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ABSTRACT

This thesis investigates quantum algorithms for eigenstate preparation, with a primary focus on

solving eigenvalue problems such as the Schrödinger equation by utilizing near-term quantum

computing devices. These problems are ubiquitous in several scientific fields, but more accurate

solutions are specifically needed as a prerequisite for many quantum simulation tasks. To address

this, we establish three methods in detail: quantum adiabatic evolution with optimal control, the

Rodeo Algorithm, and the Variational Rodeo Algorithm.

The first method explored is adiabatic evolution, a technique that prepares quantum states by

simulating a quantum system that evolves slowly over time. The adiabatic theorem can be used to

ensure that the system remains in an eigenstate throughout the process, but its implementation can

often be infeasible on current quantum computing hardware. We employ a unique approach using

optimal control to create custom gate operations for superconducting qubits and demonstrate the

algorithm on a two-qubit IBM cloud quantum computing device.

We then explore an alternative to adiabatic evolution, the Rodeo Algorithm, which offers a

different approach to eigenstate preparation by using a controlled quantum evolution that selectively

filters out undesired components in the wave function stored on a quantum register. We show results

suggesting that this method can be effective in preparing eigenstates, but its practicality is predicated

on the preparation of an initial state that has significant overlap with the desired eigenstate. To

address this, we introduce the novel Variational Rodeo Algorithm, which replaces the initialization

step with dynamic optimization of quantum circuit parameters to increase the success probability

of the Rodeo Algorithm. The added flexibility compensates for instances in which the original

algorithm can be unsuccessful, allowing for better scalability.

This research seeks to contribute to a deeper understanding of how quantum algorithms can be

employed to attain efficient and accurate solutions to eigenvalue problems. The overarching goal is

to present ideas that can be used to improve understanding of nuclear physics by providing potential

quantum and classical techniques that can aid in tasks such as the theoretical description of nuclear

structures and the simulation of nuclear reactions.
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CHAPTER 1

INTRODUCTION

The overarching goal of the research presented in this dissertation is to discover more efficient

computational methods to aid in the theoretical understanding of nuclear physics. The nucleus of

an atom is so small that, in order to properly understand it, it is necessary to consider the laws

of quantum mechanics. It is notoriously difficult to computationally analyze such systems, so the

concept of quantum simulation, the approach of using one quantum system to emulate another,

has recently gained popularity [109]. A likely first step of a quantum simulation algorithm will be

to prepare a quantum computer in a state that is analogous in some way to the initial state of the

quantum system of interest. Often, this will be one of the characteristic states, called "eigenstates”,

of the system. This critical step of "eigenstate preparation” is not straightforward to perform, and

it has enough significant applications in other areas to be interesting enough on its own.

To properly build up the motivation for this particular problem, this chapter provides a brief

history of the development of quantum and nuclear physics, starting with the scientific method, a

topic that is often misunderstood and underappreciated. More detailed background on quantum

computation and eigenvalue problems is given in Chapter 2.

1.1 The Scientific Method

The scientific method is the primary way in which all kinds of scientists, including physicists,

make discoveries about things that can happen in the universe. There has been a growing effort to

increase awareness of the scientific method among cultures and individuals to achieve a so-called

"science literacy” [32]. General ignorance of science may be a factor in the proliferation of false

information, an issue that has been exacerbated by social media and recent rapid developments in

generative AI, which has led the World Economic Forum to declare the spread of misinformation

and disinformation to be the most serious threat facing the world in 2024 [120]. Furthermore, it is

helpful to understand how the seemingly abstract field of quantum physics actually emerged from

discoveries made using the scientific method, which will be explained in Section 1.2. For these

reasons, it is pertinent to explore how science, particularly physics, evolved over history into what
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it is today.

1.1.1 History of the Scientific Method

In short, the scientific method is the way that people can use a combination of logic and ob-

servation to learn new things. The idea that we can learn about the universe by observing it from

within was first established in writing by the ancient Greek philosopher Aristotle [8]. His method of

obtaining knowledge relies on two types of logical reasoning: induction and deduction. Induction

(or inductive reasoning) involves deriving broad generalizations from observations, whereas deduc-

tion (or deductive reasoning) involves invoking the rules of logic to make valid conclusions based

on given premises. A common type of generalization used in induction is that if you repeatedly

observe a particular outcome in a certain set of circumstances, then that outcome will occur again

the next time those circumstances are present; for example, if you notice that whenever you drink

milk, you get an upset stomach, then you could conclude that the next time you drink milk, you

will get an upset stomach again. A common type of deduction used in the scientific method is the

mathematical manipulation of equations; for example, the equation 𝑥 + 1 = 2 implies that 𝑥 = 1

(using the axioms of algebra). Consider the following example of how Aristotle’s scientific method

can be applied:

1. Start by making observations of a physical phenomenon

2. Using these observations and some intuition, design an equation that can make predictions

for future observations

3. (Deduction) If possible, use algebraic manipulation on this equation to discover more equa-

tions that can make different predictions

4. (Induction) Validate the predictions from steps (2) and (3) with more observations.

After Aristotle, the scientific method was refined further by philosophers and mathematicians

such as Descartes and Isaac Newton. An important part of the scientific method that was gradually

added to Aristotle’s initial idea is that, in order to be considered scientifically rigorous, the predic-
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tions and hypotheses produced must be testable. In order to be considered testable, a statement

must be falsifiable, meaning that it is possible for it not to be true, and it must be practically feasible

to set up a reproducible experiment that can refute it. Furthermore, to avoid confirmation bias, all

predictions and hypotheses must be assumed to be false until there is sufficient reason to believe

otherwise. If an idea is not testable, then it cannot be considered scientific. This is not to say that

such ideas cannot be true; it simply means that they are outside the scope of what is considered

science.

Similarly, just because an idea is scientific does not mean that it is true. In fact, all scientific

predictions are by definition not provable with complete certainty! Since the scientific method

relies on induction, it is subject to the "problem of induction” formulated by the philosopher David

Hume [55]. Hume pointed out that inferences based on induction always assume the principle of

induction, which requires that the past can be used to predict the future. Hume argues that this is

not necessarily true, so every prediction about the future based on past observations has a chance

of being wrong. When using the scientific method, one must always acknowledge the possibility

that a prediction could be wrong, perhaps even for some unknown reason. Since all predictions

are initially assumed to be false, this means that scientific hypotheses cannot be verified beyond

all doubt. Thus, the phrase "scientific fact”, which may sometimes be used in misinformation

campaigns to create a false sense of authority, is actually an oxymoron!

Despite the lack of complete certainty inherent in science, it is obvious that the scientific method

is still useful for making predictions. For example, physicists at NASA were able to understand the

complicated trajectories of space shuttles well enough to land humans on the moon. Thus, in order

to practice science, one must ignore the problem of induction to some extent and acknowledge that,

even though inductive reasoning is flawed, it is necessary. After all, the assumption that the laws

of physics will be the same in the future as they were in the past, while not necessarily valid, is not

a difficult assumption to believe. If we make this assumption, then we can at least infer that when

we make repeated observations of a phenomenon, it is somewhat probable that we will make the

same observations in the future. This is enough to justify the empirical testing of hypotheses in
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physics, which, along with intuition and mathematical deduction, leads to a better understanding

of the universe in which we live.

1.1.2 From Classical Physics to Modern Physics

Today, physics is generally classified into two branches: classical physics and modern physics.

Classical physics deals with phenomena occurring under normal conditions, whereas modern

physics addresses extraordinary situations, including velocities approaching the speed of light and

scales of distance similar to the size of an atom. Prominent fields within modern physics include

nuclear physics, special relativity, and quantum mechanics. These new branches all deal with

situations outside the realm of everyday human experiences, but there is no denying that they have

had noticeable effects on society; for example, advances in these sciences have made new inventions

possible, such as nuclear power plants, GPS tracking, and quantum computers.

For most of history, the study of physics has been related to the phenomena we experience

directly as humans. This makes sense because empirical hypotheses must be testable and the most

obvious way to test things is through direct observation with the senses. However, human sensory

organs are limited in their ability to gather information; the naked eye is easily fooled by optical

illusions, for example. Thus, scientific progress naturally advances alongside the development of

better tools and measuring devices. For example, Isaac Newton’s theory of gravity was likely based

on intuition that came from his human senses; perhaps it was conceived when an apple fell on his

head, as the story goes. This theory was only testable thanks to the immense amount and accuracy

of astronomical data collected with meticulously calibrated tools by Tycho Brahe and Johannes

Kepler on the motion of planets across the night sky. It was verified further when the telescope was

invented, making it possible for humans to not only see the planets but even track the movement of

the moons orbiting them.

Improvements in our ability to measure things allow us to draw stronger conclusions about the

accuracy of our predictions and hypotheses. The more data a theory has supporting it, the more

likely it is to be true. More accurate measurements also lead to more accurate predictions. For

example, predictions about the motion of objects in space are constantly improving, thanks to more
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accurate estimations of the gravitational constant in Newton’s law of gravity. This constant is still

being tested and updated frequently, and in 2022, its relative uncertainty was only 2.2 × 10−5[84].

Possibly even more important than the improved predictive accuracy provided by new technol-

ogy is the capability to observe phenomena that would otherwise be undetectable. For example, the

discovery of the Higgs boson, a fundamental particle associated with the mechanism that gives mass

to other particles, was only possible because of indirect observations provided by the Large Hadron

Collider (LHC). This discovery, like many others in particle physics, would have been impossible

with direct sensory observation. Even sense-enhancing tools such as microscopes are incapable

of assisting with observations on such a small scale. The shift in empiricism from observation

through the senses to indirect observations beyond the grasp of humans was pivotal in the transition

to modern physics in the early 1900s.

Observations in modern physics, unlike those in classical physics, often conflict with human

intuition. As physicists began to explore realms beyond normal experiences, they uncovered

phenomena which were unexplained by classical equations. New theories were necessary to

describe these phenomena and, thanks to the availability of advanced equipment, they were testable,

making them distinctly different from previous hypotheses pertaining to the same subjects. For

example, modern atomic theory, which evolved to include electrons, protons, and neutrons, differs

greatly from ancient Greek atomism, which was based on philosophy rather than empirical evidence.

It is important to note that despite our theories progressing beyond our everyday human experiences,

intuition, and comprehension, their main purpose continues to be rooted in explaining observations.

1.2 History of Quantum Physics

To help set the context for the rest of this thesis, it is fitting to discuss how quantum physics

emerged from empirical observations. Quantum physics originated in the late 19th and early 20th

centuries when researchers started exploring the properties of light and matter on atomic and

subatomic scales.
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1.2.1 Quantization

One of the first major departures from classical physics occurred in 1900 when Max Planck

attempted to explain black-body radiation, a type of electromagnetic radiation emitted by objects,

e.g. infrared light given off by humans or visible light from the Sun. Classical theories, including

Newtonian mechanics and Maxwell’s equations, failed to properly predict the color spectrum of

light that would be emitted from an object. To explain this, Planck came up with the idea that energy

is quantized, meaning that it is emitted or absorbed in small indivisible amounts, called ’quanta.’ In

1905, Albert Einstein used a similar idea to come up with the photoelectric effect, which describes

how materials absorb light in the form of quantized packets called photons. These were the only

theories that properly explained many experimental observations that had been puzzling physicists

at the time, but their consequence was that a new type of physics had to be formalized; thus,

quantum physics became a new field of study.

The idea of quantization proved to be important for other theories in the following years. For

example, in 1913, Niels Bohr introduced a new model of the atom, postulating that electrons occupy

fixed orbits around the nucleus with quantized angular momentum. The transitions of electrons

between these quantized energy levels would cause photons to be emitted at specific frequencies, so

this model provided a satisfactory explanation for the observed emission spectrum from hydrogen

atoms. However, this raised further questions about the nature of subatomic particles because

it implied that electrons would only be observed at certain energy levels and never in-between,

while somehow being able to transition between these energy levels. This mysterious instantaneous

transition became known as "quantum tunneling”.

Experiments continued to be performed to probe the nature of the newly discovered electrons

and photons. Initially, theories were formulated on the idea that they were particles that occupy

definite amounts of space. But in the famous double-slit experiment performed by Thomas Young

on light and Davisson and Germer on beams of electrons, their behavior closely resembled that of

waves. In particular, they were able to exhibit constructive and destructive interference, phenomena

which only make sense for waves and not for particles. This implied that for photons and electrons,
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the models of "wave” and "particle” were appropriate descriptions in different contexts, a concept

called wave-particle duality. This meant that a comprehensive description of such small physical

things could not be achieved with a single label such as "particle”, "wave”, or any known model

in classical physics. This provided further evidence that an entirely new branch of science was

necessary.

1.2.2 Schrödinger’s Equation and Cat

In 1926, Erwin Schrödinger introduced his wave equation, marking a significant advancement

in quantum mechanics by providing a way to predict the behavior of physical systems at the atomic

and subatomic levels. Schrödinger based his equation on the idea that physics at the quantum level

is probabilistic in nature. His wave equation models quantum mechanical systems not as particles

or waves but as "wave functions”, mathematical objects that can be used to calculate the probability

distribution of a particle’s position and momentum. Solutions to the wave equation correspond to

different states in which a system can exist.

In its simplest form, the time-independent Schrödinger equation can be written as follows:

�̂�𝜓 = 𝐸𝜓 (1.1)

Where 𝜓 (often written as |𝜓⟩) is the wave function of the system, 𝐸 is the energy of the system,

and �̂� is the Hamiltonian operator (often written as 𝐻), a mathematical construct analogous to

the classical Hamiltonian in William Rowan Hamilton’s formation of classical mechanics, which

equals the total kinetic and potential energy of a system. Since 𝜓 is represented by a vector and 𝐸

a scalar, the Schrödinger equation written in this form is an eigenvalue equation, a type of equation

frequently used in linear algebra. The solutions for 𝜓 and 𝐸 in this equation are called eigenvectors

(or eigenstates) and eigenvalues, respectively. When a Hamiltonian in this equation corresponds to

a particular physical system, the eigenstates and eigenvalues correspond to the different quantized

states in which that system can be observed.

An interesting consequence of this model being a linear equation is that it inherits the property

from linear algebra that any sum of eigenvectors is also a valid solution to the Schrödinger equation.
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This suggests that new wave functions can be formed by taking sums of other wave functions. In

the process, they may interfere constructively or destructively, like waves (hence the name "wave”

equation). Since such sums of wave functions are valid solutions to the equation, they also

correspond to physical states in which the corresponding system can exist. These states are known

as superpositions, so named because they are analogous to the classical phenomenon of wave

superposition. When wave functions are combined in this way, the resulting state might not be an

eigenstate of the Hamiltonian, which means that superposition states do not necessarily correspond

to states that can be physically observed. This discrepancy between theoretical possible states and

actual observable states is called the measurement problem, and despite the success of Schrödinger’s

equation in accurately predicting the outcomes of experiments, it is still the subject of much debate

due to its counterintuitive nature.

In order to illustrate the measurement problem, Schrödinger came up with a thought experiment

about a hypothetical cat in a closed box. A radioactive atom could be placed next to a vial of

poisonous gas in the box so that if a radioactive decay occurs, the gas would be released and the

cat would die. There would then be two possible observations that could be made when the box is

open: either the atom will have decayed and the cat will be dead, or the atom will not have decayed

and the cat will be alive. Such a setup, in which the observation of one component (i.e. the atom)

reveals information about another component (i.e. the cat), is referred to as an entangled system.

Since atoms exhibit quantum effects, the state of the atom can be described as a wave function,

and its two observable states are "decayed” and "not decayed”. By the superposition principle, it is

possible for the atom to be in a combined state, a superposition, that looks like the sum of these two

observable states. Since the state of the cat is entangled with the state of the atom, the cat could

also be in a similar state that looks like the sum of its "alive” and "dead” states. This highlights

the problem, as it seems impossible for cats to exist in such a state of superposition; they should

strictly be either alive or dead.

A popular interpretation of quantum mechanics is the Copenhagen interpretation, which is

based on the idea that a system in a superposition state immediately changes into one of the
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possible observable states for that system at the moment when a measurement (or observation) is

made. Under this interpretation, there is no meaningful way to interpret the superposition state that

the cat experiences in Schrödinger’s thought experiment. Its state before the box is opened is often

paradoxically described as "both alive and dead”, which by the definitions of "alive” and "dead” is

not logically possible. Other interpretations exist, such as the many worlds interpretation (MWI),

which explains the measurement problem by postulating that all possible outcomes of quantum

measurements actually occur in alternate universes. Theories like the Copenhagen interpretation

and MWI are not falsifiable and thus are philosophical in nature rather than scientific, which can

also be seen in how they lead to the same empirical predictions for the outcomes of experiments.

The apparent paradox in the Copenhagen interpretation prompted many scientists, including

Albert Einstein and Louis de Broglie, to search for alternative theories that consider new or hidden

variables in order to avoid the measurement problem. The presence of such variables could allow the

interpretation that quantum systems only physically exist in their observable states, so the apparent

probabilistic nature of quantum mechanics would be explained by a lack of complete information

by observers. However, it was shown by John Stewart Bell that in any case where such a hidden

variable exists, a certain mathematical inequality, now called a Bell inequality, would necessarily

be satisfied. Experimental evidence has shown that this inequality is not satisfied for systems

exhibiting quantum entanglement, suggesting that quantum systems obey an entirely different kind

of logic than classical systems. This discovery led to the foundation of quantum information

theory, and the 2022 Nobel Prize in Physics was jointly awarded to Alain Aspect, John Clauser, and

Anton Zeilinger for their experiments observing entangled photons violating Bell inequalities [2].

Since logical contradictions are impossible to avoid when interpreting the meaning of entangled

superposition states, the straightforward but paradoxical explanation of Schrödinger’s cat being

"both alive and dead simultaneously” may be the best interpretation we can grasp.

1.2.3 Heisenberg’s Matrix Mechanics

Around the same time that Schrödinger introduced wave mechanics, Werner Heisenberg, Max

Born, and Pascual Jordan introduced another mathematical formalism to describe quantum me-

9



chanics, called matrix mechanics. In their formalism, they modeled measurable characteristics

(called observables) of quantum systems as matrices, mathematical objects often used in linear

algebra. Matrices have characteristic eigenvalues, which can be interpreted as the possible values

that are measurable for an observable, and corresponding eigenvectors, which represent the state

of the quantum system when that measurement is made. In matrix mechanics, two observables

can be combined by multiplying them together. However, matrices have the property that they are

not necessarily commutative, meaning that the order in which they are multiplied may affect the

result of that multiplication (i.e. 𝐴𝐵 ≠ 𝐵𝐴). Some observables, such as position and momentum,

do not commute with each other, which implies that the order in which they are measured matters

for the outcomes of those measurements. This allowed Heisenberg to mathematically derive the

uncertainty principle, which states that certain pairs of observables like position and momentum

cannot be known simultaneously for a quantum system.

Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics turned out to be equivalent

descriptions of quantum physics, and they were both accurate at predicting the outcomes of exper-

iments. These testable theories were conceived on the basis of empirical evidence and repeatedly

withstand rigorous experimentation, which makes them firmly rooted in the scientific method. As

more powerful tools are created to probe the extremes of nature, these theories continue to evolve

to help us explain and understand the universe in which we live.

1.3 Motivation for Research in Quantum Many-Body Theory

The main objective of the research presented in this dissertation is to enhance the computational

methods used to understand quantum systems, especially nuclear systems. The most advanced su-

percomputers today face many challenges in simulating even relatively simple systems. Therefore,

to gain a better understanding of the nature at the nuclear level, it makes sense to explore alternative

computing paradigms such as quantum computing. This thesis will concentrate on quantum com-

puting algorithms for a critical aspect of this problem, namely, preparing eigenstates of quantum

Hamiltonians. These algorithms will be elaborated on in subsequent sections, but first, we will

examine some intriguing problems in nuclear physics and, more broadly, quantum many-body the-
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ory, as well as the limitations of current classical methods to justify using this relatively unexplored

computing paradigm.

1.3.1 The Strong Force

Our observations of the universe reveal that nature is governed by four fundamental forces: grav-

ity, electromagnetic force, weak force, and strong force. Although gravity and electromagnetism

are generally the most familiar, the weak and strong forces are just as critical for the universe’s

operations. These latter forces dominate on the scale of the atomic nucleus; the weak force is

responsible for radioactive processes such as nuclear fission and fusion, while the strong force

binds together hadrons, e.g. protons and neutrons, as well as their constituent quarks.

The significance of the strong force is clear, as atoms would not exist without it (making the

universe far less interesting!) However, the precise characteristics of the strong force are not yet

fully understood. Experimental physicists are actively scientifically testing theories with particle

accelerators, such as the heavy-ion accelerator at the Facility for Rare Isotope Beams in East

Lansing, to explore the nature of matter at a nuclear level. Meanwhile, theoretical physicists

are developing equations to describe the same properties, but there is still no definitive consensus

between experimental results and theoretical predictions. To continue increasing our understanding

of the strong force, it is likely that more accurate theoretical predictions are needed to align

with the experimental results. To this end, theoretical physicists often explore and develop new

computational techniques to take advantage of the vast computing resources available today.

1.3.2 Quantum Chromodynamics

One of the most well-supported and developed hypotheses to describe the strong force is the

theory of quantum chromodynamics (QCD). QCD explains the observation that hadrons are made

of exactly three quarks each by introducing the concept of color charge, where each quark has one

of the three properties labeled red, blue, and green. Analogously to the way positive and negative

electric charges attract, these colors attract each other in such a way that they tend to form triplets

in the case of baryons (e.g. protons and neutrons) and pairs in the case of mesons (e.g. pions).

QCD is theoretically capable of predicting all the properties of strongly interacting particles,
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but extracting information from it requires solving mathematical equations which are often very

challenging or impossible to solve. The conditions of QCD are incompatible with perturbation

theory, a technique that is often useful for simplifying equations describing quantum systems, so the

most common technique for approximately solving these equations is the non-perturbative theory

of lattice QCD. In lattice QCD, space and time are modeled as discrete rather than continuous, a

simplification that allows for approximate solutions to be reached. Its equations are well defined

and are therefore known to have solutions, but the process of finding such solutions is still too com-

putationally intensive, even for the largest modern supercomputers, making lattice QCD unusable

for understanding even relatively small nuclei.

1.3.3 Nuclear Physics

The further understanding of nuclear systems can lead to important progress in areas of scientific

and technological interest. In astrophysics, more accurate modeling of neutron stars, dense celestial

objects composed primarily of neutrons, could lead to a better fundamental understanding of how

matter behaves under extreme conditions. In nuclear reaction theory, better understanding of the

mechanisms in nuclear fusion reactions could lead to breakthroughs in clean energy production,

reducing the world’s dependence on fossil fuels. There is also motivation in nuclear structure

theory because a better understanding of the nuclear landscape could lead to the discovery of novel

isotopes which can be used in medical imaging and radiotherapy. These examples highlight the

global scale of importance in the advancement of knowledge of nuclear physics.

Unlike the more general theory of QCD which explains forces between quarks, the objective of

nuclear physics is to describe the nature of the strong force at just the level of the atomic nucleus,

which allows for some simplifications. Quark interactions are prominent at higher energies (1̃000

MeV), while most interactions on the scale of the whole nucleus are important at lower energies

(1̃00 MeV or 1̃0 MeV). This discrepancy in scale makes it possible to introduce an effective theory,

allowing more accurate predictions at the expense of abstracting the theory further from its physical

interpretation. By focusing on systems with lower energy, one can model only the interactions

between hadrons and ignore the many smaller interactions among the quarks that make them up.
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An example of an effective theory that is useful in the low-energy regime for nuclear physics

is Chiral Effective Field Theory (cEFT), which is closely related to the underlying theory of QCD.

In cEFT, an assumption is made that particles exhibit chiral symmetry, a property which implies

that quarks are massless. This is not the case in QCD in general, but it is approximately true for

low-energy systems involving lighter quarks, such as those found in protons and neutrons. This

provides a framework for modeling interactions among hadrons in nuclear systems and has been

successfully applied to few-nucleon systems [34]. A relatively new approach combines cEFT with a

lattice approximation to take advantage of the same computational techniques that were developed

to study lattice QCD [72]. This type of approach, which seeks to describe nuclear systems by

solving the Schrödinger equation for the nuclear Hamiltonian, is called an ab initio method. Other

popular ab initio methods in nuclear physics include the no-core shell model [85], Green’s function

Monte Carlo [89], and coupled cluster [50] methods.

Despite the simplifications introduced from the low-energy regime in nuclear physics compared

to QCD, many challenges remain to fully understand nuclear phenomena. Even when considering

just protons and neutrons, the interaction equations are still complex and generally unsolvable,

requiring the use of numerical simulations to find approximate solutions. However, known simula-

tion methods are often inadequate to provide solutions at a useful level of accuracy because of the

high computational complexity associated with modeling most nuclear systems.

The complexity of these numerical simulations can be elucidated by the size and number of terms

in the quantum Hamiltonian for a nuclear system. The number of interaction terms in a Hamiltonian

for any group of interacting particles scales, at minimum, with the number of pairs of particles in the

system of interest, which increases quadratically with the number of particles. However, the strong

force is known to include many-body interactions, such as the three-body interactions observed in

experiments involving the Helium-3 isotope [100]. The number of terms in the Hamiltonian that

describe these interactions scales cubically with the number of particles. More importantly, every

possible quantum state of the system must be in the domain of the Hamiltonian, so its dimensionality

increases exponentially with the number of particles in the system. Consequently, the significant
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memory demand associated with storing quantum states often results in simulations running out of

available memory.

In light of the vast scientific and technological implications, the search for more sophisticated

computational techniques in nuclear physics is a meaningful endeavor. The better understanding

of nuclear systems facilitated by these advancements will not only enhance our understanding of

fundamental physical laws but may also lead to breakthroughs in diverse fields such as astrophysics,

clean energy, and medical technology. Given the inherent complexities and computational chal-

lenges outlined in modeling nuclear interactions, it should be worthwhile to invest in innovative

computational strategies, including alternative paradigms like quantum computing.
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CHAPTER 2

BACKGROUND

The first part of this chapter describes quantum information and computation, a prerequisite for un-

derstanding algorithms on quantum computers. The remainder of the chapter discusses eigenvalue

problems, traditional methods to solve them on both classical and quantum computers, and several

interesting applications that involve solving eigenvalue problems.

2.1 Quantum Information and Computation

Quantum information and computation is a rapidly advancing field at the forefront of modern

physics. It studies the computational capabilities of quantum systems, which behave fundamentally

differently from classical systems due to quantum effects like superposition and entanglement.

This section explores the fundamentals of quantum computation, and specific algorithms relevant

to eigenvalue problems are described in more detail in Section 2.2.

In classical computing, the basic unit of information is the bit, a theoretical unit that can exist

in one of two distinct states ("binary” states). In silicon-based computers, bits are usually stored

in transistors, which act as electrical switches. The two possible states of a transistor correspond

to different voltage levels, typically labeled 0 and 1. All data on computers are encoded using

these bits and can be manipulated through various electrical components to execute programs. The

operations performed using bits adhere to the logical principles established in classical information

theory.

Quantum computing explores the consequences of replacing classical bits with their quantum

alternatives, called quantum bits or "qubits." A qubit is defined as a quantum system that can be

observed in one of two distinct states. As a quantum system, a qubit can therefore also exist in a

superposition of its two states, and multiple qubits can be entangled together so that the information

stored in them becomes correlated. Even though the binary nature of qubits makes them analogous

to classical bits, their quantum nature leads to behavior that has no direct analogy in classical

systems. The manipulations that can be done with qubits therefore adhere to an entirely different

set of logical principles established in the different framework of quantum information theory.
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2.1.1 Qubits

The state of a qubit is represented in the Dirac notation as

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (2.1)

where |𝜓⟩ is the wave function of the qubit, |0⟩ and |1⟩ represent its two observable states, and

the coefficients 𝛼 and 𝛽 are complex numbers that hold information about the relative probability

of measuring the qubit in their respective states. The states |0⟩ and |1⟩ are usually written in vector

form as |0⟩ =

1

0

 and |1⟩ =

0

1

 to show that they are orthonormal. These states together form the

"computational basis.”

Information can be extracted from a qubit through a measurement process, but the measurement

result by definition can only be one of the two states |0⟩ or |1⟩. Any information held in superposition

states is necessarily destroyed when measurement occurs, a feature called wave function collapse.

This type of measurement process (also called "projective” measurement) follows Born’s rule,

which states that the results |0⟩ or |1⟩ occur with probabilities |𝛼 |2 and |𝛽 |2, respectively, and

immediately afterwards the qubit state is reset to the measured state[83].

Theoretically, if one could restrict 𝛼 and 𝛽 so that their corresponding probabilities are either 0

or 1, they would be equivalent to classical bits and therefore capable of performing all computations

that are possible on a classical computer. In the remainder of this section, we will examine how

the capacity of qubits to be in superposed and entangled conditions results in novel and unique

computational methods.

2.1.1.1 The Bloch Sphere

The coefficients 𝛼 and 𝛽 in Equation 2.1 are only connected to physical meaning by the condition

that the square of their magnitudes represents a probability. Since complex numbers have real-

valued magnitudes, these coefficients may have imaginary components. When combined with the

requirement that these probabilities add up to 1, as dictated by the probability axioms, the space

defined by the possible values of 𝛼 and 𝛽 corresponds to points on a spherical surface, called the
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Figure 2.1 The Bloch sphere representing the state of a single qubit as coordinates on a sphere
[104]

Bloch sphere (shown in Figure 2.1).

The two observable states |0⟩ and |1⟩ appear at the north and south poles of the Bloch sphere,

and each other point on the sphere corresponds to a distinct pure superposition of those two states.

Furthermore, the points inside the Bloch sphere, rather than on its surface, represent potential mixed

states of the qubit. These mixed states characterize the state of a qubit when its wave function

is unknown, a scenario that frequently arises in practice because of unpredictable interactions of

quantum systems with their surroundings.

The Bloch sphere is also useful for visualizing operations that can be performed on a qubit.

Due to the conservation of probability, all operations that transform a quantum system from one

state to another are necessarily unitary operations; the quantum states before and after must have

the probabilities of all their possible measurements sum to 1. For a single qubit, the set of all

possible transformations is therefore equivalent to the special unitary Lie group SU(2), which is

homomorphic to the group of rotations around a sphere, SO(3) [35]. This allows for any operation

on a qubit to be visualized as a rotation around the Bloch sphere.4z5
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2.1.1.2 Combining Multiple Qubits

Not many interesting computations can be done with a single qubit, so understanding the

behavior of multiple qubits is crucial to unlocking the full potential of quantum computation. The

combined state for a collection of qubits is represented by a tensor product of the individual states

of the qubits. For example, the state of a system of two qubits, each described by a wave function

|𝜓1⟩ and |𝜓2⟩, is given by:

|𝜓1⟩ ⊗ |𝜓2⟩ = |𝜓1𝜓2⟩ . (2.2)

The state of this two-qubit system can be expressed as a superposition of the four states:

|00⟩ =



1

0

0

0


, |01⟩ =



0

1

0

0


, |10⟩ =



0

0

1

0


, |11⟩ =



0

0

0

1


, which is referred to as a "product basis”. For

example, a general two-qubit state |Ψ⟩ can be written as:

|Ψ⟩ = 𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩ , (2.3)

where 𝛼00, 𝛼01, 𝛼10, and 𝛼11 are complex coefficients that satisfy the normalization condition:

|𝛼00 |2 + |𝛼01 |2 + |𝛼10 |2 + |𝛼11 |2 = 1. (2.4)

A set of qubits taken together is called the quantum register. The set of possible pure states

for a quantum register is a complex linear vector space (called a Hilbert space) spanned by its

product basis states. In general, the state of an 𝑛-qubit system can be represented as a vector in a

2𝑛-dimensional Hilbert space [83].

2.1.1.3 Entanglement

Entanglement occurs when the state of one qubit cannot be described independently of the state

of another. This phenomenon leads to correlations between measurements of the qubits that are

stronger than what is possible in classical systems.
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A well-known example of an entangled state is the Bell state, which for two qubits can be

written as:

|Φ+⟩ = 1
√

2
( |00⟩ + |11⟩). (2.5)

In this state, a measurement of the first qubit will yield information about the second qubit, and

vice versa. For example, if the first qubit is measured as |0⟩, the second qubit will also be |0⟩, and

if the first qubit is |1⟩, the second qubit will be |1⟩. This type of state is considered maximally

entangled because a measurement on one qubit provides complete information about the states of

both qubits.

Entanglement enables quantum teleportation, a phenomenon in which information about the

state of a qubit can be obtained without access to the physical qubit itself. Measurement of one qubit

in an entangled pair, for example, causes the wave function of the other qubit to partially collapse

(or fully collapse into a basis state if they are maximally entangled). Since entangled qubits can

theoretically remain in an entangled state even when separated, there are some situations in which

information can be transmitted in fundamentally different ways than when it is stored classically.

The idea that entangled states store information differently is illustrated in many pedagogical

examples that have been developed in the new field of quantum game theory. One particularly

striking example is the quantum prisoners’ dilemma. In the well-known prisoners’ dilemma

problem, two players each have to decide between options A and B without communicating. If

both choose A, they both receive mild punishment; if they both choose B, they both receive harsh

punishment; if both players choose different options, the one who chose A receives much harsher

punishment, and the one who chose B receives a reward. In the classical scenario, the optimal

strategy for players acting in self-interest is to always choose option B, making the case where both

players receive harsh punishment a so-called Nash equilibrium [91].

In the quantum prisoners’ dilemma, the players are each given exactly one qubit from a pair of

entangled qubits and told that the two possible measurements of the qubit correspond to options

A and B. They are then allowed to perform any kind of unitary manipulations on their qubit to

19



influence the relative probability of choosing options A and B. The players are given full information

on how the entangled state was prepared, so they could theoretically undo their entanglement and

choose their unitary operations to yield 100% chance of choosing one of the options, similar to the

classical case. However, the quantum information stored in their qubits starts out slightly correlated,

meaning that manipulations on one qubit may affect the wave function of the other qubit, so the

players technically share information despite not being able to communicate. It can be shown that,

depending on how entangled the qubit is, the Nash equilibrium can be different for this scenario

than in the classical case. In such scenarios, it can be shown that there exists a stochastic strategy

for players that produces a better outcome on average than the optimal strategy for the classical

case [33].

This example helps to illustrate the role of quantum entanglement in information theory. In the

quantum prisoners’ dilemma, entanglement provides a form of shared information that can be used

to inform decisions. This shows how entanglement can be used as a resource, effectively "storing”

information in the form of correlations between qubits, rather than actually storing information in

the classical sense such as in memory registers.

2.1.2 Quantum Gates and Circuits

In classical computation, information is processed through logic gates (such as the AND and OR

gates) that operate on classical bits, changing their values according to predefined rules. Similarly,

quantum circuits employ quantum gates to manipulate the quantum states of qubits.

An 𝑛-qubit quantum register can be represented as a vector in a 2𝑛 dimensional Hilbert space, so

the quantum gates that may act on that quantum register can be represented by unitary matrices in

the Lie group SU(2𝑛). Since unitary matrices are reversible, quantum gates preserve all information

within the quantum register. This fundamentally distinguishes them from classical logic gates; for

example, the AND gate has two input bits and one output bit, making it impossible to infer the state

of the bits before the operation from the output alone.

Multiple quantum gates form a quantum circuit that can then be used as instructions to execute a

quantum algorithm. Quantum circuits are often represented visually via quantum circuit diagrams.
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Figure 2.2 A basic quantum circuit diagram for creating a Bell state. The initial state on the left is
|00⟩, the gates are applied from left to right, leading to the final state 1

2 ( |00⟩ + |11⟩)

The gates in these diagrams are applied sequentially from left to right on the quantum register,

starting from an initial state, usually |0⟩⊗𝑁 (where all qubits are in the |0⟩ state). These operations

culminate in a final quantum state which, upon measurement, provides the outcome of the quantum

computation.

U3(𝜃, 𝜙, 𝜆) =𝑅𝑧 (𝜙)𝑅𝑥
(
−𝜋

2

)
𝑅𝑧 (𝜃)𝑅𝑥

(𝜋
2

)
𝑅𝑧 (𝜆)

=
©«

cos
(
𝜃
2
)

−𝑒𝑖𝜆 sin
(
𝜃
2
)

𝑒𝑖𝜙 sin
(
𝜃
2
)
𝑒𝑖(𝜙+𝜆) cos

(
𝜃
2
) ª®®¬ .

(2.6)

In a quantum circuit diagram, each qubit is depicted as a horizontal line. Gates can be

represented by boxes, and some types of entangling gates can have lines connecting multiple

qubits. The meter symbol, often the rightmost symbol on a qubit line, represents a measurement

operation.

Because quantum operations are linear, the behavior of a quantum gate is fully characterized

by its effect on a collection of basis states. Hence, the operation of each single-qubit gate can be

described by its effect on the computational basis, while the operation of each multi-qubit gate can

be understood through its effect on the corresponding product basis. The following are some gates

that are frequently used in quantum computing algorithms.

The Hadamard Gate (H) is a single-qubit gate that is typically used as the default method for

creating superposition states from basis states. The Hadamard gate is represented in the quantum

circuit as a boxed "H”, as in Figure 2.1.2 and can be written in matrix form as:
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H =
1
√

2

©«
1 1

1 −1

ª®®¬ (2.7)

This results in a rotation of 𝜋 radians about the axis (𝑥+𝑧)
2 on the Bloch sphere. The output of

a Hadamard gate acting on a qubit in either the |0⟩ or |1⟩ state results in an even superposition

state on the equator of the Bloch sphere. These states are H |0⟩ = 1√
2
( |0⟩ + |1⟩) = |+⟩ and

H |1⟩ = 1√
2
( |0⟩ − |1⟩) = |−⟩, which are orthonormal and form their own basis in a 2-dimensional

Hilbert space. Consequently, H can be viewed as a basis transformation that interchanges the 𝑥 and

𝑧 axes of the Bloch sphere. Additionally, it is involutory, meaning that it serves as its own inverse.

This makes it useful for switching back and forth between the bases {|0⟩ , |1⟩} and {|+⟩ , |−⟩}.

Pauli Gates (X, Y, Z) perform rotations of qubit states around different axes on the Bloch sphere.

They can be written in matrix form as:

X = 𝜎𝑥 =
©«
0 1

1 0

ª®®¬ Y = 𝜎𝑦 =
©«
0 −𝑖

𝑖 0

ª®®¬ Z = 𝜎𝑧 =
©«
1 0

0 −1

ª®®¬
The X gate, also known as the quantum bit-flip gate, has the effect |0⟩ → |1⟩ and |1⟩ → |0⟩,

making it the quantum analogue of the classical NOT gate for the computational basis. Similarly,

the Y and Z gates cause a quantum state to rotate around the �̂� and 𝑧 axes of the Bloch sphere,

respectively. They are all involutory and thus serve as their own inverses. A useful property of

Pauli matrices is that any 2 × 2 matrix can be represented as a linear combination of the Pauli

matrices and the identity matrix.

Rotation Gates (𝑅𝑥 , 𝑅𝑦, 𝑅𝑧) are operators that can each be written as the matrix exponential of a

Pauli gate, i.e. 𝑅 𝑗 = 𝑒−𝑖𝜎𝑗𝜃/2, 𝑗 ∈ (𝑥, 𝑦, 𝑧). These operators represent partial rotations around the

𝑥, �̂�, and 𝑧 axes of the Bloch sphere, respectively. The parameter 𝜃 dictates how many radians the

state rotates, with a value of 𝜋 making the rotation equivalent to a Pauli gate operation.

Phase Shift (P) gate is written in matrix form as:
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P(𝜙) =
©«
1 0

0 𝑒𝑖𝜙

ª®®¬ (2.8)

The phase shift operation only affects the |1⟩ state, while leaving the |0⟩ state unchanged. It is

equivalent to the 𝑅𝑧 gate when 𝜙 = 𝜋. This gate allows for precise manipulation of qubit phases,

sometimes creating conditions in which wave functions destructively interfere, which is beneficial

for some quantum algorithms and error correction schemes.

Controlled Gates are multi-qubit gates that operate conditionally based on the state of a control

qubit. The most commonly used example is the CNOT or "controlled-NOT” gate, which can be

represented in matrix form as:

CNOT =

©«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®®®®®®¬
(2.9)

The CNOT gate flips the state of the target qubit if and only if the control qubit is in the |1⟩ state.

Specifically, it performs the transformation |𝑐, 𝑡⟩ → |𝑐, 𝑐 ⊕ 𝑡⟩, where |𝑐⟩ and |𝑡⟩ are the control and

target qubits, respectively, and ⊕ denotes the XOR operation. It is shown on circuit diagrams as

a line connecting a solid circle on the control qubit line with a hollow circle on the target qubit

line. It is often used as a simple way to create entangled states, as in Figure 2.1.2. To draw other

controlled gates, the hollow circle in the diagram can be replaced with any other gate; for example,

the general "controlled-U” gate is shown in Figure 2.1.2. For example, if 𝑈 =
©«
𝑢00 𝑢01

𝑢10 𝑢11

ª®®¬, this

corresponds to the matrix:
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CU =

©«

1 0 0 0

0 1 0 0

0 0 𝑢00 𝑢01

0 0 𝑢10 𝑢11

ª®®®®®®®®¬
(2.10)

Toffoli Gate (CCNOT) is a three-qubit gate, also known as the controlled-controlled-not gate. It

extends the concept of the CNOT gate by flipping the state of the target qubit only if both control

qubits are in the |1⟩ state. The Toffoli gate can be represented in matrix form as:

Toffoli =

©«

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

ª®®®®®®®®®®®®®®®®®®®®®®¬

(2.11)

In terms of state transformation, the Toffoli gate performs |𝑐1, 𝑐2, 𝑡⟩ → |𝑐1, 𝑐2, 𝑡 ⊕ (𝑐1 · 𝑐2)⟩,

where |𝑐1⟩ and |𝑐2⟩ are the control qubits, and |𝑡⟩ is the target qubit. The Toffoli gate is often used

in quantum computing to create complex entangled states and implement error correction codes. It
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is instrumental in the construction of certain quantum circuits, such as those required for arithmetic

operations and fault-tolerant quantum computation.

2.1.2.1 Universality of Quantum Gates

In the context of quantum computation, a set of gates is considered universal if any unitary

operation can be approximated to arbitrary accuracy using only gates in that set. This means that

any quantum algorithm can be implemented using sequences of these gates. A commonly used set

of gates are the rotation gates, the phase shift gate, and the CNOT gate [116]. The Toffoli gate is

notable for being sufficient by itself for universal classical computation, and the set of the Toffoli

gate and the Hadamard gate is universal for quantum computation [3]. Any physical quantum

computing device that can implement a set of universal quantum gates is considered a universal

quantum computer. Universal quantum computers are important because they can theoretically be

used to execute any kind of quantum algorithm.

2.1.2.2 Extracting information from Quantum Computers

In quantum computers, qubits exist in superpositions which collapse into classical states when

measured. Thus, the determination of the quantum state of a quantum register must be done statisti-

cally, requiring multiple circuit executions and repeated measurements. Many useful computations

on a quantum computer require an iterative process of preparing a quantum register in a particular

state, measuring the classical state into which it collapses, and updating a statistical analysis to

estimate an expectation value of the quantum state. The precision of this estimation increases with

the number of repetitions due to the Law of Large Numbers [98].

The two states that form the computational basis, |0⟩ and |1⟩, are the eigenvectors of 𝜎𝑧.

Measurements on a quantum computer can, therefore, be used straightforwardly to estimate the

expectation value of𝜎𝑧 in the state of the quantum register. To measure the expectation value of𝜎𝑥 in

the state of a qubit, one can apply a Hadamard gate prior to measurement. Similarly, the expectation

value of 𝜎𝑦 can be obtained by first executing a 𝜋
2 phase shift gate, followed by a Hadamard gate,

before measurement. These three types of measurements are called Pauli measurements. They can

be thought of as measurements in the bases X, Y, and Z of a qubit, and the gates applied before
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measurement can be thought of as rotations into their respective basis, starting from the Z basis.

Quantum state tomography, the process of approximately reconstructing a quantum state based

on measurements, can be performed by using the three Pauli measurements on an ensemble of

identical quantum registers. This approximation can be made more efficient by using different

measurement techniques other than Pauli measurements [44]. Some algorithms are designed to

directly estimate desired quantities without the need for tomography; for example, Grover’s search

algorithm uses only one measurement on each qubit at the end of a circuit [46].

In the context of eigenvalue problems on quantum computers, it is often desirable to estimate

the expectation value of a Hamiltonian with respect to the wave function stored in a quantum

register. This value, written as ⟨𝜓 |𝐻 |𝜓⟩ can be thought of as the "energy” of the quantum

state 𝜓 within the quantum system described by 𝐻. This expectation value can be obtained

straightforwardly when the Hamiltonian is expressed as a sum of tensor products of Pauli matrices,

i.e. 𝐻 =
∑
𝑐 𝑗 (𝜎0 ⊗ 𝜎1 ⊗ · · · ⊗ 𝜎𝑛) 𝑗 where each 𝜎𝑖 is in the set {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧, 𝐼} and 𝑛 is the number

of qubits in the quantum register. It is theoretically possible to represent any arbitrary Hamiltonian

in this form because these strings of tensor products form a basis for the Hilbert space of the

Hamiltonian. Due to the linearity of quantum mechanics, the energy can then be expressed as

the sum of the expectation values of these Pauli strings, which can be estimated by taking the

corresponding Pauli measurements of each qubit for each Pauli string and summing them together.

2.1.3 Quantum Hardware and Limitations

In the ongoing quest for quantum advantage, a diverse array of quantum hardware architectures

have been developed, each with its unique attributes and inherent limitations. The types of

quantum computers available in the current era can be divided into two categories: universal

quantum computers and analog quantum computers. Universal quantum computers manipulate

physical quantum states to perform gate operations and execute arbitrary quantum algorithms.

For example, superconducting quantum computers manipulate quantum states found in Josephson

junctions[68], and trapped-ion quantum computers manipulate the electronic states of ions held in

place by electromagnetic fields [16]. Analog quantum computers forego the circuit model in order to
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leverage quantum effects of certain physical systems to perform some subset of quantum computing

operations more efficiently. For example, to more efficiently solve optimization problems, quantum

annealers take advantage of quantum tunneling effects [119], and neutral atom arrays take advantage

of condensed matter physics in Rydberg atoms [14].

Despite the promising capabilities of these quantum hardware architectures, they are not without

limitations. Superconducting quantum computers, while scalable and compatible with existing

semiconductor fabrication techniques, are highly sensitive to environmental noise. This sensitivity

results in short coherence times and necessitates operation at cryogenic temperatures, presenting

significant engineering challenges. Trapped-ion quantum computers offer longer coherence times

due to their isolation from the environment, but face challenges in scaling up while maintaining

connectivity between qubits, as the interaction between ions decreases with distance, making high-

fidelity operations difficult as the system size expands. Analog quantum computers, including

quantum annealers and Rydberg atom array computers, offer unique advantages, but also face their

own set of challenges. Quantum annealers have limited application scope and are susceptible to

thermal noise, leading to potential inaccuracies in solutions. Rydberg atom array computers, while

offering high connectivity between qubits and long coherence times, face difficulties in precisely

controlling the interactions between atoms and potential issues with scalability.

While researchers are working to mitigate the limitations of quantum hardware, it is still

worthwhile to make use of the currently available technology by developing algorithms that can

produce interesting results despite high decoherence times and environmental noise. This is the

essence of the Noisy Intermediate-Scale Quantum (NISQ) era, a term coined by John Preskill

to describe the current state of quantum computing technology [92]. NISQ devices, which may

possess between 50 and a few hundred qubits, are not yet error-corrected and suffer significant

operational errors. However, they represent the best quantum computing resources currently

available; therefore, there is a pressing need for quantum algorithms that can operate effectively

within the constraints of these devices. Such algorithms must be robust to noise and capable

of providing a quantum advantage even with a limited number of qubits. This is a challenging
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task, as many quantum algorithms proposed thus far require error correction or a large number

of qubits to provide a significant advantage over classical computers. For this reason, there is a

growing interest in hybrid algorithms that combine techniques from currently available quantum

and classical hardware to surpass the limitations on both sides.

2.1.3.1 Optimal Control for Quantum Gates

Quantum computing algorithms are generally implemented using one- and two-qubit gates,

and a many-qubit algorithm can be executed precisely as a sequence of these gates [103, 12].

However, the number of gates required for complex algorithms can become very large, and the

short coherence times of NISQ devices impose a strict limit on the runtime of an algorithm before

the output becomes dominated by noise. In order to optimize the performance of some algorithms,

it is possible to create custom gates customized to the specific hardware and algorithm using

optimal control theory [54]. Gates on physical hardware are often constructed from analog signals

(e.g. microwave pulses on superconducting transmons), making this approach similar to hybrid

digital-analog algorithms.

2.1.3.2 Qudits

Qudits extend the concept of qubits to quantum systems with more than two possible states,

allowing for more complex state representations in a higher-dimensional state space. Some physical

systems used to create qubits in quantum computers are amenable to having more than two possible

states when measured. For example, superconducting qubits use the energy levels of a transmon

to create basis states for quantum computing, and it is possible for a transmon state to be in

a superposition of more than two distinct states. This can allow more quantum information to

be stored in the same amount of hardware, possibly leading to more efficient algorithms when

combined with optimal control techniques to implement multilevel quantum gates [118].

2.2 Eigenvalue Problems and Methods for Solving Them

The general form of an eigenvalue problem is as follows:

𝐴v = 𝜆v (2.12)
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Where 𝐴 is a matrix, v is an unknown vector, and 𝜆 is an unknown scalar. The solutions for v

and 𝜆 are called eigenvectors and eigenvalues, respectively.

Eigenvalue problems are prevalent in various disciplines, including nuclear physics, chemistry,

and optimization. Eigenvalues and eigenvectors can yield important insights into underlying

systems, such as the energy levels of a quantum system or optimal solutions to real-world problems.

However, tackling these issues, especially for large and complicated systems, can be computationally

demanding. In nuclear physics and chemistry, relevant eigenvalue problems take the form of solving

the Schrödinger equation for a nuclear or molecular Hamiltonian. In combinatorial optimization,

eigenvalue problems arise in graph theory, where the largest eigenvalue of a graph’s adjacency

matrix reveals structural information like maximum degree.

In this section, we will discuss various known computational techniques in both the classical

and quantum computing regimes that aid in solving for eigenvalues and eigenvectors.

2.2.1 Classical Computational Techniques

Classical techniques for solving eigenvalue problems include direct diagonalization and iterative

methods. Numerical diagonalization involves the transformation of matrices into diagonal forms to

reveal eigenvalues using algorithms such as the QR or Jacobi methods [10]. These straightforward

methods, while effective for small to medium-sized matrices, become computationally intensive

for very large or dense matrices, requiring 𝑂 (𝑁3) operations for a 𝑁 × 𝑁 matrix. Considering that

the size of the quantum Hamiltonian matrix scales exponentially with the number of particles in

the quantum system, this becomes intractable for many reasonably-sized problems. For example,

modeling nuclei requires 4𝐴 states to fully describe the spin-isospin component, where 𝐴 is the

number of nucleons. Thus, solving the Schrödinger equation for most nuclear Hamiltonians requires

the use of iterative methods, which typically compute only a few eigenvalues and eigenvectors rather

than the full spectrum.

In this section, we will explore some iterative methods for eigenvalue problems, relating each

method to how it can be used in nuclear physics.
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2.2.1.1 The Power Method

The Power Method is one of the simplest iterative techniques for finding the dominant eigenvalue

and its corresponding eigenvector of a matrix. The method involves repeatedly multiplying an

arbitrary non-zero vector by the matrix and normalizing the result. Mathematically, this process

can be expressed as:

v𝑘+1 =
𝐴v𝑘

∥𝐴v𝑘 ∥

where v𝑘 is the vector at iteration 𝑘 , and 𝐴 is the matrix whose eigenvalues are desired. After many

iterations, v𝑘 converges to the eigenvector associated with the largest eigenvalue of 𝐴.

In nuclear physics, the Power Method can be used to estimate the ground state energy of a

system, which corresponds to the most extremal eigenvalue of the quantum Hamiltonian. Although

the Power Method is simple and easy to implement, it converges slowly, especially if the dominant

eigenvalue is not well separated from the other eigenvalues. Thus, its primary use is as a pedagogical

tool to explain how iterative methods can converge on a single eigenvalue more efficiently than

direct diagonalization.

2.2.1.2 The Lanczos Algorithm

In many nuclear physics applications, the Hamiltonian matrix is sparse, which means that most

of its elements are zero. This sparsity arises because interactions in nuclear systems are typically

local, involving only a limited number of neighboring particles or basis states. As a result, each

row and column of the Hamiltonian matrix contains only a few nonzero elements. This sparsity

makes certain iterative algorithms, such as the Lanczos algorithm, more effective.

The Lanczos algorithm is an iterative method that is particularly effective in determining a

few eigenvalues and eigenvectors of large sparse matrices [51]. It simplifies the original matrix

to a significantly smaller tridiagonal matrix, which is easier to solve. The steps of the Lanczos

algorithm can be outlined as follows:

1. Begin with an initial vector v1 (often chosen randomly or based on some heuristic) and

normalize it. Set 𝛽0 = 0 and v0 = 0.
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2. For 𝑗 = 1, 2, . . . , 𝑘:

a) Compute w 𝑗 = 𝐴v 𝑗 − 𝛽 𝑗−1v 𝑗−1.

b) Compute 𝛼 𝑗 = v𝑇
𝑗
w 𝑗 .

c) Update w 𝑗 to w 𝑗 = w 𝑗 − 𝛼 𝑗v 𝑗 .

d) Orthogonalize w 𝑗 with respect to all previous v𝑖 (usually done implicitly).

e) Compute 𝛽 𝑗 = ∥w 𝑗 ∥.

f) Normalize w 𝑗 to get the next vector v 𝑗+1 =
w 𝑗

𝛽 𝑗
.

3. Construct the tridiagonal matrix 𝑇 with diagonal entries 𝛼 𝑗 and off-diagonal entries 𝛽 𝑗 .

This process generates an orthogonal basis for the Krylov subspaceK𝑘 (𝐴, v1), and the solutions

for the eigenvalue problem for the matrix 𝑇 can be used to approximate the eigenvalues and

eigenvectors of the original matrix 𝐴. The algorithm is particularly useful because it significantly

reduces the size of the problem compared to direct diagonalization, making it computationally

efficient for large sparse matrices.

2.2.1.3 Monte Carlo

Monte Carlo algorithms, named after the city of Monte Carlo in Monaco known for gambling,

use repeated random number generation to estimate quantities of interest. For example, they can

be used to estimate the value of an integral of a function without requiring the knowledge of an

analytical solution for that integral. For a function of one variable 𝑓 (𝑥), the integral represents

the area under the curve, which can be approximated for a particular interval by choosing random

points within the domain and range of 𝑓 (𝑥) and checking if each point is above or below 𝑓 (𝑥). In

the context of eigenvalue problems, Monte Carlo techniques can be used to estimate the properties

of large matrices or to solve integrals that arise in the computation of matrix elements.

Although the Monte Carlo method is capable of handling large systems, it encounters the

notorious "sign problem" when applied to quantum systems. This issue arises from the necessity to

sample from a distribution that includes both positive and negative values, leading to cancellations
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that cause the statistical error to grow exponentially with the size of the system. The sign problem is

particularly an issue in simulations involving fermions due to the antisymmetrization requirement of

their wave functions, which results in probability distributions that are not always positive definite.

2.2.1.4 Eigenvector Continuation

Several methods have been developed to overcome the sign problem of the Monte Carlo method

when used in the context of lattice simulations for fermionic systems [30, 1, 70, 41]. One such

method that has been successful recently is Eigenvector continuation (EC) [40].

EC is a variational method for finding extremal eigenvalues and eigenvectors of a Hamiltonian.

It involves projecting the changing extremal eigenvector of a Hamiltonian onto a smaller subspace,

reducing the dimensionality. This projection speeds up the estimation, making it versatile for

various problems. By projecting the Hamiltonian onto a subspace of eigenvectors from selected

training parameters and solving the generalized eigenvalue problem, we get a low-dimensional

approximation of the true eigenvector. The main advantage of EC is its ability to extrapolate to

regions which are inaccessible by direct calculation, similar to the technique of analytic continuation

in the complex plane.

2.2.2 Quantum Computational Techniques

In this section, we will discuss various techniques that have been developed that utilize quantum

computing resources to solve eigenvalue problems.

2.2.2.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) algorithm is a hybrid quantum-classical method

specifically designed to mitigate the challenges of quantum computation posed by noise and other

physical limitations in the NISQ era [76]. Primarily used to find the ground-state energy of a

quantum mechanical system, the algorithm combines the computational power of quantum systems

with the robustness of classical optimization algorithms.

The central idea of VQE is the variational principle of quantum mechanics, which is the

observation that the expectation value of the Hamiltonian, ⟨𝜓 | 𝐻 |𝜓⟩, for any state |𝜓⟩ is always

greater than or equal to the ground state energy 𝐸0 of the system. The VQE algorithm takes
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advantage of this principle to approximate the ground state.

The VQE algorithm starts by preparing a quantum state |𝜓(𝜃)⟩, also known as an ansatz,

which is parameterized by a set of classical variables 𝜃. This state is typically prepared using a

specialized quantum circuit on a quantum computer. The selection of ansatz can influence the

algorithm’s performance, and it is typically constructed to reflect some of the known physics of

the problem. For example, a commonly used ansatz is the Unitary Coupled Cluster ansatz, which

is notably effective for simulating molecular systems because it can include electronic correlations

[6]. Another example is the Hardware Efficient Ansatz, created to exploit the specific features of

quantum hardware for more efficient implementation [61].

The algorithm proceeds by estimating the expectation value ⟨𝜓(𝜃) | 𝐻 |𝜓(𝜃)⟩ of the Hamiltonian

using the quantum computer. The calculated expectation value acts as an objective function for

a classical optimization process that iteratively adjusts the parameters 𝜃. This optimization loop

continues to lower the expectation value until a predefined stopping condition is met. These

procedures form a quantum-classical cycle: The quantum computer sets up the state and computes

the expectation value, while the classical computer updates the parameters.

This algorithm can be used to determine the lowest eigenvalue of a Hamiltonian, which fre-

quently corresponds to the ground-state energy of a quantum system of interest. This is of interest

for nuclear and molecular Hamiltonians because physical systems naturally gravitate towards their

ground state, often making them the most important states to understand. However, often the

higher-energy eigenstates are also of interest, but since VQE is based on the variational principle,

it is incapable of solving for such excited states.

2.2.2.2 Quantum Adiabatic Evolution

One approach to prepare an arbitrary state on a universal quantum computer with arbitrary

precision (or "fidelity”) is to simulate the process of adiabatic evolution starting from an easily

accessible state. This method is based on the adiabatic theorem in quantum mechanics, which

states that a system will stay in its instantaneous eigenstate as long as the perturbation influencing

it changes gradually enough and there is a gap between the eigenvalue and the rest of the spectrum.
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For example, if a quantum system is initialized in the ground state of a basic Hamiltonian, and the

time evolution of the state of the quantum register is simulated while the Hamiltonian is gradually

transformed into a complex one with the desired ground state, the system will remain in the ground

state throughout the evolution.

Although adiabatic evolution can theoretically generate any eigenstate of a quantum Hamil-

tonian, its practical implementation on NISQ devices is challenging. Achieving a desired state

with high precision may necessitate a large number of quantum gates, resulting in longer circuit

execution times and a higher probability of qubits decohering due to undesired interactions with

the environment. This can cause the evolution to deviate significantly from its intended trajectory

toward the target state.

A more detailed description of the Quantum Adiabatic Evolution algorithm is given in Chapter

3, along with a demonstration of an implementation with custom time evolution gates created with

optimal control.

2.2.2.3 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm[36] and the very similar Quantum Alter-

nating Operator Ansatz[49] (both called QAOA) are quantum computing algorithms closely related

to VQE and Quantum Adiabatic Evolution. Like VQE, QAOA is a hybrid quantum-classical al-

gorithm designed to take advantage of the computational advantages of quantum systems while

mitigating their limitations. It uses the same variational approach as VQE but with a particular

ansatz that is physically motivated by the adiabatic theorem, making it also closely related to

quantum adiabatic evolution.

QAOA begins with a simple quantum state, typically a uniform superposition of all possible

solutions, achieved by applying a Hadamard gate to each qubit. The algorithm then applies a

sequence of unitary evolutions to this state, which perform the action of the time evolution operator

𝑈 = 𝑒−𝑖𝐻𝑡 , alternating 𝐻 between two Hamiltonians, the cost (or "problem”) Hamiltonian 𝐻 𝑓 and

the mixer Hamiltonian 𝐻𝑖. The values of 𝑡 in the time evolution operators are given by two sets of

parameters, 𝛽 for the time evolutions on 𝐻𝑖 and 𝛾 for the time evolution on 𝐻 𝑓 . These evolution
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operations are alternated for 𝑝 “layers" (also called the "depth”) to form the ansatz. Increasing the

depth theoretically leads to higher fidelity of state preparation at the expense of increased risk of

decoherence due to longer circuit execution times.

Similarly to VQE, the expectation value of the cost Hamiltonian with respect to the state of

the quantum register at the end of the circuit is typically used as the cost function for a classical

minimization to update the parameters 𝛽 and 𝛾. This forms a quantum-classical feedback loop,

iteratively optimizing the parameters until the final state with the lowest energy value is found. By

the variational principle, this state approaches the ground state of the cost Hamiltonian.

Similarly to the adiabatic evolution algorithm, QAOA can be thought of as an alternative way

to discretize the adiabatic process into a sequence of unitary evolution operations. The difference

is that, instead of a continuous and slow evolution between two Hamiltonians, QAOA performs

a series of abrupt changes between those two Hamiltonians. This approach allows QAOA to

approximate the adiabatic path in a stepwise manner, potentially achieving the same result with

fewer resources and in a shorter time.

2.2.2.4 Quantum Phase Estimation

The Quantum Phase Estimation (QPE) algorithm is a fundamental quantum algorithm used

to estimate the eigenvalues of a unitary operator. In the context of nuclear physics, unitary

operators of interest often represent the time evolution operator 𝑈 = 𝑒−𝑖𝐻𝑡 (which has the same

eigenstates as the Hamiltonian 𝐻). Given an initial quantum state that has a non-zero overlap with

a particular eigenstate of this unitary operator, the QPE algorithm estimates the phase (and thus the

corresponding eigenvalue) with high precision.

The QPE algorithm works as follows:

1. Initial State Preparation: The algorithm begins with an initial state composed of two

registers, each: an ancillary register prepared in a superposition state using the Hadamard

gates, and a system register initialized in a state |𝜓⟩ that has a nonzero overlap with an

eigenstate of the unitary operator𝑈.
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2. Controlled Unitary Operations: Controlled applications of the unitary operator 𝑈 are

performed, where each qubit in the ancillary register controls the application of 𝑈 on the

system register, repeated 2 𝑗 times, where 𝑗 is the index of the ancilla qubit. This step encodes

the phase information into the ancillary register.

3. Quantum Fourier Transform (QFT): After the controlled unitary operations, a Quantum

Fourier Transform (QFT) is applied to the ancillary register. This step transforms the phase

information from the time domain to the frequency domain, allowing the extraction of the

phase.

4. Measurement: Finally, the ancillary register is measured, yielding an estimate of the phase

𝜙. This phase is related to the eigenvalue 𝜆 of the unitary operator𝑈 by𝑈 |𝜓⟩ = 𝑒2𝜋𝑖𝜙 |𝜓⟩.

In addition to the standard QFT-based QPE, there are several iterative versions of the QPE algo-

rithm that can offer advantages in terms of circuit depth and resource requirements. These iterative

methods, such as Kitaev’s iterative phase estimation [66], involve a sequence of measurements and

classical feedback to refine the estimate of the phase 𝜙.

Iterative QPE estimates the bits of the phase 𝜙 sequentially. This method uses fewer qubits,

reducing the overall complexity of the quantum circuit. The technique involves initially focusing

on the most significant bit, where the algorithm determines each bit of the phase through a series

of controlled operations and measurements. The outcome of each measurement is then used to

adjust the following controlled operations, iteratively refining the phase estimate. The accuracy of

the phase estimation can be tuned by the number of iterations, potentially enabling eigenvalues to

be estimated with higher precision.

2.2.2.5 Quantum Amplitude Estimation

Quantum Amplitude Estimation (QAE) is a quantum algorithm that extends the principles of

QPE to estimate the amplitude of a specific quantum state within a superposition. It has been

shown to provide a quadratic speedup over classical Monte Carlo methods in terms of the number

of samples required to achieve a given precision [21].
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The QAE algorithm works as follows:

1. Initial State Preparation: The algorithm begins by preparing an initial quantum state. This

involves two main steps:

a) State Preparation: A unitary operator 𝐴 is applied to the initial state |0⟩ to prepare the

state 𝐴 |0⟩ =
√

1 − 𝑎 |0⟩ +
√
𝑎 |1⟩, where 𝑎 is the amplitude to be estimated.

b) Ancillary Qubit: An ancillary qubit is prepared in the superposition state 1√
2
( |0⟩ + |1⟩).

2. Quantum Operator Construction: Define the Grover operator 𝑄 = 𝐴𝑆0𝐴
†𝑆𝜒, where 𝑆0

and 𝑆𝜒 are reflection operators. 𝑆0 inverts the sign of the amplitude of the |0⟩ state, and 𝑆𝜒

inverts the sign of the amplitude of the states marked by the oracle function 𝜒.

3. Amplitude Amplification: Apply the Grover operator 𝑄 iteratively. The number of appli-

cations 𝑄𝑘 increases the amplitude of the target state quadratically with each iteration. The

amplitude of the target state becomes sin((2𝑘 + 1)𝜃), where 𝜃 is related to the amplitude 𝑎

by sin2(𝜃) = 𝑎.

4. Phase Estimation: Use the QPE algorithm to estimate the eigenvalues of the Grover operator

𝑄. This involves applying controlled applications of 𝑄 and performing a Quantum Fourier

Transform (QFT) on the ancillary register to extract the phase 𝜃.

5. Measurement and Classical Post-processing: Measure the ancillary qubits to obtain an

estimate of the phase 𝜃. Using classical post-processing, convert the phase 𝜃 into an estimate

of the amplitude 𝑎. The relationship 𝑎 = sin2(𝜃) allows for the extraction of the amplitude

from the measured phase.

The number of quantum operations required for this method scales as 𝑂 (1/𝜖), where 𝜖 is

the desired precision, compared to the scaling 𝑂 (1/𝜖2) for the number of classical operations in

Monte Carlo methods, representing a quadratic improvement in time complexity. This efficiency
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makes QAE a powerful tool for problems involving probability estimation and expectation value

calculations in quantum computing.

There are various modifications and enhancements to the standard QAE algorithm. One notable

example is the Maximum Likelihood Amplitude Estimation (MLAE)[107] which refines the am-

plitude estimate using maximum likelihood methods. Instead of directly using the phase estimates

to determine the amplitude, the measurement data is fed into a likelihood function that models

the probability of observing the data given different possible amplitudes. The likelihood function

can incorporate various sources of noise and uncertainty, potentially increasing the robustness and

accuracy of the estimate.

2.2.2.6 Rodeo Algorithm

The Rodeo algorithm (RA) is an innovative quantum computing approach based on the sup-

pression of the probability amplitudes of all eigenvectors except the one of interest. Applicable to

any quantum Hamiltonian, its recursive nature allows for exponential convergence with increasing

cycles and can be utilized for full-energy spectrum computation and the preparation of any energy

eigenstate.

A detailed explanation and a demonstration of the effectiveness of RA are explored as the main

subject of Chapter 4. A novel variational method combining RA and QAOA to prepare eigenstates

more efficiently is the subject of Chapter 5.

2.2.3 Classical Optimization Techniques

As noted in Section 2.2.2, the preparation of eigenstates on quantum computers is frequently

achieved through variational methods such as VQE, QAOA, or the novel Variational Rodeo Al-

gorithm discussed in Chapter 5. These techniques require classical optimization in tandem with

quantum circuit operations. Solving such optimization problems can be particularly challenging

largely due to the high dimensionality of the problem space, leading to complications such as local

minima and barren plateaus.

In this section, we will explore several classical optimization methods that are commonly

used in combination with these variational quantum algorithms. These methods are theoretically
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interchangeable in many applications of variational methods, although some work more efficiently

than others. It is not necessary to understand how they work in order to successfully apply them to

variational algorithms, but a short description of each approach is included for the curious reader.

2.2.3.1 Gradient Descent

Gradient Descent is a key optimization algorithm, used to find the global minimum of an

objective function. It iteratively adjusts the parameters in the direction of the steepest decrease,

defined by the negative gradient at the current point. The update rule is:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ 𝑓 (𝜃𝑡)

where 𝜂 is the learning rate and ∇ 𝑓 (𝜃𝑡) is the gradient at 𝜃𝑡 . Despite its simplicity, this method has

limitations in high-dimensional spaces, such as in quantum variational algorithms. The convergence

rate depends on selecting an appropriate learning rate. It can get trapped in local minima, saddle

points, or areas of near-zero gradients that hinder optimization, known as barren plateaus.

2.2.3.2 Newton’s Method

Newton’s method is a numerical root-finding algorithm adapted for optimization. It uses the

second-order Taylor expansion to find minima of functions. The update rule is:

𝜃𝑡+1 = 𝜃𝑡 − 𝐻−1∇ 𝑓 (𝜃𝑡)

where 𝐻 is the Hessian matrix of second-order partial derivatives. This method can converge

faster than Gradient Descent near the optimum due to second-order information. However, its

practicality in quantum optimization is limited. Computing the Hessian and its inverse is costly

in high-dimensional spaces. If the Hessian isn’t positive definite, convergence to a saddle point or

divergence may occur. Due to these difficulties, combined with the complexity of cost functions in

quantum optimization, this method is rarely used in practice, but it is still useful in the pedagogical

sense to show how optimization techniques can incorporate second-order corrections to the gradient.

2.2.3.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a popular quasi-Newton method

for unconstrained optimization [22]. Unlike Newton’s method, which requires computing the
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Hessian matrix, BFGS approximates the inverse Hessian using gradients. The parameter update

for 𝜃 is:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝐵𝑡∇ 𝑓 (𝜃𝑡)

where 𝐵𝑡 is iteratively updated using gradients and parameters from previous iterations. BFGS is

efficient in high-dimensional spaces and avoids the computational burden of full Hessian calcula-

tions, making it suitable for variational quantum algorithms. It often converges faster than Gradient

Descent, especially when the cost function is smooth [47].

BFGS is effective in optimizing parameters for variational quantum algorithms such as VQE and

QAOA, navigating high-dimensional landscapes more effectively than simpler gradient methods.

Its adaptive Hessian refinement helps mitigate issues like barren plateaus by using curvature data

to direct the optimization.

However, BFGS can be sensitive to the initial parameters and the nature of the cost function.

Some hybrid methods have been proposed that combine BFGS with other strategies to improve

robustness and convergence [57, 9].

2.2.3.4 Nelder-Mead Method

The Nelder-Mead method is a derivative-free optimization algorithm that works well for func-

tions that are not smooth or lack derivatives [82]. This makes it a common choice for variational

algorithms in which the derivative of the quantum circuit with respect to its circuit parameters may

be difficult to compute. It uses a simplex, a geometric figure of 𝑛 + 1 vertices in 𝑛-dimensional

space, to iteratively search for the minimum. The algorithm performs the following operations at

each step to move the simplex towards the minimum:

1. Reflection: Reflect the worst vertex through the centroid of the remaining vertices.

2. Expansion: If reflection improves the value of the function, expand further in that direction.

3. Contraction: If reflection does not improve, contract the simplex around the best vertex.

4. Shrinkage: If contraction fails, shrink the entire simplex towards the best vertex.
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This method is advantageous in high-dimensional optimization where gradient information is

unavailable or unreliable. However, it can be slow and may not converge to the global minimum,

especially in high-dimensional spaces common in variational quantum algorithms on large sets of

qubits.

2.2.3.5 Conjugate Gradient Method

The Conjugate Gradient method is an optimization algorithm that is particularly effective for

large-scale linear systems originally invented to minimize quadratic functions [97]. It is an iterative

method that improves upon Gradient Descent by considering the previous search direction, creating

conjugate directions for faster convergence. The update rule is:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡 𝑝𝑡

𝑝𝑡+1 = −∇ 𝑓 (𝜃𝑡+1) + 𝛽𝑡 𝑝𝑡

where 𝑝𝑡 is the conjugate direction, 𝛼𝑡 is the step size, and 𝛽𝑡 is computed to ensure conjugacy. This

method converges in at most 𝑛 steps for 𝑛-dimensional quadratic functions, but is more efficient

for other functions as well. Its efficiency and relatively low memory requirement make it suitable

for high-dimensional problems encountered in variational quantum algorithms, although some

problems tackled by these approaches are nonlinear, which may lead to a decreased efficiency of

the CG method compared to quadratic functions [75].

2.2.3.6 Simulated Annealing

Simulated Annealing is a probabilistic optimization technique inspired by the annealing process

in metallurgy [63]. It aims to find a global minimum by allowing occasional uphill moves to escape

local minima. The algorithm uses a temperature parameter that starts high and gradually cools

down. The steps are:

1. Initialization: Start with an initial solution and temperature.

2. Perturbation: Modify the current solution slightly to generate a new candidate solution.
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3. Acceptance Criterion: Accept the new solution if it improves the objective function. If not,

accept it with a probability that decreases with temperature.

4. Cooling Schedule: Gradually reduce the temperature according to a predefined schedule.

The probability of accepting worse solutions decreases over time, allowing the algorithm to

explore the solution space widely at high temperatures and focus on local improvements at low

temperatures. This is particularly useful for problems with many local minima, such as those

in variational quantum algorithms. However, it may not be obvious how to properly choose the

cooling schedule so that it leads to better convergence.

2.2.3.7 Adam Optimization Algorithm

The Adam (Adaptive Moment Estimation) optimization algorithm, an advanced version of

stochastic gradient descent, combines the adaptive learning rate of AdaGrad and the momentum of

RMSProp [62]. The update rules are:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇ 𝑓 (𝜃𝑡)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) (∇ 𝑓 (𝜃𝑡))2

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
�̂�𝑡 =

𝑣𝑡

1 − 𝛽𝑡2

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
�̂�𝑡√
�̂�𝑡 + 𝜖

𝑚𝑡 and 𝑣𝑡 are the first and second moment estimates of the gradients, 𝛽1 and 𝛽2 are the decay rates,

𝜂 is the learning rate, and 𝜖 is a small constant to prevent division by zero.

Adam’s adaptive learning rate is effective for training models with noisy and sparse gradi-

ents, which are common in high-dimensional optimization like variational quantum algorithms. It

adjusts step sizes to facilitate efficient convergence compared to conventional methods. Its momen-

tum reduces noise and fluctuations in gradient updates, speeding up optimization and preventing

getting stuck in local minima or saddle points, which is useful for cost functions with complicated

landscapes.
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However, while Adam is highly effective for machine learning tasks due to its robustness and

adaptive nature, it is not used as often for variational methods. Currently, machine learning cost

functions have much higher dimensionality than those generated from quantum circuits, meaning

that methods like Adam which are optimized to work well in such regimes may not be as effective as

other optimization algorithms in variational methods. Many variational circuits have cost functions

with gradients that can be computed analytically, such as with the stochastic parameter shift rule

[11], which may allow them to take advantage of simpler methods.

2.3 Applications of Eigenstate Preparation

Though the main objective of this research is to improve computational methods to solve eigen-

value problems to better understand nuclear systems, there are many other practical applications

that accompany these advances. This section will describe several other fields that share an interest

in better eigenstate preparation techniques.

2.3.1 Quantum Simulation

A prime example of a case where quantum computation has the potential to efficiently address

problems deemed intractable for classical computing systems is the simulation of the dynamics of

large quantum systems. The resources required to solve this issue through classical computing grow

exponentially in relation to the size of the system 𝑁 . Conversely, a universal quantum computer

can achieve a solution with resources that scale linearly with 𝑁 , under the condition that local

interactions drive the system’s evolution [73, 38]. Before starting the simulation of a system, it is

often beneficial to prepare a quantum register in a specific eigenstate of a particular Hamiltonian that

represents that system. Quantum systems of practical and theoretical interest to simulate include

systems in nuclear physics, chemistry, QCD, and many other fields.

2.3.2 Condensed Matter Physics

Condensed matter physics encompasses a wide array of models that describe the collective

behavior of many-body systems. Eigenstate preparation plays a crucial role in understanding these

models as it allows for a detailed examination of ground states and excited states, facilitating insights

into various physical phenomena.
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One prominent example is the transverse field Ising model, which serves as a prototypical

system for studying quantum phase transitions [39]. Preparation of the system in its ground state

enables exploration of critical behavior and scaling properties. The Heisenberg model, another

fundamental model in condensed matter physics, describes interactions in magnetic systems; its

eigenstates yield insights into magnetic excitations and spin dynamics [13]. In the context of

strongly correlated electron systems, the Fermi-Hubbard model is a key model for understanding

high-temperature superconductivity and Mott insulator transitions [102]. Preparing eigenstates of

this Hamiltonian allows for the analysis of electron correlations and pairing mechanisms. Similarly,

the Bose-Hubbard model describes bosonic particles in an optical lattice and is instrumental in

studying superfluid-insulator transitions [43]. Its eigenstates illuminate quantum phase transitions

and coherence properties in bosonic systems.

2.3.3 Quantum Chemistry

In quantum chemistry, eigenstate problems appear in the form of solving the Schrödinger

equation for electronic and vibrational structure Hamiltonians of molecules. Accurate eigenstate

preparation can allow for calculation of particular molecular properties, reaction pathways, and

potential energy surfaces, which are fundamental to understanding chemical reactions and designing

new materials.

For electronic structure calculations, obtaining the ground state and low-lying excited states

of a molecular Hamiltonian enables the determination of properties such as ionization energies,

electron affinities, and dipole moments. Furthermore, the full spectrum of eigenvalues provides

insight into absorption spectra and photoelectron spectroscopy [108].

Vibrational structure calculations, which involve the preparation of eigenstates of the vibrational

Hamiltonian, are important for understanding molecular vibrations and infrared spectra. These

calculations aid in the interpretation of experimental data and in the prediction of spectroscopic

signatures [20].

One of the promising applications of quantum eigensolvers in quantum chemistry is in drug

discovery [23, 99, 25]. The process of discovering new drugs involves identifying molecules that
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can interact with biological targets in specific ways. This requires a detailed understanding of

molecular interactions and the ability to predict how different molecules will behave. If quantum

computers can be used to simulate the electronic structures of complex molecules more accurately

than classical computers, it may allow them to accelerate the process of identifying potential drug

candidates.

2.3.4 Nuclear Physics

Quantum eigenstate preparation holds significant promise in advancing our understanding and

solving complex problems in nuclear physics [24]. This approach is particularly important when the

nuclear many-body problem is addressed, where the interactions among multiple nucleons within

an atomic nucleus are modeled and studied. Using quantum computing, scientists aim to achieve

more accurate and efficient solutions than classical computing can provide.

2.3.4.1 Nuclear Structure

One of the primary applications of quantum eigenstate preparation in nuclear physics is the

determination of nuclear structures. This involves calculating the properties of nuclei, such as

binding energies, excited states, and transition probabilities. Quantum computing can enable the

simulation of nuclear shell model wave functions, for example, which represent the different energy

states of a nucleus [93]. This can be used to understand the ground and excited states of various

isotopes, potentially leading to insights into nuclear stability or the discovery of new medical

isotopes.

2.3.4.2 Nuclear Reactions

Simulating nuclear reactions typically involves computing reaction cross sections and analyzing

resonance phenomena by preparing the initial and final states of the interacting nuclei. Accurate

simulations of nuclear reactions have applications ranging from energy production in nuclear

reactors to the synthesis of elements in stellar environments. A better understanding of the

eigenstates that represent states of interacting particles before and after a nuclear reaction could lead

to more efficient designs of nuclear reactors and better predictions of reaction rates in astrophysical

processes.
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2.3.4.3 Quantum Chromodynamics and Nuclear Matter

Quantum Chromodynamics (QCD), the theory describing the strong interaction that binds

quarks and gluons in protons and neutrons, poses significant computational challenges. Better

simulations of QCD could enable us to understand the behavior of nuclear matter under extreme

conditions, such as those found in neutron stars or heavy-ion collisions. They can also provide

insights into phase transitions in nuclear matter, such as the transition from hadronic matter to

quark-gluon plasma, a state of matter believed to have existed shortly after the Big Bang.

2.3.5 Combinatorial Optimization

Combinatorial optimization problems are a class of problems in which the objective is to find

an optimal solution from a finite set of discrete options. These problems are ubiquitous in various

fields such as logistics, scheduling, network design, and more. Many combinatorial optimization

problems are classified as NP-hard, meaning that no known polynomial-time algorithm can solve

all instances of these problems. Quantum algorithms offer promising approaches to address these

challenges more efficiently than classical algorithms.

Importantly, all NP-hard problems can be reduced to the problem of finding the ground state

of the transverse-field Ising model [113]. This reduction highlights why quantum algorithms,

particularly those designed to find ground states of Hamiltonians, are powerful tools for solving

combinatorial optimization problems. Here, we will focus on the different types of combinatorial

optimization problems and how they can be formulated for quantum computation.

2.3.5.1 Binary Variable Optimization

Binary variable optimization problems involve variables that can take on one of two possible

values (usually 0 or 1). These problems are fundamental in fields such as computer science,

operations research, and artificial intelligence. Notable examples include MaxCut, QMaxCut, and

Max-k-SAT.

MaxCut MaxCut is a classic NP-hard problem where the goal is to partition the vertices of a

graph into two disjoint subsets such that the number of edges between the subsets is maximized.
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The formulation of this problem on a quantum computer involves identifying a Hamiltonian whose

ground state corresponds to the optimal partition. MaxCut is relevant in network design to optimize

communication or transportation networks, circuit layout design to minimize the number of crossing

wires, and clustering in machine learning, where the goal is to group similar items while separating

dissimilar ones.

QMaxCut QMaxCut extends the MaxCut problem to quantum graphs, where edges represent

quantum interactions. The formulation involves designing a Hamiltonian that encapsulates the

quantum correlations in the graph, enabling the quantum algorithm to find the optimal partition

that maximizes these correlations. QMaxCut can be applied in quantum communication net-

works to optimize the quantum entanglement distribution, and in quantum error correction where

optimization of the network can improve fault tolerance.

Max-k-SAT Max-k-SAT is an extension of the Boolean satisfiability problem (SAT) and is

also NP-hard. The objective is to determine the assignment of binary variables that satisfies the

maximum number of clauses, where each clause has exactly 𝑘 literals. Formulating this problem

on a quantum computer involves constructing a Hamiltonian whose ground state represents the

assignment that maximizes clause satisfaction. Max-k-SAT is relevant in artificial intelligence for

constraint satisfaction problems, in software verification to check the correctness of programs, and

in scheduling where various constraints must be satisfied simultaneously.

2.3.5.2 Discrete Variable Optimization

Discrete variable optimization problems involve variables that can take on a finite set of discrete

values. Examples include Max-k-Cut and the Traveling Salesman Problem (TSP), both of which

are fundamental in optimization theory and have numerous practical applications.

Max-k-Cut Max-k-Cut generalizes the MaxCut problem to partitioning the vertices of a graph

into 𝑘 disjoint subsets, with the aim of maximizing the number of edges between the subsets.

Formulating this problem for quantum computation requires identifying a Hamiltonian whose
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ground state represents the optimal partition into 𝑘 different subsets. Max-k-Cut is applicable

in telecommunications for optimizing the layout of cellular networks, in logistics for distributing

resources efficiently, and in parallel computing for workload balancing across multiple processors.

Traveling Salesman Problem (TSP) The Traveling Salesman Problem (TSP) is one of the most

studied NP-hard problems, where the objective is to find the shortest possible route that visits a

set of cities exactly once and returns to the origin. Formulating the TSP on a quantum computer

involves constructing a Hamiltonian whose ground state corresponds to the shortest route. TSP is

critical in logistics for optimizing delivery routes, in manufacturing for minimizing the movement

of robotic arms on assembly lines, and in DNA sequencing where finding the optimal path through

a series of genes can significantly speed up the process.
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CHAPTER 3

ADIABATIC EVOLUTION WITH OPTIMAL CONTROL

In this chapter, we discuss a noise-tolerant strategy for executing arbitrary sequences of unitary

transformations with custom quantum gates. This strategy is then used to implement an adiabatic

evolution algorithm designed to be run on two superconducting qubits on an IBM Quantum

(IBMQ) system. These gates are created on a classical computer using optimal control theory by

representing a two-qubit processor as a pair of capacitively coupled superconducting transmons

driven by microwave pulses and solving the associated Lindblad master equation. This adiabatic

evolution algorithm is tested by emulating specific two-qubit processors available on IBMQ. The

results are then compared with those of an equivalent algorithm decomposed into native one- and

two-qubit gates and executed on the same IBMQ processors. By reducing the execution time

compared to the circuits using native gates, the emulations can prepare a target state with up to

95% fidelity, a significant improvement over IBMQ executions which had fidelities ranging from

65% to 85% .

3.1 The Adiabatic Theorem

This section details the mathematics behind the adiabatic theorem, the underlying mechanism

behind adiabatic evolution.

Controllable quantum systems offer the capability to simulate a system that evolves from an

initial Hamiltonian 𝐻0 to an arbitrary "target” Hamiltonian 𝐻𝑇 that encodes the dynamics of a

system of interest. This evolution can be represented by a time-dependent Hamiltonian:

𝐻 (𝑡) = 𝑓 (𝑡)𝐻0 + 𝑔(𝑡)𝐻𝑇 , (3.1)

where 𝑓 (𝑡) and 𝑔(𝑡) are interpolation functions satisfying the conditions:

𝑓 (0) = 1 − 𝑔(0) = 1

and

𝑓 (𝑇) = 1 − 𝑔(𝑇) = 0 .

(3.2)
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These conditions correspond to the imposing the boundary conditions 𝐻 (0) = 𝐻0 and 𝐻 (𝑇) =

𝐻𝑇 .

The adiabatic theorem states that a quantum system initially in the 𝑘 th eigenstate of𝐻0 will reach

a state arbitrarily close to the 𝑘 th eigenstate of 𝐻𝑇 after a sufficiently long evolution time𝑇 , provided

the 𝑘 th eigenvalue is continuous throughout evolution and does not cross other levels [19]. The

time 𝑇 required to prepare the quantum system within a particular desired error can be estimated

in terms of the parameter 𝑠 ≡ 𝑡/𝑇 to be of the following order [5, 18, 17]:

𝑇 ∼ 𝑂
(
max
𝑠

( | |𝜕𝑠𝐻 (𝑠) | |)/Δ2
)
, (3.3)

Here, Δ = min𝑠 ( |𝜀𝑘 (𝑠) − 𝜀𝑘±1(𝑠) |) is the minimum energy gap between the 𝑘 th eigenvalue and any

other eigenvalue throughout the evolution. The error is bounded above by 𝜖 which is defined as

follows:

𝜖 = | |𝑃(1) − 𝑃𝑘 (1) | | , (3.4)

where 𝑃(𝑠) and 𝑃𝑘 (𝑠) are the projectors onto the evolved state and the 𝑘 th eigenstate of 𝐻 at

time 𝑠, respectively.

The challenge posed by the quadratic dependence of the total evolution time, 𝑇 , on the inverse

of the minimum energy gap, 1/Δ, is significant for the implementation of adiabatic evolution as a

quantum state preparation technique on both current and near-future quantum devices. The long

evolution times that can be necessitated by small energy gaps lead to prolonged implementation

times that increase the chances that the physical devices will decohere due to interaction with the

environment.

Despite these difficulties, there is a strong incentive to improve the performance of adiabatic

evolution as even a slightly faulty implementation can be used in conjunction with alternative

eigenstate preparation methods such as phase estimation [64] and the rodeo algorithm [28, 94],

which have the prerequisite of substantial overlap between the initial state and the target eigenstate.

Notably, even a noisy or imperfect adiabatic evolution can yield a significant enhancement in the

initial-state overlap, thereby substantially improving the performance of the subsequent quantum-
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state preparation algorithm. For example, an increase in the initial state overlap from 0.1% to 5%

would result in a fifty-fold improvement in the efficiency of the rodeo algorithm due to its time

complexity scaling inversely with this overlap.

3.2 Adiabatic Evolution of Two-Spin Systems

In this section, we investigate the preparation of a two-spin system in the ground state of the

following Hamiltonian:

𝐻𝑇 = −𝜎𝑥1𝜎
𝑥
2 + 𝜎𝑦1𝜎

𝑦

2 + 1
2
𝜎𝑧1𝜎

𝑧
2 −

2∑︁
𝑖=1

𝜎𝑧
𝑖
, (3.5)

by initializing the system in the ground state of

𝐻0 =

2∑︁
𝑖=1

𝜎𝑥𝑖 , (3.6)

and carrying out the adiabatic evolution governed by the time-dependent Hamiltonian in Eq. (3.1)

with interpolation functions

𝑓 (𝑡) = cos2(𝜋𝑡/2𝑇) 𝑔(𝑡) = 1 − 𝑓 (𝑡) . (3.7)

We note that the ground state of 𝐻0 can be represented as a linear combination of the uncoupled

two-spin states.

|𝜙(0)⟩ = 1
2
( |↓↓⟩ − |↓↑⟩ − |↑↓⟩ + |↑↑⟩) . (3.8)

Furthermore, the ground state of 𝐻𝑇 can be represented as follows:

|𝜙(𝑇)⟩ = 𝒩

[(
−1 +

√
2
)
|↓↓⟩ + |↑↑⟩

]
, (3.9)

where 𝒩 is a constant to enforce the normalization of |𝜙(𝑇)⟩. The eigenvalue of this state is

𝐸𝑇 = −2.328. In a similar manner, the instantaneous ground state |𝜙(𝑡)⟩ of 𝐻 (𝑡) at any particular

value of 𝑡 can be determined by solving the time-independent Schrödinger equation 𝐻 (𝑡) |𝜙(𝑡)⟩ =

𝐸𝑡 |𝜙(𝑡)⟩. The solution to the time-dependent Schrödinger equation 𝑖 𝑑
𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻 (𝑡) |𝜓(𝑡)⟩ will

approximate |𝜙(𝑡)⟩ with a fidelity given by

𝐹 (𝑡) = |⟨𝜙(𝑡) |𝜓(𝑡)⟩| . (3.10)
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For an adequately long evolution time 𝑇 , the system’s state at time 𝑇 will closely resemble the

ground state of𝐻𝑇 , as shown by the exact analysis of the evolution in Figure 3.1(a). In this example,

even for a relatively short time of 𝑇 = 16, the infidelity 1 − 𝐹 (𝑇) at the end of the evolution is

upper bounded by 10−3. In the following analysis, we set 𝑇 = 20. This choice is to reach an ideal

balance to minimize both the run-time and the associated decoherence errors encountered during

the implementation of this adiabatic evolution on current quantum hardware.

The state resulting from adiabatic evolution can be represented through the unitary-time evolu-

tion operator corresponding to a time-dependent Hamiltonian, as shown in Eq. (3.11):

|𝜓(𝑇)⟩ = U(0, 𝑇) |𝜓(0)⟩ . (3.11)

To implement adiabatic evolution on a quantum device, the evolution must be done digitally, so

the time evolution operation must be divided into discrete steps. To accomplish this, the evolution

operator U(0, 𝑇) can be approximated by the product of 𝑛 short-time propagators associated with

𝑛 instantaneous Hamiltonians, as demonstrated in Equation 3.12:

U(0, 𝑇) ≈
𝑛∏
𝑘=1

𝑈 (𝑡𝑘 ) =
𝑛∏
𝑘=1

𝑒−𝑖𝐻 (𝑡𝑘)Δ𝑡 , (3.12)

where Δ𝑡 = 𝑇/𝑛. The error introduced due to the discretization of the evolution time is

proportional to the time derivative of the Hamiltonian, 𝑑𝐻 (𝑡)/𝑑𝑡, and is well-behaved as long as

𝐻 (𝑡𝑘 ) provides a suitable approximation for the average value of 𝐻 (𝑡) within the time interval

[𝑡𝑘−1, 𝑡𝑘 ] [90]. Therefore, the discretization error can be effectively controlled by adjusting the

number of steps 𝑛 into which the evolution time is divided, as shown in Figure 3.1 (b), where the

fidelity of the final state is evaluated with respect to the solutions |𝜓(𝑡)⟩ derived from the unitary

time evolution of Equation (3.11) using the approximation in Equation(3.12).

Although increasing the number of steps 𝑛 reduces the discretization error, we must also consider

the noise-induced error that occurs when the circuit is executed on a physical device. This error

increases with the number of gates in the circuit implementation, which increases with the number
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of steps 𝑛. In Figure 3.1(b), we show how the discretization error becomes negligible when 𝑛 is as

low as 20. Therefore, we adopt 𝑛 = 20 in the subsequent analysis.

3.3 Two-Qubit Quantum Adiabatic Evolution Implementation

To implement a quantum simulation of the adiabatic evolution discussed in Section 3.2, it

is necessary to map the spin degrees of freedom to the quantum processor’s states and convert

the short-time propagators 𝑈 (𝑡𝑘 ) from Eq. (3.12) into quantum gates. The uncoupled states of

the two-spin system can be straightforwardly mapped to the computational states of a two-qubit

system. Specifically, the states |00⟩, |01⟩, |10⟩, and |11⟩ are used to represent the two-spin states

|↓↓⟩, |↓↑⟩, |↑↓⟩, and |↑↑⟩, respectively. To convert short-time propagators into quantum gates, two

approaches are considered for the main comparison in this chapter: (𝑖) a standard decomposition

of each propagator into a circuit of elementary gates and (𝑖𝑖) a direct implementation using a single

custom two-qubit gate.

3.3.1 Implementation with Elementary Gate Decomposition

The first approach takes advantage of the fact that any unitary operation involving two qubits,

such as the short-time propagators𝑈 (𝑡𝑘 ) in Eq. (3.12), can be represented using three CNOT gates

controlled by the first qubit and eight one-qubit U3 gates [103, 111, 114], as illustrated in Fig. 3.2.

The eight U3 gates can be written in terms of 𝑥 and 𝑧 one-qubit rotations as follows:

U3(𝜃, 𝜙, 𝜆) =𝑅𝑧 (𝜙)𝑅𝑥
(
−𝜋

2

)
𝑅𝑧 (𝜃)𝑅𝑥

(𝜋
2

)
𝑅𝑧 (𝜆)

=
©«

cos
(
𝜃
2
)

−𝑒𝑖𝜆 sin
(
𝜃
2
)

𝑒𝑖𝜙 sin
(
𝜃
2
)
𝑒𝑖(𝜙+𝜆) cos

(
𝜃
2
) ª®®¬ .

(3.13)

The combination of these techniques for decomposing an arbitrary two-qubit unitary operation

into elementary gates is built in to Qiskit in the function quantum_info.two_qubit_cnot_decompose.

As a specific example, the decomposition of the first short-time propagator in Equation (3.12) is

shown in Figure 3.3

This decomposition is readily implementable on cloud-based quantum computing platforms.

The efficacy of this technique was assessed by performing the adiabatic evolution on various
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IBMQ systems [56]. The quantum circuit embodying the corresponding algorithm was constructed

utilizing the open-source quantum information software kit (Qiskit) [7], which facilitated the

decomposition of each short-time propagator into elementary gates using the built-in function

quantum_info.two_qubit_cnot_decompose. The results of these digital quantum simulations on

IBMQ processors are discussed in Section 3.4.1.

3.3.1.1 Error Mitigation with Confusion Matrix

Simulations of NISQ devices include several types of error, including coherence error and

measurement error, some of which can be easily mitigated by basic techniques. In this work,

measurement errors are mitigated by inverting the confusion matrix (also known as the "error

matrix”) [96]. The occupation probabilities measured in an experiment, arranged in the vector

|𝑐2
exp⟩, are related to the true ones, |𝑐2

true⟩, through the confusion matrix 𝑃 in the following way:

| |𝑐 |2exp⟩ = 𝑃 | |𝑐 |2true⟩

or

| |𝑐 |2true⟩ = 𝑃−1 | |𝑐 |2exp⟩ ,

(3.14)

Assuming that the measurement errors for qubits 1 and 2 are independent, the confusion matrix

can be expressed using the single qubit measurement probabilities 𝑝𝑖 𝑗 as follows:

©«

(1 − 𝑝10)1(1 − 𝑝10)2 (1 − 𝑝10)1(𝑝01)2 (𝑝01)1(1 − 𝑝10)2 (𝑝01)1(𝑝01)2

(1 − 𝑝10)1(𝑝10)2 (1 − 𝑝10)1(1 − 𝑝01)2 (𝑝01)1(𝑝10)2 (𝑝01)1(1 − 𝑝01)2

(𝑝10)1(1 − 𝑝10)2 (𝑝10)1(𝑝01)2 (1 − 𝑝01)1(1 − 𝑝10)2 (1 − 𝑝01)1(𝑝01)2

(𝑝10)1(𝑝10)2 (𝑝10)1(1 − 𝑝01)2 (1 − 𝑝01)1(𝑝10)2 (1 − 𝑝01)1(1 − 𝑝01)2

ª®®®®®®®®¬
(3.15)

Prior to the execution of each circuit, we carry out two calibration experiments by initializing

the device in the states 𝑘𝑒𝑡00 and |11⟩ states. The results of these experiments correspond to the

first and fourth columns of the confusion matrix. These results allow us to determine the single

qubit measurement probabilities 𝑝𝑖 𝑗 which are then used to form the complete confusion matrix.
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3.3.2 Modeling the Device Hamiltonian

The alternative strategy involves a realistic representation of a physical quantum device to

actualize each short-time propagator in Eq. (3.12) with a single custom gate. We emulate a two-

qubit processor as two capacitively connected superconducting transmons regulated by microwave

pulses, as illustrated schematically in Fig. 3.4 a).

The Hamiltonian for a superconducting transmon, when expressed with respect to the quantity

of Cooper pairs (𝑛) and the magnetic flux (𝜙), can be formulated up to the fourth order in 𝜙. This

representation is given by [67]:

𝐻 =4𝐸𝐶𝑛2 − 𝐸𝐽 cos(𝜙)

≈4𝐸𝐶𝑛2 − 𝐸𝐽 +
𝐸𝐽

2
𝜙2 − 𝐸𝐽

24
𝜙4,

(3.16)

where the energies stored in the capacitor and the Josephson junction are denoted as 𝐸𝐶 and

𝐸𝐽 , respectively. To proceed further, we introduce the creation and annihilation operators for the

transmon, with which 𝑛 and 𝜙 can be defined as follows:

𝑛 = 𝑖

(
𝐸𝐽

32𝐸𝐶

) 1
4
(𝑎† − 𝑎) 𝜙 =

(
2𝐸𝐶
𝐸𝐽

) 1
4
(𝑎† + 𝑎), (3.17)

In terms of these operators, the Hamiltonian takes the form,

𝐻 ≈𝜔𝑎†𝑎 − 𝛼

6
(𝑎† + 𝑎)4, (3.18)

where we defined𝜔 ≡ (8𝐸𝐶𝐸𝐽)1/2 and 𝛼 ≡ 𝐸𝐶/2. According to the Baker-Campbell-Hausdorff

formula [52], it can be shown that for a transformation𝑈 = exp
(
−𝑖Ω𝑡𝑎†𝑎

)
, the following is true:

𝑈𝑎1 · · · 𝑎𝑙𝑈† = 𝑒(−𝑖(𝑚−𝑛)Ω𝑡)𝑎1 · · · 𝑎𝑙 , (3.19)

where 𝑎1 · · · 𝑎𝑙 is a chain of creation and annihilation operators (𝑎𝑖 ∈ {𝑎†, 𝑎}), and 𝑚 and 𝑛 are

the number of creation and annihilation operators in the chain, respectively.
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Under this transformation, ignoring constant and fast-rotating terms with |𝑚 − 𝑛| > 1, the

Hamiltonian of the transmon takes the form

𝐻 → 𝐻′ =𝑈𝐻𝑈† + 𝑖 ¤𝑈𝑈†

≈(𝜔 + 𝛼 +Ω)𝑎†𝑎 − 𝛼𝑎†𝑎𝑎†𝑎.
(3.20)

The Hamiltonian of two capacitively coupled transmons controlled by microwave pulses can be

approximately written as follows [60, 69]

𝐻 ≈
2∑︁
𝑖=1

(
4𝐸𝐶𝑖

𝑛2
𝑖 +

𝐸𝐽𝑖

2
𝜙2
𝑖 −

𝐸𝐽𝑖

24
𝜙4
𝑖

)
+

8𝐸𝐶1𝐸𝐶2

𝐸𝐶𝑔

𝑛1𝑛2

+ 2
2∑︁
𝑖=1

𝜂𝑖

[
𝜖 𝑖I (𝑡) sin(Ω𝑖𝑡) − 𝜖 𝑖Q(𝑡) cos(Ω𝑖𝑡)

]
𝑛𝑖

=

2∑︁
𝑖=1

[
𝜔𝑖𝑎

†
𝑖
𝑎𝑖 −

𝛼𝑖

6
(𝑎†
𝑖
+ 𝑎𝑖)4

]
+ 𝑔(𝑎†1 − 𝑎1) (𝑎†2 − 𝑎2)

+ 2𝑖
2∑︁
𝑖=1

[
𝜖 𝑖I (𝑡) sin(Ω𝑖𝑡) − 𝜖 𝑖Q(𝑡) cos(Ω𝑖𝑡)

]
(𝑎†
𝑖
− 𝑎𝑖),

(3.21)

where the term proportional to 𝑔 ≡ 8𝐸𝐶1𝐸𝐶2/𝐸𝐶𝑔
𝜂1𝜂2 with 𝜂𝑖 ≡ (32𝐸𝐶𝑖

/𝐸𝐽𝑖 )1/4 describes the

crosstalk interaction between the transmons due to their capacitive coupling. Under the transfor-

mation

𝑈 = exp
(
−𝑖Ω1𝑡𝑎

†
1𝑎1 − 𝑖Ω2𝑡𝑎

†
2𝑎2

)
, (3.22)

By substituting Ω𝑖 = −𝜔𝑖 − 𝛼𝑖, assuming that Ω1 ≈ Ω2 and dropping constant and fast-rotating

terms, the above Hamiltonian takes the form

𝐻 ≈ −
2∑︁
𝑖=1

𝛼𝑖𝑎
†
𝑖
𝑎𝑖𝑎

†
𝑖
𝑎𝑖 − 𝑔

(
𝑎
†
1𝑎2 + 𝑎1𝑎

†
2

)
+

2∑︁
𝑖=1

[
𝜖 𝑖I (𝑡) (𝑎

†
𝑖
+ 𝑎𝑖) − 𝑖𝜖 𝑖Q(𝑡) (𝑎

†
𝑖
− 𝑎𝑖)

]
,

(3.23)

For simplicity, we rewrite this Hamiltonian as follows.

𝐻QPU(𝑡) = 𝐻d + 𝐻c(𝑡) , (3.24)
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where

𝐻d ≈ −
2∑︁
𝑖=1

𝛼𝑎
†
𝑖
𝑎𝑖𝑎

†
𝑖
𝑎𝑖 − 𝑔

(
𝑎
†
1𝑎2 + 𝑎†2𝑎1

)
(3.25)

constitutes the drift Hamiltonian of the undisturbed device, and

𝐻c(𝑡) =
2∑︁
𝑖=1

[
𝜖 𝑖I (𝑡) (𝑎

†
𝑖
+ 𝑎𝑖) − 𝑖𝜖 𝑖Q(𝑡) (𝑎

†
𝑖
− 𝑎𝑖)

]
(3.26)

represents the time-variant Hamiltonian delineating the governance of the quantum processor

through irradiation with resonant microwave pulses.

3.3.3 Implementation with Custom Gates

We can now use the Hamiltonians from Section 3.3.2 to aid in an optimal control scheme

to devise custom gates for transmon qubits. For the anharmonicity of both transmons, we use

𝛼 = 200 MHz, and for the strength of the crosstalk interaction strength between the transmons

due to capacitive coupling, we use 𝑔 = 3 MHz. The time-dependent amplitudes 𝜖 𝑖I (𝑡) and

𝜖 𝑖Q(𝑡) correspond respectively to the in-phase and quadrature tunable pulse sequences that control

transmon 𝑖. We consider the first three energy levels of each transmon. The computational two-qubit

states are defined by the subspace of states with zero and one quanta per transmon. By explicitly

including states with two quanta in at least one of the transmons, we account for higher-energy

states that can be populated due to gate error and decoherence. This inclusion also enables our

control pulses to reduce leakage by blocking transitions to these states, analogously to the Derivative

Removal by Adiabatic Gate (DRAG) algorithm [79].

To compute the custom two-qubit gates that realize each of the short-time propagators in

Eq. (3.12), we determine the pulse sequences 𝜖 𝑖I (𝑡) and 𝜖 𝑖Q(𝑡) that solve the optimization problem

as follows:

𝑈QPU(𝑡𝑘 ) ≃ UQPU(0, 𝜏) (3.27)

= T exp
(
− 𝑖
ℏ

∫ 𝜏

0
[𝐻d + 𝐻c(𝜏′)] 𝑑𝜏′

)
,
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Here, 𝑈QPU(𝑡𝑘 ) represents the short-time propagator 𝑈 (𝑡𝑘 ) embedded in the Hilbert space

spanned by the two-transmon states, and T exp represents the time-ordered exponential. Us-

ing the gradient ascent pulse engineering algorithm (GRAPE) [81], we can find the solution to

Equation (3.27) with acceptable accuracy by minimizing the objective function.

Φ = 1 −
𝐹2

gate

2
+ 𝜒exp(𝜖2𝑛) − 1

exp(1) − 1
, (3.28)

where

𝐹gate =

����� tr(𝑈†
QPUUQPU)

dimQPU

����� , (3.29)

with dimQPU representing the dimension of the considered Hilbert space. In the objective

function, 𝜖 represents the root-mean-squared amplitude of the control pulse normalized to 𝜖cut and

can be written as follows:

𝜖 =
1
𝜖cut

√√√
1
𝜏

2∑︁
𝑖=1

∑︁
𝑗∈{I,Q}

∫ 𝜏

0
𝜖 𝑖
𝑗
(𝜏′)2𝑑𝜏′ (3.30)

The gate fidelity, 𝐹gate, appearing in the second term on the right-hand side of Equation (3.28),

serves as a measure of how accurately the pulse-controlled gate reproduces the desired unitary

operation. The final term imposes a penalty on large amplitudes by means of the parameters 𝜖cut

(cutoff amplitude) and 𝑛 (cutoff harshness), with their significance determined by the parameter 𝜒.

This penalty term prevents high-amplitude solutions where the Hamiltonian approximation used

in the optimization of Equation (3.27) becomes invalid and where the hardware implementing the

control pulses may not function as intended.

The loss term is structured such that a zero-amplitude pulse corresponds to a loss of zero, and

a pulse with a root mean square amplitude equal to 𝜖cut contributes 𝜒 to the total loss. Figure 3.5

shows the first 100 ns of separately optimized control pulses, each realizing the first short-time

propagator in the adiabatic evolution algorithm, using three different total pulse lengths 𝜏 (2500 ns,

400 ns, and 120 ns) as per Equation (3.27), with a sampling rate of 8 samples per ns.
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The pulse length 𝜏 = 2500 ns approximately matches the implementation time 𝜏𝑈 of the short-

time propagators on the ibmq_belem system, enabling a comparison between our emulated output

and runs on that system. The pulse length 𝜏 = 400 ns corresponds to the standard implementation

time of CNOT gates for IBMQ systems. The pulse length 𝜏 = 120 ns was the shortest pulse of

our investigation that kept the gate infidelity 1− 𝐹gate, below 10−4. The parameters in the objective

function of Equation (3.28) were 𝜖cut = 30 MHz, 𝑛 = 3 and 𝜒 = 10−3 for all minimization attempts.

As the control pulse length decreases, the root-mean-squared amplitude and the relative in-

fluence of its high-frequency components increase. This relationship between the control pulse

amplitude and its length sets a lower bound for two-qubit gate implementation times, and, conse-

quently, the overall implementation time for the entire evolution on the types of quantum devices

that follow this qubit model. This is because the quantum computer’s Hamiltonian approximations

(used to solve Equation (3.27)) and the hardware controlling it both operate optimally within a

specific energy regime.

In order to investigate the performance of adiabatic evolution with custom gates as a state

preparation method, we used classical emulations to predict the output of a two-transmon processor

by solving the Lindblad master equations for its density matrix. The analysis of this method is

given in Section 3.4.2.

3.4 Results and Discussion

In this section, we present and discuss the results of our investigation of the two possible

implementations of quantum adiabatic evolution to prepare the ground state of a target Hamiltonian.

3.4.1 Adiabatic Evolution with Elementary Gates on IBMQ

In this section, we evaluate the feasibility of implementing adiabatic evolution, as described in

Equation (3.12), on IBMQ systems by performing experiments using circuits composed only of

elementary gates. The calibration data for the IBMQ systems at the time of this study can be found

in Table 3.1.

The quantum circuits were initialized by preparing the IBMQ processors in the ground state of

the initial Hamiltonian 𝐻0 [refer to Equation (3.6)] through the application of the two-qubit Pauli
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𝑋 (2) = 𝜎𝑥1𝜎
𝑥
2 and Hadamard 𝐻 (2) = 𝐻1𝐻2 gates to the default initial state |00⟩, resulting in the

following initial wave function for the quantum register:

|𝜓(0)⟩ = 𝐻 (2)𝑋 (2) |00⟩ = 1
2
( |00⟩ − |01⟩ − |10⟩ + |11⟩) , (3.31)

The rest of the adiabatic evolution circuit was constructed using elementary quantum gates derived

from the decomposition of the 𝑛 short-time propagators, as discussed in Section 3.3.

By truncating this adiabatic evolution circuit after 𝑘 short-time propagator operations, the final

state corresponds to the instantaneous wave function |𝜓(𝑡𝑘 )⟩. We used Pauli measurements on

these truncated circuits to estimate the expectation value of the target Hamiltonian ⟨𝐻𝑇 ⟩ (𝑡) =

⟨𝜓(𝑡) |𝐻𝑇 |𝜓(𝑡)⟩ at each value of 𝑡𝑘 to provide insight into how the state of the quantum register

evolves during the execution of the circuit.

We can also easily estimate the instantaneous fidelity 𝐹 (𝑡𝑘 ) using the definitions in Equations

(3.12) and (3.31). We start with the following observation:

⟨𝜙(𝑡𝑘 ) | ≈ ⟨𝜓(𝑡𝑘 ) | = ⟨00| 𝑋 (2)𝐻 (2)U†(0, 𝑡𝑘 )

≈ ⟨00| 𝑋 (2)𝐻 (2)
1∏
𝑖=𝑘

𝑈†(𝑡𝑖), (3.32)

Thus, the overall unitary operator for the truncated circuit is:

𝑈 (𝑡𝑘 ) = 𝑋 (2)𝐻 (2)
1∏
𝑖=𝑘

𝑈†(𝑡𝑖), (3.33)

Table 3.1 Calibration data for ibmq_belem, casablanca, ibmq_lima, and ibmq_manila. The
relaxation and dephasing times, 𝑇1 and 𝑇2, are provided for qubits 0 and 1 of each system
throughout the simulation. The implementation times for the CNOT gate and the decomposition
of the short-time propagators are denoted as 𝜏CNOT and 𝜏𝑈 , respectively.

IBMQ system 𝑇1 [𝜇s] 𝑇2 [𝜇s] 𝜏CNOT [ns] 𝜏𝑈 [ns]
ibmq_belem 102.6 70.4 127.3 104.5 810.7 ≈2500

ibmq_casablanca 111.7 130.1 40.7 102.2 760.9 ≈2400
ibmq_lima 101.6 113.0 180.0 106.9 305.8 ≈1000

ibmq_manila 136.0 244.2 112.8 46.7 277.3 ≈900
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This is enough to derive an expression for 𝐹 (𝑡𝑘 ) as follows:

𝐹 (𝑡𝑘 ) = | ⟨𝜙(𝑡𝑘 ) |𝜓(𝑡𝑘 )⟩ | ≈| ⟨00|𝑈 (𝑡𝑘 ) |𝜓(𝑡𝑘 )⟩ |

=| ⟨00|𝜓(𝑡𝑘 )⟩ |

=|�̃�00 |.

(3.34)

Thus, each instantaneous fidelity 𝐹 (𝑡𝑘 ) is equivalent to |𝑐00 |, which is the square root of the

probability of measuring |𝜓𝑘⟩ in the |00⟩ state, which can be estimated from repeated measurements

of |𝜓𝑘⟩ in the default Z basis.

This process is repeated to obtain estimations for ⟨𝐻𝑇 ⟩ and 𝐹 (𝑡) for each IBMQ system

in question. In Fig. 3.6, we compare the results we obtained from the IBMQ systems with

those produced by the same process on an ideal quantum processor simulation using Qiskit’s Aer

simulator, which is not affected by environmental interactions.

The ideal output, depicted by a dotted line, reveals that the gate error included in our calculations

for 𝐹 (𝑡) (from Equation 3.10) does not considerably interfere with the ability to prepare a target

state in two-qubit systems. However, experiments on ibmq_belem, ibmq_casablanca, ibmq_lima,

and ibmq_manila, represented by color markers, diverge from the ideal evolution, achieving target

state fidelities of 60%, 75%, 80%, and 72%, respectively. This loss of fidelity during evolution leads

to significant discrepancies between the properties extracted from the reached state and those of the

ground state of the target Hamiltonian, as illustrated by the evolution of ⟨𝐻𝑇 ⟩ (𝑡) = ⟨𝜓(𝑡) |𝐻𝑇 |𝜓(𝑡)⟩

in Fig. 3.6 b). The mean values for this expectation value obtained from the IBMQ system range

from −1.25 to −0.25, while the ideal simulation attains the target value of 𝐸𝑇 = −2.328.

Interestingly, the fidelity loss rate remains approximately constant throughout the evolution.

This observation is unexpected since the interpolation functions defining 𝐻 (𝑡) (defined in Equa-

tion (3.7)) cause the evolution to be “slowest" at its initial and final points (see Fig. 3.1), where

minimal fidelity losses were anticipated. The constant fidelity loss rate implies that this effect is

predominantly influenced by either the gate error accumulated from the elementary gates realizing

the short-time propagator (with the most significant contributions arising from CNOT gate errors)
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or the coherence loss during their combined implementation time.

These findings highlight the primary challenge of preparing eigenstates with NISQ devices using

adiabatic evolution. The implementation time of the quantum circuit that expresses the adiabatic

evolution of Equation (3.12) in terms of elementary gates is comparable to the decoherence times

of current quantum devices. In this study, the implementation times of adiabatic evolution on

ibmq_belem, ibmq_casablanca, ibmq_lima, and ibmq_manila are approximately 52.5 𝜇s, 50.4 𝜇s,

21 𝜇s, and 18.9 𝜇s, respectively, which are similar to the relaxation and dephasing decoherence

times (𝑇1 and 𝑇2) of these systems, as listed in Table 3.1.

3.4.2 Customized Gates Emulated with Classical Devices

As an alternative to implementing adiabatic evolution through elementary gates, this section

explores the efficacy of using pulse sequences that can produce short-time propagators in a single

step, as explained in Section 3.3. This approach seeks to reduce the depth of the corresponding

circuit and, as a result, decrease the time it takes to execute on the device.

To investigate this approach, a two-transmon processor performing adiabatic evolution was

emulated with classical computing techniques. Specifically, the Quantum Toolbox in Python

(QuTiP) [59, 58] was used to solve the Lindblad master equation. This equation is defined as

follows:

¤𝜌 = − 𝑖

ℏ

[
𝐻QPU, 𝜌

]
+ 1
𝑇1

2∑︁
𝑖=1

(
𝑎𝑖𝜌𝑎

†
𝑖
− 1

2

{
𝑎𝑖𝑎

†
𝑖
, 𝜌

})
+ 1
𝑇2

2∑︁
𝑖=1

(
𝑎
†
𝑖
𝑎𝑖𝜌𝑎𝑖𝑎

†
𝑖
− 1

2

{
𝑎𝑖𝑎

†
𝑖
𝑎
†
𝑖
𝑎𝑖, 𝜌

})
,

(3.35)

where 𝜌 represents the density of the two-transmon system. In this equation, 𝐻QPU denotes the

two-transmon Hamiltonian introduced in Equation (3.24), with control pulses optimized to achieve

the short-time propagators described in Equation (3.12). The master equation accounts for the

decoherence mechanisms of relaxation and dephasing, which are represented by the decoherence

times 𝑇1 and 𝑇2. The model utilizes parameter values obtained from calibration data from IBMQ
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devices that implemented the adiabatic evolution, as seen in Table 3.1. This enables the emulation

of system interactions with their surrounding environment.

We investigated this implementation of quantum adiabatic evolution by simulating various

scenarios. First, we emulated the adiabatic evolution by implementing each short-time propagator

in Equation (3.12) with a single custom gate of pulse length 𝜏 = 120 ns. This approach yielded

target state fidelities of approximately 95%, a significant enhancement compared to IBMQ system

runs, as depicted in Figures 3.8 a), c), e), & g) . Although the pulse length of 𝜏 = 120 ns minimizes

gate infidelities below 10−4, the resulting pulse amplitudes may exceed a threshold, rendering them

unsuitable for implementation on quantum devices, represented arbitrarily as the horizontal dotted

lines at |𝜖 𝑖I,Q | < 𝛼/20, for example.

We also emulated the algorithm implementation using custom gates of length 𝜏 = 400 ns,

which is comparable to the implementation times of the CNOT gates in IBMQ systems. Despite

this longer pulse length, our results still surpassed those of IBMQ system runs, achieving target

state fidelities of approximately 90%. This can be explained by the fact that the elementary gate

decomposition explored in Section 3.3.1 requires two CNOT gates per two-qubit unitary evolution,

leading to longer overall circuit execution times.

In order to facilitate comparison with IBMQ results, we also simulated the adiabatic evolution

using custom gates of length approximately equal to the implementation time of a short-time

propagator on IBMQ hardware, denoted 𝜏𝑈 . The specific values for 𝜏𝑈 are provided in Table 3.1.

These simulations resulted in gates with fidelity ranging from 65% to 85%, which aligned closely

with the IBMQ results. This close match suggests that the total execution time of the circuit may

be the most important factor in accurately preparing quantum states on NISQ devices.

For an even more direct comparison, we emulated the output of the IBMQ digital quantum

simulation by realizing each elementary gate in the IBMQ quantum circuit with custom control

pulses. In this final set of simulations, we combined each pair of simultaneous U3 gates in the

short-time propagators into two-qubit U3(2) = U31U32 gates, as illustrated in Figure 3.7. Then, the

CNOT and U3(2) gates were implemented using control pulses, the cumulative durations of which
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approximated the execution time of short-time propagators on IBMQ systems, denoted as 𝜏𝑈 .

In Figure 3.8, a comparison is made between the output of our emulation and the results of the

digital quantum simulations performed on IBMQ systems.

The emulated digital quantum simulation, achieved by implementing the adiabatic evolution

through the CNOT and U3(2) gates (denoted by green triangles), aligns closely with the IBMQ

results (represented by blue crosses). The emulated outputs, obtained by realizing the short-

time propagators in Eq. (3.12) via single two-qubit gates with control pulses of lengths 𝜏 = 𝜏𝑈 ,

𝜏 = 400 ns, and 𝜏 = 120 ns (depicted as orange diamonds, squares, and circles, respectively),

highlight the enhancements achievable through the incorporation of custom gates within quantum

algorithms. The value derived from the shortest classical emulation, ⟨𝐻𝑇 ⟩ (𝑇) = −2.2, was much

closer to the exact result of 𝐸𝑇 = −2.328 than the energies extracted from IBMQ systems (mean

values ranging from −1.25 to −0.25). Even though this demonstration was conducted on a basic

problem involving only two qubits, the enhancement seen over the simple gate composition method

indicates that the pursuit of optimal control for custom gates in quantum algorithms is promising

for NISQ devices.

3.4.3 Discussion of Error Sources

Various error sources impact the performance of this adiabatic evolution method on IBMQ

hardware. Our model already considers systematic gate infidelities, stochastic dissipative pro-

cesses during circuit execution, stochastic measurement errors during readout, and statistical noise.

To assess these errors’ effects on adiabatic evolution, we compare Qiskit’s Aer simulator-based

simulations with runs on IBMQ systems. We use Qiskit’s Aer simulator to determine the state

𝐻 (2) |00⟩ = ( |00⟩ + |01⟩ + |10⟩ + |11⟩) /2 via the AerSimulator.from_backend built-in method.

This method develops a classical simulator with an approximate noise model for any IBMQ device

that includes gate errors, readout errors, and dissipative processes. Figure 3.9 illustrates the av-

erage deviation of the measured probabilities from the ideal value 1/4, as the number of shots 𝑁

increases. As 𝑁 increases, the statistical error component diminishes and the average error levels off

to a device-specific plateau, which we associate with the measurement error for each IBMQ system.
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These simulation outcomes indicate that measurement and statistical noise are not significant error

contributions, as they only cause deviations from the ideal fidelities and expectation values of about

𝛿𝐹 ≈ 0.01 and 𝛿 ⟨𝐻𝑇 ⟩ ≈ 0.1 for IBMQ runs with 𝑁 = 2500 shots, significantly smaller than those

presented in Figure 3.8.

Next, we repeated the adiabatic evolution simulations using Qiskit’s Aer simulator with the

"statevector” method. This comes with the option to record per-shot amplitudes, although doing

so prevents readout error simulation. We ran 100,000 executions of each circuit to determine the

instantaneous fidelity and expectation value of 𝐻𝑇 for each time value 𝑡𝑘 . Using the recorded

amplitudes, we calculated the energy for each simulated shot, resulting in the distribution of

possible energy measurements. We repeated a similar procedure for fidelity. To isolate the effects

of dissipative processes from other error sources, we formed the density matrix for each circuit by

averaging the shots as follows:

𝜌 =
1

𝑁shots

∑︁
𝑖∈shots

|𝜓𝑖⟩ ⟨𝜓𝑖 | , (3.36)

where |𝜓𝑖⟩ is the final state of the simulated circuit. We then perform the singular value

decomposition on the density matrix to identify the most probable state, which is the state with

the highest singular value, and then calculate the fidelity and energy based on these amplitudes. If

only gate errors and readout errors are present, one should observe a singular value very close to

one. However, dissipative processes generate mixed states, causing the highest singular value to be

significantly lower than its ideal value, decreasing as the circuit depth increases. In Figure 3.10,

we show the resultant distributions at each step for both a) the fidelity and b) the expectation

value of 𝐻𝑇 as blue violin plots, illustrating the mean and 1𝜎 quantiles. The green lines represent

the expected result from an ideal evolution, whereas the orange dashed lines depict the outcomes

using the principal singular vector of the density matrices. The discrepancy between the dashed

orange and solid blue lines is mainly due to dissipative noise processes. In contrast, the proximity

of the dashed orange and solid green lines indicates that other errors are relatively insignificant.

The blue markers provide an estimate of the lower bound on the total uncertainty anticipated from

simulations on IBMQ systems.
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Figure 3.1 Evolution of the fidelity between the device state and the ground state of 𝐻 (𝑡) for
various values of a) the evolution time 𝑇 and b) the number of time steps 𝑛 as a function of the
parameter 𝑠 ≡ 𝑡/𝑇 . The adiabatic evolution implemented on quantum devices utilizes 𝑇 = 20 and
𝑛 = 20, as this combination results in high fidelity while minimizing the number of gates required
for device implementation.

66



1

a)

U(t1)

· · ·
U(tk)

· · ·
U(tn)

· · · · · ·

b)
~w�

· · · U3(↵k) • U3(�k) • U3(�k) • U3(�k) · · ·

· · · U3(✏k) U3(⇣k) U3(⌘k) U3(✓k) · · ·

Figure 3.2 Decomposition of the 𝑘-th unitary transformation in the sequence of Equation (3.12)
[circuit a)] into CNOT and U3 gates [circuit b)]. Each U3 gate depends on three Euler angles. The
quantum circuit resulting from this decomposition can be directly implemented on IBMQ systems.
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Figure 3.3 Decomposition of the first short-time propagator in Eq. (3.12) [circuit a)] into CNOT
and U3 gates [circuit b)]. Circuit c) shows how the same type of decomposition can be used to
decompose the CNOT gate into elementary gates.
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Figure 3.4 Schematic depiction of a) the model two-qubit processor, consisting of two
capacitively coupled superconducting transmons controlled with microwave pulses, and b) the
energy spectrum of a superconducting transmon in which the lowest two levels, shown as solid
lines, are the computational qubit.
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Figure 3.5 First 100 ns of control pulses with lengths a) 𝜏 = 2500 ns, b) 𝜏 = 400 ns, and c)
𝜏 = 120 ns, realizing the first unitary in the sequence of Equation (3.12). The correlation between
the amplitude of the control pulse with its length establishes a lower bound for the implementation
time of two-qubit gates on current quantum devices.
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Figure 3.6 Adiabatic evolution of a) instantaneous fidelity 𝐹 (𝑡) and b) expectation value
⟨𝜓(𝑡) |𝐻𝑇 |𝜓(𝑡)⟩, obtained through the application of the unitary sequence from Equation (3.12)
decomposed into elementary gates on four IBM quantum processors: ibmq_belem (blue
triangles), ibmq_casablanca (orange diamonds), ibmq_lima (green squares), and ibmq_manila
(red circles). The significant discrepancies between the experimental results and the ideal
quantum processor simulations (dotted lines), conducted using Qiskit’s Aer simulator, can be
attributed to decoherence due to long implementation times.
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Figure 3.7 Combination of simultaneous U3 gates [circuit a)] into two-qubit U(2) gates [circuit
b)]. The CNOT and U3(2) gates in circuit b) are executed with control pulses, the total durations
of which closely correspond to the implementation time of circuit a) on IBMQ systems.
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Figure 3.8 A comparison of the emulated outputs of the adiabatic evolution of Eq. (3.12) and the
results obtained from ibmq_belem, ibmq_casablanca, ibmq_lima, and ibmq_manila systems.
Panels a), c), e) and g) display the progression of the instantaneous fidelity 𝐹. Classical
emulations implementing the adiabatic evolution through either a circuit of elementary gates or
custom gates of length 𝜏𝑈 (represented by green triangles and orange diamonds, respectively)
achieve target state fidelities comparable to those attained by IBMQ systems (indicated by blue
crosses). Emulated outputs utilizing shorter gates (denoted by orange squares and circles) reached
approximately 95% fidelity, facilitating enhanced extraction of the target state’s spectroscopic
information, as demonstrated by the evolution of ⟨𝐻𝑇 ⟩ in panels b), d), f) and h).
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Figure 3.9 Mean error in measured occupation probabilities as a function of the number of shots
𝑁 . A higher number of shots reduces statistical noise and provides an estimation of the
measurement error of the quantum computer. The error in occupation probabilities from these
simulations is capped at 𝛿 |𝑐 |2exp = 0.016, which constitutes only a minor portion of the error seen
in calculated fidelities and expectation values.
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Figure 3.10 Evolution of a) fidelity and b) expectation value ⟨𝐻𝑇 ⟩ using Qiskit’s Aer simulator
with a noise model based on ibmq_belem. Solid blue lines represent the expected results when
incorporating all error sources considered by Aer, while the blue shaded areas show the probable
values at each time interval. Dotted black lines indicate the ideal evolution in a noiseless system.
Orange triangles come from singular value decomposition filtering of the data supporting the blue
distributions. The closeness between the dotted lines and the orange triangles strongly implies
that dissipative processes are the primary source of noise in IBMQ simulations, even at the early
stages of the evolution.
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CHAPTER 4

RODEO ALGORITHM ANALYSIS AND DEMONSTRATION

Quantum adiabatic evolution, while theoretically an accurate method for preparing eigenstates of

quantum Hamiltonians, poses computational challenges when applied to large systems. In this

chapter, we discuss the rodeo algorithm as a viable alternative. The Rodeo algorithm (RA) uses

stochastic interference to suppress unwanted eigenvectors, offering an exponential speedup over

quantum phase estimation and adiabatic evolution [29].

In Section 4.1, we present a detailed analysis of the rodeo algorithm, and in Section 4.2, we

discuss a demonstration of its application on quantum hardware by calculating the eigenvalues of

a stochastic one-qubit Hamiltonian using IBM’s Casablanca device.

4.1 Rodeo algorithm

Prior to the development of the rodeo algorithm, there had been recent advancements in

Hamiltonian evolution on quantum computers using tools such as Lie-Trotter-Suzuki formulas[110,

106] and linear combinations of unitary matrices [27]. Hardware limitations presented a significant

challenge for all known quantum state preparation approaches. This algorithm was developed in an

attempt to mitigate those challenges and enable the preparation of eigenstates on NISQ-era devices.

The rodeo algorithm is an iterative method that prepares a target eigenvector by "shaking off” all

other states like a rodeo horse. It is a dissipative process inspired by the projected cooling algorithm

[71, 48] that can be applied recursively and converges to the desired eigenstate exponentially with the

number of repetitions. It can theoretically prepare any target eigenstate of any quantum Hamiltonian

given an initial state that has a sufficiently high overlap with that target state. It appears similar to

iterative QPE [65] and fixed-time energy band filtering [42, 74]; however, these methods cannot

efficiently prepare individual eigenstates of a general quantum Hamiltonian, making the rodeo

algorithm more suitable for quantum simulation applications.

4.1.0.1 Algorithm Description

We designate the Hamiltonian of interest as the "object Hamiltonian”, 𝐻𝑜𝑏 𝑗 , and the part of

the quantum register on which it acts as the "object system”. We then choose an energy interval
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[𝐸 − 𝜖, 𝐸 + 𝜖]. The goal of the algorithm is to prepare this object system in an eigenstate of 𝐻𝑜𝑏 𝑗

with an eigenvalue within that energy interval.

The object system starts in an initial state denoted |𝜓𝐼⟩ and evolves into a final state |𝜓𝐹⟩.

Auxiliary qubits, called ancilla qubits, allow indirect manipulation of the object system through

entangling gate operations and measurements. This set of ancilla qubits is informally termed the

’rodeo arena.’ When mid-circuit measurements are allowed, as is the case for one-way quantum

computers [95] and quantum computers that support dynamic circuits [31] such as the supercon-

ducting quantum computers available on IBMQ, a single ancilla qubit can be reused throughout

the recursive process, which allows the rodeo arena to merge into a single qubit. Since mid-circuit

measurements are becoming more widely available, subsequent analysis will assume access to

them.

One circuit of the RA is implemented as follows:

1. Choose parameters: Set 𝐸 as a guess for the eigenvalue of an eigenstate of 𝐻obj and choose

a random non-zero value for 𝑡.

2. Initialization: The ancilla qubit is prepared in the |0⟩ state, then a Hadamard gate is applied

to place it in a superposition of the computational basis. The object system can be in any

state, labeled |𝜓𝐼⟩. For best results, this state should be chosen to have non-negligible overlap

with the eigenstate of 𝐻obj closest to 𝐸

3. Controlled time evolution: Use the ancilla qubit to control the time evolution operation

with Hamiltonian 𝐻obj and time parameter 𝑡 on the object system.

4. Phase Shift Gate: Apply a phase rotation gate 𝑃(𝐸𝑡) on the ancilla qubit. This imparts the

phase 𝑒𝑖𝐸𝑡 to the |0⟩ component while leaving the |1⟩ component unchanged.

5. Rotate and Measure: Apply the Hadamard gate to the ancilla qubit once more, then measure

only the ancilla qubit.

The quantum circuit for this algorithm with one ancilla qubit is shown in Figure 4.1.
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Figure 4.1 One cycle of the Rodeo algorithm. Additional copies of this circuit can be appended to
increase its efficacy. If mid-circuit measurements are allowed, only one ancilla is needed for the
arena, otherwise additional ancilla qubits may be used, with one ancilla qubit participating in each
cycle.

This choice of gates is intuitive because of the similarity between the time evolution operator

𝑒−𝑖𝐻𝑜𝑏 𝑗 𝑡𝑛 and the phase rotation 𝑒𝑖𝐸𝑡𝑛 . As we show in Section 4.1.1 their combined effect on the

quantum register will result in interference in the wave function of the object system, exponentially

suppressing its relative overlap with each eigenstate by a factor proportional to the difference

between its eigenvalue and 𝐸 . The suppression factor for each eigenstate will also unpredictably

depend on 𝑡𝑛, but the effect of this choice can be diminished by selecting different values for each

𝑡𝑛.

4.1.1 Mathematical Analysis of RA

By representing gate operations in matrix form, we can exactly predict the state vector output

of the RA circuit. The ancilla qubit is initialized in the |0⟩ state and the object system is initialized

in the |𝜓𝐼⟩ state, so the initial state can be written as |0⟩ ⊗ |𝜓𝐼⟩. Writing the gate operations as

matrix operations on this initial state shows the effect of one cycle of the RA on this state.
change 1 to 0 in one cycle derivation

RA( |0⟩ ⊗ |𝜓I⟩) =

𝐼√
2

𝐼√
2

𝐼√
2

−𝐼√
2



𝐼 0

0 𝐼𝑒𝑖𝐸𝑡



𝐼 0

0 𝑒−𝑖𝐻obj𝑡



𝐼√
2

𝐼√
2

𝐼√
2

−𝐼√
2



|𝜓𝐼⟩

0

 (4.1)

=


[
𝐼
2 + 1

2𝑒
−𝑖(𝐻obj−𝐸)𝑡

]
|𝜓𝐼⟩[

𝐼
2 − 1

2𝑒
−𝑖(𝐻obj−𝐸)𝑡

]
|𝜓𝐼⟩

 (4.2)

= |𝜓𝐹⟩ (4.3)
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Here, 𝐼 represents the identity operator with the same dimension as the object system. We will

represent these eigenvectors of 𝐻obj as |𝐸𝑘⟩ with the corresponding eigenvalues 𝐸𝑘 . Since these

eigenvectors form a basis for the object system, |𝜓𝐼⟩ can be written as a linear combination of these

eigenstates as follows:

|𝜓𝐼⟩ =
∑︁
𝑘

𝑐𝑘𝐸𝑘 |𝐸𝑘⟩ (4.4)

𝐻obj commutes with all gates in the circuit, so the total effect of the circuit can be understood

in terms of its effect on each of these components of |𝜓𝐼⟩. The probability of measuring the ancilla

qubit in the |0⟩ state can then be extracted from the first entry in the final statevector in Equation

4.3 as follows:

𝑃( |0⟩) = ⟨𝜓𝐼 |
[
𝐼
2 + 1

2𝑒
−𝑖(𝐻obj−𝐸)𝑡

]† [
𝐼
2 + 1

2𝑒
−𝑖(𝐻obj−𝐸)𝑡

]
|𝜓𝐼⟩ (4.5)

=
∑︁
𝑘

𝑐2
𝑘

���12 + 1
2𝑒

−𝑖(𝐸𝑘−𝐸)𝑡
���2 (4.6)

=
∑︁
𝑘

𝑐2
𝑘 cos2 [(𝐸𝑘 − 𝐸) 𝑡2 ] (4.7)

When the RA is repeated for 𝑁 cycles with different values of the time parameter 𝑡𝑛, the prob-

ability of measuring the ancilla qubit in the |0⟩ state each time is the product of these probabilities.

𝑃𝑁 =

𝑁∏
𝑛=1

∑︁
𝑘

𝑐2
𝑘 cos2

(
(𝐸𝑘 − 𝐸) 𝑡𝑛2

)
(4.8)

We call this probability the "success probability” because when this measurement occurs, it

corresponds to a high probability that the final state of the object system is in an eigenstate of 𝐻𝑜𝑏 𝑗

with eigenvalue 𝐸 . If 𝑡𝑛 are sampled from a uniform distribution, as 𝑁 becomes large, the spectral

weight of any 𝐸𝑘 ≠ 𝐸 is suppressed by a factor of 1/4𝑁 , due to the fact that the geometric mean of

the cos2 function is 1
4 . If 𝑡𝑛 are sampled from a Gaussian distribution where the root mean square

value is 𝜎, then when 𝜎 scales as 𝑂 (1/𝜖), eigenstates that fall outside the interval [𝐸 − 𝜖, 𝐸 + 𝜖]

are exponentially expressed. Thus, we can intuitively say that altering 𝜎 changes the magnification

of the energy sensor of the RA
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In the case where 𝐸 is close to an eigenvalue 𝐸obj (associated with the eigenvector |𝐸obj⟩) of

𝐻𝑜𝑏 𝑗 , for large 𝑁 , the probability of consecutive measurement of the ancilla in the |0⟩ state 𝑁 times

converges to the following:

𝑃𝑁 (𝐸) = | ⟨𝜓𝐼 |𝐸obj⟩ |2
𝑁∏
𝑛=1

cos2
(
(𝐸obj − 𝐸) 𝑡𝑛2

)
(4.9)

This is a simplified version of Equation4.8, where all terms in the sum are excluded except the

one involving |𝐸 𝑗 ⟩, which was the least suppressed, and the coefficient for that term is replaced by

the overlap 𝑝 = | ⟨𝜓𝐼 |𝐸obj⟩2 of the initial state of the object system. As 𝐸 approaches the perfect

guess of 𝐸 = 𝐸obj, this expression simplifies even further to 𝑃𝑁 (𝐸obj) = 𝑝. With the spectral

weights of other eigenvectors outside [𝐸 − 𝜖, 𝐸 + 𝜖] reduced by 𝛿, the computational effort for

the rodeo algorithm scales as 𝑁𝜎/𝑝 = 𝑂 [| log 𝛿 |/(𝑝𝜖)]. Furthermore, when 𝑡𝑛 are sampled from

the Gaussian distribution with mean value 0 and root mean square 𝜎 (that is, 𝑡𝑛 ∼ N(𝜇, 𝜎2), the

product in Equation 4.9 can be averaged over the time values 𝑡𝑛 to derive a simple expression for

the success probability as:

𝑃𝑁 (𝐸) =
[
1 + 𝑒−(𝐸obj−𝐸)2𝜎2/2

2

]𝑁
. (4.10)

When a good guess for the parameter 𝐸 is not available, a simple search algorithm can fine-tune

it to approximate the energy eigenvalue 𝐸obj within a given confidence interval. Achieving precision

𝜖 requires 𝑂 (log 𝜖) energy scans, where each scan reduces the energy range by a factor 𝐾 . This

can be accomplished by performing each scan at multiple evenly spaced 𝐸 values with a specified

number of rodeo cycles and increasing 𝜎 by a factor of 𝐾 each time. The total time evolution

scales as 𝑂 (1/𝜖), and high-fidelity energy scans add a factor (log 𝜖)2𝑝. Thus, the computational

complexity to identify 𝐸obj with error 𝜖 scales as 𝑂 [(log 𝜖)2/(𝑝𝜖)], approaching the theoretical

limit of𝑂 (1/𝜖) set by the Heisenberg uncertainty principle. In comparison, phase estimation has a

computational complexity of 𝑂 [1/(𝑝𝜖)] plus 𝑂 [(log 𝜖)2] for the quantum Fourier transform[83].

Iterative phase estimation, which does not require the Fourier transform, is limited to finding the
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energies of pure eigenstates and requires 𝑂 (1/𝜖2) measurements to calculate the expectation value

of such a state for a Hamiltonian due to statistical errors.

In addition to computing eigenvalues, the RA is also effective as an eigenstate preparation

technique. When a good guess for 𝐸obj is known and the initial state |𝜓𝐼⟩ has non-zero overlap with

the corresponding eigenstate |𝐸obj⟩, the success probability 𝑃𝑁 grows rapidly with the number of

cycles. Whenever a success occurs (that is, the ancilla qubit was measured in the |0⟩ state every

time), the final state of the object system |𝜓𝐹⟩ has significant overlap with |𝐸obj⟩. This can be

explained by the partial collapse of the object system wave function that occurs when the entangled

ancilla qubits are measured. The configuration of the entanglement induced by the RA ensures that

a measurement of |0⟩ corresponds to the wave function collapsing toward the target state. Since no

measurement operations are necessary on the object system qubits in the RA, these can then be fed

forward into another algorithm, such as a quantum simulation.

To prepare an eigenstate |𝐸 𝑗 ⟩ with a residual orthogonal component Δ, the computational cost

is 𝑂 (logΔ/𝑝). We maintain 𝜎 large and constant to filter the desired eigenstate, which requires

𝑁 = 𝑂 (logΔ) iterations of the rodeo algorithm, and 1/𝑝 measurements per iteration. 𝐸 must

be centered on the peak of 𝐸 𝑗 , which introduces a constant factor to the computational cost. For

phase estimation, the cost is 𝑂 [1/(𝑝Δ)], and for adiabatic evolution, it is 𝑂 (1/Δ), adjusted by 𝑝

based on the adiabatic path. Thus, for eigenstate preparation, the rodeo algorithm is exponentially

more efficient as Δ approaches zero. Useful estimates for the magnitude of the residual orthogonal

component Δ can be written as a function of the number of rodeo cycles 𝑁 as follows:

𝐹𝐴 ≡
√︁

2−𝑁 (1 − 𝑝)/[𝑝 + 2−𝑁 (1 − 𝑝)],

𝐹𝐺 ≡
√︁

4−𝑁 (1 − 𝑝)/[𝑝 + 4−𝑁 (1 − 𝑝)] . (4.11)

When 𝑁 is much smaller than the number of eigenstates that have non-negligible overlap with

the initial state, 𝐹𝐴 is sufficiently accurate. This has a spectral suppression factor of 1/2 for

undesired eigenstates, equating to the arithmetic mean of cos2. On the other hand, 𝐹𝐺 is more

accurate when 𝑁 is greater than the number of eigenstates that have non-negligible overlap, with a

suppression factor of 1/4, equivalent to the geometric mean of cos2.
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RA performance largely depends on the overlap between the initial state and the target eigenstate,

represented by the overlap probability 𝑝. Since for most systems of interest it is not trivial to prepare

an initial state with a high value of 𝑝, it may often be helpful to use a preconditioning technique

to improve the quality of the initial state and increase the effectiveness of the RA. One method of

accomplishing this would be to combine the RA with a variational quantum algorithm; this idea is

explored in great detail in Chapter 5.

4.2 Demonstration of the Rodeo Algorithm

In this section, we show two examples to demonstrate the application of the RA. In Section

4.2.1, we introduce a simple example using the Heisenberg model and emulate the RA circuit

on a classical computer. Then, in Section 4.2.2, we use the RA to compute the eigenvalues of

a random single-qubit Hamiltonian on the IBM Casablanca quantum computing device through

IBMQ. For this single-qubit Hamiltonian, we also fully demonstrate the sequential scanning method

discussed in Section 4.1.1 to compute the full energy spectrum of the Hamiltonian. We also invoke

the Hellman-Feynman theorem to compute the expectation values of an arbitrary single-qubit

observable.

4.2.1 Heisenberg Model Classical Simulation Example

In this section, we consider the spin-1
2 Heisenberg model in a uniform magnetic field with 10

interacting sites forming a closed loop in a one-dimensional chain [53]. This Hamiltonian can be

written in the following way:

𝐻obj = 𝐽
∑︁
⟨ 𝑗 ,𝑘⟩

®𝜎𝑗 · ®𝜎𝑘 + ℎ
∑︁
𝑗

𝜎𝑧
𝑗
, (4.12)

Where 𝐽 is the exchange coupling coefficient between the sites, ®𝜎𝑗 are the Pauli matrices on

site 𝑗 , ⟨ 𝑗 , 𝑘⟩ is shorthand for nearest-neighbor pairs of sites, and ℎ is the coupling to a uniform

magnetic field in the 𝑧 direction. For this example, we will consider the antiferromagnetic case,

which requires setting the values 𝐽 = 1 and ℎ = 3. The initial state is chosen to be the alternating

tensor product state:
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|𝜓𝐼⟩ = |0101010101⟩ . (4.13)

This choice of initial state is motivated by its high degree of symmetry, which allows us to

predict that it will have a nonzero overlap with a relatively small number of energy eigenstates.

The energy eigenstates of 𝐻obj will be labeled |𝐸 𝑗 ⟩. The initial-state spectral function 𝑆(𝐸), which

describes the energy distribution of |𝜓𝐼⟩ in terms of these eigenstates, is defined as:

𝑆(𝐸) =


| ⟨𝐸 𝑗 |𝜓𝐼⟩ |2 if 𝐸 = 𝐸 𝑗 ,

0 otherwise.

Here, | ⟨𝐸 𝑗 |𝜓𝐼⟩ |2 is the probability that the initial state |𝜓𝐼⟩ overlaps with the energy eigenstate

|𝐸 𝑗 ⟩. In cases of degenerate eigenvalues, the total contribution is the sum of contributions from all

degenerate states. Figure 4.2 shows the initial-state spectral function using the rodeo algorithm for

the Heisenberg spin chain with 𝑁 = 3 (thin blue line), 𝑁 = 6 (thick green line) and 𝑁 = 9 (medium

red line) cycles. We used 20 sets of random 𝑡𝑛 values sampled from a Gaussian distribution with

𝜎 = 5 to reduce stochastic noise and create a constant background distinguishable from the spectral

signal. The exact initial-state spectral function is shown with black open circles. Since both 𝜎

and 𝑁 are not very large, relatively few gates would be needed to implement this circuit on a real

device, which is important on NISQ devices.

In addition to computing the initial-state spectral function, we can generate any energy eigenstate

that overlaps the initial state. Table 4.1 shows the overlap of |𝜓𝐹⟩ with the energy eigenvector |𝐸 𝑗 ⟩

after 𝑁 cycles of the rodeo algorithm. Gaussian random values are used for 𝑡𝑛 with 𝜎 = 5 and

𝐸 = 𝐸 𝑗 . The table shows that all such energy eigenvectors can be prepared accurately with only a

few rodeo cycles.

In Figure 4.3, we show the logarithm of the error of the wave function using the RA to prepare

the energy eigenstate |𝐸 𝑗 ⟩ with 𝐸 𝑗 = −18.1. We plot logΔ against the total propagation time 𝑇 for

𝜎 = 1 to compare with log 𝐹𝐴 and log 𝐹𝐺 from the error estimates in Equation (4.11). For small

𝑇 , log 𝐹𝐴 is a good estimate; for large 𝑇 , log 𝐹𝐺 is better. We also compare results using classical
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Figure 4.2 (color online) Initial-state spectral function for the Heisenberg model. Using the
RA, we depict the initial-state spectral function for the Heisenberg spin chain with 3 (thin blue
line), 6 (thick green line), and 9 (medium red line) cycles. The average was taken over 20 sets of
Gaussian random values for 𝑡𝑛 with 𝜎 = 5. For reference, the exact initial-state spectral function is
presented with black open circles.

simulations of QPE and adiabatic evolution starting from the same initial state for the same total

propagation times. For adiabatic evolution, the initial Hamiltonian is 𝐻𝐼 =
∑10
𝑗=1(−1) 𝑗𝜎𝑧

𝑗
with

an interpolating function 𝐻 (𝑡) = cos2 [𝜋𝑡/(2𝑇)]𝐻𝐼 + sin2 [𝜋𝑡/(2𝑇)]𝐻obj. Phase estimation and

adiabatic evolution perform similarly, but the rodeo algorithm is exponentially faster.

4.2.2 Applications to Single-Qubit Hamiltonians on Quantum Hardware

We consider a quantum register with two qubits: the primary "object” qubit and the ancillary

"arena” qubit. A single-qubit Hamiltonian is represented in its general form as:

𝐻obj = 𝑐𝐼 𝐼 + 𝑐𝑋𝑋 + 𝑐𝑌𝑌 + 𝑐𝑍𝑍, (4.14)
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Table 4.1 Overlap of |𝜓𝐹⟩ with energy eigenvector |𝐸 𝑗 ⟩ after 𝑁 cycles of the rodeo algorithm
using Gaussian random values for 𝑡𝑛 with 𝜎 = 5 and 𝐸 = 𝐸 𝑗 .

𝐸 𝑗 𝑁 = 0 𝑁 = 3 𝑁 = 6 𝑁 = 9
−18.1 0.110 0.746 0.939 0.997
−16.4 0.209 0.841 0.993 1.000
−11.9 0.200 0.629 0.889 0.999
−9.76 0.0974 0.488 0.903 0.999
−8.38 0.0320 0.467 0.832 0.993
−6.63 0.0577 0.309 0.818 0.996
−5.81 0.0118 0.179 0.637 0.817
−5.52 0.115 0.456 0.766 0.997
−4.26 0.0171 0.144 0.696 0.995
−3.95 0.00401 0.0430 0.343 0.952
−2.00 0.0139 0.158 0.593 0.942
−0.802 0.0338 0.216 0.545 0.594
−0.704 0.0331 0.286 0.540 0.585

2.00 0.0357 0.371 0.925 0.994
2.42 0.00235 0.0122 0.0874 0.521
2.68 0.00291 0.0845 0.639 0.929
3.39 0.00592 0.0360 0.754 0.943
5.96 0.00336 0.0951 0.559 0.981
7.33 0.00650 0.184 0.792 0.978
8.13 0.00393 0.0832 0.665 0.841
8.24 0.00105 0.0275 0.142 0.289
10.0 0.00397 0.0128 0.295 0.902

where 𝐼 is the identity operator, 𝑋,𝑌, 𝑍 are Pauli operators and 𝑐𝐼 , 𝑐𝑋 , 𝑐𝑌 , 𝑐𝑍 are real coefficients.

The object qubit is initialized in state |𝜓𝐼⟩, and the ancillary qubit is initialized in state |0⟩. We

perform 𝑁 cycles of the RA as defined in Section 4.1 with the energy parameter 𝐸 . IBMQ’s mid-

circuit measurements permit reuse of the ancillary qubit so that only two qubits total are needed.

The time parameter 𝑡𝑛 for each cycle is randomly sampled from a Gaussian distribution with a

mean of zero and a standard deviation of 𝜎. From Equation 4.10, it can be inferred that the success

probability will decrease exponentially as the difference between 𝐸 and the nearest eigenstate of

𝐻obj increases.
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Figure 4.3 (color online) Logarithm of the wave function error versus the total propagation
time for the Heisenberg model. We plot logΔ, versus the total propagation time, 𝑇 , for the
Heisenberg model. We show results for the rodeo algorithm, phase estimation, and adiabatic
evolution. We also show the asymptotic estimates log 𝐹𝐴 and log 𝐹𝐺 .

4.2.2.1 Gate Implementation For Single Qubit System

The description of the quantum circuit for the RA in Section 4.2.2 includes a controlled time-

evolution gate in each cycle. Although such a gate operation could be done on a quantum device

using optimal control as in Chapter 3, in general such an operation is not available, and it must be

decomposed into elementary quantum gates in order to be implemented.

The time evolution operator can be written from the single-qubit object Hamiltonian 𝐻obj as

follows:

𝑈 (𝑡) = 𝑒−𝑖𝐻obj𝑡 = 𝑒−𝑖𝑐𝐼 𝑡𝑒−
𝑖 𝜃
2 �̂�·®𝜎 ≡ 𝑒−𝑖𝑐𝐼 𝑡𝑅�̂� (𝜃), (4.15)

where 𝑅�̂� (𝜃) represents a rotation matrix around the unit vector �̂� in three dimensions by an

angle 𝜃. This matrix can parameterize any matrix in the fundamental representation of the 𝑆𝑈 (2)
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group and thus can be used as a general representation of any single qubit gate operation. It can be

written in terms of the coefficients from Equation 4.14 as follows:

𝑅�̂� (𝜃) = 𝑒−
𝑖 𝜃
2 �̂�·®𝜎

=


cos( 𝜃2 ) − 𝑖 sin( 𝜃2 )𝑛𝑍 −𝑖 sin( 𝜃2 ) (𝑛𝑋 − 𝑖𝑛𝑌 )

−𝑖 sin( 𝜃2 ) (𝑛𝑋 + 𝑖𝑛𝑌 ) cos( 𝜃2 ) + 𝑖 sin( 𝜃2 )𝑛𝑍

 , (4.16)

where

𝜃 = 2𝑡
√︃
𝑐2
𝑋
+ 𝑐2

𝑌
+ 𝑐2

𝑍
, (4.17)

and

�̂� =
1√︃

𝑐2
𝑋
+ 𝑐2

𝑌
+ 𝑐2

𝑍


𝑐𝑋

𝑐𝑌

𝑐𝑍


=


𝑛𝑋

𝑛𝑌

𝑛𝑍


. (4.18)

A generic single-qubit quantum operation 𝑈 is conventionally parameterized with three Euler

angles 𝛾, 𝛽, 𝛿 as follows:

𝑈 (𝛾, 𝛽, 𝛿) =


cos
( 𝛾

2
)

−𝑒𝑖𝛿 sin
( 𝛾

2
)

𝑒𝑖𝛽 sin
( 𝛾

2
)
𝑒𝑖(𝛿+𝛽) cos

( 𝛾
2
) . (4.19)

Applying the 𝑍 − 𝑌 decomposition for a single qubit [83], we can rewrite Equation 4.19 as:

𝑈 (𝛾, 𝛽, 𝛿) = 𝑒𝑖
𝛿+𝛽

2


𝑒−𝑖

𝛿+𝛽
2 cos

( 𝛾
2
)

−𝑒𝑖
𝛿−𝛽

2 sin
( 𝛾

2
)

𝑒−𝑖
𝛿−𝛽

2 sin
( 𝛾

2
)

𝑒𝑖
𝛿+𝛽

2 cos
( 𝛾

2
) 

= 𝑒𝑖
𝛿+𝛽

2 𝑅𝑍 (𝛽)𝑅𝑌 (𝛾)𝑅𝑍 (𝛿)

≡ 𝑒𝑖
𝛿+𝛽

2 𝑅�̂� (𝜃). (4.20)

Equating the upper-left and lower-left entries of the matrices 𝑅�̂� (𝜃) and 𝑅𝑍 (𝛽)𝑅𝑌 (𝛾)𝑅𝑍 (𝛿)

yields the following constraints:
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cos
(
𝛿 + 𝛽

2

)
cos

(𝛾
2

)
= cos

(
𝜃

2

)
, (4.21)

− sin
(
𝛿 + 𝛽

2

)
cos

(𝛾
2

)
= −𝑛𝑍 sin

(
𝜃

2

)
, (4.22)

cos
(
𝛿 − 𝛽

2

)
sin

(𝛾
2

)
= 𝑛𝑌 sin

(
𝜃

2

)
, (4.23)

− sin
(
𝛿 − 𝛽

2

)
sin

(𝛾
2

)
= −𝑛𝑋 sin

(
𝜃

2

)
. (4.24)

The global phase 𝑒𝑖
𝛿+𝛽

2 in the gate 𝑈 can be replaced with the overall phase controlled by the

term 𝑐𝐼 𝐼, generating two additional terms 𝜉 in the argument of the phase shift gate. Solving for the

parameters 𝛿, 𝛽, 𝛾, and 𝜉 yields the following:

𝛿 = tan−1
[
𝑛𝑍 tan

(
𝜃

2

)]
+ tan−1

(
𝑛𝑋

𝑛𝑌

)
, (4.25)

𝛽 = tan−1
[
𝑛𝑍 tan

(
𝜃

2

)]
− tan−1

(
𝑛𝑋

𝑛𝑌

)
, (4.26)

𝛾 = 2 cos−1


cos(𝜃/2)

cos
(
𝛿+𝛽

2

)  , (4.27)

𝜉 = −𝑐𝐼 𝑡 −
𝛿 + 𝛽

2
. (4.28)

The parameters 𝛿, 𝛽, and 𝛾 can be used as arguments in the elementary controlled-𝑈 gate

operation in order to implement the controlled time evolution in the quantum circuit.

4.2.2.2 Determining the Energy Spectrum

To find the eigenvalues of 𝐻obj, we implement RA while scanning the target energy 𝐸 from

𝐸min to 𝐸max, a range that is estimated from the operator norm of 𝐻obj. The eigenvalues appear as

peaks in the success probability distribution. We used multiple scans, each with higher resolution

by adjusting the width parameter 𝜎, inversely proportional to the sharpness of the resolution of the

energy. Three scans are used in this example; the second and third scans are centered around the

peaks of their previous scans, as illustrated in Figure 4.4.
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Figure 4.4 Sequential scans of the energy. Each bin represents a distinct RA circuit for target
energy 𝐸 and width parameter 𝜎. The color and shading indicates the success probability
𝑃0𝑁 (𝐸). Centered around each of the peaks from the first scan, a second scan is performed using
with a large value of 𝜎 and better energy resolution. This is then repeated for the third scan.

For the purposes of the following analysis, we consider a one-parameter family of one-qubit

Hamiltonians:

𝐻obj(𝜙) = 𝐻 (0) + 𝜙𝐻 (1) , (4.29)

Written in terms of two single-qubit Hamiltonians:

𝐻 (0) = −0.08496𝐼 − 0.89134𝑋 + 0.26536𝑌 + 0.57205𝑍, (4.30)

and

𝐻 (1) = −0.84537𝐼 + 0.00673𝑋 − 0.29354𝑌 + 0.18477𝑍. (4.31)
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Figure 4.5 Energy scans for 𝐻obj(0). The results were obtained from experiments on IBMQ’s
Casablanca device. The dashed lines show predicted outcomes from classical success probability
calculations. The initial scan also includes noiseless quantum device simulation results.

The coefficients in both Hamiltonians were randomly sampled from a uniform distribution over the

interval [−1, 1]. We also set the number of cycles 𝑁 = 3 for all quantum circuits in this section.

This choice minimizes error due to decoherence by keeping the number of gates low, and the results

from Section 4.2.1 suggest that this should be enough to see the effect of RA. The results for 𝐻obj(0)

are illustrated in Figure 4.5. The initial state is set to |0⟩, and we perform three separate energy

scans with 𝜎 values set to 2, 7, and 12 to show its inverse effect on the magnification of the energy

sensor. The experimental results were obtained using the IBMQ Casablanca device, focusing on two

interconnected qubits characterized by minimal real-time error rates. The dashed lines represent

the analytic results as derived from classical success probability calculations. Additionally, for the

initial scan, we include results from a noiseless quantum device simulator.
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Although the heights of the peaks are lower, their locations remain accurate in the presence

of noise on the quantum device. Peak positions are estimated by fitting Gaussian functions to the

success probability data in the vicinity of each peak. When the difference between 𝐸 and the target

eigenvalue is greater than 1/𝜎, the probability of measuring |0⟩ is approximately 1/2 per cycle.

With the number of cycles 𝑁 = 3, the probability of success is (1/2)3 = 0.125, which is illustrated

by the background value in Figure 4.5.

4.2.2.3 Applying the Hellmann-Feynman Theorem

Using the eigenvalues of 𝐻obj(𝜙) for small 𝜙, we can apply the Hellmann-Feynman theorem

to find the expectation value of 𝐻 (1) for the eigenstates of 𝐻 (0) [37]. This theorem essentially

represents the first-order perturbation theory for energy. If 𝐸𝑛 (𝜙) are the energy eigenvalues of

𝐻obj(𝜙) and |𝜓𝑛 (𝜙)⟩ are the corresponding eigenstates, then:

𝑑𝐸𝑛 (𝜙)
𝑑𝜙

= ⟨𝜓𝑛 (𝜙) |𝐻 (1) |𝜓𝑛 (𝜙)⟩ . (4.32)

At 𝜙 = 0, we obtain the expectation values of 𝐻 (1) for the eigenstates of 𝐻obj(0) = 𝐻 (0) . In

Figure 4.6, the energy eigenvalues of 𝐻obj(𝜙) are plotted. The upper panel shows the higher energy

eigenvalue 𝐸1, and the lower panel shows the lower energy eigenvalue 𝐸2. As 𝜙 varies, a scan with

𝜎 = 12 suffices to find each of these eigenvalues. We perform 2500 measurements for 25 random

sets of 𝑡𝑛 for 𝐸1 and 5000 measurements for 50 random sets of 𝑡𝑛 for 𝐸2, each set containing 3

numbers due to the chosen value 𝑁 = 3. RA results (filled circles) are plotted with a quadratic

fit (solid line) and three-standard-deviation error bands (shaded). The exact results (filled squares)

and their quadratic fit (dashed line) are also shown. The error bars on the RA data represent errors

of one standard deviation from the mean. The smaller error bars for 𝐸1 compared to 𝐸2 are due to

a larger overlap of the initial state with the corresponding eigenstate.

Using quadratic fitting of the RA data points, we determine the energy eigenvalues of 𝐻 (0) and

the expectation values of 𝐻 (1) for the eigenstates of 𝐻 (0) . The results are in Table 4.2. The error

bars represent the one-sigma uncertainties from statistical noise and Gaussian peak fitting. The

exact results are provided for comparison. The relative error in determining the energies of 𝐻 (0)

is 0.08%, which falls within our error estimates even without the application of error mitigation
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Figure 4.6 Eigenvalues 𝐸1 (top) and 𝐸2 (bottom) vs. 𝜙. The plot shows RA data (circles), RA
quadratic fit (solid line) with 3𝜎 error bands (shaded), exact values (squares), and exact quadratic
fit (dashed line).

techniques. The application of the Hellmann-Feynman theorem results in larger error bars due

to the error being proportional to the derivative of the energy ; however, the uncertainty in the

expectation value of 𝐻 (1) remains relatively small. The relative error for the eigenvalues of 𝐻 (1) is

0. 7%, which is well in agreement with our predicted error estimates.
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|𝜓1(0)⟩ exact |𝜓2(0)⟩ exact
⟨𝐻 (0)⟩ 1.00681(66) 1.00690 −1.1750(12) −1.1768
⟨𝐻 (1)⟩ −0.8338(89) −0.8254 −0.868(14) −0.8653

Table 4.2 Results obtained using RA for the energy eigenvalues of 𝐻 (0) and the expectation values
of 𝐻 (1) corresponding to the eigenstates of 𝐻 (0) . For reference, exact values are also provided.

4.2.2.4 Testing Eigenstate Preparation

To assess the outcomes of the RA as a method to prepare eigenstates, we used the IBMQ

Casablanca device to prepare eigenstates |𝜓1(0)⟩ and |𝜓2(0)⟩ and measure the expectation values of

𝐻 (0) and𝐻 (1) . This calculation can be thought of as an upper limit on the accuracy of the variational

quantum eigensolver [88]. Table 4.3 shows the results without using any error mitigation techniques,

displaying expectation values of 𝑋,𝑌, 𝑍 , 𝐻 (0) , and 𝐻 (1) . The error bars represent statistical errors

from 10 trials of 5000 measurements for each Pauli operator and eigenstate. The relative error for

𝐻 (0) is 5% while for 𝐻 (1) it is 0.6%, with the smaller deviation for 𝐻 (1) attributed to the smaller

coefficients of the Pauli matrices. Both deviations significantly exceed statistical error estimates,

indicating systematic errors likely due to measurement bias.

|𝜓1(0)⟩ exact |𝜓2(0)⟩ exact
⟨𝑋⟩ -0.7455(44) -0.8164 0.8055(22) 0.8164
⟨𝑌⟩ 0.2750(36) 0.2430 -0.2196(25) -0.2430
⟨𝑍⟩ 0.5356(46) 0.5239 -0.4632(21) -0.5239

⟨𝐻 (0)⟩ 0.9589(48) 1.0069 -1.1262(24) -1.1768
⟨𝐻 (1)⟩ -0.8321(14) -0.8254 -0.86109(84) -0.8653

Table 4.3 Results for eigenstate preparation without measurement error mitigation.

As expected, the results without error mitigation on a noisy device were sub-optimal. Thus, we

reanalyzed the data while including measurement error mitigation techniques. Before the 10 trials,

we collected data for the confusion matrix using the same method as in Section 3.3.1.1, showing

the probability of measuring |0⟩ or |1⟩ for pure states. We adjusted our measurement statistics by

multiplying by the inverse confusion matrix. The results in Table 4.4 show a significant reduction

in errors. Using all results for |𝜓1⟩ and |𝜓2⟩, the relative errors for 𝐻 (0) and 𝐻 (1) are 0.2% and

0.5%, respectively. Residual errors in Pauli operator expectations suggest remaining systematic
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errors, which shows that further error reduction is limited to techniques beyond increasing the

measurement statistics.

|𝜓1(0)⟩ exact |𝜓2(0)⟩ exact
⟨𝑋⟩ -0.8119(46) -0.8164 0.8152(27) 0.8164
⟨𝑌⟩ 0.2569(83) 0.2430 -0.2596(79) -0.2430
⟨𝑍⟩ 0.5297(80) 0.5239 -0.5151(89) -0.5239

⟨𝐻 (0)⟩ 1.0100(65) 1.0069 -1.1751(60) -1.1768
⟨𝐻 (1)⟩ -0.8283(28) -0.8254 -0.8589(29) -0.8653

Table 4.4 Results for eigenstate preparation with measurement error mitigation.

4.2.3 Discussion

Our analysis shows that the RA for the one-qubit Hamiltonian 𝐻 (0) achieves a relative error of

0.08% for energy eigenvalues, outperforming the expectation values of the eigenvector prepared

directly from𝐻 (0) after applying measurement error mitigation techniques. Despite the Hamiltonian

only operating on one qubit, six two-qubit CNOT gates are used, so total errors, which include

gate error, measurement error, and qubit decoherence, exceed 0.08%. This shows that the RA’s

resilience and design allow it to achieve precise energy results even without error mitigation and

in the presence of substantial noise. Even with noise reducing the spectral weight of the target

eigenstate, the signal remains discernible from the background with sufficient statistics.

For single-qubit benchmarks, RA with precise gate calibration can further reduce relative

errors. The computational cost to determine energy eigenvalues with relative error 𝜖 scales as

𝑂 [(log 𝜖)2/(𝑝𝜖)] [28], with 𝑝 being the squared overlap of the initial state and the target eigenvector,

contrasted with the scaling 𝑂 (1/𝜖2) for the expectations of the eigenvector prepared directly. This

estimate 𝑂 (1/𝜖2) also serves as a lower bound for variational quantum eigensolvers, not including

the additional cost of variational search.

The calculations of the Hellmann-Feynman theorem of 𝐻 (1) using the RA show a relative error

of 0.7%, an order of magnitude larger, due to the need for numerical derivatives of 𝐸𝑛 (𝜙). However,

the theorem accurately computes observables on a quantum device. To maintain the relative error

𝜖 in the operator expectation values, the energies of 𝐻obj(𝜙) need to be computed with an error
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tolerance of 𝑂 (𝜖2) for 𝜙 values around 𝑂 (𝜖), resulting in a computational complexity scaling of

𝑂 [(log 𝜖)2/(𝑝𝜖2)].

4.2.3.1 Future Work

This Section demonstrated RA’s performance in both classical simulations for the Heisenberg

model Hamiltonian and physical devices executions for a general one-qubit Hamiltonian. An

interesting next step would be to test RA on Hamiltonians of more than one qubit. This would

introduce systematic errors due to the Suzuki-Trotter decomposition needed for the time evolution

operator [110, 106, 26]. However, an effective Hamiltonian can be defined that reproduces the

Trotterized time evolution. Based on the results in Section 4.2.2, the eigenvalues of such an

effective Hamiltonian can likely be determined with similar accuracy as in the one-qubit case,

given a signal strong enough to rise above the random background.

Although the energy-scanning method has been successful in detecting the energy spectrum, it

may encounter difficulties when applied to larger systems that require significantly more scans. One

of the main scalability challenges of the RA is ensuring that the initial state has a sufficiently large

overlap with the target eigenstate, which may be essential for increasing the success probability

enough to discern the energy peaks from the background noise. Achieving this condition becomes

especially difficult for larger systems of interest. Therefore, a possible next step, thoroughly inves-

tigated in Chapter 5, is to combine RA with a variational technique such as QAOA, using classical

optimization to help prepare an initial state that ensures a sufficiently high success probability for

the RA.
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CHAPTER 5

VARIATIONAL RODEO ALGORITHM

This chapter expands on the Rodeo algorithm (RA) studied and evaluated in Chapter 4, by converting

it into a variational technique, which we call the Variational Rodeo Algorithm (VRA). The objective

is to address the main shortcoming of the RA, specifically that its success rate is contingent upon

the overlap between the initial state and the target eigenstate, which is hard to control for many

systems of interest. We test the algorithm by performing classical optimizations using emulated

quantum circuits and also compare it with QAOA for the task of ground-state preparation. Our

results, combined with those of Chapter 4, suggest that this method should be effective in preparing

high-fidelity eigenstates on quantum computers.

5.1 Algorithm

Like other variational methods, the VRA uses a two-part method that alternates between

executing a parameterized quantum circuit and classically optimizing the circuit parameters. The

quantum circuit of VRA has two parts: a parameterized section followed by the RA circuit. Any

parameterized circuit can be used for the first part, but in this chapter, we consider only the QAOA

circuit because of its widespread recognition and because its resemblance to adiabatic evolution

may give it an advantage in preparing ground-state eigenvectors.

The Hamiltonian of interest is labeled as the "object Hamiltonian”, 𝐻obj. Just like in the RA,

a quantum register is divided into an object system, on which 𝐻obj is allowed to act, and a set of

ancilla qubits called the ’rodeo arena.’ If mid-circuit measurements are allowed, only one ancilla

qubit is needed for the rodeo arena. First, the QAOA algorithm with mixer Hamiltonian 𝐻mix and

problem Hamiltonian𝐻obj is applied to the object system (see Section 2.2.2.3); then the RA with the

chosen energy parameter 𝐸 is applied immediately thereafter. This circuit is executed repeatedly to

determine the probability that each ancilla-qubit measurement is in the |1⟩ state, which is the same

as the "success probability” in Section 4.1.1. This probability is at a maximum when the final state

of the object system after RA, |𝜓𝐹⟩, is an eigenstate of 𝐻obj. Thus, to prepare eigenstates, VRA

aims to maximize this probability, using one minus the probability as the cost function for classical
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optimization.

5.1.1 Comparison to other Methods

Traditionally, the cost function for the classical optimization part of QAOA is the expectation

value of the energy of the state stored in the quantum register with respect to 𝐻obj, which can be

measured from repeated executions of the QAOA circuit without requiring full tomography. Due

to the variational principle, the energy expectation value of any state provides an upper bound on

the energy of the ground state, and the state with the minimum energy from a sample of states

can be used as an approximation of the true ground state[45]. In many but not all cases, this state

approaches the true ground state as its energy with respect to 𝐻obj tends to its minimum value.

Although it often provides a good approximation for small systems (and is, in fact, universally

capable of ground states of specific types of Hamiltonians[78]), QAOA was designed as a heuristic

approach and excels at providing approximations for ground state energies rather than preparing

eigenstates with high fidelity[80]. Its limitations become apparent when QAOA is applied to

problems where the Hilbert space of 𝐻obj is large and the number of parameters in the circuit

is low[4, 87, 105]. Due to its inspiration from adiabatic evolution, QAOA can still be useful to

converge to eigenstates for many problems due to the adiabatic theorem [15].

For simplicity, the mixer Hamiltonian 𝐻mix in QAOA is often chosen so that its time evolution

operation can be implemented with 𝑂 (𝑛) quantum gates, but the time evolution of the problem

Hamiltonian 𝐻obj may be much more complicated, often requiring Trotter approximations and

costly 2-qubit gate decompositions[117]. Thus, in order to be feasible to compute on NISQ-era

devices, QAOA circuits for reasonably-sized problem Hamiltonians are often truncated to a small

depth with fewer optimization parameters. Increasing this depth may lead to more accurate results,

but would also quickly undermine the effectiveness of the algorithm on physical devices due to

decoherence.

Rather than using QAOA alone to estimate the ground state energy, in this novel approach we

use its output state as the initial state for the RA. This choice is based on the observation that the

states produced by QAOA have significantly higher ground state overlap than randomly generated
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states, even for large systems[87]. This makes it a good candidate as a precursor algorithm for

RA, which should be capable of transforming its output state into one with even higher ground

state overlap. Taking this idea one step further, the RA circuit can be appended to the QAOA

circuit during optimization so that the cost function depends not on the energy but on the success

probability of the RA, which is also easy to estimate from circuit executions.

As we reason in Section 5.2 based on the conclusions of Section 4.1.1, the success probability

of the RA with the energy parameter 𝐸 is directly proportional to the overlap of the initial state

with the particular problem Hamiltonian eigenstate with the closest eigenvalue to 𝐸 . In contrast,

the relationship between the energy of a quantum state and its ground-state overlap is often unclear.

Our results in Section 5.3 suggest that the state with the minimum energy reachable by a QAOA

circuit can differ significantly from the state with the highest overlap. As problem size increases or

QAOA steps decrease, the ground-state overlap of the minimum energy state may be no higher than

that of a random state in the Hilbert space. This implies that the RA success probability should

provide a more useful cost function for the use case of eigenstate preparation. By avoiding energy

minimization, it is also straightforward to prepare excited states with VRA.

5.2 Mathematical Comparison of Cost Functions

In this section, we explore the effectiveness of three theoretical cost functions for classical

optimization in parameterized quantum circuits. First, we investigate energy minimization, the

most common approach used in VQE and QAOA methods. We then examine maximizing the

overlap with the ground state, which, while ideal in theory, is impractical as it assumes prior

knowledge of the system’s ground state, an objective typically sought by such algorithms. Lastly,

we evaluate the cost function proposed in our method, which maximizes the success probability

of the RA. This method requires only an approximate guess for the ground state energy and, as

we demonstrate, converges to the maximization of the ground state overlap in the limit where the

guessed energy 𝐸 approaches the true ground state energy 𝐸0, and the number of RA cycles and

the standard deviation 𝜎 of the random time parameters become large.

For this section, we will consider a general Hamiltonian 𝐻 with eigenstates and eigenvalues
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|𝐸𝑛⟩ and 𝐸𝑛 where 𝑛 = {0, 1, . . . , 𝑁 − 1} and 𝐸0 ≤ 𝐸1 ≤ · · · ≤ 𝐸𝑁−1. Each cost function will be

analyzed in the context of the objective of calculating the ground state energy 𝐸0. This can be done

in the context of a standard gradient descent algorithm by examining the direction of the gradient

vector with respect to the optimization parameters to understand the path that an optimization would

take.

5.2.1 Energy Minimization

To analyze the energy minimization cost function, we start by decomposing the general state

|𝜓⟩ into energy eigenstates |𝐸𝑛⟩:

|𝜓⟩ =
𝑁−1∑︁
𝑛=0

𝑐𝑛 |𝐸𝑛⟩ . (5.1)

The energy expectation value for the normalized state is given by:

𝐸𝜓 =
⟨𝜓 |𝐻 |𝜓⟩
⟨𝜓 |𝜓⟩ =

∑𝑁−1
𝑛=0 |𝑐𝑛 |2𝐸𝑛∑𝑁−1
𝑛=0 |𝑐𝑛 |2

. (5.2)

The complex phase of each 𝑐𝑛 does not affect the energy expectation value. Thus, we can

express 𝑐𝑛 as |𝑐𝑛 |𝑒𝑖𝜃𝑛 and keep each 𝑒𝑖𝜃𝑛 fixed for 𝑛 = 0, · · · , 𝑁 − 1. We now consider the squared

absolute values |𝑐𝑛 |2 as independent variables. The state |𝜓⟩ can be parameterized in terms of

the vector {|𝑐0 |2, · · · , |𝑐𝑁−1 |2}. Taking the partial derivative of 𝐸𝜓 with respect to |𝑐𝑛 |2 yields the

following.

𝜕𝐸𝜓

𝜕 |𝑐𝑛 |2
=

∑𝑁−1
𝑚=0 |𝑐𝑚 |2(𝐸𝑛 − 𝐸𝑚)[∑𝑁−1

𝑚=0 |𝑐𝑚 |2
]2 . (5.3)

A simple rescaling of the overall normalization of 𝜓 does not change the energy expectation

value, evident from:

𝑁−1∑︁
𝑛=0

|𝑐𝑛 |2
𝜕𝐸𝜓

𝜕 |𝑐𝑛 |2
=

∑𝑁−1
𝑛=0

∑𝑁−1
𝑚=0 |𝑐𝑛 |2 |𝑐𝑚 |2(𝐸𝑛 − 𝐸𝑚)[∑𝑁−1

𝑚=0 |𝑐𝑚 |2
]2 = 0. (5.4)

Given this rescaling invariance, we normalize |𝜓⟩ such that:
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𝑁−1∑︁
𝑚=0

|𝑐𝑚 |2 = 1. (5.5)

Therefore,

𝜕𝐸𝜓

𝜕 |𝑐𝑛 |2
= 𝐸𝑛 − 𝐸𝜓 . (5.6)

Following the steepest descent path involves moving in the direction of the infinitesimal vector

{Δ|𝑐0 |2, · · · ,Δ|𝑐𝑁−1 |2}, where:

Δ|𝑐𝑛 |2 = −(𝐸𝑛 − 𝐸𝜓), (5.7)

for 𝑛 = 0, · · · , 𝑁 − 1. This approach shows that |𝑐𝑛 |2 decreases for 𝐸𝑛 > 𝐸𝜓 and increases for

𝐸𝑛 < 𝐸𝜓 ,. We note that this optimization path may be inefficient in a large vector space.

5.2.2 Ground State Overlap Maximization

To maximize overlap with the ground state |𝐸0⟩, we define:

𝑃0
𝜓 =

⟨𝜓 |𝐸0⟩ ⟨𝐸0 |𝜓⟩
⟨𝜓 |𝜓⟩ =

|𝑐0 |2∑𝑁−1
𝑚=0 |𝑐𝑚 |2

. (5.8)

Taking the partial derivative of 𝑃0
𝜓

with respect to |𝑐𝑛 |2 gives:

𝜕𝑃0
𝜓

𝜕 |𝑐𝑛 |2
=
𝛿𝑛,0

∑𝑁−1
𝑚=0 |𝑐𝑚 |2 − |𝑐0 |2[∑𝑁−1
𝑚=0 |𝑐𝑚 |2

]2 . (5.9)

Similarly as in Equation 5.4, a rescaling of the overall normalization of 𝜓 does not change the

overlap:

𝑁−1∑︁
𝑛=0

|𝑐𝑛 |2
𝜕𝑃0

𝜓

𝜕 |𝑐𝑛 |2
=

∑𝑁−1
𝑛=0 |𝑐𝑛 |2𝛿𝑛,0

∑𝑁−1
𝑚=0 |𝑐𝑚 |2 −

∑𝑁−1
𝑛=0 |𝑐𝑛 |2 |𝑐0 |2[∑𝑁−1

𝑚=0 |𝑐𝑚 |2
]2 = 0. (5.10)

The state |𝜓⟩ can be normalized as in Equation 5.11.

𝑁−1∑︁
𝑚=0

|𝑐𝑚 |2 = 1, (5.11)
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Following the steepest ascent path involves moving in the direction of the infinitesimal vector

{Δ|𝑐0 |2, · · · ,Δ|𝑐𝑁−1 |2}:

Δ|𝑐𝑛 |2 = 𝛿𝑛,0 − |𝑐0 |2 = 𝛿𝑛,0 − 𝑃0
𝜓 , (5.12)

for 𝑛 = 0, · · · , 𝑁−1. When 𝑃0
𝜓

is small, the movement is primarily towards |𝑐0 |2 corresponding

to the eigenvector of the ground state, facilitating an efficient search in a large vector space due to

the low rank of the cost function.

5.2.3 Rodeo Algorithm Success Probability Maximization

To maximize the success probability of the rodeo algorithm for 𝑀 cycles, with target energy 𝐸

and standard deviation of time values 𝜎, we first define the success probability 𝑃𝜓 as follows:

𝑃𝜓 =

∑𝑁−1
𝑛=0

[
1
2 + 1

2𝑒
−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
⟨𝜓 |𝐸𝑛⟩ ⟨𝐸𝑛 |𝜓⟩

⟨𝜓 |𝜓⟩ (5.13)

=

∑𝑁−1
𝑛=0

[
1
2 + 1

2𝑒
−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
|𝑐𝑛 |2∑𝑁−1

𝑚=0 |𝑐𝑚 |2
. (5.14)

Taking the partial derivative of 𝑃𝜓 with respect to |𝑐𝑛 |2 gives:

𝜕𝑃𝜓

𝜕 |𝑐𝑛 |2
=

∑𝑁−1
𝑚=0 |𝑐𝑚 |2

{[
1
2 + 1

2𝑒
−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
−
[
1 + 𝑒−(𝐸𝑚−𝐸)2𝜎2/2

]𝑀}
[∑𝑁−1

𝑚=0 |𝑐𝑚 |2
]2 . (5.15)

Since normalization of 𝜓 does not change the success probability of RA, it follows that:

𝑁−1∑︁
𝑛=0

|𝑐𝑛 |2
𝜕𝑃𝜓

𝜕 |𝑐𝑛 |2
(5.16)

=

∑𝑁−1
𝑛=0,𝑚=0 |𝑐𝑛 |2 |𝑐𝑚 |2

{[
1
2 + 1

2𝑒
−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
−
[

1
2 + 1

2𝑒
−(𝐸𝑚−𝐸)2𝜎2/2

]𝑀}
[∑𝑁−1

𝑚=0 |𝑐𝑚 |2
]2 (5.17)

= 0. (5.18)
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Following the steepest ascent path, the direction is given by the infinitesimal vector with 𝑁

components (𝑛 = 0, 1, . . . , 𝑁 − 1) defined as follows:

Δ|𝑐𝑛 |2 =

[
1
2
+ 1

2
𝑒−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
− 𝑃𝜓 , (5.19)

for 𝑛 = 0, · · · , 𝑁 − 1. When 𝑃𝜓 is small, the movement is primarily towards the eigenvectors

where
[

1
2 + 1

2𝑒
−(𝐸𝑛−𝐸)2𝜎2/2

]𝑀
is significant. Increasing 𝑀 narrows the energy window around 𝐸 ,

leading to better search efficiency in a large vector space due to the effective low rank of the rodeo

algorithm success probability. As 𝑀 increases, the gradient tends to increase the magnitude of the

component with the smallest value of |𝐸𝑛−𝐸 | and decrease the magnitude of all other components.

5.3 Simulation and Results

In this section, we investigate the convergence of VRA compared to other variational quantum

algorithms by performing classical optimization based on the output of classically simulated quan-

tum circuits. For each of the following methods, we consider a QAOA circuit with 𝑛 qubits as

the parameterized circuit for variational optimization. The objective Hamiltonian 𝐻obj is defined

by creating a random Hermitian matrix with dimensionality 2𝑛 × 2𝑛. The Hermitian property is

enforced by first generating a random triangular matrix of complex values, then summing it with

its own conjugate transpose. For the mixer Hamiltonian 𝐻mix, we use the so-called 𝑥-mixer defined

as follows:

𝐻mix =

𝑛∑︁
𝑗=1

X 𝑗 , (5.20)

where X 𝑗 represents an X gate on the qubit at index 𝑗 . The QAOA circuit is initialized by putting

the quantum register in the ground state of 𝐻mix, denoted |𝜓0⟩. The circuit then consists of time

evolution gates acting on the quantum register alternating over 𝐻obj and 𝐻mix with adjustable time

parameters for each. The circuit diagram for this QAOA circuit is shown in figure 5.1. The number

of time evolution gates, and therefore parameters, in the circuit is adjusted based on the number of

qubits and the desired fidelity of state preparation.
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Figure 5.1 A circuit diagram of a QAOA circuit with objective Hamiltonian 𝐻 𝑓 , mixer
Hamiltonian 𝐻𝑖, and tunable parameters 𝛾 and 𝛽. Each time evolution gate has its own adjustable
parameter, typically restricted to be in the range (0, 2𝜋).

In each of the following demonstrations, the exact final state |𝜓 𝑓 ⟩ of the QAOA circuit is found

classically using matrix-vector multiplications so that no circuit executions are necessary. From

this state vector, the energy can be calculated as ⟨𝜓 𝑓 |𝐻obj |𝜓 𝑓 ⟩, and the modulus squared overlap

with any particular eigenstate |𝐸𝑘⟩ of 𝐻obj can be calculated as | ⟨𝐸𝑘 |𝜓 𝑓 ⟩ |2. If |𝜓 𝑓 ⟩ is used as the

initial state in a Rodeo algorithm circuit with 𝑁 cycles and time values sampled from a Gaussian

distribution with mean 0 and standard deviation 𝜎, then the probability of success for the Rodeo

algorithm is given by 𝑃𝑁 in Equation 5.13, which we use instead of circuit executions or simulations.

The optimal parameters for each QAOA circuit are estimated using the classical BFGS opti-

mization algorithm (see Section 2.2.3.3). The optimization is initialized with random parameters

in the range (0, 2𝜋). To avoid local minima or barren plateaus, we repeat the optimization with

different random parameters and select the one with the best value of the cost function as the best

estimate of the global optimum. We choose this method because it is simple to implement and each

individual optimization run can provide insight into the optimization landscape. Better estimates

of global optima can also be obtained through different optimization strategies such as simulated

annealing [112] and basin hopping [115] or QAOA-specific strategies that adjust the depth of the

QAOA circuit[86] or use machine learning to guess better starting parameters[121].

In Section 5.3.1, we demonstrate the ability of VRA to prepare excited states of a 6 and 10 qubit

system by adjusting the energy parameter 𝐸 of the Rodeo algorithm. In Section 5.3.2, we compare

VRA with traditional QAOA as well as a two-step optimization approach alternating between both

cost functions to prepare the ground state of a 6-qubit system.
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5.3.1 Simulation Method 1

First, we demonstrate the ability of VRA to prepare eigenstates other than the ground state, a feat

that is not possible with techniques that use energy minimization. Since VRA aims to maximize

the success probability of the Rodeo algorithm, the cost function to minimize is defined as 1 − 𝑃𝑁 .

We used repeated BFGS optimizations with random initial parameters to estimate the optimal set

of parameters, repeating the whole process for different values of the RA energy parameter 𝐸 . The

number of cycles is chosen as 𝑁 = 4, and the standard deviation of the time values in the definition

of 𝑃𝑁 given in Equation 5.13 is set to be constant at 𝜎 = 3. We repeat these steps for two random

Hamiltonians on 6 and 10 qubits, and we consider 12 parameters and 16 parameters for their QAOA

circuits, respectively.

The relative overlap of the output state |𝜓 𝑓 ⟩ of the QAOA circuit with each eigenstate of its

corresponding Hamiltonian is visualized with the shaded rectangles in the graphs in Figure 5.2.

In each case, |𝜓 𝑓 ⟩ was dominated by its component with the eigenvector |𝐸𝑘⟩ with 𝐸𝑘 closest to

𝐸 . Many of the shaded squares are therefore too light to see, so for each value of 𝐸 used in the

VRA cost functions, a red dot is placed at the 𝑦 coordinate corresponding to the eigenstate that

had the highest overlap, which was the one with the eigenvalue closest to 𝐸 in every case. These

simulations suggest that VRA may be an effective method for the preparation of excited states on

quantum computers.

5.3.2 Simulation Method 2

In this method, we compare VRA with pure QAOA as methods to prepare a ground-state

eigenvector of a random 6-qubit Hamiltonian 𝐻obj. Before performing optimizations, we directly

solve for the eigenvectors |𝐸𝑘⟩ of 𝐻obj and use the ground-state energy 𝐸0 as the target energy

parameter in Equation 5.13 for 𝑃𝑁 along with a 𝜎 value of 10. We use the traditional VQE cost

function (minimizing the energy of the output state |𝜓 𝑓 ⟩) and the cost function 1 − 𝑃𝑁 for VRA as

before. The parameterized circuits for both cost functions were QAOA circuits with 20 parameters.

As before, we used multiple BFGS optimizations to get better estimates of the global minima. In

practice, one could discard the results of all but one optimization that ended with the best final
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Figure 5.2 An analysis of the final states |𝜓 𝑓 ⟩ of VRA simulations on random 6-qubit (top row)
and 10-qubit (bottom row) systems, repeated for different values of 𝐸 , increasing linearly along
each 𝑥-axis. The 𝑦-axes represent the exact eigenstates ordered by their eigenvalues scaled by
energy (left column) and level number (right column). The overlap of the final state of the QAOA
circuit with each eigenvector is represented by the relative darkness of each shaded rectangle.
Note that many rectangles are too light to be seen due to extremely low overlap. For each VRA
optimization, a red circle is placed at the eigenstate with the highest overlap
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value of the cost function, but here we present all 10 optimizations side-by-side to better illustrate

the optimization landscapes. On the 𝑥 axis is the iteration number of the BFGS optimization, and

on the 𝑦 axes there are several values of interest for |𝜓 𝑓 ⟩ with the circuit parameters in that iteration.

Specifically, we tracked energy ⟨𝜓 𝑓 |𝐻obj |𝜓 𝑓 ⟩, ground state overlap squared | ⟨𝐸0 |𝜓 𝑓 ⟩ |2, and RA

success probability 𝑃𝑁 . The results of each optimization are represented as the different colored

lines in the plots in Figure 5.3.

These results show that the VRA cost function is comparable to energy minimization in reaching

states with low energies but superior in preparing states with high overlap with the ground state.

The difference is noticeable here primarily because 20 QAOA parameters are not sufficient to allow

the QAOA circuit to prepare the ground state with perfect fidelity, so the energy minimization

technique tends to settle in a mixture of low-lying energy states, while the VRA method reduces the

overlap with all states other than the ground state roughly equally. If the depth of the QAOA circuit

is increased, the variational principle takes effect and the state produced by energy minimization

would theoretically converge to the ground state. However, QAOA is an NISQ-era algorithm

intended to be used with a relatively small number of parameters to compensate for the fact that

current quantum devices decohere rather quickly, so these results are closer to what should be

typical when applying QAOA or VQE to any reasonably sized system. We note that the plots

produced by VRA for ground state overlap and 𝑃𝑁 are similar because, in this example, the RA

parameters 𝐸 = 𝐸0 and 𝜎 = 10 make it so that the energy filter of the RA is smaller than the energy

gap to the first excited state. The best optimizations for both cost functions resulted in final states

with a RA success probability of about 85%, which makes it clear that the addition of RA to the

QAOA circuit after optimization aids in the preparation of the ground state with high fidelity.

To further show the difference between these two cost functions, we combine them in a two-step

optimization approach in which the final parameters of a 100 step QAOA optimization with energy

minimization are used as initial parameters in a 100 step VRA optimization. This type of approach

may be more practical because the VRA circuit depth is higher than that of the QAOA circuit alone.

Therefore, it may save time to use energy minimization for the bulk of the optimization and then
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Figure 5.3 A comparison of the VRA (left) and VQE (right) cost functions for BFGS
optimizations of a 20 parameter 6 qubit QAOA circuit. The shared 𝑥 axes represent the BFGS
iteration number from 1 to 100. The 𝑦 axes in each row represent properties of the output state
|𝜓 𝑓 ⟩ of the QAOA circuit, namely energy (top), ground state overlap (middle), and RA success
probability (bottom). Note the different scales on the 𝑦-axes. 10 random sets of 20 parameters
each were generated and used as the initial circuit parameters in separate optimizations for both
methods, with each set represented by a different color on the plots.
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append the Rodeo algorithm for a few steps of fine-tuning. This approach effectively finds the

closest local maximum of the RA success probability in the vicinity of a local energy minimum.

We use a slightly different example from before by choosing a different random 6 qubit Hamil-

tonian and reducing the number of QAOA parameters to 12. Figure 5.4 shows how the output state

|𝜓 𝑓 ⟩ produced by the QAOA circuit evolves throughout the optimizations. For circuits with few

parameters like this one where the variational principle is not in effect, these two cost functions do

not necessarily share the same local minima. Thus, changing the cost function from minimizing

energy to maximizing the RA success probability results in an immediate correction to the output

state of the QAOA circuit, giving it higher energy but also a higher RA success probability. This

change also results in a larger overlap with the ground state because of its correlation with the

probability of success of RA, which can be clearly seen by the similarity of the middle and bottom

plots in the figure. In this case, with only 12 parameters, adding VRA to the optimization resulted in

a much better overlap with the ground state, increasing the success probability of the best optimiza-

tions from roughly 20% to almost 40%, with more drastic improvements in the cases where VQE

resulted in much lower ground state fidelity. For larger problems as the optimization landscape gets

more complicated, we would expect VQE results to have a lower ground state overlap more often,

so using VRA for fine-tuning may be critical for state preparation with any reasonable fidelity.

5.4 Future Work

This section will describe future avenues of research to improve and test this novel VRA

technique, as well as some intermediate results that we have obtained in that direction.

5.4.1 Comparison of Optimization Landscapes

The results in Section 5.3.2 suggest that the cost functions in QAOA and VRA have different

local minima and barren plateaus. A better understanding of these differences can provide insight

into when it is worthwhile to use VRA over QAOA. Barren plateaus, which are subspaces in

the optimization landscape where the gradient vanishes, typically arise in quantum optimization

problems whenever there are more than a few qubits or parameters in the circuit[77]. This makes

them inherently difficult to visualize in two- or three-dimensional plots. One possible method to
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Figure 5.4 Results for a two-step BFGS optimization of a 12 parameter 6 qubit QAOA circuit with
100 steps of energy minimization followed by 100 steps of VRA. The axes are the same as in
Figure 5.3 but with 200 total iterations now on the 𝑥 axis. 10 random sets of 12 parameters each
were generated and used as the initial circuit parameters in separate optimizations, with each set
represented by a different color on the plots.
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test the density of local minima and barren plateaus is to perform many optimization attempts at

different starting sets of parameters and see how frequently they get "stuck” at a parameter state

with zero gradient. However, this would not allow for differentiation between local minima and

barren plateaus. It is also possible to examine the behavior of the cost functions when only a

small number of parameters are allowed to vary, which may lead to insights into the optimization

landscapes.

5.4.2 Application to Interesting Problems

This chapter mainly focused on solving for eigenstates of random Hamiltonians in order to avoid

the extra complexity of identifying and justifying the use of a Hamiltonian with implications for

solving real problems of interest. However, many such problems exist that may show the practical

use cases of VRA. More research in this area may also point towards certain problems where VRA

may theoretically outperform classical methods on supercomputers. Many interesting Hamiltonians

are available for benchmarking purposes in online databases. For example, the HamLib library[101]

contains many interesting Hamiltonians in binary-variable optimization, condensed matter physics,

and quantum chemistry problems, which are already mapped into qubit representations. Some

of these problems may benefit from VRA’s enhanced fidelity in preparing eigenstates. It may be

especially interesting to apply the VRA to nuclear structure and reaction Hamiltonians, where better

solutions may lead to advances in areas such as nuclear medicine and energy. These Hamiltonians

typically have more terms than similar Hamiltonians in quantum chemistry and therefore require

larger circuit depth to replicate time evolution operations, which is why more focus is currently

placed on applying NISQ-era algorithms like QAOA to quantum chemistry applications. However,

there may be theoretically interesting small nuclear systems that are good candidates for more

accurate approximate solutions on quantum computers.

109



CHAPTER 6

SUMMARY

6.1 Adiabatic Evolution with Optimal Control

In Chapter 3, a robust method was presented to execute arbitrary sequences of unitary trans-

formations, focusing on the adiabatic evolution of a two-spin system using Near-term Intermediate

Scale Quantum (NISQ) devices. A two-qubit processor model, comprised of two capacitively

coupled superconducting transmons, was employed to emulate adiabatic evolution with custom

two-qubit gates. The output was then compared with the digital quantum simulations performed

on IBMQ systems.

High-fidelity custom gates for short-time propagators could be realized with control pulses of

varying duration, from 2500 to 120 ns. The lower limit was determined by the validity of the model

employed and the specifications of the standard waveform generators. When the implementation

time of short-time propagators was similar, the state fidelities of the emulated output and IBMQ

were comparable, suggesting that the two-qubit processor model offered a realistic representation

of quantum hardware. As the duration of control pulses and the implementation time of adiabatic

evolution decreased, the loss of coherence due to the interaction between the quantum computer

and its environment was significantly reduced. The fidelity achieved with custom gates exceeded

that obtained through elementary gates, reaching fidelity of up to 95% for control pulses with a

length of 𝜏 = 120 ns.

6.2 Rodeo Algorithm

In Chapter 4, we discussed the Rodeo Algorithm for generating quantum eigenstates and

analyzing spectral characteristics. In summary, the Rodeo Algorithm uses a tunable energy filter and

stochastic methods to prepare eigenstates of a quantum Hamiltonian or observable with exponential

efficiency and short gate depth, surpassing the speeds of phase estimation and adiabatic evolution.

The latter part of the chapter showcased the RA’s performance through a simulation of a basic

Heisenberg model and an implementation of a general one-qubit Hamiltonian on an actual device.

The findings highlighted the potential of the RA in preparing eigenstates with high accuracy, which
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subsequently inspired the creation of the Variational Rodeo Algorithm discussed in the following

chapter.

6.3 Variational Rodeo Algorithm

In Chapter 5, we introduce the Variational Rodeo Algorithm (VRA) as a variational extension of

the Rodeo Algorithm (RA) to improve eigenstate preparation by overcoming the RA’s dependency

on the overlap between the initial and target eigenstates. We evaluated VRA using classical

optimizations of emulated quantum circuits and compared its performance with the Quantum

Approximate Optimization Algorithm (QAOA) for ground-state preparation. Our findings indicate

that VRA effectively prepares high-fidelity eigenstates on quantum computers.

Unlike QAOA, which relies on energy minimization and often struggles with high-fidelity

eigenstate preparation, the VRA maximizes the success probability of the RA, offering a more

effective approach, particularly for larger systems or those with fewer optimization parameters.

Simulations demonstrated the ability of VRA to readily prepare excited states by adjusting the

RA energy parameter. Using QAOA’s output as the initial state for the RA improved ground-state

overlap, even when QAOA alone struggled with fidelity.

Overall, VRA presents a promising method for quantum eigenstate preparation, overcoming

limitations in other algorithms like QAOA. Future research will focus on refining VRA’s optimiza-

tion landscapes and applying it to quantum chemistry and nuclear physics problems to demonstrate

its potential in solving complex quantum systems.
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