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ABSTRACT

Digital quantum Hamiltonian simulation is, by now, a relatively mature field of study;

however, new investigations are justified by the importance of quantum simulation for

scientific and societal applications. In this dissertation, we discuss several advances in

circuit-based Hamiltonian simulation.

First, following two introductory chapters, we consider the mitigation of Trotter errors

using Chebyshev interpolation, a standard yet powerful function approximation technique.

Implications for estimating time-evolved expectation values are discussed, and a rigorous

analysis of errors and complexity show near optimal estimation of dynamical expectation

values using only Trotter and constant overhead. We supplement our theoretical findings

with numerical demonstrations on a 1D random Heisenberg model.

Next, we introduce a computational reduction from time dependent to time independent

Hamiltonian simulation based on the standard (𝑡, 𝑡′) technique. Our approach achieves two

advances. First, we provide an algorithm for simulating time dependent Hamiltonians

using qubitization, an asymptotically optimal algorithm that cannot handle time-ordering

directly. Second, we devise an algorithm for time dependent simulation based on a natural

generalization of multiproduct formulas, achieving higher accuracies than product formulas

while retaining commutator scaling. Rigorous performance analyses are performed for both

algorithms, and simple numerics are provided which demonstrate the effectiveness of the

multiproduct formulas procedure for reducing simulation errors.

Finally, we take a shift away from rigorous computational complexity and consider

several practical methods for near-term quantum simulation. First, we consider the analog

quantum simulation of bound systems with discrete scale invariance using trapped-ion



systems, with applications to Efimov physics. Next, we discuss the Projective Cooling,

a method for preparing bound states of non-relativistic quantum systems with localized

interactions based on the dispersion of unbound states. Lastly, we discuss the Rodeo

Algorithm, a probabilistic, iterative, phase-estimation-like protocol which is resource-

frugal and effective at measuring and preparing eigenstates. Concluding remarks and

possible future directions of research are given in a brief final chapter.
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CHAPTER 1

HOUSEKEEPING

This thesis is concerned primarily with the task of simulating a Hamiltonian on a quantum

computer. What is Hamiltonian? Why do we want to simulate it? What is a quantum

computer?

Those already in-the-know, who want to skip to the technical advances of this thesis,

are welcome to survey the chapters to find what they are looking for. I expect they are

already inclined to do so! Those who want a little more context for this thesis, and to

learn some of the big ideas underlying the field, are encouraged to continue on to the next

chapter. There I will provide a sweeping, but necessarily brief, survey of the big ideas in

the field of digital quantum Hamiltonian simulation, steadily working towards the more

technical advances of this work.

The Abstract of this dissertation provides, as expected, a synopsis of all topics cov-

ered. All chapters are essentially independent of each other, with the partial exception of

Chapter 5, which relies some ideas from Chapter 4 to support a conjecture. Moreover,

all but Chapter 6 correspond to a single, self-contained research project. The penultimate

Chapter 6 is a mixed bag of projects to which I contributed.

All of the projects discussed in this thesis have corresponding publications or preprints,

and references to these works are provided near the beginning of the relevant chapter or

section. When deciding what to include here, and what to leave to those publications, I

use several criteria. First, since this thesis serves as a compendium of my work, I focused

chiefly on my contributions to a given project. Sometimes though, for the sake of a

self-contained document, I include results and derivations that are primarily due to my
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collaborators. I will indicate clearly when this is the case. Finally, for various reasons,

there are results from these projects that did not make their way into the corresponding

publication, especially in the miscellaneous Chapter 6. By including those here, I hope to

complement the publications by supporting and extending their findings through numerics

or derivations.

The flavor of this thesis is analytical, in at least two senses. First, in the mathematical

sense. To approach a problem "analytically" means to utilize tools of mathematical proof

and derivation, in contrast to numerical calculation. The central results are proofs and

analytical bounds on error and computational complexity. Numerics, however, are used to

provide assurance and to see the "actual" performance in a way that complexities cannot

showcase. These benchmarks are usually far from complete, suggesting an obvious path for

additional research. Second, this thesis is analytical in that it is primarily concerned with

analyzing something, namely quantum algorithms. Although we propose novel simulation

methods, they are typically variations on existing tools. The performance and errors

analyses are likely the major technical advancement of this dissertation. I believe that such

careful analyses provide firm guideposts for those who wish to apply algorithms to specific

use cases. Hopefully, our methods for estimating algorithmic resources can be useful for

the analysis of quantum algorithms developed in the future.

Often in practice, analytical error bounds fall short of representing the typical error

of a simulation method [27, 66]. This is mostly good news, meaning performance is

often much better than expected. What, then, is the value of such bounds if they fail

to capture the "actual" behavior of the method? Worst-case error and resource bounds

represent a first important step towards understanding the behavior and capability of a

2



method, providing us the most robust guarantees of how well an algorithm will perform.

This is only part of the picture, and while numerical experiments can provide more insight,

there is additional work for theorists as well. For example, recent work on average-case

hardness for Trotter simulations likely represents a step towards a fuller understanding of

the "typical" hardness [23].

Without further ado, please enjoy what this dissertation has to offer. I hope you find

inspiration for your own quantum algorithms research and/or a greater appreciation of what

this field has to offer, both conceptually and practically.
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CHAPTER 2

BACKGROUND

I expect there will be as many readers of this thesis who are newcomers to quantum

computing as those who are quantum algorithms experts. Thus, I am motivated to dedicate

a chapter to provide both background and inspiration for the technical results that follow.

We will start with broad scope and little detail, gradually narrowing our focus to the new

stuff. More detailed background on specific research is given at the beginning of each

chapter.

Quantum information science, which includes quantum computing, is a relatively

young discipline which overlaps several technical fields, particularly physics and computer

science. My approach to this chapter is to discuss each of these domains separately,

then their surprising interconnection made most obvious by (but not reliant on) quantum

computing. With these ingredients in place, we then introduce Hamiltonian simulation,

which relates to the computation of either closed, naturally occurring quantum systems

or problems with equivalent mathematical structure. I hope the reader finds these short

surveys valuable to understand the more particular and technical work of later chapters.

2.1 Quantum Mechanics and Challenges to Realism

The developments in physics which began at the turn of the 20th century, were, in

many respects, parallel with those found in the arts in that same period. As the modernists

eschewed accurate portrayals for abstract figures and geometries, the physicists grappled

with phenomena increasingly removed from regular experience. And, like the modernists,

these new ways of doing physics were met with some backlash. Despite this, the resulting

theories, namely relativity and quantum mechanics, were better at explaining the world

4



around them than the earlier "classical" physics. Yet their character was so strange that it led

some physicists, such as Dirac1, to emphasize mathematics over the senses in formulating

physical theories.

This is especially true for quantum mechanics, which on the surface said a number of

very strange things. Particles were neither here nor there until measured, the story goes,

seemingly defying the scientific tenet of realism. Particles may be waves, waves may be

particles. More truthful than such common refrains is the recognition that quantum me-

chanics provides a relatively well-defined framework for accurate calculations of particles,

atoms, molecules, and nuclei, even as the theory appeared unintuitive or even nonsensical.

The mathematics of quantum mechanics nicely captured a variety of phenomena which

eluded classical treatment, but the classical theory made more sense. Yet even today, the

meaning of quantum mechanics remains mainly unresolved. In response to this absurdity,

the prevailing attitude amongst quantum physics practitioners is captured in the pithy man-

date: "Shut up and calculate." The meaning: don’t worry about what the theory means,

per se, just worry about what it predicts. While it’s easy to criticize this point of view,

delaying thorny questions of interpretation arguably allowed for more rapid understanding

of physical phenomena in the decades following the invention of quantum mechanics.

One unsettling aspect of quantum mechanics is its intrinsic nondeterminism. The theory

only predicts probabilities of certain outcomes in a physical experiment, where "experi-

ment" is interpreted broadly as any means by which observers (such as people) experience

the world around them. While probabilities had appeared earlier in statistical mechanics

and its connection to thermodynamic entropy, their appearance here in a fundamental
1"I learned to distrust all physical concepts as the basis for a theory. Instead one should put one’s trust

in a mathematical scheme, even if the scheme does not appear at first sight to be connected with physics."
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physical theory was a notable break from the past, and carried unsettling philosophical

implications. It led Einstein, Podolsky, and Rosen to argue that quantum mechanics was

actually an incomplete theory of reality [42], and a more complete understanding, even if

impossible to achieve by mere mortals, would reveal an underlying determinism. Some

alternate theories, most notably Bohmian mechanics [55], purport to restore determinism

to quantum by relegating all chance to inaccessible knowledge of the particle trajectories. It

was shown in a groundbreaking work by John Bell that certain reasonable "hidden variable

theories" make predictions distinct from those of quantum mechanics [12]. Experiments

on the matter came out in favor of quantum theory [7, 49], and these contributions were

rewarded with the 2022 Nobel Prize in Physics. The bottom line is that it is hard to restore

determinism, or even conventional probability, to quantum mechanics without violating

other cherished physical principles such as locality. In contrast to hidden-variable theories,

which seem to deny quantum mechanics as it is, the many worlds interpretation [38] asks

us to take quantum theory at face value, including the reality of the quantum wavefunction

as a description of all phenomena.

So far, I have emphasized that quantum physics is a radical departure, conceptually,

from classical physics. Yet this belies the fact that, in formulating quantum mechanical

models, classical models are often used as a starting points. It is easiest to start with

existing tools when trying to create new ones. The process of taking a classical theory

and tweaking it to describe a quantum system is known as "quantization." It turns out that

not all ideas from classical physics are equally suitable for quantization. For example,

the Newtonian framework, in which changes in motion are generated by forces, does not

have a great correspondence to quantum mechanics principles. Rather, the most natural
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jumping off point for quantum mechanics is the Hamiltonian formulation, named after Irish

mathematician, astronomer, and physicist William Rowan Hamilton. In this framework,

a classical system has physical configurations given by a number of coordinates 𝑞. For

example, the location and orientation of an airplane may be exactly represented by a set

of 6 numbers. Each coordinate 𝑞 has a corresponding conjugate momentum 𝑝, which in

simple cases may be seen as expressing a "velocity" for 𝑞. Specifying all coordinates 𝑞 and

momenta 𝑝 gives a complete specification of the system in the sense that any "observable

quantity" 𝑂 is a function 𝑂 (𝑞, 𝑝) of the coordinates and momenta.

One uniquely special observable is the Hamiltonian 𝐻 (𝑞, 𝑝), which provides the total

energy of the system as a function of its coordinates and momenta. It also contains all

information about future states of the physical system. That is, the classical Hamiltonian

defines a set of differential equations

𝑑𝑞

𝑑𝑡
=
𝜕𝐻

𝜕𝑝
,

𝑑𝑝

𝑑𝑡
= −𝜕𝐻

𝜕𝑞
(2.1)

which, when solved, provide the state of the system at any subsequent time. More succinctly,

𝐻 encodes the dynamics of the physical system in question. The importance to physics is

immediate. One of the primary goals of physics is to understand a phenomena well enough

to make future predictions given current data. Prediction is more powerful, and impressive,

than retroactive explanation. The Hamiltonian provides all the information needed to make

these predictions.

In an exactly analogous manner, the quantum Hamiltonian 𝐻 (we use the same symbol)

encodes all of the dynamics of closed quantum system. Given a system described by

wavefunction |𝜓⟩ the dynamics are found by solving the famous Schrödinger equation.

𝑖𝜕𝑡 |𝜓𝑡⟩ = 𝐻 |𝜓𝑡⟩ (2.2)
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Formally, 𝐻 in the quantum setting is a Hermitian operator on a Hilbert space, and |𝜓𝑡⟩

is a vector-valued on this space. The main point is that solving (2.2) is a fundamentally

important task for understanding the dynamics of physical phenomena. Solving this

equation allows for understanding the formation of the elements, the properties of molecules

and materials, and the fundamental constituents of nature.

In practice, solving (2.2) is far too difficult with even today’s best computational devices

and cleverest tricks. Instead, people come up with a number of clever partial solutions

and approximation schemes, to various degrees of success. In talking about what can be

computed efficiently and what cannot, however, we have already begun to enter a different

domain worth discussion: computer science.

2.2 Computer Science and the Role of Physics

In Scott Aaronson’s Quantum Computing Since Democritus, he writes that computer

science "is a bit of a misnomer." Rather than being about computers, in the particular

sense of desktops, servers, and smart phones, he views it as "the study of the capacity of

finite being such as us to learn mathematical truths." [1] Aaronson understands that "math-

ematical truths" encompasses more than what is sought by professional mathematicians.

It could involve finding the shortest route to work (Dĳkstra’s Algorithm), or predicting

protein structure from an amino acid sequence [74]. Such tasks, in light of modern sci-

ence, are likely viewed as being intrinsically mathematical and thus within the domain

of computation. However, with recent developments in artificial intelligence, particularly

Large Language Models (e.g., chatGPT), even more domains of human activity have been

made amenable to computational treatment.

The diversity of computational problems is paralleled by the diversity of entities which
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can serve as a computational medium. Indeed, prior to the development of general-purpose,

digital computers in the mid-20th century (and even following that), the term referred

to human computers who performed much of the calculations for scientific, industrial,

and governmental applications (see, e.g., [116]). While standard, modern computers are

electronic, computers could in principle be made from billiard balls [48] or even water [3].

In some sense, however, all of these computers are equivalent to a Turing machine, an

idealized computer consisting of a tape for manipulating symbols, an input program, and

several internal states. One way to express this equivalence is that a Turing machine may

be used to simulate the calculations performed by any of these other models.

The hypothesis that "computable by Turing machine" captures the notion of what is

computable is referred to as the Church-Turing thesis [32]. No serious challenge to this

thesis has been sustained in the near-century since it was proposed. If the thesis holds, it

seems to suggest that details about the physical system performing the computation may

be abstracted away. If so, one shouldn’t expect questions in physics to have much bearing

on computer science, besides the practicalities of engineering an effective computational

device.

Although understanding computability, i.e. what problems may be solved by computa-

tion, is important, we are left without an understanding of which problems are "practically"

solvable on real world computers. For example, let’s return to the Schrödinger equa-

tion (2.2). This equation can be solved straightforwardly, to arbitrary accuracy, given

enough time, space, and energy. However, the amount of these resources needed is pro-

hibitively large for interesting instances. No one wants to wait 1000 years for a single

result. Questions of what may be computed efficiently falls under the purview of the
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subfield of computational complexity. Nowadays, most aspects of theoretical computer

science are concerned with complexity, and computability is a relatively closed subject.

Refining our field of view to consider only computable problems, a new question

emerges: Does a Turing machine also capture what can be efficiently computed in the

physical world? The strong Church-Turing thesis, as the name suggests, is a strengthening

of the original thesis that claims this is indeed the case. Though the claim is stronger,

the evidence is correspondingly weaker. In fact, existing evidence suggests that quantum

computers, if constructed, could solve problems efficiently that Turing machines could

not [117, 119]. The potential for quantum computers to solve problems relevant to society

has driven major investment from government and industry [53]. From a more fundamental

perspective, the power of quantum computing suggests a greater interplay between physics

and computer science than has been historically explored. Are there other physically

realizable models of computation even more powerful than classical or quantum computers?

In this direction, work by Aaronson has shown how computers based on hidden variable

theories would be slightly more powerful than standard quantum computers [2]. The upshot

of these developments is that physics seems to play an essential role in a fundamental

computer science questions: what computational tasks may be efficiently performed?

2.3 Quantum Computing, an Overview

In the last section, we rapidly converged on the notion of a quantum computer, and here

we discuss in more detail what this means. As we approach our primary topic, Hamiltonian

simulation on a quantum computer, I will use increasingly precise and technical language,

and no longer avoid mathematics. Readers with background in linear algebra and complex

numbers are encouraged to consult standard resources for more thorough introductions to
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quantum computing [100].

At a high level, a quantum computer is nothing more than a computer based on

the laws of quantum mechanics. Any computation requires, abstractly, the encoding of

information and its manipulation by certain operations to achieve a result. For example,

a classical computer may perform addition by storing two numbers in binary registers,

then manipulating these registers in a specified way to get the sum on one of the two

registers. A quantum computer, by contrast, stores its information as quantum states, and

manipulates these states. As a caution, although any laptop is describable, in principle, in

quantum mechanical terms, the way they store information and perform operations is most

aptly described as "classical." This is true of essentially any computational device, save the

handful of quantum computers under development today.

How do we model the workings of a quantum computer concretely? Just like with

classical computers, many possible computational models exist. Quantum Turing ma-

chines [37], measurement-based [110], and adiabatic quantum computation [4] are several

well-explored examples. But the most popular approach by far is the circuit-based model

of quantum computation, which we will now explain in detail. The reader will benefit in

having some background in the classical circuit model of computation, or experience with

real digital logic circuits.

Figure 2.1 provides an example of a quantum circuit. As with the classical circuit

model, quantum circuits have wires and gates that feed forward (no feedback loops), but

here the wires contain quantum information. Instead of well-defined bits in the 0 or 1 state,

wires carry quantum bits, or qubits. In isolation, a qubit can have a state in the form

𝑐0 |0⟩ + 𝑐1 |1⟩. (2.3)
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Here, the symbols |0⟩ and |1⟩ are "kets" which take on a precise meaning as orthonormal

vectors in a two-dimensional complex inner product space, but can be thought of informally

as the "definite" states that the qubit can take. The coefficients 𝑐𝑖 are complex numbers that

are often called "amplitudes." The fact that 𝑐𝑖 does not have to be a positive real number is

the crucial difference between quantum computing and probabilistic, a.k.a. Monte Carlo,

computing. The probability of measuring 0 or 1 is given by |𝑐0 |2 and |𝑐1 |2, respectively,

but before a measurement is performed the amplitudes can exhibit interference. In order

to have total probability one, we must have the following normalization condition.

|𝑐0 |2 + |𝑐1 |2 = 1 (2.4)

For vectors |𝜓⟩ and |𝜙⟩, their inner product is denoted ⟨𝜙|𝜓⟩. In this language, the

normalization condition for a qubit in state |𝜓⟩ can be written as ⟨𝜓 |𝜓⟩ = 1. In this thesis,

the term state vector will mean the normalized vector used to mathematically represent

the state of our quantum system. Many readers will be familiar with the more general

density matrix representation of quantum states, but because of our focus on closed-system

dynamics we will not have much need for this more complicated formalism.

For any interesting computation, combining multiple qubits together will be necessary.

Such a collection will be referred to as a quantum register. As with combining any two

(distinguishable) quantum mechanical systems, joint qubit states are described formally

through the tensor product of the individual state spaces. Any state vector |Ψ⟩ on the joint

system is a linear combination of product vectors of the form

|𝜙⟩ ⊗ |𝜒⟩ (2.5)

where |𝜙⟩ and |𝜒⟩ are state vectors on each individual space. As an important example, a
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Figure 2.1 Example of a quantum circuit on three qubits. Information is carried on the
wires as a collective quantum state, which is a superpositions of possible values of the
bitstrings on the register. This information is manipulated by gates which act on one or
more of the qubits. Partial information about the quantum state is obtained by
measurements, here represented by meters. The measurements also affect the state in
accordance with quantum mechanics.

state vector on a collection of 𝑛 qubits may be generally expressed as a sum

|𝜓⟩ =
∑︁

𝑏∈{0,1}𝑛
𝑐𝑏 |𝑏⟩ (2.6)

over all bitstrings 𝑏 = 𝑏1𝑏2 . . . 𝑏𝑛. There is an underlying tensor product |𝑏⟩ ≡ |𝑏1⟩ ⊗

|𝑏2⟩ ⊗ · · · ⊗ |𝑏𝑛⟩ ≡ |𝑏1𝑏2 . . . 𝑏𝑛⟩ that is often convenient to leave implicit. Whenever the

joint state |Ψ⟩ cannot be written as a product vector, it is said to be entangled. Generically

speaking, almost all quantum states are entangled, in the sense that choosing a random

state has vanishingly small probability of being a product state for systems with more

than a small number of states [143]. Entanglement is a necessary condition for quantum

computers to exhibit superior performance over classical computers, though identifying

the source of "power" quantum computation is a somewhat subtle issue [69].

To summarize, the objects of our quantum computer are qubits, and their collective

state is given by quantum state vector, i.e. a normalized vector in the tensor product over

each qubit vector space. More concisely, this is just a normalized vector in C2𝑛 for 𝑛 qubits.

Measuring the qubits returns a bitstring with probability given by the squared amplitude.
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We must now establish the appropriate operations for our quantum computer. Naturally,

our operations should not take us outside the set of allowed states, namely the quantum

state vectors described above. Moreover, empirical evidence suggests that quantum me-

chanical operations are all linear, so that operations on the full state may be understood

by considering the operations on each component of the superposition. We are therefore

led to consider gates as unitary operations acting on a subset of qubits. As a circuit, we

represent these simply as boxes which some of the wires pass through.

Today, computer programmers rarely work at the level of digital logic and gates on their

laptop. Instead, programmers work at higher levels of abstraction to skirt minute details,

accomplishing more as a result. In this thesis, we will seek to analyze quantum algorithms,

and it will be easier and more insightful if we consider larger chunks, or subroutines, used

to carry out the method. In the analysis, we will call these subroutines oracles: "black

boxes" that are used as part of the algorithm, whose inner workings we either don’t know

or delay considering. For the quantum context, the oracle 𝑂 will be a unitary operation on

some number of qubits. As an example of an oracle, consider a function 𝑓 from 𝑚-bit to

𝑛-bit strings. From this classical operation, we can define a unitary oracle𝑈 𝑓 that computes

𝑓 . Given two quantum registers of length 𝑛 and 𝑚 in state |𝑥⟩ ⊗ |𝑎⟩ ≡ |𝑥⟩ |𝑎⟩, define𝑈 𝑓 as

𝑈 𝑓 |𝑥⟩ |𝑎⟩ = |𝑥⟩ | 𝑓 (𝑥) ⊕ 𝑎⟩ . (2.7)

and extend the definition by linearity. It can be checked that𝑈 𝑓 is unitary, and when 𝑎 = 0

it is clear that 𝑈 𝑓 computes 𝑓 (𝑥). Such oracles are used, for example, in Shor’s order-

finding algorithm, where 𝑓 (𝑥) = 𝑎 · 𝑥 is multiplication by some integer 𝑎. In the context

of this dissertation, we will define oracles that compute the parameters of a Hamiltonian

or evolve a quantum register according to some Hamiltonian. Oracles may also encode
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specific observables to be measured during a quantum algorithm. Without knowing the

computational cost of implementing an oracle 𝑂, it is impossible to know the cost of any

algorithm utilizing 𝑂 as a subroutine. One of the benefits of using oracles is to break

down the problem into smaller pieces: first implementing the oracle, then implementing

the algorithm given the oracle. Another benefit is abstraction: we can analyze the general

oracle problem, then apply those results to any particular instance of that oracle. In the

example above, this might entail different functions 𝑓 , some of which are easy to compute,

others of which are uncomputable!

2.4 The Case for Quantum-Based Quantum Simulation

The advent of quantum mechanics carried great promise to better understand a range

of physical phenomena, but challenges remained that were more about computational

feasibility than theoretical understanding. As expressed by Paul Dirac [39] regarding the

invention of quantum mechanics,

The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and

the difficulty is only that the exact application of these laws leads to equations

much too complicated to be soluble.

Though there appears "only" one barrier to solving all of chemistry, it is indeed a very

large one. Massive supercomputing resources are needed to solve, starting from quantum

mechanics, even relatively small molecules. As a result, heuristic and phenomenological

techniques are employed in practice, which are less expensive but also less reliable and

general. Examples of computational techniques for quantum many-body problems include

a slew of variational techniques, such as Hartree-Fock and Coupled Cluster, and dynamical
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methods such as Molecular Dynamics [33]. Despite these clever and well-established

approaches, we emphasize that there remains a lack of general, efficient methods for

classical simulation of quantum dynamics.

Although efficient quantum simulation would likely not obviate the need for high-level,

domain-specific concepts in chemistry, materials science, etc., such simulations would

nevertheless be valuable to science and human knowledge. Unfortunately, it is believed

that classical computers could never simulate quantum physics efficiently, meaning they

couldn’t solve the Schrödinger equation (2.2) in interesting instances without intractable

amounts of resources. After a hundred years of effort, effective classical methods for

computing general quantum properties have simply not been found, although discovering

such methods would be both useful and philosophically profound.

Some of the earliest explorations into quantum computing were motivated by the desire

for efficient quantum simulation [46, 37]. As it happens, not only can quantum computers

simulating physical Hamiltonians efficiently, as we shall see in Section 2.7, but also this

task fully captures the power of quantum computing. More precisely, it turns out that

𝑘-local Hamiltonian simulation is BQP-complete. Here 𝑘-local refers to Hamiltonians of

the form

𝐻 =

Γ∑︁
𝛾=1

𝐻𝛾 (2.8)

where each 𝐻𝛾 only operates on at most 𝑘 qubits. In words, interactions across the system

are built up from interactions involving only a small number of constituents. BQP is,

loosely speaking, the class of problems which may be efficiently solved by a quantum

computer. "BQP-complete" refers to the fact that 𝑘-local Hamiltonian simulation is both in

BQP (quantum computers can do it) and also that any problem in BQP may be encoded as a
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𝑘-local simulation problem (in fact, 2-local)2. Thus, we may view digital quantum circuits

and local Hamiltonian simulations as two sides of the same coin. This may not come as

a surprise to many physicists, who are used to viewing all quantum operations as arising

from an underlying Hamiltonian. The importance is that, if quantum computers can do

anything interesting at all compared to classical computers, then Hamiltonian simulation

should be one of those things.

A heuristic, imperfect argument that quantum computers can simulate quantum systems

effectively is that they also are quantum mechanical. By having the computer mimic the

quantum transformations occurring in the physical system, one might hope to achieve what

the classical computer cannot replicate efficiently. This argument provides some insight

but also, by itself, is unconvincing. What is the essential difference between quantum

simulation and simply "watching" a quantum system of interest "do its thing"? There are,

in fact, major differences:

1. You may not have much access to the system of interest. For example, it is chal-

lenging, expensive, or impossible to send a to the sun’s core to gain information on

nuclear processes. A protein under study may behave differently in a test tube than in

situ. Essentially, there are many phenomena that are hard to measure directly under

the desired circumstances.

2. There may be very little control over the parameters of the system of interest, or to

measure a wide variety of properties. Digital quantum simulation gives an enormous

(though not limitless) degree of control over the model parameters and read out of

the desired results. Identical trials of the same simulation could, in principle, be

2For experts, this encoding may require at most polynomial overhead in spatial and tempoaral resources
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prepared as desired. The ability to tweak aspects of the simulation leads to a greater

understanding of the phenomenon under study. By contrast, barring a highly tunable

experimental setup, a system "just is" and doesn’t necessarily provide insight.

In short, simulation is more than just experiment, both classically and quantumly. In Sec-

tion 2.7, we will see how Hamiltonian simulation algorithms can be quite abstracted from

any particular information about the system, thus earning designations such as "computa-

tion" and "algorithm".

The classical intractability of quantum simulation is a more subtle issue than is often

let on in popular, or even research, presentations, and we take a moment to challenge

these oversimplifications. The common argument starts and ends with the exponential

growth in the number of elementary states as the quantum system size increases. Recall

the expression (2.6) for an arbitrary 𝑛-qubit state. Without additional structure, it appears

the state |𝜓⟩ requires 2𝑛 complex numbers to describe, one for each bitstring 𝑏. Each

additional qubit doubles the number of states, and 2100 is already an enormous number for

just 100 particles. Normalization conditions do not help much, nor does the irrelevance

of global phase. This amount of data is inefficient to store in memory, let alone perform

operations on.

The problem with the above argument is that any physical system, quantum or not, has

such a scaling: a system of 𝑛 particles with 𝑑 single-particle states has a total of 𝑑𝑛 states.

Why is there no objections to exponentiality in this context? To explore this, we look at

standard probability theory, which is the closest jumping-off point for quantum mechanics.
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We may express the state |𝑝⟩ of 𝑛 probabilistic bits3 in the following suggestive form.

|𝑝⟩ =
∑︁

𝑏∈{0,1}𝑛
𝑝𝑏 |𝑏⟩ (2.9)

Here the collection of 2𝑛 𝑝𝑏’s forms a probability distribution, where 𝑝𝑏 is the probability

of observing bitstring 𝑏. Compare with equation (2.6), and we seem to be in the same

conundrum. And we are, if the goal is to represent the full distribution |𝑝⟩. However, in

applications, we would usually rather sample from the distribution rather than express it.

The difference is the same as flipping a fair coin vs. writing a list (1/2, 1/2). Sampling

typically requires much less spatial overhead, and can be performed using probabilitic bits

and operations. The situation in quantum computing is very, very similar. We cannot "see"

the output state |𝜓⟩ in entirety, but measure and achieve some result with some probability.

Thus, the source of quantum computing’s power appears very peculiar, somehow relating

to the interference between complex amplitudes as unitary gates are applied.

To summarize, although we have a comprehensive theory of quantum phenomena, it

is currently very difficult to compute the consequences of this theory. Further, we should

not believe generic, efficient classical methods will ever be found. On the other hand, the

use of quantum computers for quantum simulation is an intuitive and promising solution

to this challenge. We shall see in Section 2.7 that there are several efficient quantum

algorithms for Hamiltonian simulation. For the most part, the only remaining obstacle is a

very difficult engineering problem: building a real quantum computer4. Building effective

quantum hardware is, in its own right, a fascinating and difficult problem. At the time

3Note that the notation |𝑝⟩ is not suggestive of anything quantum. I use it here in this context to emphasize
that the ket is just notation.

4Part of the solution may also entail better error correction protocols. We are implicitly excluding current
noisy devices from this broad discussion.
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of writing, many different platforms for quantum computing are being actively developed

or researched [19, 17, 65, 47], and after enormous investments [53] the technology is

improving at a steady clip. However, robust error-corrected quantum computing remains

out of reach. Nevertheless, this dissertation will, for sake of analysis, typically assume the

kind of noiseless (or error corrected) quantum computing capabilities that we hope for in

the future. Occasional comments on the likely effects of hardware noise are made, but

detailed analysis is left for future work.

2.5 Quantum Hamiltonians: A Closer Look

Having motivated digital quantum Hamiltonian simulation, let’s now elaborate on

what this entails. First, strictly speaking, Hamiltonians describe closed quantum systems.

Closed systems are idealizations of any real physical system, where the system of interest

is perfectly isolated from any external influence. Though this is a useful concept in all

areas of physics, closed systems are in some sense far from typical. Indeed, the science

of decoherence suggests that the apparent classicality of our world emerges from open

system dynamics [142]. For open systems, a more general framework of quantum states

and operations needs to be invoked, but for our purposes the mathematical representations

we’ve discussed thus far (state vectors, unitary operations, etc.) will suffice.

Taking physical time 𝑡 to be continuous, we imagine the state |𝜓𝑡⟩ at any time 𝑡 to be

related to the state at a previous time 𝑠 ≤ 𝑡 via some unknown unitary operation, which we

denote𝑈 (𝑡, 𝑠).

|𝜓𝑡⟩ = 𝑈 (𝑡, 𝑠) |𝜓𝑠⟩ . (2.10)

What properties should 𝑈 possess? Tacit in our notation is the assumption that 𝑈 does

not depend on the states |𝜓𝑠⟩ and |𝜓𝑡⟩, meaning that the dynamical laws themselves do
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not care about the specific states involved. This is also the situation we find in classical

mechanics. An another reasonable property, we might expect various 𝑈 to chain together

naturally when applied in succession.

𝑈 (𝑡, 𝑠) = 𝑈 (𝑡, 𝑟)𝑈 (𝑟, 𝑠), 𝑠 ≤ 𝑟 ≤ 𝑡 (2.11)

As a reasonable corollary, we have 𝑈 (𝑡, 𝑡) = 𝐼. It is sensible to define 𝑈 (𝑠, 𝑡) ≡ 𝑈 (𝑡, 𝑠)†

for 𝑠 < 𝑡, and with this the transitive property above generalizes to any 𝑠, 𝑟, 𝑡 ∈ R.

We might reasonably impose some degree of continuity to the wavefunction |𝜓𝑡⟩, hence

to the unitary 𝑈. Let’s assume, at the very least, that 𝑈 (𝑡, 𝑠) is differentiable in 𝑡 (and by

symmetry, 𝑠). Taking a derivative of equation (2.10) with respect to 𝑡, we obtain��𝜓′
𝑡

〉
= 𝑈′(𝑡, 𝑠) |𝜓𝑠⟩

= 𝑈′(𝑡, 𝑠)𝑈 (𝑠, 𝑡) |𝜓𝑡⟩ .
(2.12)

Now we have a differential equation in |𝜓𝑡⟩. For logical consistency, we must have that

𝑈′(𝑡, 𝑠)𝑈 (𝑠, 𝑡) is independent of 𝑠 (this can be verified explicitly). Moreover, by using

some basic properties properties of𝑈 and the product rule, it is easy to check that it is also

Hermitian. Thus, if

−𝑖𝐻 (𝑡) ≡ 𝑈 (𝑡, 𝑠)′𝑈 (𝑠, 𝑡), (2.13)

then 𝐻 is a Hermitian operator. We call 𝐻 the Hamiltonian, and with this notation we

recover the famous Schrödinger equation

𝑖𝜕𝑡 |𝜓𝑡⟩ = 𝐻 (𝑡) |𝜓𝑡⟩ . (2.14)

More generally, using relation (2.10), we obtain an operator Schrödinger equation

𝑖𝜕𝑡𝑈 (𝑡, 𝑠) = 𝐻 (𝑡)𝑈 (𝑡, 𝑠) (2.15)
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which, in conjunction with (2.10), provides an expression for a quantum state at any time

𝑡 following an initial time 𝑠.

To the practitioner of quantum physics, this might seem like an odd approach to the

foundations of quantum dynamics. We started by postulating a unitary evolution operator

𝑈 with certain reasonable properties, then derived a Hamiltonian which generates𝑈 via the

Schrödinger equation. In physics, one typically starts with a Hamiltonian, then attempts

to solve for 𝑈. It is insightful to ponder the reasons for this. As discussed in Section 2.1,

the Hamiltonian concept is closely linked to classical mechanics, and hence serves as

a more natural starting point for humans to model quantum phenomena. Perhaps more

fundamentally, a compact, elementary description of𝑈 instead of 𝐻 would be like having

the cheat code for solving any quantum physics problem. By analogy, while the forces on

classical systems may be more or less easy to describe, predicting resulting trajectories is

a straightforward but expensive computational task. In short, having 𝑈 instead of 𝐻 feels

"too good to be true."

The primary problem quantum dynamics, then, is to solve (2.15), or (2.14) more

specifically, given a description of 𝐻 (𝑡). As needed for sensible physics, the solution for

𝑈 (𝑡, 𝑠) exists and is unique with the initial condition 𝑈 (𝑠, 𝑠) = 𝐼. More interesting is that

a succinct description of the solution exists. We may write it as a so-called time ordered

operator exponential

𝑈 (𝑡, 𝑠) = expT

{
−𝑖

∫ 𝑡

𝑠

𝐻 (𝜏)𝑑𝜏
}

(2.16)

which may be understood in a number of ways. One that is particularly relevant to this

thesis is the product integration approach. Given a family of partitions {𝑡 𝑗 }𝑛𝑗=1 of the

interval [𝑠, 𝑡], with maximum width 𝛿𝑛 tending to zero as 𝑛 → ∞, a solution is given by
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the product integral [73]

𝑈 (𝑡, 𝑠) = lim
𝑛→∞

𝑛−1∏
𝑗=1

𝑒−𝑖𝐻 (𝑡 𝑗 )𝛿𝑡 𝑗 . (2.17)

where 𝛿𝑡 𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 . One feature of this approach is that, for sufficiently large but finite

𝑛, the product represents an approximation that is also unitary, in contrast with the more

common Dyson series representation. Solution (2.17) is closely linked to the idea of product

formulas, which will be discussed in subsequent chapters. An even simpler expression for

𝑈 can be found when 𝐻 is independent of time. Philosophically, this condition amounts

to the notion that the laws of physics should not change over time. In this case, (2.17)

simplifies to a simple operator exponential

𝑈 (𝑡, 𝑠) = 𝑒−𝑖𝐻Δ𝑡 (2.18)

where Δ𝑡 = 𝑡 − 𝑠. This expression can understood through a power series expansion or the

spectral theorem for normal operators. It is remarkable that such a simple and succinct

expression can be written for the solution to essentially all closed quantum dynamics. If

𝐻 is over a finite-dimensional space, i.e., a matrix, computing a partial sum

𝑈 (𝑡, 𝑠) ≈
𝑁∑︁
𝑗=0

(−𝑖𝐻Δ𝑡) 𝑗
𝑗!

(2.19)

for a sufficiently large 𝑁 will yield an arbitrarily accurate approximation of𝑈 (𝑡, 𝑠). Hence,

given the matrix 𝐻, the computation of 𝑈 reduces to "just" matrix multiplication and

addition. Similarly, equation (2.17) can be approximated by taking 𝑛 sufficiently large

(but finite) and calculating the product of matrix exponentials. For systems that aren’t

finite dimensional, they may nevertheless be approximated to arbitrary accuracy by a suf-

ficiently large, but finite, quantum system via discretization. Consistent with our previous
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discussion, we have shown that quantum dynamics may be computed using standard com-

putational techniques, however, the exponentially large matrices involved ensure that the

above approach will not be efficient.

In light of the elegant solutions to the Schrödinger equation given by expressions

such (2.18), and more generally (2.17), a mathematically inclined reader may conclude

that closed-system quantum dynamics is, at the broadest level, a solved problem. However,

without computational methods, we cannot extract useful information from these solutions,

such as what’s needed to make concrete predictions about the behavior of a physical system.

In this section, our goal is to clearly state a high-level procedure for carrying out such

computations on both classical and quantum computers.

2.6 Classical Simulation Algorithms

We’ve already discussed the obstacles to classical simulation of quantum mechanics in

prior sections. Despite these, the importance of the problem to physics, and more broadly

natural science, has led practitioners to develop very clever methods that provide insight

in limited but interesting cases. Exact diagonalization [86] of the Hamiltonian, expressed

as a matrix in a suitable basis, is a guaranteed approach in principle but intractible for

large systems. Quantum Monte Carlo [8] methods refer to a broad range of techniques

which utilize random sampling, and are especially effective at calculating the low lying

energies of a Hamiltonian. However, these cannot be used directly for general calculations

of quantum dynamics. Moreover, Monte Carlo techniques suffer a notorious sign problem,

in which large quantities of various signs need to be added together to get a relatively

small result. This leads to severe round-off errors from floating-point arithmetic. Indeed, it

would be both interesting and surprising if Monte Carlo methods were more successful at
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computing quantum properties. This would suggest that, computationally, the randomness

of quantum theory could be reduced to mere coin flips. For this author, the sign problem

is an indication that there is more to quantum probability theory than normal randomness.

More recently, tensor network methods, based on Matrix Product States (MPSs) or

Projected Entangled Pairs (PEPs), represent the state of the art for dynamical simulation.

As the name suggests, such methods involve the representation of quantum states as tensor

networks rather than a vector of amplitudes. For systems with low entanglement, the "rank"

of the tensors involved is not too large. This allows for efficient representation and manip-

ulation of quantum states. Area-law bounds on entanglement, as found in lattice systems

with geometrically local interactions, aid the effectiveness of such methods [43]. More-

over, noise in imperfectly isolated computers can reduce the coherence and entanglement,

which can be further exploited. Thus, tensor networks have brought more quantum systems

within the capabilities of classical computers, and have become a standard benchmark for

testing the classical feasibility of quantum circuits.

Despite the aforementioned techniques, efficient simulation by classical means is likely

unobtainable. This comes from both complexity theoretic arguments as well as the sheer

effort towards making effective simulation methods.

2.7 Quantum Simulation Algorithms

As we’ve anticipated, quantum computers provide a platform for efficient quantum

simulation given reasonable assumptions on the input Hamiltonian. Figure 2.2, reprinted

from [52], gives a high-level overview of the Hamiltonian simulation workflow on quantum

devices. Before any computation can be performed, the problem of interest must be

encoded onto a quantum computer. This could be accomplished in several ways depending
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Figure 2.2 Schematic of the quantum simulation workflow. The system of interest,
represented by the upper "cloud," is first represented on the quantum computer through
some correspondence given by the dashed lines. The three main tasks for simulation are
state preparation |𝜓(0)⟩, time evolution by𝑈 (𝑡, 0), and a measurement procedure. Each
of these steps has its own set of tools and methods. Reprinted from [52] with permission.
Copyright 2014 by the American Physical Society.

on the nature of the problem. For example, effective mappings from fermionic [93] and

bosonic [115] systems to qubits have been extensively studied in the literature. We will not

say much more on how to properly map a problem of interest onto a collection of qubits,

though this is a crucial starting step for any attempt at quantum Hamiltonian simulation.

Having identified a mapping, one can turn to the simulation proper. An initial state

|𝜓0⟩ of the simulation must be prepared by a quantum circuit given an initial "fiducial

state" of the device, typically |0⟩⊗𝑛. The difficulty of preparing |𝜓0⟩ depends on the nature

of the problem and the qubit encoding used. Entire subdomains of digital Hamiltonian

simulation are devoted to preparing effective initial states in various contexts [120, 40,

9, 98]. Although special states such as ground states and wavepackets are often sought
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for, the arbitrariness of initial state choice makes it difficult to do a general analysis of

such methods. In contrast, given a specific input model for the Hamiltonian 𝐻 (𝑡), one

can express general algorithms for generating a quantum circuit 𝑉 which approximates the

time evolution operator 𝑈. Often, this step alone is what is referred to as "Hamiltonian

simulation", though it is necessarily one part of the full process needed to extract useful

information. Essentially, the problem is, given an input Hamiltonian 𝐻 (𝑡), a desired

simulation interval [0, 𝑡] and a desired tolerance 𝜖 > 0 construct a quantum circuit 𝑉 such

that the output 𝑉 |𝜓0⟩ is within 𝜖 of𝑈 (𝑡, 0) |𝜓0⟩.

Once the state is evolved in time, it needs to be measured. Simply having the evolved

state on a quantum register is not enough, and is nothing like having the state vector

written on paper. Learning the full output state |𝜓𝑡⟩, known as full-state tomography, is

extremely inefficient. However, in actual quantum calculations we are typically interested

in a handful {𝑂𝑖} of observables of interest. Learning these observables given |𝜓𝑡⟩ turns

out to be a much more approachable task; standard routines such as phase estimation and

amplitude estimation are sufficient [56, 67]. In Section 6.3, we will discuss the Rodeo

Algorithm, a new addition to the suite of phase estimation algorithms which can perform

resource-efficient measurements in the eigenbasis of a Hamiltonian using time evolution.

Despite the utility of the of the Preparation-Evolution-Measurement schematic, actual

simulation protocols may not be purely sequential. For example, optimal protocols for

eigenvalue and expectation value measurement protocols, particularly quantum phase es-

timation protocols, incorporate the Evolution as a subroutine. We will in fact see this in

the Iterative Amplitude Estimation protocol of Chapter 3. Even so, the framework is still

useful in providing a programme for developing simulation algoritms. In any conceivable
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case where a simulation is needed, we will need a way to (a) prepare a state, (b) evolve the

state and (c) measure the state.

Without additional assumptions, even quantum computers cannot solve Hamiltonian

simulation efficiently in all instances. A simple counting argument shows that an 𝜖-

approximation to an 𝑛 qubit unitary 𝑈 requires, in general, an exponentially large number

of elementary quantum gates in 𝑛 [100]. Any such unitary may, if desired, be viewed as a

time evolution operator for some Hamiltonian 𝐻.

𝑈 = 𝑒−𝑖𝐻 (2.20)

Evidently, there are some Hamiltonians 𝐻 whose simulation is requires exponential quan-

tum resources, and is hence intractible.

This point aside, most Hamiltonians of interest are not of this nature. Physical Hamil-

tonians, as described previously, are naturally 𝑘-local, and we shall leverage this in the

product formula algorithms below. In contexts removed from physics, such as solving linear

systems, the Hamiltonian 𝐻 is a sparse matrix (with efficiently computable and locatable

nonzero entries). Such assumptions ensure efficient simulations are possible, and are typ-

ically baked into the definition of "Hamiltonian simulation" and not mentioned. Over the

past several decades, enormous progress has been made such that there are multiple good

quantum algorithms for approximating𝑈 (𝑡, 𝑠). We now outline the three categories which,

broadly speaking, classify all such methods.

2.7.1 Product Formulas

Early thinkers like Feynman and Deutsch had long claimed that quantum computers

could efficiently simulate quantum mechanics, but it was Seth Lloyd’s seminal algorithm,

based on Trotterization, that first proved this was the case [87]. Lloyd considered 𝑘-local
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Hamiltonians of the form (2.8), and in this case the exponentials exp{−𝑖𝐻𝛾Δ𝑡} of each

term were unitary operations on only 𝑘 qubits. Since 𝑘 remains fixed as the number

of qubits 𝑛 grew, these exponentials can be implemented as quantum circuits of fixed

depth. Moreover, these unitaries can be combined in sequence to approximate the full time

evolution exp{−𝑖𝐻𝑡}. In his paper, Lloyd used the so-called first-order Trotter formula 𝑆1,

defined as

𝑆1(𝑡) := 𝑒−𝑖𝐻1𝑡𝑒−𝑖𝐻2𝑡 . . . 𝑒−𝑖𝐻Γ𝑡 . (2.21)

This is a unitary operator which for small 𝑡, accurately approximates𝑈 (𝑡). In particular,

𝑆1(𝑡) − 𝑒−𝑖𝐻𝑡 ∈ 𝑂 (𝑡2), (2.22)

where 𝑡 is taken asymptotically to zero. Longer simulation times can be achieved by

dividing the full interval into 𝑟 steps.

𝑆1(𝑡/𝑟)𝑟 =
(
𝑒−𝑖𝐻1𝑡/𝑟𝑒−𝑖𝐻2𝑡/𝑟 . . . 𝑒−𝑖𝐻Γ𝑡/𝑟

)𝑟
= 𝑒−𝑖𝐻𝑡 +𝑂 (𝑡2/𝑟) (2.23)

By taking 𝑟 sufficiently large, the error can be arbitrarily diminished.

More generally, product formulas are unitary approximations to 𝑒−𝑖𝐻𝑡 made by splitting

the exponential along the terms 𝐻𝛾 in a specified sequence. The order of a product formula

P characterizes the degree of approximation to 𝑈, and is the largest integer 𝑝 ∈ Z+ such

that

𝑈 (𝑡) − P(𝑡) ∈ 𝑂 (𝑡 𝑝+1), (2.24)

in other words, the largest 𝑝 for which𝑈 (𝑡) and P(𝑡) share the same 𝑝th Taylor polynomial.

This definition justifies our referring to (2.21) as 1st order. Product formulae exist for all

orders 𝑝, and in fact there is a recursive procedure for generating higher order formulas
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from lower ones [122]. The standard candle is the so-called Suzuki-Trotter formulas. To

define these let 𝑆1 be given by (2.21), and define

𝑆2(𝑡) := rev[𝑆1(𝑡/2)]𝑆1(𝑡/2) (2.25)

where rev is the reverse of the terms in the product of 𝑆1. It can be quickly verified via

Taylor expansion that 𝑆2 is second order. It is also symmetric, both in the sense of the

ordering of its terms and in a time reversal sense.

𝑆2(−𝑡) = 𝑆2(𝑡)† (2.26)

Any product formula P satisfying the condition (2.26) will be termed "symmetric." Sym-

metric product formulas have the useful property that their error series, namely the power

series of 𝑈 (𝑡) − P(𝑡), is an odd function. Thus, any procedure which seeks to eliminate

errors term by term can skip all even powers.

For any 𝑘 ∈ Z+, with 𝑘 > 1, we define 𝑆2𝑘 recursively as

𝑆2𝑘 (𝑡) = 𝑆2
2(𝑘−1) (𝑢𝑘 𝑡)𝑆2(𝑘−1) ((1 − 4𝑢𝑘 )𝑡)𝑆2

2(𝑘−1) (𝑢𝑘 𝑡), (2.27)

where 𝑢𝑘 = (4−4(𝑘−1))−1. This formula is symmetric and order 2𝑘 . Thus, product formulas

of arbitrary order exist. However, we observe that our recursive procedure generates an

exponentially increasing number of unitaries as a function of 𝑘 , leading to impractically

high costs for modest accuracy gains. It is possible to show that this feature is present for

any high order formula, by considering the number of terms needed to eliminate errors

term by term. Thus, in practice, only the lowest orders formulas are used. Nevertheless,

the existence of arbitrary order formulas is valuable theoretically to understand asymptotic

scaling of simulation costs. Moreover, the forward and backward evolutions present

in (2.27) give rise to fractal behavior for large 𝑘 that is itself interesting [121].
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Product formulas satisfy the useful property that, in the case where all the 𝐻𝛾 commute,

the error in the Trotterization vanishes, for the same reason that 𝑒𝑤𝑒𝑧 = 𝑒𝑤+𝑧 for 𝑤, 𝑧 ∈

C. More generally, one should expect the simulation errors to be small even when the

commutator [𝐻𝑖, 𝐻 𝑗 ] is small but nonzero. We term this feature commutator scaling. It

took a surprisingly long time to show this rigorously, but was finally done using the calculus

of matrix-valued functions [26]. These results applied to a general class of staged product

formulas of the form

P(𝑡) =
Υ∏
𝑗=1

Γ∏
𝛾=1

𝑒
−𝑡𝜏𝑗𝛾𝐻𝜋𝑗 (𝛾) . (2.28)

Here, Υ is the number of "stages", and 𝜋 𝑗 is a permutation of the first Γ positive integers.

Moreover, 𝜏𝑗 𝑘 are real numbers. The Suzuki-Trotter formulas are examples of staged

formulas. It was shown that the additive and multiplicative errors A,M in the estimation

of 𝑒−𝑖𝐻𝑡 for a 𝑝th order product formula P𝑝 scale as

A,M ∈ 𝑂 (�̃�comm𝑡
𝑝+1) (2.29)

where

�̃�comm =

Γ∑︁
𝛾1=1

Γ∑︁
𝛾2=1

· · ·
Γ∑︁

𝛾𝑝+1=1
∥ [𝐻𝛾𝑝+1 , . . . , [𝐻𝛾2 , 𝐻𝛾1], . . . ] ∥ (2.30)

is a sum of the norms of all nested commutators of 𝑝 + 1 terms of 𝐻. Though �̃�comm may

be practically difficult to compute, this result gives a tighter characterization of the kinds of

errors to expect from a Trotter simulation. Moreover, these commutators can be computed

once for specific classes of Hamiltonians, such as lattice systems, and the results can be

applied thereafter.

Despite these sophisticated theoretical characterizations, product formulas have been

observed to perform even better than expected [27, 66]. The relative simplicity and
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flexibility of Trotter methods, as compared to the more recent and theoretically improved

methods described in subsequent sections, makes this this approach the current frontrunner

in practical quantum simulation. However, as quantum hardware continues to improve, we

may find that so-called post-Trotter methods become increasingly attractive as the overhead

costs become less burdensome.

Using the error bounds (2.29), we can derive a rigorous upper bound on the number of

Trotter steps 𝑟 needed to simulate a 𝑘-local 𝐻 for time 𝑇 to accuracy 𝜖 using a 𝑝th order

product formula.

𝑟 ∈ 𝑂
(
�̃�

1/𝑝
comm𝑇

1+1/𝑝

𝜖1/𝑝

)
(2.31)

For fixed order formula 𝑝 the total number of exponentials 𝑒−𝑖𝐻 𝑗𝛿𝑡 scales as 𝑟 up to constant

factors. Since each exponential requires at most a constant number of quantum gates, the

above formula also gives the scaling of the number of two-qubit gates. What we see is that

we have achieved efficient simulation in terms of 𝑇 and 𝜖 . Moreover, the number of qubits

needed is only those 𝑛 which generate the state space of the system. Contrast this with the

2𝑛 needed, naively, write the full state classically.

Product formulas will recur throughout this thesis. One of the deficiencies of this

approach to simulation is their relatively low accuracy, especially to post-Trotter methods

with 𝑂 (log 1/𝜖) scaling in the accuracy. In Chapter 3, we explore the use of polynomial

interpolation to improve this accuracy without employing additional quantum resources.

Trotterization also arises in the time dependent setting, where each 𝐻𝛾 (𝑡) depends on

time, by using (2.17) for finite 𝑛 and Trotterizing each 𝐻 (𝑡 𝑗 ). The use of an auxiliary

"clock space" connects the notions time independent and time dependent simulation (and

Trotterization), which we use to propose and analyze several approaches to time dependent
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Figure 2.3 A schematic of the linear combination of unitaries (LCU) circuit. Conditioned
upon measuring 0 on every measurement, the result applied is

∑
𝑗 𝛼 𝑗𝑈 𝑗 . In this case,

there are 3 auxiliary qubits, hence 23 = 8 possible unitaries to add. The PREP circuits are
any circuit satisfying PREP |0⟩𝑛 = ∑

𝑗
√
𝛼 𝑗 | 𝑗⟩.

Hamiltonian simulation. This is considered in Chapter 4.

2.7.2 Linear Combination of Unitaries

For a couple decades (a long time relative to the field), product formulas were the

only algorithm in town for Hamiltonian simulation on quantum computers. Then, in 2012,

Childs and Wiebe introduced [25] a new primitive for quantum computation: applying a

linear combination of unitaries
𝐿∑︁
𝑗=1
𝛼 𝑗𝑈 𝑗 . (2.32)

to a quantum register. Figure 2.3 gives a schematic circuit for implementing this sum.

Because a sum of unitaries is not unitary, we should expect that some measurements are

required for the successful implementation of the operation, and indeed, it is conditioned

on measuring all 0’s on the auxiliary register. Measuring "success" is more likely the

closer (2.32) is to a unitary operator. Success can be achieved through repeated trials or,

more efficiently, through quantum amplitude amplification.

The linear combination of unitaries (LCU) circuit consists of two subroutines. The first
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is a PREP ("prepare") unitary which acts on a quantum register initialized to |0⟩⊗𝑘 as

PREP |0⟩⊗𝑘 =
𝐿∑︁
𝑗=1

√
𝛼 𝑗

∥𝑎∥1
| 𝑗⟩ (2.33)

with ∥𝑎∥1 :=
∑
𝑗 |𝑎 𝑗 |. The second is a SEL ("select") unitary which applies 𝑈 𝑗 to the main

register controlled on state 𝑗 of the auxiliary.

SEL | 𝑗⟩ |𝜓⟩ = | 𝑗⟩𝑈 𝑗 |𝜓⟩ (2.34)

By applying the operation (PREP† ⊗ 𝐼)SEL(PREP ⊗ 𝐼), then measuring the appropriate

outcome on the auxiliary (all zeros), the operation (2.32) may be implemented on the main

register up to normalization.

The LCU primitive led to several distinct Hamiltonian simulation algorithms, the first

post-Trotter methods. Here we discuss the one most relative to this thesis, and the one

considered in the original Childs and Wiebe paper. This is the quantum implementation

of the multiproduct formula (MPF), which is a linear combination of product formulas

producing a more accurate approximation to 𝑒−𝑖𝐻𝑡 . The best way to understand multiproduct

formulas is as an instance of Richardson extrapolation, and we will elaborate on this point

in Chapter 5. The major point is that we wish to extrapolate 𝑟 → ∞, or equivalently

1/𝑟 → 0, to achieve increasing accuracies. While higher-order Trotter formulas require

an exponential number of terms, it is much less demanding to cancel error terms using

summation. The upshot is that MPFs, and other well-known LCU algorithms, achieve an

exponential improvement in accuracy over product formulas alone.
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2.7.3 Qubitization

In our discussion of the Linear Combination of Unitaries (LCU) primitive above, we

saw that the unitary

𝑈 = (PREP† ⊗ 𝐼)SEL(PREP ⊗ 𝐼) (2.35)

encodes the desired operation (a sum of unitaries) provide a certain measurement result

is achieved on a part of the full quantum register. This turns out to point towards a more

general phenomenon. We say that 𝑈 block encodes the desired operation
∑
𝑗 𝛼 𝑗𝑈 𝑗 via the

state |0⟩⊗𝑘 , in the sense that∑︁
𝑗

𝛼 𝑗𝑈 𝑗 = (⟨0|⊗𝑘 ⊗ 𝐼)𝑈 ( |0⟩⊗𝑘 ⊗ 𝐼) (2.36)

up to normalization. In our context, this block-encoded operator may be the Hamiltonian

of interest. Remarkably, this simple requirement, the encoding of 𝐻 in a subblock of a

larger unitary matrix, is all that is necessary for qubitization [88], the first asymptotically

optimal approach to Hamiltonian simulation. By this, we mean that the simulation cost for

simulating for time 𝑇 and accuracy 𝜖 scales as

𝑂

(
𝑇 + log 1/𝜖

log log 1/𝜖

)
(2.37)

which saturates the known lower bounds [15] for 𝑇 and 1/𝜖 and is additive rather than

multiplicative.

Besides the concept of block encoding, the other major ingredient to qubitization is

Quantum Signal Processing (QSP), which generates polynomial functions of the eigen-

values of the block encoded operator. It does so by interleaving unitary rotations that act

independently on a two-dimensional subspace corresponding to each eigenvalue. Since
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𝑒−𝑖𝜆𝑡 can be approximated by polynomials 𝑃(𝜆𝑡) uniformly over an interval [0, 𝜆𝑇], con-

structing these polynomial transformations provide a means to Hamiltonian simulation.

Qubitization was later generalized to the Quantum Singular Value Transformation (QSVT)

[54], which performs polynomial transformation of the singular values of a block encoded

matrix. The method is effective, general, conceptually rich and, unfortunately, rather

complicated to understand fully.

One notable drawback to qubitization is that it only directly works for time independent

Hamiltonian simulations. Of course, one could Trotterize via (2.17) and perform qubiti-

zation on each factor, but the error from the Trotterization would overshadow any gains

from qubitization. In Chapter 4, we will embed 𝐻 (𝑡) in a system with time dependent

Hamiltonian, then apply qubitization "directly." We construct a suitable block encoding

of the augmented Hamiltonian, then derive bounds on the the query complexity. While

our analysis does not show improvements compared to other time dependent schemes, we

believe this is from imperfections in the analysis rather than a features of the method.

2.7.4 Analog Quantum Simulation

In order to anticipate the material of Section 6.1, we digress momentarily from our

discussion of quantum computers and consider an alternative simulation platform: analog

quantum simulators. Recall from Figure 2.2 the need to map the problem of interest onto

a simulator. Instead of mapping to a "digital" setting, in which a universal set of discrete,

unitary quantum gates are applied in sequence to construct the time evolution operator,

we could instead map to a system which, though not a quantum computer, nevertheless

allows for a great deal of control and emulation of a system of interest. This is potentially

less technologically demanding, because we no longer need to perform arbitrary unitary
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operations, but rather specific Hamiltonians of interest.

For excellent discussions of analog quantum simulators, see e.g. [63, 52]. For our

purposes, we can roughly model analog simulators as devices which can implement a class

of Hamiltonians, with terms

𝐻 =
∑︁
𝑗

𝐽 𝑗 (𝑡)𝐻 𝑗 (2.38)

such that the time dependence 𝐽 𝑗 (𝑡) is controllable to some degree. Depending on the

collection of 𝐻 𝑗 and the degree of time dependence 𝐽 𝑗 , we might be able to achieve a

universal device. Yet this may not be necessary for the application we are interested in.

Analog simulators often considered a more achievable route to quantum Hamiltonian

simulation. In Section 6.1 we will explore some interesting phenomena accessible to

trapped-ion quantum simulators, with implications in nuclear physics.

2.7.5 Measurement and Hamiltonian evolution

As already emphasized, time evolution represents only one piece of a full quantum

simulation algorithm. Although the time evolved state |𝜓𝑡⟩ is prepared on a quantum

register, no information is gained without measurement. By analogy, a random variable

that is not sampled leaves nothing gained. There is nontrivial work to be done in the

extraction of information, as sampling in the quantum case (i.e., measurement) is more

nuanced than simple probability sampling. This is because ultiple different bases can be

measured, choosing the right basis is important for extracting valuable information.

One basic fact we might like to know about a Hamiltonian are its eigenvalues, which

correspond to the "allowed" energies of a physical system. Additionally, general observ-

ables𝑂 can be often simulated as if they were Hamiltonians assuming they are, say, sparse

or 𝑘-local. Suppose we are able to prepare an (approximate) eigenvector |𝐸⟩ of 𝐻 on a
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quantum register. Performing Hamiltonian simulation will produce an output state that

picks up merely a phase

𝑈 (𝑡) |𝐸⟩ = 𝑒−𝑖𝐸𝑡 |𝐸⟩ . (2.39)

This phase cannot be measured as is, because only relative phase shifts, not overall phases,

are measureable in general wavelike phenomena. Our strategy will be to introduce a refer-

ence unshifted state and produce interference, such that the phase 𝜑 = 𝐸𝑡 is measureable.

One way to do this in the setting of quantum computing is to apply a controlled-𝑈 gate.

By putting an auxiliary register in a superposition |0⟩ + |1⟩ and applying 𝑈 to the main

register conditioned on |1⟩, we’ve introduced a relative phase shift into the auxiliary qubit.

This can be measured through a change of basis.

What we’ve heuristically described above is a general framework for performing phase

estimation on a quantum computer, which allows for the extraction of eigenvalues. Fig-

ure 2.4 gives the basic circuit for the simplest phase estimation algorithm. Physically, the

circuit is essentially a Mach-Zehnder interferometer [67], with Hadamards 𝐻 acting as

beam splitters and the controlled time evolution introducing a phase shift. The family of

phase estimation algorithms is, by now, enormous [67, 77, 124, 135]. This thesis will

discuss a recent addition to this family known as the Rodeo Algorithm, a resource-efficient,

randomized procedure which performs a selective search over the space of possible eigen-

values. Like nearly all phase estimation protocols, it works well provided the initial state

has reasonable overlap with the eigenstates of interest (formally, if the overlap decreases

polynomially with problem size).

Perhaps even more foundational than phase estimation, in a sense, is the estimation of

an amplitude on a quantum computer. In fact, the simple scheme above encodes the phase
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𝑛

|0⟩ Had 𝑃(𝜃) Had

|𝐸⟩ 𝑒−𝑖𝐻𝑡

Figure 2.4 Schematic of the simplest quantum phase estimation algorithm, which is useful
for measuring in the eigenbasis of a Hamiltonian. The measurement outcomes associated
with the top auxiliary qubit are directly related to the eigenvalues of 𝐻, and by repeated
trials these eigenvalues can be estimated. The phase rotation 𝑃(𝜃) has an angle parameter
𝜃 which may be varied to resolve certain ambiguities due to cos2 not being one-to-one on
[0, 𝜋].

in an amplitude to be measured. Slightly more generally, we suppose an operator 𝑉 acting

on an initial state |0⟩ of a single qubit as 𝑉 |0⟩ = 𝑎0 |0⟩ + 𝑎1 |1⟩, and wish to estimate 𝑎0

(without loss of generality we may take 𝑎0 ≥ 0). This estimation may be done through

repeated computational basis measurements, but more clever approaches using amplitude

amplification lead to a quadratic improvement in scaling. See [59] for details on an efficient

iterative procedure for amplitude estimation.

2.8 Mathematical Reference

The following section includes important technical definitions and results that are used

throughout the dissertation. The reader may, if interested, browse these mathematical tools

now, or they may come back and reference as needed as they read subsequent chapters.

2.8.1 Combinatorics

The simple factorial 𝑛! counts the number of permutations of 𝑛 objects, and is usefully

approximated by Stirling’s approximation. In the paper, we always make use of a version

of the approximation which gives strict bounds for 𝑛 ∈ Z+.
√

2𝜋𝑛
(𝑛
𝑒

)𝑛
< 𝑛! <

√
2𝜋𝑛

(𝑛
𝑒

)𝑛
𝑒1/(12𝑛) (2.40)

These bounds are extremely tight, even for small 𝑛.
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The multinomial coefficient is a generalization of the more common binomial coeffi-

cient, and it arises in several combinatorial situations. It is defined by(
𝑛

𝑛1, ..., 𝑛𝑘

)
:=

𝑛!
𝑛1!𝑛2!...𝑛𝑘 !

(2.41)

where 𝑛 ∈ Z+ and the (𝑛ℓ)𝑘ℓ=1 are nonnegative integers which sum to 𝑛. It is a positive

integer corresponding to the number of distinct ways of placing 𝑛 distinguishable items into

𝑘 boxes, where each box has a fixed number 𝑛ℓ of items. In this work, we will find occasion

to make use of the multinomial when evaluating high-order derivatives of a product.(
𝑑

𝑑𝑡

)𝑛
𝑓1(𝑡) 𝑓2(𝑡) . . . 𝑓𝑘 (𝑡) (2.42)

Here, ( 𝑓ℓ)𝑘ℓ=1 are 𝑛-differentiable functions of 𝑡 ∈ R. Employing the product rule, one is

left to count all the possible combinations of derivatives of each 𝑓ℓ. It turns out that the

multinomial is suited for this.(
𝑑

𝑑𝑡

)𝑛 𝑘∏
ℓ=1

𝑓ℓ (𝑡) =
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

) 𝑘∏
ℓ=1

(
𝑑

𝑑𝑡

)𝑛ℓ
𝑓ℓ (𝑡) (2.43)

The sum is taken over the set 𝑁 of sequences of nonnegative integers (𝑛ℓ)𝑘ℓ=1 summing to

𝑛. A useful property is that ∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

)
= 𝑘𝑛 (2.44)

for nonnegative integers 𝑘, 𝑛 (with convention 00 = lim𝑥→0 𝑥
𝑥 = 1).

Besides derivatives of products, we will also need to bound derivatives of ordinary

exponentials of a time dependent matrix. Useful for this purpose is an expression for

derivatives of exponentials of a scalar function 𝑎(𝑡).(
𝑑

𝑑𝑡

)𝑛
𝑒𝑎(𝑡) (2.45)
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The solution we rely on is Faà di Bruno’s formula, which asserts that(
𝑑

𝑑𝑡

)𝑛
𝑒𝑎(𝑡) = 𝑒𝑎(𝑡)𝑌𝑛 (𝑎′(𝑡), 𝑎”(𝑡), . . . , 𝑎 (𝑛) (𝑡)) (2.46)

where𝑌𝑛 is the complete exponential Bell polynomial [31]. An explicit formula is given by

𝑌𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
∑︁
𝐶

𝑛!
𝑐1!𝑐2! . . . 𝑐𝑛!

𝑛∏
𝑗=1

(
𝑥 𝑗

𝑗!

)𝑐 𝑗
(2.47)

where the sum is taken over the set 𝐶 of all sequences (𝑐 𝑗 )𝑛𝑗=1 such that 𝑐 𝑗 ≥ 0 and

𝑐1 + 2𝑐2 + · · · + 𝑛𝑐𝑛 = 𝑛. (2.48)

Essentially, each coefficient in 𝑌𝑛 counts the ways one can partition a set of fixed size 𝑛

into subsets of given sizes and number. When one simply wants to count the total number

of possible partitions, one is led to the Bell numbers 𝑏𝑛. These are related to the 𝑌𝑛 by

evaluating all arguments to 1.

𝑏𝑛 = 𝑌𝑛 (1, 1, ...1) (2.49)

More generally, for any 𝑥 ∈ R,

𝑌𝑛 (𝑥, 𝑥2, . . . , 𝑥𝑛) = 𝑥𝑛𝑏𝑛, (2.50)

which can be seen directly from (2.47) along with the sum rule (2.48). The Bell numbers

𝑏𝑛 grow combinatorially; in particular, the following upper bound [13] is useful.

𝑏𝑛 <

(
.792𝑛

log(𝑛 + 1)

)𝑛
, ∀𝑛 ∈ Z+ (2.51)

More generally, the single-variable Bell polynomial, or Touchard polynomial 𝐵𝑛 (𝑥), is

simply 𝑌𝑛 with all arguments evaluated to 𝑥.

𝐵𝑛 (𝑥) = 𝑌𝑛 (𝑥, 𝑥, . . . , 𝑥). (2.52)
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Of course, 𝑏𝑛 = 𝐵𝑛 (1). The 𝑛th Bell polynomial 𝐵𝑛 (𝑥) is also the value of the 𝑛th moment

of the Poisson distribution with mean 𝑥. From [5] we have the following upper bound on

𝐵𝑛

𝐵𝑛 (𝑥) ≤
(

𝑛

log(1 + 𝑛
𝑥
)

)𝑛
, ∀𝑥 ≥ 0 (2.53)

which we observe is very close to that for the Bell numbers (𝑥 = 1) in equation (2.51). From

their definitions, 𝑌𝑛, 𝐵𝑛 and 𝑏𝑛 all grow monotonically, both in their functional arguments

and their index 𝑛. This is intuitive from being combinatorial functions whose coefficients

count something according to the size of 𝑛.

2.8.2 Norms

Norms are used widely throughout the paper to characterize the size of mathematical

objects and quantify simulation costs. For finite-dimensional vectors 𝑣 = (𝑣1, . . . , 𝑣𝑛), real

valued or complex, the Schatten 𝑝-norm, is defined as

|𝑣 |𝑝 := ©«
𝑛∑︁
𝑗=1

|𝑣 𝑗 |𝑝
ª®¬

1/𝑝

(2.54)

for any 𝑝 ∈ [1,∞), and for 𝑝 = ∞ as ∥𝑣∥∞ = max 𝑗 |𝑣 𝑗 |. We make particular use of the 1

and ∞ norm in our paper, to express our results or quote previous ones.

We also make use of functional norms, which are defined analogously. Given a scalar

function 𝑓 (𝑡) with scalar input over an interval [0, 𝑇], the 𝑝-norm, or 𝐿𝑝 norm, for

𝑝 ∈ [1,∞) is given by

∥ 𝑓 (𝑡)∥𝑝 :=
(∫ 𝑇

0
| 𝑓 (𝜏) |𝑝𝑑𝜏

)1/𝑝
(2.55)

for functions such that it is defined. Analogously, the ∞-norm is given by the supremum

sup| 𝑓 (𝑡) | over [0, 𝑇]. For the piecewise smooth functions we consider, this is just the

maximum value on the interval, so we might write ∥ 𝑓 (𝑡)∥max.
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In Table 1, we use notation ∥ · ∥𝑝,𝑞 to denote nested norms whenever our objects have

both a (finite) vector and functional character. Specifically, this notation means take the

vector 𝑝-norm first, then take the 𝑞-norm of the resulting scalar function. For example, if

𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡), . . . , 𝛼𝑛 (𝑡)), then

∥𝛼∥1,1 =

 𝑛∑︁
𝑗=1

|𝛼 𝑗 (𝑡) |


1

=

∫ 𝑇

0

𝑛∑︁
𝑗=1

|𝛼 𝑗 (𝜏) |𝑑𝜏 (2.56)

and

∥𝛼∥1,max = max
𝜏∈[0,𝑇]

𝑛∑︁
𝑗=1

|𝛼 𝑗 (𝜏) |. (2.57)

In the main paper we claim our Hamiltonian simulation algorithm exhibits 𝐿1-norm scaling.

This means it has complexity𝑂 (∥ 𝑓 ∥1), where 𝑓 is a function whose value is some measure

of the size of the Hamiltonian and its derivatives at each 𝑡 ∈ [0, 𝑇].

Finally, our paper makes use of the spectral norm for linear operators, also known as

the induced 2-norm. It is defined for any bounded operator 𝐴 on a Hilbert space Hby

∥𝐴∥ := sup
𝑣∈H\{0}

∥𝐴𝑣∥2

∥𝑣∥2
(2.58)

In our case, 𝐴 will always be finite dimensional, and ∥𝐴∥ is the largest singular value of

𝐴. This norm is invariant under left or right multiplication by a unitary operator 𝑈, and

∥𝑈∥ = 1. The spectral norm is submultiplicative, a property we make frequent use of.

∥𝐴𝐵∥ ≤ ∥𝐴∥∥𝐵∥ (2.59)
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CHAPTER 3

TROTTER ERROR MITIGATION

This chapter is based on recent work [112] concerning the reduction of Trotter error by

use of standard Chebyshev interpolation, and is outlined as follows. After providing some

background and motivation, we spend two Sections describing the interpolation procedure

and proving some results on its robustness to noisy data. We then apply the framework to the

important task of measuring expectation values of time-evolved observables. Numerical

demonstrations are provided for a random 1D Heisenberg model, and show the expected

behavior. Discussion on the implications of this work is given, and technical results are

proven at the end of the chapter. With the exception of the numerics of Section 5.7,

which are new, additional details, applications, and numerics can be found in the main

publication [112].

3.1 Introduction and Motivation

In Section 2.7, we gave an overview of product formulas as a means for Hamiltonian

simulation. Efficient, versatile, and simple, product formulas will perhaps remain the

preferred method of quantum simulation on quantum computers for the foreseeable future.

This motivates the search for techniques to further bolster the method, particularly by

mitigating its biggest flaws. Chief among these, perhaps, is their relative inaccuracy

compared to post-Trotter methods such as qubitization. As an example, the 1st order

Trotter formula 𝑆1, which splits the exponential 𝑒−𝑖𝐻𝑡 in the simplest imaginable way,

𝑆1(𝑡) = 𝑒−𝑖𝐻1𝑡𝑒−𝑖𝐻2𝑡 . . . 𝑒−𝑖𝐻Γ𝑡 (3.1)

has an error scaling given by the 𝑂 (𝑡2/𝑟). From this we deduce that the simulation cost

scales with the error 𝜖 as 𝑂 (1/𝜖). Contrast this with, say, qubitization, which scales
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slightly better than 𝑂 (log 1/𝜖), an exponential improvement. More generally, every major

post-Trotter method scales polylogarithmically in 1/𝜖 (that is, 𝑂 (𝑝(log 1/𝜖)) for some

polynomial 𝑝). Higher order product formulas have better accuracy, but are generally

impractical due to exponential scaling of cost with the order 𝑘 of the formula.

Can the accuracy of product formals be improved with additional techniques? Indeed,

multiproduct formulas, mentioned in Section 2.7.2 and elaborated in Chapter 5, achieve

exponentially improved accuracy compared to product formulas alone by summing for-

mulas of different Trotter step size. Unfortunately, the additional quantum overhead and

controlled operations required for implementing the required LCU procedure are notewor-

thy, and introduce barriers which are especially burdensome in the current era of noisy

hardware.

Faced with these limitations, we might look beyond multiproduct formulas based on

LCU and ask if there is a way forward using only classical resources, such as randomness.

Indeed, within the past few years there have been claims of using multiproduct formulas

without LCU-type procedures [45, 128]. These schemes don’t produce a true multiproduct

formula, in the sense of applying the operation

MPF(𝑡) =
𝐿∑︁
𝑗=1
𝑐 𝑗P(𝑡/𝑟 𝑗 )𝑟 𝑗 (3.2)

to a quantum register, where P is a product formula, 𝑟 𝑗 ∈ Z+, and 𝑐 𝑗 ∈ R. But in any

case, this is not strictly necessary. After all, preparing 𝑒−𝑖𝐻𝑡 |𝜓⟩ is not a full algorithm,

but a possible intermediate step, after which measurements must be performed to extract

the desired information. For example, one might be interested in estimated computing the

dynamics of observables via

⟨𝑂 (𝑡)⟩ = ⟨𝜓𝑡 |𝑂 |𝜓𝑡⟩ . (3.3)
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This suggests the possibility of summing not operations, but classical data coming from

measurement schemes. Another possibility is performing a standard Richardson extrapo-

lation directly on the expectation values [44]. Let 𝑠 = 1/𝑟 be the "normalized Trotter step."

For a given product formula P in 𝑟 steps, the expectation value

⟨𝑂𝑠 (𝑡)⟩ := ⟨𝜓0 | P†(𝑠𝑡)1/𝑠𝑂P(𝑠𝑡)1/𝑠 |𝜓0⟩ (3.4)

is a real-valued, smooth function 𝑓 (𝑠). By estimating 𝑓 (𝑠 𝑗 ) for various 𝑠 𝑗 , an extrapolation

can be performed to the desired 𝑠 = 0. What is attractive about this scheme is that no

additional quantum resources, beyond the product formulas simulation and expectation

value measurements, are needed.

There are several directions in which these ideas can be extended. First, the function

𝑓 (𝑠) could represent a variety of kinds of measurements obtained from product simulations,

beyond expectation values. For example, they could represent eigenvalue estimates from

phase estimation. Second, we might consider other means of estimating 𝑓 (0) besides

Richardson extrapolation. One possibility is to produce a uniform approximation to 𝑓 in

a neighborhood of 𝑠 = 0. Function approximation is an old science, and many numerical

techniques are available for the task. Modern machine learning approaches such as neural

networks might achieve excellent approximation for 𝑓 , but finding the simplest effective

tool for the task is desirable, and moreover it is difficult to provide rigorous guarantees for

machine learning.

3.2 Polynomial Interpolation

Among the collection of function approximation methods available, we choose one that

is simple to implement and easy to analyze: polynomial interpolation. Essentially, our

46



goal is to use interpolation to "extrapolate" the Trotter step size 𝑠 to the ideal of 𝑠 = 0.1

There are many quantities that we could be interested in extrapolating. For this thesis, we

will be primarily concerned with expectation value estimation.

⟨𝑂𝑠 (𝑡)⟩ = Tr 𝜌𝑂𝑠 (𝑡)

𝑂𝑠 (𝑡) : = �̃�𝑠 (𝑡)†𝑂�̃�𝑠 (𝑡)
(3.5)

For purposes of analysis, we’ll assume these expectation values are estimated on a quantum

computer using one of the Suzuki-Trotter (ST) formulas of equation (2.27). However, in

principle our approach should work for any product formula simulation, not just ST.

While the interpolation is classical and independent of the method in which the data

is generated, we will assume a quantum simulation is used when considering the com-

putational cost. We assume all quantum operations are executed perfectly, including the

exponentials exp(−𝑖𝐻 𝑗 𝑡) for simulation. This is not to say that the interpolation method

could not be applied to noisy quantum systems, but rather that our cost analysis does not

account for it. Consequently, the only sources of error considered are the interpolation

error and error in the calculation of the data points (e.g. the Hamiltonian energies or

expectation values at various points 𝑠𝑖). Error in the data points may arise from hardware

noise, but even in its absence, a measurement protocol such as phase estimation induces a

systematic error that cannot be removed.

Without further ado, we now describe the interpolation framework. Let 𝑓 ∈ 𝐶∞( [−𝑎, 𝑎])

be a smooth, real-valued function of a single variable 𝑠 ∈ [−𝑎, 𝑎] and suppose we have

calculated 𝑓 (perfectly) for 𝑛 distinct points 𝑠1, 𝑠2 . . . 𝑠𝑛 ∈ [−𝑎, 𝑎]. That is, we have data

1We occassionally interchange between the terminology "extra-" and "interpolation." We view our
method as an extrapolation beyond the data using a numerical technique commonly known as polynomial
interpolation.
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in the form of a set of tuples 𝐷 = {(𝑠𝑖, 𝑓𝑖)}𝑛𝑖=1, where 𝑓𝑖 = 𝑓 (𝑠𝑖). Let 𝑃𝑛−1 𝑓 be the unique

(𝑛 − 1)-degree polynomial interpolating 𝐷, i.e. 𝑃 𝑓𝑛−1(𝑠𝑖) = 𝑓𝑖 for each 𝑖 = 1, . . . , 𝑛. For

any 𝑠 ∈ [−𝑎, 𝑎], standard results in polynomial interpolation [106] tell us that the signed

error is given by

𝐸𝑛−1(𝑠) := 𝑓 (𝑠) − 𝑃𝑛−1 𝑓 (𝑠) =
𝑓 (𝑛) (𝜉)
𝑛!

𝜔𝑛 (𝑠) (3.6)

for some 𝜉 ∈ 𝐼𝑠, where 𝐼𝑠 ⊂ [−𝑎, 𝑎] is the smallest interval containing 𝑠 and the in-

terpolation points {𝑠𝑖}. Throughout this work, superscripts such as in 𝑓 (𝑛) will refer to

𝑛th-order derivatives. The 𝑛th degree nodal polynomial 𝜔𝑛 (𝑠) is defined as the unique

monic polynomial with zeros at the interpolation points.

𝜔𝑛 (𝑠) :=
𝑛∏
𝑖=1

(𝑠 − 𝑠𝑖) (3.7)

Our estimate for 𝑓 (0) is 𝑃𝑛−1 𝑓 (0). Since we are interested in 𝑠 = 0, 𝜔𝑛 becomes a

(signed) product of the interpolation points. We can bound the interpolation error 𝐸𝑛 (0)

in a way that is independent of the precise value of 𝜉 (which is unknown and difficult to

find) by maximizing over 𝜉 ∈ 𝐼𝑠.

|𝐸𝑛−1(0) | ≤ max
𝑠∈𝐼𝑠

| 𝑓 (𝑛) (𝑠) |
𝑛!

𝑛∏
𝑖=1

|𝑠𝑖 | (3.8)

Much of the technical work in this dissertation involves finding suitable bounds on the

size of the derivatives 𝑓 (𝑛) . In particular, in the expectation values of equation (3.5),

𝑓 (𝑠) = ⟨𝑂𝑠 (𝑡)⟩.

For reasons which we discuss in the following Section, we choose the Chebyshev nodes

on [−𝑎, 𝑎] as our interpolation points.

𝑠𝑖 = 𝑎 cos
(
2𝑖 − 1

2𝑛
𝜋

)
(3.9)
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This allows us to specialize our interpolation error in the manner described in the following

lemma.

Lemma 3.2.1. Let 𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑛 be the collection of Chebyshev interpolation points

on the interval [−𝑎, 𝑎]. In the notation above, we have

|𝐸𝑛−1(0) | ≤ max
𝑠∈[−𝑎,𝑎]

| 𝑓 (𝑛) (𝑠) |
( 𝑎
2𝑛

)𝑛
.

Proof. For 𝑛 odd, 𝑠 = 0 is one of the interpolation points, so the error is zero and the

bound holds automatically. Hereafter, we only consider 𝑛 even (which will be the case of

practical interest).

Using the generic bound (3.8) with the Chebyshev nodes,

|𝐸𝑛−1(0) | ≤ max
𝜉∈[−𝑎,𝑎]

| 𝑓 (𝑛) (𝜉) | 1
𝑛!
𝑎𝑛

𝑛∏
𝑖=1

����cos
(
2𝑖 − 1

2𝑛
𝜋

)���� . (3.10)

To obtain the lemma, we just need to appropriately bound the product of cosines. Since 𝑛

is even, 𝑛 = 2𝑚 for some 𝑚 ∈ Z+. Moreover, we have a reflectional symmetry about 𝑚, in

the sense that ����cos
(
2𝑖 − 1

2𝑛
𝜋

)���� = ����cos
(
2(𝑛 − 𝑖 + 1) − 1

2𝑛
𝜋

)���� . (3.11)

Hence, we only need to take the product over 𝑖 = 1, . . . , 𝑚 and square it.
𝑛∏
𝑖=1

����cos
(
2𝑖 − 1

2𝑛
𝜋

)���� = (
𝑚∏
𝑖=1

cos
(
2𝑖 − 1

4𝑚
𝜋

))2

(3.12)

To proceed further, let’s reindex the remaining product by 𝑖 → 𝑚 − 𝑖 + 1. This gives
𝑚∏
𝑖=1

cos
(
2𝑖 − 1

4𝑚
𝜋

)
=

𝑚∏
𝑖=1

cos
(
𝜋

2
− 2𝑖 − 1

4𝑚
𝜋

)
=

𝑚∏
𝑖=1

sin
(
2𝑖 − 1

4𝑚

)
≤

𝑚∏
𝑖=1

2𝑖 − 1
4𝑚

(3.13)
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where we used the fact that sin(𝑥) ≤ 𝑥 for all 𝑥 ≥ 0. Factoring out the denominator from

the product, the remaining terms become a double factorial.
𝑚∏
𝑖=1

2𝑖 − 1
4𝑚

=
(2𝑚 − 1)!!
(4𝑚)𝑚 (3.14)

The double factorial can be bounded as follows.

(2𝑚 − 1)!!2 ≤ (2𝑚 − 1)!!(2𝑚)!! = 2𝑚! (3.15)

so that (2𝑚 − 1)!! ≤
√︁
(2𝑚)!. Returning to the original product of equation (3.12), and

reintroducing 𝑛 = 2𝑚, the resulting bound is

𝑛∏
𝑖=1

����cos
(
2𝑖 − 1

2𝑛
𝜋

)���� ≤ ( √
𝑛!

(2𝑛)𝑛/2

)2

=
𝑛!

(2𝑛)𝑛 . (3.16)

Reinserting this result into the last line of equation (3.10) gives the bound stated in the

lemma. □

Though Chebyshev interpolation enjoys nice mathematical properties, it presents a

challenge for Trotter simulation because of the need for noninteger time steps in equa-

tion (3.44). In the face of this, there are several options one could take: rounding to

integer time steps, or perform fractional queries using, say, the Quantum Singular Value

Transformation (QSVT).

First, consider rouding to integer time steps, i.e., gathering data at the nearest reciprocal

integer 1/𝑟 to the Chebyshev node 𝑠. For symmetrical interval [−𝑎, 𝑎], the rounding error

|𝑠 − 1/𝑟 | goes as 𝑂 (𝑎2) as 𝑎 → 0. From here, one could either (a) take the estimate for

𝑓 (1/𝑟) as the estimate for 𝑓 (𝑠), accruing some error in the process, or (b) perform the

interpolation at the approximate Chebyshev nodes given by the collection of points 1/𝑟𝑖.

Unfortunately, for our purposes, option (a) leads to unacceptable errors of order 𝑂 (𝑎) in
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the data, eliminating accuracy gains. As for option (b), it is possible to use robustness

results on Chebyshev interpolation [130] to argue that almost-Chebyshev nodes should

be almost as well-conditioned. Again, however, we find that our scaling of the number

of nodes is such that the node displacements must be quite small, leading again to poor

scaling. Because of this, for most of this work we choose to invoke access to fractional

queries using the QSVT [54]. While fractional queries increase the overhead compared to

Trotter alone, this overhead is a constant.

3.3 Stability Analysis

Polynomial interpolation is a valuable numerical tool, but some implementations can

lead to numerical instability [36]. However, the situation is not as bad as often presented

in textbooks [125]. While linear algebraic approaches involving Vandermonde matrices

suffer instability for high degree polynomials [51], methods such as barycentric formulas

are provably stable with respect to floating point arithmetic [68].

A particularly important consideration is the choice of interpolation nodes. It is well

known that equally spaced nodes can lead to the Runge phenomenon: rapid oscillations

near the ends of the interval that grow with polynomial degree [106]. These oscillations

can be overcome with a superior choice of nodes, such as the zeros of the Chebyshev

polynomials. Interpolations done with this set of nodes are guaranteed to converge to

functions that are Lipschitz continuous as 𝑛→ ∞. Moreover, they are well-conditioned in

the sense of small errors in the data values. Finally, because they anti-cluster around 𝑠 = 0,

they are relatively cheap to compute with Trotter formulas. In this work, we will always

interpolate at the 𝑛th-degree Chebyshev nodes, or approximations thereof, on a symmetric

interval [−𝑎, 𝑎] about the origin, defined in (3.9). We choose even 𝑛 so as to avoid the
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origin (which has infinite cost to compute), and also utilize the reflectional symmetry of

𝑓 (𝑠).

To compute the interpolant 𝑃𝑛−1 𝑓 linear algebraically, we overcome the limitations

of the standard Vandemonde approach by expanding in terms of orthonormal Chebyshev

polynomials rather than monomials 𝑥 𝑗 .

𝑃𝑛−1 𝑓 (𝑠) =
𝑛−1∑︁
𝑗=0
𝑐 𝑗 𝑝 𝑗 (𝑠). (3.17)

Here, 𝑝 𝑗 is defined by

𝑝 𝑗 (𝑠) :=


√︃

1
𝑛
𝑇0(𝑠), 𝑗 = 0√︃

2
𝑛
𝑇𝑗 (𝑠), 𝑗 = 1, 2, . . .

(3.18)

where 𝑇𝑗 is the standard 𝑗 th Chebyshev polynomial.

𝑇𝑗 (𝑥) := cos( 𝑗 cos−1 𝑥) (3.19)

By orthonormality, we are referring to the condition [92]

𝑛∑︁
𝑘=1

𝑝𝑖 (𝑠𝑘 )𝑝 𝑗 (𝑠𝑘 ) = 𝛿𝑖 𝑗 (3.20)

for all 0 ≤ 𝑖, 𝑗 < 𝑛, with 𝑠𝑘 being the zeros of 𝑇𝑛 given in (3.9). This immediately implies

the matrix

V :=

©«

𝑝0(𝑠1) 𝑝1(𝑠1) . . . 𝑝𝑛−1(𝑠1)

𝑝0(𝑠2) 𝑝1(𝑠2) . . . 𝑝𝑛−1(𝑠2)
...

...
. . .

...

𝑝0(𝑠𝑛) 𝑝1(𝑠𝑛) . . . 𝑝𝑛−1(𝑠𝑛)

ª®®®®®®®®¬
(3.21)
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is orthogonal, and therefore has condition number 𝜅(V) := ∥V∥∥V−1∥ equal to one. This

is the source of well-conditioning in our approach. The coefficients 𝑐 = (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

in equation (3.17) satisfy

𝑦 = V𝑐 (3.22)

for the vector of values 𝑦 = ( 𝑓 (𝑠1), 𝑓 (𝑠2), . . . , 𝑓 (𝑠𝑛)), since 𝑃𝑛−1 𝑓 is an interpolant.

Hence, 𝑐 = V𝑇 𝑦 gives the vector of coefficients.

We now develop our argument for well-conditioning. Unless otherwise subscripted, all

logarithms are natural.

Lemma 3.3.1. Let 𝑠1, 𝑠2, . . . , 𝑠𝑛 be the standard Chebyshev nodes on [−𝑎, 𝑎] (3.9) with 𝑛

even. Then the nodes satisfy

𝑛∑︁
𝑘=1

1
|𝑠𝑘 |

≤ 4𝑛
𝜋𝑎

(𝛾 + log(2𝑛 + 2)) ,

where 𝛾 ≈ 0.577 is the Euler-Mascheroni constant.

Proof. We focus on the case 𝑎 = 1, since the general result follows by a simple rescaling.

Because sine and cosine are phase shifted by 𝜋/2,
𝑛∑︁
𝑘=1

1
|𝑠𝑘 |

=

𝑛∑︁
𝑘=1

1���cos
(

2𝑘−1
2𝑛 𝜋

)��� =
𝑛∑︁
𝑘=1

1���sin
(
𝑛−2𝑘+1

2𝑛 𝜋

)��� . (3.23)

Taking advantage of the symmetry about 𝑠 = 0,

𝑛∑︁
𝑘=1

1���sin
(
𝑛−2𝑘+1

2𝑛 𝜋

)��� = 2
𝑛/2∑︁
𝑘=1

1

sin
(

2𝑘−1
2𝑛 𝜋

) . (3.24)

Next, we use the lower bound

sin 𝑥 ≥ 𝑥/2 (0 ≤ 𝑥 ≤ 𝜋/2) (3.25)
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in order to bound the terms of the sum.

2
𝑛/2∑︁
𝑘=1

1

sin
(

2𝑘−1
2𝑛 𝜋

) ≤ 8𝑛
𝜋

𝑛/2∑︁
𝑘=1

1
2𝑘 − 1

=
8𝑛
𝜋

(
𝐻𝑛 −

1
2
𝐻𝑛/2

) (3.26)

Here, 𝐻𝑛 denotes the 𝑛th harmonic number. From the relation 𝐻𝑛 = 𝛾 + 𝜓(𝑛 + 1), where

𝜓 is the digamma function,

𝐻𝑛 −
1
2
𝐻𝑛/2 = 𝛾/2 + 𝜓(𝑛 + 1) − 1

2
𝜓(𝑛/2 + 1). (3.27)

Moreover, since 𝜓(𝑥) ∈ (log(𝑥 − 1/2), log(𝑥)) for any 𝑥 > 1/2, this is upper bounded by

𝐻𝑛 −
1
2
𝐻𝑛/2 < 𝛾/2 + log(𝑛 + 1) − 1

2
log(𝑛 + 1

2
) = 𝛾 + log 2

2
+ log(𝑛 + 1)

2
. (3.28)

Reinserting this into (3.26), one obtains the bound
𝑛∑︁
𝑘=1

1
|𝑠𝑘 |

≤ 4𝑛
𝜋

(𝛾 + log(2𝑛 + 2)) (3.29)

The general lemma follows from a rescaling by 1/𝑎. □

Observe that 1/|𝑠𝑘 | is essentially the number of Trotter steps to compute the 𝑘th

interpolation point. Thus, Lemma 3.3.1 amounts to a bound on the total number of Trotter

steps, and we see this grows as 𝑂 (𝑎−1𝑛 log 𝑛).

Lemma 3.3.2. Let 𝑝(𝑠) = (𝑝0(𝑠), 𝑝1(𝑠), . . . , 𝑝𝑛−1(𝑠)) be a vector of (normalized) Cheby-

shev polynomials on [−𝑎, 𝑎]. Then,

∥V𝑝(0)∥1 <
2
𝜋

log (𝑛 + 1) + 1

where ∥ · ∥1 denotes the vector 1-norm.
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Proof. Let 𝑑 (𝑠) = V𝑝(𝑠). For each 𝑘 = 1, 2, . . . 𝑛 we have

𝑑𝑘 (𝑠) =
𝑛−1∑︁
𝑗=0

V𝑘 𝑗 𝑝 𝑗 (𝑠) =
𝑛−1∑︁
𝑗=0

𝑝 𝑗 (𝑠𝑘 )𝑝 𝑗 (𝑠)

=
1
𝑛
+ 2
𝑛

𝑛−1∑︁
𝑗=1

cos
(
𝑗

(
2𝑘 − 1

2𝑛
𝜋

))
cos( 𝑗 cos−1(𝑠)).

(3.30)

At 𝑠 = 0, cos( 𝑗 cos−1(0)) = cos( 𝑗𝜋/2), which is zero for odd 𝑗 . Hence,

𝑑𝑘 (0) =
1
𝑛
+ 2
𝑛

𝑛−2∑︁
𝑗=2,even

cos
(
𝑗

(
2𝑘 − 1

2𝑛
𝜋

))
(−1) 𝑗/2

=
1
𝑛
+ 2
𝑛

𝑛/2−1∑︁
𝑗 ′=1

(−1) 𝑗 ′ cos
(
𝜋 𝑗 ′

2𝑘 − 1
𝑛

)
.

(3.31)

The sum can be evaluated exactly (we used Mathematica), yielding

𝑑𝑘 (0) =
1
𝑛
− 2
𝑛

(
1 − cos((𝑘 + 𝑛/2)𝜋) tan(𝜋 2𝑘−1

2𝑛 )
2

)
(3.32)

=
1
𝑛
− 1
𝑛

(
1 − (−1)𝑘+𝑛/2 tan(2𝑘 − 1

2𝑛
𝜋)

)
(3.33)

=
1
𝑛
(−1)𝑘+𝑛/2 tan

(
2𝑘 − 1

2𝑛
𝜋

)
. (3.34)

With coefficients in hand, we now compute the one norm of 𝑑 (0).

∥𝑑 (0)∥1 =
1
𝑛

𝑛∑︁
𝑘=1

����tan
(
2𝑘 − 1

2𝑛

)���� (3.35)

We have a reflectional symmetry about 𝑘 → 𝑛 − 𝑘 + 1, allowing us to cut the sum in half

and remove the absolute value sign.

∥𝑑 (0)∥1 =
2
𝑛

𝑛/2∑︁
𝑘=1

tan
(
2𝑘 − 1

2𝑛
𝜋

)
=

1
𝑚

𝑚∑︁
𝑘=1

tan
(
2𝑘 − 1

2𝑚
𝜋

2

) (3.36)
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Here, 𝑚 ≡ 𝑛/2. We observe that the sum increases as 𝑘 approaches 𝑚 due to the first order

pole at 𝜋/2. We can upper bound tan(𝑥), and therefore the sum above, as follows.

1
𝑚

𝑚∑︁
𝑘=1

tan
(
2𝑘 − 1

2𝑚
𝜋

2

)
≤ 1
𝑚

𝑚∑︁
𝑘=1

1
𝜋
2 − 𝜋

2

(
2𝑘−1
2𝑚

) =
4
𝜋

𝑚∑︁
𝑘=1

1
2(𝑚 − 𝑘) + 1

=
4
𝜋

𝑚∑︁
𝑗=1

1
2 𝑗 − 1

(3.37)

In the last line, we reindexed by 𝑗 = 𝑚 − 𝑘 + 1. Borrowing the reasoning from the prior

lemma,

4
𝜋

𝑚∑︁
𝑗=1

1
2 𝑗 − 1

<
2
𝜋
(𝛾 + log(2𝑛 + 2)). (3.38)

Tracing back, this is an upper bound on ∥𝑑 (0)∥1. Hence,

∥𝑑 (0)∥1 <
2
𝜋

log(𝑛 + 1) + 2(𝛾 + log(2))
𝜋

<
2
𝜋

log(𝑛 + 1) + 1. (3.39)

□

The benefit of well-conditioning comes from relaxing the need to have exquisitely

precise data to achieve good interpolations. This property is captured by the following

Theorem.

Theorem 3.3.3. Let 𝑦 = ( 𝑓 (𝑠1), 𝑓 (𝑠2), . . . , 𝑓 (𝑠𝑛))𝑇 , and let �̃� ∈ R𝑛 be an approximation

of 𝑦 in the sense that, for all 1 ≤ 𝑗 ≤ 𝑛, | 𝑓 (𝑠 𝑗 ) − �̃� 𝑗 | ≤ 𝜖/( 2
𝜋

log(𝑛+1) +1) with probability

at least 1−𝛿/𝑛. Let 𝑝(𝑠) = (𝑝0(𝑠), . . . , 𝑝𝑛−1(𝑠))𝑇 be the vector of orthonormal Chebyshev

polynomials. Then �̃�𝑇V𝑝(𝑠) is an estimate of the interpolant 𝑃𝑛−1 𝑓 (𝑠) at 𝑠 = 0 to precision

|𝑃𝑛−1 𝑓 (0) − �̃�𝑇V𝑝(0) | ≤ 𝜖

with probability at least 1 − 𝛿.
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Proof. First, observe that 𝑃𝑛−1 𝑓 (𝑠) = 𝑝(𝑠)𝑇𝑐 = 𝑝(𝑠)𝑇V𝑇 𝑦 by the discussion surround-

ing (3.22). Hence,

|𝑃𝑛−1 𝑓 (0) − 𝑝(0)𝑇V𝑇 �̃� | = | (V𝑝(0))𝑇 (𝑦 − �̃�) |. (3.40)

By Hölder’s inequality,

| (V𝑝(0))𝑇 (𝑦 − �̃�) | ≤ ∥V𝑝(0)∥1∥𝑦 − �̃�∥∞. (3.41)

From Lemma 3.3.2, and from the assumptions on the distance between 𝑦 and �̃�,

∥V𝑝(𝑠)∥1∥𝑦 − �̃�∥∞ ≤
(

2
𝜋

log(𝑛 + 1) + 1
)

𝜖

2
𝜋

log(𝑛 + 1) + 1
= 𝜖 (3.42)

with probability Pr = (1 − 𝛿/𝑛)𝑛. In fact, since the probability of each component �̃�

exceeding the specified distance is 𝛿/𝑛, by the union bound the total probability of at least

one component exceeding this distance is less than 𝑛 × (𝛿/𝑛) = 𝛿. Thus, the inequality is

satisfied with probability Pr ≥ 1 − 𝛿. This completes the proof. □

Theorem 3.3.3 is what suggests that our interpolation approach may have the potential

to achieve accuracy improvements without increasing costs compared to standard Trotter.

It tells us that the error in Trotter data can be as large as the error of the final estimate

up to a factor which is logarithmically small in the number of interpolation points, and

therefore these data �̃�𝑖 can be computed "cheaply enough." Thus, Theorem 3.3.3 is plays

an important role in the proofs of Lemma 3.5.1, presented in Section 3.5.

3.4 The Effective Hamiltonian

Trotter formulas approximate 𝑈 (𝑡) only in a neighborhood around 𝑡 = 0; thus the

standard procedure for product formula simulations, as described in Section 2.7.1, is to

divide the simulation interval [0, 𝑡] into 𝑟 subintervals, such that each interval is sufficiently
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small that the Trotter approximation is valid. For the simple case of a uniform mesh of 𝑟

subintervals, this becomes

𝑆2𝑘 (𝑡/𝑟)𝑟 = 𝑈 (𝑡) +𝑂 (𝑡2𝑘+1/𝑟2𝑘 ) (3.43)

where big 𝑂 is understood as taking 𝑟 large. However, it is simpler for our subsequent

analysis to consider 𝑠 = 1/𝑟 as a "dimensionless step size," and instead think about 𝑠 → 0.

In terms of 𝑠, we define

�̃�𝑠 (𝑡) := 𝑆2𝑘 (𝑠𝑡)1/𝑠 . (3.44)

as the approximate evolution operator for 𝑠 ≠ 0. The discontinuity at 𝑠 = 0 in (3.44) may

be filled by the exact evolution �̃�0(𝑡) := 𝑈 (𝑡). Though we defined 𝑠 as a reciprocal integer,

definition (3.44) suggests an extension to allow 𝑠 to be real-valued. In fact, the resulting

function �̃�𝑠 is smooth on a neighborhood of 𝑠 = 0, a fact that will allow us to precisely

characterize the interpolation error. For our purposes, we will only consider |𝑠 | ≤ 1. When

1/𝑠 is not an integer, we may implement �̃�𝑠 using fractional queries [54] by splitting 1/𝑠

into integer and fractional parts.

1/𝑠 = 𝑟 + 𝑓 (3.45)

Here, 𝑟 = rnd(1/𝑠) ∈ Z is 1/𝑠 rounded to the nearest integer, and 𝑓 ∈ [−1/2, 1/2]. Finally,

we note that �̃�𝑠 is an even function of 𝑠, which we will make use of to cut the number of

interpolation points in half by reflecting across 𝑠 = 0.

Prior work has demonstrated the value of considering the effective Trotter Hamiltonian

in the analysis of Trotter formulas [138]. This approach is also helps us calculate high

order derivatives of �̃�𝑠 as needed for our error bounds. We define an effective Hamiltonian

�̃�𝑠 :=
𝑖

𝑠𝑡
log 𝑆2𝑘 (𝑠𝑡) (3.46)
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so that

�̃�𝑠 (𝑡) = 𝑒−𝑖�̃�𝑠𝑡 . (3.47)

Note that �̃�𝑠 depends on 𝑡 as well, though this dependence will be left implicit. For the

purposes of bounding the interpolation error, we require a bound on the norm of �̃�𝑠. This

is supplied by the following lemma.

Lemma 3.4.1. In the notation introduced above, let 𝑠 be chosen such that

𝑘 (5/3)𝑘𝑚 max
𝑙∈[1,𝑚]

∥𝐻𝑙 ∥|𝑠 |𝑡 ≤ 𝜋/20.

Then the following bound on the derivatives of �̃�𝑠 with respect to 𝑠 holds.

∥𝜕𝑛𝑠 �̃�𝑠∥ ≤ 2𝑡−1𝑛𝑛 (𝑒2𝑘 (5/3)𝑘𝑚 max
𝑙∈[1,𝑚]

∥𝐻𝑙 ∥𝑡)𝑛+1.

Note that our bounds are uniformly worse for larger 𝑘 , i.e., higher order ST formulas.

Assuming that this is not an artifact of our mathematical treatment, this suggests low order

formulas are unconditionally preferred over high order ones for interpolation. Numerical

studies could help determine the true impact of higher order formulas on the interpolation

procedure.

We conclude this Section with the proof of the above Lemma, which will be essential to

our subsequent error analysis. The upper bound will prove useful because, as we will see,

the error in polynomial interpolation can be expressed using a formula akin to the Taylor

remainder, which involves a high-order derivative.

Proof of Lemma 3.4.1. Recall the definition of the effective Hamiltonian (3.46), defined

for 𝑠 ∈ R \ {0} and for 𝑠 = 0 by �̃�0 := lim𝑠→0 �̃�𝑠 = 𝐻. We will understand log 𝑆2𝑘 (𝑠𝑡)
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through a power series expansion about the identity.

log 𝑆2𝑘 (𝑠𝑡) =
∞∑︁
𝑗=0

(−1) 𝑗
𝑗 + 1

(𝑆2𝑘 (𝑠𝑡) − 𝐼) 𝑗+1 (3.48)

This series converges precisely when

∥𝑆2𝑘 (𝑠𝑡) − 𝐼 ∥ ≤ 1. (3.49)

Using the fundamental theorem of calculus, we can derive a suitable condition for conver-

gence as a neighborhood about 𝑠 = 0. The condition above implies∫ 𝑠𝑡

0
𝑆2𝑘 (𝑥)𝑑𝑥

 ≤ 1 (3.50)

which is satisfied provided

|𝑠𝑡 | max
𝑥∈[0,𝑠𝑡]

 𝑑𝑑𝑥 𝑆2𝑘 (𝑥)
 ≤ 1. (3.51)

Writing out 𝑆2𝑘 (𝑥) =
∏𝑁𝑘

𝑙=1 exp(−𝑖𝐻 𝑗𝑙𝜏𝑙𝑥) where𝐻 𝑗𝑙 is some Hamiltonian piece𝐻 𝑗 indexed

by 𝑙, the derivative can be upper bounded as

max
𝑥∈[0,𝑠𝑡]

 𝑑𝑑𝑥 𝑆2𝑘 (𝑥)
 ≤

𝑁𝑘∑︁
𝑙=1

∥𝐻 𝑗𝑙 ∥|𝜏𝑙 |

≤ max
𝑗

∥𝐻 𝑗 ∥∥𝜏∥1

(3.52)

where 𝜏 = (𝜏𝑙)𝑁𝑘

𝑙=1 is the vector of ST coefficients, and in going to the second line we used a

Hölder inequality. We have ∥𝜏𝑙 ∥1 ≤ 𝑁𝑘 max𝑙 |𝜏𝑙 |, and from Appendix A of [136] we have

max
𝑙

|𝜏𝑙 | ≤ 2𝑘/3𝑘 . (3.53)

Thus, the requirement for convergence of the logarithm becomes

4
3
𝑘 (5/3)𝑘−1𝑚 |𝑠𝑡 | max

𝑗
∥𝐻 𝑗 ∥ ≤ 1 (3.54)
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where we used the expression 𝑁𝑘 = (2𝑚)5𝑘−1 for the number of ST exponentials.

We now assume 𝑠 is within the symmetric interval defined by (3.54), such that (3.48) is

convergent. Since log 𝑆2𝑘 (0) = 0, 𝑠 = 0 is a zero of order at least one. We want to absorb

the diverging 1/𝑠 term and better understanding the leading dependence in 𝑠. To facilitate

this, we write

�̃�𝑠 = − 1
𝑖𝑡

∞∑︁
𝑗=0

(−1) 𝑗
𝑗 + 1

𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1 (3.55)

where we defined

Δ𝑆2𝑘 (𝑠𝑡) :=
𝑆2𝑘 (𝑠𝑡) − 𝐼

𝑠
. (3.56)

Note that Δ𝑆2𝑘 is analytic in 𝑠, and is a finite difference around 𝑠 = 0, such that

lim
𝑠→0

Δ𝑆2𝑘 (𝑠𝑡) = −𝑖𝐻𝑡. (3.57)

Through the series expansion (3.55) we may bound derivatives of �̃�𝑠 via bounds on

derivatives of Δ𝑆2𝑘 . We first obtain a power series of Δ𝑆2𝑘 by Taylor expanding every term

in the product formula 𝑆2𝑘 . Regrouping in powers of 𝑠𝑡, the result is

Δ𝑆2𝑘 (𝑠𝑡) =
∞∑︁
𝑗=1

𝑠 𝑗−1(−𝑖𝑡) 𝑗
𝑗!

∑︁
𝐽

(
𝑗

𝑗1 . . . 𝑗𝑁𝑘

) 𝑁𝑘∏
𝑙=1

(𝐻𝑙𝜏𝑙) 𝑗𝑙 (3.58)

where the parenthetical symbol is the multinomial coefficient, and the sum
∑
𝐽 is over all

values of 𝐽 = ( 𝑗1, . . . , 𝑗𝑁𝑘
) such that

∑
𝑘 𝑗𝑘 = 𝑗 . The derivatives with respect to 𝑠 are now

easy to compute. Using the fact that

𝜕𝑛𝑠 𝑠
𝑗−1 =

( 𝑗 − 1)!
( 𝑗 − 1 − 𝑛)! 𝑠

𝑗−𝑛−1 (3.59)
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for 𝑗 > 𝑛 (and zero otherwise), we have

𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡) =
∞∑︁

𝑗=𝑛+1

𝑠 𝑗−𝑛−1(−𝑖𝑡) 𝑗
𝑗!

( 𝑗 − 1)!
( 𝑗 − 1 − 𝑛)!

∑︁
𝐽

(
𝑗

𝑗1 . . . 𝑗𝑁𝑘

) 𝑁𝑘∏
𝑙=1

(𝐻𝑙𝜏𝑙) 𝑗𝑙

∥𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡)∥ ≤
∞∑︁

𝑗=𝑛+1

𝑡 𝑗

( 𝑗 − 𝑛 − 1)! 𝑠
𝑗−𝑛−1(𝜏max𝑁𝑘Λ) 𝑗

(3.60)

where Λ := max 𝑗 ∥𝐻 𝑗 ∥ and 𝜏max = max𝑙 |𝜏𝑙 |. Factoring out powers of 𝑛 + 1 and reindexing,

we are left with the following bound on derivatives of Δ𝑆2𝑘 .

∥𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡)∥ ≤ (𝜏max𝑁𝑘Λ𝑡)𝑛+1𝑒𝑠𝜏max𝑁𝑘Λ𝑡 (3.61)

This expression is quite elegant; it is as if we were taking 𝑛+1 derivatives of the exponential

𝑒𝑐𝑠 with

𝑐 := 𝜏max𝑁𝑘Λ𝑡

≤ 𝑘 (5/3)𝑘𝑚Λ𝑡
(3.62)

Factors of 𝑐 will occur frequently in what follows, so we find it convenient to adopt this

symbol as shorthand.

We return to bounding the derivatives of powers of Δ𝑆2𝑘 (𝑠𝑡) as in equation (3.55).

𝜕𝑛𝑠
[
Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1] (3.63)

We reduce this to the previous case by performing a multinomial expansion.

𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1 =
∑︁
𝑁

(
𝑛

𝑛0 . . . 𝑛 𝑗

) 𝑗∏
𝑙=0

𝜕
𝑛𝑙
𝑠 Δ𝑆2𝑘 (𝑠𝑡) (3.64)

As usual, the capital letter 𝑁 denotes the set of all nonnegative indices 𝑛0, . . . , 𝑛 𝑗 sum-

ming to 𝑛. Applying the triangle inequality and submultiplicativity, and employing the
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bound (3.61),

∥𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1∥ ≤
∑︁
𝑁

(
𝑛

𝑛0 . . . 𝑛 𝑗

) 𝑗∏
𝑙=0

∥𝜕𝑛𝑙𝑠 Δ𝑆2𝑘 (𝑠𝑡)∥

≤
∑︁
𝑁

(
𝑛

𝑛0 . . . 𝑛 𝑗

) 𝑗∏
𝑙=0

𝑐𝑛𝑙+1𝑒𝑐𝑠

= 𝑒( 𝑗+1)𝑐𝑠𝑐𝑛+ 𝑗+1
∑︁
𝑁

(
𝑛

𝑛0 . . . 𝑛 𝑗

)
,

(3.65)

where we’ve used the sum property of the 𝑛𝑙 where appropriate. The remaining sum over

the multinomial coefficient is given by ( 𝑗 + 1)𝑛. Hence,

∥𝜕𝑛𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1∥ ≤ (( 𝑗 + 1)𝑐)𝑛 (𝑐𝑒𝑐𝑠) 𝑗+1 (3.66)

Notice that, when 𝑗 = 0, this is consistent with equation (3.61).

With result (3.66) in hand, we return to the power series (3.55). Differentiating term

by term

𝜕𝑛𝑠 �̃�𝑠 = − 1
𝑖𝑡

∞∑︁
𝑗=0

(−1) 𝑗
𝑗 + 1

𝜕𝑛𝑠

(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
(3.67)

and performing a binomial expansion for each term

𝜕𝑛𝑠

(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
=

𝑛∑︁
𝑞=0

(
𝑛

𝑞

) (
𝜕
𝑞
𝑠 𝑠

𝑗
) (
𝜕
𝑛−𝑞
𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
(3.68)

will allow us to apply our previous results. It will be helpful to consider two cases

separately: 𝑗 ≤ 𝑛 and 𝑗 > 𝑛. These regimes are somewhat qualitatively different, since the

derivatives of 𝑠 𝑗 may or may not vanish depending on the number of derivatives. Focusing

on the case 𝑗 ≤ 𝑛, we have

𝜕𝑛𝑠

(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
=

𝑗∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗!

( 𝑗 − 𝑞)! 𝑠
𝑗−𝑞

(
𝜕
𝑛−𝑞
𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
. (3.69)
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Note that the sum runs only to 𝑗 , not 𝑛. Taking a triangle inequality upper bound us-

ing (3.66), we may upper bound (3.69) as

𝑗∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗!

( 𝑗 − 𝑞)! 𝑠
𝑗−𝑞 (( 𝑗 + 1)𝑐)𝑛−𝑞 (𝑐𝑒𝑐𝑠) 𝑗+1

= (𝑐𝑒𝑐𝑠) 𝑗+1
𝑗∑︁

𝑞=0

(
𝑗

𝑞

)
𝑛!

(𝑛 − 𝑞)! 𝑠
𝑗−𝑞 (( 𝑗 + 1)𝑐)𝑛−𝑞

(3.70)

where we have factored out terms not involving 𝑞 from the sum, and manipulated the

factorials for reasons which will be seen presently. Taking the upper bound 𝑛!/(𝑛−𝑞)! < 𝑛𝑞,

and factoring out 𝑛 − 𝑗 powers of ( 𝑗 + 1)𝑐, we may upper bound the above expression by

(𝑐𝑒𝑐𝑠) 𝑗+1(( 𝑗 + 1)𝑐)𝑛− 𝑗
𝑗∑︁

𝑞=0

(
𝑗

𝑞

)
𝑛𝑞 (( 𝑗 + 1)𝑐𝑠) 𝑗−𝑞

= (𝑐𝑒𝑐𝑠) 𝑗+1(( 𝑗 + 1)𝑐)𝑛− 𝑗 (𝑛 + ( 𝑗 + 1)𝑐𝑠) 𝑗
(3.71)

Thus, with some minor polishing, we may express the bound on (3.68) for 𝑗 ≤ 𝑛 as

∥𝜕𝑛𝑠
(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
∥ ≤ 𝑒( 𝑗+1)𝑐𝑠𝑐𝑛+1( 𝑗 + 1)𝑛

(
𝑛

𝑗 + 1
+ 𝑐𝑠

) 𝑗
. (3.72)

Now let’s move on to the 𝑗 > 𝑛 case. Here, there are not enough derivatives to kill off

the 𝑠 𝑗 term, so the binomial sum in (3.69) will run from 𝑞 = 0 to 𝑛.

𝜕𝑛𝑠

(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
=

𝑛∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗!

( 𝑗 − 𝑞)! 𝑠
𝑗−𝑞

(
𝜕
𝑛−𝑞
𝑠 Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
(3.73)

Similar to before, we use the bound (3.66), to obtain

∥𝜕𝑛𝑠
(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
∥ ≤

𝑛∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗!

( 𝑗 − 𝑞)! 𝑠
𝑗−𝑞 (( 𝑗 + 1)𝑐)𝑛−𝑞 (𝑐𝑒𝑐𝑠) 𝑗+1

= (𝑐𝑒𝑐𝑠) 𝑗+1𝑠 𝑗−𝑛
𝑛∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗!

( 𝑗 − 𝑞)! (( 𝑗 + 1)𝑐𝑠)𝑛−𝑞 .
(3.74)
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Taking 𝑗!/( 𝑗 − 𝑞)! < 𝑗𝑞, a simpler upper bound is given by

(𝑐𝑒𝑐𝑠) 𝑗+1𝑠 𝑗−𝑛
𝑛∑︁
𝑞=0

(
𝑛

𝑞

)
𝑗𝑞 (( 𝑗 + 1)𝑐𝑠)𝑛−𝑞 = (𝑐𝑒𝑐𝑠) 𝑗+1𝑠 𝑗−𝑛 ( 𝑗 + ( 𝑗 + 1)𝑐𝑠)𝑛. (3.75)

With some minor rearrangements, this gives the following upper bound for 𝑗 > 𝑛.

∥𝜕𝑛𝑠
(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
∥ ≤ 𝑒( 𝑗+1)𝑐𝑠𝑐𝑛+1( 𝑗 + 1)𝑛 (𝑐𝑠) 𝑗−𝑛

(
𝑗

𝑗 + 1
+ 𝑐𝑠

)𝑛
(3.76)

With the bounds (3.72) and (3.76), we can return to bounding 𝜕𝑛𝑠 �̃�𝑠. Still separating

the two cases 𝑗 ≤ 𝑛 and 𝑗 > 𝑛, we can write

∥𝜕𝑛𝑠 �̃�𝑠∥𝑡 ≤
𝑛∑︁
𝑗=0

1
𝑗 + 1

∥𝜕𝑛𝑠
(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
∥ +

∞∑︁
𝑗=𝑛+1

1
𝑗 + 1

∥𝜕𝑛𝑠
(
𝑠 𝑗Δ𝑆2𝑘 (𝑠𝑡) 𝑗+1

)
∥

= 𝐵𝑙 + 𝐵ℎ

(3.77)

where 𝐵𝑙 and 𝐵ℎ refer to bounds on the "low" and "high" parts of the series. Employing

the bounds from equations (3.72) and (3.76), we have

𝐵𝑙 ≤
𝑛∑︁
𝑗=0

1
𝑗 + 1

𝑒( 𝑗+1)𝑐𝑠𝑐𝑛+1( 𝑗 + 1)𝑛
(
𝑛

𝑗 + 1
+ 𝑐𝑠

) 𝑗
= 𝑐𝑛+1

𝑛∑︁
𝑗=0
𝑒( 𝑗+1)𝑐𝑠 ( 𝑗 + 1)𝑛−1

(
𝑐𝑠 + 𝑛

𝑗 + 1

) 𝑗 (3.78)

and

𝐵ℎ ≤
∞∑︁

𝑗=𝑛+1

1
𝑗 + 1

𝑒( 𝑗+1)𝑐𝑠𝑐𝑛+1( 𝑗 + 1)𝑛 (𝑐𝑠) 𝑗−𝑛
(

𝑗

𝑗 + 1
+ 𝑐𝑠

)𝑛
≤ 𝑐𝑛+1

∞∑︁
𝑗=𝑛+1

𝑒( 𝑗+1)𝑐𝑠 ( 𝑗 + 1)𝑛−1(𝑐𝑠) 𝑗−𝑛 (1 + 𝑐𝑠)𝑛

= 𝑐𝑛+1 (1 + 𝑐𝑠)𝑛
∞∑︁

𝑗=𝑛+1
𝑒( 𝑗+1)𝑐𝑠 ( 𝑗 + 1)𝑛−1(𝑐𝑠) 𝑗−𝑛.

(3.79)
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Let’s begin by simplifying the bound on 𝐵𝑙 . We will at this point make the assumption that

𝑠 is sufficiently small such that 𝑐𝑠 < 1. This will necessarily factor into the cost later. This

simplification yields

𝐵𝑙 ≤ 𝑐𝑛+1
𝑛∑︁
𝑗=0
𝑒 𝑗+1( 𝑗 + 1)𝑛−1

(
1 + 𝑛

𝑗 + 1

) 𝑗
≤ 𝑐𝑛+1

𝑛∑︁
𝑗=0
𝑒 𝑗+1( 𝑗 + 1)𝑛−1𝑒𝑛

≤ 1
𝑒
(𝑒2𝑐)𝑛+1

𝑛+1∑︁
𝑗=1

𝑗𝑛−1

(3.80)

The remaining sum can be bounded by (𝑛 + 1)𝑛, hence,

𝐵𝑙 ≤
(𝑒2(𝑛 + 1)𝑐)𝑛+1

𝑒(𝑛 + 1) ≤ (𝑒2𝑐)𝑛+1𝑛𝑛, (3.81)

where the definition that 00 = 1 handles the edge case. Let’s turn our attention to 𝐵ℎ. We

will start by reindexing so that the series begins at 𝑗 = 0 in (3.79).

𝐵ℎ ≤ 𝑐𝑛+1(1 + 𝑐𝑠)𝑛
∞∑︁
𝑗=0
𝑒( 𝑗+𝑛+2)𝑐𝑠 ( 𝑗 + 𝑛 + 2)𝑛−1(𝑐𝑠) 𝑗+1 (3.82)

= (𝑐𝑒𝑐𝑠)𝑛+1(1 + 𝑐𝑠)𝑛
∞∑︁
𝑗=0

(𝑐𝑠𝑒𝑐𝑠) 𝑗+1( 𝑗 + 𝑛 + 2)𝑛−1 (3.83)

The series converges if and only if

𝑐𝑠𝑒𝑐𝑠 < 1. (3.84)

This condition is slightly stronger than the condition (3.54) that we need for convergence

of the logarithm (3.48), and is equivalent to 𝑐𝑠 < 𝑊 (1) ≈ 0.567, where𝑊 is the principal

brach of the Lambert W function. Returning to (3.82), we have the bound

( 𝑗 + 𝑛 + 2)𝑛−1 = (𝑛 + 2)𝑛−1
(
1 + 𝑗

𝑛 + 2

)𝑛−1
≤ (𝑛 + 2)𝑛−1𝑒 𝑗 . (3.85)
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Thus, we have

𝐵ℎ ≤ (𝑐𝑒𝑐𝑠)𝑛+1(1 + 𝑐𝑠)𝑛 (𝑛 + 2)𝑛−1
∞∑︁
𝑗=0

(𝑒𝑐𝑠𝑒𝑐𝑠) 𝑗

= (𝑐𝑒𝑐𝑠)𝑛+1(1 + 𝑐𝑠)𝑛 (𝑛 + 2)𝑛−1 1
1 − 𝑒𝑐𝑠𝑒𝑐𝑠 .

(3.86)

To be concrete, let’s take 𝑒𝑐𝑠𝑒𝑐𝑠 < 1/2, which is implied by 𝑐𝑠 < 𝜋/20. Coupled with the

inequality in (3.62), this condition can be met provided that

𝑘 (5/3)𝑘𝑚Λ𝑠𝑡 ≤ 𝜋/20, (3.87)

which is exactly the assumption of Lemma 3.4.1. This allows us to upper bound 𝐵ℎ further

as

𝐵ℎ ≤ 2𝑒𝜋/20(𝑐𝑠)𝑛+1(3𝑒𝜋/20/2)𝑛 (𝑛 + 2)𝑛−1 ≤ 4(𝑐𝑠)𝑛+1(9/5)𝑛 (𝑛 + 2)𝑛−1. (3.88)

Since (𝑛 + 2)𝑛−1 ≤ 𝑒2𝑛𝑛/2 (using 00 := 1 for the edge case 𝑛 = 0), we have

𝐵ℎ ≤ 2𝑒2(𝑐𝑠)𝑛+1 (9/5)𝑛 𝑛𝑛. (3.89)

Altogether, using 𝑠 ≤ 1

∥𝜕𝑛𝑠 �̃�𝑠∥𝑡 ≤ 𝑛𝑛 (𝑒2𝑐)𝑛+1
(
1 + 2(9/5𝑒2)𝑛

)
≤ 2𝑛𝑛 (𝑒2𝑐)𝑛+1

(3.90)

The final result then follows from substituting for 𝑐 and noting that the duration of each

time step is at most 2𝑘/3𝑘−1 using the results of [137]. □

3.5 Application to Dynamical Observables

We now consider the application of Chebyshev interpolation to estimate expectation

values, a fundamental task in quantum computation. The setting is as follows: given a

67



quantum state 𝜌 and observable 𝑂, the expectation value is given by ⟨𝑂⟩ = Tr(𝜌𝑂). We

evolve our system according to a 2𝑘-th order ST formula �̃�𝑠 given by (3.44). The time

evolved expectation values of interest is captured by the function

𝑓 (𝑠) :=
Tr(𝜌𝑂𝑠 (𝑡))

∥𝑂∥ (3.91)

where 𝑂𝑠 (𝑡) is given by equation (3.5). We’ve normalized the expectation values by

∥𝑂∥ because the relative error is a useful and natural metric, and also the normalized

operators may be block encoded for amplitude estimation. Alternatively, we simply restrict

our attention to normalized observables with ∥𝑂∥ = 1. The interpolation algorithm we

propose can be summarized as follows.

1. Given Hamiltonian𝐻, simulation time 𝑡, and tolerance 𝜖 for the estimate of ⟨𝑂 (𝑡)⟩/∥𝑂∥,

choose the appropriate interpolation interval [−𝑎, 𝑎] and an even number 𝑛 of Cheby-

shev nodes. We neglect the cost of this step. The error analysis we will perform

subsequently will inform the choices of 𝑎 and 𝑛.

2. Compute estimates �̃�𝑖 of the expectation values ⟨𝑂𝑠𝑖 (𝑡)⟩ for each 𝑠𝑖 with 𝑖 =

1, . . . , 𝑛/2, to an accuracy depending on 𝜖 and 𝑛. We will assume this step is

done with Iterative Quantum Amplitude Estimation (IQAE) [56], a recent approach

to amplitude estimation that exhibits low quantum overhead. Our metric of cost is the

number of 𝐻 𝑗 exponentials executed on a quantum circuit, where 𝐻 =
∑
𝑗 𝐻 𝑗 . Note

that by symmetry, we need not compute �̃�𝑖 for 𝑖 > 𝑛/2. We have 𝑓 (𝑠𝑖) = 𝑓 (𝑠𝑛−𝑖+1)

for all 𝑖 ∈ {1, . . . , 𝑛}.

3. Perform the polynomial fit �̃�𝑛−1 𝑓 through the points (𝑠𝑖, �̃�𝑖) using a Chebyshev
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expansion (3.17). Note that �̃�𝑛−1 𝑓 will automatically be even. This fit is well-

conditioned, and we neglect the cost of this step.

4. Evaluate the �̃�𝑛−1 𝑓 (0) to be our estimate of ⟨𝑂 (𝑡)⟩.

To summarize, one performs amplitude estimation to acquire the time evolved expectation

value at each Chebyshev node, then performs a polynomial interpolation of the data. The

estimate is the value at 𝑠 = 0.

Given an even set of Chebyshev nodes {𝑠1, . . . , 𝑠𝑛}, and making use of Lemma 3.2.1,

the interpolation error 𝐸𝑛−1 assuming perfect data points is given by

|𝐸𝑛−1(0) | ≤
|Tr 𝜌 𝜕𝑛𝑠𝑂𝑠 (𝑡) |

∥𝑂∥𝑛!

𝑛∏
𝑖=1

|𝑠𝑖 | ≤ max
𝑠∈[−𝑎,𝑎]

∥𝜕𝑛𝑠𝑂𝑠 (𝑡)∥
∥𝑂∥

( 𝑎
2𝑛

)𝑛
. (3.92)

With a suitable bound on 𝜕𝑛𝑠𝑂 (𝑡), we can provide an upper bound on the interpolation

error at 𝑠 = 0. This bound is provided by the following lemma. In what follows, it will be

helpful to define the parameter

𝑐 := 𝑘 (5/3)𝑘𝑚 max
𝑙∈[1,𝑚]

∥𝐻𝑙 ∥𝑡 (3.93)

for ease of notation. This parameter is proportional to the the Hamiltonian size and the

"total Trotter time," meaning the sum of all the forward and backward time steps, in absolute

value, for a 2𝑘-th ST formula.

Lemma 3.5.1 (Extrapolation Error Bound for Time-Evolved Observables.). Under the

conditions of Lemma 3.4.1 (𝑐𝑎 ≤ 𝜋/20), the following bounds holds on the Trotterized

evolution 𝑂𝑠 (𝑡) with step parameter 𝑠 ∈ (0, 𝑎]:

1. for 𝑐 > 𝑛 we have that

∥𝜕𝑛𝑠𝑂𝑠 (𝑡)∥
∥𝑂∥ <

(
𝑐

√︃
𝑒3(1 +

√︁
8/𝜋𝑒2)

)2𝑛
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which gives an interpolation error

|𝐸𝑛−1(0) | <
(
129

𝑐2𝑎

𝑛

)𝑛
.

2. For 𝑐 ≤ 𝑛, we have

∥𝜕𝑛𝑠𝑂𝑠 (𝑡)∥
∥𝑂∥ ≤

√︂
2𝑛
𝜋

(
𝑒4𝑐

2

)𝑛
𝑛!𝑒4𝑐𝑒2

√
2/𝜋

giving an interpolation error

|𝐸𝑛−1(0)∥ ≤ 2
√

2𝑛 (6𝑐𝑎)𝑛 𝑒24𝑐 .

The proof of this lemma is a tedious exercise in repeated in the combinatorics of large

derivatives and the triangle inequality, and is left to the end of this chapter. Note that

once the derivative bound holds, the interpolation error bound follows immediately from

Lemma 3.2.1.

One motivation for these bounds is deriving asymptotic expressions for the algorithmic

complexity. The following theorem gives an asymptotic query complexity for the number

𝑁exp of Trotter exponentials exp(−𝑖𝐻 𝑗𝜏).

Theorem 3.5.2. Let𝑂 (𝑡) = 𝑈†(𝑡)𝑂𝑈 (𝑡) be a time-evolved observable under a Hamiltonian

𝐻 =
∑𝑚
𝑙=1 𝐻𝑙 on 𝑛 qubits, so that 𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡 . Suppose there exists a 𝛾 ∈ R+ such that

𝑂/𝛾 can be block encoded via a unitary𝑈enc by a state |𝐺⟩ on a set of 𝐿 auxiliary qubits.

Let 𝜌 be a quantum state on 𝑛 qubits, and suppose 𝛾/∥𝑂∥ ∈ 𝑂 (1). Then, the number of

exponentials 𝑁exp required to estimate Tr(𝜌𝑂 (𝑡))/∥𝑂∥ to precision 𝜖 with confidence 1− 𝛿

using a 2𝑘 order Suzuki Trotter formula satisfies

𝑁exp ∈ �̃�
(
𝑐max{𝑐, log(1/𝜖)}𝜖−1 log(1/𝛿)

)
.
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Here, �̃� is big-𝑂 with multiplicative terms suppressed which are logarithmically smaller

in 1/𝜖 and 𝑐. Moreover, the number of auxiliary qubits needed is 𝑂 (𝐿).

We give a sketch of the proof. Given a choice of interval [−𝑎, 𝑎] and (even) number

of interpolation points 𝑛, we have from Lemma 3.3.1 that the number of exponentials to

perform evolutions for all Chebyshev nodes goes as

𝑂

(
𝑛 log 𝑛
𝑎

)
. (3.94)

However, this is not the total cost since these circuits need to be repeated to perform

the appropriate measurement protocols. Since 𝑂 can be block encoded, the expectation

value can be obtained via an amplitude estimation protocol. By the well-conditioning of

Lemma 3.3.3, each data point needs to be within 𝜖 of the exact Trotter value, up to a

logarithmic factor in 𝑛. This robustness is why our result maintains a 𝑂 (𝜖−1) scaling.

In our proof, we assume the IQAE protocol is used, requiring only a single qubit

overhead. The fractional queries for the noninteger timestep also require 𝑂 (1) overhead,

meaning the total overhead is 𝑂 (𝐿) due to the block encoding. To relate 𝑛 and 𝑎 to the

required precision 𝜖 , simulation time 𝑡 and Hamiltonian 𝐻, Lemma 3.5.1 can be used.

Thus, we can relate 𝑁exp to these basic parameters. We carry out the formal proof in

Section 3.8.

As advertised, we see there is a "near-Heisenberg" scaling of 1/𝜖 , up to logarithmic

factors. However, there is an unsavory quadratic scaling in the simulation time in cases

without high accuracy demands. I believe this can be improved, because our approach us

forces us to have 𝑛 scale linearly in 𝑇 , which seems overly pessimistic. Finally, our results

suggest the best performance for using low order formulas, since our bounds are strictly

worse for increasing ST order 𝑘 .

71



3.6 Numerical Demonstration

Support the theoretical findings of this chapter, we numerically emulate the polynomial

interpolation procedure on the 1D random Heisenberg model. I thank James Watson for

his collaboration on these numerics. The Hamiltonian of interest is

𝐻 =

𝑛−1∑︁
𝑖=0

𝜎𝑖 · 𝜎𝑖+1 + ℎ𝑖𝑍𝑖 (3.95)

where each ℎ𝑖 ∈ [−ℎ, ℎ] is sampled randomly and uniformly, with ℎ > 0 setting the

"disorder strength." Moreover, 𝜎𝑖 · 𝜎𝑖+1 = 𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝑍𝑖𝑍𝑖+1 is the dot product

of the vector of Paulis 𝜎𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖). We take the chain to be a circle, so the 𝑛th

qubit is adjacent to the 1st (𝜎𝑛+1 = 𝜎1). We choose this system because it is simple,

yet sufficiently interesting from the perspective of condensed matter physics, providing

a model for the often-studied phenomenon of many-body localization and closed-system

thermalization [27].

Although the product formula simulations are meant to be done on a quantum computer,

here we instead perform all computations classically. Specifically, we compute the product

of matrix exponentials for each product formula. Although not a true quantum simulation,

this still provides accurate information about the Trotter error mitigated by the polynomial

interpolation procedure.

To proceed, we first need to decide on a decomposition of the Hamiltonian (3.95), i.e.

a partition of the various terms such that each partition is easy to simulate. To this end,

it is helpful to observe that this system can be represented as a circular graph of 𝑛 nodes,

with links representing the hopping interaction 𝜎𝑖 · 𝜎𝑖+1. The interactions commute if the

links don’t meet at a vertex. Thus, we might seek to color the edges of our graph, such that

two edges of the same color don’t meet. If 𝑛 is even, only two colors are necessary for this,
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by coloring alternate edges. Taking 𝑛 even for simplicity, we thus partition 𝐻 as

𝐻 = 𝐻even + 𝐻odd + 𝐻pot (3.96)

where

𝐻even =
∑︁
𝑖 even

𝜎𝑖 · 𝜎𝑖+1

𝐻odd =
∑︁
𝑖 odd

𝜎𝑖 · 𝜎𝑖+1

𝐻pot =
∑︁
𝑖

ℎ𝑖𝑍𝑖 .

(3.97)

Within each partition, the terms commute, and therefore the exponential can be split

without error. As a circuit, each term can be implemented in parallel. Exact methods for

computing a two-qubit unitary can be used [127]. We use the decomposition (3.97) for all

of the results in this Section.

Multiple different observables and initial states could be potentially considered. Here

we choose the following:

𝑂 = 𝑍𝑛−1𝑍0𝑋1

|𝜓0⟩ = |1⟩𝑛/2

(3.98)

where |1⟩𝑛/2 is the computational basis state on 𝑛 qubits with a single 1 on qubit 𝑛/2. Intu-

itively, we imagine the 1 representing an excitation, and across the circle is the observable

of interest 𝑂. The hopping terms will cause the 1 to "travel" to the other side, but the

potential 𝐻pot will cause more nontrivial behavior. To be concrete, we take the following

parameter values in all of the data presented below: 𝑇 = 1, ℎ = 1, 𝑛 = 6 and 2nd order

Trotter.

73



We first wish to observe the error mitigation in action, as a proof of concept. To

do so, need an "exact" estimate of ⟨𝑂 (𝑡)⟩, meaning an estiamte far more accurate than

the simulation methods employed. We use direct matrix exponentiation with 20 digits

of precision to accommodate this need, and all errors are measured with respect to this

"exact" calculation. Next, we fix the interpolation interval [−𝑎, 𝑎], with 𝑎 = (∥𝐻∥𝑇)−1 a

reasonable choice for the largest step size 𝑠. We then vary the number 𝑁 of interpolation

points, and for each 𝑁 (from 2 to 14 in even increments) we perform the interpolation

procedure and calculate the error. By comparing this error with the error of the "best" data

point, i.e., the data point with the smallest Trotter step size, we can get a sense of how

much the Trotter error is mitigated.

Figure 3.1 shows the results of this numerical experiment. Each blue point, going left

to right, represents the Chebyshev interpolation estimate of ⟨𝑂 (𝑡)⟩ with increasing number

of interpolation points 𝑁 , while the corresponding orange point is the best single data

point. We see that the interpolation post-processing dramatically improves the accuracy

of the expectation value calculation. The downward trend continues until flatlining where

numerical roundoff takes over as the dominant error.

One respect in which the results of Figure 3.1 are limited is that data points will not be

computed to near perfection (or be limited by digital round off) even in the case of perfect

time evolution. Expectation values must be estimated through a quantum measurement

protocol which can achieve, at best, a Heisenberg limited scaling of 𝑂 (1/𝜖data) for the

number of operations needed to reach precision 𝜖data. And while Chebyshev interpolation

provides robustness to data errors, a numerical demonstration of this is desirable.

To work within our classical setup, we model data imperfection as Gaussian noise of
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Figure 3.1 Additive error of the time-evolved expectation value ⟨𝑂 (𝑇)⟩ plotted against
maximum Trotter depth. The seven blue points represent seven distinct numbers of
Chebyshev nodes 𝑁 ranging from 2 to 14 in even increments. All data points are
calculated to high precision using matrix multiplication, and thus the dominant error is
due to Trotter. The orange denotes the best single data point gathered for the
interpolation, representing the best estimate without classical post-processing. We see
that the polynomial procedure, as the theory suggests, provides an exponential reduction
in Trotter error with each additional data point. Meanwhile, the orange line appears to, as
expected, follow only a polynomial trend.

fixed width on top of the numerically computed value at each 𝑠. We change this noise

parameter 𝜖data and observe the effect on the true error 𝜖 in the final interpolation estimate.

Figure 3.2 gives the results for various degrees 𝑁 of Chebyshev interpolation. We plot

in terms of inverse errors, so that moving up along either axis corresponds to increased

precision in the data or final estimate. We observe, for each 𝑁 , two regimes: a linearly-

sloped regime at low data precision and a plateau for sufficiently precise Trotter data. The

first regime corresponds to the error in the final estimate being dominated by errors in the

measurement itself, rather than the systematic Trotter error. In this regime, the Trotter error
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Figure 3.2 Error in the expectation value plotted against data noise for several different
degrees 𝑁 − 1 of Chebyshev interpolation. Going up along the y axis indicates improved
performance. For small values of 1/𝜖data (large data errors), the final estimate error
essentially tracks the data error, and the Trotter error is negligible. Once 𝜖data is brought
under a certain threshold, the final error flatlines to some plateau, indicating that the final
error is dominated by Trotter (interpolation) error. As 𝑁 increases, the crossover point
happens at smaller 𝜖 , and the final estimate is more accurate.

has been effectively mitigated, and only the data error remains. However, for each 𝑁 there is

a crossover point where the Trotter error can no longer be brought smaller than 𝜖data. At this

point, further increases in data precision no longer improve the final estimate, because the

dominant source is fundamentally the Trotter error. Unsurprisingly, larger 𝑁 increases the

mitigation of Trotter error, delaying this crossover point and improving the final estimate.

Beyond verifying our interpolation approach, this graph illustrates how, for measurement

data gathered on Trotter simulations, there is little value in achieving measurement accuracy

beyond the crossover point. Absent hardware error, Trotter mitigation appears to remove

barriers to higher accuracies through more precise data acquisition.
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Figure 3.3 Chebyshev approximation error for the observable (3.98), plotted against
Chebyshev degree for various total simulation times 𝑇 . Across several orders of
magnitude for 𝑇 we observe an exponential decrease in the algorithmic error with respect
to the number of data points until floating-point precision is reached. However, the decay
is slower for larger times.

We haven’t said much about the effects of simulation time, and we conclude with a

brief investigation into this point. Figure 3.3 shows the error in interpolation calculations

across four orders of magnitude for the simulation time. Other fundamental simulation

parameters are held fixed, but following our definitions above, our interpolation interval

[−𝑎, 𝑎] will change and hence the simulation cost. For all values of 𝑇 considered, we see

the exponential decay in error leading, ultimately, to the plateau of machine precision. As

𝑇 increases, the rate remains exponential but decreases in rate.

3.7 Discussion

In this chapter, we considered the mitigation of Trotter error by use of a standard

numerical technique: polynomial interpolation. This approach is inspired by multiproduct

77



formulas, which systematically cancel errors due to nonzero Trotter step. Here, however,

we are cancelling the errors "offline", i.e. following the measurements of dynamical

observables. This offers accuracy improvements without enormous quantum overhead,

which is especially important as near-term quantum hardware is noisy and limited. Classical

resources, though perhaps less powerful, are relatively abundant and cheap.

It is interesting to consider to what extent classical resources can chip away at the

advantages of post-Trotter methods over product formulas. The fact that time evolution

is only a piece of a full simulation has allowed us to achieve an exponential reduction in

the Trotter error for measuring dynamical observables. A natural follow up question is

whether classical techniques, coupled with first-order Trotter, can reduce the dependent

on simulation time 𝑇 to near-linear. An intuitive argument against this may be that such

a scheme would require evolutions much less than 𝑇 , and extrapolating the behavior to

later times would be infeasible. This question is likely intimately related to the 𝑂 (𝑇2)

dependence we’ve derived for our method. Numerical studies may ultimately shed light as

to whether the 𝑇2 scaling is "real" and whether it can be improved.

Polynomial interpolation is by no means the only approach to understanding the func-

tional relation 𝑓 (𝑠) between the Trotter step 𝑠 and the quantity of interest. We could also

apply Richardson extrapolation to 𝑓 to estimate 𝑓 (0) given nearby points. Alternatively,

rational approximations or machine learning techniques could be used to uniformly ap-

proximate 𝑓 (𝑠). Extending our tests with the randomized Heisenberg model to include,

say, Richardson extrapolation would be beneficial to facilitate this comparison.
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3.8 Proofs

We now provide proofs for Lemma 3.5.1 and Theorem 3.5.2, whose statements were

given in Section 3.5.

Proof of Lemma 3.5.1. For scalar functions 𝑓 (𝑠), derivatives of exp( 𝑓 (𝑠)) can be ex-

pressed through the complete Bell polynomials via Faà di Bruno’s formula.

𝜕𝑛𝑠 𝑒
𝑓 (𝑠) = 𝑌𝑛 ( 𝑓 ′(𝑠), 𝑓 ”(𝑠), . . . , 𝑓 (𝑛) (𝑠))𝑒 𝑓 (𝑠) (3.99)

For operator exponentials such as exp(−𝑖�̃�𝑠𝑡), derivatives can be expressed via repeated

application of Duhamel’s formula. Yet these expressions are always upper bounded by the

commuting (scalar) case [132], so that

∥𝜕𝑛𝑠 𝑒−𝑖�̃�𝑠𝑡 ∥ ≤ 𝑌𝑛
(
𝑡∥𝜕𝑠�̃�𝑠∥, 𝑡∥𝜕2

𝑠 �̃�𝑠∥, . . . , 𝑡∥𝜕𝑛𝑠 �̃�𝑠∥
)
. (3.100)

Note that the exponential disappeared in the bound since it has norm one. Applying

Lemma 3.4.1 and invoking the fact that 𝑌𝑛 is monotonic in each argument, this is upper

bounded by

𝑌𝑛

(
(2 𝑗 𝑗 (𝑒2𝑐) 𝑗+1)𝑛𝑗=1

)
. (3.101)

An explicit formula for this is given by

𝑌𝑛

(
(2 𝑗 𝑗 (𝑒2𝑐) 𝑗+1)𝑛𝑗=1

)
=

∑︁
𝐷

𝑛!
𝑑1! . . . 𝑑𝑛!

𝑛∏
𝑗=1

(
2 𝑗 𝑗 (𝑒2𝑐) 𝑗+1

𝑗!

)𝑑 𝑗

(3.102)

where 𝐷 is a sum over all indices (𝑑 𝑗 )𝑛𝑗=1 such that 𝑑 𝑗 ≥ 0 and

𝑛∑︁
𝑗=1

𝑑 𝑗 𝑗 = 𝑛. (3.103)
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Using a Stirling-type bound

1
𝑗!

≤
(
𝑒

𝑗

) 𝑗 1
√

2𝜋
(3.104)

allows us to write

𝑌𝑛

(
(2 𝑗 𝑗 (𝑒2𝑐) 𝑗+1)𝑛𝑗=1

)
≤

∑︁
𝐷

𝑛!
𝑑1! . . . 𝑑𝑛!

𝑛∏
𝑗=1

(√︂
2
𝜋
𝑒 𝑗 (𝑒2𝑐) 𝑗+1

)𝑑 𝑗

= (𝑒3𝑐)𝑛
∑︁
𝐷

𝑛!
𝑑1! . . . 𝑑𝑛!

𝑛∏
𝑗=1

(√︂
2
𝜋
𝑒2𝑐

)𝑑 𝑗

= (𝑒3𝑐)𝑛𝑌𝑛 (
√︁

2/𝜋𝑒2𝑐,
√︁

2/𝜋𝑒2𝑐, . . . ,
√︁

2/𝜋𝑒2𝑐)

= (𝑒3𝑐)𝑛𝐵𝑛 (
√︁

2/𝜋𝑒2𝑐).

(3.105)

In the second line we brought out 𝑛 factors of 𝑒𝑐 using the condition on the indices 𝐷, and

we identified 𝑌𝑛 evaluated the same at every argument to be the single-variable Bell (or

Touchard) polynomial 𝐵𝑛. We can bound the size of 𝐵𝑛 (
√︁

2/𝜋𝑒2𝑐) [5] by

𝐵𝑛 (
√︁

2/𝜋𝑒2𝑐) ≤
(

𝑛

log(1 +
√︁
𝜋
2𝑛/(𝑒2𝑐))

)𝑛
(3.106)

for all 𝑛 > 0, with 𝑛 = 0 defined by the limit (which is 1). With this,

∥𝜕𝑛𝑠 𝑒−𝑖�̃�𝑠𝑡 ∥ ≤
(

𝑒3𝑐𝑛

log(1 +
√︁
𝜋
2𝑛/(𝑒2𝑐))

)𝑛
≤

(
𝑒3𝑐𝑛

2

)𝑛 (
1 +

√︂
8
𝜋

𝑒2𝑐

𝑛

)𝑛
(3.107)

where we’ve used the bound 1/log(1 + 𝑥) ≤ 1/2 + 1/𝑥. Again, this inequality is valid for

𝑛 = 0 via the limit, which is always one.

With this bound on the ST formula derivatives, we now turn to bounding 𝜕𝑛𝑠𝑂𝑠 (𝑡).
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Applying the binomial theorem and triangle inequality to (3.5),

∥𝜕𝑛𝑠𝑂𝑠 (𝑡)∥
∥𝑂∥ ≤

𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
∥𝜕𝑝𝑠 𝑒𝑖𝑡�̃�𝑠 ∥ ∥𝜕𝑛−𝑝𝑠 𝑒−𝑖𝑡�̃�𝑠 ∥

≤
(
𝑒3𝑐

2

)𝑛 𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
𝑝𝑝 (𝑛 − 𝑝)𝑛−𝑝

(
1 +

√︂
8
𝜋

𝑒2𝑐

𝑝

) 𝑝 (
1 +

√︂
8
𝜋

𝑒2𝑐

𝑛 − 𝑝

)𝑛−𝑝
.

(3.108)

At this point, it will be fruitful to consider two regimes. Recall that 𝑐 encodes information

about the simulation time.

In the case where 𝑐 > 𝑛, we have

∥𝜕𝑛𝑠𝑂𝑠∥
∥𝑂∥ ≤

(
𝑒3𝑐

2

)𝑛 𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
(𝑐 +

√︁
8/𝜋𝑒2𝑐)𝑝 (𝑐 +

√︁
8/𝜋𝑒2𝑐)𝑛−𝑝

≤
(
𝑒3𝑐

2

)𝑛
𝑐𝑛

(
1 +

√︁
8/𝜋𝑒2

)𝑛 𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
=

(
𝑐

√︃
𝑒3(1 +

√︁
8/𝜋𝑒2)

)2𝑛
.

(3.109)

This implies a relative error in the polynomial fit bounded by

|𝐸𝑛−1(0) | <
(
129

𝑐2𝑎

𝑛

)𝑛
. (3.110)

In the case where 𝑐 ≤ 𝑛, the approximation(
1 + 𝑒2

√︂
8
𝜋

𝑐

𝑝

) 𝑝
< 𝑒𝑐𝑒

2
√

8/𝜋 (3.111)

holds and is not so crude. Applying this to (3.108),

∥𝜕𝑛𝑠𝑂𝑠∥
∥𝑂∥ ≤

(
𝑒3𝑐

2

)𝑛
𝑛!

𝑛∑︁
𝑝=0

𝑝𝑝

𝑝!
(𝑛 − 𝑝)𝑛−𝑝
(𝑛 − 𝑝)! 𝑒4𝑐𝑒2

√
2/𝜋 . (3.112)
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Regrouping and employing a Stirling bound where appropriate,

∥𝜕𝑛𝑠𝑂𝑠∥
∥𝑂∥ ≤ 𝑒4𝑐𝑒2

√
2/𝜋

(
𝑒3𝑐

2

)𝑛
𝑛! ©«2

𝑒𝑛
√

2𝜋𝑛
+ 𝑒𝑛

2𝜋

𝑛−1∑︁
𝑝=1

1√︁
𝑝(𝑛 − 𝑝)

ª®¬
≤ 𝑒4𝑐𝑒2

√
2/𝜋

(
𝑒4𝑐

2

)𝑛
𝑛!

(
2

√
2𝜋𝑛

+
√
𝑛 − 1
2𝜋

)
≤ 1

2𝜋
(
√

8𝜋 +
√
𝑛 − 1)

(
𝑒4𝑐

2

)𝑛
𝑛!𝑒4𝑐𝑒2

√
2/𝜋

≤
√︂

2𝑛
𝜋

(
𝑒4𝑐

2

)𝑛
𝑛!𝑒4𝑐𝑒2

√
2/𝜋

(3.113)

After another Stirling bound, this gives a corresponding interpolation error of

𝐸𝑛−1(0) < 2
√

2𝑛 (6𝑐𝑎)𝑛 𝑒24𝑐 . (3.114)

□

Proof of Theorem 3.5.2. Let 𝑓 (𝑠) = ⟨𝑂𝑠 (𝑡)⟩/∥𝑂∥ be the normalized expectation value

under Trotter evolution. Our interpolation algorithm produces an estimate 𝑓 of 𝑓 (0) which

we require to be accurate within 𝜖 .

| 𝑓 (0) − 𝑓 | ≤ 𝜖 (3.115)

There is the interpolation error from the polynomial 𝑃𝑛−1 𝑓 fitting 𝑓 assuming perfect

interpolation points (𝑠𝑖, 𝑓 (𝑠𝑖)). But 𝑓 (𝑠𝑖) can only be estimated; let’s call �̃�𝑖 this estimate.

The error in �̃�𝑖 in our analysis comes from the statistical error inherent in the estimation

protocol as well as the error in the fractional query procedure for a 1/𝑠 evolution. We can

independently consider the interpolation error and the data error via the triangle inequality.

| 𝑓 (0) − 𝑓 | ≤ | 𝑓 (0) − 𝑃𝑛−1 𝑓 (0) | + |𝑃𝑛−1 𝑓 (0) − �̃�𝑛−1 𝑓 (0) |

≤ 𝜖int + 𝐿𝑛𝜖data

(3.116)
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Here 𝐿𝑛 is the Lebesgue constant of the interpolation, essentially a condition number, and

𝜖data is an upper bound on the error in the data. �̃�𝑛−1 𝑓 is the fit to the imperfect data and

𝑃𝑛−1 𝑓 the fit to the perfect data (𝑠𝑖, 𝑓 (𝑠𝑖)). For generic interpolation nodes, 𝐿𝑛 can grow

rapidly; however, for the set of Chebyshev nodes we obtain a near-optimal value [113].

𝐿𝑛 ≤
2
𝜋

log(𝑛 + 1) + 1 (3.117)

Since we want the total error to be within a threshold 𝜖 , we can require

𝜖data ≤ 𝜖

2𝐿𝑛
, 𝜖int ≤

𝜖

2
. (3.118)

Given these error bounds, we can now turn to the cost of acquiring the data points.

Because 𝑂/𝛾 can be block encoded, the expectation value calculation can be encoded as

an amplitude estimation problem. Specifically, a Hadamard test circuit gives the amplitude

1 + ⟨𝑂𝑠𝑖 (𝑡)⟩/𝛾
2

. (3.119)

If we estimate this amplitude to within accuracy 𝜖data∥𝑂∥/2𝛾, we can estimate 𝑓 (𝑠𝑖) within

𝜖data. Using Iterative Quantum Amplitude Estimation [56], we can obtain this estimate

using a Grover iterate 𝐺 constructed from two Hadamard test oracles. The number of

Grover oracles 𝑁𝐺 required is given by

𝑁𝐺 ≤ 200𝛾𝐿𝑛
∥𝑂∥𝜖data

log
(
2𝑛
𝛿

log2

(
𝛾𝐿𝑛𝜋

∥𝑂∥𝜖data

))
(3.120)

to ensure probability 1 − 𝛿 of all data being within 𝜖data of the true value. Each 𝐺 requires

two Hadamard tests, and each Hadamard oracle calls a (controlled) ST evolution once. The

number of controlled exponentials needed for a single data point at value 𝑠𝑖 is in

𝑂

(
𝑁𝑘

|𝑠𝑖 |
log 1/𝜖data

)
(3.121)
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where 𝑁𝑘 = 2𝑚5𝑘−1, and where the logarithm comes from the need for fractional queries

with QSVT. There is also a𝑂 (1) overhead associated with the fractional queries and IQAE.

Altogether, the number of exponentials for a single data point is in

𝑂

(
𝑁𝐺 × 2 × 𝑁𝑘

|𝑠𝑖 |
log 1/𝜖data

)
. (3.122)

Therefore, the total number 𝑁exp of generating all 𝑛/2 data points (we only need half due

to symmetry) is in

𝑁exp ∈ 𝑂
(
𝑁𝐺𝑁𝑘

𝑛/2∑︁
𝑖=1

1
𝑠𝑖

log(1/𝜖data)
)
. (3.123)

Plugging in (3.120) for 𝑁𝐺 above and summing over 1/𝑠𝑖 using Lemma 3.3.1,

𝑁exp ∈ 𝑂
(
𝛾𝑁𝑘𝐿𝑛𝑛

∥𝑂∥𝜖𝑎 (log 𝑛) log
(
2𝑛
𝛿

log2

(
𝛾𝐿𝑛𝜋

∥𝑂∥𝜖

))
log(1/𝜖data)

)
⊂ �̃�

( 𝑛
𝑎𝜖

log 1/𝛿
) (3.124)

where �̃� suppresses factors logarithmic in 𝑛 and 𝜖 . We also employed our assumption

that 𝛾/∥𝑂∥ ∈ 𝑂 (1). The number of nodes 𝑛 and the interpolation interval [−𝑎, 𝑎] will

be determined by 𝜖int, the interpolation error assuming perfect data. To apply our error

bounds from the previous subsection, choose 𝑎 to satisfy Lemma 3.4.1, i.e. 𝑐𝑎 < 𝜋/20,

while also taking 1/𝑎 ∈ 𝑂 (𝑐).

Choose 𝑛 ≥ ⌈𝑐⌉. Then the second bound of Lemma 3.5.1 holds. From the interpolation

error, we must satisfy

2
√

2𝑛(6𝑐𝑎)𝑛𝑒24𝑐 < 𝜖/2 (3.125)

which in turn can be satisfied provided that

4
√

2𝑛
(
6𝑒24𝑐𝑎

)𝑛
< 𝜖 (3.126)
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since 𝑛 ≥ 𝑐. Choose 𝑎 such that 6𝑒24𝑐𝑎 = 1/2, which is consistent with our previous

conditions on 𝑎. Then, to satisfy the error bound, 𝑛 can satisfy

4
√

2𝑛2−𝑛 < 𝜖. (3.127)

This can be solved using the −1 branch of the LambertW function.

𝑛 > −
LambertW−1

(
−𝜖 log 2/(4

√
2))

)
log 2

. (3.128)

The appropriate asymptotics is 𝑛 ∈ 𝑂 (log(1/𝜖). By taking 𝑛 = 𝑛∗ where

𝑛∗ = max

{
⌈𝑐⌉,

⌈
−LambertW−1(−𝜖 log 2/(4

√
2)

log 2

⌉}
(3.129)

∈ 𝑂 (max{𝑐, log(1/𝜖)}) (3.130)

we satisfy all required constraints and arrive at our final asymptotic scaling.

𝑁exp ∈ �̃�
(
max{𝑐, log(1/𝜖)}𝑐𝜖−1 log(1/𝛿)

)
(3.131)

□

In the proof above, we set 𝑛 > 𝑐 from the beginning, in order to use the second of

the two bounds from Lemma 3.5.1. Together with 1/𝑎 ∈ 𝑂 (𝑐) this condemns us to a

suboptimal 𝑐2 scaling in the large 𝑐 limit. However, using the first bound instead of the

second would not help us, since the 𝑛𝑐2/𝑎 term in that bound must be order one.
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CHAPTER 4

TIME DEPENDENT HAMILTONIAN SIMULATION THROUGH DISCRETE
CLOCK CONSTRUCTIONS

The previous chapter was entirely concerned with time independent Hamiltonians. How-

ever, this is only a special (though important) case of general time dependent Hamiltonians

that can occur in systems of interest. Interestingly, a reduction from time dependence to

time independence is always possible, though this has not been properly utilized in the

Hamiltonian simulation community.

This chapter concerns itself with a discretized version of the reduction, known as the

(𝑡, 𝑡′) method, that is finite dimensional and therefore amenable to computation. We will

consider, as an application of our formalism, a simulation by qubitization of the encoded

time dependent Hamiltonian. After a brief introduction and motivation for time dependent

simulations, we review the standard (𝑡, 𝑡′) formalism. Then we discretize the clock variable

suitably and prove asymptotic error bounds on the accuracy compared to the time ordered

operation. Finally, we describe a possible simulation by qubitization of the full clock

system, before ending with some discussion.

The subsequent Chapter 5 makes use of the clock space construction to argue in favor

of the conjecture that certain multiproduct formulas serve as good approximants to 𝑈.

However, in that chapter, the clock space is only used for a theoretical proof, and plays no

role in the simulation. Here, we take the clock space quite seriously and consider what it

would take to fully implement it using the powerful method of qubitization.

Both chapter and the next are subjects of ongoing research. An early preprint has been

posted [132] which will be updated as these projects reach a close.
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4.1 Introduction and Motivation

When a fundamental physical law is expressed as a Hamiltonian, it should generally be

expected to be time independent. This conveys the expected constancy of the theory under

consideration. Such expectations are validated, for example, by experiments which seek

to measure time variations in fundamental physical constants, such as ℏ [126]. To date,

no such variations have been measured, though we must remember there is no theoretical

reason, beyond elegance, to disallow them.

In any case, there are many practical situations in which a quantum system is naturally

modeled as closed (hence unitary), while still exhibiting time-varying laws. For example,

we may imagine impinging a molecule with electromagnetic pulses in a laboratory setting.

These pulses may be considered large enough to be unaffected by the state of the molecule,

yet the molecule is certainly influenced by the pulse train. Since the amplitude of this

pulse may vary with time, so will the Hamiltonian describing the system. If the state of the

quantum system did have an effect on the incoming electrical pulse, a distinct formalism

of open system dynamics should be invoked. Even if the dynamics aren’t inherently time-

varying, it is often useful in the mathematics to shift to an interaction pictures. When a

Hamiltonian 𝐻 = 𝐻0 + 𝐻1 has two pieces as shown, where 𝐻0 is some baseline, "trivial"

Hamiltonian that we know how to solve, moving into a frame of reference "rotating" with

respect to 𝐻0 generates a new time dependent 𝐻𝐼 (𝑡) that encapsulates the nontrivial part.

Such as splitting in 𝐻 is common in perturbation theory, where we imagine 𝐻1 small yet

important. Thus, the study of time independent 𝐻 can benefit from understanding how to

simulate time dependent Hamiltonians.

As often occurs in physics, symmetries (in this case related to time translation invari-
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ance) lead to useful simplifications. We have seen in Section 2.5 how for time independent

𝐻, the time evolution operator 𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡 is a simple matrix exponential, rather than

the more nuanced time-ordered exponential of equation (2.17). Moreover, the existence of

stationary states in the time independent setting provides a useful characterization of the

"allowed energies" of a system, and a set of states whose dynamics are trivial. Despite

these simplification, the study of quantum systems with time independent Hamiltonians is

sufficiently rich as to warrant its own focused study.

In Chapter 2, we provided examples of time independent Hamiltonian simulation

being used in generic quantum algorithms applications, particularly linear systems solvers.

There are also applications for time dependent Hamiltonian simulations, such as adiabatic

evolution. Generally speaking, a process is ‘adiabatic’ if it involves the slow transformation

of parameters from one value to another. Here the meaning of "slow" depends on the nature

of the problem at hand. Specifying to Hamiltonians, an adiabatic evolution is a dynamical

evolution under a Hamiltonian 𝐻 (𝑡) that changes slowly with time. A standard example is

the linear adiabatic evolution

𝐻 (𝑡) =
(
1 − 𝑡

𝑇

)
𝐻0 +

𝑡

𝑇
𝐻1 (4.1)

which, from 𝑡 = 0 to 𝑡 = 𝑇 , changes the Hamiltonian from 𝐻0 to 𝐻1. By "slow" we

mean 𝑇 is much larger than the smallest gap min𝑡 1/𝛿𝐸 (𝑡) between two eigenenergies

which overlap the state of interest. Interestingly, such adiabatic evolutions approximately

preserve eigenstates, in the sense that, starting and initial state as an eigenstate |𝐸0⟩ of 𝐻0,

the final state evolved under 𝐻 (𝑡) will be approximately |𝐸1⟩, and eigenstate of 𝐻1. This is

especially useful when trying to prepare ground states of a nontrivial Hamiltonian𝐻1 given

a simpler one 𝐻0. While the adiabatic approach is valuable for physical applications [131,
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129], it can also enable solutions to optimization problems when we think of the ground

state energy as minimizing, or "optimizing," a function. One can imagine the ground state

of 𝐻1 exhibiting information related to an optimization problem, unrelated to a physics

context. For example, take Quadratic Unconstrained Binary Optimization (QUBO), which

seeks a binary vector 𝑥 ∈ {−1, 1}𝑛 that minimizes∑︁
𝑖 𝑗

𝑥𝑖𝑄𝑖 𝑗𝑥 𝑗 (4.2)

for some real symmetric matrix 𝑄. The solution can be encoded as a computational basis

state |𝑥⟩ that is the ground state of the Hamiltonian

𝐻𝑄 =
∑︁
𝑖 𝑗

𝑍𝑖𝑄𝑖 𝑗𝑍 𝑗 . (4.3)

While this highlights the utility of ground state preparation for general optimization,

recent literature points to other methods, such as Quantum Imaginary Time Evolution, as

preferred for these sorts of tasks as opposed to adiabatic preparation [6, 141]. Nevertheless,

it highlights how time dependent simulations can manifest in broader algorthmic settings.

Because time independent Hamiltonians are special cases of time dependent ones, any

algorithms for general 𝐻 (𝑡), and analysis thereof, immediately specializes to an algorithm

and analysis for time independent case. While true, in practice our grasp of time indepen-

dent simulation algorithms outstrips knowledge of the time dependent case. For example,

qubitization is only viable for simulating time independent Hamiltonians, as its basis of

operation is a polynomial approximation to 𝑓 (𝜆) = 𝑒−𝑖𝜆𝑇 on the interval [0, 𝑇] [88]. One

could proceed by approximating 𝑈 (𝑇, 0) via evaluating the expression (2.17) for fixed,

large 𝑛. However, the resulting algorithm is, in general, quite inferior to its time inde-

pendent version, since the errors from the truncation wash out any gains in precision. As
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of writing, there is no time dependent simulation algorithm which saturates known lower

bounds.

Product formulas can be used in a similar manner, applying the formula to each term

in the truncation. This is perhaps the simplest approach to time dependent simulation

on a quantum computer. Because largely fluctuating Hamiltonians will require finer time

meshes, the final cost will depend on the smoothness of the Hamiltonian and the size of

derivatives within the mesh points [136]. More general time dependencies can be handled,

without smoothness requirements, by a certain generalization of the Trotter scheme in

which the time integrals (without time ordering) are retained [104]. The dropping of the

smoothness requirement demonstrates that a much broader class of Hamiltonians is feasibly

simulatable. Within their arguments, the authors use a generalization of product formulas

in which the time ordered exponential is split, but the integrals are retained [70]. In this

chapter, we will consider an entirely distinct generalization of the product formula in the

time dependent setting. In fact, we will show that it relates to a standard product formula

in an augmented clock space.

4.2 The Clock Space

Mathematically, and more broadly than the Hamiltonian setting, the distinction between

time dependent vs independent systems can be cast as a distinction between autonomous

and nonautonomous dynamical systems. Dynamical are differential equations in a single

evolution parameter 𝑡, which can always be cast as a first-order initial value problem

¤𝑥 = 𝑓 (𝑥, 𝑡), 𝑥(0) = 𝑥0 (4.4)

possibly by standard reduction-of-order techniques. Here 𝑥 ∈ R𝑛 consists of 𝑛 evolution

parameters which implicitly depend on time 𝑡. Reasonable smoothness conditions on 𝑓 may
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be imposed. The autonomous case corresponds to 𝑓 being independent of 𝑡. Such equations

are valuable because they admit a geometric description in terms of phase space and flows.

Classically, time independent Hamiltonian dynamics are a special case of autonomous

systems, and the relevant initial value problem is given by Hamilton’s equations.

( ¤𝑞, ¤𝑝) =
(
𝜕𝐻

𝜕𝑝
,−𝜕𝐻
𝜕𝑞

)
, (𝑞(0), 𝑝(0)) = (𝑞0, 𝑝0) (4.5)

This system is autonomous when 𝐻 is independent of the evolution parameter 𝑡.

It has long been recognized that a simple transformation allows for the reduction of

nonautonomous systems to autonomous ones [60]. The trick is to promote 𝑡 to a coordinate,

thereby making 𝑓 (𝑥, 𝑡) satisfy the requirement of only depending on coordinates. Letting

𝑠 take the place of the evolution parameter (time), we still want 𝑡 and 𝑠 to be essentially the

same. This is supplied by the simple equation

¤𝑡 = 𝑑𝑡

𝑑𝑠
= 1, 𝑡 (0) = 0. (4.6)

With this, we have the following autonomous system

( ¤𝑥, ¤𝑡) = ( 𝑓 (𝑥, 𝑡), 1), (𝑥(0), 𝑡 (0)) = (𝑥0, 0) (4.7)

whose solution encodes the solution to the original (4.4). While it seems that not much has

been gained, this framework finds much application in the consideration of periodically

driven systems. In this case, a cylindrical phase space, with 𝑡 representing the angle, allows

for interesting geometric understanding of the dynamics.

When a classical Hamiltonian 𝐻 (𝑡) is time dependent (nonautonomous), can we per-

form a similar trick to reduce to the time independent (autonomous) case? Promoting 𝑡 to

a coordinate, we must formally introduce a conjugate momentum −𝐸 , choosing notation
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suggestive of the time-energy correspondence. We call the full Hamiltonian 𝐾 (𝑞, 𝑝; 𝑡, 𝐸),

to distinguish from the original Hamiltonian 𝐻 (𝑞, 𝑝, 𝑡), and we wish to determine if a

suitable 𝐾 exists. As before, we want 𝑑𝑡/𝑑𝑠 = 1, which because of Hamilton’s equations

imply
𝜕𝐻

𝜕 (−𝐸) = 1. (4.8)

We conclude that 𝐾 = −𝐸 + 𝐹 (𝑞, 𝑝, 𝑡) for some 𝐹. But we need 𝐾 to reproduce the same

dynamics for 𝑞, 𝑝 as 𝐻. This implies 𝐹 = 𝐻. Interestingly, the final Hamilton equation

𝑑𝐸

𝑑𝑠
=
𝜕𝐻

𝜕𝑡
(4.9)

corresponds with the expected equation for energy change, up to a sign. This explains our

choice of a minus sign in the conjugatate momentum −𝐸 .

In the context of periodic dynamics, the Hamiltonian

𝐻𝐹 (𝑞, 𝑝; 𝑡, 𝐸) ≡ 𝐻 (𝑞, 𝑝; 𝑡) − 𝐸 (4.10)

is known as the Floquet Hamiltonian. However, nothing of our derivation required a

periodicity assumption. In summary, we have a prescription for converting nonautonomous

Hamiltonians into autonomous ones dependending only on coordinates. In hindsight,

the way this is accomplished is rather silly. The coordinate 𝑡 has dynamics completely

independent of the values of any other coordinate or momentum, including 𝐸 , and gets

pulled in a straight line at a constant velocity. Time marches forward. As 𝑡 changes, so

does 𝐻, which affects all of the other coordinates in the desired way. This is much like a

reel of movie tape moving through the machine at a constant rate to change what’s on the

screen, mimicking the forward flow of time.
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What about quantum Hamiltonians? We could try to quantize the above, imposing the

usual commutation relation

[𝑡,−�̂�] = 𝑖𝐼 . (4.11)

Absent periodicity, a natural choice of Hilbert space of 𝑡 is 𝐿2( [0, 𝑇]): square integrable

functions on the interval of simulation. We then get a representation of 𝑡 and 𝐸 as 𝑡

multiplication and 𝑡-derivatives, respectively.

(𝑡𝜓) (𝑡) = 𝑡𝜓(𝑡), (�̂�𝜓) (𝑡) = 𝑖𝜕𝑡𝜓 (4.12)

The Floquet Hamiltonian becomes

𝐻𝐹 = 𝐻 − 𝑖𝜕𝑡 (4.13)

which looks eerily similar to a rearranged Schrödinger operator. Indeed, if 𝜓sol(𝑡, 𝑞) is a

solution to the Schrödinger equation encoded on the full "clock" Hilbert space, then we

see that the state

𝜓𝛼 (𝑡, 𝑞) = 𝑒−𝑖𝛼𝑡𝜓sol, 𝛼 ∈ R (4.14)

is formally an eigenstate of 𝐻𝐹 with eigenvalue 𝛼. As a caution, this state is not properly

normalized, nor is it normalizable unless the simulation interval [0, 𝑇] is finite.

The above manipulations are purely formal, helpful only for calculational or interpre-

tational purposes. From a physical point of view, 𝐻𝐹 is not bounded from below, allowing

for potentially infinite energy extraction if such as system existed and could be coupled

with. In particular, this system transitions to lower energies as wavepackets travel faster

and faster to the left of the clock space, a seemingly senseless possibility.
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The quantum mechanical version of this trick, sometimes called the (𝑡, 𝑡′)-formalism

because of the two distinct "times", finds use in periodically-driven quantum systems [21].

But our purposes, the elimination of explicit dependence on the evolution parameter is

most exciting, because it implies the time evolution operator requires no time-ordering,

while still encoding the full time dynamics [102]. Thus, while time independent 𝐻 is a

special case of time dependence, time dependent simulation 𝐻 reduces, formally, to time

independent simulation on an augmented space.

To understand the nature of the encoding better, we have to be somewhat more careful.

Let’s provide a more concrete description of the situation. The full Hilbert space is given

by

H = H𝑠 ⊗ H𝑐 . (4.15)

where H𝑐 � 𝐿2(M), and M is the (connected) one-dimensional smooth manifold rep-

resenting 𝑡. We have considered M � [0, 𝑇] here, but we might also consider a circle

(periodic dynamics) or the real line, where translations are a bit more natural. On H𝑐, 𝐸

acts as a generator of translations, but is an unbounded operator. Nevertheless, the expo-

nentials of 𝐸 above are well defined through the spectral theorem and functional calculus

for unbounded operators [61].

States 𝜓 ∈ H can then be expressed as certain functions on M whose value 𝜓(𝑡) is a

state on H𝑠. The inner product on H is the natural one

⟨𝜙|𝜓⟩ :=
∫
M

⟨𝜙(𝑡) |𝜓(𝑡)⟩𝑠 𝑑𝑡. (4.16)

where ⟨·|·⟩𝑠 denotes the inner product on H𝑠. From now on, we use 𝜏 to denote the

evolution parameter in order to avoid confusion with the clock coordinate 𝑡.
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The interval 𝐼 over which the dynamics of the quantum system take place needs to be

embedded withinM. If 𝐼 is not exactlyM, then the definition a time dependent observable

𝐴(𝑡) will need to be extended to cover the entire clock space. Once done, 𝐴(𝑡) is promoted

to an (time independent) observable on H , denoted A, by acting on 𝜓 ∈ H in a manner

corresponding with the original space.

(A𝜓) (𝑡) := 𝐴(𝑡)𝜓(𝑡) (4.17)

All such operators A are seen to be local in H𝑐, since they act with simple multiplication.

Having laid the above groundwork, we can return to the question of dynamics. Let H

be the promoted Hamiltonian operator as discussed in the previous paragraph. Let U(𝜏)

be the unitary operator given by

U(𝜏) = 𝑒𝑖𝐸𝜏𝑒−𝑖(H−𝐸)𝜏 . (4.18)

One can verify that U solves the following Schrödinger equation,

𝑖𝜕𝜏U(𝜏) = H(𝜏)U(𝜏)

U(0) = 𝐼 .
(4.19)

Here,

H(𝜏) ≡ 𝑒𝑖𝐸𝜏H𝑒−𝑖𝐸𝜏 (4.20)

is a 𝜏-dependent Hamiltonian corresponding to simple, uniform translation along the clock

space. For any state Ψ0 ∈ H , the function

Ψ(𝜏) := U(𝜏)Ψ0 (4.21)
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solves the Schrödinger equation generated by H(𝜏), but more importantly, it encodes

solutions to the dynamics under 𝐻 (𝑡). Indeed, for any 𝑡 ∈ M, we have a state 𝜓(𝜏, 𝑡) ∈ H𝑠

defined by

𝜓(𝜏, 𝑡) := [Ψ(𝜏)] (𝑡) = [U(𝜏)Ψ0] (𝑡) (4.22)

which solves the Schrödinger equation of interest.

𝑖𝜕𝜏𝜓(𝜏, 𝑡) = 𝑖𝜕𝜏 [U(𝜏)Ψ0] (𝑡)

= [H(𝜏)Ψ0] (𝑡)

= 𝐻 (𝜏 + 𝑡)𝜓(𝜏, 𝑡)

(4.23)

The interpretation is that each 𝑡 constitutes an initial time for performing the simulation,

so we have a family of solutions parametrized by 𝑡 with initial state 𝜓(0, 𝑡). The evolution

parameter acts, as expected, as the total time elapsed in the simulation.

Finally, we can obtain a collection of induced time-evolution operators, 𝑈 (𝑡′ + Δ𝑡, 𝑡′)

on H𝑠 for each 𝑡′ ∈ M. It acts on states 𝜓0 ∈ H𝑠 as follows

𝑈 (𝑡 + 𝜏, 𝑡)𝜓0 = [U(𝜏)Ψ0] (𝑡) (4.24)

where Ψ0 ∈ H is any state for which Ψ0(𝑡) = 𝜓0. This operator is unitary and solves

the Schrödinger equation in the usual sense. Therefore it is exactly equivalent to the

time-ordered exponential of expression (2.16).

We’ve shown now that the clock space encodes a collection of solutions to the dynamics

under 𝐻 (𝜏), one for each initial time 𝑡 with initial state Ψ0(𝑡) ∈ H𝑠. However, one might

only care about one solution, say, at 𝑡 = 0, and the ability to extract that solution from the

encoding. Suppose the desired initial state is |𝜓0⟩ ∈ H𝑠, and our initial time is 𝑡0 ∈ M.

The idea is to prepare an initial product state Ψ0 = 𝜓0 ⊗ 𝜙0 ∈ H , where 𝜙0 ∈ H𝑐 has
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overlap 1 − 𝛿 in a 𝜖-neighborhood of 𝑡0. After performing the evolution under U for the

desired length 𝜏, perform a measurement of 𝑡. The probability of measuring 𝑡 within 𝜖 of

𝑡0 + 𝜏 is 1 − 𝛿. Moreover, provided that the variation of 𝐻 (𝑡) around 𝑡 = 𝑡0 is small for

variations of 𝑡 ± 𝜖 , any value within the 𝜖-nieghborhood will suffice. Of course, any real

measurement of 𝑡 will have an uncertainty width, and this must be brought within the size

of the variation of 𝐻. The actual state will be slightly mixed, but very close to pure.

Preparing the initial state 𝜓0 ⊗ 𝜙0 is just as hard as preparing each separately, so we

focus on 𝜙0. One way to prepare a sharp peaked state is an initial 𝑡measurement of accuracy

𝜖meas according to the requirements above. If 𝐻 (𝑡) can be shifted appropriately so that the

measurement result aligns with the desired start time, or the state can be shifted, then we’ve

successfully prepared the desired state, and the clock Hamiltonian H− 𝐸 can be turned on.

However, no serious attempt towards an implementation on physical quantum hardware

has been made. In terms of digital quantum computing, a proposal for simulating the clock

system will be supplied in Section 4.4, which follows our construction of a discrete clock

space..

To summarize, we have shown how the propagator𝑈 generated by a time dependent 𝐻

can be cast as an ordinary operator exponential, via the inclusion of a 1-dimensional clock

space. Interesting in its own right, this framework also allows for a natural unification of

ideas regarding "Trotterization." This term is used to refer to both (a) the splitting up of an

(ordinary) operator exponential of 𝐻 =
∑
𝑗 𝐻 𝑗 into exponentials of the various 𝐻 𝑗 , or (b)

the simulation of a time dependent Hamiltonian by time independent simulations over small

time intervals, indicated in (2.17). These can, in fact be viewed as manifestations of the

same phenomenon: a splitting of operator exponentials. To illustrate this with an example

97



relevant to this paper, let’s consider a simple symmetric Trotterization of equation (4.18).

𝑈2(𝑡0 + Δ𝑡, 𝑡0) ≡ 𝑒𝑖𝐸Δ𝑡
(
𝑒−𝑖𝐸Δ𝑡/2𝑒−𝑖𝐻 (𝑡0)Δ𝑡𝑒−𝑖𝐸Δ𝑡/2

)
= 𝑒−𝑖𝐻 (𝑡0+Δ𝑡/2)Δ𝑡

(4.25)

we have just derived the midpoint formula [136, 123] from scratch. The Trotter product

theorem says that

lim
𝑘→∞

𝑒𝑖TΔ𝑡
(
𝑒−𝑖TΔ𝑡/2𝑘𝑒−𝑖𝐻 (𝑡0)Δ𝑡/𝑘𝑒−𝑖TΔ𝑡/2𝑘

) 𝑘
= 𝑈 (𝑡0 + Δ𝑡, 𝑡0) (4.26)

Note that this holds even though 𝐸 is unbounded [96]. Thus, we can expect that

𝑈
(𝑘)
2 (𝑡0 + Δ𝑡, 𝑡0) ≡ 𝑒𝑖𝐸Δ𝑡

(
𝑒−𝑖𝐸Δ𝑡/2𝑘𝑒−𝑖𝐻 (𝑡0)Δ𝑡/𝑘𝑒−𝑖𝐸Δ𝑡/2𝑘

) 𝑘
(4.27)

constitutes a good approximation to𝑈 for sufficiently large 𝑘 ∈ Z+ and small Δ𝑡.

This opens up the possibility of a more unified approach to Hamiltonian simulation

algorithms, which has not yet been properly considered. For example, a natural general-

ization of product formulas to time dependent 𝐻 could be a regular product formula of 𝐻𝑐

on the enlarged space. For simplicity, let’s take 𝐻 (𝑡) in whole as a single term, so that

𝐻𝐹 = 𝐻 − 𝐸 has two terms. We can define time dependent product formulas by taking

product formulas along these two terms. This allows us to define, in particular time de-

pendent generalizations of the recursive Suzuki-Trotter formulas of (2.27). Mathematical

difficulties emerge in classifying the approximation order of these formulas, arising from

the unboundedness of 𝐸 . We seek to ameliorate this in our current work, focusing our

attention on the 2nd order symmetric formula.

4.3 Finite Clock Spaces

There are several reasons we are motivated to consider a discretization of the clock

space introduced in the previous section. First, any real computation performed using the
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clock space will require a finite number of states. A natural choice for discretization is

along the time ("position") basis, and we will consider that here.

There are also formal reasons to consider a finite clock space. We’ve already seen how

the clock space aids in the understanding of time dependent generalization of product for-

mulas. Taking this idea further, we might consider time dependent multiproduct formulas,

i.e. how to construct MPFs for time dependent problems. To ensure these MPFs work,

we would like to show that an error series exists whose terms can be cancelled order by

order through linear combinations of time dependent product formulas. However, such

error series are more difficult to show on generic separable Hilbert spaces, and moreover

the operator 𝐸 is unbounded. By making the clock space finite, performing the relevant

analysis, then taking the limit, we can potentially avoid these. This programme is described

in more detail in Chapter 5, but a full proof of this is an ongoing research project.

Without further ado, we introduce our finite dimensional clock space, which we will

sometimes call the "clock register." We discretize the clock variable 𝑡 into 𝑁𝑐 = 𝑁𝑝 × 𝑁𝑞

basis states, where𝑁𝑝 ∈ Z+ will represent the number of Trotter steps used in the simulation.

Each "Trotter step" is further divided into 𝑁𝑞 ∈ Z+ steps for reasons that will be discussed

shortly. We label these orthonormal basis states | 𝑗⟩ for 𝑗 ∈ [0, 𝑁𝑐 − 1] ∩ Z. We will

find it useful to consider, for our purposes, only periodic Hamiltonians. This is natural

to understand, since translation operators like 𝐸 act most naturally on R or the circle

(periodic boundary conditions), and the circle is bounded. Nonperiodic Hamiltonians can

be accommodated by a simple reflection, defining 𝐻 (𝑇 + 𝑡) := 𝐻 (𝑇 − 𝑡) for 𝑡 ∈ [0, 𝑇]. In

our work below, we will want 𝐻 (𝑡) to be a differentiable bounded function within the grid

points, and although the reflection introduces nonsmoothness, we can simply take one of
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the grid points to be the midpoint of simulation.

For simplicity, and for lack of a reason otherwise, we will take these grid points (𝑡 𝑗 )𝑁𝑐−1
𝑗=0

to be uniformly spaced over the interval [0, 𝑇]: 𝑡 𝑗 = 𝑇 𝑗/𝑁𝑐 (taking 𝑁𝑐 to be an even integer,

so that the midpoint requirement discussed directly above is satisfied). We let 𝛿𝑡 := 𝑇/𝑁𝑐

denote the grid width. We also take the natural discretization of 𝐻 (𝑡) onto the clock space.

𝐻 (𝑡) ↦→
𝑁𝑐−1∑︁
𝑗=0

𝐻 𝑗 ⊗ | 𝑗⟩⟨ 𝑗 | ≡ 𝐶 (𝐻) (4.28)

where 𝐻 𝑗 ≡ 𝐻 (𝑡 𝑗 ). Observe that 𝐶 (𝐻) has no dependence on the evolution parameter,

i.e., it is autonomous. The notation 𝐶 (𝐻) is used to suggest a controlled operation, where

the control is on the clock register.

Choosing the appropriate discretization of 𝐸 is somewhat more tricky, though the

choice appears obvious in hindsight. Since 𝐸 acts as a derivative, it makes sense to take

the discretized version to be a finite difference operator. For example,

Δ := −𝑖𝑈+ −𝑈−
2𝛿𝑡

(4.29)

where 𝑈+ is the shift operator defined by 𝑈+ | 𝑗⟩ = | 𝑗 + 1⟩ and 𝑈− = 𝑈
†
+ is the backwards

shift (all increments taken mod 𝑁𝑐). This is the approach we ultimately take. However,

we note that author of this dissertation, and collaborators, began by considering a distinct

approach via the logarithm of the translation operator

Δ̃ = 𝑖 log𝑈+. (4.30)

While apparently sensible, given the analogous relation between 𝐸 and shifts on the clock

space, this operator is not nicely behaved. For example, its commutator with the "position

operator"
∑
𝑗 𝑡 𝑗 | 𝑗⟩⟨ 𝑗 |, rather than being near-identity, has long off-diagonal tails. This
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behavior may be of independent interest, but from now on we will concern ourselves with

Δ as the discrete version of −𝐸 .

With these choices, our full clock Hamiltonian becomes

𝐻𝑐 := 𝐶 (𝐻) + Δ. (4.31)

Already, we can show some reasonable properties carry over to this setting.

Lemma 4.3.1. In the notation above, let 𝐻 : [0, 𝑇] → Herm(H) be a time dependent

Hamiltonian on a finite-dimensional vector space H . Then

[Δ, 𝐶 (𝐻)] = 𝑖 Re

(
𝑈+

∑︁
𝑗

𝐻 𝑗+1 − 𝐻 𝑗

𝛿𝑡
⊗ | 𝑗⟩⟨ 𝑗 |

)
where Re(𝐴) := (𝐴 + 𝐴†)/2 denotes the Hermitian part of 𝐴. If 𝐻 is differentiable in each

subinterval with bounded derivative, then we further have

∥ [Δ, 𝐶 (𝐻)] ∥ ≤ max
𝑡∈[0,𝑇]

∥ ¤𝐻 (𝑡)∥.

We remark here the connections to the canonical commutation relation [ 𝑓 (𝑥), 𝑝] =

𝑖 𝑓 ′(𝑥). The additional shift by 𝑈+ is a relatively small deviation from a finite difference

approximation being performed on the Hamiltonian.

Proof. We proceed in several steps, first by computing [𝑈+, 𝐶 (𝐻)]. We have

[𝑈+, 𝐶 (𝐻)] =
𝑁𝑐−1∑︁
𝑗=0

𝐻 𝑗 ⊗ [𝑈+, | 𝑗⟩⟨ 𝑗 |]

=

𝑁𝑐−1∑︁
𝑗=0

𝐻 𝑗 ⊗ (| 𝑗 + 1⟩⟨ 𝑗 | − | 𝑗⟩⟨ 𝑗 − 1|.
(4.32)
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By splitting the sum and reindexing (all increments modulo 𝑁𝑐), we can move the difference

to the 𝐻 𝑗 , giving

[𝑈+, 𝐶 (𝐻)] =
∑︁
𝑗

(𝐻 𝑗 − 𝐻 𝑗+1) ⊗ | 𝑗 + 1⟩⟨ 𝑗 |

= −𝑈+
∑︁
𝑗

(𝐻 𝑗+1 − 𝐻 𝑗 ) ⊗ | 𝑗⟩⟨ 𝑗 |.
(4.33)

Next, we have that [𝑈−, 𝐶 (𝐻)] = −[𝑈+, 𝐶 (𝐻)]†. Thus,

[𝑈+ −𝑈−, 𝐶 (𝐻)] = −2 Re

(
𝑈+

∑︁
𝑗

(𝐻 𝑗+1 − 𝐻 𝑗 ) ⊗ | 𝑗⟩⟨ 𝑗 |
)

(4.34)

and the full result follows almost immediately from the definition of Δ given in equa-

tion (4.29).

As for the upper bound, we note that ∥ Re(𝐴)∥ ≤ ∥𝐴∥ for any finite-dimensional 𝐴,

and by unitary invariance of the spectral norm we have

∥ [Δ, 𝐶 (𝐻)] ∥ ≤
∑︁

𝑗

𝐻 𝑗+1 − 𝐻 𝑗

𝛿𝑡
⊗ | 𝑗⟩⟨ 𝑗 |

 = max
𝑗

𝐻 𝑗+1 − 𝐻 𝑗

𝛿𝑡

 . (4.35)

The upper bound then follows from the claim𝐻 𝑗+1 − 𝐻 𝑗

𝛿𝑡

 ≤ max
𝑡∈[𝑡 𝑗 ,𝑡 𝑗+1]

∥ ¤𝐻 (𝑡)∥ (4.36)

coming from a the fundamental theorem of calculus and the triangle inequality. □

Having defined the clock space and Hamiltonian, we wish to prepare a suitable initial

state. A seemingly adequate and natural choice is to take |𝜓0⟩ ⊗ |0⟩, where |𝜓0⟩ is the

initial state of the system of interest and |0⟩ is the clock state at the initial time 𝑡 = 0.

However, problems immediately arise which can be traced to the fact that the continuous

version of |0⟩ is 𝛿(𝑡), which is not a normalizable state vector. This formal problem finds
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its way into the discrete setting, in that the finite difference Δ does not properly compute

a derivative of |0⟩. Thus, Δ fails to translate |0⟩ properly into later times, and the time

dependent simulation fails.

To fix this issue, we take a cue from the continuous setting, where the best we can

do is take a wavepacket of small enough width to suit our purposes. For simplicity, this

wavepacket may as well be Gaussian, with some width 𝜎 to be chosen with care. Thus, we

introduce Gaussian functions

𝜙𝜇 (𝑡;𝜎) =
1

√
N
𝑒−|𝑡−𝜇 |

2
𝑐/𝜎2

. (4.37)

of width 𝜎 ∈ R+ and center 𝜇 ∈ [0, 𝑇). Here |·|𝑐 is the shortest distance to 0 modulo 𝑇 ,

|𝑡 |𝑐 = min {|𝑡 |, |𝑇 − 𝑡 |} (4.38)

so that, with 0 and𝑇 identified, 𝜙𝜇 is smooth everywhere except 𝜇+𝑇/2 mod 𝑇 . Moreover,

N ∈ R+ is chosen such that the discretized vector

|𝜙𝜇⟩ =
∑︁
𝑗

𝜙𝜇 (𝑡 𝑗 ;𝜎) | 𝑗⟩ (4.39)

is normalized in the Euclidean sense (i.e., a quantum state vector). Technically, N has

some dependence on 𝜇, but in our case we will only consider 𝜇 = 𝑡 𝑗 for some 𝑗 , in which

case N only depends on parameters such as 𝑁𝑐 and 𝜎. Because of this choice, we will

more simply write |𝜙 𝑗 ⟩ ≡ |𝜙𝑡 𝑗 ⟩.

We are now ready to more clearly elucidate the overall strategy of the clock space

construction. Figure 4.1 gives a schematic of the relevant components. We imagine 𝑁𝑝

chunks of time steps, each containing 𝑁𝑞 subdivisions. As stated above, each of the 𝑁𝑝

should be thought of as a single Trotter step in the evolution under 𝐻 (𝑡). The 𝑁𝑞 substates
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Figure 4.1 Schematic of the discrete clock Hilbert space. The clock register has an
initially prepared Gaussian state which is translated uniformly under the clock
Hamiltonian. Its location controls the Hamiltonian applied to the system of interest. The
Hamiltonian varies little over each of the 𝑁𝑝 large steps, and the Gaussian is wide
compared to the 𝑁𝑞 subdivisions within each large step.

ensure that 𝛿𝑡 is sufficiently small such that the approximation of Δ to a derivative of 𝜙 𝑗

holds. In particular, we will desire 𝜎 ≫ 𝛿𝑡. On the other hand, we want the variation of 𝐻

within the envelope of 𝜙 𝑗 to be small. That is, we want 𝜎 < 𝑇/𝑁𝑝. Because, presumably,

we’ve chosen each Trotter step sufficiently small, this ensures that 𝐻 is approximately

constant over the bulk of |𝜙 𝑗 ⟩. Of course, we will want to ensure all of the above conditions

are met using as few resources, such as clock register states, as possible to get an accurate

simulation.

Let’s now characterize the accuracy of this construction. First, it will be helpful to have

a characterization of the size of the normalization N .

Lemma 4.3.2. In the notation above, the normalization constant N ∈ R+ for Gaussian

states |𝜙 𝑗 ⟩ peaked at 𝜇 = 𝑡 𝑗 satisfies

1
√
N

∈ 𝑂 (
√︁
𝛿𝑡/𝜎)
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Proof. By cyclicity, the normalization N is the same for all |𝜙 𝑗 ⟩, so we consider 𝑗 = 0.

Because |𝜙0⟩ is normalized in the Euclidean norm, we have

N =

𝑁𝑐−1∑︁
𝑗=0

𝑒−2|𝛿𝑡2 𝑗 |2𝑐/𝜎2

=

𝑁𝑐/2−1∑︁
𝑗=0

𝑒−2 𝑗2𝛿𝑡2/𝜎2 +
𝑁𝑐−1∑︁
𝑗=𝑁𝑐/2

𝑒−2(𝑁𝑐− 𝑗)2𝛿𝑡2/𝜎2

= 1 +
𝑁𝑐/2−1∑︁
𝑗=1

𝑒−2 𝑗2𝛿𝑡2/𝜎2 +
𝑁𝑐/2∑︁
𝑗=1

𝑒−2 𝑗2𝛿𝑡2/𝜎2

=

𝑁𝑐
2 −1∑︁
𝑗=0

𝑒−2 𝑗2𝛿𝑡2/𝜎2 +
𝑁𝑐
2∑︁
𝑗=0
𝑒−2 𝑗2𝛿𝑡2/𝜎2 − 1

(4.40)

We may lower bound the sums as Riemann approximations to a Gaussian integral, giving

error functions erf.

N ≥
√︂
𝜋

8

(
erf

(
𝑇 + 2𝛿𝑡
√

2𝜎

)
+ erf

(
𝑇

√
2𝜎

))
− 1 >

√︂
𝜋

2
𝜎

𝛿𝑡
erf

(
𝑇

√
2𝜎

)
− 1 , (4.41)

which then implies

1
N ≤

√︁
2/𝜋(𝛿𝑡/𝜎) 1

erf
(
𝑇√
2𝜎

)
−

√︃
2
𝜋
𝛿𝑡
𝜎

=

√︂
2
𝜋
(𝛿𝑡/𝜎) +𝑂

(
(𝛿𝑡/𝜎)

(
𝛿𝑡

𝜎
+ 𝑒−

𝑇2
2𝜎2

))
∈ 𝑂 (𝛿𝑡/𝜎).

(4.42)

The result follows simply from taking a square root. □

With this technical lemma in hand, we turn to showing that Δ indeed acts as a generator

of translations on the clock space for |𝜙 𝑗 ⟩, provided 𝜎 is large relative to 𝛿𝑡 and that the

Gaussian is not truncated by small 𝑇 .
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Lemma 4.3.3. In the notation introduced in this section, for any 𝑚 ∈ Z+ we have

𝑒−𝑖Δ𝑚𝛿𝑡 |𝜙 𝑗 ⟩ = |𝜙 𝑗+𝑚⟩ +𝑂
(
𝑚(𝛿𝑡/𝜎)2 + 𝑚

√︁
𝛿𝑡/𝜎𝑒−(𝑇/2𝜎)2

)
where the asymptotics 𝑂 are understood to be taken as 𝛿𝑡/𝜎 → 0 and 𝜎/𝑇 → 0.

Proof. Performing a 1st order Taylor expansion of the exponential,

𝑒−𝑖Δ𝛿𝑡 |𝜙 𝑗 ⟩ = |𝜙 𝑗 ⟩ − 𝑖𝛿𝑡Δ|𝜙 𝑗 ⟩ + 𝑅1(𝛿𝑡) |𝜙 𝑗 ⟩, (4.43)

where 𝑅1 is the Taylor remainder operator

𝑅1(𝛿𝑡) = 𝛿𝑡
∫ 𝛿𝑡

0

𝜕2

𝜕𝜏2 𝑒
−𝑖Δ𝜏𝛿𝑡𝑑𝜏 = −

∫ 𝛿𝑡

0
𝑒−𝑖Δ𝜏𝑑𝜏(−𝛿𝑡Δ2). (4.44)

The Taylor error can be bounded, via the triangle inequality for integrals, as

∥𝑅1(𝛿𝑡) |𝜙 𝑗 ⟩∥ ≤ 𝛿𝑡2∥Δ2 |𝜙 𝑗 ⟩∥. (4.45)

The action of Δ on discretized functions |𝑔⟩ of the clock space is given by

Δ |𝑔⟩ = −𝑖
𝑁𝑐−1∑︁
𝑗=0

𝑔(𝑡 𝑗 )
(
| 𝑗 + 1⟩ − | 𝑗 − 1⟩

2𝛿𝑡

)
= 𝑖

∑︁
𝑗

𝑔(𝑡 𝑗+1) − 𝑔(𝑡 𝑗−1)
2𝛿𝑡

| 𝑗⟩

= 𝑖 |𝐷𝛿𝑡𝑔⟩ .

(4.46)

Here 𝐷𝛿𝑡 𝑓 (𝑥) := 𝑓 (𝑥+𝛿𝑡)− 𝑓 (𝑥−𝛿𝑡)
2𝛿𝑡 is the symmetric finite difference of halfwidth 𝛿𝑡 at point

𝑥. Thus, Δ2 |𝜙 𝑗 ⟩ = −|𝐷2
𝛿𝑡
𝜙 𝑗 ⟩. We consider the error of this finite difference in terms of an

approximation to the derivative for values of 𝑡 within 𝑇/2− 2𝛿𝑡 of 𝑡 𝑗 in circle distance. On

this part of the domain, 𝜙 𝑗 (𝑡 ± 2𝛿𝑡) is smooth, hence

|𝐷2
𝛿𝑡𝜙 𝑗 ⟩ = |𝜕2

𝑡 𝜙 𝑗 ⟩ +𝑂 (𝛿𝑡2𝜙(4)
𝑗
) (4.47)
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where the superscript (4) indicates a fourth derivative. Near the edge of the Gaussian,

the second-derivative property does not hold; however, these parts of the state vector

have amplitude which is on the order 𝑂 (N−1/2𝑒−(𝑇/2𝜎)2), which by Lemma 4.3.2 is

𝑂 (
√︁
𝛿𝑡/𝜎𝑒−(𝑇/2𝜎)2). This gets multiplied by 𝛿𝑡−2 due to the second finite difference

𝐷𝛿𝑡 being taken. Taking the two sources independently as an upper bound, we have

∥Δ2 |𝜙 𝑗 ⟩∥ ∈ 𝑂
(
𝛿𝑡2/𝜎4 + (𝜎𝛿𝑡3)−1/2𝑒−(𝑇/2𝜎)2

)
(4.48)

where 𝜎−4 comes from the four derivatives of the Gaussians. Thus, the total Taylor

remainder may be upper bounded using (4.44) as

∥𝑅1(𝛿𝑡) |𝜙 𝑗 ⟩∥ ∈ 𝑂
(
(𝛿𝑡/𝜎)4 +

√︁
𝛿𝑡/𝜎𝑒−(𝑇/2𝜎)2

)
. (4.49)

To complete the proof we return to the linear Taylor expansion in (4.43). Using similar

reasoning to above,

|𝜙 𝑗 ⟩ − 𝑖𝛿𝑡Δ|𝜙 𝑗 ⟩ = |𝜙 𝑗 ⟩ + 𝛿𝑡 |𝐷𝛿𝑡𝜙 𝑗 ⟩

= |𝜙 𝑗 ⟩ + 𝛿𝑡 |𝜕𝑡𝜙 𝑗 ⟩ +𝑂
(
(𝛿𝑡/𝜎)2 +

√︁
𝛿𝑡/𝜎𝑒−(𝑇/2𝜎)2

)
.

(4.50)

Finally, what remains is a linear approximation to |𝜙 𝑗+1⟩, with error also (𝛿𝑡/𝜎)2. Keeping

only the leading terms, notice that the Taylor remainder error is subdominant. Altogether,

𝑒−𝑖Δ𝛿𝑡 |𝜙 𝑗 ⟩ = |𝜙 𝑗+1⟩ +𝑂
(
(𝛿𝑡/𝜎)2 +

√︁
𝛿𝑡/𝜎𝑒−(𝑇/2𝜎)2

)
. (4.51)

So far, we’ve proved the result for 𝑚 = 1. The full result follows by noting that 𝑒−𝑖Δ𝑚𝛿𝑡 =

(𝑒−𝑖Δ𝛿𝑡)𝑚 and taking, as upper bound, 𝑚 times the error of a single step. □

We note that the error in Δ generating translations comes from two sources: the

discretization at small scales and the boundary effects at large scales. We might name
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these, in the language of the lattice field theory, ultraviolet and infrared truncation effects,

respectively.

Our next intermediate result will be concerned with the time evolution of the system

under𝐶 (𝐻) controlled on the Gaussian state |𝜙 𝑗 ⟩. We want the result to be, approximately,

an evolution under 𝐻 (𝑡 𝑗 ) on the main register of interest. In what follows, it will be

convenient to take 𝜏 := 𝑇/𝑁𝑝 as the time duration of a larger subdivision of steps.

Lemma 4.3.4. Let 𝐻 : [0, 𝑇] → Herm(H) be a bounded differentiable function with

bounded derivative. For any 𝜂 ∈ R, we have

𝑒−𝑖𝐶 (𝐻)𝜂 |𝜓⟩|𝜙 𝑗 ⟩ = 𝑒−𝑖𝐻 (𝑡 𝑗 )𝜂 |𝜓⟩|𝜙 𝑗 ⟩

+𝑂
(
𝜂𝜏 max

𝑡∈[0,𝑇]
∥ ¤𝐻 (𝑡)∥ + (1 + 𝜂 max

𝑡∈[0,𝑇]
∥𝐻 (𝑡)∥)𝑒−𝜏2/4𝜎2

)
where 𝜏 := 𝑇/𝑁𝑝.

Proof. We begin by grouping the terms of 𝐶 (𝐻) into two chunks: one with significant

overlap with the Gaussian, the other with small overlap. Specifically, we take 𝐶 (𝐻) =

𝐻av + 𝐻⊥, with

𝐻av : =
𝑗+𝑁𝑞/2−1∑︁
𝑘= 𝑗−𝑁𝑞/2

𝐻𝑘 ⊗ |𝑘⟩⟨𝑘 |

𝐻⊥ : = 𝐶 (𝐻) − 𝐻av.

(4.52)

Because 𝐻av and 𝐻⊥ commute, we can Trotterize with no error.

𝑒−𝑖𝐶 (𝐻)𝜂 |𝜓⟩|𝜙 𝑗 ⟩ = 𝑒−𝑖𝐻⊥𝜂𝑒−𝑖𝐻av𝜂 |𝜓⟩|𝜙 𝑗 ⟩ (4.53)

We will show that the 𝐻av term gives approximately 𝐻 (𝑡 𝑗 ), while 𝐻⊥ acts as approximately

the identity (with the right parameter values).
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First, consider 𝑒−𝑖𝐻av𝜂. Define 𝑃 𝑗 =
∑
𝑘 |𝑘⟩⟨𝑘 | as the projector onto the clock states on

which 𝐻av has support (𝑘 ∈ Z ∩ [ 𝑗 − 𝑁𝑞/2, 𝑗 + 𝑁𝑞/2 − 1]). We have

∥𝑒−𝑖𝐻av𝜂 − 𝑒−𝑖𝐻 𝑗⊗𝑃 𝑗𝜂∥ ≤ 𝜂∥𝐻av − 𝐻 𝑗 ⊗ 𝑃 𝑗 ∥. (4.54)

Meanwhile,

𝐻av − 𝐻 𝑗 ⊗ 𝑃 𝑗
 = 

𝑗+𝑁𝑞/2−1∑︁
𝑘= 𝑗−𝑁𝑞/2

(𝐻𝑘 − 𝐻 𝑗 ) ⊗ |𝑘⟩⟨𝑘 |

 = max
𝑘

∥𝐻𝑘 − 𝐻 𝑗 ∥ (4.55)

By an simple Taylor bound, ∥𝐻𝑘 −𝐻 𝑗 ∥ ≤ (𝜏/2) max𝑡 ∥ ¤𝐻 (𝑡)∥, were the max is over [𝑡𝑘 , 𝑡 𝑗 ]

(taking the appropriate ordering of 𝑡 𝑗 , 𝑡𝑘 if needed). We can therefore say

∥𝑒−𝑖𝐻av𝜂 − 𝑒−𝑖𝐻 𝑗⊗𝑃 𝑗𝜂∥ ≤ 𝜂𝜏 max
𝑡∈[0,𝑇]

∥ ¤𝐻∥ (4.56)

so that, up to this error, we can replace a simulation by 𝐻av with 𝐻 𝑗 ⊗ 𝑃0. Moving on to

this situation, we have

𝑒−𝑖𝐻 𝑗⊗𝑃0𝜂 |𝜓⟩ ⊗ |𝜙 𝑗 ⟩ = 𝑒−𝑖𝐻 𝑗𝜂 |𝜓⟩𝑃 𝑗 |𝜙 𝑗 ⟩ + |𝜓⟩(𝐼 − 𝑃 𝑗 ) |𝜓 𝑗 ⟩. (4.57)

Thinking of 𝜎 < 𝜏 and taking 𝜏/𝜎 increasing, we have 𝑃0 |𝜙 𝑗 ⟩ = |𝜙 𝑗 ⟩ + 𝑂
(
𝑒−𝜏

2/4𝜎2
)
.

Thus,

𝑒−𝑖𝐻 𝑗⊗𝑃0𝜂 |𝜓⟩|𝜙 𝑗 ⟩ = 𝑒−𝑖𝐻 𝑗𝜂 |𝜓⟩|𝜙 𝑗 ⟩ +𝑂
(
𝜂𝜏 max

𝑡∈[0,𝑇]
∥ ¤𝐻∥ + 𝑒−𝜏2/4𝜎2

)
(4.58)

For the remainder of the proof take, |𝜓′⟩ = 𝑒−𝑖𝐻 𝑗𝜂 |𝜓⟩ for notational convenience. We

now consider the action of 𝐻⊥ on the remaining state, which we anticipate to be small.

First, 𝑒−𝑖𝐻⊥𝜂 |𝜓′⟩|𝜙 𝑗 ⟩ − |𝜓′⟩|𝜙 𝑗 ⟩
 ≤ 𝜂∥𝐻⊥ |𝜓′⟩|𝜙 𝑗 ⟩∥. (4.59)

109



Let J be an index set for all the time steps included in the summation 𝐻av. We have

∥𝐻⊥ |𝜓′⟩|𝜙 𝑗 ⟩∥ =
∑︁
𝑘∉J

𝐻𝑘 |𝜓′⟩|𝑘⟩⟨𝑘 |𝜙 𝑗 ⟩


≤
√︄∑︁
𝑘∉J

1
N 𝑒−2|𝑡 𝑗−𝑡𝑘 |2𝑐/𝜎2 ∥𝐻𝑘 ∥2.

(4.60)

Employing a Hölder inequality on the inner product, followed by Lemma 4.3.2,√︄∑︁
𝑘∉J

1
N 𝑒−2|𝑡 𝑗−𝑡𝑘 |2𝑐/𝜎2 ∥𝐻𝑘 ∥2 ≤ max

𝑘∉J
∥𝐻𝑘 ∥

∑︁
𝑘∉J

𝑒−|𝑡 𝑗−𝑡𝑘 |
2
𝑐/𝜎2

N

∈ 𝑂 ©«max
𝑡

∥𝐻 (𝑡)∥(𝛿𝑡/𝜎)
∞∑︁

𝑘=𝑁𝑞/2

𝑒−𝑘
2𝛿𝑡2/𝜎2ª®¬ .

(4.61)

Following a similar procedure to before, we convert to an error function erf and take an

exponential upper bound. Doing so gives

∥𝐻⊥ |𝜓′⟩|𝜙 𝑗 ⟩∥ ∈ 𝑂
(

max
𝑡∈[0,𝑇]

∥𝐻 (𝑡)∥𝑒−𝜏2/2𝜎2
)
. (4.62)

Thus, 𝑒−𝑖𝐻⊥𝜂 acts trivially on this state up to 𝑂
(
𝜂max𝑡 ∥𝐻 (𝑡)∥𝑒−(𝜏/2𝜎)2

)
.

Combining the errors together, we take the widest exponential 𝑒−𝜏2/4𝜎2 as a simple

upper bound for all exponentials that appear. Putting all the error sources together gets us

the result of the Lemma statement. □

With the previous two lemmas, we have the ingredients needed for a clock space

simulation: controlled operations and time shifts. We combine them to show that our

clock space indeed encodes time dependent dynamics.

Theorem 4.3.5. Let 𝐻 [0, 𝑇] → Herm(H) be a time dependent Hamiltonian on a finite

dimensional vector spaceH , such that𝐻 (𝑡) as a function is bounded and differentiable with
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bounded derivative. Then, the clock Hamiltonian, with Gaussian input |𝜙0⟩, approximately

applies the time evolution operator𝑈 (𝑇, 0) to an initial state |𝜓0⟩ ∈ H . Precisely,

𝑒−𝑖𝐻𝑐𝑇 |𝜓0⟩|𝜙0⟩ = (𝑈 (𝑇, 0) |𝜓0⟩) |𝜙0⟩

+𝑂
(
𝑇𝛿𝑡/𝜎2 +

√︁
𝑁𝑐𝑇/𝜎𝑒−𝑇

2/4𝜎2 + max
𝑡

∥ ¤𝐻∥ 𝑇
2

𝑁𝑝
+ 𝑒−𝜏2/4𝜎2 (𝑁𝑝 + max

𝑡
∥𝐻∥𝑇)

)
.

Proof. Let 𝜏 := 𝑇/𝑁𝑝. We begin with a first-order Trotterization of 𝐻𝑐 into 𝑁𝑝 steps.

𝑒−𝑖𝐻𝑐𝑇 =

(
𝑒−𝑖Δ𝜏𝑒−𝑖𝐶 (𝐻)𝜏

)𝑁𝑝

+𝑂
(

max
𝑡∈[0,𝑇]

∥ ¤𝐻 (𝑡)∥ 𝑇
2

𝑁𝑝

)
(4.63)

With initial state |𝜓0⟩|𝜙0⟩, combining Lemmas 4.3.4 and 4.3.3 gives the following error

for a single Trotter step.

𝑒−𝑖Δ𝜏𝑒−𝑖𝐶 (𝐻)𝜏 |𝜓0⟩|𝜙0⟩ = 𝑒−𝑖𝐻0𝜏 |𝜓0⟩|𝜙𝑁𝑞
⟩

+𝑂
(
𝜏𝛿𝑡/𝜎2 +

√︃
𝑁𝑞𝜏/𝜎𝑒−𝑇

2/4𝜎2 + 𝜏2 max
𝑡

∥ ¤𝐻∥ + (1 + 𝜏max
𝑡

∥𝐻∥)𝑒−𝜏2/4𝜎2
)
.

(4.64)

Thus, after all 𝑁𝑝 steps, we can multiply the single step error above to get an upper bound

of (
𝑒−𝑖Δ𝜏𝑒−𝑖𝐶 (𝐻)𝜏

)𝑁𝑝

|𝜓0⟩|𝜙0⟩ = 𝑒−𝑖𝐻𝑁𝑞 (𝑁𝑝−1)𝜏 . . . 𝑒−𝑖𝐻𝑁𝑞 𝜏𝑒−𝑖𝐻0𝜏 |𝜓0⟩|𝜙0⟩

+𝑂
(
𝑇𝛿𝑡/𝜎2 +

√︁
𝑁𝑐𝑇/𝜎𝑒−𝑇

2/4𝜎2 + max
𝑡

∥ ¤𝐻∥ 𝑇
2

𝑁𝑝
+ 𝑒−𝜏2/4𝜎2 (𝑁𝑝 + max

𝑡
∥𝐻∥𝑇)

) (4.65)

The right side, without the error, is a 1st order Suzuki Trotter splitting, which approximates

𝑈 (𝑇, 0) to order max𝑡∈[0,𝑇] ∥𝐻 (𝑡)∥𝑇2/𝑁𝑝. This can be absorbed into the third term of the

big-𝑂. This gives the result stated in the Theorem. □

With this result in hand, we now show that the parameters (𝑁𝑝, 𝑁𝑞, 𝜎) of the clock can

be chosen such that any desired degree of approximation to𝑈 (𝑇, 0) can be achieved.
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Theorem 4.3.6. In the context of the previous theorem, for any 𝜖 ∈ R+, there exists clock

parameters (𝑁𝑝, 𝑁𝑞, 𝜎) such that𝑒−𝑖𝐻𝑐𝑇 |𝜓0⟩|𝜙0⟩ −𝑈 (𝑇, 0) |𝜓0⟩|𝜙0⟩
 < 𝜖

with (𝑁𝑝, 𝑁𝑞) scaling as

𝑁𝑝 ∈ Θ

(
max
𝑡∈[0,𝑇]

∥ ¤𝐻∥𝑇
2

𝜖

)
, 𝑁𝑞 ∈ Θ

(
max𝑡 ∥ ¤𝐻∥𝑇2

𝜖2 𝑥2
)
, 𝜎 ∈ Θ

(
𝜖

max𝑡 ∥ ¤𝐻∥𝑇𝑥

)
.

Here,

𝑥 :=

√︄
log

(
Γ𝑇

𝜖

)
Γ := max

{
max
𝑡∈[0,𝑇]

∥ ¤𝐻∥𝑇, 𝜖 max
𝑡∈[0,𝑇]

∥𝐻∥
}
.

In particular, there exists a sequence (𝑁𝑝 ( 𝑗), 𝑁𝑞 ( 𝑗), 𝜎( 𝑗)) of clock space parameters,

such that

lim
𝑗→∞

Tr𝑐 (𝑒−𝑖𝐻𝑐𝑇 |𝜓0⟩|𝜙0⟩) = 𝑈 (𝑇, 0) |𝜓0⟩

where Tr𝑐 is a partial trace over the clock register, and Tr𝑐 ( |Ψ⟩) ≡ Tr𝑐 ( |Ψ⟩⟨Ψ|).

Proof. To ensure a total error within 𝜖 is achievable, it suffices to ensure that each of the

five terms constituting the error in Theorem 4.3.5 is within 𝑂 (𝜖) independently. From the

onset, we will choose 𝑁𝑝 ∈ Θ
(
max𝑡∈[0,𝑇] ∥ ¤𝐻∥𝑇2/𝜖

)
to satisfy the third term.

We next move to understand the necessary 𝜎 scaling. We parametrize it as

𝜎 = 𝜏/𝑥 (4.66)

with the hope that 𝑥 can be chosen to increase slowly (i.e., that the Gaussian states have

width only slightly smaller than the Trotter step size). For this, we focus on the last two
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terms, since they have no 𝑁𝑞 dependence (which will set the smallest scales). We seek

max𝑡 ∥ ¤𝐻∥𝑇2

𝜖
𝑒−𝑥

2/4 ∈ 𝑂 (𝜖), max
𝑡

∥𝐻∥𝑇𝑒−𝑥2/4 ∈ 𝑂 (𝜖) (4.67)

which can be satisfied provided that 𝑥 is asymptotically lower bounded as

𝑥2 ∈ Ω

(
log max

{
max𝑡 ∥ ¤𝐻∥𝑇2

𝜖2 ,
max𝑡 ∥𝐻∥𝑇

𝜖

})
= Ω (log(Γ𝑇/𝜖))

(4.68)

This sets the scaling for 𝜎.

We move next to the first term to fix 𝑁𝑞, since the 2nd term is expected to be quite

small. We require 𝑇𝛿𝑡/𝜎2 ∈ 𝑂 (𝜖), which is equivalent to

𝑁𝑝𝑥
2

𝑁𝑞
∈ 𝑂 (𝜖). (4.69)

Therefore, there exists an 𝑁𝑞 ∈ Θ
(
𝑁𝑝𝑥

2/𝜖
)
, satisfying the bound. All that remains is the

second term, whose contribution can be easily shown to be subdominant compared to the

other sources. Therefore, the choice of parameter scaling suffice to achieve the desired

error 𝜖 .

We have shown that any desired precision 𝜖 for dynamical simulation can be accom-

modated for by appropriate choice of clock space parameters. Taking a sequence 𝜖 𝑗 → 0,

we see there exists a sequence of clock space evolutions whose limit, restricted to the main

register, is𝑈 (𝑇, 0). □

4.4 Time Dependent Qubitization

In the previous section, we developed a clock space construction which encoded a time

dependent Hamiltonian as a time independent one on an augmented, finite-dimensional

space. The removal of time-ordering using a clock register opens the door for quantum
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algorithms for time independent Hamiltonian simulation to simulate the full clock-system

dynamics directly. In particular, qubitization is an asymptotically optimal [88] simulation

method that can only be applied to time independent 𝐻. In this section, we propose the

simulation of time dependent Hamiltonians through qubitization using finite clock registers.

To be concrete, we will work with an input model in which 𝐻 (𝑡) is a linear combination of

fixed unitaries with time-varying coefficients. This describes, for example, Pauli matrices

on 𝑛 qubits with fluctuating coefficients.

4.4.1 Pseudo-Algorithm

We take 𝑛𝑐 qubits to provide a clock register of size 𝑁𝑐 = 2𝑛𝑐 , which are included

with the main register of interest. The initial state |𝜓0⟩ |𝜙0⟩ must be prepared on this joint

register. We take |𝜓0⟩ of the main register as given, since this is necessarily application

dependent. We must, however, prepare a Gaussian state |𝜙0⟩ on the clock register of

𝑛𝑐 qubits with width 𝜎. Unsurprisingly, much effort has been devoted to this task. [80,

108, 109, 71, 57]. For our purposes, we will simply refer to the approach by Kitaev and

Webb [78, 10] as efficient enough for our purposes. The Gaussian will nonnegligible

support over 𝑂 (𝑁𝑞) clock states, and their algorithm scales polynomially in the number of

qubits 𝑛𝑞 = log 𝑁𝑞 over the Gaussian. This cost is negligible compared to the simulation

costs that we are about to discuss.

Once the initial state is prepared, we employ qubitization to approximate 𝑒−𝑖𝐻𝑐𝑇 on

the full register. Given 𝐻 (𝑡) in LCU form, we need to express 𝐻𝑐 in LCU form as well,

which is not immediate. This is done through several applications of the Signature Matrix

Decomposition. We also truncate Δ at high frequencies to reduce computational cost,

with little loss in accuracy. Details of the LCU decomposition are provided in the next
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subsection.

Once 𝐻𝑐 is in LCU form, select SEL and prepare PREP circuits may be constructed to

block encode 𝐻𝑐 as

𝐻𝑐/∥𝑐∥1 = (⟨0| PREP† ⊗ 𝐼)SEL(PREP |0⟩ ⊗ 𝐼) (4.70)

where ∥𝑐∥1 is the one-norm of the LCU coefficients. Standard qubitization can now be done

on this block encoded Hamiltonian [88]. The PREP circuit must create a "quasi-uniform"

distribution over some number 𝑁 of states, in the sense that, on the LCU auxiliary register,

|PREP⟩ =
𝐾−1∑︁
𝑗=1

√
𝛿 | 𝑗⟩ +

𝑁∑︁
𝑗=𝐾

√
𝛿′ | 𝑗⟩ (4.71)

with 𝛿, 𝛿′, 𝐾 and 𝑁 determined by parameters of simulation. Meanwhile the SEL circuit will

need to apply controlled 𝑈𝑖 operations, where 𝑈𝑖 is a unitary in the 𝐻 (𝑡) decomposition,

and controlled signature matrices. These second operations can be done with classical

comparator circuits. Each SEL will also require a Quantum Fourier Transform and its

inverse on the clock register.

4.4.2 Block Encoding

To make progress, it seems𝐻 (𝑡) itself should be expressible neatly in terms of unitaries.

Thus, we assume 𝐻 (𝑡) is of the form

𝐻 (𝑡) =
𝐿∑︁
𝑖=1

𝛼𝑖 (𝑡)𝑈𝑖 (4.72)

where𝑈 𝑗 are Hermitian and unitary (e.g., 𝑛-qubit signed Pauli operators) and 𝛼 𝑗 (𝑡) are non-

negative real-valued functions on [0, 𝑇]. When we discretize, the coefficients 𝛼𝑖 𝑗 ≡ 𝛼𝑖 (𝑡 𝑗 )
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will be particularly important. Expanding out 𝐶 (𝐻) from equation (4.28) using (4.72),

𝐶 (𝐻) =
𝑁𝑐−1∑︁
𝑗=0

(
𝐿−1∑︁
𝑖=0

𝛼𝑖 𝑗𝑈𝑖

)
⊗ | 𝑗⟩⟨ 𝑗 |

=

𝐿−1∑︁
𝑖=0
𝑈𝑖 ⊗ 𝐷𝑖

(4.73)

where

𝐷𝑖 :=
𝑁𝑐−1∑︁
𝑗=0

𝛼𝑖 𝑗 | 𝑗⟩⟨ 𝑗 | (4.74)

is a diagonal operator on the clock register. There is a general technique for LCU construc-

tions of diagonal, or easily diagonalized, operators via a Signature Matrix Decomposition,

which we digress to discuss.

4.4.3 Interlude: Signature Matrix Decomposition or "Alternating Sign Trick"

In our manipulations of 𝐻𝑐, we have come across the problem of expressing a diagonal,

Hermitian matrix 𝐷 in LCU form. We will handle this in the present section. Although I

did not invent this technique, I had a sufficiently hard time finding a clear reference to it

in the literature, such that I felt an overview would be appropriate and possibly helpful to

future researchers.

There are many unitary bases that exist, but in our case we have quite stringent require-

ments. We ultimately want our decomposition to consist of Hermitian operations as well,

meaning they should be reflection operators (𝑈2 = 𝐼). Moreover, it is sensible to look for

diagonal unitaries, because our operator 𝐷 is diagonal. These requirements alone enforce

that our unitaries are, in fact, signature matrices: 𝑈 = diag(𝜆1, 𝜆2, . . . , 𝜆𝑛) where 𝜆 𝑗 = ±1.

For the moment, let’s imagine the entries of 𝐷 are all positive integers, and we allow

ourselves to add unitaries only in integer amounts. Think of each entry as a bucket of size

𝜆 𝑗 . We want to add to the bucket, and we can only do so in units of +1 (by unitarity) or −1.
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Each time we add a unitary, say, the identity, we are adding a unit to each bucket. Some of

the buckets will fill up faster than others because they are smaller, but we are not allowed

to stop adding, per se. We can only add or remove one unit, not zero, by unitarity. The

next best thing we can do is, while the other buckets are getting filled, add and remove 1

unit in alternating sequence. We need to do this until the largest bucket has been filled, at

which point we can stop.

Let’s put this all more formally. We want a sequence of unitaries that keep track

of whether the entries are above, or below, the number 𝑘 of additions that have already

occured. To this end, define

𝑈𝑘 :=
𝑛∑︁
𝑗=1

(−1)𝑘 [𝑘>𝜆 𝑗 ] | 𝑗⟩⟨ 𝑗 | (4.75)

where [𝑃] is the boolean function for proposition 𝑃 assigning 1 to true, 0 to false. We see

that, for 𝑘 even, 𝑈𝑘 = 𝐼 is the identity operator. while for odd 𝑘 𝑈𝑘 has eigenvalue −1

whenever 𝑗 is such that 𝑘 > 𝜆 𝑗 . Then, if we take a sum "until the largest bucket" ∥𝐷∥ has

been filled, we should obtain 𝐷. In fact,

∥𝐷∥∑︁
𝑘=1

𝑈𝑘 =

𝑛∑︁
𝑗=1

| 𝑗⟩⟨ 𝑗 | =
𝑛∑︁
𝑗=1

| 𝑗⟩⟨ 𝑗 |
∥𝐷∥∑︁
𝑘=1

(−1)𝑘 [𝑘>𝜆 𝑗 ] (4.76)

and the inner sum can be written as

𝜆 𝑗∑︁
𝑘=1

1 +
∑︁

𝑘=𝜆 𝑗+1
(−1)𝑘 (4.77)

= 𝜆 𝑗 + 𝜖 (4.78)

where 𝜖 ∈ {−1, 0, 1} is an 𝑂 (1)-error. We will see shortly how to boost the precision,

but first we note that, generalizing to positive real-valued entries, the same procedure for
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𝑈𝑘 (taking ⌈∥𝐷∥⌉ as the upper sum limit) generates ⌊𝜆 𝑗⌋ on the entries to accuracy ±1 at

worst. Thus, for real values the error is less than 2, which is still 𝑂 (1).

This might not seem like a good approximation, especially when 𝜆 𝑗 is small. But

we can artificially increase the size of 𝜆 𝑗 by performing the same procedure on 𝐷/𝛿 for

suitably small 𝛿 > 0, then multiplying by 𝛿. Let 𝐿𝛿 := ⌈∥𝐷∥/𝛿⌉. Then

𝐷/𝛿 =
𝐿 𝛿∑︁
𝑘=1

𝑈𝑘 +𝑂 (1) (4.79)

so

𝐷 =

𝐿 𝛿∑︁
𝑘=1

𝛿𝑈𝑘 +𝑂 (𝛿). (4.80)

with 𝑈𝑘 the same as (4.75) but with the replacement 𝜆 𝑗 → 𝜆 𝑗/𝛿. We’ve succeeded at

expressing 𝐷 in LCU form to accuracy 𝑂 (𝛿) using 𝐿𝛿 terms.

We still haven’t handled negative eigenvalues. This is accomplished by adding the

appropriate sign. Altogether, the 𝐿𝛿 matrices

𝑈𝑘 :=
𝑛∑︁
𝑗=1

sgn(𝜆 𝑗 ) (−1)𝑘 [𝑘> |𝜆 𝑗 |/𝛿] (4.81)

are sufficient to approximate 𝐷 to within 2𝛿 in each entry.

Assuming the eigenvalues 𝜆 𝑗 are known and classically computable, unitaries such

as (4.81) can be implemented on a quantum computer using comparator circuits. Observe

that this procedure can also generate an LCU type expansion, more generally, when the

Hermitian operator 𝐻 is easily diagonalizable. Moreover, the fact that the coefficients

in the LCU are the same allows for simple implementation in a select-and-prepare block

encoding.
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4.4.4 Block Encoding (cont.)

Let Λ𝑖 (𝛿) ≡ ⌈max 𝑗 |𝛼𝑖 𝑗 |/𝛿⌉. Using a signature matrix decomposition, we can write

𝐷𝑖 =

Λ𝑖 (𝛿)∑︁
𝑘=1

𝛿𝑆𝑖𝑘 (𝛿) +𝑂 (𝛿) (4.82)

for 𝛿 > 0, where

𝑆𝑖𝑘 (𝛿) =
𝑁𝑐−1∑︁
𝑗=0

(−1)𝑘 [𝑘>𝛼𝑖 𝑗/𝛿] | 𝑗⟩⟨ 𝑗 | (4.83)

and [𝑃] is the Boolean function for proposition 𝑃, with [True] = 1 and [False] = 0. Thus,

we obtain an LCU decomposition of 𝐶 (𝐻) as

𝐶 (𝐻) = 𝛿
𝐿∑︁
𝑖=1

Λ𝑖 (𝛿)∑︁
𝑘=1

𝑈𝑖 ⊗ 𝑆𝑖𝑘 (𝛿) +𝑂 (𝐿𝛿) (4.84)

The prepare circuit PREP is simple enough because the linear combination is uniform.

Therefore, it can be accomplished using a Hadamard gate on each of

𝑛𝐶 (𝐻) ∈ 𝑂
(
log

𝐿∑︁
𝑖=0

max
𝑗
|𝛼𝑖 𝑗 |/𝛿

)
(4.85)

auxiliary qubits needed for a binary encoding. The unitaries 𝑈𝑖 ⊗ 𝑆𝑖𝑘 (𝛿) can be selected

using two different SEL circuits: one for the original 𝑈𝑖 (presumed available to us) and

one for the signature matrices 𝑆𝑖𝑘 (𝛿). These unitaries can be constructed using classical

comparator circuits provided that each 𝛼𝑖 𝑗 is computable.

We turn out attention now to Δ. Although already in LCU form, the coefficient has

size 2/𝛿𝑡 and is too large to be desirable. As discussed above, the problem stems from

unnecessary high-frequency modes, which we wish to truncate. We start by converting Δ

to Fourier space, i.e., diagonalizing via the Quantum Fourier Transform. The result may
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be computed by diagonalizing𝑈+, and is found to be

Δ = QFT
𝑁𝑐−1∑︁
𝑗=0

𝑁𝑐

𝑇
sin

(
2𝜋

𝑗

𝑁𝑐

)
| 𝑗⟩⟨ 𝑗 | QFT†

= QFT
𝑁𝑐/2−1∑︁
𝑗=−𝑁𝑐/2

𝑁𝑐

𝑇
sin

(
2𝜋

𝑗

𝑁𝑐

)
| 𝑗⟩⟨ 𝑗 | QFT†

(4.86)

where, in the second line, we define indices − 𝑗 = 𝑁𝑐 − 𝑗 for 𝑗 > 0 and write the

diagonalized Δ symmetrically about 𝑗 = 0. The benefit of this parametrization is that

small | 𝑗 | correspond to low-frequency modes, as we shall see. Let Δ𝐽 be Δ truncated at

frequencies above those determined by index 𝐽 ∈ [0, 𝑁𝑐/2] ∩ Z.

Δ𝐽 := QFT
𝐽∑︁

𝑗=−𝐽

𝑁𝑐

𝑇
sin

(
2𝜋

𝑗

𝑁𝑐

)
| 𝑗⟩⟨ 𝑗 | QFT† (4.87)

The error in a clock space evolution using Δ𝐽 rather than Δ is upper bounded by 𝑇 ∥Δ |𝜙0⟩ −

Δ𝐽 |𝜙0⟩ ∥, which can be evaluated and upper bounded as

𝑇 ∥Δ |𝜙0⟩ − Δ𝐽 |𝜙0⟩ ∥ =
 ∑︁
| 𝑗 |>𝐽

𝑁𝑐 sin(2𝜋 𝑗

𝑁𝑐
) | 𝑗⟩⟨ 𝑗 |QFT† |𝜙0⟩


≤ 𝑁𝑐

√︄∑︁
| 𝑗 |>𝐽

|⟨ 𝑗 | QFT† |𝜙0⟩|2.
(4.88)

We thus desire a characterization of QFT† |𝜙0⟩, which we naturally expect to be another

Gaussian up to errors arising from the difference between discrete and continuous Fourier

Transforms. This analysis was performed in Appendix C of [112], and we adapt that work

to our present situation. As the reference shows, the error in each component 𝑗 arises from

three sources:

1. Truncation of the time variable to 𝑂 (𝑇), which we denote 𝜖trunc.

2. Truncation of the frequency variable to𝑂 (𝑁𝑐/𝑇) ("aliasing"), which we denote 𝜖alias.
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3. Differences in normalizing in the continuum vs the discrete setting, which we denote

𝜖norm.

In our notation and setting, Rendon et al. [112] show that these errors satisfy the

following asymptotic bounds.

𝜖trunc ∈ 𝑂
(√︂

𝜎

𝑇
𝑒−Ω(𝑇2/𝜎2)

)
𝜖alias ∈ 𝑂

(√︂
𝜎

𝑇
𝑒−Ω(𝑁2

𝑐𝜎
2/𝑇2

)
𝜖norm ∈ 𝑂

(
𝑒−Ω(𝑁𝑐)

) (4.89)

Let’s take these errors to all be 𝑂 (𝜖QFT), with the required 𝜖QFT to be determined. The

results from Theorem 16 and Appendix C of [112] imply that

QFT† |𝜙0⟩ =
𝑁𝑐/2−1∑︁
𝑗=−𝑁𝑐/2

(√︂
𝜋𝑁𝑐

N
𝜎

𝑇
𝑒−(𝜋 𝑗𝜎/𝑇)

2 +𝑂 (𝜖QFT)
)
| 𝑗⟩ . (4.90)

With in hand, we return to (4.88). First,

|⟨ 𝑗 | QFT† |𝜙0⟩|2 =
𝜋𝑁𝑐

N
𝜎2

𝑇2 𝑒
−2(𝜋 𝑗𝜎/𝑇)2 +𝑂 (

√︂
𝜎

𝑇
𝑒−(𝜋 𝑗𝜎/𝑇)

2
𝜖QFT) (4.91)

where we assume the error 𝜖QFT is smaller asymptotically than the amplitude itself, to be

justified. Taking the sum over high frequencies,√︄∑︁
| 𝑗 |>𝐽

|⟨ 𝑗 | QFT† |𝜙0⟩|2 ∈ 𝑂
(√︂

𝑁𝑐

N
𝜎

𝑇
𝑒−Ω(𝐽2𝜎2/𝑇2) +

√︂
𝜎

𝑇
𝑒−Ω(𝐽2𝜎2/𝑇2)𝜖QFT

)
⊆ 𝑂

(√︂
𝜎

𝑇
𝑒−Ω(𝐽2𝜎2/𝑇2) (1 + 𝜖QFT)

)
.

(4.92)

We next observe that 𝜖QFT ∈ 𝑂 (1) by previous assumptions, and can now be removed.

From (4.88), we get the full simulation error by multiplying by 𝑁𝑐

𝜖𝐽 ∈ 𝑂
(
𝑁𝑐

√︂
𝜎

𝑇
𝑒−Ω(𝐽2𝜎2/𝑇2)

)
. (4.93)
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In order for 𝜖𝐽 ∈ 𝑂 (𝜖), we want the cutoff 𝐽 to satisfy

𝑒−𝐽
2𝜎2/𝑇2 ∈ 𝑂

(√︂
𝑇

𝜎

𝜖

𝑁𝑐

)
(4.94)

which can be satisfied provided 𝐽 scales as

𝐽 ∈ Θ

(
𝑇

𝜎
(log𝜎/𝑇 + log 𝑁𝑐 + log 1/𝜖)

)
⊆ Θ̃(𝑇/𝜎). (4.95)

Letting Δ̃ ≡ Δ𝐽 for this choice of 𝐽, we now switch to considering the simulation of Δ̃. Let

𝛿′ > 0, and let Γ(𝛿′) := ⌈(𝑁𝑐/𝑇𝛿′) sin(2𝜋𝐽/𝑁𝑐)⌉. We have

𝐽∑︁
𝑗=−𝐽

𝑁𝑐

𝑇
sin

(
2𝜋

𝑗

𝑁𝑐

)
| 𝑗⟩⟨ 𝑗 | = 𝛿′

Γ(𝛿′)∑︁
ℓ=1

𝑆
(Δ)
𝑘

(𝛿′) +𝑂 (𝛿′) (4.96)

where

𝑆
(Δ)
𝑘

(𝛿′) :=
𝐽∑︁

𝑗=−𝐽
sgn( 𝑗) (−1)𝑘 [𝑘>(𝑁𝑐/𝑇𝛿′) sin(2𝜋 𝑗/𝑁𝑐)] . (4.97)

Defining the unitary 𝑉ℓ (𝛿′) := QFT 𝑆
(Δ)
ℓ

(𝛿′) QFT†, we have obtained an LCU decomposi-

tion of Δ. The PREP circuit is, as with 𝐶 (𝐻), only a column of Hadamards on

𝑛Δ ∈ 𝑂 (log ((𝑁𝑐/𝑇𝛿′) sin(2𝜋𝐽/𝑁𝑐))) ⊆ �̃�
(
log

1
𝜎𝛿′

)
(4.98)

auxiliary qubits. Meanwhile the SEL circuit may be constructed as QFT SEL′ QFT†, where

SEL′ is a select circuit using the 𝑆(Δ)
ℓ

signature matrices that can, as before, be implemented

with comparator circuits that compute sine.

Combining with (4.84), we obtain an approximate LCU decomposition of the approxi-

mate clock Hamiltonian �̃�𝑐.

�̃�𝑐 = 𝛿

𝐿∑︁
𝑖=1

Λ𝑖 (𝛿)∑︁
𝑘=1

𝑈𝑖 ⊗ 𝑆𝑖𝑘 (𝛿) + 𝛿′
Γ(𝛿′)∑︁
ℓ=1

𝐼 ⊗ 𝑉ℓ (𝛿′) +𝑂 (𝜖/𝑇 + 𝐿𝛿 + 𝛿′) (4.99)
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To achieve an 𝜖-accurate simulation, we will require 𝛿 ∈ 𝑂 (𝜖/𝐿𝑇) and 𝛿′ ∈ 𝑂 (𝜖/𝑇). The

1-norm ∥𝑐∥1 of all of the coefficients is given by

∥𝑐∥1 = 𝛿

𝐿−1∑︁
𝑖=0

Λ𝑖 (𝛿) + 𝛿′Γ(𝛿′)

∈ 𝑂
(
𝐿−1∑︁
𝑖=0

max
𝑗
|𝛼𝑖 𝑗 | +

𝑁𝑐

𝑇
sin(2𝜋𝐽/𝑁𝑐)

)
⊆ 𝑂

(
∥𝛼∥rev

∞,1 + 𝐽/𝑇
)

⊆ �̃�
(
∥𝛼∥rev

∞,1 + 𝜎
−1

)
⊆ �̃�

(
∥𝛼∥rev

∞,1 +
max𝑡 ∥ ¤𝐻∥𝑇

𝜖

)
(4.100)

where ∥𝛼∥∞,1 ≡ ∑𝐿−1
𝑖=0 max𝑡 |𝛼𝑖 (𝑡) | and �̃� suppresses multiplicative logarithmic factors.

Thus, the number of queries to SEL and PREP circuits in an LCU encoding scales as

𝑄 ∈ �̃�
(
∥𝛼∥rev

∞,1𝑇 + max𝑡 ∥ ¤𝐻∥𝑇2

𝜖
+ log 1/𝜖

log log 1/𝜖

)
. (4.101)

The number of auxiliary qubits needed for the clock register is

𝑛𝑐 = log 𝑁𝑝 + log 𝑁𝑞 ∈ 𝑂
(
log(max

𝑡
∥ ¤𝐻∥𝑇2) + log 1/𝜖

)
(4.102)

while the number of auxiliary qubits needed for the LCU block encoding is given by

𝑛LCU = 𝑛𝐶 (𝐻) + 𝑛Δ

∈ 𝑂
(
log

∥𝛼∥rev
∞,1
𝛿

+ log
1
𝜎𝛿′

)
⊆ 𝑂

(
log

𝐿∥𝛼∥rev
∞,1𝑇

𝜖
+ log

max𝑡 ∥ ¤𝐻∥𝑇2

𝜖2

)
⊆ 𝑂

(
log 𝐿 + log(∥𝛼∥rev

∞,1𝑇) + log(max
𝑡

∥ ¤𝐻∥𝑇2) + log 1/𝜖
)

(4.103)
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for a total number of auxiliary qubits 𝑛 ∈ 𝑂 (𝑛LCU).

Improvements over 1st-order Trotter in query complexity, with our bounds, only appear

with very small time variations. We may be able to prove this through better characteriza-

tions in the error stemming from 𝐻𝑐. We use Trotter bounds in those calculations, but we

may need to be smarter to avoid the limits seen here.

4.5 Discussion

In the circuit-based Hamiltonian simulation community, time dependent Hamiltonians

are often treated on separate footing from time independent ones. The main contribution of

this project is a new way of thinking about time dependent dynamics that allows us to replace

time ordered operator exponentials with ordinary operator exponentials acting on a higher-

dimensional finite space. We apply the discretized (𝑡, 𝑡′) trick and show that it encodes the

time ordered exponential for sufficiently large clock sizes. The clock space framework can

also be used directly in quantum simulation methods to extend the capabilities of certain

quantum algorithms. Specifically, it can be used to extend qubitization to time dependent

systems. While in many circumstances it will be more convenient to use a truncated Dyson

series simulation method in preference to this approach, our work shows how the use of

discrete clock spaces used to construct new quantum simulation algorithms that would

otherwise be challenging.

Besides an LCU encoding, natural block encodings of 𝐻𝑐 may be possible. For

example, a very general input model for 𝐻 (𝑡) is to take it as a 𝑑-sparse matrix with query

access to the nonzero entries. This seems quite promising an avenue to take, because then

𝐻𝑐 = 𝐶 (𝐻) +Δ is 𝑑 +2 sparse, and there is a natural way to query the entries of 𝐻𝑐. Hence,

such a Hamiltonian should immediately simulatable by qubitization (or other quantum
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walk methods). The trouble is that the largest entry in absolute value ∥𝐻𝑐∥max of 𝐻𝑐 comes

from Δ, which is of size 𝑁𝑐/2𝑇 . This is too large to yield an effective simulation algorithm.

Of course, there is something odd about the need to care for the operator norm ∥Δ∥, since

the typical state being acted on is a Gaussian |𝜙 𝑗 ⟩. Thinking of Δ in frequency space,

modes of frequency Ω(𝜎−1) should not be relevant for Gaussian states of width 𝑂 (𝜎) on

the clock register. This suggests that a high-frequency truncation of Δ, say Δ̃ would act

approximately the same on the Gaussians while decreasing the norm. However, there is

no guarantee that the modified operator, Δ̃, is sparse in the basis of clock times. Perhaps

considering a reduced clock Hamiltonian �̃�𝑖 𝑗 = ⟨𝜙𝑖 |𝐻𝑐 |𝜙 𝑗 ⟩, with all small elements set

to zero, would have the sparseness conditions required, along with a subspace norm of

∥Δ∥𝜙 ∈ 𝑂 (𝜎−1). Investigating such sparse encodings would make an interesting avenue

for future work.
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CHAPTER 5

MULTIPRODUCT FORMULAS FOR TIME DEPENDENT SIMULATION

One of the key developments of Chapter 4 is the construction of a discrete clock space

which reduces the computation of time dependent Hamiltonians to time independent ones.

This reduction provides a useful way to translate techniques and concepts between the

time dependent and time independent settings. In this chapter, we investigate one of these

connections: a generalization of Multiproduct Formulas (MPFs) for the time dependent

setting based on product formula simulations of the clock space. After arguing that such

"time dependent MPFs" should form good approximations to the time evolution operator

𝑈 for sufficiently smooth 𝐻 (𝑡), we propose an algorithm based on these MPFs. We then

provide a rigorous characterization of error in these formulas, and from this derive a query

complexity in a natural Hamiltonian input model. Numerical demonstrations are used to

validate the effectivess of time dependent MPFs at achieving high-accuracy simulations.

What we find for the properties of the MPF algorithm (and the qubitization algorithm) is

summarized in Table 5.1, where we also display other leading algorithms for time dependent

Hamiltonian simulation. Overall, the MPF algorithm has comparable performance to the

Dyson method, with strengths and weaknesses on both sides. For example, unlike the Dyson

method, the MPF simulation exhibits commutator scaling, meaning that the simulation is

perfect for commuting Hamiltonian terms and no time dependence. It also scales as the

more favorable 𝐿1 norm of the Hamiltonian rather than the maximum value at a given

time, as the Dyson series does. On the other hand, the Dyson series is not concerned

with large derivatives, but only the size of 𝐻. Overall, time dependent MPF simulation

enlarges the collection of available tools for the future practitioner who is looking for the
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Method Query Complexity Auxiliary Qubits CS?
Trotter [136] 𝑂

(
𝐿 (∥Λ∥1)1+𝑜(1)/𝜖𝑜(1)

)
0 Yes

QDrift [16] 𝑂 (∥𝛼∥2
1,1/𝜖) 0 No

Dyson [90, 75] 𝑂
(
∥𝛼∥1,∞𝑇 log(1/𝜖)

)
𝑂

(
log(∥ ¤𝛼∥1,1/𝜖) + log(∥𝛼∥1,∞𝑇/𝜖)

)
No

Qubitization*
𝑂

(
∥𝛼∥rev

∞,1𝑇 + log 1/𝜖
)

+ max
𝑡

∥ ¤𝐻∥𝑇2/𝜖
) 𝑂

(
log

(
𝐿∥𝛼∥rev

∞,1𝑇/𝜖
)

+ log
(
𝐿max

𝑡
∥ ¤𝐻∥𝑇2/𝜖

) ) No

MPF 𝑂
(
𝐿∥Λ∥1 log2(1/𝜖)

)
𝑂

(
log

(
𝐿∥Λ∥1∥ ¤𝛼∥∞,∞𝑇2/𝜖

) )
Yes

Table 5.1 Summary of our results (green) and comparison to existing quantum simulation
methods for time dependent Hamiltonians. We assume that 𝐻 =

∑𝐿
𝑗=1 𝛼 𝑗 (𝑡)𝑈 𝑗 for

Hermitian unitaries𝑈 𝑗 and real-valued 𝛼 𝑗 (𝑡) ∈ 𝐶1( [0, 𝑇]). Λ(𝑡) is a positive real-valued
function dimensions of 𝐻 and quantifies the size of 𝐻 and its derivatives (see
Definition 3). ∥𝛼∥𝑝,𝑞 refers to a nested vector-𝑝 and functional-𝑞 norm for the coefficients
𝛼 = (𝛼 𝑗 )𝐿𝑗=1, and ∥𝛼∥rev

𝑝,𝑞 indicates these are taken in the reverse order. Commutator
scaling (CS) here means the simulation error vanishes in the limit where 𝐻 is time
independent and [𝑈 𝑗 ,𝑈𝑘 ] = 0 for all 𝑗 , 𝑘 ∈ [𝐿]. *Qubitization results are with respect to
a different model wherein a larger clock space is directly simulated.

right algorithm for their problem of interest.

This chapter is the subject of ongoing research, particularly with respect to the proof (or

disproof) of Conjecture 1. An early preprint has been posted [132] which will be updated

as the project reaches completion.

5.1 Introduction and Background

Multiproduct formulas (MPFs) are a generalization of the celebrated product formulas

and span two of the pillars of quantum simulation: product formula and LCU methods. The

aim of the MPF is to approximate the time evolution operator𝑈 as a linear combination of

lower-order Trotter formulas, in such a way that higher order errors are cancelled [28, 25,

89]. They are, fundamentally, nothing more than a Richardson extrapolation of a product
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formula P to Trotter step size 𝑠 → 0. This summation is done to address the primary

deficiency of product formulas: the cost of constructing a high order product formula is

exponentially large. This is not only true of the well-known Suzuki-Trotter formulas, but

any similar construction, due to the need to cancel error terms that grow exponentially in

the number of products considered. In contrast, since the MPF is a sum of product formula

approximations, the number of error terms of a given order does not grow exponentially.

This allows us to approximate the quantum dynamics using polynomially many, rather than

exponentially many, operator exponentials.

The current central result concerning the use of MPFs for time independent simulation

is provided by the following theorem of Low, Kliuchnikov, and Wiebe [89].

Theorem 5.1.1 (Time independent MPFs (Theorem 1 of [89])). Let 𝐻 be a bounded,

time independent Hamiltonian, and let 𝑈2(𝑡) be the 2nd-order Suzuki-Trotter formula for

the time evolution operator 𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡 . Let 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) ∈ R𝑚 and ®𝑘 =

(𝑘1, 𝑘2, . . . , 𝑘𝑚) ∈ Z𝑚+ . There exist choices of 𝑎 and ®𝑘 such that multiproduct formula,

𝑈2,𝑚 (𝑡) :=
𝑚∑︁
𝑗=1
𝑎 𝑗𝑈

𝑘 𝑗

2 (𝑡/𝑘 𝑗 )

is order 2𝑚 and satisfies

max
𝑗
𝑘 𝑗 ∈ 𝑂 (𝑚2), ∥𝑎∥1 ∈ 𝑂 (polylog(𝑚)).

As a caution, we remark that, despite notation, the MPF 𝑈2,𝑚 is not generally unitary

for 𝑚 > 1, though when suitably constructed it will approximate the unitary 𝑈 (hence be

approximately unitary). The details of the proof can be seen in [89], but at a high level,

the MPF 𝑈2,𝑚 is a Richardson extrapolation of 𝑈2 with respect to the Trotter step size
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parameter 1/𝑘 . Such an extrapolation is possible for arbitrary 𝑚 because there exists an

error series [18]

𝑈𝑘
2 (𝑡/𝑘) −𝑈 (𝑡) =

∞∑︁
𝑗=1

𝐸2 𝑗+1
𝑡2 𝑗+1

𝑘2 𝑗 (5.1)

with 𝐸2 𝑗+1 independent of 𝑘 (but not 𝑡 generically). The existence of this series suffices for a

1/𝑘 → 0 Richardson extrapolation [118]. In particular, cancellation occurs for coefficients

𝑎 𝑗 satisfying the following Vandermonde linear system.

©«

1 · · · 1

𝑘1
−2 · · · 𝑘𝑚

−2

...
. . .

...

𝑘1
−2𝑚+2 · · · 𝑘𝑚

−2𝑚+2

ª®®®®®®®®¬

©«

𝑎1

𝑎2
...

𝑎𝑀

ª®®®®®®®®¬
=

©«

1

0
...

0

ª®®®®®®®®¬
(5.2)

Though the matrix is ill-conditioned, this is irrelevant to numerical stability, as the inverse

Vandermonde matrix admits an analytic solution that may be reasoned from the theory

of polynomial interpolation. What matters for our application is the one-norm ∥𝑎∥1 of

the coefficients, which serves as our "condition number" because of how it amplifies small

errors in the base formula𝑈2 [89]. The content of Theorem 5.1.1 is that Trotter steps ®𝑘 may

be chosen such that ∥𝑎∥1 is not too large. For time-ordered𝑈, the analysis of [18] does not

carry over, although reasonable "time dependent" MPFs can be defined heuristically. One

of our motivations in constructing a clock space is to be able to eliminate time ordering

and, in this setting, show these formulas work.

As discussed in [89], specific choices of 𝑘 𝑗 can be found numerically to minimize

∥𝑎∥1, and this may be the best approach in practice. However, for our analytical results

it will be most appropriate to utilize the specific 𝑘 𝑗 chosen in their constructive proof of
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well-conditioned MPFs. Thus, for all results we will take the powers 𝑘 𝑗 as follows.

𝑘 𝑗 =

⌈√
8𝑚
𝜋

����sin
(
𝜋(2 𝑗 − 1)

8𝑚

)����−1
⌉
, 𝑗 = 1, . . . , 𝑚 (5.3)

We will use these same coefficients even in the time dependent MPFs to be introduced in

the subsequent section. For error analysis, it will be useful to have simple, concrete bounds

on 𝑘 𝑗 . We can achieve this by noting that sin(𝑥) ≤ 𝑥 and sin(𝑥) ≥ 4𝑥/5 for 𝑥 ∈ [0, 1].

This gives the lower bound

𝑘 𝑗 ≥
⌈

83/2𝑚2

𝜋2(2 𝑗 − 1)

⌉
≥

⌈
83/2𝑚2

𝜋2(2𝑚 − 1)

⌉
>

√
128𝑚
𝜋2 > 𝑚 (5.4)

and the upper bound

𝑘 𝑗 ≤
⌈

5 × 8
√

8𝑚2

4(2 𝑗 − 1)𝜋2

⌉
≤

⌈
5 × 8

√
8𝑚2

4𝜋2

⌉
< 3𝑚2. (5.5)

Note the consistency of (5.5) with the big-𝑂 scaling of Theorem 5.1.1.

5.2 Definition and Effectiveness

Multiproduct formulas have already been considered extensively in the Hamiltonian

simulation community [25, 45, 140], however, they have yet to be seriously considered for

use in time dependent Hamiltonian simulations. Because 𝑈 generally has time-ordering,

the techniques used in [18] involving Baker-Campbell-Hausdorff-type expansions do not

carry over directly. An approach based instead on the Magnus expansion might be expected

to work in its place, but no subset of terms in the expansion represents the exact evolution

separated from error terms. Without this generalization, MPFs cannot be applied to

interaction picture algorithms as well as simulations of physical systems that have intrinsic

time dependence.

It is rather easy to propose a reasonable generalization of the MPFs of Theorem 5.1.1

that would be expected to work well in the time dependent case. Simply replace the 𝑘 𝑗 th
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power with a sequence of 𝑘 𝑗 unitaries at each time slice. We will present this definition

shortly. First, as a preliminary step, we want to clearly define a notion of approximation

order of two-parameter operator functions (such as the propagator 𝑈 (𝑡, 𝑡0)) that will suit

our purposes.

Definition 1. For finite-dimensional H , let 𝐿 : [0, 𝑇]2 → 𝐿 (H). We say that 𝐿𝑝 :

[0, 𝑇]2 → 𝐿 (H) is a pth-order approximation to 𝐿 if, for all 𝑡 ∈ [0, 𝑇),

∥𝐿 (𝑡 + 𝜏, 𝑡) − 𝐿𝑝 (𝑡 + 𝜏, 𝑡)∥ ∈ 𝑂 (𝜏𝑝+1)

where 𝜏 is taken asymptotically to 0.

Observe that this aligns with the regular notion of 𝑝th order formulas when considered

as a function of a single variable 𝜏 and fixed 𝑡. With 𝑝th order approximants defined, we

now propose a generalization of MPFs for two-parameter operators such as the general

propagator𝑈.

Definition 2 (Time dependent Multiproduct Formulas). For finite dimensional H and

𝐿 : [0, 𝑇]2 → 𝐿 (H), let 𝐿𝑝 : [0, 𝑇]2 → 𝐿 (H) be a 𝑝th-order formula for 𝐿. Given

𝑚 ∈ Z+, ®𝑘 ∈ Z𝑚+ , and 𝑎 ∈ R𝑚, define the time dependent Multiproduct Formula 𝐿𝑚,𝑝 :

[0, 𝑇]2 → 𝐿 (H) to be

𝐿𝑚,𝑝 (𝑡, 𝑡0) :=
𝑚∑︁
𝑗=1
𝑎 𝑗𝐿

(𝑘 𝑗 )
𝑝 (𝑡, 𝑡0)

where

𝐿
(𝑘)
𝑝 (𝑡, 𝑡0) :=

𝑘−1∏
ℓ=0

𝐿𝑝 (𝑡ℓ+1, 𝑡ℓ)

and 𝑡ℓ = 𝑡0 + (𝑡 − 𝑡0)ℓ/𝑘 .
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The choice to take the 𝑡ℓ as equally spaced is not entirely coincidental, for the same

reason that, in the time independent setting, we take𝑈𝑘
2 (𝑡/𝑘) instead of, say,

𝑘∏
𝑗=1
𝑈2(𝑠 𝑗 𝑡) (5.6)

where 𝑠 = (𝑠1, . . . , 𝑠𝑘 ) is a probability vector. Taking a simple power of 𝑘 makes reasoning

with the BCH expansion possible.

While these definitions are likely applicable in more general contexts (such as classical

time dependent symplectic dynamics), our interest in simulation means we will consider

𝐿 = 𝑈 to be a time evolution operator, satisfying all the corresponding properties. More-

over, we will assume 𝐻 is in the so-called linear combination of Hamiltonians (LCH)

form

𝐻 =

𝐿∑︁
𝑖=1

𝐻𝑖 (𝑡) (5.7)

which is suitable for product formula simulations. Later we will make the assumption

that the exponentials of each 𝐻 𝑗 (𝑡) can be efficiently computed, a standard assumption.

Because we utilize the well-conditioning results of [89], we want the base formula to be

2nd order and symmetric. Thus, we will take 𝐿𝑝 = 𝑈2 to being the 2nd order symmetric

midpoint formula

𝑈2(𝑡 + 𝜏, 𝑡) :=
1∏
𝑖=𝐿

exp
{
−𝑖𝐻𝑖

(
𝑡 + 𝜏

2

)
𝜏

} 𝐿∏
𝑖=1

exp
{
−𝑖𝐻𝑖

(
𝑡 + 𝜏

2

)
𝜏

}
, (5.8)

where 𝐻 is the Hamiltonian generating𝑈. That𝑈2 is second-order can be seen from Taylor

expanding the Dyson series of 𝑈 about 𝜏 = 0 (𝐻 must be at least twice differentiable).

Moreover, 𝑈2 is time-reversal symmetric in the same sense as 𝑈: 𝑈2(𝑡, 𝑡0) = 𝑈2(𝑡0, 𝑡)†.

This gives the nice property that the error series for𝑈 (𝑡 + 𝜏, 𝑡) −𝑈 (𝑘) (𝑡 + 𝜏, 𝑡) has only even
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terms, such that higher order formulas can be reached with approximately half the number

of summands. Thus, from now on we will be interested in the MPF

𝑈2,𝑚 (𝑡, 0) =
𝑚∑︁
𝑗=1
𝑎 𝑗𝑈

(𝑘 𝑗 )
2 (𝑡, 0) (5.9)

for the rest of this chapter.

We finally turn to the question of whether the time dependent MPFs of Definition 2

may be constructed for improved approximants. At the beginning of this section, we

mentioned the difficulty presented by time-ordering in adopting the techniques from [18].

The reader of the previous chapter may recognize that clock spaces may be used to remove

time ordering, circumventing the issue. However, when the clock variable 𝑡 is continuous,

the shift term −𝐸 in the clock Hamiltonian is an unbounded operator, complicating a

BCH-type analysis. We conjecture, and provide a heuristic argument, that time dependent

MPFs indeed boost the approximation order for sufficiently smooth Hamiltonians.

Conjecture 1. Let 𝐻 =
∑𝐿
𝑖=1 𝐻𝑖 (𝑡), and let

𝑈2(𝑡 + 𝜏, 𝑡) =
1∏
𝑖=𝐿

𝑒−𝑖𝐻𝑖 (𝑡+𝜏/2)𝜏
𝐿∏
𝑖=1

𝑒−𝑖𝐻𝑖 (𝑡+𝜏/2)𝜏

be the symmetric, 2nd order Trotterized midpoint formula. Suppose each 𝐻𝑖 is 2𝑚 + 1

time differentiable. Then the time dependent multiproduct formula𝑈2,𝑚 (𝑡 + 𝜏, 𝑡) with base

formula𝑈2 approximates𝑈 (𝑡 + 𝜏, 𝑡) to order 2𝑚 in 𝑡.

We now discuss a potential path to proof of this conjecture. Without loss of generality,

we take 𝑡 = 0. Let 𝑘 ∈ Z+, and consider a sequence of discrete clock constructions on

interval [0, 𝜏], with parameters (𝑁𝑝 (ℓ), 𝑁𝑞 (ℓ), 𝜎(ℓ)), such that 𝑘 always divides 𝑁𝑐 =

𝑁𝑝𝑁𝑞, and such that the limit reproduces the dynamics of 𝐻 (𝑡) on the main register, as per
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Theorem 4.3.6. Consider one of the elements of this sequence. Using the form of 𝐻 given

in the conjecture statement, we may write

𝐶 (𝐻) =
𝐿∑︁
𝑖=1

𝐶 (𝐻𝑖). (5.10)

Thus, the clock Hamiltonian 𝐻𝑐 admits the following 2nd order symmetric Trotterization.

𝑉2(𝜏) = 𝑒−𝑖Δ𝜏/2

(
1∏
𝑖=𝐿

𝑒−𝑖𝐶 (𝐻𝑖)𝜏/2
𝐿∏
𝑖=1

𝑒−𝑖𝐶 (𝐻𝑖)𝜏/2

)
𝑒−𝑖Δ𝜏/2 (5.11)

From [18], we have that

𝑉 (𝜏) −𝑉 𝑘2 (𝜏/𝑘) =
𝑚−1∑︁
𝑗=1

E2 𝑗+1(𝜏)
𝜏2 𝑗+1

𝑘2 𝑗 + E(𝜏, 𝑘) (5.12)

where E ∈ 𝑂 (𝜏2𝑚+1) is analytic in 𝜏. Thus the standard, well-conditioned multiproduct

formula 𝑉2,𝑚 of Theorem 5.1.1 with base formula 𝑉2 satisfies

𝑉 (𝜏) −𝑉2,𝑚 (𝜏) =
𝑚∑︁
𝑗=1
𝑎 𝑗E(𝜏, 𝑘 𝑗 ). (5.13)

We now wish to look at the action on the main register. Applying equation (5.13) to the

state |𝜓⟩ |𝜙0⟩ of the full register, where |𝜓⟩ is arbitary, and then taking the trace Tr𝑐 over

the clock register, one obtains

Tr𝑐 (𝑉 (𝜏) |𝜓⟩ |𝜙0⟩) − Tr𝑐 (𝑉2,𝑚 (𝜏) |𝜓⟩ |𝜙0⟩) =
𝑚∑︁
𝑗=1
𝑎 𝑗𝐸 (𝜏, 𝑘 𝑗 ) ( |𝜓⟩) (5.14)

where 𝐸 (𝜏, 𝑘) is a linear map on the main register defined by

𝐸 (𝜏, 𝑘) ( |𝜓⟩) := Tr𝑐 (E(𝜏, 𝑘) |𝜓⟩ |𝜙0⟩). (5.15)

The above holds for every clock space in the sequence defined by (𝑁𝑝 (ℓ), 𝑁𝑞 (ℓ), 𝜎(ℓ)).

Taking the limit as ℓ → ∞ of equation (5.14) we may pass the limits through the finite
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sums and scalar multiplications

lim
ℓ→∞

Tr𝑐 (𝑉 (𝜏) |𝜓⟩ |𝜙0⟩) − lim
ℓ→∞

Tr𝑐 (𝑉2,𝑚 (𝜏) |𝜓⟩ |𝜙0⟩) =
𝑚∑︁
𝑗=1
𝑎 𝑗 lim

ℓ→∞
𝐸 (𝜏, 𝑘 𝑗 ) |𝜓⟩ (5.16)

provided that these limits exist. Indeed, by Theorem 4.3.6,

Tr𝑐 (𝑉 (𝜏) |𝜓⟩ |𝜙0⟩) = 𝑈 (𝜏, 0) |𝜓⟩ . (5.17)

As for the MPF, taking 𝑘 steps of the Trotterization, we should find that

lim
ℓ→∞

Tr𝑐 (𝑉2(𝜏/𝑘)𝑘𝜓 |𝜙0⟩𝑐) = 𝑈
(𝑘)
2 (𝜏, 0) |𝜓⟩ (5.18)

though this must be shown. This shouldn’t be too hard, as the idea is clear: perform a

sequene of clock shifts followed by 2nd order Trotter on the main register. By passing the

limit through the multiproduct sum,

lim
ℓ→∞

Tr𝑐 (𝑉2,𝑚 (𝜏, 0) |𝜓⟩ |𝜙0⟩𝑐) = 𝑈2,𝑚 (𝜏, 0) |𝜓⟩ . (5.19)

It remains to show that the limit limℓ 𝐸 (𝜏, 𝑘) exists, and moreover is in𝑂 (𝜏2𝑚+1). This

is where the main challenge lies. To show that the limit of a sequence with terms of order

𝑂 (𝜏2𝑚+1) is also 𝑂 (𝜏2𝑚+1), we can show that the 2𝑚 + 1 derivative is bounded at 𝜏 = 0.

Unfortunately, our current clock constructions have the width 𝜎 of the clock state shrinking

to infinity, which means the derivatives grow as well. If a different clock construction can

be provided where the clock state can have width 𝜎 ∈ 𝑂 (1), a bound can be placed and

thus the limit will be 𝑂 (𝜏2𝑚+1).

Current ongoing work is being undertaken to fill in the gaps of the previous argument.

However, the numerics of Section 5.7 strongly suggest that the time dependent MPFs

indeed work as expected. Moreover, the form of the time-dependent MPF of Definition 2
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can be obtained by a naive Trotterization of the continuous clock space, which is very

suggestive that, beyond formal issues, the approach is reasonable. Thus, we proceed with

the assumption Conjecture 1 is true.

5.3 Time Dependent Multiproduct Simulation

Having argued that good time dependent MPFs exist, we now propose an algorithm

for Hamiltonian simulation using these formulas. We will provide some accompanying

discussion to explain our choices, and at the end we will more directly state the approach.

In order to present a concrete computational model for our Hamiltonian, we further

specify that our LCH Hamiltonian 𝐻 (𝑡) is of the form

𝐻 (𝑡) =
𝐿∑︁
𝑖=1

𝛼𝑖 (𝑡)𝐻𝑖 (5.20)

where each 𝛼𝑖 (𝑡) ∈ R is assumed 2𝑚 + 1 differentiable for an 𝑚-term MPF. Without loss

of generality we take ∥𝐻𝑖∥ ≤ 1.

From the onset, there are a couple of choices to make. The MPFs, in principle, could

approximate the entire interval [0, 𝑇] provided that the Trotter steps 𝑘𝑖 are sufficiently

large. However, this has several disadvantages. First, there is no flexibility to treat some

subintervals of [0, 𝑇] as more difficult than others and allocate resources appropriately.

Second, the well-conditioned scheme of [89] would have to be abandoned or modified to

accommodate larger ®𝑘 . Instead, we divide [0, 𝑇] into a mesh of 𝑟 subintervals, not neces-

sarily uniform, but rather constructed to account for more difficult parts of the simulation.

We provide a greedy algorithm for constructing such a mesh in Section 5.9. The algorithm

requires a computable Λ2𝑚+1-bound to work (see Definition 3), however, a practitioner

might prefer a more heuristic approach to constructing the time mesh. For the moment, we

will simply say that, given 𝑡𝑖, the next time point 𝑡𝑖+1 is incremented roughly as 1/Λ2𝑚+1(𝑡)
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for 𝑡 in a neighborhood of 𝑡𝑖, where Λ2𝑚+1 is a positive real-valued function of 𝐻 and its

derivatives that grows for larger or faster fluctuating 𝐻.

Once the mesh points 𝑡0, 𝑡1, . . . , 𝑡𝑟 are determined, a time dependent MPF is performed

over each subinterval [𝑡𝑖, 𝑡𝑖+1] in sequence. We assume the MPF is implemented using the

LCU technique. The base midpoint formula 𝑈2 must be implemented by some scheme

which depends on the structure of 𝐻 (𝑡), though the approximating unitary 𝑊2 should be

at least 2nd-order and preserve the time-reversal symmetry of 𝑈2 (and 𝑈). It is known

that product formulas exhibit commutator scaling, meaning that, in the limit where all 𝐻 𝑗

commute pairwise and all 𝛼 𝑗 are constant functions, the simulation error goes to zero.

Hence, the MPF will also inherit this desirable property. It is for precisely this reason that,

in Table 5.1, we claim our MPFs exhibit commutator scaling.

Let us now supply our procedure for the multiproduct simulation. Given fundamental

parameters, [0, 𝑇], 𝜖 , and a description of 𝐻 (𝑡):

1. Compute a Λ2𝑚+1 bound (Definition 3) for some 𝑚 larger than the expected number

of MPF terms. This is more a less a bound on the generalized "size" of 𝐻 (𝑡).

2. Construct a time mesh of 𝑟 steps using the algorithm of Section 5.9.

3. Perform a sequence of MPFs over each time slice, with 2nd order base formula 𝑊2

approximating the midpoint formula.

Not much more about the parameter choices, such as 𝑚 or 𝑟 , can be said without an

error analysis. This will be supplied in the following section. We then return to the question

of algorithmic cost via a query model.
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5.4 Error Analysis

In this section, we analyse the errors arising between the exact unitary𝑈 and the MPF

approximation �̃� given by

�̃� (𝑇, 0) =
𝑟∏
𝑖=1
𝑈2,𝑚 (𝑡𝑖, 𝑡𝑖−1). (5.21)

This analysis will ignore hardware imperfections and decoherence, assume that 𝑈2 is

implemented perfectly, and assume exact coefficients 𝑎 𝑗 . In the query complexity analysis

of Section 5.6 we will consider additional algorithmic errors arising from a more precise

specification of the Hamiltonian input model.

We introduce a useful definition to quantify errors succinctly. It is well understood that

MPFs, like regular product formulas, have smoothness requirements to ensure convergence.

To quantify errors and costs of MPFs, we provide a metric which captures the "size" of 𝐻

and its derivatives at each point in time, in order to characterize the difficulty of simulation.

Definition 3. Let𝐻 (𝑡) = ∑𝐿
𝑖=1 𝛼𝑖 (𝑡)𝐻𝑖 be a time dependent, finite-dimensional Hamiltonian

with 𝐻𝑖 Hermitian and 𝛼𝑖 (𝑡) ∈ R having 𝑛 ∈ N ∪ {∞} continuous derivatives. For each 𝑖

define a Λ𝑖,𝑛-bound ("Lambda i n bound") as any continuous function Λ𝑖,𝑛 : [0, 𝑇] → R+

satisfying the following bounds with respect to 𝐻 and its derivatives

Λ𝑖,𝑛 (𝑡) ≥ sup
𝑗∈[𝑛]

𝑗+1
√︃
∥𝛼( 𝑗)

𝑖
(𝑡)∥ ∀𝑡 ∈ [0, 𝑇]

where 𝑓 (𝑛) represents an 𝑛th derivative of 𝑓 , and [𝑛] := { 𝑗 ∈ N | 𝑗 ≤ 𝑛}. Assuming such

bounds exist for all 𝑖 = 1, . . . , 𝐿, we say that 𝐻 (𝑡) is Λ𝑛-bounded. We further say that 𝐻 (𝑡)

is Λ𝑛-boundable if it admits some Λ𝑛-bound. For convenience, we define Λ𝑖 ≡ Λ𝑖,∞. We

also define a Λ𝑛 bound as any continuous on [0, 𝑇] satisfying

Λ𝑛 (𝑡) ≥ max
𝑖∈[𝐿]

Λ𝑖,𝑛 (𝑡).
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For near-constant𝛼𝑖 (𝑡),Λ𝑖,𝑛 is simply an upper bound on |𝛼𝑖 |, while for rapid oscillations

the derivative terms will dominate. Observe that for finite 𝑛, our assumptions imply that

Λ𝑖,𝑛 (𝑡) exists (𝐻 is Λ𝑖,𝑛-boundable), since |𝛼( 𝑗)
𝑖

| is continuous on a compact interval and

hence a bounded function. Also in the finite case, the supremum may be replaced with

a simple max, and Λ𝑖,𝑛 (𝑡) may be taken as equal to the right hand side because it is the

maximum of a finite set of continuous functions, which is continuous. For this "minimal

choice," Λ𝑖,𝑛 (𝑡) is a nondecreasing sequence in 𝑛. For each 𝑛, there also exists a Λ𝑖,𝑛 that is

constant in 𝑡. AllowingΛ𝑖,𝑛 to vary in time, however, takes into consideration the possibility

that the expense of simulating 𝐻 will vary with time. We note that Λ𝑖,𝑛-bounds are additive

in the sense that, for 𝐻 (𝑡) and𝐺 (𝑡) admitting Λ𝐻
𝑖,𝑛

and Λ𝐺
𝑖,𝑛

-bounds, respectively, Λ𝐻
𝑖,𝑛
+Λ𝐺

𝑖,𝑛

is a Λ𝑖,𝑛-bound on 𝐻 + 𝐺.

In contrast to finite 𝑛, the existence of a Λ𝑖,∞-bound is not guaranteed, and amounts

to the assumption that the derivatives of 𝐻 grow at most exponentially for asymptotically

large 𝑗 and fixed 𝑡. There are smooth, even analytic functions which do not satisfy this,

many of which are physically interesting. A simple example is a Gaussian pulse

𝛼(𝑡) = 𝑒−𝑡2 (5.22)

whose derivatives, generating the Hermite polynomials, grow factorially with 𝑛 at 𝑡 = 0.

Other interesting cases, such as harmonic oscillations or exponential growth and decay,

do admit a Λ-bound. Despite these restrictions, we adopt this approach for simplicity

and in order to facilitate comparison with prior work on general-order Suzuki-Trotter

formulas [136]. Admittedly, a modification of Definition 3 to be an upper bound on

max
𝑗
𝑗−1 𝑗+1

√︃
∥𝛼( 𝑗)

𝑖
(𝑡)∥ (5.23)

139



would expand the class of functions admitting Λ-bounds to analytic functions (though not

generic smooth functions).

We now begin the error analysis of (5.21) in earnest. From a triangle inequality the

error can be bounded as the error in each step.

∥𝑈 (𝑇, 0) − �̃� (𝑇, 0)∥ ≤
𝑟∑︁
𝑖=1

∥𝑈 (𝑡𝑖, 𝑡𝑖−1) −𝑈2,𝑚 (𝑡𝑖, 𝑡𝑖−1)∥ (5.24)

Therefore, to ensure an error at most 𝜖 , it suffices that each subinterval has error at most

𝜖/𝑟 . We thus focus a single subinterval. An upper bound on this error is supplied by the

following theorem, which the main technical result of this section.

Theorem 5.4.1. Let 𝐻 : [𝑡0, 𝑡1] → Herm(H) be a time dependent Hamiltonian on finite-

dimensional H with 2𝑚 + 1 continuous derivatives on [𝑡0, 𝑡1] and Λ2𝑚+1-bound. Suppose

further that

𝑒𝐿 max
𝜏∈[𝑡0,𝑡1]

Λ2𝑚+1(𝜏) (𝑡1 − 𝑡0) < 1.

Then for any 𝑚 ∈ Z+ there exists ®𝑘 ∈ Z𝑚+ and 𝑎 ∈ R𝑚 such that

∥𝑈 (𝑡1, 𝑡0) −𝑈2,𝑚 (𝑡1, 𝑡0)∥ <
∥𝑎∥1√
𝜋𝑚

(
5𝐿 max

𝜏∈[𝑡0,𝑡1]
Λ2𝑚+1(𝜏) (𝑡1 − 𝑡0)

)2𝑚+1

and ∥𝑎∥1 ∈ 𝑂 (log(𝑚)).

Observe that convergence of the above error bound to zero as𝑚 → ∞ is conditioned on

sufficiently small 𝑡1 − 𝑡0. This is potentially unsurprising, as the Suzuki-Trotter formulas

also do not provide an unconditionally converging sequence of approximations to the time

evolution operator. Note as well the parallel roles between 𝑚 and the Suzuki-Trotter order

𝑘 in reducing the error. In our case, however, we shall see that the simulation cost increases
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only polynomially in 𝑚, whereas for product formulas the cost is necessarily exponential

in 𝑘 .

The term ∥𝑎∥1/
√
𝜋𝑚 is 𝑜(1) for large𝑚 and can be more or less ignored. Unfortunately,

the Λ2𝑚+1 scales as the worst 𝛼𝑖 times the number of terms 𝐿, which seems too cynical.

However, improving on this may greatly complicate the proof of the error bound. Theo-

rem 5.4.1 will be the important result that informs the algorithmic choices and complexity

analysis of subsequent sections.

Having characterized the error on a single subinterval of [0, 𝑇], the full error over 𝑟

subintervals may be found simply using (5.24).

We prove Theorem 5.4.1 using a similar strategy to that used to provide error estimates

for the Suzuki-Trotter formulas [15, 136, 24]. As 𝐻 is continuously differentiable at least

2𝑚+1 times,𝑈2,𝑚 is a valid extrapolant under our , and cancels the first𝑚 terms in the error

series. We can thus express the difference 𝑈2,𝑚 − 𝑈 using the integral Taylor remainder

formulas

𝑈2,𝑚 (𝑡, 𝑡0) −𝑈 (𝑡, 𝑡0) = 𝑅2𝑚 − R2𝑚 (5.25)

with

R2𝑚 :=
1

2𝑚!

∫ 𝑡

𝑡0

(𝑡 − 𝜏)2𝑚𝑈 (2𝑚+1) (𝜏, 𝑡0)𝑑𝜏 (5.26)

𝑅2𝑚 :=
1

2𝑚!

∫ 𝑡

𝑡0

(𝑡 − 𝜏)2𝑚𝑈
(2𝑚+1)
2,𝑚 (𝜏, 𝑡0)𝑑𝜏, (5.27)

where𝑈 (𝑛) refers to derivatives in the first argument. By the triangle inequality,

∥𝑈2,𝑚 (𝑡, 𝑡0) −𝑈 (𝑡, 𝑡0)∥ ≤ ∥R2𝑚 ∥ + ∥𝑅2𝑚 ∥ (5.28)

and we upper bound each remainder in separate lemmas.

The easier bound is R2𝑚, so we begin with the corresponding lemma.
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Lemma 5.4.2. The remainder term R2𝑚 in equation (5.27) satisfies

∥R2𝑚 ∥ <
1

2
√
𝜋𝑚

(
2𝐿 max

𝜏∈[𝑡0,𝑡]
Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)

)2𝑚+1
.

Proof. Recall that 𝑈, as the exact propagator, satisfies the Schrödinger equation (2.15).

Higher derivatives can easily be found through repeated application of the product rule.

The result will be a polynomial in the derivatives of 𝐻 times 𝑈 itself. Under the spectral

norm, using the triangle and submultiplicative properties, the ordering of terms doesn’t

matter, and therefore equivalent to the expression one gets taking derivatives of a scalar

exponential. Noting that ∥𝑈∥ = 1, the resulting polynomial is the complete exponential

Bell polynomial from Faà di Bruno’s formula (see Section 2.8). Letting 𝑛 = 2𝑚 + 1, we

have

∥𝜕𝑛𝑡 𝑈 (𝑡, 𝑡0)∥ ≤ 𝑌𝑛
(
∥𝐻 (𝑡)∥, ∥ ¤𝐻 (𝑡)∥, . . . , ∥𝐻 (𝑛−1) (𝑡)∥

)
. (5.29)

From the definition of Λ𝑖,𝑛, we have

∥𝐻 ( 𝑗) (𝑡)∥ ≤
𝐿∑︁
𝑖=1

|𝛼( 𝑗)
𝑖

(𝑡) |

≤
∑︁
𝑖

Λ𝑖,𝑛 (𝑡) 𝑗+1

≤ (𝐿Λ𝑛 (𝑡)) 𝑗+1

(5.30)

and since the Bell polynomials 𝑌𝑛 are monotonic in each argument,

𝑌𝑛

(
∥𝐻∥, ∥ ¤𝐻∥, . . . , ∥𝐻 (𝑛−1) ∥

)
≤ 𝑌𝑛 (𝐿Λ𝑛 (𝑡), (𝐿Λ𝑛 (𝑡))2, . . . , (𝐿Λ𝑛 (𝑡))𝑛)

= (𝐿Λ𝑛 (𝑡))𝑛𝑏𝑛
(5.31)

where 𝑏𝑛 are the Bell numbers (Section 2.8). Thus,

∥𝜕𝑛𝑡 𝑈 (𝑡, 𝑡0)∥ ≤ (𝐿Λ𝑛 (𝑡))𝑛𝑏𝑛. (5.32)
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Finally, returning to the bound on R2𝑚, we have from the integral triangle inequality that

∥R2𝑚 ∥ ≤ 1
(2𝑚)!

∫ 𝑡

𝑡0

(𝑡 − 𝜏)2𝑚 ∥𝜕2𝑚+1
𝜏 𝑈 (𝜏, 𝑡0)∥𝑑𝜏

≤ 1
(2𝑚)!

∫ 𝑡

𝑡0

(𝑡 − 𝜏)2𝑚 (𝐿Λ2𝑚+1(𝜏))2𝑚+1𝑏2𝑚+1𝑑𝜏

(5.33)

where we made use of equation (5.32). This, in turn, can be bounded by maximizing Λ2𝑚+1

over [𝑡0, 𝑡].

∥R2𝑚 ∥ ≤ 𝑏2𝑚+1

(2𝑚)! (𝐿 max
𝜏∈[𝑡0,𝑡]

Λ2𝑚+1(𝜏))2𝑚+1
∫ 𝑡

𝑡0

𝑑𝜏(𝑡 − 𝜏)2𝑚

≤ 𝑏2𝑚+1

(2𝑚 + 1)!

(
𝐿 max
𝜏∈[𝑡0,𝑡]

Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)
)2𝑚+1 (5.34)

Finally, we upper bound the prefactor using a Stirling bound and bounds from [13] on the

bell numbers. For all 𝑚 ∈ Z+,

𝑏2𝑚+1

(2𝑚 + 1)! <

(
0.792(2𝑚+1)

log(2𝑚+2)

)2𝑚+1

√︁
2𝜋(2𝑚 + 1)

(
2𝑚+1
𝑒

)2𝑚+1

=
1√︁

2𝜋(2𝑚 + 1)

(
.792𝑒

log(2𝑚 + 2)

)2𝑚+1
.

(5.35)

Plugging this into equation (5.34),

∥R2𝑚 ∥ <
1√︁

2𝜋(2𝑚 + 1)

(
0.792𝑒

log(2𝑚 + 2) 𝐿 max
𝜏∈[𝑡0,𝑡]

Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)
)2𝑚+1

<
1

2
√
𝜋𝑚

(
2𝐿 max

𝜏∈[𝑡0,𝑡]
Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)

)2𝑚+1
.

(5.36)

The last line is the result of the lemma. □

We now state the bound on the Taylor 𝑅2𝑚 for the time dependent MPF.
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Lemma 5.4.3. In the notation above, suppose that

𝑒𝐿 max
𝜏∈[𝑡0,𝑡1]

Λ2𝑚+1(𝜏) (𝑡1 − 𝑡0) < 1.

Then the remainder term 𝑅2𝑚 in equation (5.27) satisfies

∥𝑅2𝑚 ∥ <
∥𝑎∥1

2
√
𝜋𝑚

(
5𝐿 max

𝜏∈[𝑡0,𝑡]
Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)

)2𝑚+1
.

The proof is more technical than the previous bound, and is given at the end of this

section. First, we quickly prove Theorem 5.4.1 assuming the truth of the above Taylor

remainder lemmas.

Proof of Theorem 5.4.1. First, we note that ∥𝑎∥1 ≥ 1, since 𝑎 necessarily satisfies
∑
𝑗 𝑎 𝑗 =

1 from the Vandermonde constraints (5.2). From equation (5.28), the error ∥𝑈 (𝑡, 𝑡0) −

𝑈2,𝑚 (𝑡, 𝑡0)∥ is bounded by the sum of the remainder upper bounds derived in Lemmas 5.4.3

and 5.4.2. Comparing the two, we see that 𝑅2𝑚 dominates R2𝑚 for all 𝑚 ≥ 1. We thus take

twice the larger as an upper bound

∥𝑈 (𝑡, 𝑡0) −𝑈2,𝑚 (𝑡, 𝑡0)∥ < 2∥𝑅2𝑚 ∥

<
∥𝑎∥1√
𝜋𝑚

(
5𝐿 max

𝜏∈[𝑡0,𝑡]
Λ2𝑚+1(𝜏) (𝑡 − 𝑡0)

)2𝑚+1
.

(5.37)

This completes the proof. □

To prove Lemma 5.4.3, we will first need a technical lemma that bounds the size of

ordinary exponentials of time dependent matrices.

Lemma 5.4.4. Let 𝐴(𝑡) be an anti-Hermitian valued function of 𝑡 ∈ R with 𝑛 bounded

derivatives. Then

∥𝑑𝑛𝑡 𝑒𝐴(𝑡) ∥ ≤ 𝑌𝑛
(
∥𝑑𝑡𝐴(𝑡)∥, ∥𝑑2

𝑡 𝐴(𝑡)∥, . . . , ∥𝑑𝑛𝑡 𝐴(𝑡)∥
)
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where 𝑌𝑛 is the complete exponential Bell polynomial.

In the scalar case, Faà di Bruno’s bound is an exact expression (see Section 2.8), so the

content of our result is that a corresponding bound holds even in the non-scalar case. Th

exponential disappears because 𝑒𝐴(𝑡) is unitary.

Proof of Lemma 5.4.4. From the Trotter product theorem, we have

𝜕𝑛𝑡 exp(𝐴(𝑡)) = 𝜕𝑛𝑡 lim
𝑟→∞

(exp(𝐴(𝑡)/𝑟))𝑟 . (5.38)

Using the fact that the series converges uniformly, we may interchange the order of differ-

entiation and the limit. This leads to

∥𝜕𝑛𝑡 exp(𝐴(𝑡))∥ ≤ lim
𝑟→∞

∑︁
𝑆

(
𝑛

𝑠1, . . . , 𝑠𝑟

) 𝑟∏
𝑞=1

𝜕𝑠𝑞𝑡 exp(𝐴(𝑡)/𝑟)
 . (5.39)

Here the sum over 𝑆 is constrained such that 𝑠 𝑗 ≥ 0 and 𝑠1 + · · · + 𝑠𝑟 = 𝑛. Then using

Taylor’s theorem we have𝜕𝑠𝑞𝑡 exp(𝐴(𝑡)/𝑟)
 ≤ ∥𝐴(𝑠𝑞) (𝑡)∥

𝑟
+𝑂 (1/𝑟2). (5.40)

for 𝑠𝑞 > 0, where the 𝑂 (1/𝑟2) terms will vanish as 𝑟 → ∞. The 𝑠𝑞 = 0 case has upper

bound 1 by unitarity. Hence, put together,

∥𝜕𝑛𝑡 exp(𝐴(𝑡))∥ ≤ lim
𝑟→∞

∑︁
𝑆

(
𝑛

𝑠1, . . . , 𝑠𝑟

) 𝑟∏
𝑞=1

(
∥𝐴(𝑠𝑞) (𝑡)∥(1 − 𝛿𝑠𝑞 ,0)

𝑟
+ 𝛿𝑠𝑞 ,0

)
. (5.41)

Now let us define a scalar function 𝑎(𝑥) defined for 𝑥 in a neighborhood of 𝑡 such that,

for any 𝑘 such that 0 ≤ 𝑘 ≤ 𝑛,

𝑎 (𝑘) (𝑡) = ∥𝐴(𝑘) (𝑡)∥(1 − 𝛿𝑘,0). (5.42)
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for a particular 𝑥 = 𝑡. Such a function can be seen to exist by considering the 𝑛th degree

Taylor polynomial. We may apply the standard Faà di Bruno formula (2.46) to 𝑎, so that

𝜕𝑛𝑥 𝑒
𝑎(𝑥)

����
𝑥=𝑡

= 𝑒𝑎(𝑡)𝑌𝑛 (∥𝐴(1) (𝑡)∥, . . . , ∥𝐴(𝑛) (𝑡)∥) = 𝑌𝑛 (∥𝐴(1) (𝑡)∥, . . . , ∥𝐴(𝑛) (𝑡)∥). (5.43)

On the other hand we can split 𝑎(𝑡) into 𝑟 steps and compute the 𝑛th derivative, just as for

the Trotter product theorem.

𝜕𝑛𝑥 𝑒
𝑎(𝑥)

����
𝑥=𝑡

= lim
𝑟→∞

∑︁
𝑆

(
𝑛

𝑠1, . . . , 𝑠𝑟

) 𝑟∏
𝑞=1

(
∥𝐴(𝑠𝑞) (Δ𝑡)∥(1 − 𝛿𝑠𝑞 ,0)

𝑟
+ 𝛿𝑠𝑞 ,0

)
(5.44)

By comparing expressions (5.41) and (5.44), we see that

∥𝜕𝑛𝑡 exp 𝐴(𝑡)∥ ≤ 𝜕𝑛𝑥 𝑒
𝑎(𝑥)

����
𝑥=𝑡

(5.45)

and applying (5.43), we reach our desired bound Faà di Bruno bound.

∥𝜕𝑛𝑡 exp(𝐴(𝑡))∥ ≤ 𝑌𝑛 (∥𝐴(1) (𝑡)∥, . . . , ∥𝐴(𝑛) (𝑡)∥) (5.46)

We evaluate the derivatives of 𝐴(𝑡), and express them in terms of the derivatives of the

Hamiltonian, 𝐻 ( 𝑗) (for simplicity, we leave off the evaluation point. The derivative is with

respect to the Hamiltonian’s single argument). The result is

𝜕
𝑗
𝑡 𝐴(𝑡) =

−𝑖
𝑘

[(
𝑞 − 1/2
𝑘

) 𝑗
(𝑡 − 𝑡0)𝐻 ( 𝑗) + 𝑗

(
𝑞 − 1/2
𝑘

) 𝑗−1
𝐻 ( 𝑗−1)

]
(5.47)

Employing the Λ𝑛-bound from Definition 3, we have that

∥𝜕 𝑗𝑡 𝐴(𝑡)∥ ≤ 1
𝑘

[(
𝑞 − 1/2
𝑘

) 𝑗
(𝑡 − 𝑡0)Λ 𝑗+1

𝑛,𝑞 + 𝑗
(
𝑞 − 1/2
𝑘

) 𝑗−1
Λ𝑛,𝑞𝑞

𝑗

]
=

(
𝑞 − 1/2
𝑘

) 𝑗
Λ
𝑗
𝑛,𝑞

[
𝑗

𝑞 − 1/2
+ 1
𝑘
(𝑡 − 𝑡0)Λ𝑛,𝑞

]
.

(5.48)

146



Here,

Λ𝑛,𝑞 := max
𝜏∈𝐼𝑞

Λ𝑛 (𝜏) (5.49)

and 𝐼𝑞 = [𝑡0 + (𝑞 − 1) (𝑡 − 𝑡0)/𝑘, 𝑡0 + 𝑞(𝑡 − 𝑡0)/𝑘] is the 𝑞th interval in the mesh from 𝑡0 to

𝑡 with 𝑘 even spaces. Since Λ𝑛,𝑞 ≤ max𝜏∈[𝑡0,𝑡] Λ𝑛 (𝜏), from the assumptions of the lemma,

Λ𝑛,𝑞 (𝑡 − 𝑡0) < 1. Hence,

∥𝜕 𝑗𝑡 𝐴(𝑡)∥ ≤ Λ̃
𝑗
𝑛,𝑞

[
𝑗

𝑞 − 1/2
+ 1
𝑘

]
(5.50)

where Λ̃𝑛,𝑞 ≡ Λ𝑛,𝑞 (𝑞 − 1/2)/𝑘 .

Plugging this into the formula into (5.46) and using the definition of𝑌𝑛 given by (2.47),

our bound becomes

∥𝜕𝑛𝑡 𝑈2(𝑡)∥ ≤
∑︁
𝐶

𝑛!
𝑐1! . . . 𝑐𝑛!

𝑛∏
𝑗=1

(
( 𝑗

𝑞−1/2 + 1
𝑘
)Λ̃ 𝑗

𝑛,𝑞

𝑗!

)𝑐 𝑗
. (5.51)

Using the sum property of the coefficients 𝑐 𝑗 , we can move the Λ̃ 𝑗
𝑛,𝑞 out of the sum.

∥𝜕𝑛𝑡 𝑈2(𝑡)∥ ≤
(
Λ𝑛,𝑞

𝑞 − 1/2
𝑘

)𝑛 ∑︁
𝐶

𝑛!
𝑐1! . . . 𝑐𝑛!

𝑛∏
𝑗=1

( 𝑗

𝑞−1/2 + 1
𝑘

𝑗!

)𝑐 𝑗
=

(
Λ𝑛,𝑞

𝑞 − 1/2
𝑘

)𝑛
𝑌𝑛

(
®𝑥 (𝑛)
𝑞,𝑘

)
.

(5.52)

In the last line, we reapplied the definition of 𝑌𝑛 and of the vectors ®𝑥 (𝑛)
𝑞,𝑘

. This completes

our bound for the𝑈2 formula for the 𝑞th segment of mesh defined by 𝑘 𝑗 . □

We conclude this section with a proof of the bound on 𝑅2𝑚.

Proof of Lemma 5.4.3. Without loss of generality, we take 𝑡0 = 0. The relevant expressions

are

𝑈2,𝑚 (𝑡, 0) =
𝑚∑︁
𝑗=1
𝑎 𝑗𝑈

(𝑘 𝑗 )
2 (𝑡, 0) (5.53)
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and

𝑈
(𝑘)
2 (𝑡, 0) :=

𝑘∏
ℓ=1

𝑈2(𝑡ℓ, 𝑡ℓ−1) (5.54)

with 𝑡ℓ := 𝑡ℓ/𝑘 . The Taylor remainder in integral form is given by

𝑅2𝑚 =
1

(2𝑚)!

∫ 𝑡

0
(𝑡 − 𝜏)2𝑚 𝑑2𝑚+1

𝑑𝜏2𝑚+1𝑈2,𝑚 (𝜏, 0)𝑑𝜏

=
1

(2𝑚)!

𝑚∑︁
𝑗=1
𝑎 𝑗

∫ 𝑡

0
(𝑡 − 𝜏)2𝑚 𝑑2𝑚+1

𝑑𝜏2𝑚+1𝑈
(𝑘 𝑗 )
2 (𝜏, 0)𝑑𝜏.

(5.55)

With a couple triangle inequalities, this is upper bounded as

∥𝑅2𝑚 ∥ ≤ 1
(2𝑚)!

𝑚∑︁
𝑗=1

|𝑎 𝑗 |
𝑡2𝑚+1

2𝑚 + 1
max
𝜏∈[0,𝑡]

∥𝑑2𝑚+1
𝜏 𝑈

(𝑘 𝑗 )
2 (𝜏, 0)∥

≤ ∥𝑎∥1

(2𝑚 + 1)! 𝑡
2𝑚+1 max

𝑗 ,𝜏
∥𝑑2𝑚+1

𝜏 𝑈
(𝑘 𝑗 )
2 (𝜏, 0)∥

(5.56)

where in the last line we employed a Hölder inequality. Our focus is now on bounding the

derivative, which we unravel layer by layer using frequent multinomial expansions. First,

𝑑𝑛𝜏𝑈
(𝑘)
2 (𝜏, 0) =

∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

) 𝑘∏
ℓ=1

𝑑𝑛ℓ𝜏 𝑈2(𝜏ℓ, 𝜏ℓ−1). (5.57)

Next, we write

𝑈2(𝜏ℓ, 𝜏ℓ−1) =
1∏
𝑖=𝐿

𝑒−𝑖𝐻𝑖𝛼𝑖 (𝜏ℓ−1/2)𝜏/𝑘
𝐿∏
𝑖=1

𝑒−𝑖𝐻𝑖𝛼𝑖 (𝜏ℓ−1/2)𝜏/𝑘

=

2𝐿∏
𝑖=1

𝑒𝐴𝑖,ℓ

(5.58)

where

𝐴𝑖,ℓ := −𝑖𝐻𝑖𝛼𝑖 (𝜏ℓ−1/2)𝜏/𝑘 (5.59)

and 𝑖 is defined by reflection for 𝑖 > 𝐿. Once again performing a multinomial expansion,

𝑑𝑛𝜏𝑈2(𝜏ℓ, 𝜏ℓ−1) =
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛2𝐿

) 2𝐿∏
𝑖=1

𝑑𝑛𝑖𝜏 𝑒
𝐴𝑖,ℓ . (5.60)
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We now bound the individual ordinary operator exponentials. Invoking Lemma 5.4.4,

∥𝑑𝑛𝜏𝑒𝐴𝑖,ℓ ∥ ≤ 𝑌𝑛
(
∥𝑑𝜏𝐴𝑖,ℓ∥, . . . , ∥𝑑𝑛𝜏𝐴𝑖,ℓ∥

)
. (5.61)

In turn, we have

𝑑𝑛𝜏𝐴𝑖,ℓ = −𝑖 𝐻𝑖
𝑘
𝑑𝑛𝜏 (𝛼𝑖 (𝜏ℓ−1/2)𝜏)

= −𝑖 𝐻𝑖
𝑘

[(
ℓ − 1/2
𝑘

)𝑛
𝜏𝛼

(𝑛)
𝑖

(𝜏ℓ−1/2) + 𝑛
(
ℓ − 1/2
𝑘

)𝑛−1
𝛼
(𝑛−1)
𝑖

(𝜏ℓ−1/2)
] (5.62)

where 𝛼(𝑛) (𝑥) refers to the 𝑛th derivative of 𝛼 with respect to its argument, then evaluated

at 𝑥 (i.e., not a 𝜏 derivative). Since ∥𝐻𝑖∥ ≤ 1 we have

∥𝑑𝑛𝜏𝐴𝑖,ℓ∥ <
1
𝑘
(ℓ/𝑘)𝑛−1

(
(ℓ/𝑘)𝜏 |𝛼(𝑛)

𝑖
(𝜏ℓ−1/2) | + 𝑛|𝛼(𝑛−1)

𝑖
(𝜏ℓ−1/2) |

)
. (5.63)

From Definition 3, 𝛼( 𝑗)
𝑖

(𝑡) ≤ Λ𝑖,𝑛 (𝑡) 𝑗+1. Dropping the 𝑛 and 𝑡 dependence for the moment,

∥𝑑𝑛𝜏𝐴𝑖,ℓ∥ < (ℓ/𝑘)𝑛
(
(𝜏/𝑘)Λ𝑛+1

𝑖 + (𝑛/ℓ)Λ𝑛𝑖
)

= (Λ𝑖ℓ/𝑘)𝑛 (Λ𝑖𝜏/𝑘 + 𝑛/ℓ) .
(5.64)

We’ve reached the bottom, and now proceed to work our way back up to the Taylor

remainder 𝑅2𝑚, starting with (5.61). Using Lemma 5.4.4,

∥𝑑𝑛𝜏𝑒𝐴𝑖,ℓ ∥ ≤
∑︁
𝐶

𝑛!
𝑐1!𝑐2! . . . 𝑐𝑛!

𝑛∏
𝑗=1

(
∥𝑑 𝑗𝜏𝐴𝑖,ℓ∥

𝑗!

)𝑐 𝑗
<

∑︁
𝐶

𝑛!
𝑐1!𝑐2! . . . 𝑐𝑛!

𝑛∏
𝑗=1

(
(Λ𝑖ℓ/𝑘) 𝑗 (Λ𝑖𝜏/𝑘 + 𝑗/ℓ)

𝑗!

)𝑐 𝑗
.

(5.65)

Using the sum rule for 𝐶 we can pull out a factor of (Λ𝑖ℓ/𝑘). Using the upper bound 𝑗 ≤ 𝑛

and the monotonicity of 𝑌𝑛, we obtain the bound

∥𝑑𝑛𝜏𝑒𝐴𝑖,ℓ ∥ < (Λ𝑖ℓ/𝑘)𝑛𝐵𝑛 (Λ𝑖𝜏/𝑘 + 𝑛/ℓ) (5.66)

149



where 𝐵𝑛 is the Bell polynomial (see Section 2.8). For simplicity, define

𝑥𝑖,ℓ,𝑛 = Λ𝑖𝜏/𝑘 + 𝑛/ℓ (5.67)

as the argument to 𝐵𝑛. Employing the bound (2.53),

∥𝑑𝑛𝜏𝑒𝐴𝑖,ℓ ∥ < (Λ𝑖ℓ/𝑘)𝑛
(

𝑛

log(1 + 𝑛/𝑥𝑖,ℓ,𝑛)

)𝑛
. (5.68)

which is valid for all 𝑛 > 0, and for 𝑛 = 0 when defined by the 0+ limit. We can simplify

the reciprocal log with the bound

1
log(1 + 𝑛/𝑥𝑖,ℓ,𝑛)

<

(
1
2
+ 𝑥𝑖,ℓ,𝑛

𝑛

)𝑛
=

1
2𝑛

(
1 + 2𝑥𝑖,ℓ,𝑛

𝑛

)𝑛
.

(5.69)

This gives us the simplified exponential derivative

∥𝑑𝑛𝜏𝑒𝐴𝑖,ℓ ∥ < (Λ𝑖ℓ/2𝑘)𝑛 (𝑛 + 2𝑥𝑖,ℓ,𝑛)𝑛. (5.70)

We now move up a level to reconsider (5.60). Employing a triangle inequality,

∥𝑑𝑛𝜏𝑈2(𝜏ℓ, 𝜏ℓ−1)∥ ≤
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛2𝐿

) 2𝐿∏
𝑖=1

∥𝑑𝑛𝑖𝜏 𝑒𝐴𝑖,ℓ ∥

<
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛2𝐿

) 2𝐿∏
𝑖=1

(Λ𝑖ℓ/2𝑘)𝑛𝑖 (𝑛𝑖 + 2𝑥𝑖,ℓ,𝑛𝑖 )𝑛𝑖 .
(5.71)

Maximize Λ𝑖 over all 𝑖 = 1, . . . , 𝐿 and call it Λ. We can factor out the corresponding term,

and with some rewriting obtain

(Λℓ/2𝑘)𝑛
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛2𝐿

) 2𝐿∏
𝑖=1

(𝑛𝑖 + 2𝑥ℓ,𝑛𝑖 )𝑛𝑖 . (5.72)

where we’ve also let 𝑥ℓ,𝑛𝑖 be 𝑥𝑖,ℓ,𝑛𝑖 with the subscript dropped on Λ𝑖.Focusing on the

rightmost product over 𝑖, one can show using a Lagrange multiplier that the maximum is
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given by 𝑛𝑖 = 𝑛/2𝐿 for all 𝑖 (we maximize over 𝑛𝑖 ∈ R+, which is an upper bound). This is

intuitive from symmetry of the product as well. Taking this as an upper bound, we have

∥𝑑𝑛𝜏𝑈2(𝜏ℓ, 𝜏ℓ−1)∥ < (Λℓ/2𝑘)𝑛
(
𝑛

2𝐿
+ 2Λ𝜏

𝑘
+ 𝑛

𝐿ℓ

)𝑛 ∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛2𝐿

)
= (Λℓ/2𝑘)𝑛

(
𝑛 + 4Λ𝜏𝐿

𝑘
+ 2𝑛
ℓ

)𝑛
= (Λ/𝑘)𝑛

(
𝑛 + 𝑛ℓ/2 + 2Λ𝜏𝐿ℓ

𝑘

)𝑛
.

(5.73)

where in going to the second line we evaluated the multinomial sum as (2𝐿)𝑛 and simpified.

With this in hand, we return to (5.57) and bound it as

∥𝑑𝑛𝜏𝑈
(𝑘)
2 (𝜏, 0)∥ ≤

∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

) 𝑘∏
ℓ=1

∥𝑑𝑛ℓ𝜏 𝑈2(𝜏ℓ, 𝜏ℓ−1)∥

<
∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

) 𝑘∏
ℓ=1

(Λ/𝑘)𝑛ℓ
(
𝑛ℓ + 𝑛ℓℓ/2 + 2Λ𝜏𝐿ℓ

𝑘

)𝑛ℓ
.

(5.74)

Using the upper bound ℓ ≤ 𝑘 and factoring out the (Λ/𝑘)𝑛ℓ using the sum rule,

∥𝑑𝑛𝜏𝑈
(𝑘)
2 (𝜏, 0)∥ < (Λ/𝑘)𝑛

∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

) 𝑘∏
ℓ=1

(𝑛ℓ + 𝑛ℓ𝑘/2 + 2Λ𝜏𝐿)𝑛ℓ . (5.75)

Similar to, we upper bound the product using 𝑛ℓ = 𝑛/𝑘 for all ℓ, which can be justified

through a maximization using Lagrange multipliers. The corresponding bound is

∥𝑑𝑛𝜏𝑈
(𝑘)
2 (𝜏, 0)∥ < (Λ/𝑘)𝑛 (𝑛/𝑘 + 𝑛/2 + 2Λ𝜏𝐿)𝑛

∑︁
𝑁

(
𝑛

𝑛1, . . . , 𝑛𝑘

)
= (𝑛Λ)𝑛

(
1
𝑘
+ 1

2
+ 2Λ𝜏𝐿

𝑛

)𝑛
.

(5.76)

We are finally ready to return to equation (5.56) and bound 𝑅2𝑚. We recall that Λ has

𝜏 dependence, and let Λmax := max𝜏∈[0,𝑡] Λ(𝜏). We also upper bound any appearance of 𝜏

otherwise by 𝑡 because these are always in the numerator. So far, using 𝑛 = 2𝑚 + 1, these
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reductions give

∥𝑅2𝑚 ∥ <
∥𝑎∥1

(2𝑚 + 1)! ((2𝑚 + 1)Λmax𝑡)2𝑚+1 max
𝑗

(
1
𝑘 𝑗

+ 1
2
+ 2Λ𝑡𝐿

2𝑚 + 1

)2𝑚+1
. (5.77)

Employing a Stirling bound on the factorial, and factoring out an additional 𝐿 from the

rightmost term,

∥𝑅2𝑚 ∥ <
∥𝑎∥1√︁

2𝜋(2𝑚 + 1)
(𝑒𝐿Λmax𝑡)2𝑚+1 max

𝑗

(
1
𝐿𝑘 𝑗

+ 1
2𝐿

+ 2Λ𝑡
2𝑚 + 1

)2𝑚+1
. (5.78)

We now apply the assumption that 𝑒𝐿Λmax𝑡 < 1 to upper bound the max 𝑗 term, along with

𝑘 𝑗 , 𝐿 ≥ 1.

max
𝑗

(
1
𝐿𝑘 𝑗

+ 1
2𝐿

+ 2Λ𝑡
2𝑚 + 1

)2𝑚+1
<

(
3
2
+ 2

3𝑒

)2𝑚+1
(5.79)

Thus,

∥𝑅2𝑚 ∥ <
∥𝑎∥1

2
√
𝜋𝑚

((
3𝑒
2

+ 2
3

)
𝐿 max
𝜏∈[0,𝑡]

Λ2𝑚+1(𝜏)𝑡
)2𝑚+1

<
∥𝑎∥1

2
√
𝜋𝑚

(
5𝐿 max

𝜏∈[0,𝑡]
Λ2𝑚+1(𝜏)𝑡

)2𝑚+1
.

(5.80)

In these last lines, we remind ourselves thatΛ has the subscript 2𝑚+1 as per Definition 3. □

5.5 Time Step Analysis

The next ingredient we need for a complexity analysis is asymptotic bounds on the

number of subintervals 𝑟 needed in the time mesh. This will be the concern of this section.

Unfortunately, in pursuing best-case bounds on 𝑟, we eschew a practical procedure for

generating the time points 𝑡𝑖. Section 5.9 provides a concrete procedure which is based on

the analysis of this section.

For time dependent Hamiltonians, because the cost per unit time can vary with 𝑡 in

general, one should adaptively choose the step size depending on the cost. For our purposes,
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this means choosing a step size inversely proportional to the energy measure Λ2𝑚+1(𝑡). We

will explore this adaptive time stepping and show 𝐿1-norm scaling with Λ2𝑚+1(𝑡) here.

To derive bounds on 𝑟, we will need to assume something about size of the derivative

¤Λ2𝑚+1 compared to Λ2𝑚+1 itself. Given a Λ𝑛-bound, a differentiable (smooth, even) Λ𝑛-

bound exists. From now on, we consider Λ𝑛-bounds for which there exists a 𝐾 ∈ R+ be

such that | ¤Λ𝑛 (𝑡) | ≤ 𝐾Λ𝑛 (𝑡)2 for all 𝑡 ∈ [0, 𝑇]. Given 𝐻 that is Λ𝑛 boundable, there is

always, in fact, a Λ𝑛 bound such that 𝐾 exists and is arbitrarily close to zero. For example,

we may take a constant bound Λ′
𝑛 := max𝑡 Λ𝑛 (𝑡), noting that Λ𝑛 is continuous on a compact

interval. Of course, Λ′ does not capture the changing behavior of 𝐻 (𝑡), and is therefore

suboptimal. Nevertheless, we’ve demonstrated that our additional assumptions are not

much more restrictive than those we’ve already made. Note that (in natural units) 𝐾 is

dimensionless.

With these preliminaries in place, the following result provides an upper bound on the

number of time steps needed for our MPF algorithm.

Lemma 5.5.1. Let 𝐻 satisfy the assumptions of Theorem 5.4.1, and let Λ2𝑚+1 be a Λ2𝑚+1-

bound for 𝐻 such that, for some 𝐾 ∈ R+, | ¤Λ2𝑚+1(𝑡) | ≤ 𝐾Λ2𝑚+1(𝑡)2 for all 𝑡 ∈ [0, 𝑇]. For

every 𝜖 > 0, there exists a list (𝑡0, 𝑡1, . . . , 𝑡𝑟) of monotonically increasing times 𝑡 𝑗 ∈ [0, 𝑇],

with 𝑡0 = 0 and 𝑡𝑟 = 𝑇 , such that

∥𝑈 (𝑇, 0) −
𝑟∏
𝑖=1
𝑈2,𝑚 (𝑡𝑖, 𝑡𝑖−1)∥ ≤ 𝜖

with the number of time steps 𝑟 bounded above as

𝑟 ≤
⌊(

5
(
1 + 3

2
𝐾

)
𝐿∥Λ∥1

)1+ 1
2𝑚

(
∥𝑎∥1

𝜖
√
𝜋𝑚

) 1
2𝑚

⌋
.
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Here, ∥Λ2𝑚+1∥1 is the 𝐿1 norm.

∥Λ2𝑚+1∥1 :=
∫ 𝑇

0
Λ2𝑚+1(𝑡)𝑑𝑡

Proof. As discussed in Section 5.4 in order to satisfy the 𝜖-error constraint of Lemma 5.5.1,

it suffices that the error on each subinterval is less than 𝜖/𝑟 . Using Theorem 5.4.1, the sum

is bounded as

𝑟∑︁
𝑖=1

∥𝑈 (𝑡𝑖, 𝑡𝑖−1) −𝑈2,𝑚 (𝑡𝑖, 𝑡𝑖−1)∥ ≤ ∥𝑎∥1√
𝜋𝑚

𝑟∑︁
𝑖=1

(
5𝐿 max

𝜏∈[𝑡𝑖−1,𝑡𝑖]
Λ2𝑚+1(𝜏) (𝑡𝑖 − 𝑡𝑖−1)

)2𝑚+1
.

(5.81)

To ensure an overall error 𝜖 , it therefore suffices to produce a mesh such that for each 𝑖,

∥𝑎∥1√
𝜋𝑚

(
5𝐿 max

𝜏∈[𝑡𝑖−1,𝑡𝑖]
Λ2𝑚+1(𝜏) (𝑡𝑖 − 𝑡𝑖−1)

)2𝑚+1
≤ 𝜖/𝑟. (5.82)

Rearranging, this corresponds to choosing 𝑡𝑖, given all other parameters, that satisfy

𝐿 max
𝜏∈[𝑡𝑖−1,𝑡𝑖]

Λ2𝑚+1(𝜏) (𝑡𝑖 − 𝑡𝑖−1) ≤
1
5

(
𝜖
√
𝜋𝑚

∥𝑎∥1𝑟

)1/(2𝑚+1)
. (5.83)

We now digress in order to relate max𝜏 Λ2𝑚+1(𝜏) and its average. Here is where we

will make use of the 𝐾-bounds on the derivative ¤Λ, we closely follow arguments found

in [136]. From the inequality in the lemma statement, we have���� ¤Λ2𝑚+1(𝑡)
Λ2𝑚+1(𝑡)2

���� ≤ 𝐾���� 𝑑𝑑𝑡 1
Λ2𝑚+1(𝑡)

���� ≤ 𝐾.

(5.84)

Suppose the time 𝑡𝑖−1 has been chosen by the previous iteration (if 𝑖 = 1, 𝑡0 = 0). Let
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𝑡 > 𝑡𝑖−1 and integrate the above inequality from 𝑡𝑖−1 to 𝑡.∫ 𝑡

𝑡𝑖−1

���� 𝑑𝑑𝜏 1
Λ2𝑚+1(𝜏)

���� 𝑑𝜏 ≤ 𝐾 (𝑡 − 𝑡𝑖−1)����∫ 𝑡

𝑡𝑖−1

𝑑

𝑑𝜏

1
Λ2𝑚+1(𝜏)

𝑑𝜏

���� ≤ 𝐾 (𝑡 − 𝑡𝑖−1)���� 1
Λ2𝑚+1(𝑡)

− 1
Λ2𝑚+1(𝑡𝑖−1)

���� ≤ 𝐾 (𝑡 − 𝑡𝑖−1).

(5.85)

Let us rearrange this in terms of Λ2𝑚+1(𝑡) alone.

−𝐾 (𝑡 − 𝑡𝑖−1) ≤
1

Λ2𝑚+1(𝑡)
− 1
Λ2𝑚+1(𝑡𝑖−1)

≤ 𝐾 (𝑡 − 𝑡𝑖−1)

1
Λ2𝑚+1(𝑡𝑖−1)

− 𝐾 (𝑡 − 𝑡𝑖−1) ≤
1

Λ2𝑚+1(𝑡)
≤ 1

Λ2𝑚+1(𝑡𝑖−1)
+ 𝐾 (𝑡 − 𝑡𝑖−1)

Λ2𝑚+1(𝑡𝑖−1)
1 + 𝐾 (𝑡 − 𝑡𝑖−1)Λ2𝑚+1(𝑡𝑖−1)

≤ Λ2𝑚+1(𝑡) ≤
Λ2𝑚+1(𝑡𝑖−1)

1 − 𝐾 (𝑡 − 𝑡𝑖−1)Λ2𝑚+1(𝑡𝑖−1)
.

(5.86)

The lowerbound inequality holds for all 𝑡 > 𝑡𝑖−1, while the upper bound only holds when

(𝑡 − 𝑡𝑖−1)Λ2𝑚+1(𝑡𝑖−1)𝐾 < 1. (5.87)

We restrict our attention to 𝑡 for which both bounds hold. Consider, for the moment, only

the leftmost inequality. The lower bound on the left is monotonically decreasing with

𝑡. This means that it is also a uniform lower bound on Λ2𝑚+1(𝑡′) for any 𝑡′ ∈ [𝑡𝑖−1, 𝑡].

Therefore, it is a lower bound for the average Λ̄2𝑚+1(𝑡) on the interval [𝑡𝑖−1, 𝑡].

Λ̄2𝑚+1(𝑡, 𝑡𝑖−1) :=
1

𝑡 − 𝑡𝑖−1

∫ 𝑡

𝑡𝑖−1

Λ2𝑚+1(𝜏)𝑑𝜏 (5.88)

That is,
Λ2𝑚+1(𝑡𝑖−1)

1 + 𝐾 (𝑡 − 𝑡𝑖−1)Λ2𝑚+1(𝑡𝑖−1)
≤ Λ̄2𝑚+1(𝑡, 𝑡𝑖−1), (5.89)

or, after isolating for Λ2𝑚+1(𝑡𝑖−1)

Λ2𝑚+1(𝑡𝑖−1) ≤
Λ̄2𝑚+1(𝑡, 𝑡𝑖−1)

1 − 𝐾 (𝑡 − 𝑡𝑖−1)Λ̄2𝑚+1(𝑡, 𝑡𝑖−1)
. (5.90)
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At this point, let’s now consider the upper bound in equation (5.86). This bound is

monotonically increasing in 𝑡, and therefore also upper bounds Λ2𝑚+1(𝜏) for any 𝜏 in

[𝑡𝑖−1, 𝑡]. Therefore, it is also a bound for the maximum.

max
𝜏∈[𝑡𝑖−1,𝑡]

Λ2𝑚+1(𝜏) ≤
Λ2𝑚+1(𝑡𝑖−1)

1 − 𝐾 (𝑡 − 𝑡𝑖−1)Λ2𝑚+1(𝑡𝑖−1)
. (5.91)

Substituting bounds forΛ2𝑚+1(𝑡𝑖−1) from equation (5.90) gives us a bound on the maximum

value in terms of the average.

max
𝜏∈[𝑡𝑖−1,𝑡]

Λ2𝑚+1(𝜏) ≤
Λ̄2𝑚+1(𝑡, 𝑡𝑖−1)

1 − 3
2𝐾Λ̄2𝑚+1(𝑡, 𝑡𝑖−1) (𝑡 − 𝑡𝑖−1)

. (5.92)

Solving for the average value of Λ2𝑚+1, and multiplying by 𝑡 − 𝑡𝑖−1 on both sides,

(𝑡 − 𝑡𝑖−1)Λ̄2𝑚+1(𝑡, 𝑡𝑖−1) ≥
(𝑡 − 𝑡𝑖−1) max𝜏∈[𝑡𝑖−1,𝑡] Λ2𝑚+1(𝜏)

1 + 3
2𝐾 (𝑡 − 𝑡𝑖−1) max𝜏∈[𝑡𝑖−1,𝑡] Λ2𝑚+1(𝜏)

(5.93)

Let us finally choose a 𝑡 = 𝑡𝑖 which will serve as the next time step in the adaptive scheme.

We would like come as close as possible to saturating equation (5.83) while staying within

the constraint imposed by the maximum bound of equation (5.86). Thus, we choose 𝑡𝑖 such

that

max
𝜏∈[𝑡𝑖−1,𝑡𝑖]

Λ2𝑚+1(𝜏) (𝑡𝑖 − 𝑡𝑖−1) = min

{
1
𝐾
,

1
5𝐿

(
𝜖
√
𝜋𝑚

∥𝑎∥1𝑟

)1/(2𝑚+1)}
. (5.94)

Since 𝐾 is a constant, for asymptotic purposes we will assume sufficiently small 𝜖 such

that the right term is smaller. Plugging in to (5.93) yields

Λ̄2𝑚+1(𝑡𝑖, 𝑡𝑖−1) (𝑡𝑖 − 𝑡𝑖−1) ≥
1

5𝐿

(
𝜖
√
𝜋𝑚

∥𝑎∥1𝑟

)1/(2𝑚+1)

1 + 3
2

1
5𝐿

(
𝜖
√
𝜋𝑚

∥𝑎∥1𝑟

)1/(2𝑚+1)
𝐾

. (5.95)

We then find, by using the fact that 1
5𝐿

(
𝜖
√
𝜋𝑚

∥𝑎∥1𝑟

)1/(2𝑚+1)
< 1 and by summing over 𝑖 = 1, . . . , 𝑟

in (5.95) that

∥Λ∥1 ≥ 𝑟 2𝑚
2𝑚+1

1
5𝐿

(
𝜖
√
𝜋𝑚

∥𝑎∥1

)1/(2𝑚+1) (
1 + 3

2
𝐾

)−1
(5.96)
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Finally, rearranging the above, this implies that the number of steps required for the MPF

algorithm is upper bounded as

𝑟 ≤
(
5
(
1 + 3

2
𝐾

)
𝐿∥Λ∥1

)1+ 1
2𝑚

(
∥𝑎∥1

𝜖
√
𝜋𝑚

) 1
2𝑚

. (5.97)

The result then directly follows from the requirement that 𝑟 is an integer. □

To summarize, we’ve provided an upper bound on the number of steps 𝑟 needed

given assumptions on the derivative of Λ2𝑚+1. What is perhaps objectionable is that,

in determining our subsequent time stepping, we seemed to need information about the

total number of steps 𝑟 that we would end up with. While this does not detract from the

correctness of our result, it does indicate possible difficulty in constructing a suitable set

of 𝑡 𝑗 for which the Lemma holds. One approach is to guess the final number 𝑟try of steps

needed, construct the mesh according to the proof, then see if 𝑟try can be made correct.

This approach is considered in Section 5.9.

5.6 Query Complexity

With the results of the previous two sections, we proceed to bound the query complexity

needed to perform a time dependent MPF simulation. First, we define a set of oracles that

are appropriate for this simulation problem. We reemphasize that the most natural input

model in our setting is the linear combinations of Hamiltonians model

𝐻 =

𝐿∑︁
𝑗=1
𝛼 𝑗 (𝑡)𝐻 𝑗 , (5.98)

where 𝛼 𝑗 : [0, 𝑇] → R has 2𝑚 + 1 continuous derivatives and 𝐻 𝑗 ∈ Herm(C2𝑛) satisfies

∥𝐻 𝑗 ∥ ≤ 1. We discretize [0, 𝑇] into 2𝑛𝑡 uniform grid points 𝑡𝑘 = 𝑘𝑇/2𝑛𝑡 for 𝑘 ∈ [0, 2𝑛𝑡 )∩Z,

and define 𝛼 𝑗 𝑘 := 𝛼 𝑗 (𝑡𝑘 ). Let 𝛿𝑡 := 𝑇/2𝑛𝑡 . Let𝑈𝛼 and𝑈𝐻 be unitary oracles which provide
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the input Hamiltonian as follows.

𝑈𝛼 | 𝑗⟩ |𝑘⟩ |𝜏⟩ |0⟩ := | 𝑗⟩ |𝑘⟩ |𝜏⟩
��𝛼 𝑗 𝑘𝜏〉 .

𝑈𝐻 | 𝑗⟩
��𝛼 𝑗 𝑘𝜏〉 |𝜓⟩ := | 𝑗⟩

��𝛼 𝑗 𝑘𝜏〉 exp{−𝑖𝐻 𝑗𝛼 𝑗 𝑘𝜏} |𝜓⟩
(5.99)

The oracle𝑈𝛼 encodes a reversible classical computation and may be taken as self-inverse.

Here |𝜏⟩ encodes a step of size 𝜏 ∈ R in binary using 𝑛𝑐 qubits. Such step sizes are always

nonnegative for the low-order formulas we consider, and therefore we take 𝜏 ∈ [0, 𝑇].

Hence, 𝛿𝑡 = 𝑇/2𝑛𝑐 is the rounding error for the step sizes. We neglect rounding effects due

to the values 𝛼 𝑗 𝑘𝜏.

Our first result concerns the approximate implementation of𝑈2 using the two oracles.

Lemma 5.6.1. Let 𝑈2(𝜏 + 𝑡, 𝑡) be the 2nd-order Suzuki-Trotter formula for the midpoint

formula of equation (5.8). Then an approximation 𝑊2 can be constructed using at most

6𝐿 − 3 queries to𝑈𝐻 and𝑈𝛼, such that

∥𝑈2(𝑡 + 𝜏, 𝑡) −𝑊2(𝑡 + 𝜏, 𝑡)∥ ≤ 𝐿 max
𝑗 ,𝑡∈[0,𝑇]

| ¤𝛼 𝑗 (𝑡 + 𝜏/2) | 𝑇
2

2𝑛𝑐
.

Proof. Define 𝑊2 as 𝑈2 but with each 𝛼 𝑗 evaluated at the nearest discrete times in {𝑡𝑘 }.

Using the techniques of [136], two queries to𝑈𝛼 and one query to𝑈𝐻 are needed to exactly

simulate each of the 2𝐿 − 1 exponentials present in 𝑊2. Thus 3 × (2𝐿 − 1) queries are

needed total. To evaluate the discretization error, by Box 4.1 of [100] we have that

∥𝑊2 −𝑈2∥ ≤ 2
𝐿∑︁
𝑗=1

∥𝑒−𝑖𝐻 𝑗𝛼 𝑗 (rnd[𝑡+𝜏/2])𝜏/2 − 𝑒−𝑖𝐻 𝑗𝛼 𝑗 (𝑡+𝜏/2)𝜏/2∥ (5.100)

which in turn is upper bounded, through an application of the fundamental theorem of

calculus, by

2
𝐿∑︁
𝑗=1

𝐻 𝑗𝛼 𝑗 (rnd
[
𝑡 + 𝜏

2
]
) 𝜏
2
− 𝐻 𝑗𝛼 𝑗 (𝑡 +

𝜏

2
) 𝜏
2
 (5.101)
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where rnd rounds to the nearest 𝑛𝑐-bit value. Since ∥𝐻 𝑗 ∥ ≤ 1 this is merely upper bounded

as

𝜏

𝐿∑︁
𝑗=1

��𝛼 𝑗 (rnd
[
𝑡 + 𝜏

2
]
) − 𝛼 𝑗 (𝑡 +

𝜏

2
)
��. (5.102)

By the fundamental theorem of calculus, with an integral upper bound, each term is upper

bounded as 𝛿𝑡max𝛿𝑡∈𝑡±𝛿𝑡 |𝜕𝑡𝛼 𝑗 (𝑡+𝜏/2) |. Maximizing over [0, 𝑇] instead, and making other

simplifying choices,we get a crude upper bound

∥𝑊2 −𝑈2∥ ≤ 𝜏𝐿𝛿𝑡 max
𝑗 ,[0,𝑇]

| ¤𝛼 𝑗 (𝑡) |

≤ 𝐿
𝑇2

2𝑛𝑐
max
𝑗 ,[0,𝑇]

| ¤𝛼 𝑗 (𝑡) |
(5.103)

Rearranging this gives the inequality of the lemma statement. □

Having supplied an approximate base formula 𝑊2 with our queries, we next need to

implement an approximate MPF 𝑊2,𝑚 over a subinterval [𝑡0, 𝑡1]. This is conventionally

done through the use of "select" SEL and "prepare" PREP circuits

PREP |0⟩ :=
𝑚∑︁
𝑗=1

√︄
|𝑎 𝑗 |
∥𝑎∥1

| 𝑗⟩

SEL | 𝑗⟩ |𝜓⟩ := sgn(𝑎 𝑗 ) | 𝑗⟩𝑊
(𝑘 𝑗 )
2 (𝑡1, 𝑡0) |𝜓⟩

(5.104)

The circuit PREP can be implemented without any queries to 𝑈𝛼 or 𝑈𝐻 whereas SEL

requires𝑂 (𝐿∥ ®𝑘 ∥∞) queries. Following the well-conditioned MPF scheme of [89] we have

that 𝑘 𝑗 ≤ 3𝑚2. This implies that a query to SEL requires 𝑂 (𝐿𝑚2) queries to𝑈𝐻 and𝑈𝛼.

We can use the SEL and PREP for a standard LCU block encoding in order to construct

a time dependent MPF with base formula𝑊2.
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Lemma 5.6.2. Under the assumptions of Theorem 5.4.1 and the query model above, for

any [𝑡0, 𝑡1] ⊆ [0, 𝑇] the time dependent MPF𝑊2,𝑚 with base formula𝑊2 satisfies

∥𝑊2,𝑚 (𝑡1, 𝑡0) −𝑈 (𝑡1, 𝑡0)∥ ∈ 𝑂
(
∥𝑎∥1

(
max
𝑡∈[𝑡0,𝑡1]

Λ2𝑚+1(𝑡)𝑇
)2𝑚+1

)
,

provided that

𝑛𝑐 ≥ log

(
3
√
𝜋𝑚5/2𝐿max𝑡, 𝑗 |𝜕𝑡𝛼 𝑗 (𝑡) | (𝑡1 − 𝑡0)2(

5𝐿max𝑡∈[𝑡0,𝑡1] Λ2𝑚+1(𝑡) (𝑡1 − 𝑡0)
)2𝑚+1

)
,

and can be constructed with a number of queries to𝑈𝐻 and𝑈𝛼 scaling as 𝑂 (𝑚2𝐿).

Proof. From Lemma 4 of [14], we have

(⟨0| ⊗ 𝐼) (PREP†)SEL(PREP) ( |0⟩ ⊗ 𝐼) = 1
∥𝑎∥1

𝑚∑︁
𝑗=1
𝑎 𝑗𝑊

(𝑘 𝑗 )
2 (𝑡1, 𝑡0)

= 𝑊2,𝑚 (𝑡1, 𝑡0)/∥𝑎∥1.

(5.105)

Let 𝛿′ > 0 be such that, for all 𝑗 and ℓ ∈ {1, . . . , 𝑘 𝑗 },𝑊2

(
Δ𝑡
ℓ

𝑘 𝑗
+ 𝑡0,Δ𝑡

ℓ − 1
𝑘 𝑗

+ 𝑡0
)
−𝑈2

(
Δ𝑡
ℓ

𝑘 𝑗
+ 𝑡0,Δ𝑡

ℓ − 1
𝑘 𝑗

+ 𝑡0
) ≤ 𝛿′. (5.106)

where Δ𝑡 = 𝑡1 − 𝑡0. Then, by invoking Box 4.1 from [100],𝑈 (𝑘 𝑗 )
2 (𝑡1, 𝑡0) −𝑊

(𝑘 𝑗 )
2 (𝑡1, 𝑡0)

 ≤ 𝑘 𝑗𝛿
′ (5.107)

which, since 𝑘 𝑗 ≤ 3𝑚2, implies that

∥𝑉2,𝑚 (𝑡1, 𝑡0) −𝑊2,𝑚 (𝑡1, 𝑡0)∥ ≤ 3𝑚2𝛿′∥𝑎∥1. (5.108)

We supply 𝛿′ using Lemma 5.6.1, obtaining

3𝑚2𝛿′∥𝑎∥1 ≤ 3𝑚2∥𝑎∥1𝐿 max
𝑗 ,𝑡∈[0,𝑇]

| ¤𝛼 𝑗 (𝑡 + 𝜏/2) | 𝑇
2

2𝑛𝑐
, (5.109)
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giving us a bound on the discretized MPF𝑊2,𝑚 relative to the undiscretized 𝑉2,𝑚.

It then follows from the triangle inequality and Theorem 5.4.1 that𝑊2,𝑚 (𝑡1, 𝑡0) −𝑈 (𝑡1, 𝑡0)
 ≤

𝑈2,𝑚 (𝑡1, 𝑡0) −𝑈 (𝑡1, 𝑡0)
 + ∥𝑊2,𝑚 (𝑡1, 𝑡0) −𝑈2,𝑚 (𝑡1, 𝑡0)∥

≤ ∥𝑎∥1√
𝜋𝑚

(
5𝐿 max

𝑡∈[0,𝑇]
Λ2𝑚+1(𝑡)𝑇

)2𝑚+1
+ 3𝑚2𝐿∥𝑎∥1 max

𝑗 ,𝑡
| ¤𝛼 𝑗 (𝑡) |

𝑇2

2𝑛𝑐
.

(5.110)

Under the assumption that

𝑛𝑐 ≥ log

(
3
√
𝜋𝑚5/2𝐿max 𝑗 ,𝑡 | ¤𝛼 𝑗 (𝑡) |𝑇2(

5𝐿max𝑡∈[0,𝑇] Λ2𝑚+1(𝜏)𝑇
)2𝑚+1

)
(5.111)

the second term is bounded by the first (5.110), so we have an upper bound 𝑀∑︁
𝑗=1
𝑎 𝑗

𝑘 𝑗∏
𝑞=1

𝑊2
(
𝑇𝑞/𝑘 𝑗 , 𝑇 (𝑞 − 1)/𝑘 𝑗

)
−𝑈 (𝑇, 0)

 ≤ 2∥𝑎∥1√
𝜋𝑚

(
5𝐿 max

𝑡∈[0,𝑇]
Λ2𝑚+1(𝑡)𝑇

)2𝑚+1

(5.112)

Since 𝑈 (𝑇, 0) is unitary, we know that the MPF implemented by our algorithm is close

to a unitary. This means that we satisfy the preconditions of robust oblivious amplitude

amplification given by Lemma 5 of [14]. This result implies that using 𝑂 (∥𝑎∥1) applica-

tions of the unitary given by (5.105), we can implement an operator𝑊 (𝑇, 0) such that (for

constant 𝑚)

∥𝑊2,𝑚 (𝑡1, 𝑡0) −𝑈 (𝑡1, 𝑡0)∥ ∈ 𝑂
(
∥𝑎∥1

(
max
𝑡∈[0,𝑇]

Λ2𝑚+1(𝑡) (𝑡1 − 𝑡0)
)2𝑚+1

)
. (5.113)

The number of queries scales as

𝑄step ∈ 𝑂 (∥𝑎∥1𝑚
2𝐿) ⊆ 𝑂 (𝑚2𝐿). (5.114)

□
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With the short-time simulation costs in place we are now ready to state our main

theorem, which bounds the number of queries needed to perform the full multiproduct

simulation of a time dependent Hamiltonian.

Theorem 5.6.3. In the query setting above, and under the assumptions of Theorem 5.4.1,

and Lemma 5.5.1 (Λ2𝑚+1-bounded 𝐻 with 𝐾 bound on ¤Λ2𝑚+1), we have that the number

of queries 𝑄tot needed to 𝑈𝛼 and 𝑈𝐻 to construct an operator 𝑊tot(𝑇, 0) simulate a time

dependent Hamiltonian of the form
∑𝐿
𝑗=1 𝛼 𝑗 (𝑡)𝐻 𝑗 such that ∥(⟨0| ⊗ 𝐼)𝑊tot(𝑇, 0) ( |0⟩ ⊗ 𝐼) −

𝑈 (𝑇, 0)∥ ≤ 𝜖 satisfies

𝑄tot ∈ 𝑂
(
𝐿 (1 + 𝐾)∥Λ2𝑚+1∥1 log2(1/𝜖)

)
,

and the total number of auxiliary qubits is in

𝑂

(
log

(
𝐿 (1 + 𝐾)∥Λ2𝑚+1∥1 max 𝑗 ,𝑡 | ¤𝛼 𝑗 (𝑡) |𝑇2

𝜖

))
.

Proof. From Lemma 5.5.1 we have that the number of segments needed to perform a the

simulation within error 𝜖 obeys

𝑟 ∈ 𝑂
(
((1 + 𝐾)∥Λ2𝑚+1∥1)1+1/(2𝑚)

𝜖1/(2𝑚)

)
. (5.115)

Therefore, using Lemma 5.6.2,

𝑄tot ∈ 𝑂 (𝑚2𝐿𝑟) ⊆ 𝑂
(
𝑚2𝐿 ((1 + 𝐾)∥Λ2𝑚+1∥1)1+1/(2𝑚)

𝜖1/(2𝑚)

)
(5.116)

the approximate value of the optimal𝑚 can be found by equating the exponentially shrinking

component of the cost to the polynomially increasing value of 𝑚. We choose 𝑚 to satisfy

𝑚2 =

(
(1 + 𝐾)∥Λ2𝑚+1∥1

𝜖

)1/2𝑚
. (5.117)
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Solving for 𝑚 yields

𝑚 =
log

(
(1 + 𝐾)∥Λ2𝑚+1∥1/𝜖

)
4 LambertW

(
log

(
(1 + 𝐾)∥Λ2𝑚+1∥1/𝜖

)
/4

) ∈ 𝑂
(
log

(
(1 + 𝐾)∥Λ2𝑚+1∥1

𝜖

))
(5.118)

This implies that the query complexity 𝑄tot is in

𝑂

(
𝐿 (1 + 𝐾)∥Λ2𝑚+1∥1 log2(1/𝜖)

)
. (5.119)

The number of auxiliary qubits needed in the construction is in 𝑂 (log(𝑚)) to implement

the MPF and (⌈log 𝐿⌉ + 𝑛𝑐) to implement the 𝑈𝛼 oracle. From the result of Lemma 5.6.2

we see that 𝑛𝑐 dominates this cost. We thus have a number of auxiliary qubits scaling as

𝑛aux ∈ 𝑂
(
log

(
𝑚2𝐿max |𝜕𝑡𝛼 𝑗 (𝑡) |𝑇2(

max𝑡∈[0,𝑇] Λ2𝑚+1(𝑡)𝑇
)2𝑚+1

))
∈ 𝑂

(
log

(
𝑚2𝐿𝑟 ∥𝑎∥1 max |𝜕𝑡𝛼 𝑗 (𝑡) |𝑇2

𝜖

))
∈ 𝑂

(
log

(
𝐿 (1 + 𝐾)∥Λ2𝑚+1∥1 max |𝜕𝑡𝛼 𝑗 (𝑡) |𝑇2

𝜖

)) (5.120)

where used Eq. (5.116) and Eq. (5.118) above. □

This shows that the cost of quantum simulation using MPFs broadly conforms to the

cost scalings that one would expect of previous methods. In particular, similar to the

truncated Dyson series simulation method [90, 75] we obtain that the cost of simulating

a time dependent Hamiltonian scales near-linearly with time 𝑇 and poly-logarithmically

with 1/𝜖 .

5.7 Numerical Demonstrations

In the above sections, we developed and characterized MPFs for time dependent sim-

ulations by showing their existence and proving error bounds. However, these bounds are
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unlikely to be the final word on the performance of the algorithm. For example, we already

mentioned that, for time independent 𝐻, the MPF of Definition 2 is exact in cases where

the Hamiltonian consists of only commuting terms. Yet this behavior is not captured in

the bound of Theorem 5.4.1 because Λ2𝑚 is at least as large as ∥𝐻∥. This discrepancy

is unrelated to the fact that, in practice, the 2nd-order formula 𝑈2 can only be computed

approximately.

To begin bridging the gap between algorithm’s actual performance and our bounds,

we investigate time dependent MPFs empirically through two numerical examples. We

compute 𝑈2,𝑚 for these systems on a classical computer (using matrix computations) and

compare the result with the exact propagator (computed within machine 𝜖). The vector

®𝑘 ∈ Z𝑚+ we will use comes from the bottom half of Table I from [89], which minimizes

∥ ®𝑘 ∥ for ∥𝑎∥1 ≤ 2.

In general, deriving an analytical solution for the propagator given a time dependent

Hamiltonian is challenging or impossible. To bypass this problem, we will consider a time

independent Hamiltonian which is viewed from a "non-inertial" frame, thereby rendering

the dynamics time dependent in the new frame. More specifically, suppose 𝐻 is a time

independent Hamiltonian with propagator 𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡 (henceforth the initial time is set

to zero). Let |𝜓𝑡⟩ be the solution to the Schrödinger equation 𝑖𝜕𝑡 |𝜓𝑡⟩ = 𝐻 |𝜓𝑡⟩. Under a

frame transformation 𝑇 (𝑡), which transforms vectors as |�̃�𝑡⟩ = 𝑇 (𝑡) |𝜓𝑡⟩, the Hamiltonian

and propagator transform as

�̃� (𝑡) = 𝑇 (𝑡)𝑈 (𝑡)

�̃� (𝑡) = 𝑖 𝜕𝑇 (𝑡)
𝜕𝑡

𝑇 (𝑡)† + 𝑇 (𝑡)𝐻 (𝑡)𝑇 (𝑡)†.
(5.121)

Thus, in order to benchmark the error of the MPF, we compute �̃�𝑘 for Hamiltonian �̃�, then
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compare with the exact propagator (accurate to machine precision).

𝜖𝑐 = ∥�̃�2,𝑚 (𝑡) − 𝑇 (𝑡)𝑈 (𝑡)∥ (5.122)

5.7.1 Example 1: Electron in Magnetic field, Rotating Frame

As a very simple first demonstration, consider a spin-1/2 particle (say, electron) in a

homogeneous external magnetic field 𝐵. Choose a coordinate system such that 𝐵 makes

an angle 𝜃 with respect to the 𝑧-axis, and lies within the 𝑥𝑧 plane. This system can be

described by the Hamiltonian

𝐻 = 𝜇𝐵(cos 𝜃𝑍/2 + sin 𝜃𝑋/2) (5.123)

where 𝑍 and 𝑋 (and later 𝑌 ) are Pauli operators, and 𝜇 is a coupling parameter that will

henceforth be set to one. The propagator𝑈 (𝑡) = 𝑒−𝑖𝐻𝑡 is easy to compute, and corresponds

to precession about the magnetic field axis with frequency 𝐵.

To obtain a time dependent problem, let’s shift to a reference frame that rotates with

angular frequency 𝜔 about the 𝑧-axis. The transformation is given by 𝑅𝑧 (𝜔𝑡), where 𝑅𝑎 is

the usual 𝑆𝑈 (2) rotation operator about axis 𝑎. The Hamiltonian in the rotating frame is

�̃� (𝑡) = (𝜔 + 𝐵 cos 𝜃)𝑍/2 + 𝐵 sin 𝜃 (cos𝜔𝑡𝑋/2 + sin𝜔𝑡𝑌/2) (5.124)

Because we know that this Hamiltonian is just a transformed time independent system, it

is easy to compute the exact propagator �̃� (𝑡).

�̃� (𝑡) = 𝑅𝑧 (𝜔𝑡)𝑈 (𝑡) (5.125)

Though it is not strictly necessary to run the algorithm, let’s compute an appropriate

Λ(𝑡) upper bound. The spectral norm of �̃� may be upper bounded as

∥�̃�∥ ≤ |𝜔 + 𝐵 cos 𝜃 |
2

+ |𝐵 sin 𝜃 | (5.126)
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while the derivatives �̃� (𝑛) (𝑡) have the bound

∥�̃� (𝑛) (𝑡)∥ ≤ |𝐵 sin 𝜃𝜔𝑛 |

𝑛+1
√︃
∥𝑡𝑖𝑙𝑑𝑒𝐻 (𝑛) (𝑡)∥ ≤ 𝜔

����𝐵 sin 𝜃
𝜔

����1/𝑛+1
.

(5.127)

For 𝜔 not too much larger than 𝐵, we see then that Λ(𝑡) = 𝜔 is an appropriate choice.

The first thing to check will be that the error has the appropriate power law scaling.

Namely, for 𝑀-term formulas, the error 𝜖𝑐 for small 𝑡 should scale as 𝑂 (𝑡2𝑚+1) or better.

We can check this by computing the "running power" 𝑝(𝑡, 𝑡′).

𝑝(𝑡, 𝑡′) :=
log 𝜖𝑡/𝜖𝑡′
log 𝑡/𝑡′ (5.128)

For different but small values of 𝑡, 𝑡′, the value of 𝑝 should approach the expected order

of the error: 2𝑚 + 1. Indeed, this is precisely the behavior observed in Figure 5.1. For

sufficiently small simulation times, a power-law dependence on the simulation error is

observed, and the corresponding power is as anticipated. Additionally, we see that the

error decreases by orders of magnitude with each additional term once the power-law

regime is reached. Choosing 𝑚 > 4 in this example quickly leads to machine precision

being the dominant error source.

Next, we vary the MPF order 𝑚 for fixed simulation time 𝑡. Since Λ = 𝜔, our bounds

predict an exponential decay in the error, but only provided 𝑡 < 1/𝜔. Otherwise, the

bounds grow exponentially and say nothing useful about performance. In Figure 5.7.1,

we fix 𝑡 at several different times and plot the error dependence on the multiproduct order

𝑚. Past a certain threshold value for 𝑚 (which increases with 𝑡) an exponential decay in

error is observed, possibly superexponential. It is promising that, even for 𝑡 = 10, the

exponential decay is eventually achieved at 𝑚 ≳ 6. This suggests our error bounds may
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Figure 5.1 (left) Multiproduct errors plotted against simulation time, for several low-order
MPFs, on a log-log plot. Notice the power law scaling for small values of 𝑡. The
parameters used here are 𝐵 = 1, 𝜔 = 4, 𝜃 = 𝜋/6. For larger 𝑚, one quickly runs into
machine precision becoming the dominant error source. (right) The running power
𝑝(𝑡, 𝑡′) defined in equation (5.128), with 𝑡′ = .3. Note the plateau corresponds with the
anticipated value of 2𝑚 + 1.

be too conservative, and in particular MPFs could absolutely converge to 𝑈 as 𝑚 → ∞ in

certain circumstances. This would be a notable improvement to product formulas alone,

which tend to lead to errors that diverge as 𝑚 → ∞ if the time step 𝑡 remains fixed [15,

136, 24]. In contrast, Theorem 5.4.1 shows that if the time step is sufficiently small, then

the MPF converges to the exact result. However, such convergence is not anticipated from

the bounds for a large value such as 𝑡 = 10.

Indeed, there are good reasons to believe the absolute convergence property holds more

generically than this example. No matter how large the order 𝑚, we are still using a low

order formula (such as the midpoint formula𝑈2) as a base. Moreover, recall that the MPF

is essentially a sum of product formulas with different numbers of time steps (for the same

time interval). As the order𝑚 increases, higher weight is given to terms in the multiproduct

sum with finer meshes. Correspondingly, terms which have larger time steps, and therefore

may not converge properly, become suppressed at large 𝑚. Such behavior is not reflected
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Figure 5.2 Multiproduct error shows an (super)exponential decrease in error for
sufficiently large order 𝑚. The threshold for this regime is seen to increase as the
simulation time increases. This behavior surpasses the expectation of our proven bounds,
since there are no guarantees if the time step is too large. Note that, in practice, one should
typically split a longer simulation time into smaller steps. The plateau for 𝑡 = 1, 𝑚 > 8 is
a result of machine precision limitations. Parameter values: 𝐵 = 1, 𝜔 = 4, 𝜃 = 𝜋/6.

in our derived error bounds, so there is likely room for improvement.

Practitioners in quantum simulation will likely want to know how MPFs fare against the

more-familiar and simpler Trotter techniques. To facilitate this, numerical studies across a

broad range of physically interesting systems would be desirable. Such a comprehensive

analysis must be left to future work; here we will be satisfied with comparing MPFs with

Trotterization for our spin-1/2 example. Our Trotterization is just an MPF with 𝑚 = 1,

corresponding to a midpoint-formula approximation. To facilitate as fair a comparison as

possible, we will keep the number of midpoint-formula queries between the two methods

the same. That is, we will enforce the requirement

𝑟trot = 𝑟mpf max
𝑗

|𝑘 𝑗 | (5.129)

where 𝑟trot and 𝑟mpf are the number of time steps for Trotter and MPF, respectively. Note
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Figure 5.3 Simulation error (spectral norm) of MPFs and midpoint-formula
Trotterization, for the spin-1/2 system, with number of midpoint-formula queries kept
fixed between the two. Each plot corresponds to different values for the parameters 𝐵 and
𝜔, always with 𝜃 = 𝜋/6. The number of MPF steps 𝑟mpf is fixed at 10. The crossover
point tends to occur for error 𝜖 > 10−3, which is large enough for practical significance.
Such error tolerances can be orders of magnitude larger than those required in many
quantum simulation proposals [111, 84].

that the number of midpoint queries per time step for Trotter and MPFs are 1 and max 𝑗 |𝑘 𝑗 |

respectively.

Figure 5.7.1 shows the results of these head-to-head comparisons for the several values

of the magnetic field 𝐵 and rotation frequency 𝜔. The number of MPF steps 𝑟mpf is fixed

at 10, a reasonable value since it makes ΛΔ𝑡 ∼ 1 on each subinterval. As the MPF order

increases, so does the number of Trotter steps 𝑟trot by the condition (5.129). These results

show that, for 𝑚 not too large, MPFs outperform Trotterization, at a value of the error 𝜖

which is large enough to be of practical significance for scientific or industrial applications.

Admittedly, the spin-1/2 system considered above is rather simplistic. However, we

anticipate most of the inferences drawn above to hold even as we increase the dimensionality

of the Hilbert space. For example, though the complexity of simulating 𝑈2 generally

increases as dim(𝐻) grows, it does so both for MPFs and Trotterization. Nevertheless,
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benchmarking of MPFs on more complex systems would be a welcomed proof (or disproof)

of concept.

5.7.2 Example 2: Spin Chain in Interaction Picture

As a first step towards more complicated many-body quantum systems, we investigate

the use of MPFs for a particular one-dimensional chain of spins with nearest-neighbor

interactions. As before, we will take advantage of a change of reference frame, allowing

us to compare the multiproduct simulations with an machine precision simulation in an

equivalent, time independent frame. In pursuit of a good case study, we seek a (time

independent) Hamiltonian 𝐻 = 𝐻0 + 𝐻1 which produces nontrivial time-dependence in

the so-called "interaction picture." We also ask that it satisfies a simple conservation law.

A special instance of the 1D 𝑋𝑋 model will suffice to meet these conditions. Consider a

circular chain of 𝑁 qubits with nearest-neighbor hopping interactions, with Hamiltonian

𝐻 = 𝐻0 + 𝐻1 of the form

𝐻0 =

𝑁∑︁
𝑘=1

𝜔𝑘

2
𝑍𝑘

𝐻1 =

𝑁∑︁
𝑘=1

𝐽𝑘

2
(𝑋𝑘𝑋𝑘+1 + 𝑌𝑘𝑌𝑘+1) .

(5.130)

Here,𝜔𝑘 , 𝐽𝑘 are real, site-dependent parameters, and any index increments are done modulo

𝑁 . For any value of the parameters, the Hamiltonian conserves the total magnetization

𝜇 :=
∑
𝑘 𝑍𝑘 .

[𝜇, 𝐻] = 0 (5.131)

Conceptually will think of𝐻0 as a "base" Hamiltonian, with perturbation𝐻1 generating

interactions, though we make no assumptions as to the smallness of 𝐻1. We will switch to

an interaction picture which is comoving with the simple dynamics of 𝐻0. In this frame,
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the Hamiltonian �̃� (𝑡) is given by

�̃� (𝑡) = 𝑒𝑖𝐻0𝑡𝐻1𝑒
−𝑖𝐻0𝑡

=

𝑁∑︁
𝑘=1

𝐽𝑘

2
(𝑋𝑘 (𝑡)𝑋𝑘+1(𝑡) + 𝑌𝑘 (𝑡)𝑌𝑘+1(𝑡))

(5.132)

where

𝑋𝑘 (𝑡) := 𝑒𝑖𝐻0𝑡𝑋𝑘𝑒
−𝑖𝐻0𝑡 = cos(𝜔𝑘 𝑡)𝑋𝑘 − sin(𝜔𝑘 𝑡)𝑌𝑘

𝑌𝑘 (𝑡) := 𝑒𝑖𝐻0𝑡𝑌𝑘𝑒
−𝑖𝐻0𝑡 = cos(𝜔𝑘 𝑡)𝑌𝑘 + sin(𝜔𝑘 𝑡)𝑋𝑘

(5.133)

correspond to rotating the pauli vectors about the 𝑧-axis with frequency𝜔𝑘 . We can express

equation (5.132) in terms of the time independent 𝑋𝑘 and 𝑌𝑘 of the original frame,

�̃� (𝑡) =
𝑁∑︁
𝑘=1

𝐽𝑘

2
{

cos(Δ𝜔𝑘 𝑡) (𝑋𝑘𝑋𝑘+1 + 𝑌𝑘𝑌𝑘+1) + sin(Δ𝜔𝑘 𝑡) (𝑋𝑘𝑌𝑘+1 − 𝑌𝑘𝑋𝑘+1)
}
, (5.134)

where Δ𝜔𝑘 = 𝜔𝑘+1−𝜔𝑘 . We see that having different qubit frequencies𝜔𝑘 on neighboring

sites should give rise to a nontrivial time-dependence in �̃�. Another indication is gleaned

from the commutator of 𝐻0 and 𝐻1.

[𝐻0, 𝐻1] = −𝑖
∑︁
𝑘

𝐽𝑘

2
(𝑋𝑘𝑌𝑘+1 − 𝑌𝑘𝑋𝑘+1) (Δ𝜔𝑘 ). (5.135)

The time dependence in 𝐻𝐼 will be nontrivial when the commutator does not vanish, as

occurs when Δ𝜔𝑘 ≠ 0. A simple choice is to set

𝐽𝑘 = 𝐽, 𝜔𝑘 = (−1)𝑘𝜔. (5.136)

That is, the qubit frequency alternates sign at each site, and the coupling is translation

invariant. For simplicity, we consider only even numbers of qubits to avoid frequency-

matching at 𝑘 = 𝑁 . Plugging (5.136) into the expression for �̃� in (5.134),

�̃� (𝑡) = 𝐽

2
(
cos(2𝜔𝑡)𝐺1 + sin(2𝜔𝑡)𝐺2

)
(5.137)
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where

𝐺1 =

𝑁∑︁
𝑘=1

𝑋𝑘𝑋𝑘+1 + 𝑌𝑘𝑌𝑘+1

𝐺2 =

𝑁∑︁
𝑘=1

(−1)𝑘 (𝑋𝑘𝑌𝑘+1 − 𝑌𝑘𝑋𝑘+1)
(5.138)

As a final check, one can see that 𝐺1 and 𝐺2 do not commute with each other. Yet they

both commute with 𝜇. Thus, �̃� (𝑡) given in (5.137) is our model system to investigate.

Assuming �̃� commutes with an observable 𝜇, to what degree does the MPF 𝑈2,𝑚

conserve 𝜇? Since 𝑈2,𝑚 is an algebraic combination of exponentials of �̃�, 𝑈2,𝑚 also

commutes with 𝜇. If 𝑈2,𝑚 were truly unitary, then the operator 𝜇 would evolve in the

Heisenberg picture as

𝜇2,𝑚 (𝑡) := 𝑈†
2,𝑚 (𝑡)𝜇𝑈2,𝑚 (𝑡) = 𝜇 (5.139)

as it would under the exact propagator𝑈. However,𝑈2,𝑚 is not necessarily unitary.

𝑈
†
2,𝑚 (𝑡)𝑈2,𝑚 (𝑡) ≠ 𝐼 (5.140)

This implies that conservation laws are only approximately conserved.

𝜇2,𝑚 (𝑡) − 𝜇 =

(
𝑈

†
2,𝑚 (𝑡)𝑈2,𝑚 (𝑡) − 𝐼

)
𝜇 ≠ 0. (5.141)

Because𝑈2,𝑚 (𝑡) −𝑈 (𝑡) ∈ 𝑂 (𝑡2𝑚+1), so is
(
𝑈

†
2,𝑚 (𝑡)𝑈2,𝑚 (𝑡) − 𝐼

)
.

Figure 5.7.2 plots the deviations in the conserved 𝜇, ∥𝜇 − 𝜇2,𝑚 (𝑡)∥, with respect to

the simulation time. As the simulation time tends to zero, we see the expected power-law

scaling, as evidence by the linear relationship on a log-log plot. For larger 𝑚, the slope

and hence power 𝑝 increases, corresponding to improved performance. We can extract the

power as the slope of the line, and this is plotted in the right frame. Notice there are sudden
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Figure 5.4 (left) Deviations from the conservation of magnetization 𝜇 under
time-evolution by MPFs. Note that the order 𝑚 = 1 is simply a product formula evolution,
which conserves 𝜇 exactly. For small simulation times, the expected power-law scaling is
observed, with larger powers as 𝑚 increases. (right) The running power 𝑝(𝑡, 𝑡′) as defined
in (5.128), with 𝑡′ = .3. Note the plateau at 2𝑚 + 2, which indicates slightly better
convergence than naively expected (𝑝 = 2𝑚 + 1). This phenomenon generalizes to other
systems and is formalized by Theorem 5.7.1. Parameter values: 𝑁 = 4, 𝐽 = 1, 𝜔 = 4

dips in the error at specific simulation times, which tend to occur before reaching the power

law scaling regime. This could be due to cancellation between two terms in an error series

of comparable magnitude. Similar phenomenon occurs in several other contexts, such as

the error from adiabatic evolution [134]. Conclusive identification of these phenomenon

will require further study.

Naively, we would expect 𝑝 = 2𝑚+1, but here we actually get slightly better: 𝑝 = 2𝑚+2.

In fact, this scaling can be justified. The following argument, a variant of which can be

found in [28], shows that the integrator is nearly unitary.

Theorem 5.7.1. The deviation of𝑈2,𝑚 from being unitary obeys

∥𝑈†
2,𝑚 (𝑡)𝑈2,𝑚 (𝑡) − 𝐼 ∥ ∈ 𝑂 (𝑡2𝑚+2)

Proof. We suppress all function evaluations at 𝑡 when convenient. Let 𝐸 := 𝑈2,𝑚 −𝑈, so
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that𝑈2,𝑚 = 𝑈 + 𝐸 . Then, using the unitarity of𝑈 and the fact that 𝐸 ∈ 𝑂 (𝑡2𝑚+1),

𝑈
†
2,𝑚𝑈2,𝑚 = 𝐼 + 𝑁 +𝑂 (𝑡4𝑚+2) (5.142)

where

𝑁 := 𝑈†𝐸 + 𝐸†𝑈. (5.143)

Since 𝑁 ∈ 𝑂 (𝑡2𝑚+1), all of its derivatives up to degree 2𝑚 vanish when evaluated at 𝑡 = 0.

Hence, it suffices to show that

𝑁 (2𝑚+1) (0) = 0. (5.144)

We can expand this derivative in terms of 𝐸 and𝑈 using the binomial theorem. When we

evaluate at 𝑡 = 0, those terms with derivative less than degree 2𝑚 + 1 in 𝐸 vanish. We are

left with

𝑁 (2𝑚+1) (0) = 𝐸†(2𝑚+1) (0)𝑈 (0) +𝑈†(0)𝐸 (2𝑚+1) (0). (5.145)

We have 𝑈 (0) = 𝑈†(0) = 𝐼. Moreover, by the time-symmetric property of 𝑈 and 𝑈2,𝑚,

𝐸 (𝑡) is also symmetric. Therefore

𝐸†(2𝑚+1) (0) = 𝐸 (2𝑚+1) (−𝑡)
���
𝑡=0

= −𝐸 (2𝑚+1) (0). (5.146)

Hence, the two terms in (5.145) cancel, yielding 𝑁 (2𝑚+1) (0) = 0. This completes the

proof. □

In summary, though MPFs do not inherently preserve commutations laws, the error is

due to nonunitarity in 𝑈2,𝑚. This can be bounded and reduced in a systematic way, either

by decreasing the time step or increasing the MPF order.

174



5.8 Discussion

In this chapter, we presented an algorithm for time dependent Hamiltonian simula-

tion that uses multiproduct formulas to boost the accuracy compared to product formula

simulation. Our algorithm inherits the commutator scaling of product formulas, giving a

benefit over comparable methods such as the Dyson series approach. We provide a rig-

orous characterization of the simulation error as well as query computational complexity.

Numerical demonstrations validate the effectiveness of time dependent MPFs in achieving

high-accuracy simulations.

Several avenues for future research are immediately apparent from this chapter. First, a

proof of Conjecture 1 is highly desirable. Currently, we are investigating modifications of

the clock space construction that keep the clock state width𝜎 fixed, allowing for completion

of the argument. Numerical demonstrations beyond the simple examples here would be

desirable for showing scaling to larger systems, and of course, eventually the method should

be tested on actual quantum hardware. To summarize, time dependent MPF simulation is a

new algorithm which complements many existing approaches and likely will perform well

on systems with a large degree of locality.

5.9 Algorithm for Time Mesh

For completeness, I include the greedy algorithm for generating the time mesh used

in the MPF simulation. I thank Alessandro Roggero for devising the approach presented

below.

The mesh construction of Section 5.5, although theoretically sound, is not directly

implementable since it requires knowing the total number of steps while constructing each

new point based on local data. To avoid this issue, as well as the restriction | ¤Λ(𝜏) | ≤ 𝐾Λ2(𝜏)
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we seek a simple-to-use greedy algorithm.

One possibility is to use a direct approach which first selects a candidate number of

steps 𝑟try. Starting from 𝑟try = 1, we then build recursively a sequence of times using the

condition (see Eq. (5.83) in the main text)

max
𝑡∈[𝑡𝑖−1,𝑡𝑖]

Λ2𝑚 (𝑡) (𝑡𝑖 − 𝑡𝑖−1) ≤
1

41

(
𝜖

0.32∥𝑎∥1𝑟

)1/(2𝑚+1)
, (5.147)

with 𝑟 = 𝑟try. Starting from 𝑡0 = 0 and looking for the largest 𝑡𝑖 that satisfies the condition,

we finally check whether the generated number of intervals is greater than 𝑟try in which case

we increase 𝑟try by one and repeat. When the algorithm stops at the optimal value 𝑟opt, we

have performed a total of 𝑟opt(𝑟opt + 1)/2 non-linear optimization steps, each one requiring

multiple evaluations of the left hand side of Eq. (5.147). This can be very demanding

when the left hand side of Eq. (5.147) is expensive to evaluate and the optimal number of

intervals is around half the upperbound

𝑟max =

(
41(𝑡 − 𝑡0) max

𝜏∈[𝑡0,𝑡]
Λ2𝑚 (𝜏)

) 2𝑀+1
2𝑀

(
0.32∥𝑎∥1

𝜖

) 1
2𝑀

(5.148)

obtained considering identical intervals and bounding Λ2𝑚 (𝑡) with its maximum value

over the whole simulation interval [0, 𝑇]. In this case, finding an approximation to the

optimal decomposition requires 𝑂 (𝑟2
max) optimization steps, each one requiring multiple

evaluations of the lefty hand side of Eq. (5.147).

We now describe an alternative approach which determines 𝑟opt within a factor of 2 and

uses only 𝑟max evaluations of max𝑡∈[𝑡𝑖−1,𝑡𝑖] Λ2𝑚 (𝑡) and additional 𝑂 (log(𝑟max)𝑟max) simple

arithmetic operations. This procedure can be used to find a viable, and approximately

optimal, decomposition of the time interval or as a good starting point to find the optimal

one using a procedure as the one described above. The idea is to start by decomposing the
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interval [0, 𝑇] into 𝑟max segments with equal length and storing the maximum of Λ2𝑚 (𝑡)

in each segment in an array 𝐴 of size 𝑟max. We then introduce an additional array of the

same size

𝐿𝑚 =

[
max
𝑘≤𝑚

𝐴𝑘

]
𝑚

𝑇

𝑟max
, (5.149)

together with an additional set of vectors of the same size

𝑅
(𝑛)
𝑚 =

[
max
𝑛≥𝑘>𝑚

𝐴𝑘

]
(𝑛 − 𝑚) 𝑇

𝑟max
, (5.150)

with 𝑛 an additional index between 1 and 𝑟𝑚𝑎𝑥 . The first vector stores the left hand side

of Eq. (5.147) for the interval up to the 𝑚-th time while the second vector stores the same

information for the interval starting at the 𝑚-th time and ending at the 𝑛-th one. The

algorithm proceeds by splitting the time interval recursively into two parts so that the left

hand side of Eq. (5.147) takes (approximately) the same value on both halves (ie. we

are splitting the error equally on both sides). At every iteration the number of intervals

doubles and the right hand side of Eq. (5.147) shrinks accordingly. We stop the procedure

once Eq. (5.147) is satisfied on one interval (since we are guaranteed it will in all others).

The procedure will stop at some 𝑟𝐾 at which point we know the optimal value 𝑟opt is in

[⌈𝑟𝐾/2⌉, 𝑟𝐾]. The algorithm can then be described as follows

1. Compute 𝐿𝑚 for all 𝑚 = 1, ..., 𝑟max

2. Set 𝑛 = 𝑟max and 𝑟 = 2

3. Compute the elements of 𝑅(𝑛)
𝑚 for all 𝑚 = 1, ..., 𝑛 − 1

4. Initialize an auxiliary array 𝐷𝑚 as 𝐷𝑚 = 𝐿𝑚 − 𝑅(𝑛)
𝑚

5. Find the least index 𝑘 for which 𝐷𝑘 > 0
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6. If 𝐿𝑘 is less than the right hand side of Eq. (5.147) with the current value of 𝑟, set

𝑟𝐾 = 𝑟 and exit

7. If 2𝑟 ≥ 𝑟max set 𝑟𝐾 = 𝑟max and exit

8. set 𝑟 = 2𝑟, 𝑛 = 𝑘 and repeat from step 3

Step 1 requires 𝑟max operations while Steps 3 and 4 cost 𝑛 operations each. Since

the number of iterations is bounded by log2(𝑟max), their combined cost is bounded by

2 log2(𝑟max)𝑟max. If we use binary search, Step 5 costs log2(𝑛) operations so its total cost

is at most log2(𝑟max)2 operations. From this analysis we see that Steps 3 and 4 are the

most expensive ones and they dominate the cost of the scheme. On exit we have 𝑟𝐾 ≈ 𝑟opt

together with the first interval [𝑡0, 𝑡1]. The rest of the intervals can then be found keeping

𝑟 = 𝑟𝐾 fixed with additional 𝑂 (𝑟max) operations.
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CHAPTER 6

A SIMULATION MIXED BAG

Each of the prior chapters of this dissertation, starting with Chapter 3, focuses on a

(mostly) self-contained theoretical project. However, I also contributed to several other

projects during my PhD, especially during earlier years. These projects are more concerned

with with applications on noisy, small-scale devices than with methods suited for relatively

noiseless processors. While my contributions were often of a mathematical and theoretical

flavor, the ultimate goal was to apply our algorithmic gadgets to existing quantum devices,

emphasizing demonstration over rigorous proof.

Each section of the present chapter corresponds to one of these projects, presented in the

order they were completed, with corresponding publication referenced within the first few

paragraphs. I will begin with a topic that technically falls outside of quantum computing

proper, in which we propose investigating discrete scale invariance and anomalous symme-

try breaking with trapped-ion quantum simulators. Moving back to quantum computing, I

will present a heuristic quantum algorithm for preparing low-lying energy states known as

the Projective Cooling algorithm. Finally, I will discuss the aptly but oddly named Rodeo

Algorithm, which is a randomized iterative phase estimation algorithm for determining

eigenvalues and preparing eigenstates of an observable, provided that observable can be

efficiently time evolved.

6.1 Discrete Scale Invariance on Trapped-Ion Systems

Closely related to the idea of simulation by quantum computation is the emulation of

a desired Hamiltonian on a controllable and accessible quantum system, namely, analog

Hamiltonian simulation. See Subsection 2.7.4 for a short background and references to
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more detailed introductions. In one of my first projects as a PhD student, I proposed, along

with collaborators [83], a scheme for simulating scale invariant Hamiltonians on trapped-

ion quantum simulators. As of writing, trapped ions are one of the most mature platforms

for exquisite manipulation of quantum systems. We begin this topic by introducing some

of the deep physics ideas motivating our study, such as anomalous symmetry breaking.

Then we will discuss our proposal for investigating these concepts on certain Hamiltonians

accessible to trapped-ion simulators. We will conclude with some of my findings on the

self-similar dynamics which these systems exhibit in for certain nearly-unbound states.

6.1.1 Scale Invariance and Quantum Anomalies

Understanding how a system changes with scale is a fundamental question in physics.

For example: How do aspects of a microscopic system affect behavior at larger scales?

Which of these aspects are relevant, and which get washed out by averaging or some

other mechanism? In modern parlance, such questions are formalized in the theory of

renormalization [91], which touches on essentially all aspects of modern physics, from

the Standard Model to phase transitions. Closely related is the concept of emergent

phenomena, which deals with how complex many-body systems achieve their properties,

not through microscopic properties themselves, but through the complex interactions of

these properties. It is remarkable that the new descriptions produced by these microscopic

interactions are even intelligible. Renormalization provides a partial answer, showing how

the effect of changing scales can often be incoporated, to good approximation, by changes

to couplings in the physical theory.

Another important concept in physics is symmetry. Symmetries provide such a powerful

framework for understanding a physical system that little progress in physics could be made
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without them. Noether’s theorem relates certain continuous symmetries to conservation

laws, and in practice symmetries allow for the reduction of computation and analysis

needed to solve a problem. While symmetries are by nature elegant and simplifying, the

breaking of symmetry has proven an essential idea to modern physics. In this project, we

explored how quantum anomalies–the breaking of symmetry in a classical Hamiltonian

by quantization–can be studied using a class of Hamiltonians that are implementable on

existing trapped-ion simulators.

Symmetry is merely a change that, in fact, leads to no change at all. When a scale

transformation is performed, yet the system looks the same at this new scale, we have scale

invariance. This is an important idea in field theory and renormalization (fixed points and

conformal field theory). Even more "mundane" standard quantum mechanical systems can

exhibit scale invariance. Take, for example, the 1/𝑟2 potential

𝐻 = 𝛼
𝑝2

2
+ 𝛽

𝑟2 . (6.1)

for 𝛼 ∈ R+ and 𝛽 ∈ R. Performing a canonical scale transformation 𝑟 ↦→ 𝜆𝑟 and 𝑝 ↦→ 𝜆−1𝑝

for any 𝜆 ∈ R+, we find that 𝐻 (𝜆𝑟, 𝑝/𝜆) = 𝜆−2𝐻 (𝑟, 𝑝). Classically, this leads to a trivial

change in the phase space dynamics whereby the trajectories are the same, but time rescaled

as 𝜆2𝑡. Quantum mechanically, the time evolution operator is rescaled by the same factor.

Remarkably, even this simple example leads to a quantum anomaly for sufficiently attractive

potentials [20, 62]. The full scale invariance is broken to a discrete one, giving rise to a

tower of bound states approaching 𝐸 → 0 related by a geometric sequence. Thus, this

simple Hamiltonian, which may arise from the interaction of an electromagnetic dipole

and point charge, already exhibits a surprising richness. What’s more, the potential turn

out to be intimately related to the Efimov effect [41, 99], a curious phenomena in which
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bosons, with short range interactions, cannot form a two-body bound state, but three bosons

together have an infinite number of bound states. The binding of three particles, but not two,

recalls the intriguing Borromean rings [34], which are linked such that cutting any single

ring unlinks all the rings. Since the original discovery, Efimov physics has been linked to

a broad class of phenomena, and theoretical interest has been recently growing [99].

6.1.2 Trapped-Ion Systems

One of the most developed hardware platforms for quantum information processing is

the ion trap [19], first proposed as a platform for universal quantum computation shortly

after Shor’s groundbreaking factoring algorithm [30]. Atomic ions, typically Ytterbium

or one of several alkaline earth metals, are trapped using lasers in a 1D chain. External

control and readout of the system is mediated by laser pulses, and interactions between

the ions is performed, interestingly, through coupling with phononic modes [100] in the

1D chain. Trapped ions possess a number of internal states that can be used as the

informational degree of freedom (e.g., qubit) including hyperfine, Zeeman, optimal, and

fine transitions. The impressive degree of control, all-to-all connectivity, high fidelity of

operations, and long coherence times make trapped ions a promising platform for quantum

hardware experiments and computations.

Although the technology is being pursued for general computation, these systems can

also be operated as analog simulators. Our study is motivated by a particular long range

interaction that can be engineered between the ions. Using two hyperfine "clock" states,

the following effective spin Hamiltonian can be approximately generated [103].

𝐻 =
∑︁
𝑖, 𝑗

∑︁
𝑘=𝑥,𝑦,𝑧

𝐽𝑘𝑖 𝑗𝜎
(𝑖)
𝑘
𝜎

( 𝑗)
𝑘

+
∑︁
𝑖

∑︁
𝑘=𝑥,𝑦,𝑧

𝐵𝑖𝑘𝜎
(𝑖)
𝑘
. (6.2)

Here 𝜎 (𝑖)
𝑘

is the 𝑘th Pauli matrix on site for ion 𝑖. The parameters 𝐽 are related to the spatial
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coordinates of the ions and can be tuned separately for each 𝑘 using laser pulses. At long

ranges, the couplings fall off as

𝐽𝑘𝑖 𝑗 ≈
𝐽𝑘0

|𝑖 − 𝑗 |𝛼 (6.3)

for chosen 𝛼 ∈ (0, 3) [103, 72] and couplings 𝐽𝑘0 .

It is the long-range character (6.3) that we find particularly interesting. By factoriz-

ing (6.2) into and 𝑥𝑦 piece and a 𝑧 piece, and choosing appropriate coupling parameters, we

can created effective kinetic-potential Hamiltonians with scale invariant properties. First,

making the choice

𝐽𝑥𝑖 𝑗 = 𝐽
𝑦

𝑖 𝑗
≡ 𝐽𝑖 𝑗 , 𝐽𝑧

𝑖 𝑗
= 𝑉𝑖 𝑗 , 𝐵𝑖𝑘 = 𝛿𝑘𝑧𝑈𝑖 (6.4)

we find that the Hamiltonian factorizes as 𝐻 = 𝑇 +𝑉 +𝑈, where 𝑇 is a kinetic term, 𝑉 is a

potential interaction term, and 𝑈 is a on-site potential. With this parametrization, the full

Hamiltonian becomes

𝐻 =
∑︁
𝑖≠ 𝑗

𝐽𝑖 𝑗 (𝑋𝑖𝑋 𝑗 + 𝑌𝑖𝑌 𝑗 ) +
∑︁
𝑖≠ 𝑗

𝑉𝑖 𝑗𝑍𝑖𝑍 𝑗 +
∑︁
𝑖

𝑈𝑖𝑍𝑖 . (6.5)

The "particles" of the system are given by the spin state: we say that there is a particle

at site 𝑗 if a 𝑍 𝑗 measurement yields +1, i.e., we equate particle occupancy with the

binary value of the 𝑍 𝑗 observable. Notice that
∑
𝑖 𝑍𝑖 is conserved by 𝐻, hence particle

number is conserved. We can interpret these particles as hard-core bosons, with raising

and lowering operators given by 𝜎±, and strong repellant interactions at short distances

preventing multiple occupancy of a site. Hard-core bosons might serve as a reasonable

model for nuclei with even number of nucleons, since nuclei are repulsive at low energies.

We want to consider the Hamiltonian (6.5) as a discretization of some continuous-

variable system with scale invariance. As such, we will need to consider low energies
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where wavelengths are large compared to the lattice. Considering only the kinetic term

𝑇 alone, with asymptotic form (6.3) of the hopping coefficient, and neglecting boundary

effects by assuming a large chain, the eigenenergies are given by

𝐸 (𝑝) = 4𝐽0

∞∑︁
𝑚=1

1
𝑚𝛼

cos(𝑝𝑚). (6.6)

Performing a low momentum expansion, we find that for 𝛼 < 3

𝐸 (𝑝) = 2𝐽0 sin(𝛼𝜋/2)Γ(1 − 𝛼) |𝑝 |𝛼−1 +𝑂 (𝑝2). (6.7)

Here is the first part of our scale invariant Hamiltonian. Now we consider the potential

part. We fix one of our bosons ("spin up") on one of the sites, say site 0, with a very deep

on-site potential 𝑈0. We then add a second boson and tune the potential interaction 𝑉𝑖 𝑗

such that, at large distances

𝑉𝑖 𝑗 ∼
𝑉0

|𝑖 − 𝑗 |𝛼−1 . (6.8)

Then, we see that the total Hamiltonian

𝐻 = 2𝐽0 sin(𝛼𝜋/2)Γ(1 − 𝛼) |𝑝 |𝛼−1 + 𝑉0

|𝑟 |𝛼−1 +𝑂 (𝑝2) (6.9)

is scale invariant at low momenta. With choice of parameter 𝐽0 < 0, 𝑉0 < 0, this Hamilto-

nian has an attractive potential. In our paper’s Supplemental Material [83], we provide the

limit cycle boundary 𝐸 = 0 state as well as the discrete scaling factor relating the bound

state energies near this threshold.

6.1.3 Self-Similar Dynamics

In the previous sections, we have discussed discrete scale invariance in the bound

state spectra of certain Hamiltonians, and how these could be constructed on trapped-ion
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systems. Discrete scale invariance implies self-similarity as one changes their "field of

view" by certain discrete amounts.

Besides providing equilibrium information via the Gibbs state, the bound state spectrum

impacts the closed-system dynamics. Can the self-similarity of the bound state spectrum

manifest in the dynamical evolution of a chosen initial state? We will show that the answer

is yes, though the initial state must be chosen carefully and may be difficult to prepare.

The idea is to prepare a weakly bound state that overlaps many of the eigenstates just

below the 𝐸 = 0 threshold. Take as initial state

|𝜓(0)⟩ =
∞∑︁
𝑛=0

𝑐𝑛 |𝑛⟩ (6.10)

where 𝑛 indexes the bound states of energy 𝐸𝑛 < 0, with some chosen 𝐸0 as the lowest

energy state. These energies are related in geometric sequence as 𝐸𝑛 = 𝐸0/𝜆𝑛 for some

𝜆 > 1. The time evolved state is given by

|𝜓(𝑡)⟩ =
∞∑︁
𝑛=0

𝑐𝑛𝑒
−𝑖𝐸𝑛𝑡 |𝑛⟩ =

∞∑︁
𝑛=0

𝑐𝑛𝑒
−𝑖𝐸0𝑡/𝜆𝑛 |𝑛⟩ . (6.11)

Suppose now we rescale 𝑡 by 𝜆. Because 𝐸𝑛−1 = 𝐸𝑛𝜆, this is simply
∑
𝑛 𝑐𝑛𝑒

−𝑖𝐸𝑛−1𝑡 |𝑛⟩.

Without relating the coefficients 𝑐𝑛, there isn’t much more that can be said. Imposing the

condition 𝑐𝑛 = 𝛾𝑐𝑛−1, however, we find

|𝜓(𝜆𝑡)⟩ = 𝛾
∞∑︁
𝑛=1

𝑐𝑛−1𝑒
−𝑖𝐸𝑛−1𝑡 |𝑛⟩ + 𝑐0𝑒

−𝑖𝐸0𝜆𝑡 |0⟩ .

= 𝛾𝑈+ |𝜓(𝑡)⟩ + 𝑐0𝑒
−𝑖𝐸0𝜆𝑡 |0⟩

(6.12)

where 𝑈+ |𝑛⟩ := |𝑛 + 1⟩. Besides the piece proportional to |0⟩, we have a representation

of the initial state |𝜓(0)⟩ on the subspace span{|𝑛⟩}∞
𝑛=1. The scaling factor 𝛾 ∈ C must

satisfy |𝛾 | < 1 for normalization purposes, and in fact |𝑐0 |2 + |𝛾 |2 = 1. Already, we see

some manifestation of self-similarity.
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Some feasible measurement must be performed to extract the information about the

state (6.12). Let’s consider the overlap observable 𝑊 (𝑡) := ⟨𝜓(0) |𝜓(𝑡)⟩, which might be

obtained with two copies of the initial state, one of which time-evolved, then performing

some version of the SWAP test. We find

𝑊 (𝑡) = (1 − |𝛾 |2)
∞∑︁
𝑛=0

|𝛾 |2𝑛𝑒−𝑖𝐸0𝑡/𝜆𝑛 . (6.13)

Up to normalization and nomenclature, the real part of this is nothing more than a Weier-

strauss function, defined in the original paper as
∞∑︁
𝑛=0

𝑎𝑛 cos(𝑏𝑛𝜋𝑥). (6.14)

In particular, we make the identifications

𝑎 = |𝛾 |2, 𝑏 = 𝜆−1, 𝑥 =
𝐸0𝑡

𝜋
. (6.15)

For certain values of the parameters 𝑎, 𝑏 is a fractal, being continuous everywhere but differ-

entiable nowhere. This is not the case we are currently in; our evolution is mathematically

smooth. As 𝑛 increases in the series, the frequencies 𝑏𝑛 decrease exponentially, leading to

an utterly smooth behavior. This is not surprising, since all of the bound eigenstates states

present in our initial state have frequencies within [𝐸0, 0].

Despite this, we can recover an approximate self similarity at long time scales. Consider

𝛾 = 1−𝛿, with 𝛿 > 0 taken very small. Then, for 𝑁 ∈ Z+ such that 𝑛𝛿 ≪ 1 for all 𝑛 < 𝑁 , the

first 𝑁 levels have approximately equal weight in the superposition. Shifting 𝑡 ↦→ 𝜆𝑡 then

leaves the function approximately unchanged, up to a small high-frequency component.

For these 𝑁 levels, then, we get
𝑁∑︁
𝑛=0

cos(𝜆−𝑛𝐸0𝑡) (6.16)
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exhibiting self similar behavior. Moreover, if we rescale to 𝑡 ↦→ 𝜆𝑛𝑡 and reindex 𝑛 ↦→ 𝑁−𝑛,

we get something which looks like a truncation of a Weierstrass function

𝑁∑︁
𝑛=0

cos(𝜆𝑛𝐸0𝑡). (6.17)

In short, by zooming out to larger time scales, the short time scales appear fractal. The

Weierstrauss function is famous as being an example of a continuous function that is

differentiable nowhere. It is also a fractal, with fractal dimension

𝐷 = 2 + log 𝑎
log 𝑏

= 2(1 − log|𝛾 |
log𝜆

). (6.18)

In our case 𝐷 = 2, so our curve is space filling. Different choices of coefficient 𝑐 𝑗 in, in

which lower frequencies have higher amplitude, could produce a different amplitude 𝑎 and

therefore different apparent fractal dimension.

6.1.4 Discussion

In this Section, we show how trapped-ion quantum simulators can be used to investigate

Hamiltonians with anomalous symmetry breaking due to quantization, with applications to

Efimov physics. We characterized the nature of the discrete scale invariance of the bound

state spectrum for a family of scale-invariant Hamiltonians. Finally, we indicate how

self-similar dynamics, reminiscent of the Weierstrass function, can be obtained through

particular state preparation and measurement.

Unfortunately, technological challenges remain to implementing the low energy Hamil-

tonian (6.9), particularly due to the need for long wavelengths relative to the ion spacing.

As of writing, trapped ion quantum computers are of size at most 60 [50, 139], which

appears small enough to introduce unwanted boundary effects. While there are no funda-

mental limitations to the size of the ion trap, implementing interactions between the ions
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becomes increasingly challenging and expensive as the size scales up [97]. We hope these

challenges may be resolved by future improvements in technology or clever implementation

of our approach.

6.2 Projective Cooling Algorithm

Having considered analog quantum simulators, we return back to digital quantum com-

puting, but still with an analog flavor. Absent of error correction and logical qubits, current

quantum computers mainly reside in the regime of Noisy Intermediate Scale Quantum

(NISQ) devices. Such devices implement imperfect operations and are subject to decoher-

ence, severely restricting maximum computation time. For algorithm developers looking

to find near-term application of quantum computers, it is important that the proposed

algorithms are relatively noise insensitive.

In this section, we will discuss the Projective Cooling Algorithm [82], which prepares

ground states, or generally low-lying states, of a kinetic-potential Hamiltonian with lo-

calized interactions and translationally-invariant kinetic term. Such systems are common

in nuclear physics, as nuclear interactions are spatially local and often only a few deeply

bound states exist. I will discuss the main idea of the algorithm, followed by an application

to the Dirac delta potential.

6.2.1 Background

Preparing ground states of a Hamiltonian is valuable for both scientific computing and

mathematical optimization. This is known to be a hard problem in general [79] and even

determining basic properties, such as a the existence of a spectral gap, is undecidable [35].

However, the importance of determining ground state properties is so great that generic

hardness is not a deterrent to trying. Moreover, generic hardness of the ground state
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problem does not necessarily imply hardness among the instances of "physical interest."

Several heuristic or partial algorithms exist for preparing ground states, or low-lying

eigenstates. One of these is the adiabatic algorithm, in which a ground state of a simple

Hamiltonian 𝐻0 is prepared, then evolved according to a slowly varying time dependent

𝐻 (𝑡) which takes 𝐻0 to the Hamiltonian 𝐻 of interest. The premise of the algorithm, as the

name suggests, rests on adiabaticity: provided that the evolution is "sufficiently slow," the

state |𝜓(𝑡)⟩ will remain in the ground state of 𝐻 (𝑡) for any time 𝑡. The slowness required

is related to the inverse gap between the ground state and the next excited state at any

given time. Unfortunately, it can be challenging to ensure that the gap does not decrease

exponentially with system size, despite clever choice of initial Hamiltonian and trajectory

𝐻 (𝑡) in model space. As another example, we briefly mention Variational Quantum

Eigensolver (VQE) [22], which is an optimization approach to finding the ground state

whereby circuit parameters are optimized to reduce the energy of the state. Unfortunately,

variational methods are known to suffer from barren plateaus [94], which provide a poor

optimization landscape for gradient-based methods to succeed.

A distinct class of approaches, in which we include projective cooling, may be char-

acterized as measurement-based. Simple projective measurements, as the name suggests,

project onto a state, or subspace, determined by the measurement outcome. By performing

a measurement compatible with the energy basis, it is possible to post-select on measuring

a result compatible with the ground state. The main limitation arises when the probability

of successful measurement is vanishingly small. Indeed, for a randomly prepared initial

state, the expected overlap with the ground state should decrease exponentially with system

size. A natural objection to this grim outlook is the existence of clever ansatzes, such as
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Hartree-Fock states, that have been developed in the domain sciences long before quantum

computing, which can be expected to have much higher overlap than a randomly chosen

state.

The canonical and highly general measurement-based scheme for state preparation

is the suite of phase estimation algorithms, to be discussed in greater detail in the next

Section. At a high level, phase estimation is nothing more than a projective measurement

in the eigenbasis of a chosen unitary 𝑈. When 𝑈 is a time-evolution operator for time

independent 𝐻, this corresponds to a measurement of energy states. Given initial state |𝜓0⟩

with fidelity 𝑝gs with the ground space of 𝐻, a run of phase estimation will produce the

(approximate) ground state with (approximate) probability 𝑝gs. Thus, repeating 𝑂 (1/𝑝gs)

times is sufficient to produce the ground state.

The generality of phase estimation suggests a tradeoff in the form of computational

difficulty. Phase estimation algorithms require at least one auxiliary qubit to use as a control

register for a controlled time evolution. Moreover these operations do not necessarily

respect hardware connectivity, as the control register must talk to all qubits in the main

system. For present hardware, these demands can be prohibitive.

6.2.2 Projective Cooling

To avoid the demands imposed by phase estimation, focusing on a more specific class

of Hamiltonians is desirable. We take inspiration from nuclear physics. Nucleons exhibit

strong, short-range interactions, and thus their bound states are also spatially localized.

Many nuclei have only a few deeply bound states, and possibly many more shallow bound

state. For example, the simple deuteron is know to have only one bound state. When

nucleons are freed from the short-range potential, they enter scattering, or continuum states
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that evolve according to a translationally-invariant kinetic Hamiltonian. These scattering

states tend to disperse away from the interaction region, while the bound states naturally

remain localized in the interaction region.

The above discussion suggests simple criterion for distinguishing bound and unbound

states for such systems: long-term localization. Evolved under the nuclear Hamiltonian,

bound states will stay localized in the interaction region, while unbound states will disperse

away. A measurement of the nuclear configuration (i.e., many-particle position measure-

ment) should distinguish the two cases. To retain coherence, a binary measurement should

be made which only records whether particles are found outside the range of interaction.

Assuming none are, we can expect the system to have lower energy content, since the

particle distance from the interaction region is correlated with energy.

Such reasoning is the basis of the Projective Cooling algorithm. We begin by preparing

an initial state localized with respect to the interaction. We then perform a time-evolution

according to the natural Hamiltonian of the system for some time 𝑇 . Finally, a binary

measurement is performed which asks whether or not particles are found outside the

region in which the potential 𝑉 has greatest support.

It is reasonable to expect the initial state to have higher overlap with the ground state,

barring special symmetry, than a generic state far from the interaction region. This suggests

simple yet effective ansatzes are available for these localized systems. The simulation time

𝑇 required depends, in principle, on the nature of the potential. Resonances will tend to

weaken the effectiveness of the algorithm by keeping continuum states around longer. At

the same time, 𝑇 cannot be chosen longer than the velocity of the dispersive component

of the wave function, or else there will be reflections due to the finite box size. The final
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measurement 𝑀 is in the configuration basis, which can be made simple by choosing it

as our computational basis. Altogether, no auxiliary registers and additional controlled

operations are necessary. The time evolution itself can be expected, generally, to be the

most difficult subroutine of the algorithm.

6.2.3 Application to Approximate 1D Dirac Delta Potential Well

We demonstrate the Projective Cooling procedure with a 1D particle in an attractive,

localized, deep potential square well. The Hamiltonian is

𝐻 =
𝑝2

2𝑚
+𝑉 (6.19)

where

𝑉 (𝑥) =


−𝑉0 |𝑥 | < 𝐿

0 |𝑥 | ≥ 0
(6.20)

for 𝑉0, 𝐿 > 0. We take a discretization of this into 2𝑁 sites labeled 𝑛 = −𝑁, . . . , 𝑁 . We

aren’t concerned so much with the interior details of the potential as much as its localization,

for this simple example. As such, we will assume only the 𝑛 = 0 point is located within

the potential; that is, the lattice spacing 𝑎 is larger than 𝐿. The discretized potential then

becomes simply

�̂� = −𝑉0 |0⟩⟨0|. (6.21)

For the kinetic term, we take a symmetric finite difference approximation. That is,

�̂� =
1

2𝑚𝑎2 (2𝐼 −𝑈+ −𝑈−) (6.22)

where𝑈+ = 𝑈†
− is the right-shifting unitary operation𝑈+ |𝑛⟩ = 𝑈+ |𝑛 + 1⟩. The discretized

Hamiltonian �̂� = �̂� + �̂� has a bound state spectrum that can be analyzed using an ansatz
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borrowed from the continuum Dirac delta potential. Neglecting finite boundary, we take

an ansatz bound state of the form

|𝜅⟩ =
∞∑︁

𝑛=−∞
𝑒−𝜅𝑎 |𝑛| |𝑛⟩ . (6.23)

Applying �̂� to |𝜅⟩, we see that |𝜅⟩ is an eigenstate with energy 𝐸 provided the following

two conditions are satisfied.

𝐸𝑚𝑎2 = 1 − cosh(𝜅𝑎)

1 − 𝑒−𝜅𝑎 = 𝑚𝑎2(𝑉0 + 𝐸)
(6.24)

This transcendental equation admits a unique solution for 𝜅 > 0 and 𝐸 < 0. Thus, provided

our cutoff 𝑁 is sufficiently large, we might expect to find such a state following Projective

Cooling.

For our numerical example, we work in lattice units where 𝑎 = 1, and we will also take

𝑚 = 𝑉0 = 1. The full discretized Hamiltonian is then

�̂� = (𝐼 − 1
2
𝑈+ −

1
2
𝑈−) − |0⟩⟨0|. (6.25)

We now need to discuss a mapping of this Hamiltonian onto a set of qubits. One natural

choice is to encode position into the computational basis. This has the advantage of

requiring 𝑂 (log 𝑁) qubits representing the system, which is valuable because Projective

Cooling requires a large enough region for the unbound states to disperse into. In contrast,

we could directly represent each lattice site with a qubit. This leads to a less-favorable

𝑂 (𝑁) scaling, but the advantage is that multiple particles could be allowed, with hard-

core repulsion preventing multiple occupancy. Moreover, the operations 𝑈+,𝑈− are much

simpler to implement in this "unary" encoding.
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The case of unary encoding is discussed in the paper (Model 1A) [82]. Here, we

supplement this work with a discussion of the binary encoding approach. The number

of qubits needed to represent the system scales as 𝑛 ∈ 𝑂 (log 𝑁). Preparing Gaussian

wavepackets on a quantum register is a well-studied problem [108, 80, 78], and we assume

this can be done efficiently.

For simulating �̂�, several methods could be employed. Trotterizing along the two

terms �̂� and �̂� , one could simulate �̂� using a 𝐶𝑛−1(𝑅𝑧) gate, and �̂� by diagonalizing via

the Quantum Fourier Transform. Alternatively, we observe that �̂� can be expressed as a

linear combination of unitaries (LCU), hence is amenable to simulation by qubitization.

The number of required queries to the block-encoding "select" SEL and "prepare" PREP

circuits scales as 𝑂 (𝑇 + log 1/𝜖) for simulation time 𝑇 and accuracy 𝜖 . The PREP circuit

is only on two qubits, because once the identity terms are removed, there are only 3

unitary pieces. The SEL cost is dominated by the controlled incrementer, which requires

𝑂 (𝑛2) = 𝑂 (log2 𝑁) CNOT gates [85]. The potential part of SEL requires the reflection

operator 𝐼 − 2
��0⊗𝑛〉 〈

0⊗𝑛��, controlled on the "prepare register." This requires only 𝑂 (𝑛)

gates. The number of auxiliary qubits for the LCU is 2, and does not change with system

size.

Once the time evolution is performed, a measurement must be performed to determine if

the particle is found significantly outside the region of interaction. A simple computational

basis (i.e., position) measurement won’t do, since this will destroy the state of interest.

instead, a binary measurement must be done which asks whether the position of the

particle is outside of a range 𝑅 determined by the locality of the state. This can be done

with a comparator circuit [114] which requires𝑂 (𝑛) gates and a couple of auxiliary qubits
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to be measured.

6.2.4 Discussion

Here we considered the Projective Cooling algorithm for preparing ground states using

the dispersion of unbound states away from the interaction region. While we motivated our

approach using nuclear systems, the method can be applied to any system with attractive,

localized potential interactions and a translationally invariant kinetic energy. Following our

initial work, the method was used to investigate the transverse Ising model [58], with success

for models which exhibited dispersion rather than localization. Like other measurement-

based state preparation algorithms, success is contingent upon having sufficient overlap with

the bound state of interest. For localized interactions, an effective ansatz may correspond

to, for example, a Gaussian packet of width on the order of the interaction length.

Determining the required𝑇, 𝜖 and 𝑁 analytically to ensure good fidelity with the ground

state is beyond our scope. In our paper, we mainly employ classical numerical simulations

that suggest good convergence to the desired state, and refer the reader to these results [82].

However, a more careful theoretical treatment is left to be desired. This might be done

using a scattering theory treatment. This would likely elucidate the role of resonances,

which should propagate slowly and thus hinder the method’s effectiveness.

6.3 Rodeo Algorithm

This final section of the chapter concerns a new addition to the suite of iterative

Quantum Phase Estimation (IQPE) protocols known as the Rodeo Algorithm. The original

algorithm was introduced in [29], where it was tested on the Heisenberg model using

classical simulations. Subsequently, an actual quantum computation on IBM quantum

computer Casablanca was performed for a simple single-qubit Hamiltonian [105]. In more
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recent work [11], the Rodeo Algorithm was tested on two-qubit Hamiltonians and used to

benchmark a protocol for efficiently compiling complex sequences of controlled operations.

Rather than cover all of these works in detail, here I will describe the principles of the

algorithm, its relation to iterative phase estimation, and my contributions to the theoretical

characterization of the method.

6.3.1 Phase Kickback and Phase Estimation

Needless to say, unitary operations play a vital role in quantum mechanics, particularly

quantum computing. A fundamental computational task one might be interested in is

estimating the eigenvalues of a unitary 𝑈. Given a quantum state |𝜓⟩ on the Hilbert

space of 𝑈, one way to learn the eigenvalues of 𝑈 is through a projective measurement

in the eigenbasis. This has the added benefit of approximately preparing a corresponding

eigenstate.

Phase estimation algorithms accomplish precisely this goal. For readers familiar with

basic optics, a satisfying analogy exists between phase estimation and Mach-Zehnder

interferometers [67]. In fact, the analogy is so close that it is more accurate to say they

share the same working principle: measuring a phase shift via interference.

Phase estimation algorithms have been around for as long as quantum computing has

garnered significant attention. Shor’s famous algorithm for factoring [117], and the more

general problem of finding discrete logarithms, rests on phase estimation techniques, as

does the HHL algorithm for solving linear systems [64]. Standard QPE, based on the

Quantum Fourier Transform, is described in detail in Nielsen and Chuang’s well-known

text [100]. Kitaev supplied perhaps the first iterative QPE protocol [77], and several

improvements to the method have been made since [124, 67, 101]. Adaptive protocols
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allow for improved phase measurement schemes based on prior measurements [135]. Often

iterative QPE refers simply to a "iteratization" of the standard QFT by pushing all controls

past the measurements [59].

6.3.2 Basic Circuit

Figure 6.1 exhibits the fundamental iteration of the Rodeo Algorithm, which we term

a "cycle." The upper wire represents a single auxiliary qubits, on which single qubit gates

such as the Hadamard 𝐻 and the parametrized phase gate

𝑆(𝛼) :=
©«
1 0

0 𝑒𝑖𝛼

ª®®¬ . (6.26)

act. The lower register is the main register of interest, where 𝑈 (𝑡) = 𝑒−𝑖𝑂𝑡 is the time

evolution operator for some observable 𝑂 of interest. The parameter 𝐸 is called the

target energy, and set by the user. Meanwhile, 𝑡 is a random variable sampled from some

distribution 𝜌 centered about zero. We take 𝑡 to be normally distributed with variance

1/Γ2.

𝜌(𝑡) = Γ
√

2𝜋
𝑒−(Γ𝑡)

2/2 (6.27)

Other reasonable choices exist, but the normal distribution is simple to analyze and performs

well enough. Some choices, such as the uniform distribution over [−Γ−1, Γ−1], are less

favorable as they have poorer filtering properties resulting from the distribution having

long tails in Fourier (energy) space.

Roughly speaking, the parameters 𝐸, Γ define an interval [𝐸 − Γ, 𝐸 + Γ] for which

the Rodeo measurement protocol asks the question: Is there an eigenvalue of 𝑂 located

in [𝐸 − Γ, 𝐸 + Γ]? Like all quantum measurements, this will depend on the state |𝜓0⟩
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|0⟩ 𝐻 𝑆(𝐸𝑡) 𝐻

|𝜓0⟩ 𝑈 (𝑡)

Figure 6.1 Elementary iteration ("cycle") of the Rodeo Algorithm. Times 𝑡 are randomly
sampled from a normal distribution of center 0 and width Γ−1. Performing 𝑀 cycles acts
as a band-pass filter, only allowing eigenvalues within a range centered around 𝐸 with
width Γ. Eigenvalues outside this inverval are exponentially suppressed in the number of
cycles 𝑀 . "Success" is conditioned on all 𝑀 measurement outcomes being 0.

prepared, and a successful detection will occur with frequency given by the Borne rule. As

Γ shrinks, longer time evolutions𝑈 (𝑡) will occur, and this is expensive. Taking the cost to

increase linearly in 𝑡, which saturates lower bounds of the no-fast-forwarding theorem [15],

the cost scales inversely with the accuracy. This is in accord with the Heisenberg limit for

quantum parameter estimation.

The role of the phase gate 𝑆(𝐸𝑡) is to shift the spectrum of 𝑂 by −𝐸 . This is because

the phase acts equivalently to a controlled phase multiplication on the system.

𝑆(𝛼) =
𝑒𝑖𝛼

Applying this identity to the circuit of Figure 6.1 and combining the control gates,

𝐻 𝑆(𝐸𝑡) 𝐻

𝑈 (𝑡)
=

𝐻 𝐻

𝑈𝐸 (𝑡)

where

𝑈𝐸 (𝑡) = 𝑒𝑖𝐸𝑡𝑈 (𝑡) = 𝑒−𝑖(𝑂−𝐸𝐼)𝑡 . (6.28)

For eigenvalues 𝜆 of 𝑂 within 𝑂 (Γ) of 𝐸 , 𝑒−𝑖(𝜆−𝐸)𝑡 is relatively unaffected by variations

in 𝑡 of order 𝑂 (Γ−1). Meanwhile, other eigenvalues are shifted dramatically as 𝑡 varies
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randomly. This we analogize as the "bucking" in the Rodeo Algorithm, where far-away

eigenvalues are likely to be kicked off. This will be elucidated more concretely in subse-

quent analysis.

As far as the author is aware, our algorithm is the first of the phase estimation family

to employ random parameters and shift the Hamiltonian in this fashion. Even if our initial

state |𝜓0⟩ has small overlap with the eigenstates we are interested in, successive iterations

of this circuit, with 𝐸 and Γ trained on the energy range of interest, allow us to amplify

these states and determine whether our operator 𝑂 has some eigenvalue in the range set

by these parameters. We do require |𝜓0⟩ to have some overlap with these eigenstates.

However, the threshold for detection can be made increasingly small with repeated cycles.

6.3.3 A Single Buck of the Bull

Let |𝜓0⟩ be the initial state of the main register, as in Figure 6.1. We decompose |𝜓0⟩

into its spectral components in the following way.

|𝜓0⟩ =
∑︁

𝛼∈𝜎(𝑂)
𝑐𝛼 |𝛼⟩ (6.29)

Here, 𝜎(𝑂) is the spectrum of𝑂, i.e., the set of (real) eigenvalues, 𝑐𝛼 ∈ C is the component

of |𝜓0⟩ along the eigenspace of 𝛼, and |𝛼⟩ is the projection onto this subspace.

|𝛼⟩ :=
𝑃𝛼 |𝜓⟩√︁
⟨𝜓 | 𝑃𝛼 |𝜓⟩

, 𝑐𝛼 := ⟨𝛼 | 𝑃𝛼 |𝜓⟩ =
√︁
⟨𝜓 | 𝑃𝛼 |𝜓⟩. (6.30)

We will suppress the notation 𝜎(𝑂) in the sum (6.29) from now on. The output of the

rodeo cycle, before measurement, is given by the well-known result for the Hadamard test.

|0⟩ |𝜓0⟩ → |0⟩
( 𝐼 +𝑈𝐸 (𝑡)

2
|𝜓0⟩

)
+ |1⟩

( 𝐼 −𝑈𝐸 (𝑡)
2

|𝜓0⟩
)

(6.31)
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Expressing this in terms of the eigenbasis |𝛼⟩ gives

|0⟩ |𝜓0⟩ → |0⟩ ⊗
∑︁
𝛼

𝑐𝛼𝑒
−𝑖Δ𝛼𝑡/2 cos(Δ𝛼𝑡

2
) |𝛼⟩

+ |1⟩ ⊗
∑︁
𝛼

𝑐𝛼𝑖𝑒
−𝑖Δ𝛼𝑡/2 sin(Δ𝛼𝑡

2
) |𝛼⟩

(6.32)

where we have defined Δ𝛼 = 𝛼−𝐸 . If the measurement succeeds (0), we continue on with

the iteration of the circuit and preserve the state of the main register, while for failure we

either halt or discard the result at the end of the computation. Assuming success, the new

state vector |𝜓′⟩ is given by

|𝜓′⟩ =
∑︁
𝛼

𝑐′𝛼 |𝛼⟩

𝑐′𝛼 = 𝑐𝛼𝑒
−𝑖Δ𝛼𝑡/2 cos

(
Δ𝛼𝑡

2

) (6.33)

up to normalization. The probability 𝑝′𝛼 = |𝑐′𝛼 |2 is slightly more illuminating.

𝑝′𝛼 = 𝑝𝛼 cos2
(
Δ𝛼𝑡

2

)
(6.34)

Observe that a relative enhancement of the probability amplitudes 𝑝𝛼 is observed when

cos2(Δ𝛼𝑡/2) ≈ 1. This certain occurs for Δ𝛼𝑡 ≈ 0, i.e., for 𝛼 near the target energy, but

also for Δ𝛼𝑡 = 2𝜋𝑘 with 𝑘 ∈ Z. These peak locations for 𝑘 ≠ 0 fluctuate with 𝑡. With

many cycles, it is unlikely that any eigenvalue far from 𝐸 will stay on a maximum across

multiple trials, as we will see shortly.

The probability of success 𝑃0 and failure 𝑃1 is computed from the squared norm of

each term in equation (6.32).

𝑃0 =
∑︁
𝛼

𝑝𝛼 cos2
(
Δ𝛼𝑡

2

)
𝑃1 =

∑︁
𝛼

𝑝𝛼 sin2
(
Δ𝛼𝑡

2

)
= 1 − 𝑃0.

(6.35)
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6.3.4 Multiple Bucks: the Full Rodeo

The extension of the previous analysis from a single run to 𝑀 runs through the basic

circuit of Figure 6.1 is relatively straightforward. Let (𝑡𝑖)𝑀𝑖=1 be the time samples for each

cycle. Then, with repeated application of equation (6.34), the probability amplitude 𝑝 (𝑀)
𝛼

of 𝛼 after 𝑀 runs, conditioned on the circuit succeeding, is given by

𝑝
(𝑀)
𝛼 = 𝑝𝛼

𝑀∏
𝑖=1

cos2
(
Δ𝛼𝑡𝑖

2

)
. (6.36)

The success probability 𝑃(𝑀)
0 may be factorized as

𝑃
(𝑀)
0 =

𝑀∏
𝑘=1

𝑍𝑘 (6.37)

where 𝑍𝑘 is the probability of measuring zeros on the 𝑘th measurement conditioned on

measuring zeros in every prior measurement. Let |Ψ𝑘−1⟩ = |0⟩ ⊗ ∑
𝛼 𝑐

(𝑘−1)
𝛼 |𝛼⟩ be the

state of the entire register after 𝑘 − 1 successful measurements and directly before the 𝑘th

measurement. From Born’s rule,

𝑍𝑘 =
∥ ⟨0|Ψ𝑘−1⟩ ∥2

⟨Ψ𝑘−1 |Ψ𝑘−1⟩
, (6.38)

where ⟨0| ≡ ⟨0| ⊗ 𝐼. Adapting equation (6.32) to the present situation,

𝑍𝑘 =

∑
𝛼 𝑝

(𝑘−1)
𝛼 cos2 (Δ𝛼𝑡𝑘/2)∑

𝛽 𝑝
(𝑘−1)
𝛽

=

∑
𝛼 𝑝

(𝑘)
𝛼∑

𝛽 𝑝
(𝑘−1)
𝛽

.

(6.39)

Returning to expression (6.37), we see that each 𝑍𝑘 in the product telescopes, giving a

simple formula.

𝑃
(𝑀)
0 =

∑︁
𝑝
(𝑀)
𝛼 =

∑︁
𝛼

𝑝𝛼

𝑀∏
𝑘=1

cos2
(
Δ𝛼𝑡𝑘

2

)
(6.40)
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That is, the success probability is simply the sum of the unnormalized probability am-

plitudes. In hindsight, we could have anticipated that, for each 𝛼, the measurement

probabilities over each iteration behave independently, as exhibited in equation (6.40).

Performing the analysis for an eigenvector input state, one finds that the state is unaffected

by the measurement outcomes, thus the measurements are independent. The full result

follows by linearity.

6.3.5 Statistics

Now that we’ve determined the behavior for a particular choice of times (𝑡𝑖)𝑀𝑖=1, we must

recall that these times were randomly chosen according to the normal distribution (6.27).

We hope, though have yet to fully justify, that the measurement statistics correlate strongly,

and predictably, with the presence of an eigenvalue within 𝐸 ±Γ that significantly overlaps

the initial state. To do this, it makes sense to compute some basic statistics about the

measurement results, particularly the expected behavior over the distribution of 𝑡𝑖. Thus,

we compute the expectation values of 𝑝 (𝑀)
𝛼 (𝑡) and P (𝑀)

0 (𝑡). Using equation (6.36),

⟨𝑝 (𝑀)
𝛼 ⟩ =

∫
R𝑀

𝜌(𝑡)𝑝 (𝑀)
𝛼 𝑑𝑡𝑀

=
Γ

(2𝜋)𝑀/2

∫
R𝑀

𝑒−(Γ𝑡)
2/2𝑝𝛼

𝑀∏
𝑗=1

cos2(
Δ𝛼𝑡 𝑗

2
)𝑑𝑡𝑀

=
𝑝𝛼Γ

(2𝜋)𝑀/2

(∫
R
𝑒−(Γ𝑡)

2/2 cos2
(
Δ𝛼𝑡

2

)
𝑑𝑡

)𝑀
.

(6.41)

In the last step, we used the fact that the𝑀-dimensional integral factorizes. This expression

is easy to evaluate.

⟨𝑝 (𝑀)
𝛼 ⟩ = 𝑝𝛼

(
1 + 𝑒−Δ𝛼2/2Γ2

2

)𝑀
(6.42)
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We see that, for 𝛼 − 𝐸 on the order of Γ or greater, the probability decays in the number

of cycles as 2−𝑀 , whereas for
√
𝑀Δ𝛼/Γ ≪ 1 the amplitudes are approximately preserved.

The expected success probability ⟨𝑃(𝑀)
0 ⟩ can be easily obtained from equations (6.40) and

(6.42), using the linearity of the expectation value.

⟨𝑃(𝑀)
0 ⟩ =

∑︁
𝛼

𝑝𝛼

(
1 + 𝑒−Δ𝛼2/2Γ2

2

)𝑀
(6.43)

Observe how this serves as an indicator function for the existence of eigenvalues. If all 𝛼

are outside of𝑂 (Γ) from 𝐸 , the amplitudes decay exponentially in𝑀 . For any 𝛼within this

range, however, there will be a success probability which goes roughly as the initial overlap

with those states. As expected from measurement-based procedures, we cannot overcome

the inherent 𝑂 (1/overlap2) cost scaling. A quadratic improvement to a Heisenberg limit

may be feasible with amplitude amplification, but only with additional quantum overhead

and operations.

Our indicator ⟨𝑃(𝑀)
0 ⟩ might not be of practical use if the behavior of a typical run

deviates wildly from the average. We thus investigate the variance. From equation (6.40),

Var(𝑃(𝑀)
0 ) =

〈(
𝑃
(𝑀)
0

)2
〉
−

〈
𝑃
(𝑀)
0

〉2

=
〈∑︁
𝛼𝛽

𝑝
(𝑀)
𝛼 𝑝

(𝑀)
𝛽

〉
−

(∑︁
𝛼

⟨𝑝 (𝑀)
𝛼 ⟩

)2

=
∑︁
𝛼𝛽

Cov
(
𝑝
(𝑀)
𝛼 , 𝑝

(𝑀)
𝛽

)
,

(6.44)

where

Cov (𝑋,𝑌 ) ≡ ⟨𝑋𝑌⟩ − ⟨𝑋⟩⟨𝑌⟩ (6.45)
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is the covariance. To clean up the math below, define the dimensionless parameters

𝑎 := Δ𝛼/Γ and 𝑏 := Δ𝛽/Γ. Then,

⟨𝑝 (𝑀)
𝛼 𝑝

(𝑀)
𝛽

⟩ = 𝑝𝛼𝑝𝛽

(
2 + 𝑒−(𝑎+𝑏)2/2 + 𝑒−(𝑎−𝑏)2/2 + 2𝑒−𝑎2/2 + 2𝑒−𝑏2/2

8

)𝑀
⟨𝑝 (𝑀)

𝛼 ⟩⟨𝑝 (𝑀)
𝛽

⟩ = 𝑝𝛼𝑝𝛽

(
1 + 𝑒−(𝑎2+𝑏2)/2 + 𝑒−𝑎2/2 + 𝑒−𝑏2/2

4

)𝑀 (6.46)

so that

Cov
(
𝑝
(𝑀)
𝛼 , 𝑝

(𝑀)
𝛽

)
= 𝑝𝛼𝐶

(𝑀)
𝛼𝛽

𝑝𝛽 (6.47)

where

𝐶
(𝑀)
𝛼𝛽

=

(
1 + 𝑒−𝑎2/2 + 𝑒−𝑏2/2 + 𝑒−(𝑎2+𝑏2)/2 cosh(𝑎𝑏)

4

)𝑀
−

(
1 + 𝑒−𝑎2/2 + 𝑒−𝑏2/2 + 𝑒−(𝑎2+𝑏2)/2

4

)𝑀 (6.48)

is positive definite. Hence, the variance Var(P (𝑀)
0 ) is a contraction of the matrix 𝐶 (𝑀)

with the vector of initial probability amplitudes 𝑝 for each eigenvalue.

It is fruitful to consider 𝐶 (𝑀)
𝛼𝛽

a function of two real parameters 𝑎, 𝑏 ∈ R for each

𝑀 ∈ Z+. First, we observe that 𝐶 is an even function in both 𝑎 and 𝑏, so that only

the positive quadrant need be considered. We also observe that 𝐶 is symmetric under

𝑎 ↔ 𝑏. It is more or less clear that 𝐶 should approach 0 for 𝑎, 𝑏 large and for 𝑎, 𝑏 near

zero, but showing this analytically is rather awkward (though straightforward in principle).

Figure 6.2 provides plots of 𝐶 (𝑀)
𝛼𝛽

for various values of 𝑀 . We observe the correlations are

peaked for 𝑎 = 𝑏 = 𝑎peak, where 𝑎peak appears to follow an inverse square root power law.

Even for 𝑀 = 4, the correlations are never larger than 0.06 and only decrease with 𝑀 .

The peak location corresponds to eigenvalues being on the order ofΘ(Γ) away from the

target energy. Larger values of𝐶 (𝑀)
𝛼𝛽

contribute to a larger variance via (6.44). We interpret
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Figure 6.2 (Top) Density plot of covariance function 𝐶 (𝑀)
𝛼𝛽

with respect to 𝑎 = Δ𝛼/Γ and
𝑏 = Δ𝛽/Γ for 𝑀 = 4, 10, and 20 going left to right. We observe the function diminishing
with 𝑀 , with maximum along the 𝑎 = 𝑏 line which moves slightly inward with 𝑀 .
(Bottom) Location and values of maximum 𝐶

(𝑀)
𝛼𝛽

for 𝑀 from 4 to 200. Line of best fit
indicates inverse square root power law for location, whereas value 𝑐max appears to follow
inverse power law with 𝑀 .
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this as follows: the Rodeo Algorithm struggles to properly classify eigenvalues close to,

but not entirely within, the rough interval [𝐸 − Γ, 𝐸 + Γ]. When eigenvalues are clearly

within Γ, the success probability is 1 for those eigenstates, while for far eigenvalues the

success probability is a coin toss. This "resonant peak", despite being a nuisance, can be

handled by varying the target energy, and in any case the resonance decreases in amplitude

and width with 𝑀 . We will make use of some properties of𝐶 (𝑀)
𝛼𝛽

in our subsequent analysis

of the Rodeo Algorithm’s performance.

6.3.6 Performance on Eigenvalue Detection

Having characterized the statistical properties of our randomized circuit, we now turn

to the question of performance. To make progress analytically, we make some simplifying

assumptions. Suppose we choose some target energy 𝐸 and width Γ, and wish to determine

whether there is a nearby eigenvalue of 𝛼∗, by which we mean an eigenvalue such that

|𝛼∗ − 𝐸 |/Γ < 𝑑 for 𝑑 on the order of 1. We are promised that, if such an eigenstate exists,

the input state |𝜓⟩ has overlap 𝑝𝛼∗ = |𝑐𝛼∗ |2 ≥ 𝛿, where 𝛿 > 0 is some given threshold. Any

other populated eigenstates are assumed to have eigenvalues at least 𝑔Γ away from 𝐸 for

some 𝑔 > 𝑑.

We analyze the question of eigenvalue existence in the language of hypothesis testing,

with null hypothesis 𝐻null of no eigenvalue present. The alternative hypothesis 𝐻alt is the

presence of 𝛼∗ within Γ𝑑 of 𝐸 that has overlap at least 𝛿 with the initial state. Practically

speaking, without the promises given above, our algorithm will simply fail to detect

eigenstates whose overlap is too low (without the 𝛿 promise), or fail to resolve multiple

eigenvalues within the detection range (without the 𝑔 promise).

Under 𝐻0, the expected success probability 𝑃null of the 𝑀-cycle Rodeo Algorithm is
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upper bounded as

𝑃null ≤
(

1 + 𝑒−𝑔2/2

2

)𝑀
. (6.49)

On the other hand, for alternative hypothesis 𝐻1, the expected success probability 𝑃alt is

lower bounded as

𝑃alt ≥ 𝛿
(

1 + 𝑒−𝑑2/2

2

)𝑀
+ (1 − 𝛿) 1

2𝑀

> 𝛿

(
1 + 𝑒−𝑑2/2

2

)𝑀
.

(6.50)

To distinguish the two cases, we estimate the success probability through a normalized count

𝑁 samples of the 𝑀 cycle Rodeo Algorithm. A detection corresponds to determining

𝑃alt > 𝑃null with confidence determined by uncertainty in the method. We denote the

estimated porbability by �̄�. Ignoring other reasonable sources of error, such as imperfect

gates, decoherence, and imperfect implementation of 𝑈 (𝑡), the error in the estimate is

𝑂 (𝜎sample), where 𝜎sample is the standard deviation in the estimate of expected success

probability. To analyze this uncertainty, we use a heuristic error propagation approach.

Assuming an exact, nonrandom success probability 𝑃0, our uncertainty comes from the

binomial variance

𝜎binom =

√︂
𝑃0(1 − 𝑃0)

𝑁
<

√︂
𝑃0

𝑁
. (6.51)

To characterize deviations from the binomial distribution due to random fluctuations 𝜎fluc

of 𝑃0 caused by the times 𝑡 𝑗 , we use an error propagation formula.

𝜎fluc ≈
����� 𝜕𝜕𝑃0

√︂
𝑃0(1 − 𝑃0)

𝑁
𝜎𝑃0

����� < 1
2

1
√
𝑃0𝑁

𝜎𝑃0 . (6.52)
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Let’s now consider the two cases separately, in the case of 𝐻null, there is no eigenvalue

within 𝑔Γ and the upper bound

𝜎fluc <
1
√
𝑁

2𝑀/2𝜎𝑃0 . (6.53)

is valid. In this case, 𝜎𝑃0 will shrink exponentially, and for some 𝑔 ∈ 𝑂 (1) this will be

enough to bound 𝜎fluc by𝑂 (
√︁
𝑃0/𝑁). Consider now the case 𝐻alt. From now on, we make

the assumption

𝑑2𝑀 ≪ 1 (6.54)

so that 𝑃alt > 𝛿 + 𝑂 (𝛿𝑑2𝑀). In this case, we require 𝜎𝑃0 <
√︁
𝛿 +𝑂 (𝛿𝑑2𝑀). A careful

analysis of 𝐶 (𝑀)
𝛼𝛽

, particularly the 𝛼 = 𝛽 = 𝑑Γ +𝐸 term, reveals that 𝐶 (𝑀)
𝛼𝛽

∈ 𝑂 (𝑑4𝑀). This

is sufficient to guarantee an 𝑂 (
√︁
𝑃0/𝑁) scaling as desired.

Overall, we’ve found, through semi-heuristic derivation, that the error in our Rodeo

estimation protocol goes as 𝑂 (1/
√
𝑁). To ensure the two hypotheses can be distinguished

with the Rodeo Algorithm we thus require

𝛿

(
1 + 𝑒−𝑑2/2

2

)𝑀
−

(
1 + 𝑒−𝑔2/2

2

)𝑀
∈ Ω(

√︁
𝛿/𝑁). (6.55)

Taking as the worst case scenario 𝑔 = 1 in the above, we have the requirement(
1 + 𝑒−𝑑2/2

2

)𝑀
∈ Ω

(
1

√
𝛿𝑁

+ 1
𝛿
𝑒−Θ(𝑀)

)
(6.56)

We utilize our requirement that 𝑑2𝑀 ≪ 1, so that the right-hand side is Ω(1). This is

implicitly an upper bound on 𝑀 , meaning that not all 𝑑 and 𝛿 will allow for solutions using

our approach. However, we will see presently that the size of 𝑀 need not be too large.

Looking at the 2nd term on the right-hand size of (6.56), we find that

𝑀 ∈ Ω(log 1/𝛿) (6.57)
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suffices to ensure 𝑂 (1) error. Finally, we choose 𝑁 ∈ Ω(1/𝛿).

We see that there are choices of parameters for which the algorithm can succeed in the

setting we’ve constructed. The only real requirement is that

log 1/𝛿 ≪ 1/𝑑2 (6.58)

which is not a great restriction in practice, provided the overlap is not exceedingly small.

This restriction comes about, more or less, from the fact that, as 𝑀 increases, the effective

width of the search window shrinks as 𝑂 (1/
√
𝑀).

A rough cost estimate 𝐶ost can be assigned as

𝐶ost :=
𝑁𝑀

Γ
∈ 𝑂

(
(1/𝛿) log 1/𝛿

Γ

)
(6.59)

which attributes a cost of Γ−1 to the time evolution, assuming it dominates the full rodeo

cycle. The cost 𝑐ost = 𝐶ost/𝑁 per cycle is also the maximum circuit depth, and has the

same Γ scaling but favorable 𝛿 dependence. Interpreting Γ as our accuracy parameter, we

see that the Rodeo Algorithm achieves Heisenberg scaling.

In practice, given a range [𝐸min, 𝐸max] of possible eigenvalues for the operator 𝑂 of

interest, Γ can be varied using a procedure akin to binary search. This has little effect on

the total cost, which will still be dominated by the smallest Γ used assuming it is reduced

exponentially each refinement.

6.3.7 Noise

Noise and decoherence are significant sources of error for near-term quantum computers

without error correction. Significant advances in error mitigation techniques have increased

what can be achieved from limited, noisy hardware [76], though there may be fundamental

limitations to these approaches for large systems [107]. In search of applications for
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near-term quantum devices, there is a desire for methods which are inherently robust to

noise.

We investigated the noise robustness of the Rodeo Algorithm under the simplest pos-

sible model of decoherence: depolarizing noise. At each gate, we assume there is some

probability 𝑝depol of the current state being replaced with the maximally mixed state, thus

ruining the computation. Computations were performed using Qiskit Runtime with the

"ibmq_qasm_simulator." We considered the simple 3-qubit Hamiltonian 𝑍1 + 𝑍2 + 𝑍3,

whose eigenvalues are easily seen to be the odd integers from −3 to 3. We took as initial

state (𝐻 |0⟩)⊗3 where 𝐻 is the Hadamard. We varied 𝑝depol from 0 to 0.05 and investigated

the effect on performance. We take Γ = 1 and 𝑀 = 6, and perform a scan from [−5, 5] in

increments of 0.1. Figure 6.3 shows the results of the numerical simulation. We observe

that, for increased noise, the peaks decrease in height but remain in the same location. By

𝑝depol = 0.05, the peaks become hard to distingusih from one another, but not hard to dis-

tinguish from background. Importantly, the location of the peaks is relatively unaffected,

which is the most important part. We expect that, for many reasonable models of noise,

not just symmetric depolarization, the peaks will not shift greatly as a result. Imperfect

gates will change the effective operator �̃�, however, thus leading to changes in eigenvalues.

Understanding how decoherence affects the effective Hamiltonian being evolved would

greatly advance our understanding of the impact, not only on the Rodeo Algorithm, but

other phase-estimation protocols.

6.3.8 Discussion

Here we presented the Rodeo Algorithm, a new addition to the collection of phase

estimation protocols which is simple and allows for targeted search of eigenvalues and
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Figure 6.3 Simulation of Rodeo Algorithm for three non-interacting qubits for various
amounts of depolarizing noise. Eigenvalues are located at −3,−1, 1, and 3, and the initial
state has overlap 1/8, 3/8, 3/8, 1/8 with each eigenspace. We see that the algorithm
reproduces the correct qualitative behavior in spite of noise reductions in signal. The
algorithm benefits from the symmetry of depolarization, whereas other noise models may
affect the phase rotation being applied.

preparation of eigenstates. To complement previous work on the method [29, 105, 11],

here we focused on theoretical aspects not previously covered. We provide a quasi-rigorous

cost analysis of the method under a binary hypothesis model, and conclude with some

numerics showing behavior of the method under symmetric depolarizing noise.

Following the initial publication of the method, subsequent research removed the need

for randomness in the algorithm while providing a more rigorous characterization of

performance [95]. These authors were interested particularly in state preparation, and their

findings of performance are consistent with our randomized approach.

For current noisy devices, the Rodeo Algorithm can serve as a simple and practical

alternative for standard QPE for eigenvalue estimation and state preparation. Thus, it

211



may eventually serve as a useful subroutine for algorithms aimed at achieving quantum

advantage, that is, practical advantage of quantum computers over classical computers for

interesting tasks. For example, recently an end-to-end simulation algorithm for nuclear ef-

fective field theories was proposed, which used standard Quantum Phase Estimation (QPE)

in analysis for estimating total resource costs [133]. Replacing this final measurement step

with the Rodeo Algorithm in actual applications should increase the feasibility of the full

algorithm for near-term hardware.
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CHAPTER 7

CONCLUSION AND OUTLOOK

Quantum computing today shares similarities with thermodynamics of the 19th century.

From its birth, thermodynamics was intimately linked to technology. Practitioners sought

to create more efficient engines, refrigerators, and other cyclical systems to perform work

using the resource of heat gradients. These pragmatic goals led to foundational scientific

progress, such as discovering laws about optimal efficiencies and allowed physical trans-

formations. Gradually, the powerful and subtle notion of entropy developed, so fruitful as

to remain at the forefront of modern physics and information theory.1

Quantum computers, unlike engines and refrigerators, have yet to yield any practical

benefit. Interest in the field is driven by the expectation that they eventually will, and

that effective, error-corrected quantum computers can be made that will simulate quantum

dynamics, solve optimization problems, and perform hitherto unrecognized yet valuable

computational tasks. In the background, deeper questions are very much present. How

different are the quantum and classical worlds from a computational viewpoint? What

makes quantum probabilities special compared to standard probability? Broadly, what is

quantum mechanics even about? Because the building blocks of quantum information,

qubits, are so simple, they provide an excellent playground to tackle such questions with

clarity. It is imaginable that large-scale manipulation of entanglement will aid our "gut"

understanding of the theory and elucidate connections between the microscopic world and

our macroscopic reality.

For what purposes will we manipulate this enormous entanglement? Besides Shor’s

1While the "entropy" from physics and information theory are technically distinct, Landauer’s princi-
ple [81] and other ideas suggest a deep connection that, to my knowledge, is still not fully understood.
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groundbreaking factoring algorithm, Grover’s unstructured search algorithm, and a handful

of others, not many compelling use cases are known. The truth is, if a scalable, fault-

tolerant quantum computer existed today, we wouldn’t know many uses for it. The idea of

quantum-based quantum simulation has been around about as long as quantum computing

itself, and remains one of the few concrete and useful tasks we know of. Thankfully,

its importance to scientific computing is enough to command attention, and moreover,

Hamiltonian simulation finds application in at least a handful general tasks such as solving

linear systems of equations. Even if not part of an algorithm, Hamiltonian simulation

concepts can assist in the design of quantum algorithms, especially given the absence of

many other conceptual guideposts.

This dissertation offers additional tools for Hamiltonian simulation and, importantly,

rigorous characterizations of each of their performance. We demonstrate increased effec-

tiveness of product formulas for accurately estimating observable dynamics using polyno-

mial interpolation. We provide several new approaches to time dependent Hamiltonian

simulation, as well as a computational reduction of the time dependent to time independent

dynamics. Finally, we survey novel tools for near-term quantum simulation, including

trapped-ion simulation of anomalous symmetry breaking, state preparation via Projective

Cooling, and resource-effective eigenvalue estimation and eigenvector preparation using

the Rodeo Algorithm.

Despite enormous progress, fresh ideas are needed in quantum algorithms research.

We offer tools which may eventually be implemented on the quantum computers of the

future, and hope that that future is not so far away.
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