

1
𝑛!

(
𝑛

𝑙 + 𝑚

) (
𝑗 + 𝑘
𝑗

) (
𝑙 + 𝑚
𝑙

)
. (2.32)

For Eqs. 2.31 and 2.32, 𝑛 = 𝑗 + 𝑘 + 𝑙 +𝑚 represents the order of the RDT. The sum over 𝑖 is done

over all multipoles of order 𝑛 and length 𝐿𝑖 that either have a normal component 𝐾𝑛−1,𝑖 = 𝑏𝑛−1,𝑖/𝜌

if 𝑙 + 𝑚 is even, or a skew component 𝐾𝑛−1,𝑖 = 𝐾
(𝑠)
𝑛−1,𝑖 = 𝑎𝑛−1,𝑖/𝜌 if 𝑙 + 𝑚 is odd, remembering 𝜌 is

the bending radius as it appeared on Eq. 2.1. The notation 𝐾𝑛−1,𝑖 is to keep up with the MAD-X

convention for naming normal multipole coefficients [23]. The symbols for 𝛽𝑥,𝑖, 𝛽𝑦,𝑖, 𝜙𝑥,𝑖 and 𝜙𝑦,𝑖

represent the unperturbed beta functions and phase advances in each plane, respectively.
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2.4 Resonances in Circular Accelerators

Equation 2.30 diverges for when the denominator goes to zero. Specifically, this happens when

the following condition is met:

( 𝑗 − 𝑘)𝑄𝑥 + (𝑙 − 𝑚)𝑄𝑦 = 𝑝, (2.33)

where 𝑝 can be any integer. Equation 2.33 defines resonance lines in tune space of order 𝑛 =

𝑗 + 𝑘 + 𝑙 + 𝑚. If the accelerator is tuned to operate on top of these resonances, the perturbations

will add up coherently turn to turn and kick the resonant particles out of their original trajectory.

In general, operating close or on top of a resonance line is harmful as particles will be lost. This is

specially true for lower order resonances, i.e., for 𝑛 < 4. In general, the higher order of a resonance,

the weaker it is [16]. This thesis work focuses on third order resonances, i.e., 𝑛 = 3, and how to

mitigate their deleterious effect.

Figure 2.3 shows the tune diagram with resonance lines, as defined by Eq. 2.33, drawn up to

fifth order. The integer part of both tunes are chosen to include the actual area of operation of the

Recycler Ring. Nevertheless, only the fractional part of the tune carries the significant information

for resonance diagrams. The operation and tune diagram for the Recycler Ring are described in

more detail in Ch. 3. Normally, the operation point of a circular accelerator is chosen to be

clear of any resonance line and far away as possible from integer (𝑛 = 1) and half integer (𝑛 = 2)

resonances. Nevertheless, in reality there are two concepts that complicate things. The first one

relates to the fact that resonance lines are not infinitely thin and have some stop bandwidth. The

second one, concerns the fact that at high intensities particles will not have localized tunes, but

rather a distribution of tunes with some tune spread, i.e., a tune footprint. Section 2.7 takes a closer

look at this effect known as space charge tune shift. Ultimately, choosing the operation point on Fig.

2.3 is a matter of localizing a resonance-free region where the intensity-dependent tune footprint

can be placed.
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Figure 2.3 Tune diagram with resonance lines up to fifth order, enclosing the operation point of the
Recycler Ring.

It is worth stopping here and asking what is the driving force behind each of these resonance lines.

Classic accelerator references such as Refs. [1, 15, 16] will derive Eq. 2.33 by perturbing Hill’s

equation with different magnetic multipole orders. A closer look into each perturbation term reveals

that half integer resonances are caused by quadrupole terms, third order resonances by sextupole-

like terms, fourth order resonances by octupole terms, and so on and so forth. Nevertheless, the

story complicates when one takes into account that pure multipole magnets can feed down or up to

other order terms if there is installation misalignment, e.g., a misaligned sextupole feeds to skew

quadrupole-like terms.

Figure 2.4 zooms into the region of interest for the Recycler Ring operation in the tune diagram,

as shown in Fig. 2.3. As mentioned before, the operation point of an accelerator in the tune diagram
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is not a singular point but rather a footprint. While the lattice can be tuned to a specific nominal

point, particles will interact with other particles through the Coulomb force. Consequently, each

particle will feel a different tune shift depending on their position within the bunch of particles.

This is called the incoherent space charge tune shift, and it will be the largest for particles in the

core of the bunch, i.e., the beam core. At low particle intensities, such as the one used to produce

Fig. 2.4, the tune spread of the particles in the bunch is small enough to approximate the physics

to single-particle dynamics. For beams with low particle intensities and a small tune spread, such

as the one depicted in Fig. 2.4, operating clear from any low order resonance lines is not generally

a problem. Nevertheless, at high intensities the situation changes.

Figure 2.4 Approximate operational tune footprint at low intensities calculated with PySCRDT
[24], i.e., 1e10 particles per bunch.

Figure 2.4 plots all resonance lines up to fourth order in this region of interest. The half integer

line 𝑄𝑥 − 𝑄𝑦 = 1, also known as a difference coupling resonance, is usually driven by solenoidal
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and skew-quadrupole fields in the lattice. The third order lines 3𝑄𝑥 = 76 and 𝑄𝑥 + 2𝑄𝑦 = 74 are

driven by sextupole-like fields. The other third order lines 3𝑄𝑦 = 73 and 2𝑄𝑥 +𝑄𝑦 = 75 are driven

by skew sextupole terms in the lattice. And finally, the fourth order lines −𝑄𝑥 + 3𝑄𝑦 = 48 and

3𝑄𝑥 −𝑄𝑦 = 52 are driven by octupole terms in the lattice and Coulomb (space charge) forces from

the bunch itself. This is assuming a rectangular multipole expansion notation of the magnetic field,

such as the one presented in Eq. 2.1.

2.5 Resonance Driving Terms

The RDTs ℎ 𝑗 𝑘𝑙𝑚 are related to the strength of the resonance ( 𝑗 − 𝑘)𝑄𝑥 + (𝑙 − 𝑚)𝑄𝑦. Therefore,

controlling and measuring these RDTs is of special interest to accelerator physics. The following

section explains how to get to a useful expression that can be used in order to measure the ℎ 𝑗 𝑘𝑙𝑚

terms through Fourier expansions.

The whole point of introducing the Normal Form coordinates (𝐼𝑢, 𝜓𝑢) through the transformation

𝑒−:𝐹: as defined in Eq. 2.28 is to transfer complicated non-linear dynamics to simple dynamics that

lie on a circle where the action is conserved 𝐼𝑢 and ¤𝜓𝑢 is constant. When this happens, a set of

canonical coordinates ®𝜁 =

(
𝜁+𝑥 , 𝜁

−
𝑥 , 𝜁

+
𝑦 , 𝜁

−
𝑦

)
can be defined as:

𝜁±𝑢 =
√︁

2𝐼𝑢𝑒∓𝑖(𝜓𝑢+𝜓𝑢0) , (2.34)

always keeping in mind that 𝐼𝑢 is a constant of motion and 𝜓𝑢0 is a constant initial phase set by the

initial conditions. It can be shown that the Poisson brackets for a pair of these quantities are:[
𝜁+𝑢 , 𝜁

−
𝑢

]
𝜓𝑢,𝐽𝑢

=
𝜕𝜁+𝑢
𝜕𝜓𝑢

𝜕𝜁−𝑢
𝜕𝐽𝑢

−
𝜕𝜁+𝑢
𝜕𝐽𝑢

𝜕𝜁−𝑢
𝜕𝜓𝑢

= −2𝑖, (2.35)

for the same plane 𝑢 and using a reduced form of Eq. 2.18. In this notation, the subindices from

[•, •]𝜓𝑢,𝐽𝑢 refer to the variables to be used in order to calculate the Poisson brackets. Using Eq.

2.35, the following useful property can be derived:[
𝜁+𝑥

𝑗
𝜁−𝑥

𝑘 𝜁+𝑦
𝑙
𝜁−𝑦

𝑚, 𝜁−𝑥

]
𝜓𝑥 ,𝐽𝑥

=

(
𝜁+𝑦
𝑙
𝜁−𝑦

𝑚
) [
𝜁+𝑥

𝑗
𝜁−𝑥

𝑘 , 𝜁−𝑥

]
𝜓𝑥 ,𝐽𝑥

= −2𝑖 𝑗 𝜁+𝑥
𝑗−1
𝜁−𝑥

𝑘 𝜁+𝑦
𝑙
𝜁−𝑦

𝑚, (2.36)

where the last step can be achieved using Leibnitz rule for Poisson brackets, i.e., [ 𝑓 𝑔, ℎ] =

[ 𝑓 , ℎ]𝑔 + 𝑓 [𝑔, ℎ].
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On the other hand, going back to the Courant-Snyder phase space, a set of coordinates known

as a resonance basis ®ℎ =

(
ℎ+𝑥 , ℎ

−
𝑥 , ℎ

+
𝑦 , ℎ

−
𝑦

)
can be defined. Similarly to Eq. 2.34, the resonance basis

reads:

ℎ±𝑢 = �̂� ± 𝑝𝑢 =
√︁

2𝐽𝑢𝑒∓𝑖(𝜙𝑢+𝜙𝑢0) , (2.37)

always keeping in mind that in the Courant-Snyder phase space, the action 𝐽𝑢 is a function of the

phase 𝜙𝑢, i.e., 𝐽𝑢 = 𝐽𝑢 (𝜙𝑢) and is not constant. The initial phase 𝜙𝑢0 is again a constant set by the

initial conditions.

The basis grouped in ®ℎ and the one grouped in ®𝜁 are related by the transformation:

®ℎ = 𝑒
:𝐹

(
®𝜁
)
: ®𝜁, (2.38)

where 𝐹 ( ®𝜁) is the generating function written in terms of the basis ®𝜁 . The inverse transformation

to Eq. 2.38 reads:

®𝜁 = 𝑒
−:𝐹

(
®𝜁
)
:®ℎ. (2.39)

Writing out the generating function 𝐹 ( ®𝜁) in a general polynomial form, this functions reads:

𝐹

(
®𝜁
)
=

∑︁
𝑗 𝑘𝑙𝑚

𝑓 𝑗 𝑘𝑙𝑚𝜁
+
𝑥
𝑗
𝜁−𝑥

𝑘 𝜁+𝑦
𝑙
𝜁−𝑦

𝑚 . (2.40)

By inserting the definitions in Eq. 2.34 into Eq. 2.40, the proposed definition in Eq. 2.28 can be

recovered.

Expanding Eq. 2.38 by using the exponential Lie operator definition from Eq. 2.20 reads:

®ℎ = ®𝜁 +
[
𝐹

(
®𝜁
)
, ®𝜁
]
+ 1

2

[
𝐹

[
𝐹, ®𝜁

] ]
+ . . . , (2.41)

where this expression was truncated to second order in the Poisson brackets. By taking only the

first two terms of the expansion, and introducing the expression from Eq. 2.40, one can find an

approximated expression for ℎ−𝑥 which reads:

ℎ−𝑥 ≈ 𝜁−𝑥 +
[
𝐹

(
®𝜁
)
, 𝜁−𝑥

]
= 𝜁−𝑥 +

∑︁
𝑗 𝑘𝑙𝑚

𝑓 𝑗 𝑘𝑙𝑚

[
𝜁+𝑥

𝑗
𝜁−𝑥

𝑘 𝜁+𝑦
𝑙
𝜁−𝑦

𝑚, 𝜁−𝑥

]
, (2.42)
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At this point is where the usefulness of Eq. 2.36 comes into play. Introducing the explicit result

from Eq. 2.36 into Eq. 2.42 yields the following expression:

ℎ−𝑥 ≈ 𝜁−𝑥 − 2𝑖
∑︁
𝑗 𝑘𝑙𝑚

𝑗 𝑓 𝑗 𝑘𝑙𝑚𝜁
+
𝑥
𝑗−1
𝜁−𝑥

𝑘 𝜁+𝑦
𝑙
𝜁−𝑦

𝑚 . (2.43)

Manipulating this expression further, the definition for 𝜁𝑢 as described in Eq. 2.34 can be introduced

into Eq. 2.43. This yields:

ℎ−𝑥 (𝑁) =
√︁

2𝐼𝑥𝑒𝑖(𝜓𝑥+𝜓𝑥0)

− 2𝑖
∑︁
𝑗 𝑘𝑙𝑚

𝑗 𝑓 𝑗 𝑘𝑙𝑚 (2𝐼𝑥)
𝑗+𝑘−1

2
(
2𝐼𝑦

) 𝑙+𝑚
2 𝑒𝑖[(1− 𝑗+𝑘)(𝜓𝑥+𝜓𝑥0)+(𝑚−𝑙)(𝜓𝑦+𝜓𝑦0)] . (2.44)

At this point, Eq. 2.44 is starting to look as a useful Fourier expansion. Ultimately, the data that

can be extracted from a circular accelerator will come from a diagnostic device triggered every

turn, i.e., turn-by-turn data. For that reason, it will be useful to rewrite Eq. 2.44 in terms of the 𝑁

number of turns of particles in the accelerator. The expression relating the phase advances to the

turn number reads:

𝜓𝑢 = 2𝜋𝑄𝑢𝑁, (2.45)

where 2𝜋𝑄𝑢 is the respective phase advance over one turn of the accelerator, i.e. the tune of the

circular accelerator.

Therefore, the resonance basis can be built by getting the quantity ℎ±𝑢 = �̂� ± 𝑝𝑢 in terms of the

number of turns 𝑁 and using Eq. 2.45. Specifically, for ℎ−𝑥 this reads:

ℎ−𝑥 (𝑁) =
√︁

2𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑁+𝜓𝑥0)

− 2𝑖
∑︁
𝑗 𝑘𝑙𝑚

𝑗 𝑓 𝑗 𝑘𝑙𝑚 (2𝐼𝑥)
𝑗+𝑘−1

2
(
2𝐼𝑦

) 𝑙+𝑚
2 𝑒𝑖[(1− 𝑗+𝑘)(2𝜋𝑄𝑥𝑁+𝜓𝑥0)+(𝑚−𝑙)(2𝜋𝑄𝑦𝑁+𝜓𝑦0)] , (2.46)

where 𝑄𝑥 and 𝑄𝑦 are the horizontal and vertical uncoupled tune. Note that this analysis can be

easily extended to calculate the other elements in ®ℎ. These calculations are left as an exercise for

the reader.
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2.6 Amplitude-Dependent Tune Shift

The RDT formalism allows to calculate an important quantity in accelerator physics called the

amplitude-dependent tune shift. The Hamiltonian for a single particle in a linear circular lattice

with perturbation elements reads:

𝐻 (𝑥, 𝑦, 𝑠) = 𝐻0(𝐽𝑥 , 𝐽𝑦) + 𝐻1(𝐽𝑥 , 𝜙𝑥 , 𝐽𝑦, 𝜙𝑦), (2.47)

where 𝐻0 is the unperturbed linear Hamiltonian with tunes 𝑄𝑥 and 𝑄𝑦, and 𝐻1 is the perturbation

Hamiltonian stemming from linear and non-linear unaccounted blocks in the lattice.

From Secs. 2.1 and 2.3, the expressions for 𝐻0 and 𝐻1 have been explicitly written in Eqs. 2.14

and 2.29 in terms of 𝐽𝑥 , 𝜙𝑥 , 𝐽𝑦, 𝜙𝑦, therefore the sum of both expression reads:

𝐻0 +𝐻1 = 2𝜋𝑄𝑥𝐽𝑥 + 2𝜋𝑄𝑦𝐽𝑦 +
∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 (2𝐽𝑥)
𝑗+𝑘
2
(
2𝐽𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.48)

Nevertheless, it is important to remember that 𝐻1 is the compilation of all perturbations after one

turn to the linear Hamiltonian 𝐻0, and is therefore perturbative.

Consequently, for Eq. 2.48, the independent time variable is the number of turns 𝑁 . For this

case, the equations of motion taking 𝑁 as the number of turns around the circular accelerator are

just:
𝜕𝐽𝑢

𝜕𝑁
= − 𝜕𝐻

𝜕𝜙𝑢
= −𝜕𝐻1

𝜕𝜙𝑢
, (2.49)

and
𝜕𝜙𝑢

𝜕𝑁
=
𝜕𝐻

𝜕𝐽𝑢
= 2𝜋𝑄𝑢 +

𝜕𝐻1

𝜕𝐽𝑢
. (2.50)

This last term 𝜕𝐻1/𝜕𝐽𝑢 in Eq. 2.50 will define the amplitude-dependent tune shift. If the

whole lattice were just a linear lattice, the betatron oscillations would just gain a phase change of

2𝜋𝑄𝑢 every turn, i.e., Δ𝜙(𝑁) = 2𝜋𝑄𝑢𝑁 . Nevertheless, given that this new term 𝐻1 perturbs the

dynamics in the accelerator, the phase change will now depend on the amplitude 𝐽𝑢 of the betatron

oscillations of the single particle. Therefore, given that this effect acts on each individual particle,

it is an incoherent effect. The effective result from this new term is to detune the circular lattice

from its original tune 𝑄𝑢 for each individual particle.
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Explicitly calculating the expression from Eq. 2.50 for 𝐽𝑥 and 𝜙𝑥 using the Hamiltonian in Eq.

2.47 yields

𝜕𝜙𝑥

𝜕𝑁
= 2𝜋𝑄𝑥 +

∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 ( 𝑗 + 𝑘) (2𝐽𝑥)
𝑗+𝑘
2 −1 (2𝐽𝑦 ) 𝑙+𝑚

2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.51)

In particular, it is of interest to look at the average limit where particles have undergone large

number of turns around the circular accelerator 𝑁 → ∞. This is done in order to wash out any

oscillatory behavior in 𝜕𝐻1/𝜕𝐽𝑢. Therefore, the following quantity is of interest:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= lim
𝑁→∞

1
𝑁

∫ 𝑁

0
𝑑𝑁′ 𝜕𝜙𝑥

𝜕𝑁′ , (2.52)

which is just the definition for the average of 𝜕𝜙𝑥/𝜕𝑁 over 𝑁 turns, for many turns. Explicitly

calculating this quantity gives:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥

+
∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 ( 𝑗 + 𝑘) lim
𝑁→∞

1
𝑁

∫ 𝑁

0
𝑑𝑁′ (2𝐽𝑥)

𝑗+𝑘
2 −1 (2𝐽𝑦 ) 𝑙+𝑚

2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.53)

In general, it is known that 𝐽𝑢, 𝜙𝑢 depend on the number of turns, i.e., 𝐽𝑢, 𝜙𝑢 = 𝐽𝑢 (𝑁), 𝜙𝑢 (𝑁).

Nevertheless, Eq. 2.53 can be approximated by inserting the unperturbed solution of 𝐻0 which

means that 𝐽𝑢 is constant and 𝜙𝑢 = 2𝜋𝑄𝑢𝑁 . With this in mind and assuming the constants 𝜙𝑢0 = 0

without loss of generality, Eq. 2.53 reduces to

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥

+
∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 ( 𝑗 + 𝑘) (2𝐽𝑥)
𝑗+𝑘
2 −1 (2𝐽𝑦 ) 𝑙+𝑚

2 lim
𝑁→∞

1
𝑁

∫ 𝑁

0
𝑑𝑁′ 𝑒2𝜋𝑖[( 𝑗−𝑘)𝑄𝑥+(𝑙−𝑚)𝑄𝑦]𝑁 ′

. (2.54)

A closer look into the integral in Eq. 2.54 reveals that this integral in the limit where 𝑁 → ∞ is

just a delta function reading 𝛿
(
( 𝑗 − 𝑘)𝑄𝑥 + (𝑙 − 𝑚)𝑄𝑦

)
. As a reminder, the RDT approximation

breaks down if Eq. 2.33 holds. Therefore, it can be shown that the argument in the delta function

can only be zero if 𝑗 = 𝑘 and 𝑙 = 𝑚. Thus, this delta function effectively becomes two Kronecker

deltas—𝛿 𝑗 𝑘 and 𝛿𝑙𝑚. Inserting this into Eq. 2.54 yields:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 +
∑︁
𝑗 𝑘𝑙𝑚

ℎ 𝑗 𝑘𝑙𝑚 ( 𝑗 + 𝑘) (2𝐽𝑥)
𝑗+𝑘
2 −1 (2𝐽𝑦 ) 𝑙+𝑚

2 𝛿 𝑗 𝑘𝛿𝑙𝑚 . (2.55)
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Reducing this expression further with the properties of Kronecker deltas reads:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 + 2
∑︁
𝑗 𝑙

ℎ 𝑗 𝑗 𝑙𝑙 𝑗 (2𝐽𝑥) 𝑗−1 (2𝐽𝑦 ) 𝑙 . (2.56)

Equation 2.56 is stating that the constant detuning terms in the accelerators will be given by the

terms where 𝑗 = 𝑘 and 𝑙 = 𝑚. As a consequence of Eq. 2.31, for this case the RDTs will be

real numbers, i.e., ℎ 𝑗 𝑘𝑙𝑚 ∈ R. Therefore, the constant detuning terms will come from even orders

of 𝑛 = 𝑗 + 𝑘 + 𝑙 + 𝑚. It is worth remembering that this is a first approximation given that the

assumption is that the dynamics are mainly governed by 𝐻0. Higher order approximations would

involve recursively solving Eqs. 2.49 and 2.50 as a Taylor expansion of the actions 𝐽𝑢 [25].

As an example, Eq. 2.56 can be used to calculate the detuning due to horizontal quadrupole

errors 𝑛 = 2. For this, the calculation would only involve calculating ℎ1100 from Eq. 2.31, the only

surviving term. Therefore, the detuning in 𝑥 due to quadrupole errors would read

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 + 2ℎ1100 = 2𝜋𝑄𝑥 −
1
2

∑︁
𝑖

𝐿𝑖𝐾1,𝑖𝛽𝑥,𝑖 = 2𝜋𝑄𝑥 −
1
2

∑︁
𝑖

𝐿𝑖
𝑏1,𝑖

𝜌
𝛽𝑥,𝑖, (2.57)

where the sum over 𝑖 goes around all the quadrupole errors in the ring. Equation 2.57 gives a

well-known result in accelerator physics [1].

Another example, can be used to calculate the detuning terms due to octupole components

around the ring, i.e., 𝑛 = 4. For this case, the calculation yields

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 + 4ℎ1111𝐽𝑦 + 8ℎ2200𝐽𝑥 , (2.58)

where if ℎ1100 and ℎ2200 are explicitly calculated from Eq. 2.31, this gives:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 +
𝐽𝑦

4

∑︁
𝑖

𝐿𝑖𝐾3,𝑖𝛽𝑥,𝑖𝛽𝑦,𝑖 +
𝐽𝑥

8

∑︁
𝑖

𝐿𝑖𝐾3,𝑖𝛽
2
𝑥,𝑖 . (2.59)

It is important to clarify that the sum over 𝑖 goes around all the octupole perturbations in the ring.

To summarize, the amplitude-dependent tune shift Δ (2𝜋𝑄𝑢) is an important quantity that will

change the dynamics of particles inside a circular accelerator. In order to calculate this incoherent

effect to first order in perturbation theory, the following quantity has to be calculated:

Δ (2𝜋𝑄𝑢) = 2𝜋𝑄𝑢 − lim
𝑁→∞

〈
𝜕𝜙𝑢

𝜕𝑁

〉
𝑁

= lim
𝑁→∞

〈
𝜕𝐻1

𝜕𝐽𝑢

〉
𝑁

. (2.60)
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2.7 Space Charge Tune Shift

Up to this point, the beam dynamics of high energy particle accelerators has been explained in

terms of single-particle dynamics. Up until now, a couple of implicit assumptions have been made:

(a) particles do not interact with each other; and (b) the basic blocks composing the lattice have

been idealized to create the fields but without supplying any electromagnetic boundary conditions.

Nevertheless, in order to have a model closer to reality, the interaction between particles through

the Coulomb force has to be taken into account. Furthermore, particles also interact with the

electromagnetic properties of the basic elements, ultimately, creating unwanted electromagnetic

wake fields. This latter phenomenon opens another branch of accelerator physics that studies

collective beam instabilities [26]. However, the scope of this thesis is only interested in the

first bullet point regarding direct particle-particle interactions through the Coulomb force—widely

known as space charge physics. It is worth specifying that this restricts the analysis to a single

bunch of particles.

As mentioned in Sec. 2.4, the Coulomb force will act as a detuning force on each individual

particle. In order to explain this statement using a Hamiltonian formalism, the starting point

needs to be the single-particle Hamiltonian that includes the Coulomb potential from the charge

distribution in the bunch [27]. The expression for this system reads:

𝐻 (𝑥, 𝑦) = 𝐻0(𝑥, 𝑦) + 𝐻1(𝑥, 𝑦) + Ψ(𝑥, 𝑦, 𝑧), (2.61)

keeping in mind that 𝑥 and 𝑦 are interchangeable for their respective action-phase variables

𝐽𝑥 , 𝜙𝑥 , 𝐽𝑦, 𝜙𝑦. For a bunched beam, the variable 𝑧 = 𝑧 − 𝑧𝑏 is introduced in order to represent

the longitudinal distance from the center of the bunch, always keeping in mind that the reference

system moves with the bunch as described by a Frenet-Serret coordinate system. The center of

the bunch with coordinates (0, 0, 𝑧𝑏) is determined from the centroid of the longitudinal charge

distribution. The one-turn space-charge potential Ψ, is the average potential from all the space

charge kicks around the accelerator for one turn. Nevertheless, the functional form should be
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similar to Eq. 2.31, in order to apply the same methods of Sec. 2.6. Therefore, this reads:.

Ψ(𝐽𝑥 , 𝜙𝑥 , 𝐽𝑦, 𝜙𝑦, 𝑧) =
∑︁
𝑗 𝑘𝑙𝑚

𝐺 𝑗 𝑘𝑙𝑚 (2𝐽𝑥)
𝑗+𝑘
2
(
2𝐽𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.62)

Analogous to Eq. 2.31, the terms 𝐺 𝑗 𝑘𝑙𝑚 are named the global space-charge resonance driving

terms (GSCRDTs). These terms are calculated as the one-turn average of the instantaneous driving

terms of order 𝑙, 𝑗 , 𝑘 and 𝑚 which have an explicit 𝑠 dependence. Therefore, the definition for the

GSCRDTs 𝐺 𝑗 𝑘𝑙𝑚 reads:

𝐺 𝑗 𝑘𝑙𝑚 =
1
𝐶

∫ 𝑠0+𝐶

𝑠0

�̃� 𝑗 𝑘𝑙𝑚 (𝑠)𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥 (𝑠)+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦 (𝑠)+𝜙𝑦0)] 𝑑𝑠, (2.63)

where the terms �̃� 𝑗 𝑘𝑙𝑚 (𝑠) are the instantaneous driving terms of the expansion for the self-field

potential 𝜓 of the bunch at a point 𝑠 of the accelerator, i.e.,

𝜓(𝐽𝑢, 𝜙𝑢, 𝑧, 𝑠) = 𝑓 (𝑧) +
∑︁
𝑗 𝑘𝑙𝑚

�̃� 𝑗 𝑘𝑙𝑚 (𝑠) (2𝐽𝑥)
𝑗+𝑘
2
(
2𝐽𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.64)

The term 𝑓 (𝑧) will hold any longitudinal dependence of the potential, but in general it is

not of relevance to the space charge detuning calculation. This is a similar approach as the one

taken by Ref. [28]. All of this assumes the self-field potential has been calculated and a Floquet

transformation has been performed using Eq. 2.8. The self-potential𝜓(𝑥, 𝑦, 𝑧, 𝑠) is determined self-

consistently from the 3D Poisson equation with a particle number density of the bunch 𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠)

reading: (
𝜕

𝜕𝑥
+ 𝜕

𝜕𝑦
+ 𝜕

𝜕𝑧

)
𝜓(𝑥, 𝑦, 𝑧, 𝑠) = −2𝜋𝐾𝑏

𝑁𝑏
𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠), (2.65)

where 𝐾𝑏 is a dimensionless parameter known as the self-field perveance defined as

𝐾𝑏 =
2𝑁𝑏𝑒2

𝑏

𝛾3
𝐿
𝑚𝑏𝛽

2
𝐿
𝑐2
, (2.66)

with 𝑁𝑏 being the total number of particles in the bunch defined as 𝑁𝑏 =
∫
𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠),

𝑒𝑏 is the charge of one beam particle, 𝑚𝑏 is the rest mass of one beam particle, 𝛾𝐿 and 𝛽𝐿 being the

relativistic longitudinal factors of a beam with total energy 𝐸𝑇 = 𝛾𝐿𝑚𝑏𝑐
2, and 𝑐 being the speed of

light.
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The solution to Eq. 2.65 can be found in any mathematical methods for physics book, see Refs.

[29, 30]. The solution to this equation involves using Green’s function and finding the convolution

with the particle number density 𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠) = 𝑛𝑏 (®𝑟, 𝑠). This reads:

𝜓(𝑥, 𝑦, 𝑧, 𝑠) = −2𝜋𝐾𝑏
𝑁𝑏

∫
R3
𝑑®𝑟′ 𝑛𝑏 (®𝑟, 𝑠)|®𝑟 − ®𝑟′| . (2.67)

In section 2.6 it was of interest to look at how particles at different amplitudes undergo different

detuning due to 𝐻1 given their 𝐽𝑢 coordinates. The same will be true for the effect of Ψ on the

single-particle dynamics. The quantity of interest will be the detuning due to Coulomb forces—

the space-charge tune shift. Nevertheless, it is important to note that space charge will be a

continuous force all around the accelerator. Therefore, the terms 𝐺 𝑗 𝑘𝑙𝑚 in order to enter the one-

turn Hamiltonian in Eq. 2.61 will have to be an average of the space-charge force around the ring

for a single particle, just like it was defined in Eq. 2.63. Ultimately, the space-charge tune shift

will also be an incoherent quantity.

For now, let 𝐻1 = 0, but let space-charge dictate the functional form of Ψ. For this case, and in

analogy to Eq. 2.50, the space charge tune shift will be dictated by:

𝜕𝜙𝑢

𝜕𝑁
=
𝜕𝐻

𝜕𝐽𝑢
= 2𝜋𝑄𝑢 +

𝜕Ψ

𝜕𝐽𝑢
. (2.68)

The non-trivial part about this calculation is figuring 𝜕Ψ/𝜕𝐽𝑢 for a specific bunch distribution after

calculating the integral in Eq. 2.67.

The first case to analyze is when the bunch has a uniform charge density enclosed in a 3D

ellipsoid. The charge bunch distribution reads:

𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠) =

�̂�𝑏 (𝑠), if 0 ≤ 𝑥2

𝑎2 (𝑠) +
𝑦2

𝑏2 (𝑠) +
𝑧2

𝑐2 (𝑠) ≤ 1

0, if else.
, (2.69)

where 𝑎(𝑠), 𝑏(𝑠) and 𝑐(𝑠) are the length of the semi-axes of the ellipsoid around the accelerator,

and can be calculated from the beam-envelope equations [27]. Additionally, the constant particle

number density over an ellipsoid is defined as �̂�𝑏 = 𝑁𝑏/𝑉𝑒, where 𝑉𝑒 is the volume of an ellipsoid

reading 𝑉𝑒 = (4/3)𝜋𝑎𝑏𝑐. Inputting this distribution into Eq. 2.67 gives the expression for the
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potential. This involves solving a 3D integral inside the ellipsoid. This reads:

𝜓(𝑥, 𝑦, 𝑧, 𝑠) = −2𝜋𝐾𝑏�̂�𝑏
𝑁𝑏

∫
S
𝑑®𝑟′ 1

|®𝑟 − ®𝑟′| , (2.70)

where S is the region enclosed by the ellipsoid. The integral has been studied with ellipsoidal

coordinates and the solution can be found in Refs. [27, 31]. In these references, it is shown that

the solution can be expressed as a quadratic function of 𝑥, 𝑦 and 𝑧 such that:

𝜓(𝑥, 𝑦, 𝑧, 𝑠) = −𝜋𝐾𝑏�̂�𝑏𝑎𝑏𝑐
𝑁𝑏

[
−𝐴𝑥2 − 𝐵𝑦2 − �̃�𝑧2 + 𝐷

]
, (2.71)

such that 𝐴, 𝐵, �̃� and 𝐷 are calculated as:

𝐴(𝑠) =
∫ ∞

0

𝑑𝜍(
𝑎2 + 𝜍

) √︃(
𝑎2 + 𝜍

) (
𝑏2 + 𝜍

) (
𝑐2 + 𝜍

) , (2.72)

𝐵(𝑠) =
∫ ∞

0

𝑑𝜍(
𝑏2 + 𝜍

) √︃(
𝑎2 + 𝜍

) (
𝑏2 + 𝜍

) (
𝑐2 + 𝜍

) , (2.73)

�̃� (𝑠) =
∫ ∞

0

𝑑𝜍(
𝑐2 + 𝜍

) √︃(
𝑎2 + 𝜍

) (
𝑏2 + 𝜍

) (
𝑐2 + 𝜍

) , (2.74)

𝐷 (𝑠) =
∫ ∞

0

𝑑𝜍√︃(
𝑎2 + 𝜍

) (
𝑏2 + 𝜍

) (
𝑐2 + 𝜍

) . (2.75)

Furthermore, Eq. 2.71 can be rewritten using Eq. 2.8, in order to explicitly highlight the dependence

on 𝐽𝑢, 𝜙𝑢. This reads:

𝜓(𝐽𝑢, 𝜙𝑢, 𝑧, 𝑠) = −𝜋𝐾𝑏�̂�𝑏𝑎𝑏𝑐
𝑁𝑏

[
−𝐴 (2𝛽𝑥𝐽𝑥)

(
𝑒2𝑖(𝜙𝑥+𝜙𝑥0) + 𝑒−2𝑖(𝜙𝑥+𝜙𝑥0) + 2

4

)
−𝐵

(
2𝛽𝑦𝐽𝑦

) ( 𝑒2𝑖(𝜙𝑦+𝜙𝑦0) + 𝑒−2𝑖(𝜙𝑦+𝜙𝑦0) + 2
4

)
− �̃�𝑧2 + 𝐷

]
. (2.76)

Equation 2.76 can be cross-examined using Eq. 2.64 in order to retrieve the driving terms �̃� 𝑗 𝑘𝑙𝑚 and

𝑓 (𝑧). Therefore, for a uniform distribution, the following expansion for the self-potential holds:

𝜓(𝐽𝑢, 𝜙𝑢, 𝑧, 𝑠) = 𝑓0(𝑧) + �̃�2000𝐽𝑥𝑒
2𝑖(𝜙𝑥+𝜙𝑥0) + �̃�0200𝐽𝑥𝑒

−2𝑖(𝜙𝑥+𝜙𝑥0) + �̃�1100𝐽𝑥

+ �̃�0020𝐽𝑦𝑒
2𝑖(𝜙𝑦+𝜙𝑦0) + �̃�0002𝐽𝑦𝑒

−2𝑖(𝜙𝑦+𝜙𝑦0) + �̃�0011𝐽𝑦 . (2.77)
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The instantaneous driving terms �̃� 𝑗 𝑘𝑙𝑚 from Eq. 2.77 are summarized in Table 2.2. Table 2.2 also

shows how to calculate the SCRDTs 𝐺 𝑗 𝑘𝑙𝑚 from averaging out the �̃� 𝑗 𝑘𝑙𝑚 (𝑠) all around the circular

accelerator as an example of using Eq. 2.63. The integrals for the 𝐺 𝑗 𝑘𝑙𝑚 should be carried out with

previous knowledge of the unperturbed beta functions and phase advances all around the ring. The

envelope equations, as described in Ref. [27], should also be solved previously in order to get 𝑎(𝑠),

𝑏(𝑠) and 𝑐(𝑠) around the lattice, ultimately, aiding in the evaluation of 𝐴(𝑠), 𝐵(𝑠) and 𝐶 (𝑠).

Table 2.2 Instantaneous driving terms and GSCRDTs for a uniform beam

�̃� 𝑗 𝑘𝑙𝑚 �̃� 𝑗 𝑘𝑙𝑚 (𝑠) 𝐺 𝑗 𝑘𝑙𝑚 𝐺 𝑗 𝑘𝑙𝑚

�̃�2000
3
8𝐾𝑏𝐴(𝑠)𝛽𝑥 (𝑠) 𝐺2000

3𝐾𝑏

8𝐶

∫ 𝑠0+𝐶

𝑠0

𝐴(𝑠)𝛽𝑥 (𝑠)𝑒2𝑖(𝜙𝑥 (𝑠)+𝜙𝑥0) 𝑑𝑠

�̃�0200
3
8𝐾𝑏𝐴(𝑠)𝛽𝑥 (𝑠) 𝐺0200

3𝐾𝑏

8𝐶

∫ 𝑠0+𝐶

𝑠0

𝐴(𝑠)𝛽𝑥 (𝑠)𝑒−2𝑖(𝜙𝑥 (𝑠)+𝜙𝑥0) 𝑑𝑠

�̃�1100
3
4𝐾𝑏𝐴(𝑠)𝛽𝑥 (𝑠) 𝐺1100

3𝐾𝑏

4𝐶

∫ 𝑠0+𝐶

𝑠0

𝐴(𝑠)𝛽𝑥 (𝑠) 𝑑𝑠

�̃�0020
3
8𝐾𝑏𝐵(𝑠)𝛽𝑦 (𝑠) 𝐺0020

3𝐾𝑏

8𝐶

∫ 𝑠0+𝐶

𝑠0

𝐵(𝑠)𝛽𝑦 (𝑠)𝑒2𝑖(𝜙𝑦 (𝑠)+𝜙𝑦0) 𝑑𝑠

�̃�0002
3
8𝐾𝑏𝐵(𝑠)𝛽𝑦 (𝑠) 𝐺0002

3𝐾𝑏

8𝐶

∫ 𝑠0+𝐶

𝑠0

𝐵(𝑠)𝛽𝑦 (𝑠)𝑒−2𝑖(𝜙𝑦 (𝑠)+𝜙𝑦0) 𝑑𝑠

�̃�0011
3
4𝐾𝑏𝐵(𝑠)𝛽𝑦 (𝑠) 𝐺0011

3𝐾𝑏

4𝐶

∫ 𝑠0+𝐶

𝑠0

𝐵(𝑠)𝛽𝑦 (𝑠) 𝑑𝑠

Just like in Sec. 2.6, it is of interest to look at the terms where 𝑗 = 𝑘 and 𝑙 = 𝑚. This will give

nonlinear detuning terms due to having a uniform charge distribution. Therefore, similar to Eq.
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2.56, the nonlinear detuning terms due to space charge for the horizontal plane are:

lim
𝑁→∞

〈
𝜕𝜙𝑥

𝜕𝑁

〉
𝑁

= 2𝜋𝑄𝑥 + 2
∑︁
𝑗 𝑙

𝐺 𝑗 𝑗 𝑙𝑙 𝑗 (2𝐽𝑥) 𝑗−1 (2𝐽𝑦 ) 𝑙 . (2.78)

Therefore, it would be of interest to look at the terms 𝐺1100 and 𝐺0011 which will cause constant

detuning of the unperturbed tunes.

The previous analysis has been done for a uniform beam, i.e., the particle number density is

constant inside the bunch. Nevertheless, this is an idealized case for a circular accelerator. A more

realistic approach would be to consider a Gaussian distribution. This multivariate distribution

assuming no correlation reads:

𝑛𝑏 (𝑥, 𝑦, 𝑧, 𝑠) =
1

(2𝜋)3/2 𝜎𝑥𝜎𝑦𝜎𝑧
𝑒
− 𝑥2

2𝜎2
𝑥

− 𝑦2

2𝜎2
𝑦

− �̃�2

2𝜎2
�̃� (2.79)

This is the approach taken in Refs. [24, 28]. Specifically, the Python library developed at CERN

called PySCRDT [24] allows for calculation of GSCRDTs, as well as calculation of the tune

footprint, for a Gaussian beam distribution. As mentioned before in the discussion of Fig. 2.4, the

tune footprint depends on the intensity of the beam interchangeable with the beam space charge

perveance parameter 𝐾𝑏. Figure 2.5 shows the space charge tune footprint for the Recycler Ring

for typical beam parameters used in studies. The footprint has been calculated using PySCRDT.

Nevertheless, the approach behind PySCRDT is similar to the example provided with a uniform

beam distribution. One special feature of the Gaussian beam is that the space charge potential is

its largest at the core of the beam. Hence, the detuning is largest for particles close the middle of

the bunch. In contrast, the particles away from the core of the beam will not be subject to the full

space charge potential, and therefore, will oscillate close to the unperturbed nominal tune of 𝑄𝑢.

Figure 2.5 illustrates this concept by drawing a color map at different actions, close to the beam

core and 3𝜎𝑢 away from the center of the bunch—location where particles are oscillating close to

nominal tunes.
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Figure 2.5 Tune footprint for a Gaussian beam in the Recycler Ring at an intensity of 5e10 particles
per bunch created with PySCRDT.

Up until now, for this section the assumption 𝐻1 = 0 holds. Nevertheless, in high-intensity

particle accelerators there will be an interplay between the nonlinear Hamiltonian and the space

charge potential. Ultimately, the terms ℎ 𝑗 𝑘𝑙𝑚 and 𝐺 𝑗 𝑘𝑙𝑚 will dictate the perturbation to the linear

Hamiltonian by their effective detuning. Therefore, the following Hamiltonian will describe the

perturbation due to nonlinear elements in the circular lattice and due to space charge forces:

𝐻 (𝐽𝑥 , 𝜙𝑥 , 𝐽𝑦, 𝜙𝑦, 𝑧) = 2𝜋𝑄𝑥𝐽𝑥 + 2𝜋𝑄𝑦𝐽𝑦+∑︁
𝑗 𝑘𝑙𝑚

(
ℎ 𝑗 𝑘𝑙𝑚 + 𝐺 𝑗 𝑘𝑙𝑚

)
(2𝐽𝑥)

𝑗+𝑘
2
(
2𝐽𝑦

) 𝑙+𝑚
2 𝑒𝑖[( 𝑗−𝑘) (𝜙𝑥+𝜙𝑥0)+(𝑙−𝑚)(𝜙𝑦+𝜙𝑦0)] . (2.80)
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CHAPTER 3

THE FNAL RECYCLER RING

3.1 Introduction

The Fermilab Recycler Ring (RR) is one of the circular accelerators located in the Fermilab

Accelerator Complex. It was originally designed to store and accumulate antiprotons that remained

from a Tevatron event [32]. The recycling of antiprotons was deemed ineffective and was never

operationally implemented [33]. Since 2011, the RR has been repurposed to act as a pre-injector

to the Main Injector (MI) by storing and accumulating protons [14]. It is worth pointing out, that

the MI and the RR share the same tunnel, which has a circumference of 3.319 km (2.062 mi). The

work done for this thesis focuses on the Recycler Ring. The following chapter starts by giving a

general description for the operation and physics of the Recycler Ring. The next sections introduce

and motivate the compensation of third order resonances for high intensity operation.

The MI/RR complex is fed protons by the Proton Source, which by itself consists of the Pre-

Accelerator, the Linear Accelerator (Linac), and the Booster. The Pre-Accelerator systems provide

𝐻− ions to the Linac, where they are accelerated to an energy of 400 MeV. After this, the beam

is injected into the Booster Ring. The Booster is a rapid-cycling synchrotron operating at a 15

Hz repetition rate. During this injection process, the 𝐻− beam passes through a carbon stripping

foil, and it incorporates to the circulating proton beam. The Booster ramps the energy up from

400 MeV to 8 GeV. This 8 GeV proton beam can either go to the Booster Neutrino Experiments or

get injected into the Recycler Ring. Once in RR the beam has two possible destinations: 1) high

energy neutrino experiments through MI or 2) Muon Campus. For the latter, proton beam gets

rebunched from 53 MHz to 2.5 MHz and transported to Muon Campus. For high energy neutrino

experiments, the proton beam gets slip-stacked, hence doubling the intensity that gets injected into

Main Injector. Once in MI, the beam is accelerated to 120 GeV and sent to the NuMI (Neutrinos

at the Main Injector) beam facility [13, 14, 33]. A description of the current accelerator complex

is shown in figure 3.1, including the experimental beamlines which feed neutrino, muon and fixed

target experiments.

35



Figure 3.1 Current operational layout of the Fermilab Accelerator Complex as of 2024. Original
plot provided by R. Ainsworth, first published on Ref. [14], but modified for this document.

The Proton Improvement Plan II (PIP-II) is the first step in establishing the Fermilab Accelerator

Complex as a multi-MW proton facility [34]. The near-future objective is to deliver a 1.2 MW

proton beam to the Deep Underground Neutrino Experiment (DUNE) through the Long-Baseline

Neutrino Facility (LBNF) [35], still in construction. In order to meet this goal, several upgrades

are being planned in the accelerator complex, including a new 800 MeV superconducting linear

accelerator. The future plan for the layout of the Fermilab Accelerator Complex is shown in Fig.

3.2. With minimal upgrades to the Main Injector and Recycler Ring, but with a substantial overhaul

of the Booster Ring, this will allow for a 50% increase in particles per pulse intensity. Table 3.1 also

specifies some upgrades that will happen for the PIP-II era. Some examples include an increase of

the particle per bunch intensity, a shortening of the Main Injector acceleration ramp and an increase

in the Booster ramping rate. As the Recycler Ring starts to deal with higher intensities from the

PIP-II upgrade, it is important to mitigate the effects of space charge as discussed in Secs. 2.4

and 2.7. Particles along the bunch will experience space charge forces leading to detuning in their

betatron frequencies. Given the incoherent nature of this process, this leads to the beam having a

larger tune spread in the tune diagram and having particles operate on top of resonances.
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Figure 3.2 Future layout of the Fermilab Accelerator Complex for the Proton Improvement Plan II
(PIP-II). Original plot provided by R. Ainsworth, first published on Ref. [14], but modified for this
document.

3.2 General Description

The RR is a permanent magnet storage ring operating at a fixed momentum of 8.835 GeV/c

equivalent to an energy of 8 GeV. The basic cell structures of this machine are FODO (Focusing

Quadrupole - Drift - Defocusing Quadrupole - Drift) cells. During its conception, the need for a

quick and non-expensive design spurred the idea of combining quadrupole and dipole magnets into

one combined function magnet. These combined function magnets can be seen in Fig. 3.3 as the

green covered magnets on the top ring—the Recycler Ring. In order to further reduce costs during

its construction, these magnets were chosen to be permanent magnets made out of a strontium

ferrite [32]. Some advantages of having permanent magnets is that there is no need for power

supplies, cooling systems or power distribution cables. Consequently, these type of magnets are

very stable against time and temperature. Nevertheless, the magnetic field of such magnets does

degrade over time. Reference [14] shows how the fields in RR-type magnets can degrade around

1% after 20 years. Ultimately, this slightly changes the nominal energy in the machine.
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Figure 3.3 Picture of the Main Injector (blue and red magnets in the bottom) and the Recycler Ring
(green magnets up top) tunnel.

Figure 3.3 reminds the reader that the Main Injector and the Recycler Ring share the same

tunnel. This tunnel is divided into six sections with labels: 100, 200, 300, 400, 500 and 600.

Injection from the Booster Ring into the Recycler takes place just after the beginning of section

100. Specifically, this happens at a Lambertson magnet labelled as LAM102. This is just an

example of how every element in the RR or MI will be labelled according to their position in one

of these sections. Figure 3.4 shows a schematic of the Recycler Ring section with some labels for

important subsystems inside them. In particular, it shows the location close to 232 where beam is

transferred from the Recycler Ring to the Main Injector. Figure 3.4 also presents the location in

section 500 where beam is transferred from RR to the Muon Campus, as well as the location after

401 where beam is dumped towards the abort line [14, 36].

An important subsystem as highlighted in Fig. 3.4 is the tune trombone. The RR has two of

them, one located in sections 601-609 and another one in 301-309. A tune trombone or phase
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trombone is a linear insert composed of quadrupoles used to introduce local phase advances. These

quadrupoles are powered in such a way that they add a controlled phase advance, while leaving the

Twiss parameters unchanged at the end of the insert and matched to the start of the trombone [32,

37]. Ultimately, these subsystems introduce local tune changes that allow to control both tunes in a

range of ±0.5, i.e., Δ𝑄𝑢 = ±0.5. The Recycler Ring has accelerator applications through ACNET

that allow to control these tune trombones and set the tunes to some desired values. Furthermore,

this application allows introducing tune ramps, continuous linear changes in the tunes. This feature

is crucial for building dynamic loss maps—an important tool to probe resonance lines as will be

described in Sec. 4.5.1.

Figure 3.4 Schematic layout of the Recycler Ring and its corresponding sections. Original plot
provided by R. Ainsworth, first published on Ref. [14].

The Recycler Ring has 104 FODO cells distributed into 3 main groups around its 3319.4-meter

circumference [32]. The first group of cells are composed of two permanent magnet quadrupoles

arranged in such a way that each cell has a phase advance of 90◦. There are 18 cells of this first
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group throughout the Recycler. The second group is defined by a cell with two combined function

magnets in order to bend and focus the beam at the same time. This type of cell also has a phase

advance of 90◦, with 54 cells of this type in the RR. Ultimately, the configuration of these cells will

dictate the Twiss parameters around the ring. Figure 3.5 shows the beta functions 𝛽𝑢 (𝑠) around

the Recycler Ring tuned to some particular set of tunes. Some horizontal BPMs are marked in the

upper horizontal axis as reference to note the corresponding section in the tunnel.

Before describing the third group, it is worth clarifying to the reader that the transverse motion

inside any circular accelerator is dictated by:

𝑢(𝑠) = 𝑢𝛽 (𝑠) + 𝐷𝑢 (𝑠)𝛿, (3.1)

where 𝑢 is either the 𝑥 or 𝑦 plane, 𝑢𝛽 (𝑠) is the betatron motion as described by Eq. 2.8, 𝐷𝑢 (𝑠)

is known as the dispersion function and 𝛿 = Δ𝑝/𝑝0 is the fractional momentum deviation of an

individual particle with respect to reference longitudinal momentum 𝑝0. In Ch. 2, specifically in

Sec. 2.2, an assumption was made that the transverse coordinates were not going to be influenced

by any longitudinal property, focusing on on-momentum particles, i.e., 𝛿 = 0. Nevertheless, for this

section it is relevant to introduce the dispersion function 𝐷𝑢 (𝑠) in order to describe the Recycler

Ring in all its glory and detail. The dispersion function is dictated by the distribution of quadrupole

and dipole component throughout the ring [1]. Even so, the scope of this work regarding resonance

compensation will not take into account any longitudinal-transverse coupling.

With all this said, the third group of cells is composed of special dispersion suppressor cells,

𝐷𝑥 (𝑠) = 0 for these regions. Each one having two combined function magnets and globally having

a betatron phase advance of again 90◦. This type of cells will allow having dispersion-free regions

which are necessary for injection, extraction and other special subsystems in the Recycler. There

are 32 cells of this type. Figure 3.6 shows the dispersion functions for the Recycler Ring. The

horizontal dispersion function 𝐷𝑥 (𝑠) has regions of close-to-zero values thanks to this third type

of FODO cells. The vertical dispersion is effectively negligible, i.e., 𝐷𝑦 (𝑠) ≈ 0.
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Figure 3.5 Beta functions for the Recycler Ring lattice tuned to𝑄𝑥 = 25.44 and𝑄𝑦 = 24.39. Lattice
functions calculated from lattice file using SYNERGIA.

Figure 3.6 Dispersion functions for the Recycler Ring lattice tuned to 𝑄𝑥 = 25.44 and 𝑄𝑦 = 24.39.
Lattice functions calculated from lattice file using SYNERGIA.

The ultimate role of the Recycler Ring is to smooth the way for high-intensity proton beam

injection into the Main Injector. In particular, for the high-intensity beam that gets delivered to

the neutrino experiments, the Recycler performs a beam manipulation known as slip-stacking.

Although this longitudinal manipulation is out of the main scope of this thesis, it is relevant to

briefly explain this procedure since this is the Recycler Ring’s main feature. Slip-stacking is the

process through which a pair of bunches are manipulated in longitudinal phase space in order to

merge them into one higher-intensity bunch [36]. In particular, the RR utilizes two RF stations to
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decelerate and accelerate trains of bunches. The Recycler can fit 7 Booster Rings, hence 6+6 beam

batches are injected and slip-stacked, while 1 batch space is left as a gap for the kickers to fire.

Each batch is composed of 81 bunches in accordance to the harmonic number of the Recycler. A

more detailed explanation of the Recycler Ring’s slip-stacking procedure can be found in Refs. [14,

36, 38]. Ultimately, this slip-stacking process is relevant because it doubles the particles per bunch

intensity (ppb) which has important consequences for the transverse dynamics, as explained in Sec.

2.7. Furthermore, Table 3.1 summarizes some important parameters for the RR slip-stacking and

for the general operation of neutrino-bound beam.

Table 3.1 Typical Recycler Ring properties for beam sent to NuMI, with some PIP-II nominal
parameters.

Parameter Value Unit
Circumference 3319.4 m

Momentum 8.835 GeV/c
Revolution Period 11.1 𝜇s

Revolution Frequency 90.1 kHz
RF Frequency 52.8 MHz

RF Voltage 80 kV
Harmonic Number 588
Synchrotron Tune 0.0028

Slip Factor -8.6 × 10−3

Superperiodicity 2
Horizontal Tune 25.43

Vertical Tune 24.445
Horizontal Chromaticity -6

Vertical Chromaticity -7
95% Normalized Emittance 15 𝜋 mm mrad
95% Longitudinal Emittance 0.08 eV s

Intensity 5 × 1010 ppb
8 × 1010 (PIP-II) ppb

MI Ramp Time 1.2 s
1.133 s
1.067 s

Booster Frequency 15 Hz
20 (PIP-II) Hz
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3.3 Tune Diagram and Resonances

Table 3.1 specifies nominal horizontal and vertical tunes for the operation of the Recycler Ring.

While this pair of tunes can be switched around during operation in order to reduce losses, they will

always stay clear of the surrounding transverse betatron resonances, as introduced in Sec. 2.4. The

resonance lines that are relevant to the Recycler Ring operation are plotted in Fig. 3.7, with their

corresponding order in the multipole expansion. Specifically, this study looks at normal sextupole

lines 3𝑄𝑥 = 76 and 𝑄𝑥 + 2𝑄𝑦 = 74, plus skew sextupole lines 3𝑄𝑦 = 73 and 2𝑄𝑥 +𝑄𝑦 = 75.

Figure 3.7 Portion of the tune diagram enclosing the operational tunes of the Recycler Ring.
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Starting from the lowest order resonance line, Fig. 3.7 shows the second-order linear coupling

line 𝑄𝑥 − 𝑄𝑦 = 1. This resonance line comes from skew-quadrupole component accumulated all

around the ring. While operating on top of this resonance line won’t lead to chaotic motion, the

dynamics are characterized by action-exchange between the betatron modes [1]. This exchange can

cause emittance growth, eventually leading up to beam loss. Due to this fact, the Recycler Ring has

two families of skew quadrupoles in order to correct this resonance line. Consequently, operating

close to this resonance line is feasible with this correction.

The third order resonance lines are the main focus of this thesis. They are driven by normal

and skew sextupole component distributed all around the ring. In particular, it is known that the

combined function magnets are the main drivers of these resonance lines. Even though these

magnets were designed to be quadrupole and dipole only, they can still have sextupole component

from construction errors. Nevertheless, since they are permanent magnets little can be done about

the magnets themselves. As a result of this, the following work explores a compensation technique

aimed towards bringing down the lattice RDTs that drive these resonance lines. A summary of

the RDTs, its corresponding resonance line, and the frequency position of their spectral lines are

summarized in Table 3.2. The spectral lines are a concept critical to the measurement of RDTs,

and it is introduced in the next chapter. The compensation of these RDTs involves the usage of

additional compensation sextupoles, elements which will be described in Sec. 3.6. Chapter 4 goes

into a deep dive explaining this approach from a theoretical and experimental point of view.

Table 3.2 Corresponding RDTs and location of spectral lines for each resonance line.

Resonance Line Source RDT Hor. Spect. Vert. Spect.
3𝑄𝑥 = 76 Normal Sextupole ℎ3000 (-2,0) -
𝑄𝑥 + 2𝑄𝑦 = 74 Normal Sextupole ℎ1020 (0,-2) (-1,-1)
3𝑄𝑦 = 73 Skew Sextupole ℎ0030 - (0,-2)
2𝑄𝑥 +𝑄𝑦 = 75 Skew Sextupole ℎ2010 (-1,-1) (-2,0)

Finally, there are also fourth order resonance lines close to the nominal operation of the Recycler.

These lines are driven by octupole components around the ring. In practice, −𝑄𝑥 + 3𝑄𝑦 = 48 and

3𝑄𝑥 − 𝑄𝑦 = 52 are not particularly concerning to the operation of the RR. Their corresponding
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lattice RDTs are not large enough to consider them dangerous during the RR cycle, i.e., beam is

stored for approximately 1 second. Nevertheless, these lines are interesting because fourth order

resonance lines are susceptible to be amplified by the space charge potential through the SCRDTs,

as described in Sec. 2.7.

3.4 High Intensity and Tune Footprint

In order to achieve the PIP-II beam power objective, the Recycler will be required to store and

accumulate 50% more beam than current operations [34]. As it was explained in Sec. 2.7, larger

beam intensities lead to larger space charge tune spread. Figure 3.8 shows how for typical operation

to the neutrino experiments under future PIP-II specifications, there is a space charge tune spread of

around 0.1 in both planes. At nominal tunes, it is clear that for high intensity operation the particles

in the core of the beam will start to operate on top of third order resonances. One thing complicates

this picture further, which is that particles will undergo synchrotron oscillations within the diamond

shape region. This means that particles will go from the core of the beam to its outskirts, and its

incoherent space charge tune shift will fluctuate accordingly. Therefore, particles will be crossing

in and out of these third order resonances at a synchrotron period. Ultimately, Fig. 3.8 just tries to

take a snapshot of the region of these excursions.
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Figure 3.8 Approximate operational tune footprint at high intensities, i.e., 1e11 particles per bunch.

Figure 3.8 and the latter discussion motivate the need for mitigating the deleterious effects of

3𝑄𝑥 = 76 and 𝑄𝑥 + 2𝑄𝑦 = 74, and weaker effects from 3𝑄𝑦 = 73 and 2𝑄𝑥 + 𝑄𝑦 = 75. If the RDT

of each resonance line is reduced, then their strength becomes less, losses in those regions become

less, and ultimately there will be a larger area in the tune diagram for operation. This is desirable for

PIP-II. Nevertheless, as it will be explored in Ch. 4, compensating one resonance line might make

another one worse and vice versa. Here lies the difficulty of this approach. Additionally, before

going to PIP-II intensities, these third order resonance lines need to be characterized properly at

low intensities. Experimentally, at high intensities, everything starts to blend together in the tune

diagram due to the space charge tune shift. This motivates the fact to have a distinction between

Ch. 4 and 6.
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3.5 Diagnostic Devices

The Recycler Ring has two main diagnostic devices that fall under the scope of this work: the

Beam Position Monitors (BPMs) and the Ion Profile Monitors (IPMs). Although both systems

are used to quantify properties of the beam, each one gives different information about the beam

distribution. In particular, BPMs are used to probe the first moment of the transverse distribution,

i.e., the mean position or beam centroid of the bunch. This is done either in one plane or in both

planes simultaneously, depending on the BPM system. On the other hand, IPMs go one order

higher and give information about the second order moment of the transverse beam distribution—

information about the variance and spread of the bunch. Specifically for the Recycler case, there is

one IPM for the horizontal direction and another one for the vertical case.

There are 208 BPMs in the Recycler Ring in total. Specifically, there are 104 horizontal BPMs

and 104 vertical BPMs. Each class is oriented in order to measure the corresponding plane. The

BPMs are labelled according to their position around the ring as it was described in Sec. 3.2 and in

Fig. 3.4. One BPM consists of two parallel pick-up electrodes that produce electric signal once the

beam passes through. The beam position is determined from the relative amplitude between the

signals of the opposing channels [39]—also known as the (𝐴 − 𝐵)/(𝐴 + 𝐵) signal. This signal is

digitized and calibrated to include the scaling factors and offsets, ultimately, in order to represent

the transverse beam position. The digitized signal from all 208 BPMs is interfaced to ACNET,

in order to be used for accelerator applications. The resulting data is digitized every turn, hence

known as turn-by-turn (TbT) data. Figure 3.9 shows an example of this TbT BPM data for a beam

that was pinged in the horizontal direction and recorded for 2048 turns.
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Figure 3.9 BPM turn-by-turn data for an arbitrary kick at horizontal BPM R:HP620.

One important example of using TbT data is using it in order to perform tune measurements.

As mentioned in Sec. 2.1, specifically in Eq. 2.8, the motion inside the Recycler Ring will exhibit

betatron oscillations. In particular, the main harmonic of these oscillations will be dictated by the

tune frequency. Say a particular set of BPM TbT data has been recorded for 𝑁 number of turns.

Therefore, a Fast-Fourier Transform (FFT) will help uncover and measure to FFT accuracy—

𝜎𝑄 ≈ 1/𝑁—the main frequency of these oscillations. Figure 3.10 shows how the main peak of

the FFT can be identified in order to measure the horizontal tune 𝑄𝑥 of the circular accelerator.

Furthermore, Ch. 4 will explore how a more involved Fourier Transform algorithm, such as NAFF

(Numerical Analysis of Fundamental Frequencies) [40], will help analyze the spectrum of TbT data

and measure higher order harmonics, ultimately, leading to the measurement of RDTs in the RR.
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Figure 3.10 Fast Fourier Transform amplitude for the turn-by-turn data presented in Fig. 3.9.

The second type of diagnostics relevant to this work are the Ion Profile Monitors (IPMs). As

mentioned before, this device is used to measure the beam size in the Recycler Ring. The RR

has two IPM systems: one for the horizontal plane and another one for the vertical. One special

characteristic of IPMs relies on their non-destructive nature. The working principle of this system

is to collect ions created in the interaction between the proton beam and residual molecules in the

vacuum. The secondary ions are detected with micro-channel plates (MCP), which are biased at

an arbitrary high voltage [41]. The counts at each MCP are logged in and digitized in order to be

compatible with ACNET. Similar to the BPM systems, an application was developed to control and

use the IPM system.
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Figure 3.11 Reconstructed beam profile for the horizontal plane assuming Gaussian distributions
along 1024 turns for an arbitrary beam in the Recycler Ring.

Figure 3.11 shows the reconstruction of the horizontal beam profile from the raw data of the

IPM micro-channel plates. At every turn, the raw count data from each of the 96 MCP is fit to

Gaussian beam distribution resulting in some variance 𝜎. The color map shows the evolution of

this beam profile along 1024 turns. The IPM system can record up to 64000 turns. Nevertheless,

it batches the data in such a way that it can fit into a 1024 × 96 array. In particular, Fig. 3.11

shows how for this arbitrary experimental conditions, the size of the beam grows with the number

of turns—this is pointing at emittance growth. Other distributions different from a Gaussian can be

used to fit the raw data in order to extract more information about the skewness or tail population

of the beam, e.g., a q-Gaussian or a Skew-Gaussian distribution.
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3.6 Sextupoles for Resonance Compensation

The ideal linear lattice of a circular accelerator would be composed only of dipoles and

quadrupoles—assuming the beam is composed of mono-energetic particles. Nevertheless, this

is a strong assumption given that a bunch of particles will always have an energy spread. Particles

orbiting at different energies will feel different quadrupole fields resulting in betatron detuning.

This is the definition of chromaticity, and therefore its mathematical definition reads:

𝐶𝑢 =
𝑑 (Δ𝑄𝑢)
𝑑𝛿

. (3.2)

Every real ring will have a non-zero chromaticity. Sextupoles are crucial elements to control

and correct chromaticity [1], therefore, they are indispensable in any lattice. Nevertheless, as

it was explained in Ch. 2, introducing non-linear elements inevitably leads to driving betatron

resonances, e.g., sextupoles will drive third order resonances. In this sense, and dramatically

speaking, sextupoles are double-edged swords. They are essential for chromaticity correction but

deleterious by inducing resonances in the accelerator.

The Recycler Ring has 76 sextupoles, including normal and skew sextupoles. Additionally,

each gradient magnet, as described in Sec. 3.2, has end shims on both ends and are used to correct

the field shape [42]. These end shims can also induce sextupole field on the beam. It is also worth

reminding the reader that the gradient magnets, themselves, also have sextupole components in

their permanent fields. All of these builds up to the fact that the chromaticity of the Recycler Ring

can be controlled in a range of -2 to -20, in both planes, i.e., 𝑄𝑢 ∈ (−2,−20).

Table 3.3 List of sextupoles used for the purpose of compensating third-order resonances in the
Recycler Ring.

Name Type
SC220(a/b) Normal Sextupole
SC222(a/b) Normal Sextupole
SC319(a/b) Normal Sextupole
SC321(a/b) Normal Sextupole
SS222(a/b) Skew Sextupole
SS319(a/b) Skew Sextupole
SS321(a/b) Skew Sextupole
SS323(a/b) Skew Sextupole
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In particular, out of all the sextupoles in the Recycler Ring, this thesis work is interested in

the ones listed in Table 3.3. These elements have been placed in the Recycler Ring with the sole

objective of mitigating the harmful effect of the third order resonances [38]. The elements listed in

Table 3.3 are in regions of close-to-zero dispersion, 𝐷𝑥 ≈ 0, in order to cancel out any additional

chromaticity due to their inclusion. In principle, normal sextupoles are used to correct 3𝑄𝑥 = 76

and 𝑄𝑥 + 2𝑄𝑦 = 74, while skew sextupoles are used to correct 3𝑄𝑦 = 73 and 2𝑄𝑥 + 𝑄𝑦 = 75.

Nevertheless, normal sextupoles can have small tilts around the magnetic axis, which introduces

skew sextupole field, and vice versa.

Figure 3.12 shows an example of these sextupoles installed in the Recycler Ring. As it can be

seen, there are two yellow-coated elements installed in the top ring. While there are two elements

close together, they are powered by the same power supply. Hence, the notation in Table 3.3

alluding to a and b elements, e.g., normal sextupoles SC220(a/b). The numbers in the name allude

to their location in the RR/MI tunnel, as illustrated in Fig. 3.4. Given that each pair of elements,

a and b, are connected to the same power supply, these two elements effectively become one knob.

The currents for the power supply are controlled through ACNET. This is important for the reader

to remember, given that in Ch. 4, the currents of the sextupoles listed in Table 3.3 will be the main

knobs turned in order to mitigate the strength of these resonances.
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Figure 3.12 Picture of compensation sextupoles (yellow magnets on top) installed in the Recycler
Ring. Picture provided by Dr. Robert Ainsworth.
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CHAPTER 4

COMPENSATION OF THIRD-ORDER RESONANCES AT LOW INTENSITIES

4.1 Global RDTs and Lattice Model

The following chapter explores how to mitigate the effect of third order resonances from the

Recycler Ring by means of minimizing the Resonance Driving Terms (RDTs) that drive each

resonance. The resonances in question are introduced in Figs. 3.7 and 3.8, and are summarized

in Table 4.1. The RDTs for each of these third order resonance lines can be calculated from Eqs.

2.31 and 2.32. Table 4.1 shows the explicit expression for each third-order RDT of relevance to this

work. The sum over 𝑖, goes through each element of the lattice beam line and asks if it has some sort

of sextupole component in its definition—it can be normal 𝐾2,𝑖 or skew 𝐾
(𝑠)
2,𝑖 sextupole component.

If it has this multipole, it will add it to the RDT sum by weighting it with the beta functions 𝛽𝑢,𝑖

and phase advances 𝜙𝑢,𝑖 from the linear approximation at those particular locations. Ultimately,

the ℎ 𝑗 𝑘𝑙𝑚 RDT will be a complex number whose amplitude |ℎ 𝑗 𝑘𝑙𝑚 | should be minimized.

Table 4.1 Corresponding RDTs and spectral lines for each resonance line.

Resonance Line RDT Expression

3𝑄𝑥 = 76 ℎ3000 = − 1
48

∑︁
𝑖

𝐾2,𝑖𝐿𝑖𝛽
3
2
𝑥,𝑖
𝑒3𝑖𝜙𝑥,𝑖

𝑄𝑥 + 2𝑄𝑦 = 74 ℎ1020 = − 1
16

∑︁
𝑖

𝐾2,𝑖𝐿𝑖𝛽
1
2
𝑥,𝑖
𝛽𝑦,𝑖𝑒

𝑖[𝜙𝑥,𝑖+2𝜙𝑦,𝑖]

3𝑄𝑦 = 73 ℎ0030 = − 1
48

∑︁
𝑖

𝐾
(𝑠)
2,𝑖 𝐿𝑖𝛽

3
2
𝑦,𝑖
𝑒3𝑖𝜙𝑦,𝑖

2𝑄𝑥 +𝑄𝑦 = 75 ℎ2010 = − 1
16

∑︁
𝑖

𝐾
(𝑠)
2,𝑖 𝐿𝑖𝛽𝑥,𝑖𝛽

1
2
𝑦,𝑖
𝑒𝑖[2𝜙𝑥,𝑖+𝜙𝑦,𝑖]

Figure 4.1 shows a visual representation for the calculation of the ℎ3000 RDT. This plot shows

the amplitude of the complex cumulative sum as it goes around the ring (thick solid orange line).

Additionally, this plot also shows the amplitude of each individual contribution for every 𝑖-th

element in the lattice with sextupole component (thin purple line). This particular quantity can be

used to visualize where and how the sextupole component is distributed around the ring. Ultimately,
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after doing this sum around the ring, the final result is a complex number with some amplitude and

phase which corresponds to the ℎ3000 RDT, as calculated from some arbitrary location in the lattice.

The amplitude of the ℎ3000 term is plotted in Fig. 4.1 with a red dashed line. Figure 4.2 shows a

similar exercise for the ℎ1020 term. All of these calculations are done with a lattice model that has a

list of components and magnet coefficients, that, in principle, should be very close to what’s inside

the tunnel. The particular RR model used was the RR2020V0922FLAT lattice model, provided by

R. Ainsworth and M. Xiao.

A question that promptly arises is: does the arbitrary starting position for the sum of Eq. 2.31

change the RDT result? The short answer is yes, the RDT will change depending on the initial

position for the sum. Reference [19], specifically in its Ch. 5, goes into depth as to how to correlate

the RDT calculated from a starting point 𝑠1 to one measured at starting point 𝑠2. The difference

in this case relates to the amount of multipole component between both calculation points, e.g.,

the amount of elements that have sextupole component between an 𝑠1 and 𝑠2 observation point.

Nevertheless, given that there is an infinite amount of 𝑠1 and 𝑠2 observation points, and only so much

real state in this thesis, the plots are for an arbitrary observation point in the lattice. Additionally,

given that the sextupole components are evenly distributed around the ring, the RDT values will

not oscillate much.

As mentioned in Ch. 3, the Recycler Ring is made up of permanent gradient magnets. From

looking at Figs. 4.1 and 4.2, one can see that the sextupole component is evenly distributed around

some sections of the ring. If one were to plot the distribution of permanent gradient on these plots,

the location of them would coincide with the peaks of the individual contributions to the RDT of

Figs. 4.1 and 4.2. Therefore, the sources that drive the Recycler Ring’s normal sextupole resonances

come from the permanent magnets themselves—this is known as a systematic-driven resonance as

opposed to a random-error-driven resonance. Highly periodic machines and highly linear machines

use the fluctuations between RDT measurements from BPMs to locate any sextupole errors in the

lattice and try to fix them [19]. Nevertheless, this is not the case for the Recycler given its low

superperiodicity of 2 and its uniform sextupole component distribution.
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Figure 4.1 Distribution of the ℎ3000 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point.

Figure 4.2 Distribution of the ℎ1020 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point.
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4.2 Measurement of Third Order RDTs

Calculating the theoretical RDTs from the lattice model is a matter of calculating the sums

outlined in Table 4.1. Nevertheless, the measurement of the third order RDTs requires following

a long and involved recipe. This recipe is based on previous work from Refs. [19, 22], but with a

lot of original steps specifically developed for the Recycler Ring. In summary, these are the steps

used in order to measure RDTs at the Recycler:

1. Kick the beam with dipole kickers and save turn-by-turn BPM data for offline analysis.

2. Go through data and estimate momentum coordinate with previously calculated transfer

matrices from lattice model.

3. Estimate Twiss parameters and normalized coordinates (�̂�,𝑝𝑢) at every BPM location.

4. Create resonance basis ℎ±𝑢 (see Eq. 2.37).

5. Get spectrum of resonance basis using NAFF (Numerical Analysis of Fundamental Frequen-

cies) through the SUSSIX software [43].

6. Identify resonance lines from the spectrum that correspond to the RDT of interest.

7. Calculate the RDT at each BPM location from the equivalence relation of spectral lines and

RDT expansion (see Eq. 2.46).

The following subsections will explore in more detail the steps outlined in the previous list.

4.2.1 Dipole Kick and BPM data

The first step towards measuring RDTs is to kick (or ping) the beam in one or both transverse

direction(s) in order to excite betatron oscillations. Betatron oscillations are the natural oscillations

of particles around their equilibrium orbit in a circular accelerator. This kick is done with the help

of horizontal and vertical dipole kickers. In particular, the devices used for this were the kicker

devices with ACNET names R:K4XXX and R:KVXXX, horizontally and vertically, respectively.

In principle, these are the Recycler abort kickers—devices used to send beam to the abort line in
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Recycler. Nevertheless, the high-voltage settings and timings of these pingers can be changed to

give a small kick to the beam. A ping that is small enough not to steer the beam to the abort line,

but large enough to excite betatron oscillations in one or both transverse directions. The beam was

kicked exclusively in the horizontal direction in order to measure purely horizontal RDTs, e.g.,

ℎ3000, solely in the vertical direction for vertical RDTs, e.g., ℎ0030, or pinged in both directions for

all of them, including coupling RDTs, e.g., ℎ1020 and ℎ2010.

Once the kickers are set correctly, the next step is to take BPM data. As mentioned in Sec. 3.5,

there are ACNET applications that allow to gather and save BPM data for offline analysis. The

BPM data from all 208 BPMs (104 horizontal and 104 vertical) can be saved in one file. Figure 4.3

shows an instance of kicking the beam in the horizontal direction and recording beam centroid data

for 2048 turns at an arbitrary BPM. The amount of turns recorded is also a customizable quantity.

The ping shown in Fig. 4.3 happens early in the cycle, at around 50 turns. The next hundred of

turns holds information about the betatron oscillations. This is the data used to extract the tunes

𝑄𝑢 and RDTs of the machine.

Figure 4.3 BPM data of an arbitrary horizontal kick in the beam at horizontal BPM R:HP620.
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The physics of a kicked beam is well explained in Refs. [44, 45]. Once the beam is pinged,

the centroid response will oscillate at betatron tunes 𝑄𝑢. The envelope of these oscillations will

be dictated by nonlinearities and chromaticity of the machine. How fast this envelope decays is a

measure of the decoherence of the beam. Decoherence of a particle beam in accelerator physics

refers to the process by which a beam that initially has particles oscillating in phase—–meaning

they have similar amplitudes and frequencies—–gradually becomes out of phase over time. This

results in a spread in the particles’ positions and momenta, leading to a more diffuse beam. This

decoherence is caused by nonlinearities in the machine and the transverse chromaticities that will

detune the beam out of coherence, as explained by Eqs. 2.51 and 3.2. Ultimately, this process will

diffuse and maim the signal recorded by the BPMs.

Therefore, when BPM data of kicked beam is taken, special care needs to be taken in order

to sustain coherent oscillations. This is done by manipulating the chromaticities of the machine

by means of specialized sextupoles. Table 3.1 showed the nominal chromaticities at which the

Recycler Ring operates. In general, for these RDT measurements, the vertical chromaticity was

changed between the range of -7 and -3, in order to find sustained vertical oscillations. For the

horizontal case, a chromaticity of -5 would be usually enough for 1 mm oscillations. The other

system that affects decoherence are the transverse dampers. As per its name, these devices dampen

out any oscillation in the beam. Therefore, they were turned off for these particular studies. Taking

these factors into account, one could get consequential oscillations in both transverse planes, as a

first step to measure Resonance Driving Terms.

4.2.2 Estimation of Momentum Coordinate

At the most fundamental level, BPM data holds only information about the centroid position of

the beam. Nevertheless, in a particle accelerator it is of interest to look at the whole phase space

picture (�̂�, 𝑝𝑢)—including the momentum coordinate. Therefore, it is of relevance to explain how

the momentum coordinate is calculated from the TbT position from every BPM. The approach

used involves a model-based perspective. Therefore, the lattice model plays a crucial role in the

momentum estimation.
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The approach to estimate the momentum coordinate involves solving a least-squares problem.

This is the approach developed in Ref. [46]. The first step is to calculate the model’s transfer

matrices (linear approximation) from one fixed point in the accelerator to all the horizontal and

vertical BPM locations—in total there should be 208 transfer matrices. For these studies, the

fixed point chosen was the starting point of the turn count which is the location for the vertical

BPM R:VP601. As an example, let the following paragraphs show how to calculate the horizontal

phase space coordinates, including the relative momentum deviation 𝛿. In particular, the main

objective is to calculate the 𝑋0 matrix with dimensions 3 × 2048, which corresponds to the phase

space coordinates
(
®𝑥0, ®𝑥′0, ®𝛿0

)
at the location of R:VP601. The 𝑋0 array will have the following

definition:

𝑋0 =

©«
®𝑥0

®𝑥′0
®𝛿0

ª®®®®®¬
=

©«
[𝑥0(𝑁 = 1), 𝑥0(𝑁 = 2), ..., 𝑥0(𝑁 = 2048)][
𝑥′0(𝑁 = 1), 𝑥′0(𝑁 = 2), ..., 𝑥′0(𝑁 = 2048)

]
[𝛿0(𝑁 = 1), 𝛿0(𝑁 = 2), ..., 𝛿0(𝑁 = 2048)]

ª®®®®®¬
, (4.1)

and holds the information over the 2048 turns. The least squares problem is defined as the solution

to the following system:

𝐴𝑋0 = 𝐵, (4.2)

where 𝐴 is the matrix made from the horizontal coefficients of the model’s transfer matrices, and

it reads:

𝐴 =

©«

(𝑀11 𝑀12 𝑀13)𝐵𝑃𝑀 (𝑖−10)
...

(𝑀11 𝑀12 𝑀13)𝐵𝑃𝑀 (𝑖)
...

(𝑀11 𝑀12 𝑀13)𝐵𝑃𝑀 (𝑖+10)

ª®®®®®®®®®®®®¬
. (4.3)

The notation (...)𝐵𝑃𝑀 ( 𝑗) means that all the matrix coefficients inside the parenthesis are indexed by

the BPM(j), and should be copied from that particular transfer matrix correlating the fixed point

to BPM(j). For this case, the BPM(i) corresponds to the particular BPM location where the phase

space coordinates 𝑋𝐵𝑃𝑀 (𝑖) want to be calculated, after calculating 𝑋0. It can be noted, that only

the 10 upstream BPMs and 10 downstream BPMs of BPM(i) are included in this calculation. This
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number is easily customizable in this estimation, but should not be too large, i.e., no larger than 30

to preserve some sense of locality.

The 𝐵matrix is defined from the BPM observations, and its transpose is just the BPM responses

stacked horizontally. This reads explicitly:

𝐵𝑇 =

©«
...

...
...〈

𝑥𝐵𝑃𝑀 (𝑖−10)
〉
...

〈
𝑥𝐵𝑃𝑀 (𝑖)

〉
...

〈
𝑥𝐵𝑃𝑀 (𝑖+10)

〉
...

...
...

ª®®®®®¬
. (4.4)

For Eq. 4.4, the triangular bracket notation ⟨...⟩ is used to specify that the BPM data inside the

brackets has already been averaged out—the oscillations recorded in the BPM data is centered

around 0. Again, in order to use least-squares approximation, this calculation should take the 10

BPMs upstream and the 10 BPMs downstream of the BPM(i), whose phase space coordinates are

being calculated.

The least-squares solution �̂�0 to this problem is given by:

�̂�0 = (𝐴𝑇 𝐴)−1𝐴𝑇𝐵. (4.5)

Once �̂�0 is calculated from the data of 10 BPMs upstream and downstream of BPM(i). The phase

space coordinates �̂�𝐵𝑃𝑀 (𝑖) at BPM(i) can be calculated from:

�̂�𝐵𝑃𝑀 (𝑖) =

©«
®𝑥

®𝑥′

®𝛿

ª®®®®®¬𝐵𝑃𝑀 (𝑖)

=

©«
[𝑥(𝑁 = 1), ..., 𝑥(𝑁 = 2048)]

[𝑥′(𝑁 = 1), ..., 𝑥′(𝑁 = 2048)]

[𝛿(𝑁 = 1), ..., 𝛿(𝑁 = 2048)]

ª®®®®®¬
= [𝑀11 𝑀12 𝑀13]𝐵𝑃𝑀 (𝑖) �̂�0. (4.6)

The hat notation �̂� is to symbolize that this is data estimated based on the least-squares solution to

Eq. 4.5.

Similar to the horizontal case, for the vertical case, the phase space coordinates at each BPM

location can be estimated by first estimating the phase space coordinates 𝑌0 at an arbitrary location

in the lattice—vertical BPM R:VP601 for this case. At this location, the 𝑌0 array will be defined

as:

𝑌0 =
©«
®𝑦0

®𝑦′0

ª®®¬ =
©«
[𝑦0(𝑁 = 1), 𝑦0(𝑁 = 2), ..., 𝑦0(𝑁 = 2048)][
𝑦′0(𝑁 = 1), 𝑦′0(𝑁 = 2), ..., 𝑦′0(𝑁 = 2048)

]ª®®¬ . (4.7)
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The least-squares estimate 𝑌0 for the array in Eq. 4.7 from the recorded BPM data will be given by:

𝑌0 = (𝐴𝑇𝑦 𝐴𝑦)−1𝐴𝑇𝑦 𝐵𝑦, (4.8)

where similar to the horizontal case, the matrix 𝐴𝑦 is defined by:

𝐴𝑦 =

©«

(𝑀21 𝑀22)𝐵𝑃𝑀 (𝑖−10)
...

(𝑀21 𝑀22)𝐵𝑃𝑀 (𝑖)
...

(𝑀21 𝑀22)𝐵𝑃𝑀 (𝑖+10)

ª®®®®®®®®®®®®¬
, (4.9)

and 𝐵𝑦 is defined by

𝐵𝑇𝑦 =

©«
...

...
...〈

𝑦𝐵𝑃𝑀 (𝑖−10)
〉
...

〈
𝑦𝐵𝑃𝑀 (𝑖)

〉
...

〈
𝑦𝐵𝑃𝑀 (𝑖+10)

〉
...

...
...

ª®®®®®¬
. (4.10)

Once, 𝑌0 is calculated, it can be transferred to the location of BPM(i) by means of the transfer

matrices. This is the way of calculating 𝑌𝐵𝑃𝑀 (𝑖) , which reads

𝑌𝐵𝑃𝑀 (𝑖) =
©«
®𝑦

®𝑦′
ª®®¬𝐵𝑃𝑀 (𝑖)

=
©«
[𝑦(𝑁 = 1), ..., 𝑦(𝑁 = 2048)]

[𝑦′(𝑁 = 1), ..., 𝑦′(𝑁 = 2048)]

ª®®¬ = [𝑀21 𝑀22]𝐵𝑃𝑀 (𝑖) 𝑌0. (4.11)

It is worth pointing out that for the vertical case, the appropriate elements of the transfer matrices

are picked out, i.e., 𝑀21 and 𝑀22 instead of the horizontal coefficients 𝑀11, 𝑀12 and 𝑀13. The

other thing to note is that for the vertical case any momentum dependence is dropped given that the

vertical dispersion is negligible in the Recycler Ring, as shown in Fig. 3.6. The previous procedure

of calculating �̂�𝐵𝑃𝑀 (𝑖) is done and saved for each of the 104 horizontal and 104 vertical BPMs—

�̂�𝐵𝑃𝑀 (𝑖) or𝑌𝐵𝑃𝑀 (𝑖) , accordingly. Figure 4.4 shows an application of this momentum reconstruction

technique for a horizontal BPM R:HP620 and its vertical neighbor R:VP621.

With model-based approaches, it is important to be confident that the model is as close to

the real accelerator as possible. The beta-beating is a measure of how well the beta functions of
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the model describe the beta functions from the real-world accelerator. In particular, M. Xiao has

showed that the beta-beating along the Recycler is below 10% [47]—an acceptable quantity for

modern accelerators. Therefore, this proves that the model used is reliable up to some significance

level. The beta-beating quantity is ultimately limited by how truly linear the accelerator is and any

ripple noise from the power supplies feeding the quadrupole and dipoles.

Figure 4.4 Phase space coordinates reconstruction for two neighboring BPMs—one horizontal
R:HP620 and one vertical R:VP621—windowed for 300 turns.

4.2.3 Twiss Parameters and Normalized Phase Space

The next step to measure RDTs, once the phase space coordinates have been reconstructed for

every BPM, is to build the normal phase space coordinates (�̂�,𝑝𝑢). This is done by using Eqs. 2.9

and 2.13, and the information provided in Fig. 2.1. In order to build the normalized phase space,

first the Twiss parameters have to be estimated. This is done by performing a least-squares fit in

order to estimate the ellipse parameters of reconstructed phase space, such as the one shown in Fig.

4.4. Therefore, an ellipse is being fit to the data, and after that, the Twiss parameters are retrieved

from the fit, including the centroid action 2𝜋⟨𝐽𝑢⟩ = 𝜀𝑥 (see Eq. 2.9).

Figure 4.5 shows an example of this procedure. The left plot shows reconstructed phase space

data with the best ellipse fit. The parameters indicated on the inset provide detailed characteristics
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of this particular fit: (a) 𝛽𝑥 (beta function) describes the spatial spread of the beam, (b) 𝛼𝑥 (alpha

function) relates to the angle the beam particles make with the reference orbit, and it is a measure

of the beam divergence, and (c) 𝜀𝑥 (centroid emittance) quantifies the area of the phase space that

the beam centroid occupies. In particular, the centroid action can be calculated from 2𝜋⟨𝐽𝑢⟩ = 𝜀𝑥 .

The right plot of Fig. 4.5 shows the reconstructed normalized phase space using the Twiss

parameters, as estimated from the ellipse fit. This normalization process involves scaling by

the square root of the Twiss parameter 𝛽𝑢 at that particular location, in accordance to Floquet’s

transformation as defined in Eq. 2.13. This procedure is done for the reconstructed data of every

BPM, and, finally (�̂�,𝑝𝑢) is recorded.

Figure 4.5 Reconstructed phase space data with the best ellipse fit (left plot). The right plot shows
the reconstructed normalized phase space from using Eq. 2.13 with the Twiss parameters, as
estimated from the ellipse fit. This data corresponds to the horizontal data shown in Fig. 4.4 for
the R:HP620 BPM.

4.2.4 Resonance Basis and Spectral Decomposition

Once the normalized phase space coordinates are reconstructed for every BPM, the next step is

to build the resonance basis ℎ±𝑢 (𝑁), as defined in Eq. 2.37, i.e., ℎ±𝑢 = �̂� ± 𝑝𝑢. This resonance basis

is a function of the number of the turns 𝑁 that have elapsed. As shown in Eq. 2.46, this quantity

can have a spectral decomposition as a Fourier series. In general, this spectral decomposition in
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the horizontal dimension reads:

ℎ−𝑥 (𝑁) = 𝑥 ± 𝑝𝑥 =
∑︁
𝑗 𝑘𝑙𝑚

𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚𝑒
2𝜋𝑖𝑁 [(1− 𝑗+𝑘)𝑄𝑥+(𝑚−𝑙)𝑄𝑦] , (4.12)

and in the vertical dimension:

ℎ−𝑦 (𝑁) = �̂� ± 𝑝𝑦 =
∑︁
𝑗 𝑘𝑙𝑚

𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚𝑒
2𝜋𝑖𝑁 [(𝑘− 𝑗)𝑄𝑥+(1−𝑙+𝑚)𝑄𝑦] . (4.13)

These sums run over the ( 𝑗 , 𝑘, 𝑙, 𝑚) indices. In principle, they run all the way to infinity, but can

be truncated. The 𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚 term corresponds to the complex amplitude defining the horizontal

spectral line at frequency location (1 − 𝑗 + 𝑘)𝑄𝑥 + (𝑚 − 𝑙)𝑄𝑦. The 𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚 term corresponds to

the complex amplitude defining the vertical spectral line at location (𝑘 − 𝑗)𝑄𝑥 + (1 − 𝑙 + 𝑚)𝑄𝑦.

And, as always, 𝑄𝑢 corresponds to the betatron tunes. These definitions help to understand the

experimental data in order to measure RDTs.

Nevertheless, from the theoretical point of view, the spectral decomposition can be calculated

with the Lie algebra gymnastics shown in Sec. 2.5. These spectral decompositions read for the

horizontal plane:

ℎ−𝑥 (𝑁) =
√︁

2𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑁+𝜓𝑥0)

− 2𝑖
∑︁
𝑗 𝑘𝑙𝑚

𝑗 𝑓 𝑗 𝑘𝑙𝑚 (2𝐼𝑥)
𝑗+𝑘−1

2
(
2𝐼𝑦

) 𝑙+𝑚
2 𝑒𝑖[(1− 𝑗+𝑘)(2𝜋𝑄𝑥𝑁+𝜓𝑥0)+(𝑚−𝑙)(2𝜋𝑄𝑦𝑁+𝜓𝑦0)] , (4.14)

and for the vertical case:

ℎ−𝑦 (𝑁) =
√︁

2𝐼𝑦𝑒𝑖(2𝜋𝑄𝑦𝑁+𝜓𝑦0)

− 2𝑖
∑︁
𝑗 𝑘𝑙𝑚

𝑙 𝑓 𝑗 𝑘𝑙𝑚 (2𝐼𝑥)
𝑗+𝑘
2
(
2𝐼𝑦

) 𝑙+𝑚−1
2 𝑒𝑖[(𝑘− 𝑗)(2𝜋𝑄𝑥𝑁+𝜓𝑥0)+(1−𝑙+𝑚)(2𝜋𝑄𝑦𝑁+𝜓𝑦0)] . (4.15)

The RDT calculation exploits the equivalence between Eqs. 4.12 and 4.13 to Eqs. 4.14 and 4.15.

Therefore, the generating function coefficients ( 𝑓 𝑗 𝑘𝑙𝑚) can be related to the horizontal and spectral

line coefficients (𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚 and 𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚). Ultimately, the 𝑓 𝑗 𝑘𝑙𝑚 terms can be related to Resonance

Driving Terms ℎ 𝑗 𝑘𝑙𝑚 through Eq. 2.30.

A quick comparison between Eqs. 4.12 and 4.14 allows to build an equivalence table between

the generating function coefficients (GFCs) and the spectral lines. Table 4.2 is the result of this.
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This table can be originally found in Refs. [22, 43]. Table 4.2 shows how to calculate the GFCs

from its corresponding spectral line. In particular, the amplitude and phase of a spectral line will

be given by |𝑈𝑆𝐿 𝑗 𝑘𝑙𝑚 | and arg(𝑈𝑆𝐿 𝑗 𝑘𝑙𝑚), while its location in its corresponding frequency space

will be given by 𝑄(𝑈𝑆𝐿 𝑗 𝑘𝑙𝑚). It is worth pointing out that in this notation 𝑈 can be either the

horizontal or vertical plane.

Table 4.2 Equivalence table between the generating function coefficients and the spectral lines.

Generating Function
Coefficient Spectral Line

Amplitude
�� 𝑓 𝑗 𝑘𝑙𝑚 �� ��𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚 �� = 2 𝑗 (2𝐼𝑥)

𝑗+𝑘−1
2

(
2𝐼𝑦

) 𝑙+𝑚
2
�� 𝑓 𝑗 𝑘𝑙𝑚 ����𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚 �� = 2 𝑙 (2𝐼𝑥)

𝑗+𝑘
2
(
2𝐼𝑦

) 𝑙+𝑚−1
2

�� 𝑓 𝑗 𝑘𝑙𝑚 ��
Phase 𝜙 𝑗 𝑘𝑙𝑚 = arg ( 𝑓 𝑗 𝑘𝑙𝑚) arg (𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚) = 𝜙 𝑗 𝑘𝑙𝑚 + 𝜓𝑥0 − 𝜋

2

arg (𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚) = 𝜙 𝑗 𝑘𝑙𝑚 + 𝜓𝑦0 − 𝜋
2

Spectral N/A 𝑄
(
𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚

)
= (1 − 𝑗 + 𝑘)𝑄𝑥 + (𝑚 − 𝑙)𝑄𝑦

Harmonic
𝑄

(
𝑉𝑆𝐿 𝑗 𝑘𝑙𝑚

)
= (𝑘 − 𝑗)𝑄𝑥 + (1 − 𝑙 + 𝑚)𝑄𝑦

4.2.5 Resonance Basis Spectrum

As mentioned in the last section, the spectral lines of the resonance basis hold enough in-

formation in order to reconstruct the generating function coefficients (GFCs) and, ultimately, the

resonance driving terms (RDTs). Therefore, it is of interest to have a program that reconstructs

the spectral lines from ℎ±𝑢 (𝑁) data. This is exactly what SUSSIX [43] does. This is a software

developed at CERN, and it utilizes the Numerical Analysis of Fundamental Frequencies (NAFF)

algorithm to identify and calculate the resonance lines up to an arbitrary order. SUSSIX can

calculate spectral lines either for the horizontal, the vertical plane, or both planes.

Figure 4.6 shows an example of spectrum data calculated using SUSSIX. The horizontal axis
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represents the frequency (or tune) of the spectral lines, while the vertical axis shows the amplitude

of the lines, i.e., |𝐻𝑆𝐿 𝑗 𝑘𝑙𝑚 |. All the lines that show up in Fig. 4.6 represent the harmonics present

in ℎ−𝑥 (𝑁). The largest peak corresponds to the horizontal tune 𝑄𝑥 . In this case, the second-largest

tune corresponds to the vertical tune 𝑄𝑦, indicating some residual coupling. The lines 𝐻𝑆𝐿2010,

𝐻𝑆𝐿3000 and 𝐻𝑆𝐿1020 are also marked with their location at the plot. These are the lines from

which the relevant GFCs and RDTs are calculated from. Other unmarked spectral lines show

up illustrating how there might be higher order harmonics and RDTs present in the oscillations.

Specially, it is worth highlighting, how several RDTs can feed to the line located at 𝑄𝑥 = 0. Figure

4.7 shows this exercise done but for the vertical resonance basis ℎ−𝑦 (𝑁). In this case, the largest

peak corresponds to the vertical tune𝑄𝑦, while the second-largest one corresponds to the horizontal

tune 𝑄𝑥 . The lines 𝑉𝑆𝐿2010, 𝑉𝑆𝐿3000 and 𝑉𝑆𝐿1020 also show up, but at different locations than

their horizontal counterparts, as expected. The amplitudes of these spectral lines are at least three

orders of magnitude less, than the main harmonic of the oscillations.

Figure 4.6 Spectral lines of ℎ−𝑥 calculated with SUSSIX [43]. The ℎ−𝑥 signal was reconstructed for
the 104 Horizontal BPMs. The spectrum for all BPMs is superimposed in this plot.
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Figure 4.7 Spectral lines of ℎ−𝑦 calculated with SUSSIX [43]. The ℎ−𝑦 signal was reconstructed for
the 104 Vertical BPMs. The spectrum for all BPMs is superimposed in this plot.

4.2.6 Spectral Lines and RDT calculation

The spectral lines 𝐻𝑆𝐿3000, 𝐻𝑆𝐿2010, and 𝐻𝑆𝐿1020 identified in Fig. 4.6 are the necessary

lines to calculate the ℎ3000, ℎ2010 and ℎ1020 RDTs. In combination with the 𝑉𝑆𝐿0030 spectral line

and its corresponding ℎ0030 RDT, these are all the spectral lines needed to calculate the RDTs for

each resonance line shown in Fig. 3.7 and specified in Table 3.2. Table 4.3 shows the explicit

expressions for each resonance line RDT as a function of its GFC. In essence, once the 𝑓 𝑗 𝑘𝑙𝑚 is

calculated using the expressions in Table 4.2, the RDT is just one multiplication away.
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Table 4.3 Corresponding RDTs from GFCs for each resonance line.

Resonance Line RDT

3𝑄𝑥 = 76 ℎ3000 = 𝑓3000
(
1 − 𝑒6𝜋𝑖𝑄𝑥

)
𝑄𝑥 + 2𝑄𝑦 = 74 ℎ1020 = 𝑓1020

(
1 − 𝑒2𝜋𝑖[𝑄𝑥+2𝑄𝑦]

)
3𝑄𝑦 = 73 ℎ0030 = 𝑓0030

(
1 − 𝑒6𝜋𝑖𝑄𝑦

)
2𝑄𝑥 +𝑄𝑦 = 75 ℎ2010 = 𝑓2010

(
1 − 𝑒2𝜋𝑖[2𝑄𝑥+𝑄𝑦]

)

4.2.7 Third Order RDTs at every BPM location

Once the data from spectral lines is transformed to GFCs 𝑓 𝑗 𝑘𝑙𝑚, it is just a matter of using the

expressions in Table 4.3 to calculate the RDTs ℎ 𝑗 𝑘𝑙𝑚. Figure 4.8 shows several measurements of

the ℎ3000 term for the Recycler Ring from one particular BPM, i.e., R:HP620. This is a polar plot to

indicate the amplitude and phase of this complex quantity. The left plot displays a set of 36 vectors

representing individual measurements of the ℎ3000 term at a specific Beam Position Monitor (BPM)

located at R:HP620. From this plot, one can see that there is some spread in the data from each

measurement. This is due to changes in the beam coming from Booster for every injection and due

to noise in BPM data. The right plot shows the average vector of the measurements, with its spread

indicated by the shaded area. This spread signifies the variance in the data from measurement to

measurement.
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Figure 4.8 Polar plot for the measurement of ℎ3000 for 36 measurements at horizontal BPM R:HP620.

Measurements such as the one presented for Fig. 4.8 are done for every BPM. In the case

of the ℎ3000, the 104 horizontal BPMs are used. For the case of the ℎ0030 term, the 104 vertical

BPMs are used. Figure 4.9 shows a plot of the amplitude of the measured ℎ3000 as a function of

the BPM used. Each label (e.g., R:HP100, R:HP106,..., R:HP638) corresponds to a different BPM

in the accelerator. The labels are ordered according to their physical positions along the Recycler

Ring. Each point represents the amplitude of ℎ3000 measured at the corresponding BPM. The error

bars on each data point indicate the uncertainty in the measurement, coming from the statistical

variance as shown in Fig. 4.8. The shaded background of Fig. 4.9 serves to visually emphasize

the spread and distribution of the data points around the average. While there is a global spread,

the local variations of ℎ3000 from BPM to BPM correspond to the amount of sextupole between

them. Nevertheless, the large discontinuity at the 600 region—before R:HP602—comes from the
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momentum-estimation method which calculates the coordinates at R:VP601. Following all the

previous steps in this recipe will allow to measure the RDTs at the Recycler Ring.

Figure 4.9 Measurements of ℎ3000 at all horizontal BPMs around the ring. The average (dashed
line) corresponds to the average ℎ3000 from all the measurements.

4.3 Compensation of RDTs

4.3.1 Theoretical Approach from Lattice Model

Once there is a way to measure and/or calculate RDTs, the next step is to find a way to cancel out

the RDTs. As mentioned in Sec. 3.6, there are 4 normal sextupoles and 4 skew sextupoles that have

been installed previously for this particular purpose. They have also been included in the lattice

model. This section focuses on how to cancel out the RDTs from a lattice model perspective—just

from theoretical considerations. The RDTs calculated from the lattice model as shown in Sec. 4.1.

The first step is to understand how to cancel out a single RDT—a single resonance line. For

example, in order to compensate the 3𝑄𝑥 line, the ℎ3000 would need to be cancelled. In order to

cancel this term, the appropriate 𝐾2 coefficients need to be set to the sextupoles. In practice, this

is equivalent to setting the appropriate currents in the sextupoles. The appropriate 𝐾2 coefficients
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are calculated from the following equation:

−|ℎ3000 | cos𝜓3000

−|ℎ3000 | sin𝜓3000

0

0

 (𝐵𝑎𝑟𝑒)
= 𝑴



𝐾
(𝑠𝑐220)
2

𝐾
(𝑠𝑐222)
2

𝐾
(𝑠𝑐319)
2

𝐾
(𝑠𝑐321)
2


, (4.16)

where the ℎ3000 RDT is a complex quantity with a real and imaginary part, i.e., ℎ3000 = |ℎ3000 | 𝑒𝑖𝜓3000 =

|ℎ3000 | cos𝜓3000 + 𝑖 |ℎ3000 | sin𝜓3000. The 𝑴 term corresponds to the RDT response matrix. And

finally, the 𝐾 (𝑖)
2 corresponds to the coefficient in the 𝑖-th compensation sextupole. The response

matrix for compensating only 3𝑄𝑥 and arbitrarily setting two sextupole currents to the negative of

each other reads:

𝑴 =



𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

1 1 0 0

0 0 1 1


, (4.17)

where the theoretical matrix coefficients are calculated from the derivatives of the expressions in

Table 4.1 with respect to 𝐾 (𝑖)
2 , and they read:

𝑀11 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐220) cos 3𝜙𝑥(𝑠𝑐220) , (4.18)

𝑀12 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐222) cos 3𝜙𝑥(𝑠𝑐222) , (4.19)

𝑀13 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐319) cos 3𝜙𝑥(𝑠𝑐319) , (4.20)

𝑀14 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐321) cos 3𝜙𝑥(𝑠𝑐321) , (4.21)

𝑀21 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐220) sin 3𝜙𝑥(𝑠𝑐220) , (4.22)

𝑀22 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐222) sin 3𝜙𝑥(𝑠𝑐222) , (4.23)

𝑀23 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐319) sin 3𝜙𝑥(𝑠𝑐319) , (4.24)

𝑀24 =
1
48
𝑙𝑠𝑐 𝛽

3/2
𝑥(𝑠𝑐321) sin 3𝜙𝑥(𝑠𝑐321) , (4.25)
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where each beta function 𝛽𝑢(𝑖) and phase evaluation 𝜙𝑢(𝑖) in the 𝑢 plane—horizontal or vertical—is

taken at the location of the 𝑖-th compensation element. Every compensation magnet has the same

length of 𝑙𝑠𝑐.

Once the response matrix is calculated, the solution can be found by calculating its inverse

and operating on the bare machine RDT vector. This RDT vector is a known quantity that can be

calculated from the lattice model. The solution for compensation thus reads:

𝐾
(𝑠𝑐220)
2

𝐾
(𝑠𝑐222)
2

𝐾
(𝑠𝑐319)
2

𝐾
(𝑠𝑐321)
2

 (𝐶𝑜𝑚𝑝)
= 𝑴−1



−|ℎ3000 | cos𝜓3000

−|ℎ3000 | sin𝜓3000

0

0

 (𝐵𝑎𝑟𝑒)
. (4.26)

Table 4.4 shows the solution to this equation for arbitrary tunes in the lattice. It is worth pointing

out that the RDT response matrix, as defined in Eq. 4.17, should have an inverse. Nevertheless,

the problem constraints can be relaxed by dropping the two last rows of Eq. 4.17. For this case,

the corresponding equation to Eq. 4.26 would involve calculating the pseudo-inverse by means of

a least-squares approach. For this case, in principle, every sextupole should have different values

for the 𝐾2 coefficients that compensate ℎ3000.

Table 4.4 𝐾2 coefficients that cancel out the ℎ3000 term. These values were calculated for a Recycler
lattice tuned to 𝑄𝑥 = 25.4422 and 𝑄𝑦 = 24.3915.

Sextupole 𝐾2 [m−3]

SC220 -0.594702

SC222 0.594702

SC319 0.930019

SC321 -0.930019

Figure 4.10 shows the calculation of the ℎ3000 RDT, once the 𝐾2 coefficients in the sextupoles

have been set to the values in Table 4.4. For this case, as opposed to the bare machine calculation
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from Fig. 4.1, the cumulative sum of ℎ3000 goes to 0 at the end of the sum. This means that the

global RDT has been cancelled. Furthermore, if Fig. 4.1 is compared to Fig. 4.10, one can see

the big spikes in the middle of the lattice that correspond to the individual contributions from the

compensation sextupoles. These kicks are what ultimately brings down the ℎ3000 term to zero.

Figure 4.10 Distribution of the ℎ3000 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point when correction elements
are set to compensate 3𝑄𝑥 = 76, i.e., ℎ3000 = 0.

On the other hand, there is the ℎ1020 term. This one also gets affected if normal sextupole

component are changed in the lattice, as explained by the expressions in Table 4.1. Therefore, it is

of interest to look at how ℎ1020 changes as ℎ3000 is compensated. Figure 4.11 shows the calculation

for this term as 3𝑄𝑥 is being compensated. Again, four additional spikes show up in the individual

contribution plot exactly where the compensation sextupoles are placed. If this plot is compared

to Fig. 4.2, it can also be seen that the total sum of the ℎ1020 term increases from 1.739 to 1.988

m−1/2. This shows that by compensating the ℎ3000 RDT, the ℎ1020 increases. This means that by
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compensating one resonance line, other lines might get worse.

Figure 4.11 Distribution of the ℎ1020 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point when correction elements
are set to compensate 3𝑄𝑥 = 76, i.e., ℎ3000 = 0.

An effort can be done to extend Eq. 4.16 to include the cancellation of ℎ1020. The simultaneous

compensation of the ℎ3000 and the ℎ1020 term is given by the following equation:

−|ℎ3000 | cos𝜓3000

−|ℎ3000 | sin𝜓3000

−|ℎ1020 | cos𝜓1020

−|ℎ1020 | sin𝜓1020

 (𝐵𝑎𝑟𝑒)
= 𝑴



𝐾
(𝑠𝑐220)
2

𝐾
(𝑠𝑐222)
2

𝐾
(𝑠𝑐319)
2

𝐾
(𝑠𝑐321)
2


. (4.27)
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For this case, the response matrix 𝑴 needs to be modified. This new response matrix reads:

𝑴 =



𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

𝑀31 𝑀32 𝑀33 𝑀34

𝑀41 𝑀42 𝑀43 𝑀44


, (4.28)

where the first two rows are defined the same as before by Eqs. 4.19-4.25. Similarly, the coefficients

in the last two rows are defined by:

𝑀31 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐220)𝛽𝑦(𝑠𝑐220) cos

(
𝜙𝑥(𝑠𝑐220) + 2𝜙𝑦(𝑠𝑐220)

)
, (4.29)

𝑀32 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐222)𝛽𝑦(𝑠𝑐222) cos

(
𝜙𝑥(𝑠𝑐222) + 2𝜙𝑦(𝑠𝑐222)

)
, (4.30)

𝑀33 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐319)𝛽𝑦(𝑠𝑐319) cos

(
𝜙𝑥(𝑠𝑐319) + 2𝜙𝑦(𝑠𝑐319)

)
, (4.31)

𝑀34 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐321)𝛽𝑦(𝑠𝑐321) cos

(
𝜙𝑥(𝑠𝑐321) + 2𝜙𝑦(𝑠𝑐321)

)
, (4.32)

𝑀41 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐220)𝛽𝑦(𝑠𝑐220) sin

(
𝜙𝑥(𝑠𝑐220) + 2𝜙𝑦(𝑠𝑐220)

)
, (4.33)

𝑀42 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐222)𝛽𝑦(𝑠𝑐222) sin

(
𝜙𝑥(𝑠𝑐222) + 2𝜙𝑦(𝑠𝑐222)

)
, (4.34)

𝑀43 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐319)𝛽𝑦(𝑠𝑐319) sin

(
𝜙𝑥(𝑠𝑐319) + 2𝜙𝑦(𝑠𝑐319)

)
, (4.35)

𝑀44 =
1
16
𝑙𝑠𝑐 𝛽

1/2
𝑥(𝑠𝑐321)𝛽𝑦(𝑠𝑐321) sin

(
𝜙𝑥(𝑠𝑐321) + 2𝜙𝑦(𝑠𝑐321)

)
, (4.36)

as calculated from the derivative of ℎ1020 with respect to 𝐾 (𝑖)
2 , with the explicit expression in Table

4.1.

The solution to Eq. 4.27 is just given by the inverse of the response matrix applied to the bare

machine RDT vector. This is equivalent to the approach in Eq. 4.26. The result of this approach

is the calculation of the 𝐾2 coefficients in the compensation sextupoles that cancel out, both, the

ℎ3000 and the ℎ1020 term. The solution to Eq. 4.27 is given in Table 4.5 for an arbitrarily tuned

lattice. One thing to note is that these values are almost one order of magnitude larger than those

in Table 4.4.
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Table 4.5 𝐾2 coefficients that cancel out the ℎ3000 and ℎ1020 term. These values were calculated for
a Recycler lattice tuned to 𝑄𝑥 = 25.4422 and 𝑄𝑦 = 24.3915.

Sextupole 𝐾2 [m−3]

SC220 6.039888

SC222 4.826964

SC319 -4.529674

SC321 -6.167827

Once the magnet coefficients from Table 4.5 are input into the lattice model, the RDT calcu-

lations can be done to verify that the terms effectively go to 0. Figures 4.12 and 4.13 show these

calculations. And, indeed, one can see how the RDT sums add up to 0. Nevertheless, it can be seen

from these plots how the spikes are now very large compared to the previous cases and compared

to the individual contributions from around the lattice. Effectively, this means that the sextupole

component will be localized in the compensation sextupoles’ locations. This is an unwanted effect,

given that these large sextupole kicks will result in overfocusing of the beam in these locations. In

particular, the sextupole component will no longer be perturbative in these locations.
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Figure 4.12 Distribution of the ℎ3000 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point. This is with existing
sextupoles powered at the correct currents to cancel out ℎ3000 and ℎ1020 simultaneously.

The results from solving Eq. 4.27, as specified in Table 4.5, indicate that the 𝐾2 coefficients are

very large compared to the case where there was only ℎ3000 compensation. Experimentally, what

is observed is that the currents in the sextupoles that compensate both ℎ3000 and ℎ1020 are too large,

and they exceed the range of operational limits. While there are no limits for 𝐾2 in the sextupoles

from the lattice model, the solutions are very large. If one were to translate the operational current

limits of the sextupoles to the lattice model 𝐾2 coefficients, it can be shown that the solutions lie

out of this range, i.e., the maximum 𝐾2 coefficients are around 1 m−3. Therefore, this solution

does not work for the operational beam. Section 4.6 shows how to circumvent this by adding two

additional sextupoles in the lattice at optimized locations in order to bring down the compensation

𝐾2 coefficients—effectively, the compensation currents.
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Figure 4.13 Distribution of the ℎ1020 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point. This is with existing
sextupoles powered at the correct currents to cancel out ℎ3000 and ℎ1020 simultaneously.

While the previous section, focused only on the normal sextupole RDTs, all of this can easily be

extended to the skew sextupole RDTs, i.e., ℎ0030 and ℎ2010. This is assuming the lattice model has

a good approximation of the skew sextupole distribution around the ring. For the Recycler Ring,

the skew sextupole resonances are not as strong as the normal sextupole resonance 3𝑄𝑥 = 76. This

resonance dominates the losses in this region. Therefore, special attention has been paid to the

3𝑄𝑥 = 76 resonance and its ℎ3000 resonance driving term. Nevertheless, this procedure works for

3𝑄𝑦 = 73 and 2𝑄𝑥 +𝑄𝑦 = 75—and its corresponding RDTs—using the skew sextupole correctors.

4.3.2 Response Matrix Approach

The next step is to look at how to translate the procedure from the previous section to the real

machine. This is done by means of measuring the response matrix. As mentioned before, for

resonance compensation there are four dedicated normal sextupoles with currents that can be set
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to (𝐼𝑠𝑐220, 𝐼𝑠𝑐222, 𝐼𝑠𝑐319, 𝐼𝑠𝑐321) and four dedicated skew sextupoles with currents that can be set to

(𝐼𝑠𝑠323, 𝐼𝑠𝑠323, 𝐼𝑠𝑠319, 𝐼𝑠𝑠321). As shown in the previous section one RDT can be cancelled out with

the right kick from the correction elements, which means the resonances are corrected to first order.

Nevertheless, by compensating one resonance line, other resonances might become worse. This

is why for simultaneous compensation, compensation currents will vary depending on the subsets

of resonances to compensate. In principle, the currents 𝐼𝑥 needed in each correction element in

order to cancel out the four bare machine RDTs, are given by the solution to this linear system of

equations: 

−|ℎ3000 | cos(𝜓3000)

−|ℎ3000 | sin(𝜓3000)

−|ℎ1020 | cos(𝜓1020)

−|ℎ1020 | sin(𝜓1020)

−|ℎ0030 | cos(𝜓3000)

−|ℎ0030 | sin(𝜓3000)

−|ℎ2010 | cos(𝜓1020)

−|ℎ2010 | sin(𝜓1020)

 (𝐵𝑎𝑟𝑒)

= 𝑴



𝐼𝑠𝑐220

𝐼𝑠𝑐222

𝐼𝑠𝑐319

𝐼𝑠𝑐321

𝐼𝑠𝑠223

𝐼𝑠𝑠323

𝐼𝑠𝑠319

𝐼𝑠𝑠321



(4.37)

where 𝑀𝑖 𝑗 is the response matrix for the RDTs with respect to the currents, and includes any roll

that can happen for the correction sextupoles. It is worth to emphasize that for this approach, the

response matrix is being calculated from measurements as opposed to calculated from the model.

This response matrix 𝑀𝑖 𝑗 can be calculated by scanning the currents in each correction element and

looking at the response from the real and imaginary part of the RDTs, i.e., ℎ 𝑗 𝑘𝑙𝑚 = |ℎ 𝑗 𝑘𝑙𝑚 |𝑒𝑖𝜓 𝑗𝑘𝑙𝑚 .

In reality, there are limitations to solving equation 4.37. The first one is that all the RDTs

(ℎ 𝑗 𝑘𝑙𝑚) may not be accessible for measurement, given that they may not show up as a spectral line.

Another limitation is that the solution for the currents may be outside the maximum limits for the

correction elements.

One can also try to cancel out a subset of RDTs from equation 4.37, including only one RDT.

For example, in order to compensate 3𝑄𝑥 = 76, the system of equations to be solved is:
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−|ℎ3000 | cos(𝜓3000)

−|ℎ3000 | sin(𝜓3000)

0

0

 (𝐵𝑎𝑟𝑒)
=



𝑀11 𝑀12 𝑀13 𝑀14

𝑀21 𝑀22 𝑀23 𝑀24

1 1 0 0

0 0 1 1





𝐼𝑠𝑐220

𝐼𝑠𝑐222

𝐼𝑠𝑐319

𝐼𝑠𝑐321


, (4.38)

which is analogous to Eq. 4.16, only now the sextupole currents are the knobs. Nevertheless, in

this case, the RDT is measured from the procedure shown in Sec. 4.2 for the bare machine—no

compensation sextupoles turned on. In order to measure the response matrix 𝑴, the ℎ3000 RDT

has to be measured as a function of the compensation currents in the sextupoles. The procedure

summarizing all of this is the following:

1. Measure the bare machine RDT vector for several shots, e.g, measure ℎ3000 for 20 instances.

2. Choose a compensation sextupole for the first scan.

3. Set the compensation sextupole to the lower limit of the scan range, e.g., -10 Amps.

4. Measure the ℎ3000 RDT (or arbitrary RDT) by means of following the recipe in Sec. 4.2.

5. Increase the current in the compensation sextupole by some step size, e.g., by 2 Amps, and

repeat the RDT measurement.

6. Repeat steps 2-4 until the upper limit of the scan range, e.g., 10 Amps.

7. For every measurement, decompose the RDT into its real and imaginary part, e.g., ℎ3000 =

|ℎ3000 | cos𝜓3000 + 𝑖 |ℎ3000 | sin𝜓3000.

8. Plot the real and imaginary part of the RDT as a function of sextupole current and perform a

linear fit. The slopes of these fits are the corresponding 𝑀𝑖 𝑗 response matrix coefficients.

9. Repeat steps 2-8 for the other compensation sextupoles, until the response matrix is fully

calculated. This procedure can be done for a subset of correctors reducing the dimension of

the response matrix.
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10. Once the response matrix is specified, calculate its inverse (or pseudo-inverse) and operate

on to the bare machine RDT vector in order to get the compensation currents on every BPM

(see Fig. 4.16).

Figures 4.14 and 4.15 shows an example of performing two of these scans for the ℎ3000 term.

On Fig. 4.14 it can be seen how the relationship between the real part and imaginary part follow a

linear relation within the shaded region. The fit for these plots was done only for this region given

that prior empirical data showed that the currents should not exceed the absolute value of 7 Amps.

The response matrix coefficients were extracted for the slope values provided from the fit.

Figure 4.14 Real and imaginary part of ℎ3000 as a function of current fed to compensation sextupole
SC222. Measurement is shown for R:HP126 data.

Figures 4.14 and 4.15 are taken at two different BPMs, i.e., horizontal BPMs R:HP126 and

R:HP612. Comparing both plots, shows that the RDT sensitivity of ℎ3000 changes depending on

the sextupole used. Furthermore, at high currents it can be seen that some non-linear behavior

starts to kick in. This was present in mostly all BPMs. Nevertheless, this only happened at high

currents far from the region of interest, which was capped at an absolute value of 6 Amps.

After performing all this process, the result is an array of compensating currents predicted

by every BPM. Figure 4.16 shows an example of these results. The bars at each BPM represent

the predicted compensation current for a particular sextupole. While each BPM will give a local
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approximation of what currents minimize the ℎ3000 RDT, the sextupoles can only take one input.

This is why all these currents need to be averaged in order to get a global compensation current

that minimizes the RDT at every location. Nevertheless, given that there is some uncertainty on

the bare machine RDTs and the response matrix coefficients, this needs to be included in order to

come up with this global solution.

Figure 4.15 Real and imaginary part of ℎ3000 as a function of current fed to compensation sextupole
SC319. Measurement is shown for R:HP612 data.

In order to build a final setting for the compensation currents, not all BPMs are necessarily

used. For this prediction, the BPMs that showed the most linear fits from the RDT scan as a

function of current were used. The R-squared statistics and the reduced 𝜒2 were used to quantify

this linearity. Once the best BPMs were selected, the compensation currents were selected. This

is why not all BPMs are plotted on Fig. 4.16. Assuming that the currents predictions shown in

Fig. 4.16 follow a bi-Gaussian distribution centered at the mean values with a variance equal to

the uncertainty in the error bar, a prediction function can be built. The prediction function is just

the sum of all the bi-Gaussian distributions. A contour plot example of such prediction function is

shown in Fig. 4.17. Ultimately, this prediction function will specify a region in the currents space

of each sextupole where the best setting lies.
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Figure 4.16 Compensation currents calculated from BPMs that showed the best R-square statistic
from performing the RDT scans.
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Figure 4.17 Prediction function built from the best R-squared statistics BPMs, in order to predict
the best global currents for ℎ3000 compensation.

The prediction function in Fig. 4.17 can be used to predict an optimal setting for the currents

in the compensation sextupoles. Specifically, the centroid of this prediction distribution can be

calculated and used as the optimum setting. This corresponds to the cyan cross in Fig. 4.17. Later

in this chapter, there is a whole section dedicated to verify the compensation of resonances, see Sec.

4.5. Nevertheless, a quick way to verify resonance compensation is to use a dynamic tune ramp

that crosses the 3𝑄𝑥 = 76. Uncorrected for, around 95% of the beam is lost once this resonance

is crossed. One can use the interval where the prediction function thinks it is best to operate, and

scan the parameter space (currents) while recording beam transmission across the 3𝑄𝑥 resonance.

The fuchsia X in Fig. 4.17 shows the setting with the best transmission—the best transmission

now corresponds to less than 5% losses. The centroid of the prediction function is around 2.4%

(relative distance) away from this experimental value. This shows that the predicted value from

the response matrix approach does indeed reduce the losses from the 3𝑄𝑥 = 76 line—meaning the

ℎ3000 RDT is minimized in this region.
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4.4 Optimization of Compensation Currents

The last section showed how to predict the optimum setting for the sextupoles by measuring

the response matrix. Nevertheless, this procedure takes a couple of hours of study time and might

not be accessible for routine operations. Therefore, this procedure might be done once or twice

per run. Consequently, it is of interest to explore optimization algorithms that can help predict the

optimum setting that minimizes losses from the resonance lines.

Figure 4.18 Nelder-Mead optimization from an instance were the response matrix prediction was
used as the initial point. The contour plot shows the transmission through 3𝑄𝑥 as a function of the
currents.

Figure 4.18 shows an example of using a Simplex (Nelder-Mead) optimization procedure to find

the optimum setting in the compensation sextupoles. In the background of this plot, the contour

plot corresponds to the experimentally-measured transmission through 3𝑄𝑥 . This Nelder-Mead

instance was started with the currents predicted from the response matrix approach. After 45

iterations, the optimization algorithm converged to the value specified in the legend of Fig. 4.18.

This value is fairly close to the value predicted by the response matrix approach. The maximum

transmission from the contour plot (red cross in Fig. 4.18) agrees up to some significance with the
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currents from the optimization procedure and the response matrix approach. They’re all fairly close

within a region. Therefore, by taking the response-matrix predicted currents as an initial point,

one can fine-tune this configuration using this type of optimization algorithms. In principle, any

type of numerical optimization algorithms should converge to the answer given that the underlying

function is not specially difficult—in the context of numerical optimization.

Figure 4.19 Multiobjective Nelder-Mead optimization of the transmission through 3𝑄𝑥 and 3𝑄𝑦.
The objective function to be minimized was defined as an equally-weighted sum of both one minus
transmissions—corresponding to the fractional losses through the resonance lines.

Figure 4.19 take this a step further by performing multiobjective optimization on two resonance

lines, i.e., 3𝑄𝑥 and 3𝑄𝑦. The 8 compensation sextupoles (see Table 3.3), including normal and

skew, were used for this optimization. While in principle, powering up the normal compensation

sextupoles should have no effect on the 3𝑄𝑦 line, it was observed that the losses due to this

line increased when 3𝑄𝑥 was corrected. This motivated the multiobjective optimization of both
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lines. Figure 4.19 shows how by trying to correct one line the other one got worse. Ultimately,

the best configuration would lie on the Pareto front of these functions. The axis in Fig. 4.19

represent the fractional beam loss when crossing the resonance lines. The objective function to be

minimized by a Nelder-Mead algorithm was defined as an equally-weighted sum of both fractional

losses. Ultimately, Fig. 4.19 shows how the algorithm slowly drifts toward the best solution to this

problem.

Figure 4.20 Bayesian optimization of the compensation currents for 3𝑄𝑥 transmission. The contour
plot shows the Gaussian Process Posterior function trained by the sampled data (orange dots).

More advanced optimization algorithms can be used in order to fine-tune the best optimization

currents in the compensation sextupoles. Figure 4.20 shows an instance were Bayesian optimization

was used for this purpose. A summary of Bayesian optimization can be found in Ref. [48]. It

is worth clarifying that the optimum currents from Fig. 4.20 differ from the ones in 4.18 given

that the first plot was generated from data taken in the 2022-2023 run and the other one from the

2021-2022 run. The tuning of the machine changes from year to year—even from week to week.

The background contour plot of Fig. 4.20 corresponds to the Gaussian Process posterior trained

from the Bayesian-guided sampling of the transmission through 3𝑄𝑥 . Ultimately, the cluster of
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points around the maximum show how the algorithm converged and found the best configuration to

feed the sextupoles. These currents are close to the ones shown in Fig. 4.17. Chapter 5 shows some

studies done at the Proton-Synchrotron Booster (PSB) at CERN, where this optimization approach

is fully embraced to compensate resonance lines.

4.5 Experimental Verification of Compensation

4.5.1 Dynamic Loss Maps

One effective method for visualizing resonance compensation involves constructing dynamic

loss maps. To generate these representations, specialized quadrupoles responsible for controlling

the tune of the Recycler are gradually adjusted to map out the desired tune area. Throughout

this process, the beam loss rate is meticulously measured and interpolated across the specified

region. This is done in the horizontal and vertical direction. The initial horizontal scan is generated

by maintaining a constant vertical tune while implementing a horizontal tune ramp ranging from

𝑄𝑥 = 25.47 to 𝑄𝑥 = 25.31. Subsequently, the vertical tune, initially set as constant at 𝑄𝑦 = 24.47,

is adjusted incrementally to 𝑄𝑦 = 24.31 in steps of 0.005, with intensity data recorded at each step.

Conversely, for the vertical scan, the roles are reversed: the horizontal tune remains constant while

a vertical tune ramp progresses from 𝑄𝑦 = 24.47 to 𝑄𝑦 = 24.31. Then, the constant horizontal

tune is varied from 𝑄𝑥 = 25.47 to 𝑄𝑦 = 25.31 in steps of 0.005. The resulting intensity data from

both scans can be differentiated, normalized by the instantaneous intensity, and interpolated within

a two-dimensional grid to construct plots akin to those depicted in Figs. 4.21 and 4.22. Figure

4.21 demonstrates the initial machine scan without any compensation. If plotted alongside the

theoretical positions of the lines as in Fig. 4.22, the beam loss bands align with the resonance lines.

Figure 4.22 illustrates the correspondence between the loss patterns and the theoretical positions

of resonance lines. A slight deviation exists between the set tune and the actual tune due to

calibration adjustments from the tune trombone program. However, despite this variance, the

resonance line configuration within the loss pattern facilitates the visualization of each resonance’s

strength. Specifically, a higher normalized loss at a particular tune location indicates a stronger

Resonance Driving Term (RDT) for the corresponding resonance line. Within Figs. 4.21 and
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4.22, third, fourth, and even traces of fifth-order resonance lines are discernible, with third-order

resonance lines exhibiting the greatest prominence.

Figure 4.21 Dynamic loss map from ramping the tunes with an interval of Δ𝑄𝑢 = 0.005 in both
directions. The directions of scan are from left to right and top to bottom. The results are
superimposed in this plot.

Figure 4.23 depicts dynamic loss maps representing various configurations of the compensation

sextupoles. Specifically, Fig. 4.23a illustrates the loss map for the bare machine, where no

compensation sextupoles are activated, while Fig. 4.23b and Fig. 4.23c demonstrate compensation

for a single resonance line each. In the case of 3𝑄𝑥 compensation, the four normal sextupoles are

adjusted to the calculated compensation currents using the RDT response matrix method. Moreover,

a comparison between Fig. 4.23b and Fig. 4.23a clearly indicates a reduction of normalized losses

by two orders of magnitude at the 3𝑄𝑥 line with compensation. This observation holds true for the
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3𝑄𝑦 compensation as well, as shown in Fig. 4.23c.

Figure 4.22 Dynamic loss map with the corresponding lines from Fig. 3.7 drawn on top.

Figures 4.23d, 4.23e, and 4.23f showcase the optimal configurations of compensation sextupoles

designed to address multiple resonance lines simultaneously. It’s important to note that while

attempting to compensate for one or multiple resonance lines, there’s a possibility that other

resonance lines may strengthen. This is evident in the explicit case depicted in Fig. 4.23f, where

compensating for 3𝑄𝑦 and 𝑄𝑥 + 2𝑄𝑦 leads to the amplification of the 2𝑄𝑥 + 𝑄𝑦 resonance. Such

occurrences pose a limitation when aiming to compensate for more than two resonance lines, as

the compensation currents tend to increase. There exists a constraint on the currents supplied to

the compensation sextupoles. For instance, in compensating both normal sextupole lines, 3𝑄𝑥 and

𝑄𝑥 + 2𝑄𝑦, the required currents exceed the current limit. Ongoing efforts are focused on reducing
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the compensation currents in this specific scenario. Section 4.6 summarizes some of these efforts,

where additional sextupoles have been installed in order to decrease the currents that cancel out

both the ℎ3000 and ℎ1020 RDTs.

Another notable detail evident in Figs. 4.23a-4.23f is the presence of white areas within the

loss maps, indicating regions where there was insufficient beam to accurately map out the losses.

In certain configurations of the compensation sextupoles, the combined weakening of the third-

order resonance lines occurs in a manner that leaves some beam remaining beyond these lines. It

could be argued that conducting two additional scans, injecting from the left and bottom, could

effectively map out these inaccessible regions. Such an enhancement could be considered as a future

upgrade to these dynamic loss maps. Ultimately, all the plots presented in Fig. 4.23 demonstrate

various potential configurations that open up regions of tune space for utilization during operations,

enabling the accommodation of high-intensity beams.
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(a) Bare machine (b) 3𝑄𝑥 Compensation

(c) 3𝑄𝑦 Compensation (d) 3𝑄𝑥 and 3𝑄𝑦 Compensation

(e) 3𝑄𝑥 and 2𝑄𝑥 +𝑄𝑦 Compensation (f) 3𝑄𝑦 and 𝑄𝑥 + 2𝑄𝑦 Compensation

Figure 4.23 Dynamic loss maps for several configurations of compensation sextupoles
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4.5.2 Static Tune Scans

Another method for visualizing resonance compensation involves using static tune scans. While

the loss maps detailed earlier illustrate the dynamic crossing of resonances, an alternative method

entails setting the tune to a specific value and assessing the beam survival ratio alongside the

beam size over a defined time interval. This time interval was around 0.8 seconds equivalent to

approximately 72800 turns. The beam survival ratio was calculated from the beam intensity data

captured from the DC Current Transformer (DCCT). The beam size is quantified using the Ion

Profile Monitor System (IPM) within the ring, as introduced in Sec. 3.5.

Figure 4.24 Static tune scan for bare machine with comparisons between experimental data and
SYNERGIA simulations at a low intensity of 0.5e10 particles per bunch (2 Booster Turns of
equivalent intensity).
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Figure 4.24 shows a static tune scan only including beam survival ratio data. This plot includes

data from experiments and data from SYNERGIA simulations done with no space charge. Given

that these experiments were done at low intensities, no space-charge simulator was needed. The

simulations were done for 72800 turns, and the experimental data was partitioned to only this equiv-

alent time window. Figure 4.24 shows the resonance stop band corresponding to 3𝑄𝑥 resonance.

Effectively, no beam survives when beam is parked on top of the resonance line. There is a good

agreement between the stop band width of the resonance from the simulations and the experimental

data. This hints at the fact that the model is roughly capturing the sextupole component around

the ring, even if it is not perfect. Nevertheless, left of the resonance, the experimental data starts

deviating from the model, given that the Recycler Ring is not optimized to run in this region.

On the other hand, Fig. 4.25 shows a similar comparison between static tune scans done with

SYNERGIA simulations and experimental results. The simulations were done by first calculating

the 𝐾2 coefficients that compensate 3𝑄𝑥 and then launching the simulations for 72800 turns. The

intensity and beam emittance data was recorded every 100 turns for these simulations. Experimen-

tally, the compensation currents were calculated from the response matrix method and losses on

top of 3𝑄𝑥 were optimized with a Nelder-Mead algorithm as mentioned in Sec. 4.4. The first thing

to note is that the beam survival ratio increases close to the resonance line with compensation—for

both the simulations and the experiment. Nevertheless, in this case, the data from the simulations

doesn’t agree well with the experiments. In principle, the compensation done experimentally is

better than the compensation done with the lattice model. Therefore, there is something missing

from the compensation algorithm applied to the lattice model. The lattice model is not perfect and

does not necessarily capture all the physics going on in the real accelerator. More work has to be

done in order to match the simulations and experiments of static tune scans with resonance lines

compensation.
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Figure 4.25 Plot for static tune scan for machine with 3𝑄𝑥 compensation including comparison
between experimental data and SYNERGIA simulations.

Additional experiments performing static tune scans were done. Figures 4.26 and 4.27 are

additional experiments performed at different dates than the ones presented in Figs. 4.24 and 4.25.

An accelerator is a machine that drifts in time, everyday it gets tuned and manipulated. From

day-to-day it can be sampling different fields from different elements. This is why the data can

sometimes change from experiment to experiment, specially, if it was taken 6 months apart—such

is the case with these datasets.

Nevertheless, these additional experiments allow for better understanding of the accelerator and

improve on the resonance compensation algorithms. Figures 4.26 and 4.27 show static tune scans

with beam size calculated from IPM data. Figure 4.26 shows the case for when the bare machine

was sampled—compensation sextupoles were off. As the working tune point gets closer to the 3𝑄𝑥
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resonance line, Fig. 4.26 shows how the beam survival ratio goes down, and the beam size goes up.

The losses increase due to the beam size growth coming from the resonance until, eventually, it hits

the beam pipe and losses appear. When operating on top of the resonance with no compensation,

almost to no beam survives and the IPM data can not be used.

On the other hand, Fig. 4.27 shows what happens with compensation turned on. Once the

compensation currents are set into the sextupoles, the beam survival ratio across the 3𝑄𝑥 resonance

line increases. Up to the point, where approximately 95% of the beam survives while operating

on top of the resonance line—compare this to the uncompensated case where no beam survives.

Nevertheless, there is some beam size growth in this region but not as large as the uncompensated

case. There is still sufficient beam that can be used to probe the beam size. With compensation at

low intensity, the beam size growth is suppressed such that 95% of the beam can now survive for

0.8 seconds on top of this third order resonance line.

Figure 4.26 Static tune scan with beam survival ratio and IPM data box plots for bare machine at 2
Booster Turns of equivalent intensity.

It is worth specifying that the plots showed in Figs. 4.26 and 4.27 are box plots of the sigmas

of Gaussian-fitted IPM data. Box plots are used to represent distributions. The beam size data

is a distribution depending on the number of turns. Ultimately, the beam size can grow with the
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number of turns as it will be shown in Fig. 4.28 and in Sec. 6.4. Therefore, a simple scatter plot

of the mean with some error bars would be incorrect to illustrate IPM data—this type of plots can

only be used with centrally-distributed data. This is the reason why box plots have been used in

these plots.

Figure 4.27 Static tune scan with beam survival ratio and IPM data box plots for machine with 3𝑄𝑥
compensation at 2 Booster Turns of equivalent intensity.

The 95% normalized emittance 𝜀𝑁,95% of the beam in the𝑢 plane—either horizontal or vertical—

is the phase space area which encapsulates 95% of the particles in a beam travelling close to the

speed of light. The definition for this quantity is:

𝜀𝑛,𝑢,95% = 6𝛽𝐿𝛾𝐿𝜀𝑢, (4.39)

where (𝛽𝐿 , 𝛾𝐿) are the longitudinal relativistic factors. The geometrical RMS emittance 𝜀𝑢 was

calculated from:

𝜀𝑢 =
𝜎2
𝑢

𝛽𝑢
−
𝐷2
𝑢

𝛽𝑢

(
𝛿𝑝

𝑝0

)2
, (4.40)

where 𝛽𝑥 = 27.10 meters, 𝐷𝑥 = 0.32 meters and 𝛿𝑝/𝑝0 = 5𝑒 − 4 were the parameters estimated for

the horizontal IPM. The data from the horizontal IPM can be used to calculate the beam size 𝜎𝑥 ,

98



as shown in Figs. 4.26 and 4.27. All these values were extracted from the information provided in

Ref. [41].

Figure 4.28 shows the calculation of the 95% normalized horizontal emittance from the IPM

data presented in Fig. 4.27. In this case, each point from each scatter plot is indexed by their

decimated turn number. The decimated turn number is the position of the data point in the IPM

return array. Even though the IPM can analyze up to 65000 turns, it can only output an array of

1024 decimated turns. The data analyzed in these plots was for 65000 turns decimated into 1024

data points. As mentioned before, this data can not be represented with an error bar plot because

it does not necessarily follow a normal distribution. This can be seen on the emittance evolution

against the turn number illustrated in Fig. 4.28.

Figure 4.28 Static tune scan with beam survival ratio and emittance data calculated from IPM data
for machine with 3𝑄𝑥 compensation at 2 Booster Turns of equivalent intensity.

Just as the beam size grows in Fig. 4.27 while on top of the resonance line, this translates into

99



normalized emittance growth shown in Fig. 4.28. Once the beam is injected close to the resonance

line at a normalized emittance of around 11 𝜋 mm mrad, it grows with the number of turns. In

particular, the Recycler Ring has an acceptance of 40 𝜋 mm mrad. This means that close to this

number, particles will start getting lost. This can be seen for the values of around 𝑄𝑥 = 25.344

where the emittance grows up to values larger than 40 𝜋 mm mrad, and, indeed, there is some loss

in the beam survival ratio plot (red dashed lines). Ultimately, this section has shown how using

DCCT and IPM data allows for characterization of resonance lines and their compensation.

4.6 Additional Sextupoles for Resonance Compensation

As mentioned before in the discussion of Figs. 4.10, 4.11 and 4.23, the currents in the

compensation sextupoles that cancel out the ℎ3000 and ℎ1020 RDTs are too large. This section

explores the idea of introducing two additional normal compensation sextupoles in order to bring

down the 𝐾2 coefficients that cancel out both of these RDTs—effectively, bring down the currents

in all the sextupoles. Therefore, this section looks at finding the right location for these two new

sextupoles. The introduction of two new sextupoles implies that the RDT equation from Eq. 4.16

is modified and this reads:



−|ℎ3000 | cos𝜓3000

−|ℎ3000 | sin𝜓3000

−|ℎ1020 | cos𝜓1020

−|ℎ1020 | sin𝜓1020

 (𝐵𝑎𝑟𝑒)
= 𝑴𝑨



𝐾
(𝑠𝑐220)
2

𝐾
(𝑠𝑐222)
2

𝐾
(𝑠𝑐319)
2

𝐾
(𝑠𝑐321)
2

𝐾
(1)
2

𝐾
(2)
2



. (4.41)

100



In this case, the response matrix gets appended two new columns with the RDT sensitivity of the

two new sextupoles. This reads:

𝑴𝑨 =


(
𝑴
) 1

48 𝑙𝑠𝑐 𝛽
3/2
𝑥(1) cos 3𝜙𝑥(1) 1

48 𝑙𝑠𝑐 𝛽
3/2
𝑥(2) cos 3𝜙𝑥(2)

1
48 𝑙𝑠𝑐 𝛽

3/2
𝑥(1) sin 3𝜙𝑥(1) 1

48 𝑙𝑠𝑐 𝛽
3/2
𝑥(2) sin 3𝜙𝑥(2)

1
16 𝑙𝑠𝑐 𝛽

1/2
𝑥(1)𝛽𝑦(1) cos

(
𝜙𝑥(1) + 2𝜙𝑦(1)

) 1
16 𝑙𝑠𝑐 𝛽

1/2
𝑥(2)𝛽𝑦(2) cos

(
𝜙𝑥(2) + 2𝜙𝑦(2)

)
1
16 𝑙𝑠𝑐 𝛽

1/2
𝑥(1)𝛽𝑦(1) sin

(
𝜙𝑥(1) + 2𝜙𝑦(1)

) 1
16 𝑙𝑠𝑐 𝛽

1/2
𝑥(2)𝛽𝑦(2) sin

(
𝜙𝑥(2) + 2𝜙𝑦(2)

)


,

(4.42)

where the beta functions and phases are evaluated at a lattice location still yet to be determined.

The original matrix 𝑴 is the one defined from Eq. 4.27.

The first step was to minimize the function

𝑓
(
𝛽𝑥(𝑖) , 𝛽𝑦(𝑖) , 𝜙𝑥(𝑖) , 𝜙𝑦(𝑖)

)
= max
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, (4.43)

where the max operator takes the absolute maximum of the vector. Therefore, it would correspond

to the maximum 𝐾2 coefficient in the vector. The minimization procedure was done using a Nelder-

Mead algorithm, and ultimately, the result would be a set of 𝛽𝑥(𝑖) , 𝛽𝑦(𝑖) , 𝜓𝑥(𝑖) , 𝜓𝑦(𝑖) , where 𝑖 runs

from 1 to 2 (representing the two additional sextupoles), and this specifies the location where the

maximum 𝐾2 coefficient from all the sextupoles gets minimized. An instance of Nelder-Mead was

launched for 10000 times, each time the starting point would be chosen randomly to make sure

most of the parameter space was explored. Ultimately, all the results could be plotted in histograms

in order to create constraints for locations depending on the beta and phase advance. Figure 4.29

shows an example of such histograms. From this plot, one can see the relations and constraints that

the new sextupoles have to comply in order to minimize the maximum 𝐾2 coefficient. For example,

Fig. 4.29 shows that horizontal beta functions of both sextupoles should have a ratio of around 1.
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Additionally, it shows that the horizontal phase advances should lie close to thirds of 𝜋, e.g., 𝜋/3,

2𝜋/3, 𝜋, etc. . . .

Figure 4.29 2D Histogram of optimum lattice locations where the compensating 𝐾2 coefficients
with the two new sextupoles are minimized. Red dashed lines correspond to thirds of 𝜋.

With the previous constraints already set up, the next step is to look into all the possible pair of

drift spaces in the lattice where two sextupoles would fit. Therefore, all the possible combinations

of two available drift spaces longer than 1 meter and horizontal dispersion less than 0.1 meters were

explored. This last constraint came from the fact that these new sextupoles should not introduce

any additional chromaticity into the Recycler. In total, the number of total possible combinations

was 39340. From all of these possibilities, the first filter was to analyze only the combinations

that complied with the constraints imposed by minimizing Eq. 4.43. With this first filter, the

resulting number of pair candidates narrowed down to 776. In all of these 776 pair of locations, the

sextupoles were introduced and the resulting maximum 𝐾2 coefficient was calculated. Figure 4.30

shows these candidates with their corresponding metric for this particular constrain superimposed

onto the 2D histogram of Fig. 4.29. The color bar of Fig. 4.30 labels the candidates by their
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particular maximum 𝐾2 coefficient, as defined in Eq. 4.43.

Figure 4.30 2D Histogram of optimum lattice locations where the compensating 𝐾2 coefficients
with the two new sextupoles are minimized with available drift spaces candidates scattered on top
of it.

With the number of candidates narrowed down, the next step is to select the idle pair of locations

to introduce these new sextupoles. Figure 4.31 was used as a tool for this purpose. The left vertical

axis shows the dispersion curve (golden solid continuous line) of the Recycler Ring in order to

make sure that the new candidates are indeed in areas of low dispersion. The red crosses and the

blue exes represent the pair of drift space candidates where the sextupoles could go. The right

vertical axis specifies the maximum 𝐾2 coefficients when the sextupoles are introduced in these

locations. The minimum of this quantity is given by the pair of sextupoles that are both introduced

in the region 620. By observing Fig. 4.31 and making sure the locations in 620 were viable in

terms of space and logistics, the new locations for two new compensation sextupoles were chosen.
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Figure 4.31 Dispersion function of the Recycler Ring with possible new locations to introduce a
pair of sextupole magnets that cancel out ℎ3000 and ℎ1020 simultaneously. The right y-axis shows
the maximum compensation 𝐾2 coefficient needed with these new candidates.

Once the new locations are pinned down, the compensation of ℎ3000 and ℎ1020 can be verified.

Table 4.6 shows the 𝐾2 coefficients that need to go into the sextupoles for 3𝑄𝑥 = 76 and𝑄𝑥 +2𝑄𝑦 =

74 compensation. These values can be compared to those in Table 4.5, and they are one order

of magnitude less. Furthermore, all the values in Table 4.6 are less than 1.0 m−3 which is the

equivalent current limit for the 𝐾2 coefficients. Ultimately, these two new sextupoles, SC620a and

SC620b, have brought down the compensating sextupole coefficients by one order of magnitude.

Their installation would enable a viable option to compensate both resonance lines simultaneously.
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Table 4.6 𝐾2 coefficients that cancel out the ℎ3000 and ℎ1020 term when the two new 620 sextupoles
are introduced. These values were calculated for a Recycler lattice tuned to 𝑄𝑥 = 25.4422 and
𝑄𝑦 = 24.3915.

Sextupole 𝐾2 [m−3]

SC220 -0.263835

SC222 0.463129

SC319 0.480173

SC321 -0.407482

SC620a 0.581187

SC620b 0.511139

As it was previously done in Sec. 4.1, the ℎ3000 and ℎ1020 RDTs can be calculated after

introducing the values of 𝐾2 coefficients specified in Table 4.6. Figures 4.32 and 4.33 show the

RDT calculations with these settings. Both plots show how the global RDTs go down to 0 at the end

of the sum along the lattice. Nevertheless, more noteworthy is the fact that the RDT calculations do

not show huge variations in the cumulative sum, as it did in Figs. 4.12 and 4.13. This means that

these two additional sextupoles will delocalize the amount of sextupole that has to be introduced

into the ring in order to cancel out both RDTs. Therefore, the RDT variation around the ring will

be small with these new setting compared to just using the 4 original compensation sextupoles.

As of Spring 2024, these new 620 sextupoles have been installed in the Recycler Ring. Nev-

ertheless, they have not been commissioned nor tested for operations. The next step would be to

verify that with these 6 normal compensation sextupoles both lines can be compensated. This is

still a work in progress.
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Figure 4.32 Distribution of the ℎ3000 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point. This is with the new 620
sextupoles powered at the correct currents to cancel out ℎ3000 and ℎ1020 simultaneously.
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Figure 4.33 Distribution of the ℎ1020 term around the ring with individual contributions from each
relevant element and the cumulative sum from an arbitrary starting point. This is with the new 620
sextupoles powered at the correct currents to cancel out ℎ3000 and ℎ1020 simultaneously.

107



CHAPTER 5

RESONANCE COMPENSATION STUDIES AT THE CERN PROTON SYNCHROTRON
BOOSTER

5.1 General Description

The Proton Synchrotron Booster (PSB) is the first circular accelerator in the CERN accelerator

complex that ultimately leads to the LHC. Figure 5.1 shows the entire chain of accelerators at

CERN, feeding a variety of physics experiments [49]. Following the successful implementation of

the LHC Injectors Upgrade (LIU) [50], the PSB receives 𝐻− ion beam coming from the Linac4 at

an energy of 160 MeV. Interestingly enough, the PSB is not just one ring, but rather four identical

synchrotron rings stacked on top of each other. This is to counteract space charge effects which are

largest at low energy machines. Once the ion beam enters the PSB rings, the electrons are stripped

off through a charge-exchange process with a carbon foil and proton beam is achieved [51]. The

proton beam is then accelerated from an energy of 160 MeV to 2 GeV. The beam from the four

rings gets merged together and then gets injected to the Proton Synchrotron (PS). This is true for

LHC-type beams, nevertheless, the PSB can also accelerate lead ions and deliver to other customers

such as the heavy ion experiments, e.g., ISOLDE [52].

One ring of the PS Booster has a total circumference of 157.08 meters. Multiplying this quantity

by the four rings you get a length of 628.32 meters, which is the exact circumference of the next

accelerator, the Proton Synchrotron (PS). The PSB has a superperiodicity of 16, meaning it has 16

identical fundamental cells. Each cell has a length of 9.82 meters housing a sequence of bending

magnet, focusing quadrupole, defocusing quadrupole, focusing quadrupole and bending magnet

[53]. In between these main components there are drift spaces used for RF insertions, diagnostic

devices, injection and extraction devices and additional multipole corrector magnets. At injection

energy, 160 MeV, protons have a revolution period of 1.01 𝜇𝑠, while at the extraction energy of 2.0

GeV they have a revolution period of 0.553 𝜇𝑠. The overall cycle in the PS Booster takes around

1.2 seconds.
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Figure 5.1 A graphic overview of all accelerators in operation at CERN as of 2022. Original
image taken from Ref. [49]. This file is licensed under the Creative Commons Attribution 4.0
International license.

5.2 Tune Diagram and Operation

Figure 5.2 illustrates the tune diagram dynamics that LHC-type beam undergoes at the PS

Booster [52, 54, 55]. As mentioned before, beam gets injected at an energy of 160 MeV. At this

low energy, the tune footprint is large enough that the spread can reach values of up to 0.5, i.e.,

Δ𝑄𝑢 ≈ −0.5. The nominal injection tunes are around 𝑄𝑥 = 4.40 and 𝑄𝑦 = 4.45, in order to

accommodate the footprint between the integer resonance lines 𝑄𝑢 = 4.0 and the half-integer line

2𝑄𝑦 = 9. As the beam is accelerated, the quadrupoles are ramped up to match the increasing

beam rigidity, but, additionally, a tune ramp is introduced in order to move the shrinking footprint

to a less resonance-populated area in the tune diagram. The nominal extraction tunes are around

𝑄𝑥 = 4.17 and 𝑄𝑦 = 4.23. At extraction, the beam tune footprint has shrunk by a factor of (𝛾3
𝐿
𝛽2
𝐿
),

as explained by the beam perveance definition in Eq. 2.66. At extraction, the footprint is smaller

than 0.05, i.e., |Δ𝑄𝑢 | ≲ 0.05.
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Figure 5.2 Operational tune footprint for PSB beam at injection (cool color map) and footprint after
beam has been accelerated to 2 GeV (warm color map). During acceleration, there is a tune ramp
illustrated with the fuchsia arrow.

The nominal tune ramp, as illustrated in Fig. 5.2 with the fuchsia arrow, crosses several

resonance lines. Uncorrected for, these resonance lines will lead to beam loss during the tune

ramping. These include 4 third-order resonance lines and 4 fourth-order lines. It is worth reminding

the reader that the third order lines are excited by sextupole component in the ring, while fourth-

order lines are excited by octupole fields in the ring. The third order resonances include two normal

sextupole lines, 3𝑄𝑥 = 13 and 𝑄𝑥 + 2𝑄𝑦 = 13, and two skew sextupole lines, 3𝑄𝑦 = 13 and

2𝑄𝑥 + 𝑄𝑦 = 13. For the octupole case, these include two normal octupole lines, 4𝑄𝑥 = 17 and

𝑄𝑥 + 3𝑄𝑦 = 17, two skew octupole lines, 4𝑄𝑦 = 17 and 3𝑄𝑥 +𝑄𝑦 = 17, and the octupole coupling

sum resonance, 2𝑄𝑥 + 2𝑄𝑦 = 17. Figure 5.3 shows all of these resonance lines summarized in one

tune diagram. All of these resonance lines have different strengths in each Booster ring. It is worth

pointing out that the coupling resonance 𝑄𝑥 − 𝑄𝑦 = 0 is already being corrected for with skew
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quadrupoles, similar to the Recycler Ring case.

Figure 5.3 Portion of the tune diagram enclosing the operational tunes of the PS Booster with
relevant resonance lines labelled.

Similar to the plots shown in Fig. 4.21 and Fig. 4.22, loss maps can be used to visualize the

strength of the resonance lines in the CERN PS Booster. Figure 5.4 shows loss maps for each of the

four rings in the PSB. These plots are created slightly different from the ones in the Recycler Ring.

The plots shown in Fig. 5.4 are an average from four different loss maps. One where losses are
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mapped from (a) left to right, i.e., fixing𝑄𝑦 and ramping from𝑄𝑥 ≈ 4.49 to𝑄𝑥 ≈ 4.15, (b) another

one from right to left, (c) one from top to bottom, i.e., fixing 𝑄𝑥 and ramping from 𝑄𝑦 ≈ 4.49 to

𝑄𝑦 ≈ 4.15, (d) and one from bottom to top. Therefore, these plots show an average from mapping

the losses in four different directions.

Figure 5.4 Dynamic loss maps for the bare machine of the 4 rings (R1, R2, R3 and R4) in the PS
Booster. The plots are an average of scanning in 4 directions. Plot provided by F. Asvesta.

Figure 5.4 shows how resonances are excited differently for each ring at the Proton-Synchrotron

Booster. For example, third-order lines are more excited for Ring 2, then Ring 1. This hints at

the fact that every ring will have different values for the corrector magnets used for resonance

compensation. The work in the following sections looks to calculate the currents of the corrector

magnets used for resonance compensation. This involves using two optimization procedures to find

the values that clear out the losses from the plots in Fig. 5.4.
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5.3 Optimization Algorithms for Resonance Compensation

The whole objective of the following work is to minimize the losses that happen during the

operational cycle of the PS Booster, as explained in Fig. 5.2. The losses during the cycle come

from particles falling on top of third-order and fourth-order resonance lines, as identified in Fig.

5.3. In order to decrease the strength of these resonances, sextupoles and octupoles can be used in

order to control their Resonance Driving Terms (RDTs). Nevertheless, measuring and minimizing

the RDTs may not always be ideal. For this particular work, the main observable to optimize was

the beam loss coming from crossing the resonance lines, which is related to the amplitude of the

RDTs. Figure 5.5 shows an illustration of the experimental setup used in order to measure this

beam loss.

Figure 5.5 Experimental setup of the tune diagram dynamics for the optimization of resonance
compensation used in the PS Booster.
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The experimental setup introduced in the PS Booster for finding the optimal compensation

currents involved several steps. First, low-brightness beam was injected into every ring at an energy

of 160 MeV. Second, a tune ramp was programmed into the quadrupoles in the ring, in order to go

from initial tunes of 𝑄𝑥 = 4.40 and 𝑄𝑦 = 4.45 to a final setting of 𝑄𝑥 = 4.17 and 𝑄𝑦 = 4.23. This

particular setting was introduced in order to mimic the operational tune ramp of LHC-type beam.

The start of this tune ramp occurs within 𝑡0 = 300 ms of the start of the cycle, and ends at 𝑡 𝑓 = 600

ms, i.e., all of this occurs within a 300 ms time window. During this time window, the beam loss

is measured by comparing the beam current at the end of the window with respect to the initial

value of the beam current. The currents fed to the corrector magnets remain constant during this

measurement. Figures 5.5 and 5.6 summarize the experimental setup just explained.

While monitoring the beam loss, the corrector magnets used for compensation are varied every

cycle according to the optimization algorithm. Table 5.1 summarizes the 11 elements used for

resonance compensation for this work. Out of these elements, there are 6 normal sextupoles, 3

skew sextupoles, and 2 normal octupoles. Figure 5.6 shows an example of the power cycle in these

magnets for one optimization step. Before the tune ramp, most actors show currents at or near zero.

As preparation for the tune ramp, the magnets are powered to the set values—per the optimizer

calculation. During the tune ramp, they are set to a constant value and then powered off once the

cycle is finished. These magnets were varied for each ring, and each ring had its own independent

optimization run. Theoretically, in order to fully correct 8 resonance lines one needs at least 16

correctors. Nevertheless, the objective of this work was to find a solution to this over-constrained

problem through advanced optimization algorithms.

The two optimization algorithms used were Bayesian Optimization and BOBYQA (Bound

Optimization BY Quadratic Approximation). In order to implement these algorithms, the special

application GeOFF (Generic Optimization Frontend and Framework) was used [56]. This graph-

ical application is designed to facilitate numerical optimization through various algorithms and

reinforcement learning on CERN accelerators. It incorporates programmable interfaces that can

be used to specify the hyperparameters of the optimization algorithms.
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Table 5.1 List of elements (optimization actors) in the PS Booster at CERN used for resonance
compensation optimization as present in all four PS Booster rings.

Actor Name Type
1 XN04L1 Normal Sextupole
2 XN06L1 Normal Sextupole
3 XN09L1 Normal Sextupole
4 XN012L1 Normal Sextupole
5 XN0311L1 Normal Sextupole
6 XN0816L1 Normal Sextupole
7 ON0311L1 Normal Octupole
8 ON0816L1 Normal Octupole
9 XSK2L4 Skew Sextupole
10 XSK4L1 Skew Sextupole
11 XSK6L4 Skew Sextupole

Figure 5.6 Waveform for the currents fed to the correctors (actors) as a function of time in the study
cycle, for one particular iteration of an arbitrary optimization instance.
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5.3.1 Bayesian Optimization

Bayesian optimization is a well-established technique used in machine learning and optimization

tasks to efficiently search for the optimal solution within a parameter space, particularly when the

objective function is expensive or time-consuming to evaluate—this is the case for an accelerator.

It combines probabilistic modeling with the principles of Bayesian inference to iteratively update a

model of the objective function based on observed data, gradually refining its understanding of the

parameter space [48]. By balancing exploration (searching for promising regions) and exploitation

(leveraging known information to identify the best areas), Bayesian optimization aims to find the

global optimum while minimizing the number of evaluations required. This method is particularly

useful in hyperparameter tuning for complex models, where traditional grid search or random

search approaches may be impractical due to computational costs.

At the heart of Bayesian optimization, are Gaussian processes. A Gaussian process (GP) is a

statistical model, that represents a collection of random variables, any finite subset of which has a

joint Gaussian distribution [48]. GPs are defined by a mean function and a covariance function,

which capture the prior beliefs about the underlying function being modeled and the correlations

between different points in the input space, respectively. These special type of statistical models are

key to estimate the underlying function that wants to be optimized. Through Bayesian inference,

GPs can be updated with observed data, yielding posterior distributions that can inform predictions

and lead to an optimized sampling for the Bayesian optimization algorithm.

Figure 5.7 shows an example for the evolution of the objective function during a Bayesian

optimization procedure. In this case, the objective function is the normalized beam loss after the

tune ramp illustrated by Fig. 5.5. It can be seen how the Bayesian optimizer finds solutions that

effectively cancel out the beam loss from crossing the resonances. Nevertheless, given that this

optimizer is built to find a global minimum, it will keep sampling other regions to make sure the

best solution is not a local minimum. The color map of Fig. 5.7 shows how for some of these

cases, the optimizer prioritizes exploration and drifts to some unknown region where the losses are

high. For these cases, the underlying Gaussian process will learn that there is no worth in exploring
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these regions. Ultimately, the configuration with the least amount of relative beam loss—the best

configuration—is saved and kept as the optimum solution.

Figure 5.7 Normalized beam current plots for the Bayesian Optimization method done at Ring 1.

The bottom plot of Fig. 5.8 shows the explicit steps of each actor versus the number of iterations.

Additionally, the top plot shows the trend of the objective function (relative beam loss) as the number

of iterations increases. There are significant oscillations in the relative beam loss values, especially

at the beginning, but a general trend towards minimization as the algorithm progresses through

iterations. The early iterations reflect the exploration phase. BO is sampling points that give a broad

understanding of the objective function’s landscape. As iterations progress, there is a trend toward

certain regions in the parameter space. This indicates a shift from exploration to exploitation, where

the algorithm starts to sample more from areas it believes to be near the optimum. The narrowing

of actor current variability suggests a reduction in uncertainty about the location of the minimum

beam loss, as the GP model becomes more informed. At the end of the optimization instance, such
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as the one shown in Fig. 5.8, the configuration that gave the smallest relative beam loss is saved.

GeOFF sets the default configuration of the correctors to these best values.

One important thing to discuss from Fig. 5.8 are the corrector values for the best configurations.

It can be seen from Fig. 5.8 some correctors land on the limit values, e.g., the limits for the normal

sextupoles (XNO magnets) were [-50,50]. This is specially apparent for the octupole correctors

(ONO magnets) which have limits from -60 to 60, e.g., the magnet ONO816L1 is maxed out.

Nevertheless, this was expected given that only 2 octupole correctors were used to correct 4 fourth

order lines, where to fully cancel out all the fourth order RDTs one would need 8 correctors. It is

important to remind the reader that in order to efficiently implement these type of algorithms with

several actors, the currents need to be normalized between [0,1], in order to ensure that all the data

is on the same scale and improve the model performance. This is done by GeOFF internally.

Figure 5.8 Summary for Bayesian optimization of resonance compensation applied to Ring 2 in the
CERN PSB.

While Fig. 5.8 shows a relatively smooth Bayesian optimization instance for Ring 2, Figs. 5.9

and 5.10 show a different story for Ring 3. This particular optimization instance failed to find

a configuration yielding a relative beam loss less than 5% after 200 iterations—unacceptable for

operation. This can be seen on the top plot of Fig. 5.9 which follows the objective function across
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iterations. In order to find an acceptable configuration, the BO instance was performed again, but

in this case, the initial Gaussian process was trained with the data from the previous incomplete

run. The additional 350 iterations from this second instance are shown in Fig. 5.10. This second

instance yielded configurations that led to acceptable values for the relative beam loss. Possible

explanations of this hurdle include inadequate exploration of the parameter space, poor choice of

kernel for the Gaussian Process, poor choice of hyperparameters for this BO, or the presence of

noise in the measurements.

Figure 5.9 Summary for the first instance of Bayesian optimization towards resonance compensation
applied to Ring 3 in the CERN PSB.
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Figure 5.10 Summary for the second instance of Bayesian optimization of resonance compensation
applied to Ring 3 in the CERN PSB. This second instance of optimization was trained with the data
from the first instance.

5.3.2 BOBYQA (Bound Optimization BY Quadratic Approximation)

BOBYQA, which stands for Bound Optimization BY Quadratic Approximation, is an opti-

mization algorithm commonly used for solving constrained optimization problems [57]. Unlike

gradient-based methods, BOBYQA belongs to the class of derivative-free optimization algorithms,

making it suitable for scenarios where the objective function is not differentiable or computationally

expensive to evaluate. The algorithm iteratively builds a quadratic approximation of the objective

function within a trust region, which is a bounded area around the current solution. By iteratively

updating the quadratic model and moving towards the predicted optimum within the trust region,

BOBYQA efficiently explores the search space while minimizing the number of function evalua-

tions. Additionally, it employs a bound constraint strategy to ensure that the search remains within

specified bounds. In this case, BOBYQA was used to solve the same optimization task from the

last section but using a special type of beam at the PSB which is the BCMS (Bunch Compression

Merging and Splitting) beam.

Similar to the exercise done in Fig. 5.7, Fig. 5.11 shows the relative beam loss profiles for an
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instance of the BOBYQA optimization done on Ring 1. As the iterations progress (transitioning

from blue to yellow), the spread in beam current values starts to decrease. This suggests that

the algorithm is refining its search based on the feedback from the objective function and moving

towards regions of the parameter space that yield better optimization results. The later iterations,

indicated by yellow lines, show beam current trajectories that are closer together. This pattern of

convergence signifies that the algorithm has likely identified a promising region in the parameter

space and is now fine-tuning the parameters. It is minimizing the variance between iterations,

suggesting an approach toward a stable solution.

Figure 5.11 Normalized beam current plots for the BOBYQA method done at Ring 1.

Similar to the exercise done for the Bayesian optimization, Fig. 5.12 shows the evolution of

the objective function and actor currents for a BOBYQA optimization instance on BCMS beam.

The initial values were set from the Bayesian optimization results for each ring, as discussed in

the last section. The trend of the objective function (top plot) shows a general decrease in relative
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beam loss as the number of iterations increases, which indicates that the optimization is successful

in finding parameters that result in less beam loss. The bottom graph illustrates the variation of

the actor currents in arbitrary units across iterations. Each actor is distinguished by a unique line

pattern and color. Some correctors are kept at 0 given that they were not available for Ring 3. The

implementation of BOBYQA through GeOFF ensures the algorithm doesn’t fall to a local minimum

by bumping the settings to new configuration once it falls to some stable configuration. That can

be seen from the sudden oscillations found in the objective function plot from Fig. 5.12.

Figure 5.12 Summary for BOBYQA optimization of resonance compensation applied to Ring 3 in
the CERN PSB for BCMS (Bunch Compression Merging and Splitting) beam.

Comparing this BOBYQA instance with the Bayesian optimization results, one can see that the

exploration phase is much shorter and less broad for the BOBYQA instance. Similarly, the variation

steps from BOBYQA in the actor currents are smaller than BO. This is true because of the underlying

mechanism used to estimate the objective function and its uncertainty. BOBYQA uses deterministic

local quadratic models, while Bayesian Optimization uses probabilistic models which provide a

measure of uncertainty. BOBYQA is generally considered a local search technique, meaning it

may be more prone to finding a local minimum rather than the global minimum. Hence, the initial

point for BOBYQA holds more importance. Bayesian optimization is generally used for global
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optimization and is particularly strong in high-dimensional spaces or when function evaluations

are very expensive. In summary, while both algorithms are powerful tools for optimization in

an accelerator physics problems, the choice between BOBYQA and Bayesian optimization will

depend on the specific characteristics of the problem at hand, including the nature of the objective

function, the presence of constraints, the dimensionality of the problem, practical considerations

like the availability of computational and experimental resources, and, ultimately, availability of

study/machine development time.

5.4 Experimental Verification of Compensation

The whole point of the optimization algorithms explained in the last sections were to reduce

the losses that show up in the loss map from Fig. 5.4. Figure 5.13 shows a new loss map with the

best configurations found for each ring using the Bayesian optimization procedure on LHC-type

beam. When comparing both loss maps, it is clear that with these new configurations, the loss

maps have been cleared out of losses in the region of interest. The immediate losses are decreased

by nearly one order of magnitude in the region of occupied by the tune ramp. In particular, the

third order resonances that dominated the losses in Fig 5.4 are largely suppressed with these new

configurations. Nevertheless, there are still some resonance lines visible in the loss maps on Fig.

5.13, e.g., 𝑄𝑥 − 2𝑄𝑦 = −4. Given that these lines are not in the region of PSB operation, they are

not of particular concern.

This chapter has shown a different approach to resonance compensation from the one presented

on Ch. 4. Chapter 4 showed a physics-informed approach by minimizing the Recycler’s RDTs,

and, ultimately, leading to the reduction of beam loss. On the other hand, the previous sections of

this chapter, showed an optimization-based approach, which can be considered a brute-force line

of action. In this approach, all the actors are thrown to an optimization algorithm, which finds

a numerical solution that minimizes the objective function. No physics involved just numerical

optimization. In particular, BOBYQA’s deterministic approach can quickly home in on a solution

when the accelerator is already operating near a resonance compensation optimum. Bayesian Opti-

mization, with its probabilistic nature, is better suited for exploring unknown or poorly understood
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operational regimes. All the previous approaches have been proven to work and yield satisfactory

results in the context of resonance compensation. The choice between optimization-based and

physics-informed approaches—–or a combination thereof—–depends on the specific context of the

particle accelerator’s operational goals, the available data, and the accuracy of the model.

Figure 5.13 Dynamic loss maps for the 4 rings in the PS Booster with the best configuration from
the Bayesian optimization of the resonance compensation. The plots are an average of scanning in
4 directions. Plot provided by F. Asvesta.

124



CHAPTER 6

HIGH INTENSITY STUDIES

6.1 Intensity-Dependent Effects and Non-Gaussian Beam Profiles

For this chapter, the focus goes back to the Fermilab Recycler Ring. All the experiments and

measurements done in Ch. 4 were done at low intensities, i.e., less than 1e10 particles per bunch

(ppb). Nevertheless, current operations and future operations under PIP-II objectives are done at

higher intensities, i.e., 5e10 ppb for current operations and 8e10 ppb for PIP-II. Therefore, it is

relevant to explore resonance compensation at higher intensities.

[58]

Figure 6.1 Several q-Gaussian distributions for different q parameters normalized to unit amplitude
and with a scale parameter of 𝜎 = 1.

6.2 Space Charge Tune Shift

The most relevant parameter for high-intensity operation is the space charge tune shift. As

mentioned in Ch. 2, the space charge tune shift is an incoherent quantity meaning every particle

will feel a different magnitude of this effect. Nevertheless, as shown in Figs. 2.5 and 3.8, this

incoherent quantity will be contained within a necktie distribution. This necktie profile will define

the space charge tune spread. When particles are in the beam core, they will feel the largest space

charge potential, leading to the largest detuning and defining the edge of the necktie distribution.
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Equation 2.78 showed a general way to calculate the space charge tune shift for particles at

different amplitudes 𝐽𝑢. Nevertheless, this calculation is an involved process where the envelope

equation has to be solved around the ring at the same time as the Poisson equation, Eq. 2.65.

Different approximations can be done, in order to do rapid estimates of the space charge tune shift.

Furthermore, a more important quantity is the maximum tune shift of the beam core particles. This

will ultimately define the space charge tune spread. While this quantity can be calculated using

PySCRDT [28], a cruder estimate can also be calculated. This involves using a smooth-lattice

approximation and circular beam pipe approximation, as used in Ref. [59].

With these simplifications, the space charge tune spread can be found as:

Δ𝑄𝑢,𝑠𝑐 =
−3𝑁𝑏𝑟0𝑅𝑆

4𝜎𝑧𝛽𝐿𝛾2
𝐿
𝜀𝑛,𝑢,95%

, (6.1)

where 𝑁𝑏 is the number of protons per bunch, 𝑟0 = 1.535×10−18 meters is the classical radius of the

proton, 𝜎𝑧 = 0.5726 meters is the bunch length, 𝑅 = 𝐶/(2𝜋) is the radius of the Recycler Ring with

a circumference of 𝐶 = 3319.4 meters, 𝑆 = 1.596 is a geometrical factor of the bunch, 𝜀𝑛,𝑢,95% is

the 95% normalized emittance in the 𝑢 plane, and (𝛽𝐿 , 𝛾𝐿) are the longitudinal relativistic factors.

6.3 Measurement of Tune Spread

Figure 6.2 shows slices of loss maps at different intensities. The top slice corresponds to an

intensity of 2 BTs, i.e., approximately 0.6×1010 particles per bunch. The bottom slice corresponds

to an intensity of 17 BTs, approximately 6.0 × 1010 ppb, which is close to the maximum intensity

that can be provided by Booster in single batch. The important thing to note here is that as the

intensity increases the losses happen early in the tune ramp. This can be correlated to the space

charge tune spread using the location of the 3𝑄𝑥 line, which corresponds to where all the beam is

lost. For example, for the bottom slice the losses start happening at 𝑄𝑥 = 25.37, while all beam

is lost at 𝑄𝑥 = 25.345. This means the space charge tune spread can be approximated to 0.025.

Ultimately, Fig. 6.2 shows beams with space charge tune spreads that range from 0.005 to 0.025.
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Figure 6.2 Dynamic loss strips at a fixed vertical set tune of 𝑄𝑦 = 24.45 and on a range from
𝑄𝑥 = 25.39 to 𝑄𝑥 = 25.32 for different intensities.
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Another thing to note from Fig. 6.2 is how the space charge tune shift tends to stabilize to

a value of around 0.025 for intensities higher than 12 BTs or 4.4 × 1010. This is due to the fact

that the equilibrium emittance grows exponentially at higher intensities. Specifically, Ref. [41]

shows how the beam emittance grows with intensity in the Recycler Ring. This study combined

with calculations of the space charge tune shift provided in Ref. [59], explain this behavior. The

emittance grows at the same pace as the beam intensity leading to a stable tune shift.

The maximum tune spread shown in Fig. 6.2 is around 0.02, which only compares to 1/5 of the

PIP-II projection. It is worth pointing out, that these experiments are done for a single batch with

no slip stacking. Therefore, with slip stacking and smaller beam emittance coming from Booster,

space charge tune shifts in the RR of around 0.1 will be possible in the PIP-II era.

Figure 6.3 Tune spread measurements compared to tune spread calculations from horizontal emit-
tances measured with multiwire data.
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6.4 Static Tune Scans at Different Intensities

Figure 6.4 Static tune scan at an equivalent intensity of 14 Booster turns or approximately 4.5e10
ppb with no 3𝑄𝑥 compensation and transverse dampers on.
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Figure 6.5 Static tune scan at an equivalent intensity of 2 Booster turns or approximately 0.5e10
ppb.
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Figure 6.6 Static tune scan at an equivalent intensity of 8 Booster turns or approximately 3e10 ppb.
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Figure 6.7 Static tune scan at an equivalent intensity of 14 Booster turns or approximately 4.5e10
ppb.
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Figure 6.8 IPM data and multi-wire first turn abort data for 𝑄𝑥 = 25.370 at different intensities.
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Figure 6.9 Static tune scan with beam survival ratio (BSR), average q-factor for the q-Gaussian fits,
and beam size 𝜎𝑥 at an equivalent intensity of 2 Booster turns or approximately 0.5e10 ppb.

Figure 6.10 Static tune scan with beam survival ratio (BSR), average q-factor for the q-Gaussian
fits, and beam size 𝜎𝑥 at an equivalent intensity of 8 Booster turns or approximately 3e10 ppb.
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Figure 6.11 Static tune scan with beam survival ratio (BSR), average q-factor for the q-Gaussian
fits, and beam size 𝜎𝑥 at an equivalent intensity of 14 Booster turns or approximately 4.5e10 ppb.

6.5 Effect of Transverse Dampers

Figure 6.12 Static tune scan with beam survival ratio and IPM data box plots with 3𝑄𝑥 compensation,
transverse dampers ON and 2 Booster Turns of equivalent intensity or approximately 0.5e10 ppb.
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Figure 6.13 Static tune scan with beam survival ratio and IPM data box plots with 3𝑄𝑥 compensation,
transverse dampers OFF and 2 Booster Turns of equivalent intensity or approximately 0.5e10 ppb.
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Figure 6.14 Static tune scan with beam survival ratio and IPM data scatter plots with 3𝑄𝑥 compen-
sation, transverse dampers ON and 2 Booster Turns of equivalent intensity or approximately 0.5e10
ppb.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The work shown throughout this document can also be found in Refs. [60–62]. This section reports

on the conclusions and future work stemming from this thesis.

7.1 Conclusions

7.1.1 RDTs and Resonance Compensation

The measurement and subsequent cancellation of RDTs was investigated in depth in Ch. 4.

7.1.2 Physics-Informed vs. Optimization-Based Compensation

Chapters 4 and 5 showed two different approaches to the same problem of resonance com-

pensation. The first one performed at the Fermilab Recycler Ring showed how to implement the

response matrix approach, which can be traced to some underlying physics principles. On the

other hand, Ch. 5 shows how to implement numerical optimization algorithms for compensating

multiple resonance lines at the CERN PS Booster. Nevertheless, this last approach had no direct

physics input. The distinction between a physics-informed approach and a numerical-optimization

approach summarizes the differences between both chapters.

7.1.3 High-Intensity Resonance Compensation

7.1.4 Transverse Dampers and High-Intensity Compensation

Figure 7.1 Transverse damper effect on resonance compensation for bare machine + dampers ON,
3𝑄𝑥 compensated + dampers ON, and 3𝑄𝑥 compensated + dampers OFF configuration. The red
band corresponds to the 3𝑄𝑥 stop band at an intensity of 0.5 ppb with dampers ON.
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7.2 Future Work

7.2.1 Verification of Newly-Installed Sextupoles

Section 4.3 explained the motivation behind installing additional sextupoles that would bring

down that currents needed to compensate 3𝑄𝑥 = 76 and 𝑄𝑥 + 2𝑄𝑦 = 74. Subsequently, Sec. 4.6

explained the procedure used in order to pin down the new locations for two new compensation

sextupoles. There is still future work to be done regarding the commissioning and connection

of the new 620 sextupoles. The sextupoles and their power supplies need to be interfaced with

ACNET. Furthermore, the resonance compensation enhancement still needs to verified by means

of performing an RDT scan. Specifically, the response matrix coefficients corresponding to these

new sextupoles need to be measured and calculated. All of this, following the procedure outlined

in Secs. 4.2 and 4.3.

Figure 7.2 Newly installed compensation sextupoles in the 620 section.
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7.2.2 Resonances and Transverse Dampers at High Intensities

7.2.3 Effect of MI Ramp on RDTs

The ultimate objective of this work is to have this resonance compensation scheme fully

characterized in order to incorporate it into high intensity operations. Nevertheless, there are two

additional factors that have been identified to also play a role in this effort. The first one stems from

the fact that the Main Injector and the Recycler Ring share the same tunnel. It has been shown

that the acceleration ramp changes the beam dynamics inside the Recycler Ring. In particular, it

introduces orbit distortions and tune shifts depending on the position of the ramp [63]. There is

an ongoing effort in order to characterize any higher order magnetic effect from the MI to RR,

e.g., any sextupole term that is being introduced by the MI acceleration ramp. The first results

have shown that the compensation currents change depending on the location of the study event

with respect to the MI acceleration ramp. Therefore, in the future, the resonance compensation

described hereinabove should be modified to accommodate this effect to be fully operational.

7.2.4 Limits of Resonance Compensation

7.2.5 Space Charge RDTs
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Lie Algebra methods for Accelerator 
Physics in 2D
1. Poisson Brackets, Lie Operator and 

Exponential Lie Operators
I n [ ] : = PoissonBracket[f_, g_, q_Symbol, p_Symbol] :=

Simplify[D[f, q] * D[g, p] - D[f, p] * D[g, q]]

I n [ ] : = PoissonBracket[f[x, p], g[x, p], x, p]
Ou t [ ] =

g(0,1)
[x, p] f(1,0)

[x, p] - f(0,1)
[x, p] g(1,0)

[x, p]

I n [ ] : = LieOperator[f_] := Function[g, PoissonBracket[f, g, x, p]]

I n [ ] : = LieOperator[f[x, p]][g[x, p]]
Ou t [ ] =

g(0,1)
[x, p] f(1,0)

[x, p] - f(0,1)
[x, p] g(1,0)

[x, p]

I n [ ] : = ExpOperator[oprtr_, n_ : 10] :=
Function[f, Fold[f + oprtr[#1] / #2 &, f, Reverse@Range[n]]]

I n [ ] : = DiffOperator := Function[f, D[f, x]]

I n [ ] : = Simplify[ExpOperator[DiffOperator, 4][f[x]]]
Ou t [ ] =

f[x] + f′
[x] +

f′′[x]

2
+
1

6
f(3)

[x] +
1

24
f(4)

[x]

I n [ ] : = ExpOperator[LieOperator[f[x, p]], 1][g[x, p]]
Ou t [ ] =

g[x, p] + g(0,1)
[x, p] f(1,0)

[x, p] - f(0,1)
[x, p] g(1,0)

[x, p]

2. Lie Methods for common accelerator 
elements
I n [ ] : = Drift[L_, n_ : 10] := Function[g, ExpOperator[LieOperator[-0.5 * L * p^2], n][g]]
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I n [ ] : = Map[Drift[L], {x, p}]
Ou t [ ] =

{0. + 1. L p + x, 0. + p}

I n [ ] : = ThinQuad[kL_, n_ : 10] := Function[g, ExpOperator[LieOperator[-0.5 * kL * x^2], n][g]]

I n [ ] : = Map[ThinQuad[kL], {x, p}]
Ou t [ ] =

{0. + x, 0. + p - 1. kL x}

I n [ ] : = ThinKick[k_, m_, n_ : 10 ] := Function[g, ExpOperator[LieOperator[k * x^m], n][g]]

I n [ ] : = Map[ThinKick[λ, n], {x, p}]
Ou t [ ] =

x, p + n x-1+n
λ

I n [ ] : = ThickQuad[k_, L_, n_ : 10] := Function[g,
ExpOperator[LieOperator[-Sign[k] * 0.5 * L * (k * x^2 + Sign[k] * p^2)], n][g]]

I n [ ] : = Collect[Assuming[k < 0, ThickQuad[k, L, 3][x]], {x, p}]
Ou t [ ] =

L 1. + 0.166667 k L2 p + 1 + 0.5 k L2 x

I n [ ] : = Collect[Assuming[k < 0, ThickQuad[k, L, 3][p]], {x, p}]
Ou t [ ] =

1 + 0.5 k L2 p + 1. k L + 0.166667 k2 L3 x

I n [ ] : = ThickFQuad[k_, L_, n_ : 10] :=
Function[g, ExpOperator[LieOperator[-0.5 * L * (k * x^2 + p^2)], n][g]]

I n [ ] : = Collect[ThickFQuad[k, L, 10][p], {x, p}]
Ou t [ ] =

1 - 0.5 k L2 - 2.75573 × 10-7 k2 L3 -151200. L + 5040. k L3 - 90. k2 L5 + 1. k3 L7 p +

-1. k L - 2.75573 × 10-6 k2 L3 -60480. + 3024. k L2 - 72. k2 L4 + 1. k3 L6 x

I n [ ] : = ThickDQuad[k_, L_, n_ : 10] :=
Function[g, ExpOperator[LieOperator[0.5 * L * (k * x^2 - p^2)], n][g]]

I n [ ] : = Collect[ThickDQuad[k, L, 6][p], {x, p}]
Ou t [ ] =

1 + 0.5 k L2 + 0.0416667 k2 L4 + 0.00138889 k3 L6 p +

1. k L + 0.166667 k2 L3 + 0.00833333 k3 L5 x

I n [ ] : = Collect[ExpOperator[LieOperator[(0.5 * p^2 + k * x^2) * s]][x], {x, p}]
Ou t [ ] =

1

3
p s -3. + 1. k s2 - 0.1 k2 s4 + 0.0047619 k3 s6 - 0.000132275 k4 s8 +

1 +
1

3
k s2 -3. + 0.5 k s2 - 0.0333333 k2 s4 + 0.00119048 k3 s6 - 0.000026455 k4 s8 x
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I n [ ] : = Collect[ExpOperator[LieOperator[-(0.5 * p^2 + k * x^3 / 6) * s], 3][x], {x, p}]
Ou t [ ] =

1. p s + 1 - 0.166667 k p s3 x - 0.25 k s2 x2

3. Concatenating elements by composition of 
maps
I n [ ] : = Map[Composition[Drift[L], Drift[L]], {x, p}]

Ou t [ ] =

{0. + 2. L p + x, 0. + p}

FODO Lattice

I n [ ] : = Collect[Simplify[Composition[ThinQuad[-1 / (2 f)],
Drift[L], ThinQuad[1 / f], Drift[L], ThinQuad[-1 / (2 f)]][x]], {x, p}]

Ou t [ ] =

0. + 2. L -
1. L2

f
p + 1 -

0.5 L2

f2
x

I n [ ] : = Collect[Simplify[Composition[ThinQuad[-1 / (2 f)],
Drift[L], ThinQuad[1 / f], Drift[L], ThinQuad[-1 / (2 f)]][p]], {x, p}]

Ou t [ ] =

0. + 1 -
0.5 L2

f2
p + -

0.5 L

f2
-
0.25 L2

f3
x
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Lie Algebra methods for Accelerator 
Physics in 4D
Chapter 1. Poisson Brackets and Lie Algebra in 

4D 

I n [ ] : = PoissonBracket[a_, b_, q_List, p_List] := Block[{pk, n}, n = Length[q];
If[n  Length[p],
pk = Simplify[Sum[D[a, q〚j〛] × D[b, p〚j〛] - D[b, q〚j〛] × D[a, p〚j〛], {j, 1, n}]],
Print["Incompatible lengths"]]]

I n [ ] : = PoissonBracket[f[x, px, y, py], g[x, px, y, py], {x, y}, {px, py}]
Ou t [ ] =

g(0,0,0,1)
[x, px, y, py] f(0,0,1,0)

[x, px, y, py] -

f(0,0,0,1)
[x, px, y, py] g(0,0,1,0)

[x, px, y, py] +

g(0,1,0,0)
[x, px, y, py] f(1,0,0,0)

[x, px, y, py] -

f(0,1,0,0)
[x, px, y, py] g(1,0,0,0)

[x, px, y, py]

I n [ ] : = LieOperator[f_] := Function[g, PoissonBracket[f, g, {x, y}, {px, py}]]

I n [ ] : = LieOperator[f[x, y, px, py]][g[x, y, px, py]]
Ou t [ ] =

g(0,0,0,1)
[x, y, px, py] f(0,1,0,0)

[x, y, px, py] -

f(0,0,0,1)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] +

g(0,0,1,0)
[x, y, px, py] f(1,0,0,0)

[x, y, px, py] -

f(0,0,1,0)
[x, y, px, py] g(1,0,0,0)

[x, y, px, py]

I n [ ] : = ExpOperator[oprtr_, n_ : 10] :=
Function[f, Fold[f + oprtr[#1] / #2 &, f, Reverse@Range[n]]]

I n [ ] : = Simplify[ExpOperator[LieOperator[f[x, y, px, py]], 1][g[x, y, px, py]]]
Ou t [ ] =

g[x, y, px, py] + g(0,0,0,1)
[x, y, px, py] f(0,1,0,0)

[x, y, px, py] -

f(0,0,0,1)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] +

g(0,0,1,0)
[x, y, px, py] f(1,0,0,0)

[x, y, px, py] -

f(0,0,1,0)
[x, y, px, py] g(1,0,0,0)

[x, y, px, py]
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I n [ ] : = Simplify[ExpOperator[LieOperator[f[x, y, px, py]], 2][g[x, y, px, py]]]
Ou t [ ] =

g[x, y, px, py] +
1

2
f(0,1,0,0)

[x, y, px, py]

g(0,0,0,2)
[x, y, px, py] f(0,1,0,0)

[x, y, px, py] - f(0,0,0,2)
[x, y, px, py]

g(0,1,0,0)
[x, y, px, py] + g(0,0,0,1)

[x, y, px, py] 2 + f(0,1,0,1)
[x, y, px, py] -

f(0,0,0,1)
[x, y, px, py] g(0,1,0,1)

[x, y, px, py] + g(0,0,1,1)
[x, y, px, py]

f(1,0,0,0)
[x, y, px, py] - f(0,0,1,1)

[x, y, px, py] g(1,0,0,0)
[x, y, px, py] +

g(0,0,1,0)
[x, y, px, py] f(1,0,0,1)

[x, y, px, py] -

f(0,0,1,0)
[x, y, px, py] g(1,0,0,1)

[x, y, px, py] +

f(1,0,0,0)
[x, y, px, py] g(0,0,1,1)

[x, y, px, py] f(0,1,0,0)
[x, y, px, py] -

f(0,0,1,1)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] +

g(0,0,0,1)
[x, y, px, py] f(0,1,1,0)

[x, y, px, py] - f(0,0,0,1)
[x, y, px, py]

g(0,1,1,0)
[x, y, px, py] + g(0,0,2,0)

[x, y, px, py] f(1,0,0,0)
[x, y, px, py] -

f(0,0,2,0)
[x, y, px, py] g(1,0,0,0)

[x, y, px, py] + g(0,0,1,0)
[x, y, px, py]

2 + f(1,0,1,0)
[x, y, px, py] - f(0,0,1,0)

[x, y, px, py] g(1,0,1,0)
[x, y, px, py] +

f(0,0,0,1)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] -2 + f(0,1,0,1)
[x, y, px, py] -

f(0,1,0,0)
[x, y, px, py] g(0,1,0,1)

[x, y, px, py] -

g(0,0,0,1)
[x, y, px, py] f(0,2,0,0)

[x, y, px, py] + f(0,0,0,1)
[x, y, px, py]

g(0,2,0,0)
[x, y, px, py] - g(0,1,1,0)

[x, y, px, py] f(1,0,0,0)
[x, y, px, py] +

f(0,1,1,0)
[x, y, px, py] g(1,0,0,0)

[x, y, px, py] - g(0,0,1,0)
[x, y, px, py]

f(1,1,0,0)
[x, y, px, py] + f(0,0,1,0)

[x, y, px, py] g(1,1,0,0)
[x, y, px, py] +

f(0,0,1,0)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] f(1,0,0,1)
[x, y, px, py] -

f(0,1,0,0)
[x, y, px, py] g(1,0,0,1)

[x, y, px, py] +

g(1,0,0,0)
[x, y, px, py] -2 + f(1,0,1,0)

[x, y, px, py] - f(1,0,0,0)
[x, y, px, py]

g(1,0,1,0)
[x, y, px, py] - g(0,0,0,1)

[x, y, px, py] f(1,1,0,0)
[x, y, px, py] +

f(0,0,0,1)
[x, y, px, py] g(1,1,0,0)

[x, y, px, py] - g(0,0,1,0)
[x, y, px, py]

f(2,0,0,0)
[x, y, px, py] + f(0,0,1,0)

[x, y, px, py] g(2,0,0,0)
[x, y, px, py]

I n [ ] : = ExpLieOperator[f_, n_ : 10] := Function[g, ExpOperator[LieOperator[f], n][g]]

I n [ ] : = ExpLieOperator[f[x, y, px, py], 1][g[x, y, px, py]]
Ou t [ ] =

g[x, y, px, py] + g(0,0,0,1)
[x, y, px, py] f(0,1,0,0)

[x, y, px, py] -

f(0,0,0,1)
[x, y, px, py] g(0,1,0,0)

[x, y, px, py] +

g(0,0,1,0)
[x, y, px, py] f(1,0,0,0)

[x, y, px, py] -

f(0,0,1,0)
[x, y, px, py] g(1,0,0,0)

[x, y, px, py]

Chapter 2. Common Accelerator Elements
I n [ ] : = Drift[L_, n_ : 10] := Function[g, ExpLieOperator[-0.5 * L * px^2 - 0.5 * L * py^2][g]]
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I n [ ] : = Simplify[Map[Drift[L], {x, y, px, py}]]
Ou t [ ] =

{0. + 1. L px + x, 0. + 1. L py + y, 0. + px, 0. + py}

I n [ ] : = ThinQuad[kL_, n_ : 10] := Function[g, ExpLieOperator[-0.5 * kL * x^2 + 0.5 * kL * y^2][g]]

I n [ ] : = Simplify[Map[ThinQuad[-1 / f], {x, y, px, py}]]
Ou t [ ] =

0. + x, 0. + y, 0. + px +
1. x

f
, 0. + py -

1. y

f


I n [ ] : = Simplify[Map[ThinQuad[k], {x, y, px, py}]]
Ou t [ ] =

{0. + x, 0. + y, 0. + px - 1. k x, 0. + py + 1. k y}

I n [ ] : = ThinSextupole[s_, n_ : 10] :=
Function[g, ExpLieOperator[(1 / 3) * s * (x^3 - 3 * x * y^2), n][g]]

I n [ ] : = Map[ThinSextupole[s], {x, y, px, py}]
Ou t [ ] =

x, y, px + s x2 - y2, py - 2 s x y

I n [ ] : = GetNormalHamiltonian[kn_, n_] := (1 / (1 + n)) * ComplexExpand[Re[kn * (x + I * y)^(n + 1)]]

I n [ ] : = Expand[GetNormalHamiltonian[k, 2]]
Ou t [ ] =

k x3

3
- k x y2

I n [ ] : = GetSkewHamiltonian[k_, n_] := (1 / (1 + n)) * ComplexExpand[Re[I * k * (x + I * y)^(n + 1)]]

I n [ ] : = Expand[GetSkewHamiltonian[k, 2]]
Ou t [ ] =

-k x2 y +
k y3

3

I n [ ] : = ThinNormalMultipole[ki_, i_, n_ : 10] :=
Function[g, ExpLieOperator[GetNormalHamiltonian[ki, i], n][g]]

I n [ ] : = Map[ThinNormalMultipole[k, 2], {x, y, px, py}]
Ou t [ ] =

x, y, px + k x2 - y2, py - 2 k x y

I n [ ] : = ThinSkewMultipole[ki_, i_, n_ : 10] :=
Function[g, ExpLieOperator[GetSkewHamiltonian[ki, i], n][g]]

I n [ ] : = Map[ThinSkewMultipole[k2s, 2], {x, y, px, py}]
Ou t [ ] =

x, y, px - 2 k2s x y, py + k2s -x2 + y2

I n [ ] : =
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I n [ ] : =
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Ou t [ ] =

Chapter 3. Multiple elements and Map 

Composition
I n [ ] : = Map[Composition[Drift[L], Drift[L]], {x, y, px, py}]

Ou t [ ] =

{0. + 2. L px + x, 0. + 2. L py + y, 0. + px, 0. + py}

I n [ ] : =

FODO Lattice

I n [ ] : = FODO[L_, K_, n_ : 10] := Function[g, Composition[ThinQuad[-0.5 * K],
Drift[L], ThinQuad[K], Drift[L], ThinQuad[-0.5 * K]][g]]

I n [ ] : = Collect[Simplify[FODO[L, -1 / f][x]], {x, y, px, py}]
Ou t [ ] =

0. + 2. L +
1. L2

f
px + 1 -

0.5 L2

f2
x
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I n [ ] : = Collect[Simplify[FODO[L, -1 / f][y]], {x, y, px, py}]
Ou t [ ] =

0. + 2. L -
1. L2

f
py + 1 -

0.5 L2

f2
y

I n [ ] : = Collect[Simplify[FODO[L, -1 / f][px]], {x, y, px, py}]
Ou t [ ] =

0. + 1 -
0.5 L2

f2
px + -

0.5 L

f2
+
0.25 L2

f3
x

I n [ ] : = Collect[Simplify[FODO[L, -1 / f][py]], {x, y, px, py}]
Ou t [ ] =

0. + 1 -
0.5 L2

f2
py + -

0.5 L

f2
-
0.25 L2

f3
y
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