
By

Kelly Anderson

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Physics—Doctor of Philosophy

2025

REGULATING NONLINEAR PHASE SPACES USING MACHINE LEARNING AND
ITERATIVE METHODS



ABSTRACT

The long-term stability of particles in accelerators is a fundamental problem in accelerator design

and operation that involves analyzing nonlinear dynamical systems by calculating the dynamic

aperture. Brute-force particle tracking is too computationally intensive for beams without strong

synchrotron radiation damping. Particles, therefore, may survive for millions or more turns before

being lost [1]. Frequency map analysis is a commonly used standard for analyzing accelerator

phase spaces, but it is still reliant on particle tracking. This dissertation evaluates two approaches

to studying nonlinear dynamics in particle accelerators.

First, an iterative method expanded from 2-D to 4-D phase spaces and used to find a diffeomor-

phism to a simplified phase space in which particle dynamics are rigid rotations [2]. The resulting

convergence maps can serve as a practical tool for identifying phase-space structures. The second

approach is a data-driven method for calculating the eigenvalues and eigenfunctions of a Koopman

operator, which correspond to approximate frequencies and invariants of the system. This approach

expanded upon previous approaches by using symplectic neural networks to find eigenfunctions

that can improve the efficiency of the models they are trained on [3], [4]. Both of these can aid in

dynamic aperture calculations.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Particle Accelerators

Particle accelerators have been an important tool for research in several areas of scientific

research such as nuclear physics, high-energy physics, biology, and chemistry. They can be used to

create high-energy particle collisions to study the properties of atoms, create focused light beams

to give insight into chemical reactions, and more. The beam in an accelerator is made up of groups

of charged particles. The specific particle can change depending on the use case, but it needs to

be charged to be steered by magnetic fields. They are grouped into bunches comprised of billions

of individual particles. The accelerator itself consists of a pipe called a beam pipe. This pipe is

kept at a vacuum, so particles in the beam do not collide with or ionize any gas particles. Along

this beamline, there are various diagnostic components and, most importantly for our purpose,

magnets that generate the magnetic fields that will steer the beam and determine the dynamics

of the particles. What components are and how they are arranged along the beamline is called a

lattice. The effects the components in the lattice have on the particle’s dynamics can be categorized

as linear and nonlinear. Linear dynamics is well understood, and there are many techniques to

approach them with. This chapter will cover the conventions used in accelerator physics for linear

dynamics. These conventions will serve as the basis for the study of nonlinear dynamics. It is

important to understand the nonlinear dynamics surrounding particle motion inside the accelerator

to optimize it for various use cases. For example, a collider for high-energy or nuclear physics

is used to study the reactions between particles colliding, so the accelerator should maximize the

number of collisions or luminosity. Synchrotron light sources, instead, need to be optimized to

increase the brightness of the beam for applications such as high-resolution x-rays.

The full description of the dynamics of a particle in an accelerator requires a six-dimensional

phase space, consisting of a position and momentum pair for each spatial dimension. For linear mo-

tion, this can often be reduced to three uncoupled two-dimensional systems. These six dimensions

are typically grouped into a four-dimensional transverse direction (perpendicular to the beamline)
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and a two-dimensional longitudinal direction.

Different types of magnet are used in the lattice to control the motion of the beam. Dipoles

are used to steer the beam along the designed trajectory. Quadrupoles provide focusing (and

defocusing) forces to confine and guide the particles transversely for transporting the beam. The

sextupoles are the first magnetic multipole that introduces nonlinear effects. They are used to

correct for chromaticity effects, which arise from a particle’s focal length changing based on beam

energy deviation. Octopoles, which introduce additional nonlinear dependence on the position of

the particles, are used to mitigate collective effects and prevent beam instabilities and emittance

growth.

One way to categorize accelerators is as linear or circular, based on the geometry of their beam

trajectories. In a linear accelerator, the beam will only pass through the lattice once. In contrast, a

circular accelerator will have the beam pass through the lattice multiple times, where they can be

repeatedly accelerated (synchrotrons) or used for scientific research (storage rings). An example

of a circular accelerator is the Large Hadron Collider (LHC) at CERN [5]. To accelerate protons

from injection energy ( 450GeV) to 7 TeV, it will repeatedly pass particles through radio frequency

cavities (RF) that accelerate particles with oscillating electric fields. It will then maintain this

energy level for hours of collisions, which can be studied for high-energy physics research.

The particles will lose energy as they pass through the ring due to synchrotron radiation.

Maxwell’s laws show that as charged particles accelerate on a curved path, they will radiate light.

So, RF cavities are introduced to compensate for this or exceed it if they need to accelerate the

particles longitudinally. This effect is mainly for electron beams, which have a very large charge-

to-mass ratio. Hadron beams, such as proton beams, do not have as strong an effect, so this

phenomenon is usually negligible [6]. Another effect of the RF cavity is that it will focus the

beam in the longitudinal plane by providing energy to particles that are below the reference energy

and dampen particles that are above the reference energy. Our studies will currently only look

at the transverse coordinates in either a 2-D or a 4-D phase space and, therefore, will ignore the

longitudinal effects for the most part; however, future studies would need to include these in a full
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6-D phase space.

As particles pass through circular accelerators, some may drift towards infinity and be lost.

The region where these particles are stable and not lost is called the dynamic aperture. For linear

motion, we expect an infinitely large aperture; however, the inclusion of components like sextupoles

means accelerators are generally very nonlinear systems. It is then important that we calculate the

dynamic aperture. The common approach to this is by brute force particle tracking. We start with

a model of particle motion through an accelerator or map 𝐹.

X𝑛+1 = 𝐹 (X𝑛) (1.1)

®𝑋𝑛 ∈ R6

𝐹 : R6 → R6

where X𝑛 is the horizontal, vertical, and longitudinal position and momenta after the 𝑛th pass

through the accelerator. As previously stated, if 𝐹 is linear, then all particles will be stable, and a

nonlinear map 𝐹 can have certain particles lost. The motion of a particle in a Hamiltonian system

will lie on a 2𝑁-D torus in phase space, where 𝑁 is the degrees of freedom [7]. For 𝑁 ≥ 2, there

will no longer be any tori that divide the phase space area [7]. This means that, given enough

time, a stable particle can eventually trail off towards infinity and be lost in a process called Arnold

Diffusion [1]. By picking samples across the transverse plane and repeatedly passing them through

𝐹, we can see where the particles are after that many turns and therefore which ones are lost

(position tends towards infinity) and which ones stay stable.

While this brute force method is the most accurate approach, it is not always practical. This

is because some accelerators will leave particles circulating for hours. Such is the case for the

Recycler Ring (RR) at the Fermi National Accelerator Laboratory (Fermilab). The RR circulates a

proton beam to accelerate the particles into the main ring at Fermilab [8]. The cost to calculate turns

for thousands of particles across millions of turns quickly becomes too computationally expensive

to be practical. Especially since the calculations would need to be redone every time the lattice
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design is changed.

If we are dealing with electron particles in a circular accelerator, then the beam will experience

a strong damping force from the synchrotron radiation. This means that a particle will enter a

stable state within a few thousand turns in most cases. So this "turn-by-turn" particle tracking is

a fine approach to take to calculate an accurate dynamic aperture. However, for a proton ring like

the LHC or the Fermilab RR, this damping force is much weaker due to the smaller charge-to-mass

ratio. So it would take much longer for particles to reach a stable state. So it becomes necessary to

develop other approaches to calculate the dynamic aperture for these systems.

Before going into nonlinear dynamics, the following section will go into some details on linear

dynamics and some established approaches to calculating the dynamic aperture. The chapters

following that will talk about two distinct approaches to these calculations that have been developed

over the last few years.

1.2 Linear Dynamics

Various mathematical methods have been developed to analyze nonlinear systems in a general

sense such as normal form, Lie operators, and perturbation theory. Before going into detail

about these methods it is important to review the mathematical formalisms surrounding particle

accelerators so we can build off of them in more complicated systems.

The motion of charged particles in an accelerator is governed by the Lorentz force.

®𝐹 = 𝑞

(
®𝐸 + ®𝑣 × ®𝐵

)
(1.2)

where E is the electric field, B is the magnetic field, v is the velocity of the particle and 𝑞 is the

charge of the particle. Much of the lattice is just for steering the beam and is designed to have no

electric field (E = 0), as electric fields are used to accelerate the particles. The simplest magnetic

component in these sections is the dipole. The dipole is a constant magnetic field (B ≡ 𝐵𝑜 𝑦̂) and

simply turns the beam so it travels in a circle. From the Lorenz equation in this type of field, we

can calculate a useful parameter called beam rigidity. This will be used to help normalize our
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calculations to be energy-independent. It also tells us how difficult it is to steer the beam. A larger

beam rigidity means we need a stronger magnetic field to keep the same path.

|P|
𝑞

= 𝐵𝑜𝜌 (1.3)

where P is the momentum, and 𝜌 is the bending radius of the beam (the radius of the circular

path that the particle travels in this field). This gives us the beam rigidity, 𝐵𝜌.

The transverse magnetic components in an accelerator are described by the multipole expansion.

The accepted convention is to combine the transverse magnetic fields into a single complex number

called the Beth representation:

𝐵𝑦 + 𝑖𝐵𝑥 = 𝐵0

∞∑︁
𝑛=0

(𝑏𝑛 + 𝑖𝑎𝑛) (𝑥 + 𝑖𝑦)𝑛 (U.S. convention) (1.4)

= 𝐵0

∞∑︁
𝑚=1

(𝑏𝑚 + 𝑖𝑎𝑚) (𝑥 + 𝑖𝑦)𝑚−1 (European convention) (1.5)

where 𝐵𝑜 is the normalization field, which is usually chosen as the main dipole field strength, and

𝑏𝑛 and 𝑎𝑛 are the 2(𝑛 + 1)th multipole coefficients. 𝑏𝑛 terms describe the normal fields and 𝑎𝑛

describe the skew fields. The skew field is the same multipole order as the normal field but offset

by an angle of 𝜋
2(𝑛+1) radians.

1.3 Hamiltonian Dynamics in Accelerators

The Lagrangian for a charged particle in an electric and magnetic field is

𝐿 = −𝑚𝑐
2

𝛾
− 𝑞𝜙 + 𝑞 ®𝐴 (1.6)

where 𝛾 is the relativistic Lorentz factor (𝛾 = 1/
√︁

1 − 𝑣2/𝑐2), ®𝐴 is the vector potential, Φ is

the scalar potential, 𝑞 is the charge of the particle, and 𝑚 is its mass. From this, we can define

the canonical momentum, which allows us to extend to Hamiltonian dynamics in a way that is

analogous to classical mechanics.
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®𝑃 =
𝜕𝐿

𝜕®𝑣 = 𝛾𝑚®𝑣 − 𝑞 ®𝐴 (1.7)

The Hamiltonian for a charged particle is

𝐻 = ®𝑣 · ®𝑃 − 𝐿 = 𝑐

√︃
𝑚2𝑐2 + ( ®𝑃 − 𝑞 ®𝐴)2 + 𝑞Φ (1.8)

This gives us our conjugate coordinate pairs of

¤𝑦 = 𝜕𝐻

𝜕𝑃𝑦
(1.9)

¤𝑃𝑦 = −𝜕𝐻
𝜕𝑦

(1.10)

where one can substitute 𝑦 for any degree of freedom (𝑥, 𝑦, 𝑧).

It is also common for accelerators to have a specific reference orbit that forms a closed loop

when passing through the lattice. We then define our coordinate system in terms of this closed orbit

being the origin.

If the reference orbit is defined by the path ®𝑟0(𝑠) where 𝑠 is our independent variable referring

to the length along the path ®𝑟𝑜 (𝑠).

𝑠(𝑡) =
∫ 𝑡

0

��®𝑟′0 (𝑡′)�� 𝑑𝑡′ (1.11)

The unit vector along the accelerator 𝑠 is then

𝑠 (𝑠) = 𝑑®𝑟0 (𝑠)
𝑑𝑠

(1.12)

Our tangent unit vector is then defined by

𝑥 (𝑠) = −𝜌 (𝑠) 𝑑𝑠 (𝑠)
𝑑𝑠

(1.13)

with 𝜌(𝑠) is the local radius which can change depending on where we are in the accelerator.

For example, circular accelerators have some radius that defines the geometry of the entire ring
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but they are not perfect circles. Rather they are straight sections of magnetic lenses (quadrupole,

sextupoles, etc) and other components with the dipoles spaced throughout the ring, bending the

beam by a radius tighter than the radius of the overall ring. Then to have a orthonormal coordinate

system we define the last transverse unit vector simply as

𝑦̂ (𝑠) = 𝑠 (𝑠) × 𝑥 (𝑠) (1.14)

If our reference orbit exists on a plane then the derivatives of the basis vectors are

𝑑𝑠 (𝑠)
𝑑𝑠

= −𝜅 (𝑠) 𝑥 (𝑠) (1.15)

𝑑𝑥 (𝑠)
𝑑𝑠

= 𝜅 (𝑠) 𝑠 (𝑠) (1.16)

𝑑𝑦̂ (𝑠)
𝑑𝑠

= 0 (1.17)

where 𝜅 is the curvature of the path. From there any single particle’s position can be written in

the form ®𝑟 (𝑠)

®𝑟 (𝑠) = ®𝑟0 (𝑠) + 𝑥𝑥 (𝑠) + 𝑦𝑦̂ (𝑠) (1.18)

It is later helpful to do another change of variables. In order to preserve the form of Hamilton’s

equations of motion we can use canonical transformations. If the old coordinates are (®𝑦, ®𝑝) and the

new coordinates are ( ®𝑌, ®𝑃) then the four types of generating functions are

𝐹1 = 𝐹1(®𝑦, ®𝑌, 𝑡) ®𝑝 =
𝜕𝐹1

𝜕®𝑦 ; ®𝑃 = −𝜕𝐹1

𝜕 ®𝑌
(1.19)

𝐹2 = 𝐹2(®𝑦, ®𝑃, 𝑡) ®𝑝 =
𝜕𝐹2

𝜕®𝑦 ; ®𝑌 =
𝜕𝐹2

𝜕 ®𝑃
𝐹3 = 𝐹3( ®𝑝, ®𝑌, 𝑡) ®𝑦 = −𝜕𝐹3

𝜕 ®𝑝 ; ®𝑃 = −𝜕𝐹3

𝜕 ®𝑌
𝐹4 = 𝐹4( ®𝑝, ®𝑃, 𝑡) ®𝑦 = −𝜕𝐹4

𝜕 ®𝑃
; ®𝑌 =

𝜕𝐹4

𝜕 ®𝑃

From Equation 1.19 a new Hamiltonian can be calculated in terms of ( ®𝑌, ®𝑃).
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𝐻̃ ( ®𝑌, ®𝑃, 𝑡) = 𝐻 (®𝑦( ®𝑌, ®𝑃), ®𝑝( ®𝑌, ®𝑃)) + 𝜕𝐹
𝜕𝑡

(1.20)

Equation 1.18 is called to at the Frenet-Serret coordinate system [6]. To get our Hamiltonian in

this coordinate system we use a generating function of type 𝐹3 from Equation 1.19.

𝐹3 = − ®𝑃 · (®𝑟0(𝑠) + 𝑥𝑥(𝑠) + 𝑦𝑦̂(𝑠)) (1.21)

where ®𝑃 is the momentum in cartesian coordinates. The canonical momentum in the Frenet-

Serret coordinate system is ®Π

Π𝑥 = −𝜕𝐹3

𝜕𝑥
= ®𝑃 · 𝑥 (1.22)

Π𝑦 = −𝜕𝐹3

𝜕𝑦
= ®𝑃 · 𝑦̂ (1.23)

Π𝑠 = −𝜕𝐹3

𝜕𝑠
= ®𝑃 · 𝑠

(
1 + 𝑥

𝜌

)
(1.24)

(1.25)

Which gives us our new Hamiltonian, 𝐻̃

𝐻 = 𝑐

√︄
(𝑚𝑐)2 + (Π𝑥 − 𝑞𝐴𝑥)2 +

(
Π𝑦 − 𝑞𝐴𝑦

)2 +
(

Π𝑠

1 + 𝑥/𝜌 − 𝑞𝐴𝑠
)2

+ 𝑞𝜙 (1.26)

Next we want the independent variable to be 𝑠, the position of the reference particle along the

beamline, instead of 𝑡 time. We start with Hamilton’s equation of motion

¤𝑥𝑖 =
𝜕𝐻

𝜕Π𝑥𝑖
(1.27)

Then to find 𝑥′ which is the derivative with respect to 𝑠 instead of 𝑡

𝑥′𝑖 =
𝑑𝑥

𝑑𝑠
=
𝑑𝑥𝑖

𝑑𝑡

𝑑𝑡

𝑑𝑠
= ¤𝑥𝑖

(
𝑑𝑠

𝑑𝑡

)−1
=
𝜕𝐻

𝜕Π𝑥𝑖

(
𝜕𝐻

𝜕Π𝑠

)−1
= − 𝜕Π𝑠

𝜕Π𝑥𝑖
(1.28)

Therefore
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𝑥′ ≡ 𝑑𝑥

𝑑𝑠
= −𝜕Π𝑠

𝜕Π𝑥
(1.29)

Π𝑥
′ ≡ 𝑑Π𝑥

𝑑𝑠
=
𝜕Π𝑠

𝜕𝑥
(1.30)

𝑦′ ≡ 𝑑𝑦

𝑑𝑠
= −𝜕Π𝑠

𝜕Π𝑦

(1.31)

Π𝑦
′ ≡

𝑑Π𝑦

𝑑𝑠
=
𝜕Π𝑠

𝜕𝑦
(1.32)

(1.33)

Which means our new Hamiltonian is Π𝑠. This also leads to (𝑡,−𝐻) being a pair of conjugate

variables. So we can adjust that new Hamiltonian to read as

𝐻̃ = −
(
1 + 𝑥

𝜌

) √︄(
𝐻 − 𝑞Φ

𝑐

)2
− (𝑚𝑐)2 − (Π𝑥 − 𝑞𝐴𝑥)2 −

(
Π𝑦 − 𝑞𝐴𝑦

)2

−𝑞𝐴𝑠
(
1 + 𝑥

𝜌

)
(1.34)

There are ways that we can simplify this Hamiltonian. For one, since the magnetic field is just

used to steer the particles it is 2-D. Meaning, we only the longitudinal component of the vector

potential 𝐴𝑠 will be non-zero. This also means that our canonical momentum in the transverse

plane, Π𝑥/𝑦, are equal to the cartesian momenta, 𝑝𝑥/𝑦.

If we do not have a time independent field then another canonical transformation can be

performed to change (𝑡,−𝐻) into (𝑡, ℎ) where ℎ = 𝐻 − 𝑒Φ. Much of the time Φ = 0 outside the RF

cavities so this is a reasonable assumption. Notice that ℎ is the total energy of the particle, and the

momentum of the particle is therefore 𝑝 =
√︁
(ℎ/𝑐)2 − (𝑚𝑐)2. If we define the momentum of the

reference particle as 𝑝0 then we can define the momentum of the particle as 𝑝 = 𝑝0(1 + 𝛿) where

𝛿 is called the fractional momentum deviation. Combining all these simplifications together and

dividing by a factor of the reference momentum 𝑝0 we obtain the new form of the Hamiltonian 𝐻̃

which we will call 𝐾 .
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𝐻̃

𝑝0
≡ 𝐾

(
𝑥, 𝑝𝑥 =

𝑝𝑥

𝑝0
, 𝑦, 𝑝𝑦 =

𝑝𝑦

𝑝0
, 𝑡,−ℎ =

−𝐻
𝑝0

)
(1.35)

= −
(
1 + 𝑥

𝜌

) √︄(
ℎ

𝑐

)2
−

(
𝑚𝑐2

𝑝0

)2
− 𝑝𝑥2 − 𝑝𝑦2 − 𝑞 𝐴𝑠

𝑝0

(
1 + 𝑥

𝜌

)
(1.36)

We still might not want (𝑡,−ℎ) to be our variables so we will do a final canonical transformation

to use the variables (𝑧, 𝛿). We use the generating function 𝐹2 = −ℎ𝑡.

𝑧 =
𝜕𝐹2

𝜕𝛿
(1.37)

=
𝜕

𝜕𝛿

(
−

√︁
𝑐2(1 + 𝛿)2 + (𝑚𝑐2)2

)
𝑡 (1.38)

=
−𝑐2(1 + 𝛿)𝑡√︁

𝑐2(1 + 𝛿)2 + (𝑚𝑐2)2
(1.39)

= −𝛽𝑐𝑡 (1.40)

Finally, the Hamiltonian is

𝐾̃
(
𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧 = −𝛽𝑐𝑡, 𝛿, 𝑠

)
= −

(
1 + 𝑥

𝜌

) √︃
(1 + 𝛿)2 − 𝑝𝑥2 − 𝑝𝑦2 − 𝑞 𝐴𝑠

𝑝0

(
1 + 𝑥

𝜌

)
(1.41)

Since the particle’s momentum is close to the reference momentum we can assume 𝛿 ≪ 1. We

can then also assume that the transverse momentum 𝑝𝑥/𝑦 ≪ 1. This allows us to approximate our

Hamiltonian further. We drop the tilde for convenience.

𝐾
(
𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑧, 𝛿, 𝑠

)
= −(1 + 𝛿)

(
1 + 𝑥

𝜌

) (
1 −

𝑝2
𝑥

2(1 + 𝛿)2 −
𝑝2
𝑦

2(1 + 𝛿)2

)
− 𝑞 𝐴𝑠

𝑝0

(
1 + 𝑥

𝜌

)
= −

(
1 + 𝑥

𝜌

) (
1 + 𝛿 −

𝑝2
𝑥

2(1 + 𝛿) −
𝑝2
𝑦

2(1 + 𝛿)

)
− 𝑞 𝐴𝑠

𝑝0

(
1 + 𝑥

𝜌

)
(1.42)

In this approximation the normalized transverse momenta
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𝑝𝑥 =
®𝑝 · 𝑥
𝑝0

(1.43)

𝑝𝑦 =
®𝑝 · 𝑦̂
𝑝0

(1.44)

and the derivatives of the position

𝑥′ =
𝑑𝑥

𝑑𝑠
=

®𝑝 · 𝑥
𝑝𝑠

(1.45)

𝑦′ =
𝑑𝑦

𝑑𝑠
=

®𝑝 · 𝑦̂
𝑝𝑠

(1.46)

are approximately equal so we can use these interchangeable from here on out.

1.4 Magnetic Components

As stated in Section 1.3 our magnetic fields can be reasonably approximated by a 2-D transverse

field due to the edge effects of the magnet dominating the dynamics. So, we can approximate our

magnetic feild with the form

®𝐵 = 𝐵𝑥 (𝑥, 𝑦)𝑥 + 𝐵𝑦 (𝑥, 𝑦) 𝑦̂ (1.47)

Which in the form of the vector potential, ®𝐵 = ∇ × ®𝐴, becomes

𝐵𝑥 = − 1
ℎ𝑠

𝜕𝐴𝑠

𝜕𝑦
(1.48)

𝐵𝑦 =
1
ℎ𝑠

𝜕𝐴𝑠

𝜕𝑥
(1.49)

Maxwell’s equation tells us that the curl of the magnetic field must be zero (∇× ®𝐵 = 0) we then

now that 𝐴𝑠 must satisfy the following:

𝜕

𝜕𝑦

1
ℎ𝑠

𝐴𝑠

𝜕𝑦
+ 𝜕

𝜕𝑥

1
ℎ𝑠

𝐴𝑠

𝜕𝑥
= 0 (1.50)

For a dipole we know that ®𝐵 = 𝐵𝑜 (𝑠) 𝑦̂. Therefore,
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𝐵0(𝑠) = − 1
1 + 𝜅𝑥

𝜕 ((1 + 𝜅𝑥)𝐴𝑠)
𝜕𝑥

(1.51)

where 𝜅 is the curvature, which for a dipole is 1/𝜌. But since the horizontal offset 𝑥 is much

less than the turning radius of the accelerator we can assume that |𝑥 |𝜅 ≪ 1. So we can approximate

the form of 𝐴𝑠 as

𝐴𝑠 = −𝐵0(𝑠) (𝑎𝑥 + 𝑏𝑥2) (1.52)

which after simplifying Equation 1.51 becomes

1 + 𝜅𝑥 =
𝜕

(
(1 + 𝜅𝑥) (𝑎𝑥 + 𝑏𝑥2)

)
𝜕𝑥

(1.53)

This gives us 𝑎 = 1 and 𝑏 = −𝜅/2. Therefore the approximate vector potential for a dipole is

𝐴𝑠 ≈ −𝐵0

(
𝑥 − 𝑥2

2𝜌

)
(1.54)

Then given the beth representation of a quadrupole, which we can gain from Equation 1.5, we

can find the vector potential for a quadrupole becomes

𝐴𝑠,𝑞 = −𝐵0𝑏1(𝑠)
(
𝑥2 − 𝑦2

)
/2 = −𝐺 (𝑠)

(
𝑥2 − 𝑦2

)
/2 (1.55)

Where 𝐺 (𝑠) is the field gradient of the magnetic field. Since all linear magnetic components

are either quadrupoles or dipoles, the Hamiltonian we calculated from Equation 1.42 becomes

𝐾
(
𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑠

)
≈ −1 +

𝑝2
𝑥

2
+
𝑝2
𝑦

2
+ 𝑥2

2𝜌2 + 𝑘 (𝑠)
(
𝑥2 − 𝑦2

)
/2 (1.56)

for linear accelerator systems. This also shows the usefulness of the magnetic rigidity we

calculated in Equation 1.3, which allows us to have the normalized quadrupole strength, 𝑘 (𝑠) =

𝐺 (𝑠)/𝐵𝜌, that gives us our energy independent Hamiltonian for linear systems.

Since Hamilton’s equations of motion are based on derivatives we can ignore the constant term.

From there we see that there is no coupling between the transverse directions. So we can write the

Hamiltonian as the sum of an 𝑥 and a 𝑦 Hamiltonian, i.e.
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𝐾
(
𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦, 𝑠

)
= 𝐾𝑥 (𝑥, 𝑝𝑥 , 𝑠) + 𝐾𝑦

(
𝑦, 𝑝𝑦, 𝑠

)
(1.57)

where

𝐾𝑥 (𝑥, 𝑝𝑥 , 𝑠) =
𝑝2
𝑥

2
+ 𝑥2

2𝜌2 + 𝑘 (𝑠)𝑥
2

2
(1.58)

𝐾𝑦
(
𝑦, 𝑝𝑦, 𝑠

)
=
𝑝2
𝑦

2
− 𝑘 (𝑠)𝑦2

2
(1.59)

Then we can calculate the 𝑥 and 𝑦 equations of motion separately. For 𝐾𝑥

𝑥′ =
𝜕𝐾𝑥

𝜕𝑝𝑥
= 𝑝𝑥 (1.60)

𝑝′𝑥 = −𝜕𝐾𝑥
𝜕𝑥

= −
(
𝑘 (𝑠) + 1

𝜌2

)
𝑥 (1.61)

Then we can combined these two equations into one by taking the derivative of the first one.

𝑥′′ +
(
𝑘 (𝑠) + 1

𝜌2

)
𝑥 = 0 (1.62)

Similarly we perform these steps for 𝐾𝑦 and get

𝑦′′ − 𝑘 (𝑠)𝑦 = 0 (1.63)

We can now see that the general equation for the linear dynamics in quadrupoles and dipoles is

in the form of Hill’s equation.

𝑑2𝑥

𝑑𝑠2 + 𝑓 (𝑠)𝑥 = 0 (1.64)

𝑓 (𝑠 + 𝐶) = 𝑓 (𝑠)

where 𝑓 (𝑠) is some periodic function with period 𝐶 (in this case, the circumference of the ring).

We can treat the magnetic fields in shorter and shorter slices until there is not much longitudinal

motion. Then we can treat the magnetic fields as piecewise constant values.
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For constant values of 𝑘 , we can look at three cases: 𝑘 > 0 is a focusing quadrupole, 𝑘 = 0

is a drift space, and 𝑘 < 0 is a defocusing quadrupole. Assuming these are not also dipoles, i.e.
1
𝜌2 → 0, then the solutions are:

𝑥 (𝑠) =



𝑎 cos
(√
𝑘𝑠

)
+ 𝑏 sin

(√
𝑘𝑠

)
𝑘 > 0

𝑎𝑠 + 𝑏 𝑘 = 0

𝑎 cosh
(√

−𝑘𝑠
)
+ 𝑏 sinh

(√
−𝑘𝑠

)
𝑘 < 0

(1.65)

In the dipole sections where 𝜌 is constant and 𝑘 = 0, we get the solution:

𝑥(𝑠) = 𝑎 cos
(
𝑠

𝜌

)
+ 𝑏 sin

(
𝑠

𝜌

)
(1.66)

𝑦(𝑠) = 𝑎𝑠 + 𝑏 (1.67)

1.5 Matrix Approach

These continuous equations are accurate but it can be more useful to describe the positions

and momenta at discrete points before and after each magnetic component in the lattice since the

exact motion inside each component is not important. For linear motion this means for a particle

described by the state X where

X =
©­­«
𝑥

𝑝

ª®®¬ (1.68)

one can find a matrix 𝑀 for each component that describes the state of the particle leaving the

component in terms of the state of the particle entering, i.e.

Xexit = 𝑀 Xentrance (1.69)

𝑀 =
©­­«
𝑚11 𝑚12

𝑚21 𝑚22

ª®®¬ (1.70)
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Note that while these descriptions are for 2-D motion, motion in the transverse directions 𝑥

and 𝑦 are uncouple in the linear case and behave similarly. So we can look at one direction for

simplicity. We will discuss the longitudinal motion later as it requires special treatment and often

not dependent on the transverse position.

Assuming a component length 𝑙, Equation 1.65 becomes

𝑀quad =



©­­­«
cos

(√
𝑘𝑙

)
sin

(√
𝑘𝑙

)
/
√
𝑘

−
√
𝑘 sin

(√
𝑘𝑙

)
cos

(√
𝑘𝑙

) ª®®®¬ 𝑘 > 0, Focusing Quad

©­­­«
cosh

(√
−𝑘𝑙

)
sinh

(√
−𝑘𝑙

)
/
√
−𝑘

√
−𝑘 sinh

(√
−𝑘𝑙

)
cosh

(√
−𝑘𝑙

) ª®®®¬ 𝑘 < 0,Defocusing Quad

(1.71)

And since the length of a quadrupole is relatively short we can define a focal length 𝑓 as

𝑓 = lim
𝑙→0

1
|𝑘 |𝑙 (1.72)

and simplify Equation 1.71 to

𝑀quad =



©­­­«
1 0

−1/ 𝑓 1

ª®®®¬ Focusing Quad

©­­­«
1 0

1/ 𝑓 1

ª®®®¬ Defocusing Quad

(1.73)

Similarly for a dipole Equation 1.66 shows
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𝑀 =
©­­«

cos
(
𝑙
𝜌

)
𝜌 sin

(
𝑙
𝜌

)
− 1
𝜌

sin
(
𝑙
𝜌

)
cos

(
𝑙
𝜌

) ª®®¬ (1.74)

which in the 𝑙
𝜌
≪ 1 limit becomes a drift space

𝑀drift =
©­­«

1 𝑙

0 1

ª®®¬ (1.75)

These matrices can be multiplied together to get a matrix to describe the full ring:

𝑀 (𝑠𝑛, 𝑠0) = 𝑀 (𝑠𝑛, 𝑠𝑛−1) · · ·𝑀 (𝑠2, 𝑠1) 𝑀 (𝑠1, 𝑠0) (1.76)

where 𝑀
(
𝑠𝑖, 𝑠 𝑗

)
is the matrix describing the motion of the particle from 𝑠 𝑗 to 𝑠𝑖 along the ring.

The linear dynamics of the ring can then be analyzed using just this matrix. It is common to

now perform a change of variables to the Courant-Snyder parameters. From the stable solution in

Equation 1.65, we can rework 𝑥(𝑠) into the form

𝑥(𝑠) =
√︁

2𝐽𝛽(𝑠) cos (𝜓 (𝑠) + 𝜓0) (1.77)

where 𝐽 is the action, 𝛽(𝑠) is the betatron function (a Courant-Snyder Parameter), 𝜓(𝑠) is the phase,

and 𝜓𝑜 is the initial phase. The other two CS parameters are

𝛼(𝑠) = − 𝛽
′(𝑠)
2

(1.78)

𝛾(𝑠) = 1 + 𝛼(𝑠)2

𝛽(𝑠) (1.79)

One can then make a general transfer matrix in the form
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𝑀 (𝑠1 | 𝑠0) =
©­­«

√︃
𝛽1
𝛽0

(cos𝜓 + 𝛼0 sin𝜓)
√
𝛽0𝛽1 sin𝜓

−1+𝛼0𝛼1√
𝛽0𝛽1

sin𝜓 + 𝛼0−𝛼1√
𝛽0𝛽1

cos𝜓
√︃
𝛽0
𝛽1

(cos𝜓 − 𝛼1 sin𝜓)

ª®®¬ (1.80)

=
©­­«

1√
𝛽1

0
𝛼1√
𝛽1

√
𝛽1

ª®®¬
−1 ©­­«

cos𝜓 sin𝜓

− sin𝜓 cos𝜓

ª®®¬
©­­«

1√
𝛽0

0
𝛼0√
𝛽0

√
𝛽0

ª®®¬ (1.81)

which simplifies to

𝑀 =
©­­«

cos𝜓 + 𝛼 sinΦ 𝛽 sinΦ

−1+𝛼2

𝛽
sinΦ cos𝜓 − 𝛼 sinΦ

ª®®¬ (1.82)

for a periodic ring where Φ is the phase advance across the entire ring. Let X𝑘 be the position of a

particle after 𝑘 turns. Looking at the first and last matrix in Equation 1.81 one can notice that we

can define a new coordinates with

©­­«
X

P

ª®®¬ =
©­­«

1√
𝛽0

0
𝛼0√
𝛽0

√
𝛽0

ª®®¬
©­­«
𝑥

𝑝

ª®®¬ (1.83)

which defines out normalized coordinates. Then

X𝑘 = 𝑀
𝑘X0 (1.84)

Since X0 can be expressed as

X0 = 𝑎v1 + 𝑏v2 (1.85)

where 𝑎 and 𝑏 are constants and v𝑖 is the 𝑖th eigenvector of 𝑀 corresponding to the 𝑖th eigenvalue,

𝜆𝑖. Then by combining Equations 1.84 and 1.85 we see that

X𝑘 = 𝑀
𝑘 (𝑎v1 + 𝑏v2) = 𝑎𝜆𝑘1v+ + 𝑏𝜆𝑘2v2 (1.86)
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Then is it obvious from Equation 1.86 that |𝜆𝑖 | ≤ 1 must hold true in order to avoid the particle’s

amplitude growing turn after turn. So from the characteristic equation det(𝑀 − 𝜆𝐼) = 0

𝜆2 − Trace(𝑀)𝜆 + 1 = 0 (1.87)

Therefore, we need |Trace(𝑀) | ≤ 2 or | cosΦ| ≤ 1.

The transverse motion with these variables is referred to as betatron motion. It is also important

to note the number of oscillations of the betatron function or tune 𝑄. This is defined by

𝑄 =
Φ

2𝜋
=

1
2𝜋

∫ 𝑠0+𝐶

𝑠0

𝑑𝑠

𝛽(𝑠) (1.88)

where 𝐶 is the circumference of the ring.

1.6 Courant-Snyder Parameters

The dynamics of linear motion in particle accelerators generally uses the Courant-Sndyer (C-S)

parameters [9]. Beginning from the general form of Hill’s equation (Equation 1.64) we can solve

it with the Floquet transformation 1.18

𝑥(𝑠) = 𝑎𝑤(𝑠)𝑒𝑖𝜓(𝑠) (1.89)

𝑥∗(𝑠) = 𝑎𝑤(𝑠)𝑒−𝑖𝜓(𝑠)

where 𝑎 is just a constant and 𝑤(𝑠) is the amplitude function and 𝜓(𝑠) is the phase function. We

take the derivatives of Equation 1.89

𝑥′ (𝑠) = 𝑎𝑤′𝑒𝑖𝜓 + 𝑖𝑎𝑤𝑒𝑖𝜓𝜓′ (1.90)

𝑥′′ (𝑠) = 𝑎𝑤′′𝑒𝑖𝜓 + 2𝑖𝑎𝑤′𝑒𝑖𝜓𝜓′ − 𝑎𝑤𝑒𝑖𝜓𝜓′2 + 𝑖𝑎𝑤𝑒𝑖𝜓𝜓′′ (1.91)

If we plug these into the general Hill’s equation (Equation 1.64) we get

𝑎𝑒𝑖𝜓(𝑠){[ 𝑓 (𝑠)𝑤(𝑠) − 𝑤(𝑠)𝜓′2(𝑠) + 𝑤′′(𝑠)] + 𝑖[𝑤(𝑠)𝜓′′(𝑠) + 2𝑤′(𝑠)𝜓′(𝑠)]} = 0 (1.92)
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Since the real and imaginary parts must individually equal zero we get two equations that must

be satisfied:

𝑤(𝑠)𝜓′′(𝑠) + 2𝑤′(𝑠)𝜓′(𝑠) = (𝑤2(𝑠)𝜓′(𝑠))′
𝑤(𝑠) = 0 (1.93)

𝑤′′(𝑠) + 𝑓 (𝑠)𝑤(𝑠) − 𝑤(𝑠)𝜓′2(𝑠) = 0 (1.94)

Equation 1.93 tells us that 𝑤2(𝑠)𝜓′(𝑠) = 1. If we rewrite this relation and plug that back into

Equation 1.94 we get two new equations:

𝑤′′(𝑠) + 𝑓 (𝑠)𝑤(𝑠) − 1
𝑤3(𝑠)

= 0 (1.95)

𝜓′(𝑠) − 1
𝑤2(𝑠)

= 0 (1.96)

From here we will introduce the Courant-Snyder parameters. Starting with the beta and alpha

functions defined as:

𝛽(𝑠) = 𝑤2(𝑠) (1.97)

𝛼(𝑠) = −1
2
𝛽′(𝑠) = −𝑤(𝑠)𝑤′(𝑠) (1.98)

Then the 𝜓 function is going to define the phase advance, which can be calculated using

Equation 1.96:

𝜓(𝑠, 𝑠0) =
∫ 𝑠

𝑠0

1
𝛽(𝑠′) 𝑑𝑠

′ (1.99)

Note that the phase advance calculated over the entire ring (from 𝑠0 to 𝑠0 +𝐶) gives the betatron

tune 𝑄.

𝜓(𝑠0 + 𝐶, 𝑠0) =
∫ 𝑠0+𝐶

𝑠0

1
𝛽(𝑠′) 𝑑𝑠

′ = 2𝜋𝑄 (1.100)
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Plugging our beta function into Equation 1.95 we get

1
2
𝛽′′(𝑠) + 𝑓 (𝑠)𝛽(𝑠) − 1

𝛽(𝑠)

[
1 + 𝛽

′2(𝑠)
4

]
= 0 (1.101)

Our new transverse equations of motion then become:

𝑥(𝑠) = 𝑎
√︁
𝛽(𝑠) cos (𝜓 (𝑠)) (1.102)

𝑥′(𝑠) = − 𝑥(𝑠)
𝛽(𝑠) (tan𝜓(𝑠) + 𝛼(𝑠)) (1.103)

1.7 Action-Angle Variables

The transverse Hamiltonian from Equation 1.57 is not a constant of motion, i.e.

𝑑𝐻

𝑑𝑠
=
𝜕𝐻

𝜕𝑥

𝜕𝑥

𝜕𝑠
+ 𝜕𝐻

𝜕𝑝𝑥

𝜕𝑝𝑥

𝜕𝑠
+ 𝜕𝐻
𝜕𝑠

(1.104)

=
𝜕𝐻

𝜕𝑠
≠ 0 (1.105)

There is no coupling between the transverse directions in this Hamiltonian so we can work

towards a constant of motion in each direction independently by looking at a Hamiltonian of the

form

𝐻 =
1
2
(𝑥′)2 + 1

2
𝑓 𝑥2 (1.106)

Note we will no longer explicitly show the functions as dependent on 𝑠 for convenience, though

they still are. We aim to do a canonical transformation from the current conjugate phase space

coordinates (𝑥, 𝑥′) to the new pair (𝐽, 𝜓). Where 𝐽 is a constant of motion called the action. We

will do this with a generating function of the form

𝐹1(𝑥, 𝜓) =
∫ 𝑥

0
𝑥′(𝑥, 𝜓)𝑑𝑥 (1.107)

= − 𝑥
2

2𝛽

(
tan𝜓 − 𝛽′

2

)
(1.108)
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Our action, 𝐽, is then

𝐽 = −𝜕𝐹1

𝜕𝜓
=
𝑥2

2𝛽
sec2 𝜓 (1.109)

=
𝑥2

2𝛽

(
1 +

(
𝛽𝑥′

𝑥
+ 𝛼

)2
)

(1.110)

=
1

2𝛽

(
𝑥2 + (𝛽𝑥′ + 𝛼𝑥)2

)
(1.111)

The new Hamiltonian 𝐻̃ is then

𝐻̃ = 𝐻 + 𝜕𝐹1

𝜕𝑠
(1.112)

=
1
2
𝑥2

𝛽2 (tan𝜓 + 𝛼)2 + 1
2
𝐾𝑥2+ (1.113)

𝑥2

2𝛽2 𝛽
′
(
tan𝜓 − 𝛽′

2

)
− 𝑥2

2𝛽

(
𝜓′ sec2 𝜓 − 𝛽′′

2

)
=
𝐽

𝛽
(1.114)

We can use Equation 1.102 to get 𝜓 explicitly

𝑥′ = − 𝑥
𝛽
(tan𝜓 + 𝛼) (1.115)

−𝛽𝑥′
𝑥

= tan𝜓 + 𝛼 (1.116)

tan𝜓 = − 𝛽𝑥
′ + 𝛼𝑥
𝑥

= −
√
𝛽𝑥′ + 𝛼𝑥/

√
𝛽

𝑥/
√
𝛽

(1.117)

𝜓 = arctan
(
−
√
𝛽𝑥′ + 𝛼𝑥/

√
𝛽

𝑥/
√
𝛽

)
(1.118)

And 𝐽 is explicitly

𝐽 =
1
2

((
𝑥
√
𝛽

)2
+

(√︁
𝛽𝑥′ + 𝛼

√
𝛽
𝑥

)2
)

(1.119)

Our new Hamilton equations of motion are then
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𝑑𝐽

𝑑𝑠
= −𝜕𝐻̃

𝜕𝜓
= − 𝜕

𝜕𝜓

𝐽

𝛽
= 0 (1.120)

𝑑𝜓

𝑑𝑠
=
𝜕𝐻̃

𝜕𝐽
=

1
𝛽

(1.121)

Which shows us that 𝐽 is a constant of motion. The beta function prevents the Hamiltonian

itself from being a constant of motion, so we define another generating function to go from (𝐽, 𝜓)

to (𝐽, 𝜓̄).

𝐹2(𝜓, 𝐽, 𝑠) =
(
𝜓 −

∫ 𝑠

0

1
𝛽(𝑠′) 𝑑𝑠

′ + 2𝜋𝑄
𝑠

𝐶

)
𝐽 (1.122)

Our new action angle variables are then

𝜓̄ = 𝜓 −
∫ 𝑠

0

1
𝛽(𝑠′) 𝑑𝑠

′ + 2𝜋𝑄
𝑠

𝐶
(1.123)

𝐽 = 𝐽 (1.124)

This gives us the Hamiltonian 𝐻̄

𝐻̄ = 𝐻̃ + 𝜕𝐹2(𝜓, 𝐽)
𝜕𝑠

=
2𝜋
𝐶
𝑄𝐽 (1.125)

By scaling the Hamiltonian by a factor of 𝐶/2𝜋 we get the final form of our Hamiltonian

𝐻 (𝜓̄, 𝐽) = 𝑄𝐽 (1.126)

With our equation of motion being

𝑥 =

√︃
2𝛽𝐽 cos

(
𝜓̄ +

∫ 𝑠

0

1
𝛽(𝑠′) 𝑑𝑠

′ −𝑄𝜃
)

(1.127)

𝛼𝑥 + 𝛽𝑥′ = −
√︃

2𝛽𝐽 sin
(
𝜓̄ +

∫ 𝑠

0

1
𝛽(𝑠′) 𝑑𝑠

′ −𝑄𝜃
)

(1.128)
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As a result of the new Hamiltonian 𝐻 being independent of the angle 𝜓̄ Hamilton’s equations

of motion become

𝑑𝐽

𝑑𝑠
= −𝜕𝐻

𝜕𝜓̄
= 0 (1.129)

𝑑𝜓̄

𝑑𝑠
=
𝜕𝐻

𝜕𝐽
= 𝑄(𝐽) (1.130)

where 𝑄(𝐽) is the frequency of oscillation, which in the general case can be dependent on the

action, and as Equation 1.129 shows, the action is a constant of motion. If we are able to find an

action such that the Hamiltonian only depends on that action as shown in Equation 1.126 then we

call the system integrable [7].

1.8 Linear Coupling

So far the transverse motion has been independent from one another. That is because we

have only used ideal quadrupoles and dipoles. There are other linear elements that can introduce

coupling between the transverse motion. This can be intentionally like is the case with solenoids,

which are often used in low energy sections of the beam as they are not effective at high energies,

and skew quadrupoles. Skew quadrupoles can be implemented intentionally but more frequently

they are a results of the magnets being placed with some small error in the angle of the magnet.

Higher order magnetic components like sextupoles, octupole, etc. can also create linear coupling

as there is a cascading effect onto the lower order fields when there is an error in the position of

these magnets. The matrix of a skew quadrupole magnet is

𝑀𝑠𝑞 =

©­­­­­­­­«

1 0 0 0

0 1 1/𝑘𝑙 0

0 0 1 0

1/𝑘𝑙 0 0 1

ª®®®®®®®®¬
. (1.131)

A solenoid has the transfer matrix
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𝑀sol =

©­­­­­­­­«

cos2 (𝜃𝑠) sin (2𝜃𝑠)
2𝑔𝑠 − sin (2𝜃𝑠)

2
cos (2𝜃𝑠)−1

2𝑔𝑠

−𝑔𝑠 sin (2𝜃𝑠)
2 cos2 (𝜃𝑠) 𝑔𝑠 (1−cos (2𝜃𝑠))

2 − sin (2𝜃𝑠)
2

sin (2𝜃𝑠)
2

1−cos (2𝜃𝑠)
2𝑔𝑠 cos2 (𝜃𝑠) sin (2𝜃𝑠)

2𝑔𝑠
𝑔𝑠 (cos (2𝜃𝑠)−1)

2
sin (2𝜃𝑠)

2 −𝑔𝑠 sin (2𝜃𝑠)
2 cos2 (𝜃𝑠)

ª®®®®®®®®¬
(1.132)

where 𝜃𝑠 is

𝜃𝑠 =
𝑒𝐵0𝑙

2𝑝0
. (1.133)

One method to address these linear couplings is Edward-Teng parameterization [10]. The idea

is that we can find a symplectic rotation that decouples the transverse coordinates, allowing them

to be treated with the C-S formalism. Using block matrices, this is depicted as

𝑇 =
©­­«
𝑀 𝑛

𝑚 𝑁

ª®®¬ (1.134)

𝑃 = 𝑅−1𝑀𝑅 =
©­­«
𝐸 0

0 𝐹

ª®®¬ (1.135)

where 𝑇 is our rotation matrix 𝐸 and 𝐹 have the form of Equation 1.82. The matrix 𝑅 will have

the form

𝑅 =
©­­«
𝐼 cos 𝜙 𝐷−1 sin 𝜙

−𝐷 sin 𝜙 𝐼 cos 𝜙

ª®®¬ (1.136)

and 𝐷 is a 2-by-2 matrix with determinant 1. As done in his original paper, the solutions then

become
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cos 𝜇1 − cos 𝜇2 =
1
2

Tr(𝑀 − 𝑁)
(
1 + 2 det(𝑚) + Tr(𝑛𝑚)

( 1
2Tr(𝑀 − 𝑁))2

)1/2

(1.137)

cos 2𝜙 =

1
2Tr(𝑀 − 𝑁)

cos 𝜇1 − cos 𝜇2
(1.138)

𝐷 = − 𝑚 +Ω𝑛𝑇Ω𝑇

(cos 𝜇1 − cos 𝜇2) sin 2𝜙
(1.139)

where the assumptions made are that − 𝜋
4 ≤ 𝜙 ≤ 𝜋

4 and the sign of sin 2𝜙 is determined by

making Tr𝐷 > 0. Ω and the derivation of this solution comes form the symplectic condition,

which will be discussed in Section 1.9. This parameterization means that for 4-D linear transverse

dynamics we can find coordinates where the motion is uncoupled and therefore analogous to two

independent 2-D linear systems.

1.9 Symplectic Condition

Since we are looking at Hamiltonian systems we can expect our lattice to follow the symplectic

condition:

Ω = 𝑀Ω𝑀𝑇 (1.140)

where Ω is the non-singular skew-symmetric matrix

Ω =

©­­­­­­­­«

Ω2 0 . . . 0

0 Ω2 . . . 0
...

...
. . . 0

0 0 . . . Ω2

ª®®®®®®®®¬
(1.141)

and Ω2 is

Ω2 =
©­­«

0 1

−1 0

ª®®¬ (1.142)

The properties of the Ω matrix are as follows:
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det(Ω) = 1 (1.143)

Ω−1 = −Ω ⇒ Ω2 = −𝐼 (1.144)

Ω𝑇 = −Ω (1.145)

We can show that Hamiltonian systems follow this by starting with the equations of motion.

𝑑𝑥𝑖

𝑑𝑠
=
𝜕𝐻

𝜕𝑝𝑖

𝑑𝑝𝑖

𝑑𝑠
= −𝜕𝐻

𝜕𝑥𝑖
(1.146)

Now if we define 𝑀 to be our transfer matrix from 𝑠1 to 𝑠2:

®𝑋 (𝑠2) = 𝑀 ®𝑋 (𝑠1) (1.147)

where ®𝑋 (𝑠𝑖) are the phase space coordinates at 𝑠𝑖. Since this matrix form is for a linear system

the elements of 𝑀 are defined by

𝑀𝑖 𝑗 =
𝜕𝑋𝑖 (𝑠2)
𝜕𝑋 𝑗 (𝑠1)

(1.148)

so

𝑑𝑋𝑖 (𝑠2)
𝑑𝑠

=
𝜕𝑋𝑖 (𝑠2)
𝜕𝑋 𝑗 (𝑠1)

𝑑𝑋 𝑗 (𝑠1)
𝑑𝑠

= 𝑀𝑖 𝑗Ω 𝑗 𝑘

𝜕𝐻

𝜕𝑋𝑘 (𝑠1)

= 𝑀𝑖 𝑗Ω 𝑗 𝑘

𝜕𝐻

𝜕𝑋𝑙 (𝑠2)
𝜕𝑋𝑙 (𝑠2)
𝜕𝑋𝑘 (𝑠1)

= 𝑀𝑖 𝑗Ω 𝑗 𝑘𝑀
𝑇
𝑘𝑙

𝜕𝐻

𝜕𝑋𝑙 (𝑠2)
(1.149)

We can rewrite Equation 1.146 in matrix form with the phase space vector ®𝑋 as
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𝑑

𝑑𝑠
®𝑋 ≡ Ω

𝜕𝐻

𝜕 ®𝑋
=

©­­­­­­­­«

Ω2 0 · · · 0

0 Ω2 · · · 0
...

...
. . . 0

0 0 0 Ω2

ª®®®®®®®®¬
𝜕𝐻

𝜕 ®𝑋
(1.150)

Combining Equations 1.149 and 1.150 we get our original symplectic condition of Equation

1.140. From the symplectic condition we will know the following properties of the symplectic

transfer matrix 𝑀 .

If 𝑀 is symplectic then so is 𝑀𝑇 and 𝑀−1.

If 𝑀 and 𝑁 are symplectic then so is 𝑀𝑁

det(𝑀) = 1

We can then look at the general form for a "one turn map" shown in Equation 1.82, this is

because the data and models we will be covering in this thesis involving analyzing some one turn

map for the lattice or beam position monitoring data which follows some unknown one turn map.

This is only for a 2-D phase space but if we look at a general 4-D transfer matrix in block matrix

form:

𝑀 =
©­­«
𝐴 𝐵

𝐶 𝐷

ª®®¬ (1.151)

Since M will be a symplectic we know several constraints. These are:

det 𝐴 = det𝐷 ≡ 𝑎 (1.152)

det 𝐵 = det𝐶 ≡ 𝑏 (1.153)

𝑎 + 𝑏 = 1 (1.154)

This means that each individual matrix elements are not independent of one another which

reduces the number of free parameters in our system. Now that we have covered the mathematical

properties of a symplectic matrix we can show what these properties mean for our physical system.

27



One physical property is Liouville’s theorem. This theorem states that if we have a collection

of particles in phase space bounded by some volume 𝑉 in phase space, then that volume will be

preserved as the system advances in time. We can prove this by assuming a collection of particles

that follow some Hamiltonian 𝐻 ( ®𝑋, 𝑡). The volume, 𝑉0, bounding the particles in the region 𝑅0 is

𝑉0 =

∫
𝑅0

𝑑 ®𝑋0 (1.155)

After some time 𝑡, the new region is 𝑅1 and the new volume is defined by

𝑉1 =

∫
𝑅1

𝑑 ®𝑋1 (1.156)

𝑑 ®𝑋1 and 𝑑 ®𝑋0 are related by a symplectic transformation.

𝑉1 =

∫
𝑅1

𝑑 ®𝑋1 (1.157)

=

∫
𝑅0

����𝜕 ®𝑋1

𝜕 ®𝑋0

����𝑑 ®𝑋0 (1.158)

=

∫
𝑅0

���� det
(
𝜕 ®𝑋1

𝜕 ®𝑋0

)����𝑑 ®𝑋0 (1.159)

=

∫
𝑅0

𝑑 ®𝑋0 = 𝑉0 (1.160)

Where 𝜕 ®𝑋1
𝜕 ®𝑋0

is the Jacobian of the Hamiltonian, which is symplectic and therefore has a deter-

minant of 1. From this, we know that the density of particles in the phase space does not change as

they pass through the accelerator. This idea is known as Liouville’s theorem, and it directly follows

from the symplectic condition.
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CHAPTER 2

SINGLE PARTICLE NONLINEAR DYNAMICS

2.1 Intro

Our Hamiltonian will not generally lead to linear equations of motion. An important approach

to problems like these is perturbation theory [11]. With this idea, we begin by representing our

Hamiltonian 𝐻 as a linear Hamiltonian 𝐻0 plus some small perturbative nonlinear term 𝐻1.

𝐻 (𝑝, 𝑞, 𝑠) = 𝐻0(𝑞, 𝑝, 𝑠) + 𝜖𝐻1(𝑞, 𝑝, 𝑠) (2.1)

where 𝜖 ≪ 1. We then use a generating function 𝑆(𝑞, 𝐽, 𝑡) that is a canonical transformation

for (q,p) to our action-angle (𝐽, 𝜈) which are constant in the linear Hamiltonian and 𝑆 satisfies

𝐻0(𝑞,
𝜕𝑆

𝜕𝑞
, 𝑠) + 𝜕𝑆

𝜕𝑠
= 0. (2.2)

The new Hamiltonian is then

𝐻̃ = 𝐻0 + 𝜖𝐻1 +
𝜕𝑆

𝜕𝑠
= 𝜖𝐻1(𝐽, 𝜈, 𝑠). (2.3)

now the equations of motion are

¤𝐽𝑖 = −𝜕 (𝜖𝐻1)
𝜕𝜈𝑖

(2.4)

¤𝜈𝑖 =
𝜕 (𝜖𝐻1)
𝜕𝐽𝑖

(2.5)

then we perform a Taylor series on the new variables around 𝜖 of the form

𝐽𝑖 (𝐽, 𝜈) = 𝐽 (0)𝑖
+ 𝜖𝐽 (1)

𝑖
+ 𝜖2𝐽

(2)
𝑖

+ O(𝜖3) (2.6)

𝜈𝑖 (𝐽, 𝜈) = 𝜈(0)𝑖
+ 𝜖𝜈(1)

𝑖
+ 𝜖2𝜈

(2)
𝑖

+ O(𝜖3). (2.7)

We can then solve the higher order LHS with the lower order solution on the RHS i.e.

29



¤𝐽 (𝑛)
𝑖

= −𝜕 (𝜖𝐻1)
𝜕𝜈𝑖

�����
(𝑛−1)

(2.8)

¤𝜈(𝑛)
𝑖

=
𝜕 (𝜖𝐻1)
𝜕𝐽𝑖

�����
(𝑛−1)

(2.9)

where evaluated at 𝑛 means evaluating the term with the 𝐽 (𝑛)
𝑖

and 𝜈(𝑛)
𝑖

terms. The higher-order

corrections of 𝜈 will give us our new frequencies.

This can be a slow way to calculate these properties, and we will frequently encounter small

denominators during the order-by-order calculations due to resonance frequency terms. It is

therefore helpful to consider other approaches to finding properties in dynamical systems, such as

frequency.

2.2 Poincare Section

Particle beams are made up of many particles and pass through circular machines millions of

times. In order to understand their motion, it can be useful to simplify the problem and only look

at single particles as they move through the machine, ignoring intra-beam effects like space charge.

At a specific point in the machine, a particle in one position ®𝑋𝑖 will be in another position ®𝑋𝑖+1

after one pass or "turn" through the machine. Rather than describing and analyzing the motion of

the particle at every point, we can gain sufficient information about the system by using a Poincaré

section [12]. These can be thought of as placing a sheet perpendicular to the motion of the particles

at a location in the accelerator. Every time the particle passes through this sheet, we mark where

it intersects. By plotting these intersections over many turns, we can extract a lot of information

about the dynamical system. Figure 2.1 shows an illustration of this idea from [13]. Doing this

for a linear accelerator lattice with a single sextupole kick results in Figure 2.2, which is called the

Hénon Map [14].

By using this system we can visually see structures in the phase space that come from the

nonlinearities of the system. For example, the five islands are from a resonance of the tune being

close to 0.2. They are formed by stable fixed points in the middle of the islands and unstable fixed

points between them.
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Figure 2.1 A visualization of a particle at 𝑥 passing through a map and returning to the Poincare
surface 𝑆 where its new location is 𝑃(𝑥) [13].

Figure 2.2 A Poincare map of a linear lattice with a single sextupole kick (Henon Map). Insert
parameters

31



Our aim is to gain long-term stability of the particles in the system from these maps,i.e. the

dynamic aperture. As stated in the introduction, the most accurate way to gain this long-term

information is from tracking. In the context of Poincaré maps, this means finding an equation

that relates one point to the next. But as we also discussed, this tracking can be impractical,

so we must use other tactics to garner this information. One widely used method is frequency

map analysis (FMA) [15]–[18]. To discuss how this method works it is useful to introduce the

Kolmogorov–Arnold–Moser (KAM) Theorem [7] which we will discuss in section 2.5.

2.3 Lie Operators

In Chapter 1.1, we introduced our normalized coordinates to describe the position of a singular

particle in phase space. We also introduced the matrix notation for describing the different elements

of an accelerator, 𝑀𝑖, (𝑖 = [1, 𝑛]), and combining them into a one-turn map 𝑀 by

𝑀 = 𝑀𝑚𝑀𝑚−1 . . . 𝑀2𝑀1 (2.10)

where 𝑚 is the number of elements included in the map. If ®𝑋 = (𝑞1, 𝑝1, . . . , 𝑞𝑛, 𝑝𝑛) is a 2𝑛-D

vector where 𝑛 is the number of spatial dimensions in our system and (𝑞𝑖, 𝑝𝑖) are conjugate position

and momentum pairs, then 𝑀 describes how these coordinates change after one pass through the

accelerator map.

®𝑋 𝑗+1 = 𝑀 ®𝑋 𝑗 (2.11)

where 𝑗 is the turn number. However, this matrix notation can only describe a linear transformation.

In general, particle accelerators are very nonlinear systems and we therefore need a more general

nonlinear form for 𝑀 . Lie Operators are one way we can describe these maps [19].

If we have two arbitrary functions 𝑓 and 𝑔 based on our canonical coordinates and independent

variable 𝑠 i.e. 𝑓 ( ®𝑋, 𝑠) and 𝑓 ( ®𝑋, 𝑠), then the Poisson brackets are defined as

[ 𝑓 , 𝑔] =
𝑛∑︁
𝑖=1

(
𝜕 𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
− 𝜕 𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖

)
(2.12)

The Lie operator is a compact notation for Poisson brackets defined as

: 𝑓 : 𝑔 = [ 𝑓 , 𝑔] (2.13)
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Using our Lie notation we can show several properties of the Poisson bracket. ℎ is also a

function of our canonical coordinates and 𝑠 and 𝑎 and 𝑏 are scalars and constant.

: 𝑓 :𝑔 = −:𝑔: 𝑓 (2.14)

:𝑎 𝑓 + 𝑏𝑔:ℎ = 𝑎: 𝑓 :ℎ + 𝑏:𝑔:ℎ (2.15)

: 𝑓 :(𝑔ℎ) = (: 𝑓 :𝑔)ℎ + 𝑔(: 𝑓 :ℎ) (2.16)

: 𝑓 :(:𝑔:ℎ) + :𝑔:(:ℎ: 𝑓 ) + :ℎ:(: 𝑓 :𝑔) = 0 (2.17)

where equation 2.17 is called the Jacobian identity. We can define the effect an exponential effects

on the operator as

(: 𝑓 :)𝑘 (𝑔ℎ) =
𝑘∑︁

𝑚=0

𝑘!
𝑚!(𝑘 − 𝑚)! [(: 𝑓 :)

𝑚𝑔] [(: 𝑓 :)𝑘−𝑚ℎ] (2.18)

where (: 𝑓 :)2𝑔 = [ 𝑓 , [ 𝑓 [, 𝑔]] for example. We can also define the commutator of two operators as

{: 𝑓 :, :𝑔:} = : 𝑓 ::𝑔: − :𝑔:: 𝑓 : (2.19)

which using Equation 2.17 we can show:

{: 𝑓 :, :𝑔:} = :[ 𝑓 , 𝑔]: (2.20)

What will be shown to be a particularly useful case of the Lie operator is it’s use in an exponential

function. We extend a Taylor series expansion of 𝑒𝑥 to obtain

𝑒: 𝑓 : =

∞∑︁
𝑘=0

1
𝑘!

(: 𝑓 :)𝑘 (2.21)

One useful property of the Lie operator is our ability to take derivatives in Hamiltonian systems.

Again we have a function 𝑓 ( ®𝑋, 𝑠)

𝑑𝑓

𝑑𝑠
=
𝜕 𝑓

𝜕𝑠
+ 𝜕 𝑓

𝜕 ®𝑋
𝑑

𝑑𝑠
®𝑋 (2.22)
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Using Equation 1.150, Equation 2.22 becomes

𝑑𝑓

𝑑𝑠
=
𝜕 𝑓

𝜕𝑠
+ 𝜕 𝑓

𝜕 ®𝑋
Ω
𝜕𝐻

𝜕 ®𝑋
=
𝜕 𝑓

𝜕𝑠
+ : 𝑓 :𝐻 (2.23)

where Ω is the same matrix we introduced in the symplectic section of chapter 1. So we can know

if a function 𝑓 ( ®𝑋, 𝑠) is constant if it is not explicitly dependent on 𝑠 and it communes with the

Hamiltonian, i.e., : 𝑓 :𝐻 = 0 and 𝜕 𝑓

𝜕𝑠
= 0.

There is also a general formula that we can use for the dynamics in the accelerator with the Lie

operator. Starting with the derivative of our canonical coordinates, ®𝑋 , with respect to 𝑠 in an 𝑛-D

Hamiltonian system

𝑑 ®𝑋
𝑑𝑠

=

𝑛∑︁
𝑖=0

(
𝑑𝑝𝑖

𝑑𝑠

𝜕 ®𝑋
𝜕𝑝𝑖

+ 𝑑𝑞𝑖
𝑑𝑠

𝜕 ®𝑋
𝜕𝑞𝑖

)
= −

𝑛∑︁
𝑖=0

(
𝜕𝐻

𝜕𝑞𝑖

𝜕 ®𝑋
𝜕𝑝𝑖

− 𝜕𝐻

𝜕𝑝𝑖

𝜕 ®𝑋
𝜕𝑞𝑖

)
= −:𝐻: ®𝑋 (2.24)

One can perform this operation again and see that

𝑑𝑘 ®𝑋
𝑑𝑠𝑘

= (−:𝐻:)𝑘 ®𝑋 (2.25)

We can then incorporate Equations 2.24 and 2.25 into a Taylor series of ®𝑋

®𝑋 (𝑠) =
∞∑︁
𝑘=0

𝑠𝑘

𝑘!
𝑑𝑘 ®𝑋
𝑑𝑠𝑘

�����
𝑠=0

=

∞∑︁
𝑘=0

𝑠𝑘

𝑘!
(−:𝐻:)𝑘 ®𝑋 (0)

= 𝑒−:𝑠𝐻: ®𝑋 (0) (2.26)

So for each element of our lattice we have

®𝑋 𝑓 = 𝑒−:𝐿𝐻: ®𝑋0 (2.27)

where 𝐿 is the length of the element.
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Each element of the accelerator in this form can be combined together to form a one turn map

for the entire ring. If 𝑒−:𝐿𝑖𝐻𝑖 : is the map for element 𝑖 then all elements together are

𝑒−:𝐿1𝐻2:𝑒−:𝐿2𝐻2:𝑒−:𝐿3𝐻3: . . . 𝑒−:𝐿𝑁𝐻𝑁 : =

𝑁∏
𝑖=1

𝑒−:𝐿𝑖𝐻𝑖 : ≔ 𝑒−:𝐶𝐻eff: (2.28)

where 𝐶 is the circumference of the ring.

The calculation for 𝐻eff is not a trivial addition as the operators do not necessarily commute.

For this calculation, one needs the Baker-Campbell-Hausdorf (BCH) formula [19]:

𝑒: 𝑓 :𝑒:𝑔: = 𝑒:ℎ: (2.29)

where ℎ is

ℎ = 𝑓 + 𝑔 + 1
2

: 𝑓 :𝑔 + 1
12

: 𝑓 :2𝑔 + 1
12

:𝑔:2 𝑓 + 1
24

: 𝑓 ::𝑔:2 𝑓 − 1
720

:𝑔:4 𝑓 − 1
720

: 𝑓 :4𝑔

+ 1
360

:𝑔:: 𝑓 :3𝑔 + 1
360

: 𝑓 ::𝑔:3 𝑓 + 1
120

: 𝑓 :2:𝑔:2 𝑓 + 1
120

:𝑔:2: 𝑓 :2𝑔 +𝑂 (( 𝑓 , 𝑔)6) (2.30)

If 𝑓 and 𝑔 commute or equal a constant that is only dependent on 𝑠, then the higher order terms

will vanish.

2.4 Normal Form

With Lie operators, we can perform what is called Normal Form [19]. We seek a canonical

transformation that simplifies the motion of our system to be as close to a pure rotation as possible.

In linear systems, this is the Courant-Snyder transformation we discussed. If ®𝑋 are our original

phase space and our one-turn map is the matrix 𝑀 then

®𝑋 𝑓 = 𝑀 ®𝑋0 (2.31)

Using the Courant-Snyder parameters, we transform the coordinates ®𝑋 to𝑈 via the matrix 𝐴2

®𝑈 = 𝐴−1
2

®𝑋 (2.32)

such that Equation 2.31 takes the form

®𝑋 𝑓 = 𝐴2𝑅𝐴
−1
2

®𝑋0

𝐴−1
2

®𝑋 𝑓 = 𝑅𝐴−1
2

®𝑋0

®𝑈 𝑓 = 𝑅 ®𝑈0 (2.33)
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where 𝑅 is the rotation matrix. For 2-D phase spaces, 𝐴2 is the matrix we found in Equation 1.83.

So for 𝑘 number of turns Equation 2.31 becomes

®𝑈𝑘 = 𝑅𝑘 ®𝑈0 (2.34)

The idea of the C-S formalism is to simplify the phsase space to one where the dynamics are a

simple rotation. Normal form aims to generalize this idea for nonlinear dynamics by simplifying

these dynamics order by order. So, if we can generalize this transformation from 𝐴2 to 𝐴 and

from 𝑅 to 𝑁 then we can study the much simpler dynamics of 𝑁 instead of 𝑀 to gain the same

information.

Many normal form methods are perturbative, so we will show an example of a third-order

system. Consider a map 𝑀 that has the form

𝑀 = 𝑒: 𝑓2:𝑒: 𝑓3: (2.35)

Here, 𝑓2 is a second-order Hamiltonian that is linearized by the C-S transformation 𝐴2. Let us

consider the transformation.

𝐴 = 𝑒:𝐹3:𝐴2 (2.36)

where 𝐹3 is the transformation for which we solve. Then our simplified transformation 𝑁 is as

follows.

𝑁 = 𝐴𝑀𝐴−1 = 𝑒:𝐹3:𝐴2𝑒
: 𝑓2 ( ®𝑋):𝑒: 𝑓3 ( ®𝑋):𝐴−1

2 𝑒−:𝐹3 ( ®𝑋): | ®𝑋= ®𝑈

= 𝑒:𝐹3 ( ®𝑈):𝑒: 𝑓2 (𝐴2 ®𝑈):𝑒: 𝑓3 (𝐴2 ®𝑈):𝑒−:𝐹3 ( ®𝑈): (2.37)

It can be shown that

𝑒: 𝑓 :𝐹 (:𝑔:)𝑒−: 𝑓 : = 𝐹 (:𝑒: 𝑓 :𝑔:) (2.38)
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which means when we use the BCH formula (Equations 2.29 and 2.30) and expand to the second

order, Equation 2.37 becomes

𝑁 =𝑒: 𝑓2 (𝐴2 ®𝑈):𝑒−: 𝑓2 (𝐴2 ®𝑈):𝑒:𝐹3 ( ®𝑈):𝑒: 𝑓2 (𝐴2 ®𝑈):𝑒: 𝑓3 (𝐴2 ®𝑈):𝑒−:𝐹3 ( ®𝑈):

=𝑒: 𝑓2 (𝐴2 ®𝑈): exp[:(𝑒: 𝑓3 (𝐴2 ®𝑈): − 1)𝐹3( ®𝑈) + 𝑓3(𝐴2 ®𝑈):] + :𝑂 ( ®𝑈3): (2.39)

We define a new basis from the eigenmodes of : 𝑓2: as

|𝑎𝑏𝑐𝑑, 𝑒⟩ ≡ (
√︁
𝐴𝑥𝑒

𝑖𝜙𝑥 )𝑎 (
√︁
𝐴𝑥𝑒

−𝑖𝜙𝑥 )𝑏 (
√︁
𝐴𝑦𝑒

𝑖𝜙𝑦 )𝑐 (
√︁
𝐴𝑦𝑒

−𝑖𝜙𝑦 )𝑑𝛿𝑒

= 𝐴
(𝑎+𝑏)/2
𝑥 𝐴

(𝑐+𝑑)/2
𝑦 𝑒𝑖(𝑎−𝑏)𝜙𝑥𝑒𝑖(𝑐−𝑑)𝜙𝑦𝛿𝑒 (2.40)

where

: 𝑓2: |𝑎𝑏𝑐𝑑, 𝑒⟩ = 𝑖[(𝑎 − 𝑏)𝜇𝑥 + (𝑐 − 𝑑)𝜇𝑦] |𝑎𝑏𝑐𝑑, 𝑒⟩ (2.41)

where 𝜇𝑥/𝑦 are the frequencies of the normal modes.

It is then possible to write a general : 𝑓𝑛: in the form

𝑓𝑛 =

𝑛∑︁

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 = 0

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 𝑛

𝐶
(𝑛)
𝑎𝑏𝑐𝑑,𝑒

|𝑎𝑏𝑐𝑑, 𝑒⟩ (2.42)

If we are away from resonance, then we can choose 𝐹3 of the form

𝐹3 =

(
1

1 − 𝑒−: 𝑓2:

)
𝑓3 (2.43)

which will transform our map 𝑁 into just 𝑒: 𝑓2: for up to the third order. The reason for needing

to be away from resonances is more clear if we use equation 2.42 to rewrite 2.43.
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𝐹3 =

(
1

1 − 𝑒−: 𝑓2:

) 3∑︁
𝑎,𝑏,𝑐,𝑑,𝑒=0

𝐶
(3)
𝑎𝑏𝑐𝑑,𝑒

|𝑎𝑏𝑐𝑑, 𝑒⟩

=

3∑︁
𝑎,𝑏,𝑐,𝑑,𝑒=0

𝐶
(3)
𝑎𝑏𝑐𝑑,𝑒

(
1

1 − 𝑒−𝑖[(𝑎−𝑏)𝜇𝑥+(𝑐−𝑑)𝜇𝑦]

)
|𝑎𝑏𝑐𝑑, 𝑒⟩ (2.44)

Notice that from the denominator, we would have an issue at resonance when

(𝑎 − 𝑏) 𝜇𝑥
2𝜋

+ (𝑐 − 𝑑)
𝜇𝑦

2𝜋
= 𝑝 (2.45)

where 𝑝 is an integer or when 𝑎 = 𝑏 and 𝑐 = 𝑑.

2.5 Kolmogorov–Arnold–Moser (KAM) Theorem

In general, the dynamical systems from accelerator lattices are not integrable. However, they

are sometimes very close to an integrable system. So we can characterize their Hamiltonian as an

integrable one plus some small perturbation. Under no perturbation, these solutions will follow

the surface of an 𝑛 dimensional torus, where 𝑛 is the number of degrees of freedom. KAM theory

discusses what happens with these tori when we perturb the Hamiltonian [7].

When the perturbations are added, many tori are destroyed and what is left are regions of chaotic

motion between the surviving tori. All the surviving tori, and some that do not survive, meet the

so called Diophantine Condition [7]

|⟨ 𝑘, 𝜔⟩| ≥ 𝛼

|𝑘 |𝜏 for all 0 ≠ 𝑘 ∈ Z (2.46)

This condition suggest that for a tori to survive the perturbation. It needs a sufficiently irrational

frequency, 𝜔.

2.6 Numerical Analysis of Fundamental Frequencies (NAFF)

The originally used to find chaotic motion in planetary orbits, the Numerical Analysis for

Fundamental Frequencies (NAFF) algorithm has been applied to study chaotic motion in particle

accelerators [15]–[18]. This algorithm is for finding the primary frequencies of quasi-periodic

orbits whose frequencies met the Diophantine condition.
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We begin with our quasi-periodic solution

𝑓 (𝑡) = 𝑒𝑖𝜈1𝑡 +
∑︁

𝑘∈Z𝑛−(1,0,0...,0)
𝑎𝑘𝑒

𝑖⟨𝑘,𝜈⟩𝑡 ; 𝑎𝑘 ∈ C (2.47)

where 𝑎𝑘 are complex amplitudes and 𝜈 is the frequency of the orbit which satisfies the

Diophantine condition in Equation 2.46. The values of 𝑓 (𝑡) are sampled over a time interval

[𝑇1, 𝑇2] with a small enough time step, ℎ, that accurate integrals can be computed. The one turn of

a particle accelerator should be a sufficiently small time step. The goal is to find an approximate

analytical form of 𝑓 (𝑡) which we will call 𝑓 ′(𝑡). To make the data more symmetric with no loss of

generality we will perform the following change of variables for time

𝑇 =
1
2
(𝑇2 − 𝑇1) (2.48)

𝑡′ = 𝑡 − 1
2
(𝑇1 + 𝑇2) (2.49)

so our time goes from [−𝑇,𝑇]. The approximate solution found by NAFF will have the form

𝑓 ′(𝑡) =
𝑁∑︁
𝑘=1

𝑎′𝑘𝑒
𝑖𝜔′

𝑘
𝑡 (2.50)

where each subsequent 𝑎′
𝑘

is progressively smaller. The first frequency 𝜔′
1 is found by finding

the maximum of

𝜙(𝜎) = ⟨ 𝑓 (𝑡), 𝑒𝑖𝜎𝑡⟩ (2.51)

where

⟨ 𝑓 (𝑡), 𝑔(𝑡)⟩ = 1
2𝑇

∫ 𝑇

−𝑇
𝑓 (𝑡)𝑔∗(𝑡)𝜒(𝑡/𝑇)𝑑𝑡 (2.52)

and 𝜒(𝑡) is a weight function with the property

1
2

∫ 1

−1
𝜒(𝑡)𝑑𝑡 = 1 (2.53)
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Once 𝜔′
1 is found, 𝑎′1 is found by an orthogonal projection. Then the frequency is removed

from the data by

𝑓1(𝑡) = 𝑓 (𝑡) − 𝑎′1𝑒
𝑖𝜔′

1𝑡 (2.54)

and the process is done again to find the subsequent frequencies and amplitudes. As discussed

by Laskar in his introduction to frequency maps, the accuracy of the approximated frequency 𝜈′1

converges to the actual frequency 𝜈1 as

|𝜈′1 − 𝜈1 | ∼ 𝑂 (1/𝑇2𝑝+2) (2.55)

when using the weight function

𝜒𝑝 (𝑡) =
2𝑝 (𝑝!)2

(2𝑝)! (1 + cos(𝜋𝑡))𝑝 (2.56)

[17]. This algorithm results in faster convergence than a standard Fourier transformation which

will only be accurate to about 𝜋/𝑇 [16]. With this algorithm we can perform frequency map

analysis to analyze the motion from Poincare maps.

2.7 Frequency Map Analysis

As we discussed in section 2.5, particles with sufficiently irrational frequencies that survive

nonlinear perturbations will trace an 𝑛-dimensional torus in phase space. The motion is quasi-

periodic because it will not cross the same point but approach arbitrarily close. The torus is traced

by some action being rotated at some frequency; this is why it will trace an 𝑛-dimensional torus

in a 2𝑛-dimensional phase space. Section 2.6 discussed one common approach to finding these

frequencies. We can expect particles in the dynamic aperture will be on these surviving tori. If

they are on the surviving tori, then we can expect their frequencies to be stable.

Therefore, the frequency map analysis technique starts by collecting some particle tracking

data (®𝑥0, ®𝑥1, ®𝑥2, . . . , ®𝑥𝑁 ), either from simulation or measurements. 𝑁 is the number of turns

corresponding to 𝑁 + 1 data points. We split these data points into two groups, (®𝑥0, ®𝑥1, . . . , ®𝑥𝑁/2)
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Figure 2.3 4-D Hénon Map frequency map for 𝜈𝑥 = 0.282 and 𝜈𝑦 = 0.6135 and 5000 turns [20].

and ((®𝑥𝑁/2+1, ®𝑥𝑁/2+2, . . . , ®𝑥𝑁 ). We measure the frequencies collected from NAFF for each group

which we will call ®𝜈1 and ®𝜈2 respectively. The measure for our stability is then

| ®𝜈2 − ®𝜈2 |. (2.57)

If the frequencies for both sets agree well, then we say it is likely that the particles are stable.

Otherwise, this would indicate the motion is chaotic, and it is possible the particles could be lost. It

is not a guarantee, however, that they will be lost. Particle motion cannot cross the tori of different

particles, or else they would be on the same trajectory. So the stable tori provide boundaries for the

regions of chaotic motion. If the phase space is larger than 2 dimensions, then these 𝑛-dimensional

tori cannot create a bounded area, which means there is no region where a particle’s motion is cut

off from any other part of the phase space. So it is possible that a particle’s motion can be relatively

bounded for a number of turns but eventually go to infinity. It is also possible that a particle with

unstable frequencies can stay in a relatively small region for a long period of time and therefore not

be lost in the accelerator.

Figure 2.3 shows an example of the 4-D Hénon Map frequency map. The figure shows the

initial condition of particles colored by the measure in Equation 2.57. The lines correspond to

resonances, a known source of instability in accelerators [18].
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CHAPTER 3

SQUARE MATRIX APPROACH

3.1 Square Matrix Method

As we try to move away from computationally intensive turn-by-turn tracking, many Normal

Form methods are perturbative or based on power series of the map. Another way to approach these

power series is by extending our phase space. The Square Matrix Approach, developed by Li-Hua

Yu [21], is an approach that avoids order-by-order calculations, unlike the normal form discussed

in Chapter 2.

In this extended phase space, we are trading our 2𝑛-dimensional phase space with a nonlinear

map for an infinite-dimensional phase space with a linear map. To perform calculations, we need

to truncate this map to some order. But afterwards, we can use well-established linear matrix

techniques to analyze the system. For example, a 2-D system with phase space coordinates (𝑥, 𝑝)

could be extended to 4th order, creating an extended 14-D phase space where the extended phase

space vector is of the form

®𝑋 = (𝑥, 𝑝, 𝑥2, 𝑥𝑝, 𝑝2, . . . , 𝑝4) (3.1)

and the transformation is a linear one of the form

®𝑋 𝑓 = 𝑀 ®𝑋𝑜 (3.2)

where 𝑀 is the square matrix with real coordinates, we define a complex coordinate 𝑧 such that

it is the coordinate for our diagonalized linear matrix from the Courant-Snyder parameters. If we

truncate to the third order, our expanded phase space where the square matrix 𝑀𝑠 exists will act on

the vector 𝑍 of the form

𝑍 = (1, 𝑧, 𝑧∗, 𝑧2, 𝑧𝑧∗, 𝑧∗2, 𝑧3, 𝑧2𝑧∗, 𝑧𝑧∗2, 𝑧∗3) (3.3)

or for 2 spatial dimensions
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𝑍 =(1, 𝑧𝑥 , 𝑧∗𝑥 , 𝑧𝑦, 𝑧∗𝑦, 𝑧2
𝑥 , 𝑧𝑥𝑧

∗
𝑥 , (𝑧∗𝑥)2, 𝑧𝑥𝑧𝑦, 𝑧

∗
𝑥𝑧𝑦, 𝑧

2
𝑦, 𝑧𝑥𝑧

∗
𝑦, 𝑧

∗
𝑥𝑧

∗
𝑦, 𝑧𝑦𝑧

∗
𝑦, (𝑧∗𝑦)2, (3.4)

𝑧3
𝑥 , 𝑧

2
𝑥𝑧

∗
𝑥 , 𝑧𝑥 (𝑧∗𝑥)2, (𝑧∗𝑥)3, 𝑧2

𝑥𝑧𝑦, 𝑧𝑥𝑧
∗
𝑥𝑧𝑦, (𝑧∗𝑥)2𝑧𝑦, 𝑧𝑥𝑧

2
𝑦, 𝑧

∗
𝑥𝑧

2
𝑦, 𝑧

3
𝑦, 𝑧

2
𝑥𝑧

∗
𝑦,

𝑧𝑥𝑧
∗
𝑥𝑧

∗
𝑦, (𝑧∗𝑥)2𝑧∗𝑦, 𝑧𝑥𝑧𝑦𝑧

∗
𝑦, 𝑧

∗
𝑥𝑧𝑦𝑧

∗
𝑦, 𝑧

2
𝑦𝑧

∗
𝑦, 𝑧𝑥 (𝑧∗𝑦)2, 𝑧∗𝑥 (𝑧∗𝑦)2, 𝑧𝑦 (𝑧∗𝑦)2, (𝑧∗𝑦)3).

𝑍 = 𝑀𝑠𝑍0 (3.5)

From Equation 3.5 we see that the mappings for the higher orders of 𝑧 are calculated by simply

taking the map of 𝑧 in terms of 𝑧0 and raising it to that power. Therefore, there will be redundant

information in the matrix 𝑀𝑠. It would be natural to try to diagonalize this matrix, but the matrix

is not generally diagonalizable due to degenerate eigenvalues. However, 𝑀𝑠 is guaranteed to be a

square matrix, so it is possible to use Jordan decomposition to find generalized eigenvectors. While

not diagonalizing the matrix, they can greatly simplify it.

Jordan decomposition is generally not numerically stable. However, the stability is dependent

on the accuracy of the eigenvalues. Because 𝑀𝑠 is not only square, but also upper triangular,

we know that the eigenvalues will be terms on the diagonal. So, the sufficient accuracy of the

eigenvalues can be assured.

By performing a Jordan decomposition the new form of 𝑀𝑠 becomes𝑈−1𝑁𝑈 where

𝑁 =

©­­­­­­­­­­­­«

𝑁0 0 · · · · · · 0

0 𝑁1 · · · · · · 0

0 0 𝑁−1 · · · 0

0 0 0 𝑁2 · · ·
...

...
...

...
. . .

ª®®®®®®®®®®®®¬
(3.6)

and

𝑁𝑘 = 𝑒
2𝜋𝑖𝑘𝜈 𝐼 + 𝜏†. (3.7)
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𝜏 is a matrix where the diagonal below the main diagonal of the matrix is one, and the rest of

the elements are zero.

𝜏 =

©­­­­­­­­«

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

ª®®®®®®®®¬
(3.8)

From the Jordan decomposition, the rows of the transformation matrix 𝑈 will be generalized

eigenvectors from a set of different Jordan chains. Each Jordan chain is a set of vectors 𝐶 that

satisfy

𝐶 (𝑥) = {𝑥, (𝑀𝑠 − 𝜆𝐼)𝑥.(𝑀𝑠 − 𝜆𝐼)2𝑥, . . . , (𝑀𝑠 − 𝜆𝐼)𝑘−1𝑥} s.t. (𝑀𝑠 − 𝜆𝐼)𝑘𝑥 = 0 (3.9)

where 𝜆 is an eigenvalue of the matrix. These generalized eigenvectors form a linearly independent

basis for each subspace of 𝑀𝑠. We only need the information from the longest of these chains. The

transformation matrix𝑈 satisfies

𝑈𝑀 = 𝑒2𝜋𝑖𝜈𝐼+𝜏𝑈. (3.10)

We will then define the vector𝑊 such that

𝑊 = 𝑈𝑍 (3.11)

From KAM theory, we expect stable orbits to have a stable frequency. Using Equations 3.10

and 3.5 this approximation takes the form

𝑈𝑀𝑍0 = 𝑈𝑊 = 𝑒2𝜋𝑖𝜈𝐼+𝜏𝑊0 ≈ 𝑒𝑖(2𝜋𝜈𝐼+𝜙)𝑊0 (3.12)

where 𝜙 represents the amplitude-dependent tune shift. We see that this approximation gives the

equation:
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𝜏𝑊 ≈ 𝑖𝜙𝑊 (3.13)

The approximation becomes exact as our truncation order goes to infinity. 𝜏 can be thought of

as a raising operator on the orders of𝑊 so,

𝜏𝑊 = 𝜏

©­­­­­­­­«

𝑤0

𝑤1
...

𝑤𝑚−1

ª®®®®®®®®¬
=

©­­­­­­­­«

𝑤1

𝑤2
...

0

ª®®®®®®®®¬
≈

©­­­­­­­­«

𝑖𝜙𝑤0

𝑖𝜙𝑤1
...

𝑖𝜙𝑤𝑚−1

ª®®®®®®®®¬
(3.14)

where 𝑤 𝑗 are the rows of𝑊 . So we can relate the rows of𝑊 to 𝜙 by

𝑖𝜙 =
𝑤1

𝑤0
≈ 𝑤2

𝑤1
≈ · · · ≈ 𝑤𝑚−1

𝑤𝑚−2
(3.15)

The real part of 𝜙 relates to the tune, and the imaginary part relates to amplitude changes over

time. So for stable orbits, we expect

Im(𝜙) ≈ 0. (3.16)

So, from the first Equation 3.15 we can define the stability indicator

Δ =
𝑤2

𝑤0
−

(
𝑤1

𝑤0

)2
≈ 0. (3.17)

The reason the first two terms of Equation 3.15 are used is that 𝑤𝑖 are increasingly higher

monomials of a small value as 𝑖 increases, so the numerator and denominator will both be small

and possibly inaccurate at the higher values of 𝑖.

An additional feature of this square matrix method is that it provides a function for the amplitude-

dependent tune shift.

𝜙(𝑍) = −𝑖 𝑤1(𝑍)
𝑤2(𝑍)

(3.18)
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We can compare this to the form of the traditional amplitude dependence. If we have a

linear Hamiltonian 𝐻0, and we assume that our nonlinearity can be in the form of an additional

Hamiltonian term 𝐻1, then a perturbed system’s Hamiltonian can be written as

𝐻 (®𝑥) = 𝐻0(®𝑥) + 𝐻1(®𝑥). (3.19)

We can rewrite the linear Hamiltonian in terms of action-angle variables, which means 𝐻0 will

only depend on the action 𝐽.

𝐻 (𝐽, 𝜙) = 𝐻0(𝐽) + 𝐻1(𝐽, 𝜙) = 𝜈𝐽 + 𝐻1(𝐽, 𝜙) (3.20)

When we use the Hamiltonian equations of motion, we then find

𝜕𝐻

𝜕𝜙
(𝐽, 𝜙) = −𝜕𝐻1

𝜕𝜙
(𝐽, 𝜙) (3.21)

𝜕𝐻

𝜕𝐽
(𝐽, 𝜙) = 𝜈 + 𝜕𝐻1

𝜕𝐽
(𝐽, 𝜙). (3.22)

Where compared to a linear system, where there would be no dependence on 𝜙 and a constant

frequency 𝜈, the perturbative term 𝐻1 introduces a changing action called action smear (Equation

3.21) and an action-dependent tune shift (Equation 3.22). So we expect that the action-dependent

tune shift in Equation 3.22 will approximately equal that in Equation 3.18.

3.1.1 2-D Hénon Map

We will use the Hénon map as an example to compare different methods. The Hénon map can

have different parameters, but for our purpose, we will use the following Hamiltonian

𝐻 (𝑥, 𝑝) = 1
2
𝑥2 + 1

2
𝑝2 + 1

3
𝑆𝑥3

∑︁
𝑛

𝛿(𝑡 − 𝑛𝑇). (3.23)

Equation 3.23 will give the discrete map
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Figure 3.1 The amplitude-dependent tune shift for the 2-D Hénon map calculated from NAFF and
Equation 3.18 for 3rd and 5th order.

𝑥𝑛+1 = 𝑥𝑛 cos 𝜇 +
(
𝑝𝑛 − 𝑥2

𝑛

)
sin 𝜇 (3.24)

𝑝𝑛+1 = −𝑥𝑛 sin 𝜇 +
(
𝑝𝑛 − 𝑥2

𝑛

)
cos 𝜇. (3.25)

Physically, this represents an accelerator that has a linear lattice with a periodic sextupole kick.

This kick is where we will see the nonlinear effects, such as amplitude-dependent tune shift. In

Equation 3.23, 𝑆 is the strength of the sextupole kick and 𝜇 is the frequency of the linear lattice.

The (𝑥, 𝑝) coordinates are scaled by the sextupole strength in Equation 3.25 for simplicity. Figure

2.2 shows the Poincaré section for this map in 2-D.

We can compare the results of Equation 3.18 to NAFF and see that it gives a close approximation

to the amplitude-dependent tune shift without order-by-order calculations like in normal form.

These results are in Figure 3.1. These calculations can be done with symbolic methods [22], but

these will quickly become very intensive. Since we know the exact form of the eigenvalues from

Equation 3.7, we can perform the Jordan decomposition fairly accurately using numerical methods.

This allows us to use higher orders in the square matrix method. These additional orders are shown

in Figure 3.2.

3.1.2 4-D Hénon Map

We can expand this 2-D method to apply to 4-D systems. The 4-D Hénon Map is as follows
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Figure 3.2 The amplitude-dependent tune shift for the 2-D Hénon map calculated from NAFF and
Equation 3.18 for 5th and 7th order using numerical methods.

©­­­­­­­­«

𝑥

𝑝𝑥

𝑦

𝑝𝑦

ª®®®®®®®®¬𝑛+1

=
©­­«

R(𝜇𝑥) 0

0 R(𝜇𝑦)

ª®®¬
©­­­­­­­­«

𝑥

𝑝𝑥 − 𝑥2 + 𝑦2

𝑦

𝑝𝑦 + 2𝑥𝑦

ª®®®®®®®®¬𝑛
(3.26)

where 𝑅(𝜃) is a 2-D rotation by angle 𝜃. Physically, it represents the same accelerator structure

as the 2-D version but includes both transverse directions, introducing nonlinear coupling into the

system. Similar to the 2-D version, the 4-D Square Matrix will have the structure

𝑁 =

©­­­­­­­­­­­­­­­«

1 0 · · · · · · · · · 0

0 𝑁1,0 · · · · · · · · · 0

0 0 𝑁−1,0 · · · · · · 0

0 0 0 𝑁0,1 · · · 0

0 0 0 0 𝑁0,−1
...

...
...

...
...

...
. . .

ª®®®®®®®®®®®®®®®¬

(3.27)

and

𝑁𝑙,𝑘 = 𝑒
2𝜋𝑖(𝑙𝜈𝑥+𝑘𝜈𝑦) 𝐼 + 𝜏†. (3.28)
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By examining the chains that arise from the 𝜈𝑥 and 𝜈𝑦 terms, we find a Jordan chain for each.

They each give us a transformation to 𝑤𝑥 and 𝑤𝑦, respectively. Once we have the transformations,

we can perform the same steps as the 2-D version for each and get Δ𝑥 and Δ𝑦 terms from Equation

3.17. We combine these terms to find the new delta term

Δ = Δ2
𝑥 + Δ2

𝑦 . (3.29)

Looking at the exponent of Equation 3.29, we get the map in Figure 3.3 using the third-order

square matrix method. We can see from Figures 3.1 and 3.2 that the prediction from the SMM

deviates at larger amplitudes. This is expected from a perturbative method. Unfortunately, the most

important amplitudes for calculating the dynamic aperture are those near the aperture boundary.

So the SMM will need to be expanded upon for more accurate dynamic aperture calculations.

3.2 Iterative Method

The stable orbits in nonlinear systems like accelerators are bounded pseudo-periodic orbits,(
𝑧
(0)
(𝑥,𝑦) , 𝑧

(1)
(𝑥,𝑦) , · · · , 𝑧

(𝑛)
(𝑥,𝑦) , · · ·

)
. As we discussed in section 2.5, KAM theory showed that the invariant

tori survive under small nonlinear perturbations, so we expect that there exists a diffeomorphism

such that the motion will be a rigid rotation. That is, an orbit with a constant amplitude rotating by

a constant angle in phase space. The 2-D version has been outlined in [23]. Here we will outline the

approach for 4-D systems as was briefly discussed in [20], [24], this introduces coupling between

the coordinates and the diffeomorphisms are then dependent on both rotation angles, as we will

show.

First we express out coordinates 𝑧(𝑥,𝑦) in terms of a complex phase:

𝑧𝑥 = 𝑒
𝑖𝜃𝑥 (3.30)

𝑧𝑦 = 𝑒
𝑖𝜃𝑦 . (3.31)

The real part of 𝜃 is related to the angle in phase space while the imaginary part relates to the

amplitude of the motion. We then define 𝑓𝑥 and 𝑓𝑦 as the functions of the changes in 𝜃𝑥 and 𝜃𝑦 after
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Figure 3.3 Stability map for the Hénon map using the third-order square matrix method to calculate
Δ from equation 3.29.

Figure 3.4 Frequency map for the Hénon map using NAFF.

one turn respectively. Both are dependent on (𝜃𝑥 , 𝜃∗𝑥 , 𝜃𝑦, 𝜃∗𝑦).

𝑧′(𝑥,𝑦)
𝑧(𝑥,𝑦)

= exp 𝑖(𝜃′(𝑥,𝑦) − 𝜃 (𝑥,𝑦)) = exp 𝑖 𝑓(𝑥,𝑦) (𝜃𝑥 , 𝜃∗𝑥 , 𝜃𝑦, 𝜃∗𝑦) (3.32)

The diffeomorphism to a rigid rotation that we expect to find when the motion is pseudo-periodic

and bounded is

𝜃𝑥 = 𝛼 + ℎ(𝛼, 𝛽) (3.33)

𝜃𝑦 = 𝛽 + 𝑔(𝛼, 𝛽). (3.34)
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where 𝛽 and 𝛼 are the angles of pure rigid rotations in our new phase space coordinates. ℎ and 𝑔

are smooth complex functions, which are periodic with respect to 𝛼 and 𝛽, and each has a period

of 2𝜋. Note that they are coupled and dependent on both angles.

𝛼𝑛+1 = 𝛼𝑛 + 𝜌𝑥 (3.35)

𝛽𝑛+1 = 𝛽𝑛 + 𝜌𝑦 (3.36)

here 𝜌𝑥 and 𝜌𝑦 are the rotation numbers, which are defined as:

𝜌(𝑥,𝑦) = lim
𝑛→∞

𝜃
(𝑛)
(𝑥,𝑦) − 𝜃

(0)
(𝑥,𝑦)

𝑛
(3.37)

Since ℎ and 𝑔 are periodic, it is useful to express them as their Fourier series.

ℎ =

∞∑︁
𝑚,𝑛=−∞

ℎ̂𝑛,𝑚𝑒
𝑖𝑚𝛼+𝑖𝑛𝛽 (3.38)

𝑔 =

∞∑︁
𝑚,𝑛=−∞

𝑔̂𝑛,𝑚𝑒
𝑖𝑚𝛼+𝑖𝑛𝛽 (3.39)

From equation 3.32 we use an iterative method to solve for the diffeomorphisms and the rotation

numbers starting from a given initial phase space coordinate. By combining equation 3.32 with

equations 3.38 and 3.39 we can see how ℎ and 𝑔 change between turns. The difference between ℎ

and 𝑔 from one turn to the next is 𝑓𝑥 and 𝑓𝑦 minus the rotation number 𝜌𝑥 and 𝜌𝑦, respectively.

For simplicity, will define 𝑓𝑥 and 𝑓𝑦 minus their respective rotation numbers as 𝜂𝑥 (𝜌𝑥 , 𝛼, 𝛽, ℎ(𝛼, 𝛽), 𝑔(𝛼, 𝛽))

and 𝜂𝑦 (𝜌𝑥 , 𝛼, 𝛽, ℎ(𝛼, 𝛽), 𝑔(𝛼, 𝛽)).

So for each iteration, we solve

ℎ(𝑛+1) (𝛼 + 𝜌(𝑛+1)
𝑥 , 𝛽 + 𝜌(𝑛+1)

𝑦 ) − ℎ(𝑛+1) (𝛼, 𝛽) = 𝜂𝑥 (𝜌(𝑛+1)
𝑥 , 𝛼, 𝛽, ℎ(𝑛) (𝛼, 𝛽), 𝑔(𝑛) (𝛼, 𝛽)) (3.40)

and

𝑔(𝑛+1) (𝛼 + 𝜌(𝑛+1)
𝑥 , 𝛽 + 𝜌(𝑛+1)

𝑦 ) − 𝑔(𝑛+1) (𝛼, 𝛽) = 𝜂𝑦 (𝜌(𝑛+1)
𝑦 , 𝛼, 𝛽, ℎ(𝑛) (𝛼, 𝛽), 𝑔(𝑛) (𝛼, 𝛽)). (3.41)
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Note that the (𝑛) in the superscript denotes iteration number, not turn number. We begin the

first iteration with

ℎ(0) = 𝜃𝑥𝑜 − 𝛼0 (3.42)

𝑔(0) = 𝜃𝑦𝑜 − 𝛽0. (3.43)

Equations 3.42 and 3.43 mean we begin by assuming the motion is already a pure rotation.

Each iteration will progressively correct this assumption. First, the zeroth order Fourier component

of the left-hand side of Equations 3.40 and 3.41 is zero since the zeroth order components of 𝑔 and

ℎ are constants and therefore do not change from one turn to the next. By subsituting Equations

3.38 and 3.39 into Equations 3.40 and 3.41 we get the higher order Fourier terms of ℎ and 𝑔 have

the form

ℎ̂
(𝑛+1)
𝑛,𝑚 (𝛼, 𝛽) =

𝜂
(𝑛)
𝑥,𝑛𝑚

𝑒𝑖𝑚𝜌
(𝑛+1)
𝑥 +𝑖𝑛𝜌 (𝑛+1)

𝑦 − 1
(3.44)

𝑔̂
(𝑛+1)
𝑛,𝑚 (𝛼, 𝛽) =

𝜂
(𝑛)
𝑦,𝑛𝑚

𝑒𝑖𝑚𝜌
(𝑛+1)
𝑥 +𝑖𝑛𝜌 (𝑛+1)

𝑦 − 1
(3.45)

One can see that the exponential in the denominator cannot equal 1, or else that component

will go to infinity, and the method will fail to find a solution. This zero denominator is more

difficult to land on in the 4-D version since it requires both the estimated rotation numbers to be on

a resonance.

As stated before, the zeroth order terms on the left hand side of Equations 3.40 and 3.41 go

to zero, but we still need to find what these zero terms (ℎ̂0,0 and 𝑔̂0,0) are in order to get the

complete diffeomorphism. This is done with the initial position in phase space. We constrain the

diffeomorphism to pass through the initial angles. So we choose ℎ̂0,0 and 𝑔̂0,0 such that for some

existing 𝛼∗ and 𝛽∗ we’ll have:

𝜃𝑥𝑜 = 𝛼
∗ + ℎ(𝑛+1) (𝛼∗, 𝛽∗) (3.46)
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𝜃𝑦𝑜 = 𝛽
∗ + 𝑔(𝑛+1) (𝛼∗, 𝛽∗) (3.47)

We continue this process until we converge on a solution. The solution converges to the tunes

of x and y, as well as the KAM surface the particle orbits exist on.

There are a few important notes to make about implementing this method. For one, the function

𝜂𝑖 needs to be sufficiently smooth for the method to converge. To aid this, we use the SMM

transformation as our action-angle variables in the iteration method. There is another issue created

by this, though. The inverse function from the SMM method is often not exact, which can lead to

inaccuracies when it is called multiple times in the code. To avoid this, we implement Newton’s

method. If we have some number 𝑦, which is the results of some unknown number 𝑥 being passed

into the function 𝑓 (𝑥), we can find 𝑥 by defining a new function 𝑔(𝑥) such that

𝑔(𝑥) = 𝑓 (𝑥) − 𝑦. (3.48)

We can then use Newton’s method to find the root of a function numerically, since the root of

𝑔(𝑥) will give us the inverse of 𝑓 (𝑥). This is implemented as follows

𝑥𝑖+1 = 𝑥𝑖 −
(
𝐽 𝑓 (𝑥𝑖)

)−1 (
𝑓 (𝑥𝑖) − 𝑦

)
(3.49)

where 𝐽 𝑓 is the Jacobian of 𝑓 (𝑥) and 𝑖 refers to the 𝑖th iteration of Newton’s method.

This can introduce extra computation time, but as the results will show, it can greatly increase

the area of convergence for some maps. Figure 3.7 shows that using Newton’s method to improve

the inverse results in a much more accurate inverse. We can also see how much using the SMM

method improves the iteration method in Figure 3.8. It shows the 4-D Henon Map using the

parameters 𝜈𝑥 = 0.282 and 𝜈𝑦 = 0.6135 when we have different orders of the SMM for our action

angle variables. We see that for no square matrix, the iteration method quickly fails to converge

at moderately larger amplitudes. Adding even a 3rd order SMM method greatly improves the

convergence area. We can see though that 7th order SMM actually decreases the convergence area.
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Figure 3.5 Stability map for the Hénon map using third order square matrix method to calculate Δ

from equation 3.29.

Figure 3.6 Convergence map for the Hénon map using 3rd order SMM eigenvectors as the action
angle variables.

This can be explained by the fact that when we use the 7th order SMM we have more higher order

terms in the actin angle variables. This can excite more higher order terms in the Fourier expansion

of the transformation which can lead to a failure to converge.

3.3 National Synchrotron Light Source II (NSLS-II)

While toy models, such as the Hénon map, are useful baselines for testing our methods, it

is essential to compare the results when applied to real accelerators. The National Synchrotron

Light Source II (NSLS-II) is a 3 [GeV] second-generation electron light source at Brookhaven

National Lab (BNL) [25]. It is an electron storage ring which uses the synchrotron radiation from
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Figure 3.7 Inverse of the 7th order SMM for the 4-D Hénon Map using the parameters 𝜈𝑥 = 0.282
and 𝜈𝑦 = 0.6135 (a) and using Newton’s method (b) [20].

Figure 3.8 Convergence maps for the 4-D Hénon Map using the parameters 𝜈𝑥 = 0.282 and
𝜈𝑦 = 0.6135 without SMM (a), with 3rd order SMM (b), and with 7th order SMM (c) for the
action-angle variables [20].
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Figure 3.9 The converge maps for the NSLS-II using a 3rd (a) and 5th (b) order SMM method to
get the action angle variables.

Figure 3.10 The converge maps for the NSLS-II using a 7th (a) and 10th (b) order SMM method to
get the action angle variables.

the electrons for experiments in biology and chemistry and biology. This radiation can range from

0.1 eV to >300 keV, depending on what is required [25]. Therefore, it is important to have a very

small emittance, in the hundreds or thousands of pm-rad, for brighter light. The aperture is larger

horizontally where the electrons are injected into the storage ring.

The electrons orbit a 791.958 [m] storage ring, and their synchrotron radiation is used in various

applications in chemistry, biology, and physics.

In the following section, we will detail the comparison of the results from FMA approaches to

the NSLS-II, the square matrix method, and the iteration method described in the last section.
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Figure 3.11 The tune maps for the NSLS-II using a 3rd and 5th order SMM method to get the action
angle variables. Resonance lines up to the 10th order are shown for reference.

Figure 3.12 The tune maps for the NSLS-II using a 7th and 10th order SMM method to get the
action angle variables. Resonance lines up to the 10th order are shown for reference.

Compared to the convergence map in Figure 3.9, we notice that the vertical aperture is much

smaller than the vertical aperture from the frequency map in Figure 3.13. One can see, though,

that there is a resonance line in the frequency map where the boundary of the convergence map

is. As we pointed out when introducing the SMM action-angle variables to the iteration method,

since the convergence method can encounter the small denominator problem we pointed out from

Equations 3.44 and 3.45, it can be more sensitive to resonances, which cause higher order terms to

blow up, and we are unable to converge. This also contributes to the decrease in the convergence

area we see in Figures 3.9 and 3.10 when increasing the order of the SMM used.
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Figure 3.13 Frequency map analysis on the NSLS-II bare lattice for 1000 turns calculated in Elegant.

Figure 3.14 Frequency map analysis in the tune space for the NSLS-II bare lattice for 1000 turns
calculated in Elegant.

3.4 Crab Cavity Study

This section will cover some of the results we showed when we introduced the study at IPAC

2024 [26]. The crab cavity is a proposed component in collider rings to increase luminosity [27].

The idea being that for colliders, beams are transported in separate beam pipes to get them to the

desired energy. These beam pipes then need to converge so the bunches can collide. This means

that they will cross at some angle. This means the beams will not perfectly overlap, and there will be

fewer collisions, in other words, lower luminosity. To increase this value, the crab cavity proposes

that a sinusoidal kick is applied to each bunch. They then propagate to the interaction point at an

angle in the lab frame. But when we look at the bunches’ perspectives, they will collide head-on,
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leading to many more collisions. They will have an opposite kick applied after the interaction

point to offset the first crab cavity kick. This will naturally introduce new coupling between the

longitudinal coordinates and the transverse coordinates. Since our model is a 4-D one, we will not

look at both transverse coordinates but instead at one transverse coordinate and the longitudinal

one. The details of how this model is implemented are in the next section.

3.4.1 Theoretical Model

The model used for this study was a 4-D system looking at the transverse and longitudinal

components of the crab cavity (CC) crossing. This is still a 4-D phase space like the other maps,

however, there is a significant change by using the longitudinal coordinate in the calculations vs

using both transverse coordinates. Both transverse coordinates tend to behave analogously to each

other. The longitudinal coordinate tends to be significantly different. The longitudinal coordinates

will generally have actions that are orders of magnitude larger than the transverse coordinates, and

the longitudinal tunes will generally have smaller tunes as well.

The lattice consists of two crab cavities placed a phase of 𝜋/2 apart from one another on either

side of the interaction point (IP). A simple nonlinear lattice in the longitudinal direction and a linear

transverse lattice were used for the rest of the accelerator. It is assumed that there are minimal

longitudinal effects from the lattice between the two crab cavities. The crab cavities provide a

sinusoidal kick to a proton beam as well as a quadrupole and sextupole kick of the following form

[28]:

Δ𝑝𝑥 =
− tan 𝜃𝑐 sin (𝑘𝑐𝑧)

𝑘𝑐
√
𝛽cc𝛽IP

+ 𝑏2𝑥 sin (𝑘𝑐𝑧) + 𝑏3𝑥
2 sin (𝑘𝑐𝑧) . (3.50)

To preserve the symplectic nature of the cavity, a longitudinal kick is also imparted on the beam

of the following form:

Δ𝑝𝑧 =
−𝑥 tan 𝜃𝑐 cos (𝑘𝑐𝑧)√

𝛽cc𝛽IP
+ 𝑏2𝑘𝑐

2
𝑥2 cos (𝑘𝑐𝑧) +

𝑏3𝑘𝑐

3
𝑥3 cos (𝑘𝑐𝑧) . (3.51)
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where 𝜃𝑐 is the half crossing angle, 𝑘𝑐 = 2𝜋 𝑓𝑐/𝑐 is the wave number of the crab cavity, and

𝑏2, 𝑏3 are the integrated quadrupole and sextupole strengths respectively.

The parameters of the model are given in Table 3.1. Note that the sextupole strength is

unrealistically high. This is due to the rest of the transverse lattice being linear and therefore a

larger value was needed in order to see its effects. The rest of the lattice has the following form

longitudinally

𝑧′ = 𝑧 − 2𝜋ℎ𝑐𝜂𝛽𝑠
𝑓rf

𝑝′𝑧 , (3.52)

where

𝑝′𝑧 = 𝑝𝑧 +
𝑒𝑉rf

𝐸𝛽2
𝑠

(sin 𝜙 − sin 𝜙𝑠) , (3.53)

𝜂 is the slip factor, 𝜙 is the longitudinal phase, and 𝛽𝑠 is the ratio of the longitudinal velocity

and the speed of light.

3.4.2 Results

Figure 3.15(a) shows frequency map analysis using 75,000 turns and NAFF [29] to calculate

the tunes of the parameters in Table 3.1. We can compare this to the same parameters and initial

conditions but using the iteration method in Fig. 3.16(a). The color bar on this map shows the base

10 log of the minimum error that the method converges to, the error being | |X𝑛+1 −X𝑛 | | where 𝑛 is

the iteration number and X is the phase space vector.

We can see when we plot the same points in tune space in Fig. 3.16(b), that the higher errors

correspond to the resonance lines of 3𝑄𝑥 + 𝑚𝑄𝑧 = 1, where 𝑚 = 5, 6, 7 which correspond to an

8th, 9th, and 10th order resonance respectively. The 8th order resonance corresponds to the points

on the corners of the map in 𝑥, 𝑧 space. The next lines in from those corners correspond to the 9th

order resonance line. Finally, the lines near 𝑥 = 0 correspond to the 10th order resonance lines.

This 𝑚 = 7 line also appears when we turn off the sextupole as shown in Fig. 3.19. This is

because with no sextupole, the iteration method only shows a tune shift in the𝑄𝑧 which still crosses
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the 3𝑄𝑥 + 7𝑄𝑧 = 1 resonance line. This suggests that the crab cavity with a sextupole will result

in an increase in horizontal tunes that then encounter the 8th and 9th order resonances described

before.

Figure 3.17 shows the points where we see an increase in the longitudinal tunes. This further

shows how the crab cavity causes the tune shifts to be dependent on the particles transverse and

longitudinal positions.

We can also gather more information by removing the time dependency. Figure 3.18 shows

the convergence map when there is no time dependency, i.e., just a normal sextupole instead of a

crab cavity with a time-dependent sextupole. This removes the coupling between the transverse

and longitudinal coordinates. However we still see some small traces of the resonances which we

Table 3.1 Parameters of Crab Cavity (CC) Model

Parameter Symbol Value
Half crossing angle 𝜃𝑐 25 [mrad]
CC wave number 𝑘𝑐
Transverse Beta Function 𝛽cc 1300 [m]
at CC
Transverse Beta Function 𝛽IP 90 [cm]
at IP
Transverse Position RMS 𝜎𝑥 120 [𝜇m]
Longitudinal Position RMS 𝜎𝑧 7 [cm]
Longitudinal Momentum 𝜎𝑝𝑧 6.6 × 10−4

Deviation RMS
Integrated Quadrupole 𝑏2 0 [1/m]
Strength
Integrated Sextupole 𝑏3 500,000 [1/m2]
Strength
Synchronous Phase 𝜙𝑠 0
Beam Energy 𝐸 275 [GeV]
RF Voltage 𝑉rf 15.8 [MV]
RF Frequency 𝑓rf 591 [MHz]
Harmonic Number ℎ 7560
Momentum Compaction 𝛼𝑐 1.5 × 10−3

Factor
Linear Tunes 𝜈𝑥/𝜈𝑧 0.310 / 0.015
(Transverse / Longitudinal)
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Figure 3.15 Frequency map (a) and tune map (b) of the crab cavity crossing at the EIC using the
parameters in Table 3.1.

do not expect due to the lack of coupling. FMA does not show any coupling either. This would

suggest that this 𝑚 = 7 resonance is most likely a numerical effect from the iteration method. More

specifically, this could be that during one of the iterations, the predicted tunes land very close to

this resonance. This would cause the corresponding Fourier component to explode as being close

to a resonance gives a near zero denominator when we update it. I would also think this is why we

see the lines in Fig. 3.19. But this wouldn’t necessarily discount their appearance in Fig. 3.16 as

the color scales are different.

Figure 3.15(a) shows instability near the corners where we see the 𝑚 = 5, 6 resonances in

Fig. 3.16(a). This could mean that the instabilities we see in the frequency map are caused by the
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Figure 3.16 Convergence map (a) and tune map (b) of the crab cavity crossing at the EIC using the
parameters in Table 3.1.

Figure 3.17 Area where we see an increase in the longitudinal tunes compared to the linear tune
from Fig. 3.16.

resonance lines that are more clearly shown in the convergence map. Since resonances appear more

clearly in the convergence maps, the iteration method could be useful for finding resonances that

FMA does not show as clearly.

The shape of the tune space in Fig. 3.18(b) shows that the increase in the longitudinal tunes, as
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Figure 3.18 Convergence map (a) and tune map (b) with a time independent sextupole and no crab
cavity.

Figure 3.19 Convergence map using the parameters in table 3.1 but with no sextupole (𝑏3 = 0).

well as the curved horizontal and longitudinal tune boundary we see on the right in Fig. 3.15(b),

are due to the coupling caused by the crab cavity. The crab cavity also seems to strengthen the

resonances discussed previously.
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3.5 Discussion

The iterative method has proven to be able to analyze the crab cavity crossing at the Electron

Ion Collider. It has identified similar tune shifts as FMA such as the increase in longitudinal tune

caused by the crab cavity. It has also identified resonances encountered due to tune shifts caused by

the crab cavity and its time dependent sextupole. Some of these resonances seem to coincide with

areas where FMA shows instability. Future work to analyze the full 6-D phase with this method is

being conducted.
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CHAPTER 4

MACHINE LEARNING APPROACH

4.1 Koopman Operator

Data-driven methods have become helpful in analyzing accelerator systems. This data can be

obtained through repeated iterations of a mathematical model of a lattice or through beam position

monitor measurements on an actual beam. Koopman operators [30] are a tool that benefits from

these data-driven techniques. Here, we plan to leverage the Koopman operator so that we can

leverage turn-by-turn tracking data in order to calculate the frequencies of different particles and

relate them to constants of motion. These insights can provide possible long-term information

about the system by identifying resonances and unstable regions of the phase space.

The Koopman operator is a method for simplifying a phase space. What Koopman described

was that for a nonlinear dynamical system, one can represent the evolution of the measurables of

that system as a linear operator acting on all possible measurables of that system. This means that

the linear space that this exists in has infinitely many degrees of freedom [31]. It is therefore useful

to find some finite approximation of this operator. We can do this by finding an invariant subspace

spanned by a finite number of eigenfunctions of the Koopman Operator. If we can find a set of

eigenfunctions that, when acted on by the Koopman operator, remain in that same subspace, then

this is an invariant subspace and the dynamics will be linear [30].

The Koopman theory applies to both continuous and discrete dynamical systems, but since our

research focuses on the analysis of the transfer map, we will only discuss the latter. If we define

our discrete system as

X𝑘+1 = F(X𝑘 ). (4.1)

X ∈ R𝑛 (4.2)

F : X → X (4.3)

where F is the operator that represents our discrete map, sometimes referred to as a flow map
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operator. We have a vector 𝑔 that is a set of measurement functions of the state vector X. The

Koopman operator K is then

K𝑔(X) = 𝑔(𝐹 (X). (4.4)

K : 𝑔(X) → 𝑔(X) (4.5)

𝑔 : X → C (4.6)

If 𝑔 is a linear vector space of functions, Equation 4.6 shows that the Koopman operator must

be a linear operator.

K(𝑎1𝑔1(X) + 𝑎2𝑔2(X)) = 𝑎1𝑔1(𝐹 (X)) + 𝑎2𝑔2(𝐹 (X)) (4.7)

= 𝑎1K𝑔1(X) + 𝑎2K𝑔2(X). (4.8)

To begin our approach to using the Koopman operator to simplify our phase space, it can be

helpful to try to find eigenfunctions of the operator. That is, 𝜑 is an eigenfunction of K if it satisfies

𝜑(X𝑘+1) = K𝜑(X𝑘 ) = 𝜆𝜑(X𝑘 ) (4.9)

where 𝜆 is its corresponding eigenvalue. So if we want to simplify our phase space using Koopman

theory, we should look to find these eigenfunctions of the Koopman operator as they evolve linearly

based on the dynamics of our nonlinear system. These functions and their eigenvalues can provide

insight into the properties of the system, similar to how we gain information from the eigenvalues

and eigenvectors of linear systems.

We then aim to construct a neural network to approximate an encoder that represents an

eigenfunction 𝜑 𝑗 with an eigenvalue of exp (2𝜋𝜈 𝑗 ) and its associated properties.

𝜑 : R2𝑚 → C2𝑚 (4.10)

W𝑛 = 𝜑(X𝑛) (4.11)
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W𝑛+1 =

©­­­­­­­­­­­­«

𝑒2𝜋𝑖𝜈1 0 . . . 0

0 𝑒−2𝜋𝑖𝜈1 . . . 0
...

. . . . . .
...

0 . . . 𝑒2𝜋𝑖𝜈𝑚 0

0 . . . 0 𝑒−2𝜋𝑖𝜈𝑚

ª®®®®®®®®®®®®¬
W𝑛 (4.12)

where 𝑚 is the number of spatial dimensions in the system and the matrix in equation 4.12 is

diagonal. Note that each pair of coordinates in W is a complex conjugate pair. In practice, this

turns 2𝑚 real coordinates into 𝑚 complex coordinates, where the real part is position-like and the

imaginary part is momentum-like coordinate.

To find the representation of the encoder, we construct the following neural network 4.1. The

data on which the network will be trained are discrete data from some Poincaré map. This can be

turn-by-turn data from an accelerator, modeled or experimental, or iterations of some other discrete

nonlinear mathematical map, i.e., the Standard map, Henon map, etc. When the model acts on a

phase space coordinate, it is passed to two distinct models: one is a traditional neural network that

predicts the particle’s frequency, and the other is a symplectic neural network that represents the

approximate eigenfunction. The output of the frequency model 𝑟𝑖 for each spatial dimension 𝑖 is

passed through 4.13. After the transformation and tune prediction, the coordinates are rotated by an

angle of 𝜈𝑖 times 2𝜋 in the 𝑤𝑖 plane for each dimension. Then, the inverse of the encoder is applied,

which should result in the coordinates after one turn or iteration from the starting coordinates.

𝜈𝑖 = 1 − 1
1 + 𝑒𝛼𝑟𝑖 , with 𝑟𝑖 ∈ (−∞,∞), 𝜈𝑖 ∈ (−1, 1) (4.13)

where 𝛼 ≤ 1 is a hyper-parameter to give the function a smaller slope.

To obtain a symplectic transformation for the encoder, we implemented linear and activation

layers called SympNets [4]. Equations 4.21 and 4.23 show examples of these symplectic network

layers. 𝑎 is an unbounded parameter of the diagonal of an 𝑚 × 𝑚 matrix and 𝑆 𝑗 are 𝑚 × 𝑚

symmetric matrices, where 𝑚 is the number of spatial dimensions and 𝑝 and 𝑞 are 𝑚 × 1 vectors

with momentum and position data respectively.
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Previous attempts at finding this encoder with neural networks have been made. Our structure is

similar to that of Lusch et al. [3]. The key difference in ours is the use of symplectic neural networks

in the encoder. This is a reasonable approach because the encoder is unitary in Hamiltonian systems

[30]. That condition will be met by the symplectic condition, which the structure of the SympNets

enforces despite having unbounded network parameters. This means no additional terms are needed

in the loss function to maintain symplecticity, which are required when using traditional neural

networks. The layers also use significantly fewer parameters than a traditional network. This

naturally increases the network training speed. The structure of SympNets also gives an exact

inverse for each layer. For our network, this means that we do not need additional network layers for

the inverse of the Koopman operator, which is used during training. Traditional networks trying to

find Koopman operators must include extra layers for the inverse and add a term to the loss function

to encourage those layers to approximate an inverse, which likely will not be exact. The following

sections will discuss the details of the SympNet structure and loss function used.

4.2 The Problem Setup

We tested the network on two different 2-D nonlinear maps, the Standard map and the Octopole

McMillan map. The Octopole McMillan map is integrable, so we expect the model to be able to

find an action for the entire phase space [32]. On the other hand, the standard map is not integrable,

so there is no constant of motion for the entire phase space. Nevertheless, we aim to find a local

action that is approximately constant for a range of amplitudes. The Standard map is described by

the following:

𝑝𝑛+1 = 𝑝𝑛 + 𝐾 sin 𝜃𝑛 (4.14)

𝜃𝑛+1 = 𝜃𝑛 + 𝑝𝑛+1

where 𝜃 is then acted on by modulus 2𝜋. The Octopole McMillan map [32], which will be called

the McMillan map for simplicity, is described by the following:
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𝑞𝑛+1 = 𝑝𝑛 (4.15)

𝑝𝑛+1 = −𝑞𝑛 −
2𝜖 𝑝𝑛
𝑝2
𝑛 + 𝜆

We are seeking a transformation of variables through the encoder, which has the following

properties:

𝜑 : R2 → C2 (4.16)

W = 𝜑(X) (4.17)

W𝑛+1 =
©­­«
𝑒2𝜋𝑖𝜈 0

0 𝑒−2𝜋𝑖𝜈

ª®®¬ W𝑛 (4.18)

where X ∈ R2 is the original phase space coordinates and 𝜈 ∈ [0, 1] is the betatron tune of the

system.

Since many nonlinear systems that describe accelerators are non-integrable, no transformation

can perfectly transform the entire phase space into a pure rotation. In this case, however, the

McMillan map is integrable, so a true constant of motion exists. But in general, for near-integrable

systems, we can find a transformation that gives an approximate constant for some fraction of the

phase space.

4.3 Network Setup

4.3.1 Data

The models in the following sections had a similar process for preparing the data to be used

in the model. Multiple orbits from a range of initial amplitudes were selected and tracked for

a number of turns. In a practical accelerator, this could be data from a beam position monitor,

but in our case, simulations were used. So we have 𝑚 particles tracked for 𝑛 turns. Each phase

space coordinate belonging to the same initial condition will be denoted with a superscript and

each turn will be denoted with a subscript. So ®𝑥 𝑗
𝑖

is the 𝑖th turn of the 𝑗 th particle. Each training

vector, ®𝑣, will hold a subset of consecutive phase space coordinates belonging to the same initial
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condition. For example, the collection of 𝑙 phase space coordinates from the 𝑗 th initial condition,

(®𝑥 𝑗
𝑖
, ®𝑥 𝑗
𝑖+1, ®𝑥

𝑗

𝑖+2, . . . , ®𝑥
𝑗

𝑖+𝑙), would be organized as

®𝑣𝑘 =

©­­­­­­­­«

®𝑥 𝑗
𝑖

®𝑥 𝑗
𝑖+1

. . .

®𝑥 𝑗
𝑖+𝑙

ª®®®®®®®®¬
(4.19)

The output from the training vector in Equation 4.19 would be all the same phase space

coordinates one turn later, i.e.

®̃𝑣𝑘 =

©­­­­­­­­«

®𝑥 𝑗
𝑖+1

®𝑥 𝑗
𝑖+2

. . .

®𝑥 𝑗
𝑖+𝑙+1

ª®®®®®®®®¬
. (4.20)

The way to select 𝑙 will become apparent in the next section describing the model structure as

well as why the training vectors are groups of phase space coordinates instead of the individual

points.

4.3.2 Model

Similar to a traditional neural network, the Koopman operator network consists of a series of

linear and activation layers. The layers are split into three main sections, one is the encoder which

aims to find the transformation from the phase space of the tracking data into a space where the

motion is a pure rotation. The second is the frequency layers, which aim to predict the frequency

of the pure rotation. They are composed of traditional network layers as the symplectic condition

is not needed. Then there is the decoder, which aims to be the inverse of the encoder.

Using SympNets[4] versions of these layers instead of the traditional ones gives a few advan-

tages, one being that the transformation found in training obeys the symplectic condition required

for Hamiltonian systems. Another is that due to the configuration of these layers, an exact inverse of

the encoder can be systematically constructed from the weights of the layers. This means that there
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Figure 4.1 An illustration of a 4-D representation of the neural networks that were used.The encoder
is our representation of the Koopman operator’s eigenfunctions. The Linear section applies the
Koopman operator with eigenvalues from the Linear parameters. The decoder is the inverse of our
eigenfunctions.

is no need to have additional network layers to create a decoder, which would slow training, and

there are no approximate methods needed to decode the data either. Figure 4.1 shows an example

of this structure in 4-D.

Equations 4.21 and 4.23 show examples of a SympNet upper linear layer of size 𝑛 and a lower

activation layer with function 𝜎. 𝑎 is an unbounded parameter of the diagonal of a 𝑚 × 𝑚 matrix

and 𝑆 𝑗 are symmetric 𝑚 × 𝑚 matrices, where 𝑚 is the number of spatial dimensions and 𝑝 and 𝑞

are 𝑚 × 1 vectors with momentum and position data, respectively. For our models, the encoder was

composed of a lower linear layer, an upper activation layer, an upper linear layer, a lower activation

layer, and an upper linear layer.

The frequency is retrieved from a traditional network comprised of a linear layer to go from

2 input parameters to 100 output parameters, a hyperbolic tangent activation layer, another linear

layer with 100 inputs and outputs, another hyperbolic tangent activation layer, and a final linear

layer to go from 100 inputs to 1 output. This one output is the parameter 𝑟, which is then put into

equation 4.13 where 𝛼 is some predefined hyperparameter of the frequency model, 0.25 in our case.

This ensures that the unbounded output 𝑟 always gives a unique tune, 𝑄, between 0 and 1.
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Lup
𝑛 =

©­­«
𝐼 0/𝑆𝑛

𝑆𝑛/0 𝐼

ª®®¬ . . .
©­­«
𝐼 0

𝑆2 𝐼

ª®®¬
©­­«
𝐼 𝑆1

0 𝐼

ª®®¬
©­­«
𝑝

𝑞

ª®®¬ (4.21)

©­­«
𝐼 𝑆

0 𝐼

ª®®¬
−1

=
©­­«
𝐼 −𝑆

0 𝐼

ª®®¬ (4.22)

N low ©­­«
𝑝

𝑞

ª®®¬ =
©­­«

𝑝

diag(𝑎)𝜎(𝑝) + 𝑞

ª®®¬ (4.23)

(
N low

)−1 ©­­«
𝑃

𝑄

ª®®¬ =
©­­«

𝑃

𝑄 − diag(𝑎)𝜎(𝑃)

ª®®¬ (4.24)

4.3.3 Training

With the training vectors as described in the previous section, the way the input vector ®𝑣𝑘 passes

through the model is that each phase space vector will be individually transformed by the encoder.

This encoder acts as the eigenvector of the Koopman operator.

𝜑̃(®𝑣𝑘 ) =

©­­­­­­­­«

𝑤
𝑗

𝑖

𝑤
𝑗

𝑖+1

. . .

𝑤
𝑗

𝑖+𝑙

ª®®®®®®®®¬
≡ ®𝑉𝑘 . (4.25)

where 𝑤 𝑗

𝑖
is the coordinate of the complex phase space ®𝑥 𝑗

𝑖
after being transformed into the

transformed phase space, where ideally the motion is a rotation from one turn to the next. The real

and imaginary components of 𝑤 𝑗

𝑖
correspond to the two phase space dimensions in ®𝑥 𝑗

𝑖
. As such,

these transformed coordinates will all rotate by an angle given by the frequency layers after the

coordinate is passed into it. So ®𝑥 𝑗
𝑖

will be passed into the frequency layers and given some tune𝑄 𝑗

𝑖
.

Then the corresponding transformed phase space coordinate is rotated by that angle
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®𝑤′ 𝑗
𝑖+1 = 𝑒2𝜋𝑖𝑄 𝑗

𝑖 ®𝑤 𝑗

𝑖
(4.26)

where the prime denotes that it is an approximation, not the actual value of ®𝑥 𝑗
𝑖+1 after passing

through the encoder. So, the phase space vector ®𝑉𝑘 then becomes ®𝑉 ′
𝑘

where

®𝑉 ′
𝑘 =

©­­­­­­­­«

𝑤
′ 𝑗
𝑖+1

𝑤
𝑗

𝑖+2

. . .

𝑤
𝑗

𝑖+𝑙+1

ª®®®®®®®®¬
. (4.27)

The decoder is applied to all transformed phase space coordinates of ®𝑉 ′
𝑘
. This gives us our

output vector ®𝑣′
𝑘
, not to be confused with ®̃𝑣𝑘 ,

®𝑣′𝑘 = 𝜑
−1( ®𝑉𝑘 ) =

©­­­­­­­­«

®𝑥′ 𝑗
𝑖+1

®𝑥 𝑗
𝑖+2

. . .

®𝑥 𝑗
𝑖+𝑙+1

ª®®®®®®®®¬
. (4.28)

The mean square error between the approximated one turn through the map, ®𝑣′
𝑘
, and the actual

one turn through the map, ®𝑣𝑘 ′ , is one of the components of our loss function. The rest of the

components of the loss model are described in the following section.

4.3.4 Loss Function

Defining the loss function is a critical part of finding the Koopman Operator. We want to model

to find its own frequencies and constants in the transformed phase space, as opposed to training

them on values from NAFF, as this would defeat the purpose of this being a different approach not

dependent on the other methods discussed. So we want our loss function to train our model on

the properties of the transformed phase space, not any actual values. This is why we grouped the

training vectors.
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There are three main features of our loss function. The first part is the MSE Loss from the

tracking data. This is included to ensure that the rotation in our phase space corresponds to one

iteration of the map. This is defined as

MSE = |®𝑣′𝑘 − ®̃𝑣𝑘 |2. (4.29)

The second property we want to ensure is that all particles on the same KAM torus have the

same amplitude in the transformed phase space. Since each component of the vector ®𝑉𝑘 is from the

same orbit, the second component of our loss function corresponds to the variation in the amplitude

of each component.

VAR = Var
(
| ®𝑉𝑘 |

)
(4.30)

where

| ®𝑉𝑘 | ≡

©­­­­­­­­«

|𝑤 𝑗

𝑖
|

|𝑤 𝑗

𝑖+1 |

. . .

|𝑤 𝑗

𝑖+𝑙 |

ª®®®®®®®®¬
(4.31)

The third property is a constant frequency for the rotation of all particles on the KAM torus.

So for each component of ®𝑉𝑘 we define an angle 𝜃𝑚 such that

𝜃𝑚 = −𝑖 log
(
𝑤𝑚+1

𝑤𝑚

)
. (4.32)

Then we define ®Θ as

®Θ =

©­­­­­­­­«

cos 𝜃𝑖

cos 𝜃𝑖+1

. . .

cos 𝜃𝑖+𝑙−1

ª®®®®®®®®¬
(4.33)
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and the component of our loss function is the variance of each component of ®Θ.

TUNE = Var
(
®Θ
)

(4.34)

We then need to combine the values of Equations 4.29, 4.30, and 4.34 into one loss value. The

important part to note when doing this operation is that the values of each component could be

very different in magnitude. So we first normalize each component. But when we normalize the

components, it is important to still retain the gradient calculated with PyTorch so that the gradient

descent operation can still be performed and the model can be trained. So, the operation is

Loss =
3∑︁
𝑖

𝐿𝑖

𝐿̃𝑖
(4.35)

where 𝐿𝑖 is one of the loss components, and 𝐿̃𝑖 is that same loss component, but detached from the

gradient [33]. So while the values of 𝐿𝑖 will be 1, they will each have different non-zero gradients

that will train the model parameters.

4.4 Standard Map

We begin with the standard map shown in Equation 4.14 using𝐾 = −1/2. The negative is so that

the map has a stable fixed point at 𝑞 = 0. The model was trained on 15 orbits with 𝑞 ∈ [10−3, 1.2]

for 2× 109 iterations. Figure 4.2 (a) shows multiple orbits in the standard map phase space. Figure

4.2 (b) shows the same orbits after being acted on by the encoder. It is easy to see that the dynamics

in the Koopman space are much closer to linear. The amplitudes are plotted by turn in Figure 4.4,

which shows a clearer picture of this effect. Ideally, the line width would be zero, but we can see

the variations in the constant of motion increasing with amplitude.

Figure 4.5 shows the amplitude from the encoder turn by turn compared to the action from the

C-S parameters (Equation 1.119). We can see that the variance is greatly reduced by the encoder,

meaning our Koopman operator is close to linear. This would again suggest that our encoder is an

accurate approximate eigenfunction of the Koopman operator.

However, looking only at the amplitudes does not give the full picture of the reduction in

nonlinearity. We can instead look at polar plots of the motion, Figures 4.6 and 4.7. The amplitude
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(a) (b)

Figure 4.2 The phase space of the standard map with K = X (a) and the same phase space after
being passed through the encoder to the Koopman subspace (b).

Figure 4.3 The tune shift with amplitude calculated from NAFF (blue) and the model (orange). In
red are the model’s predictions during previous epochs, getting lighter the older the epoch.

of these plots is naturally the action, and the angle we place them is the change in phase from

one turn to the next. Recall that when we characterize the Hamiltonian in terms of action-angle

variables, it becomes

𝐻 (𝐽, 𝜙) = 𝐻0(𝐽) + 𝐻1(𝐽, 𝜙) = 𝐽𝜈 + 𝐻1(𝐽, 𝜙) (4.36)

where 𝐻0 is our linear Hamiltonian and 𝐻1 is the nonlinear component. We find from Hamilton’s

equations of motion

77



Figure 4.4 The amplitude of the motion of the standard map in the Koopman subspace.

Figure 4.5 The amplitude of the motion of the standard map in the C-S formalism (blue) vs the
same orbits in the Koopman subspace (red).

𝜕𝐻

𝜕𝐽
= ¤𝜙 = 𝜈 + 𝜕𝐻1

𝜕𝐽
(4.37)

𝜕𝐻

𝜕𝜙
= − ¤𝐽 = 𝜕𝐻1

𝜕𝜙
(4.38)

that nonlinearity will give us an action smear (Equation 4.38) and tune shift (Equation 4.37). When

we plot linear motion like this, we would see that each orbit is on a single point because there is no

tune shift or action smear. In Figures 4.6 and 4.7, we can see a clearer picture of how the encoder

reduces nonlinearity by reducing these hallmarks of nonlinearity. With Figure 4.6 showing the

comparison to the C-S action-angle variables and the encoder for each orbit in each plot, and Figure
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Figure 4.6 Orbits of the standard map plotted by action vs change in phase comparing the C-S
formalism (blue) to the Koopman subspace (red).

4.7 showing those same points collectively for the C-S and the encoder in each plot.

4.5 McMillan Map

For the McMillan map, the network had the same structure as the standard map. The parameters

for the map were 𝜆 = 1 and 𝜖 = 0.1, and the model was trained on 15 orbits with 𝑞 ∈ [10−3, 1.2]

for 2 × 109 iterations. Figure 4.8 (a) shows the original orbits in the phase space and (b) shows the

same orbits after passing through the encoder. We see similar reductions in the nonlinearities in

the McMillan map as we did for the Standard map. However, the model did not do as well for the

McMillan as it did for the standard map.

This could be due to the sharper angles in the phase space of the McMillan map, compared to
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Figure 4.7 Orbits of the standard map plotted by action vs change in phase in the C-S formalism
(blue) and the Koopman subspace (red).

the smoother, more elliptical shapes of the Standard map as shown in Figure 4.2 (a) and 4.8 (a). We

can also see in Figure 4.13 that the C-S parameters seem to fold over and create a concave feature

that gets more exaggerated at larger amplitudes. The model may have more difficulty treating

irregular features such as this. It is possible that more layers would be needed to resolve features

such as these.

4.6 Frequency Prediction

The frequency model is a traditional network. In order to train the frequency prediction and

operator transformation at the same time, we first assume that the tune is the linear tune and

does not change with amplitude. This assumption is fairly accurate at smaller amplitudes. The
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(a) Orbits in the phase space of the McMillan map. (b)

Figure 4.8 The phase space of the McMillan map (a) and the same phase space after being passed
through the encoder to the Koopman subspace (b).

Figure 4.9 The tune shift with amplitude for the McMillan map calculated from NAFF (blue) and
the model (orange). In red are the model’s predictions during previous epochs, getting lighter the
older the epoch.

first third of epochs, when training the model, assumes a constant tune. This allows the coordinate

transformation to get closer to the desired solution and be closer to the identity at smaller amplitudes.

Afterward, we allow the frequency model to begin to make changes to the tune; there is no change

to the loss function. The frequency model will predict a tune shift and add that to the linear

tune in the training. This network structure predicted a tune shift with amplitude close to that

calculated by turn-by-turn tracking and NAFF. However, unlike previous versions of this network,

as discussed at IPAC 2024, this model did not use any NAFF data [26]. This could suggest that a
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Figure 4.10 The amplitude of the motion of the standard map in the Koopman subspace.

Figure 4.11 The amplitude of the motion of the standard map in the C-S formalism (blue) vs the
same orbits in the Koopman subspace (red) plotted by turn.
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Figure 4.12 Orbits of the standard map plotted by action vs change in phase comparing the C-S
formalism (blue) to the Koopman subspace (red).

4-D implementation of this model could find a similar tune map as NAFF.

While the model produces a similar curve and value to the NAFF data when looking at average

predictions over a single orbit, it shows increasing variance as the amplitude grows (Figures 4.9 and

4.3). This makes sense in that the nonlinearities increase with amplitude, so should the instabilities

in the tune, like we see in FMA. It is also possible that middle amplitudes have the benefit of data

on both sides of their amplitude, whereas the larger portions only have data below their orbits. So,

one might expect that these variances would decrease if pushed to larger amplitudes with more

orbits.
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Figure 4.13 Orbits of the standard map plotted by action vs change in phase in the C-S formalism
(blue) and the Koopman subspace (red).

4.7 Errors in Tracking

With the data that can be collected from beam position monitors in accelerators, it is natural to

ask if this method could withstand errors in the measurements of the particle positions in the phase

space. Up to this point, we have used toy models where the accuracy of our tracking is known to

machine precision.

To begin to answer this question, we can introduce random errors to our training and test data.

Random errors from a Gaussian distribution centered at zero with a standard deviation of 1 were

selected, then multiplied by 10−1 and added to the data for the standard map before training as

previously described.
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Figure 4.14 The phase space of the Standard map (a) and the same phase space after being passed
through the encoder to the Koopman subspace in the noisy model (b).

Unsurprisingly, this leads to larger variances in the constant as shown in Figure 4.16. However,

these are still more linear than the C-S parameters, which we can see in Figures 4.17, 4.18, and

4.19. Figure 4.15 shows the main issue: the model tune shift no longer matches the curve from

NAFF. However, it mostly doesn’t match at the ends of the curve, so this could be the middle of

the curve, benefiting from having data on both sides of its amplitudes, like we discussed before.

So this could be mitigated with more data at larger amplitudes. An important note to make for

this study, though, is that while the data is noisy, the C-S parameters are essentially known. Errors

when calculating the C-S parameters from BPM data could increase the errors. Nevertheless, this

seems to show that the solution gained from the model can be robust to errors and more likely to

converge on some fundamental properties of the system.

4.8 Discussion

What we have shown is that eigenfunctions of the Koopman operator can be calculated from

nonlinear dynamical systems using symplectic neural networks. The use of SympNets in the neural

networks reduces the number of parameters needed, which reduces the time and computations

required to train the network. The eigenvalues of these eigenfunctions contain the betatron tunes

of the dynamical systems, which show similar tune shifts with amplitude as NAFF does. Future

work needs to be done to find how many parameters need to be used to cover a larger area, as well

as account for amplitude dependencies in the transformation. It appears that while this number of
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Figure 4.15 The tune shift with amplitude calculated from NAFF (blue) and the model (orange). In
red are the noisy model’s c

Figure 4.16 The amplitude of the motion of the standard map in the noisy Koopman subspace.

parameters may be adequate to predict a small range of amplitudes, a more complicated network

would be needed to cover a larger area of amplitudes.
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Figure 4.17 The amplitude of the motion of the standard map in the C-S formalism (blue) vs the
same orbits in the noisy Koopman subspace (red) plotted by turn.
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Figure 4.18 Orbits of the standard map plotted by action vs change in phase comparing the C-S
formalism (blue) to the noisy Koopman subspace (red).
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Figure 4.19 Orbits of the standard map plotted by action vs change in phase in the C-S formalism
(blue) and the noisy Koopman subspace (red).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Problem Summary

The purpose of this thesis was to study the long-term dynamics of nonlinear systems in particle

accelerators. For 2-D Linear Hamiltonian systems, we can find action-angle variables through

Courant-Snyder parameters. In the 4-D case, we begin to encounter linear coupling, which can

be treated through Edward-Teng parameterization. In accelerators, these describe systems that

use dipole magnets and quadrupole magnets. When we introduce sextupole magnets, we enter

nonlinear dynamics. These nonlinear dynamics introduce resonance and chaotic effects that can

cause instability and beam loss during the operation of circular accelerators.

We can attempt to describe the system’s dynamics using Poincaré maps and perform brute-

force, turn-by-turn particle tracking to find these instabilities. This can work for beams with strong

damping from synchrotron radiation, such as electron storage rings. But systems without that, such

as hadron rings, can be lost after millions of turns or longer. This creates an unfeasible amount

of computations needed to calculate the long position. It is therefore necessary that we develop

methods to analyze the long-term information from these nonlinear systems.

We discussed some treatments for these, such as perturbation theory, Lie operators, and normal

form. These perturbative methods can be helpful but require tedious order-by-order calculations,

and any changes to the lattice would require them to be redone. We can instead leverage some turn-

by-turn tracking with frequency map analysis (FMA). This method uses a number of turns to find

the frequencies of particles at the beginning and end of the tracking using the numerical analysis

of fundamental frequencies algorithm (NAFF). KAM theory tells us that for linear Hamiltonian

systems, particle motion will be bounded to the surface of a torus and have stable frequencies

that trace them out. But when perturbations are applied to that system, some of the tori will be

destroyed and create chaotic regions, but others will be warped and survive. We can then use the

stabilities of the frequencies calculated to gain insight into the long-term stability of the particle;

unstable frequencies could imply unstable orbits. The FMA maps are helpful to find resonances
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in the phase space and chaotic regions, but they still rely on turn-by-turn tracking, which can have

compounding errors if the map is inaccurate and possibly falsely identify stable regions as unstable.

It is worthwhile to identify other methods to gain this long-term information from a system.

5.2 Conclusions and Future Work

5.2.1 Iterative Method

The iterative method developed provides such a possible method [2]. The method starts with a

sample of particles that form a circle in phase space. We assume a transformation that can change

these coordinates from the real phase space into one where the dynamics are that of rigid rotations

by constant frequencies (Equations 3.38 and 3.39). That transformation is calculated by examining

how that transformation would change after one turn (Equations 3.40 and 3.41) and relating each

of those terms to the map (Equations 3.44 and 3.45). Then the initial condition determines the

0th-order component. This can be repeated until it converges to a solution. The convergence is then

used as an indicator to create convergence maps similar to FMA, see Figures 3.9 and 3.10. This

thesis described how we expanded this method from 2-D phase spaces to 4-D phase spaces. This

needed to take into account how the transformations now had multiple variables and the coordinates

were coupled.

We used action angle variables from the Square Matrix Method (SMM) to smooth the map on

the RHS of equations 3.40 and 3.41. We can see, comparing this to Figure 3.5 to Figure 3.6, that

this is a great improvement from using the square matrix on its own. We can see from Figure 3.8

that the SMM also improves the area of convergence for the iterative method.

We can see that by comparing the convergence maps to their FMA counterparts, we see similar

resonance structures. We also see that the convergence method can be sensitive to resonances

because of the small denominator problem seen in Equations 3.44 and 3.45. This shows that the

convergence map is a practical tool that can be used to identify resonances and phase space for

dynamic aperture calculations like the frequency method.

Future work would be to expand this method to a full 6-D phase space. This would introduce

new challenges to include the longitudinal dynamics, as we would encounter more synchro betatron
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resonances. Further work could also be done applying the method to more practical maps to further

describe what phase space features can be found with the method.

5.2.2 Machine Learning Methods

With beam position monitors in accelerators, it is possible to collect particle tracking data from

accelerators. NAFF can be used to find frequencies in this data and create frequency maps, but

we could also leverage this data in machine learning models to find frequencies and constants of

motion. One approach is the idea of the Koopman operator. It was shown by Koopman in 1931

that observables of a nonlinear Hamiltonian dynamical system can be described by the evolution

of a linear operator, the Koopman operator, in an infinite-dimensional phase space. It is trading the

finite nonlinear dynamical system for a linear infinite-dimensional one. The difficulty is finding a

transformation to this space and describing it in a useful but truncated form. An idea to do that

is to find eigenfunctions of the Koopman operator. The nature of eigenfunctions would mean that

the evolution of the eigenfunctions would remain in a finite subspace of the Koopman operator

phase space and evolve by multiplying a constant eigenvalue. We then aim in our systems to

find an eigenfunction whose eigenvalue corresponds to a rigid rotation in the Koopman operator

phase space. The amplitude of these functions would be an invariant, and the frequencies would

correspond to the fundamental frequencies of our system. Not all systems have invariants, however,

as we have shown, approximate invariants can be found in local regions of the phase space of these

systems in some cases.

The transformation to this eigenfunction is described as an encoder; the loss functions are

structured to capture a few properties. One being that the transformation is symplectic, meaning

it preserves area and Hamiltonian equations of motion. This would also ensure that any invariants

are preserved in the transformation. They also must ensure that the dynamics after the encoder are

linear. Figure 4.1 shows an example of the structure of our network for this case.

Current approaches also require the models to train separate parameters for the decoder that

inverts the encoder. What we have shown is that by using symplectic neural networks (SympNets)

we can improve the efficiency when training these networks. The SympNets naturally preserve the
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symplectic condition, and their inverse is exactly known. By using these in our encoder, we remove

the need for a separate decoder to train, we remove the need for the symplectic condition to be

included in the loss function, and we require fewer parameters than a traditional network. These

factors improve the efficiency of training the networks.

We have shown that this method is able to find transformations to approximately linear spaces

in the in am integrable system, the Octupole McMcllan map, see Figure 4.8 as well as find a similar

action-dependent tune shift as NAFF, see Figure 4.9. We have also shown that this method is able

to find transformations to approximately linear spaces in a non-integrable system, the standard map,

see Figure 4.2, as well as find a similar action-dependent tune shift as NAFF, see Figure 4.3. Future

work is needed to expand the study to 4-D and 6-D phase spaces. There could also be more work

done in finding the minimum number of parameters needed to approximate these eigenfunctions.
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