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ABSTRACT

Nuclear data that are well-characterized and accurate are pertinent not only in nuclear

science, where experimental efforts exist to measure known quantities to higher degrees of

accuracy and measure unknown properties of nuclear systems, but also for applications that

rely upon such data for performance metrics, material interrogation, and more. Unfortu-

nately, a wide variety of impactful nuclear reaction data, even for stable nuclei such as carbon,

is scarce. One property of carbon that is lacking data is the neutron elastic scattering cross

section in the fast neutron regime (starting at ≈ 1 MeV) which is a dominant contributor

to neutron transport in carbon-rich materials.

An experimental measurement of the elastic scattering cross section of 12C was accom-

plished using the CoGNAC (Correlated Gamma-Neutron Array for sCattering) detector

system at the WNR (Weapons Neutron Research) Facility at LANSCE (Los Alamos Neu-

tron Science Center). The white (continuous) neutron source available at LANSCE allows

for a range of incident neutron energies to be simultaneously measured for incident energies

above 1 MeV. The presented measurement utilizes the 252Cf PFNS (Prompt Fission Neutron

Spectrum) standard to allow for a data-driven analysis, independent of simulation, to be

accomplished.

The 12C(n, el) integrated cross section, differential angular cross section, and emitted

neutron angular distributions were measured along with detailed uncertainty quantification

and covariances in the incident neutron energy range of Einc
n = 0.85 – 7 MeV.
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CHAPTER 1

INTRODUCTION & BACKGROUND

The nuclear landscape spans a myriad of nuclei with varying decays, shapes, masses, and

nucleon configurations. These nuclei are a fundamental “building-block” of the universe and

understanding the nature of nuclear properties can yield valuable information about one of

the smallest forms of matter. How these differing nuclei interact with each other through

nuclear reactions can help inform complicated processes such as stellar formation, nuclear

medicine, and national security applications. Nuclear reactions are a fundamental component

to nuclear science studies that allow for properties of the nucleus to be transformed and

probed through the interaction between nucleons: neutrons and protons. In particular, how

neutrons interact with nuclei and with what probability, is the main underlying theme that

is explored in this dissertation work. The measurement of a cross section, the probability of

a given reaction to occur, can inform the scientific community that rely upon such data.

1.1 Scattering Theory

In a typical reaction experiment, one measures particles over a given amount of time,

known as the reaction rate. This quantity is proportional to the flux, Φ, defined as the

rate of the incident particles, the target density n (the number of target particles in a given

volume), and the probability σα that a desired reaction α occurred (the cross section) [1, 2,

3]. The reaction rate Nα is given by

Nα = Φnσα , (1.1)

and solving for the cross section produces

σα =
Nα

Φn
. (1.2)

Measuring the number of events at a given angle using a detector with a solid angle ∆Ω, the

differential angular cross section for reaction α is defined to be

dσα
dΩ

=
Nα

Φn

1

∆Ω
. (1.3)
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Integrating Equation 1.3 over all scattering angles results in the the integrated cross section

σα =

∫
dσα
dΩ

dΩ , (1.4)

with the differential solid angle dΩ being expressed as sin(θ)dθdφ where θ is the scattering

angle made with respect to the incident particle axis and the outgoing scattered particle,

ranging from 0 – 180◦, and φ is the azimuthal angle ranging from 0 – 360◦. This formalism

provides the framework for which one is able to measure a reaction of interest. For the

present work, the reaction of interest is the neutron elastic reaction (n, el), also referred to

as neutron elastic scattering. Cross section quantities pertaining to elastic scattering will be

denoted as σel.

1.1.1 Schrödinger Formalism

Following a combined motivation from Refs. [1, 3], the cross section from a quantum

perspective can be motivated by representing neutron elastic scattering as the scattering of

a plane wave. The generalized wavefunction, ψ(r), must satisfy the Schrödinger equation[
− ℏ2

2m
∇2

r + V (r)

]
ψ(r) = Eψ(r) , (1.5)

where m is the mass of the particle, the Laplacian operator in spherical coordinates is given

by ∇r, the potential experienced by the particle is given by V (r), and E is the energy of

the system. For the case of scattering, the two particles in the system are the projectile

neutron (n), and the scattering target, C (for this work, the scattering target is carbon).

This modifies the Schrödinger equation to[
− ℏ2

2mn

∇2
rn − ℏ2

2mC

∇2
rC

+ V (rn − rC)

]
Ψ(rn, rC) = EtotΨ(rn, rC) (1.6)

→
[
− ℏ2

2mtot

∇2
s −

ℏ2

2µ
∇2

r + V (r)

]
Ψ(s, r) = EtotΨ(s, r) , (1.7)

with Equation 1.7 being the center-of-mass representation of Equation 1.6. The modified

wavefunction now becomes Ψ(s, r) = ϕ(s)ψ(r) with ϕ(s) describing the motion of the center-

of-mass system as it moves with location s and ψ(r) describes the motion of the scattering
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system within the center-of-mass frame with r being the distance between the projectile and

scattering target (rn − rC). The total mass is given by mtot = mn +mC , µ = mnmC

mtot
is the

reduced mass, V (r) is the scattering potential between the projectile and scattering target,

and Etot is the total energy of the system.

Separating the modified wavefunction into the two separate variables allows for two in-

dependent solutions for ϕ(s) and ψ(r) to be found resulting in Equation 1.7 to become

Center-of-Mass (s) : − ℏ2

2mtot

∇2
sϕ(s) = (Etot − Esc)ϕ(s) (1.8)

Scattering (r) :

[
− ℏ2

2µ
∇2

r + V (r)

]
ψ(r) = Escψ(r) , (1.9)

with Esc =
1
2
µṙ2 representing the kinetic energy of the scattering system, ṙ = p2

2µ
is the first

time-derivative of r and is equal to the velocity v, and p = µv = ℏk is the momentum of

the scattering system. Equation 1.8 has ϕ(s) take the solution of a plane wave of the form

ϕ(s) = De−ikss with amplitude D and with ks satisfying the condition Etot−Esc =
ℏ2k2s
2mtot

. As

can be seen from Equation 1.9, the “physics” of the scattering system can be reduced down to

the wavefunction, ψ(r), describing the interaction of the projectile with the scattering target,

simplifying the complexity of the problem to the relative position of the two particles, r. The

(kinetic) scattering energy can be rewritten as Esc =
ℏ2k2sc
2µ

knowing that v = p
µ
= ℏksc

µ
which

defines ksc =
√
2µEsc

ℏ .

The cross section, conceptually, is a ratio of the fluxes (final scattered flux to initial flux)

and is given by j = v|ψ|2. Far away from the scattering target and before a scattering event,

the wavefunction initially will have the form of a plane wave

ψi(r) = Aeikir , (1.10)

with some amplitude, A. The flux of the initial wavefunction, with velocity vi =
ℏ
µ
ki, is then

ji = vi|A|2 =
ℏ
µ
ki|A|2 . (1.11)

For the scattered spherical wave, the final amplitude will differ depending on the angle

observed at (θ, ϕ) and will decrease asymptotically with increasing r but will result in a
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constant flux when integrated across all solid angles. As such, the scattered wave will take

the form

ψf (r) =
A

r
f(θ, ϕ)eikf r , (1.12)

where f(θ, ϕ) contains the variation of the scattered wave as a function of angles (θ, ϕ) and

is referred to as the “scattering amplitude” and kf is the final wave-number post-scatter.

The flux of the scattered wave is then

jf = vf

(
|A|2|f(θ, ϕ)|2

r2

)
=

ℏ
µ
kf

(
|A|2|f(θ, ϕ)|2

r2

)
. (1.13)

Integration of the scattered flux, jf , over the surface of a sphere of radius R (the solid angle

element becomes R2dΩ) shows∫
jfR

2dΩ =

∫
ℏ
µ
kf

(
|A|2|f(θ, ϕ)|2

R2

)
R2dΩ =

ℏ
µ
kf |A|2

∫
|f(θ, ϕ)|2dΩ ,

meaning the total flux is constant and independent of the separation distance r.

The scattering wavefunction is then represented as a combination of the initial (Equation

1.10) and final (Equation 1.12) wavefunctions

ψ(r) = ψi(r) + ψf (r) = A

(
eikir + f(θ, ϕ)

eikf r

r

)
. (1.14)

which is valid in the regions far away from the effects of the potential V (r).

The differential angular cross section, Equation 1.3, is found by taking a ratio of the

angular flux jf (multiplied by r2 to account for the solid angle at r) to the initial flux

resulting in

dσ

dΩ
(θ, ϕ) =

jf
ji

=

ℏ
µ
kf |A|2|f(θ, ϕ)|2

ℏ
µ
ki|A|2

=
kf
ki
|f(θ, ϕ)|2 , (1.15)

and shows the independence of the differential angular cross section of the wave amplitude, A.

In the case of elastic scattering, the kinetic energy is constant meaning kf = ki, simplifying

Equation 1.15 to

dσel
dΩ

(θ, ϕ) = |f(θ, ϕ)|2 , (1.16)
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and using Equation 1.4 produces the elastic integrated cross section, given in Equation 1.17,

as

σel =

∫
dσel
dΩ

(θ, ϕ)dΩ =

∫
|f(θ, ϕ)|2dΩ . (1.17)

1.1.2 Spherical Potential Scattering

Equation 1.17 suggests that for elastic scattering all that needs to be accomplished is

solving and describing the scattering amplitude. With simplification and motivation drawn

from Refs. [1, 3], one can treat the scattering potential as a spherical potential that extends

to some defined limit R. Given the spherical nature of the scattering potential, and the

projectile particles traveling along a given axis, this reduces the scattering amplitude to be

dependent only upon a single angle θ, the angle of the scattered particle with respect to the

incident axis, f(θ, ϕ) → f(θ). The wavefunction of the scattering system, given in Equation

1.14 can be expanded in terms of Legendre polynomials, Pℓ(cos θ) with ℓ relating to the

order of the Legendre polynomial and angular momentum of the “partial wave”. Legendre

polynomials are beneficial as they can be expanded to higher orders (meaning the wave can

be expressed as a sum of partial-waves) to describe the wavefunction and are eigenfunctions

of the angular momentum operators L̂2 and L̂z with eigenvalues of ℓ(ℓ+ 1).

Consequently, Equation 1.14 can be recast as

ψ(r, θ) =
∞∑
ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)
1

kr
χℓ(r) , (1.18)

with i being the imaginary number i =
√
−1, k the wavenumber defined previously, and χℓ(r)

is the radial partial wavefunction that satisfies the radial partial-wave Schrödinger equation

given by [
− ℏ2

2µ

(
d2

dr2
− ℓ(ℓ+ 1)

r2

)
+ V (r)

]
χℓ(r) = Eχℓ(r) , (1.19)

where V (r) is the spherical scattering potential and E is the energy of the partial-wave for

χℓ(r). In order to solve Equation 1.19, it is beneficial to rewrite the equation into a solvable

second-order differential equation as a variable of the form Buℓ(r) = χℓ(r) with B being a
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complex constant

u
′′

ℓ (r) =

[
ℓ(ℓ+ 1)

r2
+

2µ

ℏ2
(V (r)− E)

]
uℓ(r) . (1.20)

It is possible to match the internal wavefunction to the external wavefunction at the boundary

of the scattering potential R. This results in a linear combination of an interior (in) and

exterior (out) wave that is given by

Buℓ(r) = χℓ(r)
r>R−−→ χout

ℓ (r) = Aℓ

[
H in

ℓ (kr)− SℓH
out
ℓ (kr)

]
, (1.21)

with H in
ℓ (kr) and Hout

ℓ (kr) being incoming and outgoing radial waves, and Sℓ is the “partial-

wave S-matrix element”, and Aℓ a complex constant. Sℓ can be found by matching the first

and last terms of Equation 1.21 and derivatives of uℓ(r) at a given radius a outside of the

effective range of the potential (a > R).

Finally, one can arrive at an expression for the scattering amplitude given in Equation

1.22. Solving for uℓ(r), and therefore χℓ(r), using Equation 1.21, plugging back into Equa-

tion 1.18, and matching the wavefunction at the scattering potential boundary eventually

produces

f(θ) =
1

2ik

∞∑
ℓ=0

(2ℓ+ 1)Pℓ(cos θ)(Sℓ − 1) . (1.22)

Equation 1.22 nicely shows the relationship between the angular momentum of a wave

and the relation to a scattering amplitude, and therefore the differential angular cross section

and integrated cross section. This derivation is valid for potentials such that an asymptotic

wavefunction at infinite radius (r=∞) is described by Equation 1.21. Reality is, unfortu-

nately, not as simple as there are a combination of forces that have long range interactions

such as the Coulomb force. Additionally, quantum properties, such as spin, will vary across

different nuclei and are important to include in the development of more refined theories to

describe the physics of scattering with nuclei.

1.1.3 R-matrix Formalism

One modern theory attempting to describe measured scattering data is the R-Matrix

theory with the early concept of the theory given by Kapur & Peierls [4] and further refined
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by Wigner & Eisenbud [5]. A detailed explanation of the theory is provided by Lane &

Thomas [6]. Within a cross section, there can be dramatic changes/structures that are

commonly referred to as “resonances.” The R-matrix theory attempts to explain and describe

resonances across all angles given the fact resonances can vary strongly across angles and

energies. The success of the R-matrix theory comes from the use of physical observable

quantities such as spin, parity, and state energy (to name a few) to describe resonances

while being a phenomenological approach to observed data [6, 7]. Additionally, R-matrix

theory can not only describe resonances but also does well in regions far away from resonances

where there can be a steady variation in the cross section.

The R-matrix theory tries to explain the cross section by separating the scattering prob-

lem into two regions: the internal and external regions [8]. For a given reaction channel α,

the boundary of the two regions is known as the “channel radius”, aα and is chosen to be

large such that in the external region the scattering potential V , dictated by the nuclear

force, effects on the external wavefunction, ψout
α , are negligible and are only impacted by

known long-range forces. A schematic of the two regions and related properties are shown

in Figure 1.1.

Figure 1.1 The two regions of the scattering problem as characterized by the R-matrix
theory. The interior wavefunction ψin

α experiences a non-zero potential, V , at values of r
less than the channel radius aα. In the external region, the wavefunction, ψout

α experiences
no potential from the scattering system. The wavelike structure is the representation of the
two differing wavefunctions. Figure inspired by Ref. [8].
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Within the interior region the wavefunction, ψin
α , is considered confined, through the

existence of a non-zero potential V , and thus can reproduce known energy states. Solving

the Schrödinger equation then becomes

Interior : (Ho + V )ψin
α = Eψin

α (1.23)

Exterior : Hoψ
ext
α = Eψext

α , (1.24)

with nuclear force given by V and a nuclear Hamiltonian given by Ho. The corresponding

external wavefunction has a general solution [8] satisfying Equation 1.24 of the form

ψext
α = [δαα′Iα′(r)− Sαα′Oα′(r)]ϕα′ , (1.25)

with incoming (Iα′) and outgoing (Oα′) waves modulated by δαα′ (Kronecker-delta) and the

“S-matrix” (Sαα′) respectively, with ϕα′ being the channel wavefunction on the surface of

a sphere with r = aα and includes the spin and parity of the channel. The observables

from data are calculated in the S-matrix that is defined at the surface of the channel radius

boundary.

Solving the Schrödinger equation becomes more difficult for the interior region but the

R-matrix, defined in Equation 1.26, can be used to match to the observed resonances and

features seen in the data. The benefits of this treatment allows for a calculation of a reaction

channel to be made without assuming any nuclear potential and has an easier application

to nuclear data evaluation. The R-matrix is defined as

Rαα′ =
∑
λ

γλαγλα′

Eλ − E
, (1.26)

for a level λ, with γλα and γλα′ being “reduced-width amplitudes” (containing the information

of a given level λ for a channel α such as spin, parity, etc.) with a proportionality γλα ∝∫
r=aα

ϕ∗
αXλdS, at the surface S of the channel radius for a channel wavefunction ϕ∗

α and wave

Xλ, and the “energy-pole” Eλ (energy location of a resonance) [1, 3, 6, 8]. The γλα, γλα′ ,

and Eλ are all fit parameters based on the observable data (cross sections) and therefore

makes the R-matrix theory a phenomenological approach.
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A critique of the R-matrix theory is the apparent choice of the channel radius which

directly impacts the reduced-width amplitudes and energy poles [9]. Even though the R-

matrix theory is phenomenological, the inputs are grounded in physical observables and

can successfully describe resonances and regions distant from resonances as is the case for

inelastic and elastic data of 12C neutron scattering [8]. For further theoretical developments

data pertaining to nuclear reactions are needed.

1.2 Nuclear Data & Applications

Neutron reactions have been studied since the early days of nuclear physics [10] and have

had numerous experimental results regarding cross sections, fission fragment distributions,

prompt fission neutron spectra, and much more. Nuclear data serve as a valuable reference

for categorizing and characterizing different nuclei and their interactions. Such data can

be used in simulations, such as GEANT4 (GEometry ANd Tracking 4) [11]. Simulations

rely upon nuclear databases to simulate multi-particle reactions that can undergo a plethora

of possible reaction pathways. If the information/data pertaining to the reaction is lacking,

poorly understood, and/or missing uncertainty quantification, there can be negative impacts

on the results that depend on the knowledge of well characterized nuclear data. The value of

nuclear data is also stressed in the most recent “Nuclear Long Range Plan” [12] (an executive

summary describing the important areas of research pertaining to the United States nuclear

science community) through the applications in scientific and technological developments,

national security missions, teaching environments, and implementation in simulation codes.

Nuclear data evaluations serve as a reference for nuclear data quantities representing the

best results of the nuclear physics community given the experimental literature datasets. Nu-

clear data evaluations are comprised of multi-institutional organizations that work together

to compile the vast amounts of nuclear data available throughout varying literature sources.

Some common nuclear data evaluation organizations include the Evaluated Nuclear Data

File (ENDF - USA) [13], the Joint Evaluated Fission and Fusion (JEFF - Europe) [14], the

Japanese Evaluated Nuclear Data Library (JENDL - Japan) [15], and the Chinese Evaluated
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Nuclear Data Library (CENDL - China)[16]. For the work presented, ENDF will be used

as the primary nuclear data evaluation for comparisons, in particular ENDF/B-VIII.0 (8th

major release), unless otherwise stated.

Within the United States, the primary program handling nuclear data related activities

is the US Nuclear Data Program (USNDP) [17] which is the main custodian of nuclear data

(within the U.S.) with the goal to provide accurate and up-to-date nuclear data available for

public use. Nuclear data quantities can be obtained from the National Nuclear Data Center

(NNDC) [18] where nuclear data quantities such as the half-lives, cross sections, and energy

levels pertaining to different nuclei are available. Nuclear data needs between academic,

government, and industry are addressed through a variety of conferences, meetings, and

workshops such as the Workshop for Applied Nuclear Data (WANDA) which aid in the

compilation, evaluation, and data handling activities undertaken by the USNDP.

Despite all of the data already available via published literature and evaluations, infor-

mation for many reactions can be lacking or missing altogether such as neutron scattering

on common, stable nuclei. Studies dependent on neutron scattering data, such as neutron

transport simulations, can suffer from inaccuracies and large uncertainties due to lack of

existing information. One such example where detailed knowledge of neutron transport is

needed is in active interrogation-the use of ionizing radiation to determine and identify ma-

terials through knowledge of nuclear reactions [19]. This process typically involves using

14 MeV neutrons to irradiate objects of interest and involve measuring the subsequent ra-

diation [20, 21]. Inelastic scattering frequently results in the emission of gamma rays which

can be measured for material identification. Measuring the neutron intensity after object

irradiation can provide object construction and density information, similar to that of an

x-ray image. The neutron intensity will be dependent upon scattered (elastic and inelastic)

neutrons.

There are also experimental setups that rely on the detection of neutrons for fundamen-

tal science studies, such as The MoNA Collaboration [22] that is actively conducting an
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experimental program centrally located at the Facility for Rare Isotope Beams (FRIB) of

Michigan State University (MSU) with the goal of experimentally probing nuclei that lie near

the neutron dripline. This is accomplished through invariant mass spectroscopy to measure

neutron unbound resonances with charged particle detectors and plastic scintillators to de-

tect neutrons, MoNA/LISA [23, 24]. The use of plastic scintillators (hydrocarbon material)

make MoNA and LISA prone to “dark scattering” (no measurable light from neutrons elas-

tically scattering off carbon inside the detector) and can introduce compounding errors [25].

Knowledge of neutron elastic scattering for simulation efforts are thus needed to correct for

this effect [26], and rely upon accurate neutron scattering cross section measurements.

1.3 Neutron Data Standards

Neutron Data Standards, neutron reaction data with measured values and shape that are

well known, serve as a valuable reference for nuclear reaction experiments. Some neutron

cross section standards include: C(n,n), H(n,n), 6L(n,t), 10B(n,α), and 238U(n,f) over des-

ignated neutron energy ranges [13, 27]. An additional neutron standard includes the prompt

fission neutron spectrum (PFNS) of 252Cf [13, 27] as used in this work. Many neutron cross

section measurements are classified as “reference” measurements with respect to a standard

quantity, given the reduced uncertainty in the evaluated standard and desirable shape (lin-

ear, exponential, logarithmic, etc.) [28], along with the desire/added uncertainty that comes

with measuring a non-standard neutron flux.

The current neutron data standards, last produced in 2017, are evaluated and reported

by the Cross Section Evaluation Working Group (CSEWG) and the International Atomic

Energy Agency (IAEA) [27] with the evaluated data easily accessible on the IAEA’s website

using Ref. [29].

A neutron data standard quantity can therefore serve as a “check” on the neutrons/reactions

that are measured experimentally. For example, the PFNS of 252Cf can be used to understand

how well a detector measures known neutrons energies. The PFNS of 252Cf is a standard

from 10 µeV to 30 MeV and therefore allows one to understand the efficiency of a detec-
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tor across this range. Similarly, the elastic scattering cross section off natural carbon is a

neutron standard on the range of 10 eV to 1.8 MeV. For cross section measurements per-

taining to carbon, as done in this work, this energy range should match with the accepted

neutron cross section in order to have confidence regarding any reported values outside of

the standard range. Additionally, the 235U(n,f) cross section is a neutron data standard

within an incident neutron energy range of 0.15 – 200 MeV with 235U being used in neutron

flux measuring devices. The 252Cf PFNS, natC (n, el) cross section, and the 235U(n,f) cross

section are neutron data standards used in this work.

1.4 Carbon - Neutron Scattering

Carbon is highly prevalent in nearly every aspect of life given its use in structural mate-

rials, nuclear reactors, shielding, and more. Given the prevalence of carbon and the fact that

it is considered a neutron data standard (see Section 1.3), used in reference measurements,

a detailed understanding of the neutron elastic cross section and the neutron angular distri-

bution is valuable. Additionally, neutrons with energies in the fast region (1-100’s MeV in

order of magnitude and range) primarily scatter via both elastic and inelastic reactions.

Nuclear data in the fast region for neutron scattering off carbon is limited. Measurements

of the neutron elastic scattering cross section for 12C that are published and available on

EXFOR (Exchange Format, experimental nuclear database with associated Web interface)

[30], within the energy range discussed in this work, are shown in Figure 1.2. In this work,

the neutron elastic scattering cross section of 12C is used so that a direct comparison with

the associated evaluation in ENDF can be made along with the fact that 12C comprises 98.84

- 99.04 % [31] of naturally occurring carbon.

Published measurements come from Refs. [32, 33, 34, 35, 36, 37, 38, 39] with the 12C

neutron elastic scattering evaluation coming from reference [40]. In Figure 1.2, one can

clearly see that there is a need to measure the neutron elastic scattering cross section across

a wider range of energies than is currently available in the EXFOR database. Additionally,

given the fact that carbon is a neutron standard up to 1.8 MeV, as discussed in Section

12



Figure 1.2 Reported and available neutron elastic scattering cross section data obtained
from EXFOR as a function of incident neutron energy Einc

n . Only the first author from the
respective publications are listed for brevity.

1.3, this “standard region” serves as an “anchor point” and check against experimentally

measured results that are presented in this work and given in Chapter 5. The total cross

section of carbon is equal to the elastic scattering cross section until the threshold for inelastic

scattering is possible from the first excited state at 4.4398 MeV. Therefore, based on prior

measurements of the 12C total cross section, the structures below Einc
n = 4.4398 MeV are

well known and there should be shape agreement between the evaluation and the presented

work.

1.5 Relativistic Scattering Kinematics

The kinematics of a scattering event should be described relativistically for fast neutron

interactions. The neutron kinetic energy En is given by

En = mnc
2 (γ − 1) , (1.27)
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where mn is the mass of the neutron, 939.56542194(48) MeV/c2, γ is the Lorentz factor

(gamma factor) defined as 1√
1−v2/c2

= 1√
1−β2

, c is the speed of light, and β is equal to v
c
.

Determination of the neutron kinetic energy can be accomplished via the time-of-flight (ToF)

technique. Knowledge of the distance and time that the neutron traverses can allow for the

calculation of the neutron kinetic energy. Experimentally, the distance of the flight-path of

the neutron is known. Equation 1.27 can be modified to be a function of time and distance

En = mnc
2

 1√
1− v2

c2

− 1

 = mnc
2

 1√
1−

(
d
ct

)2 − 1

 , (1.28)

where d is the distance of the neutron flight-path and t is the time the neutron takes to

travel the flight-path distance.

A scattering reaction will typically consist of differing flight-paths: the distance from

the neutron source to the scattering target and the distance from the scattering target to

the detector. For the remainder of this work, the following notion will be used: quantities

pertaining to the center-of-mass (CM) will have a tilde over the quantity x̃ whereas quantities

in the Lab frame (L) will be presented as x.

The use of 4-vectors, Px, allows for the description of a system to be described by es-

tablishing a relationship between related quantities: space & time (r⃗, t), and energy &

momentum (E, p⃗). The complete 4-vectors are constructed as

Space-Time : Px = ⟨ct, r⃗⟩ = ⟨ct, x⃗, y⃗, z⃗⟩ (1.29)

Energy-Momentum : Px =

〈
E

c
, p⃗

〉
=

〈
E

c
, p⃗x, p⃗y, p⃗z

〉
. (1.30)

It is also useful to use invariant quantities, a quantity that is reference (frame) indepen-

dent, to establish links between the L and CM frames. An extremely useful and well-known

invariant quantity is the invariant mass, mo , and is used to establish the energy-momentum

relation

E2 = (pc)2 +
(
moc

2
)2
. (1.31)
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Similarly, the magnitude of the energy-momentum 4-vector, P1P2, is defined as

P1P2 =

〈
E1

c
, p⃗1

〉
·
〈
E2

c
, p⃗2

〉
=
E1E2

c2
− p⃗1x · p⃗2x − p⃗1y · p⃗2y − p⃗1z · p⃗2z =

E1E2

c2
− p⃗1 · p⃗2 ,

(1.32)

which is an invariant quantity. For the case of finding the magnitude of the same 4-vector,

the magnitude is simply P1P1 = moc
2. The same can be done for obtaining the CM total

energy through the use of 4-vectors and invariant quantities by

Ẽ2 = (P1 + P2)
2 = P 2

1 + P 2
2 + 2P1P2 =

(
m1c

2
)2

+
(
m2c

2
)2

+ 2

(
E1E2

c2
− p⃗1 · p⃗2

)
. (1.33)

Note the usage of the L frame quantities which is allowable given the fact that the total CM

energy Ẽ2 is an invariant quantity and the same can be derived using CM quantities (Ẽ and

˜⃗p). This is useful given the fact that experimental quantities are measured in the L frame

and a relationship, in addition to Lorentz transformations, can be established between the

CM and L frame.

A transformation from the CM to L frame can be accomplished utilizing Lorentz trans-

formations with the 4-vectors. For the energy-momentum 4-vector boosted in the v⃗ (velocity

vector between CM and L frame) direction, the relation proceeds as

Energy : E = γ
(
Ẽ + β⃗ · ˜⃗pc

)
(1.34)

Momentum : p⃗c = ˜⃗pc+ (γ − 1)
(
˜⃗pc · v⃗/v

)
v⃗/v + γEβ⃗ . (1.35)

A unique property of the CM frame is that the total momentum in the CM frame is

equal to 0. This fact can be useful to exploit in solving for a variety of different kinematic

quantities with respect to scattering.

It is desirable to know the energy of the neutron n after a scattering event with the

scattering target (12C) has occurred as measured in the L frame Eemit
n . This can be accom-

plished by modifying Equation 1.34 by utilizing the following definitions : a⃗ · b⃗ = ab cos (θ)

and β⃗ = v⃗
c
. Additionally, natural units will be utilized from this point forward (unless stated
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otherwise), c = 1, to help make the relations between kinematic quantities more clear. This

results in

Eemit
n = γ

(
Ẽemit

n + βp̃emit
n cos θ̃emit

n

)
, (I)

with Ẽemit
n being the energy of the emitted neutron in the CM frame, p̃emit

n is the momentum

of the neutron in the CM frame and θ̃emit
n is the angle at which the neutron scattered from

beam axis in the CM frame. Note that equations of significance pertinent to the analysis for

neutron elastic scattering, as discussed in this work, will utilize roman numerals for labels.

It is useful to express the Lorentz factor γ as a function of the energy and momenta of the

particles participating in a scattering event. This is done by using Equation 1.34 by solving

for γ. In the CM frame, the total momentum is 0 (by definition) making ˜⃗p = 0⃗. The 4-vectors

for the particles in the L frame before scattering will be Pn = ⟨En, p⃗n⟩ = ⟨Einc
n +mn, p⃗n⟩

and PC =
〈
EC , 0⃗

〉
=
〈
mC , 0⃗

〉
. This results, with the help of Equation 1.33, in the following

γ =
E

Ẽ
=

En +mC√
m2

n +m2
C + 2EnmC

. (II)

Note that the numerator in Equation II is the total energy of the system in the L frame, this

can be simplified to

Etot = En + EC = Einc
n +mn +mC , (III)

and utilizing Equation II the CM total energy follows as

Ẽtot =
Etot

γ
. (IV)

To solve for the energy of the emitted neutron in the CM frame Ẽemit
n , the total energy

of the system Ẽtot is the same before and after a scattering event has occured. Therefore,

the total energy of the system can be written as Ẽtot = Ẽemit
n + ẼC . Rearranging the terms

for the total energy of the system in the CM frame and solving for Ẽemit
n produces

Ẽ2
C = (Ẽtot − Ẽemit

n )2

m2
C + p̃2C = Ẽ2

tot + [Ẽemit
n ]2 − 2ẼtotẼ

emit
n

m2
C + p̃2C = Ẽ2

tot +m2
n + p̃in

2
− 2ẼtotẼ

emit
n ,
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while knowing that in the CM frame the magnitude of the momenta for carbon and the

neutron are equal |pin| = |pC |, the energy of the emitted neutron can be presented as

Ẽemit
n =

1

2Ẽtot

(
Ẽ2

tot +m2
n −m2

C

)
, (V)

and the emitted neutron momentum can be obtained using Equation 1.31 and V to yield

p̃emit
n =

√
[Ẽemit

n ]2 −m2
n . (VI)

Progressing along with the variables in Equation I, the frame velocity β can be found by

rearranging the definition of the Lorentz factor to be:

β =

√
1− 1

γ2
. (VII)

In order to solve for the CM scattering angle θ̃emit
n , the angle between the scattered

neutron and carbon, one can leverage Equation 1.35 along with algebraic manipulations to

arrive at a relation between the CM scattering angle θ̃emit
n and the measured L frame angle

of the scattered neutron θemit
n . Equation 1.35 can be expanded to more clearly show the

relationship of the different quantities as:

p⃗ emit
n = ˜⃗p emit

n + (γ − 1)
(
˜⃗p emit
n cos θ̃emit

n

)
+ γ ˜Eemit

n β⃗

= ˜⃗p emit
n + γ ˜⃗p emit

n cos θ̃emit
n − ˜⃗p emit

n cos θ̃emit
n + γ ˜Eemit

n β⃗

= ˜⃗p emit
n − ˜⃗p emit

n cos θ̃emit
n + γ

(
˜⃗p emit
n cos θ̃emit

n + ˜Eemit
n β⃗

)
p⃗ emit
n⊥

+ p⃗ emit
n∥

= ˜⃗p emit
n⊥

+ ˜⃗p emit
n∥

.

If the corresponding L frame parallel and perpendicular components of the emitted neutron

momentum are matched with the respective CM parallel and perpendicular components and

knowing that through the addition of vectors that p̃ emit
n sin θ̃emit

n = ˜⃗p emit
n − ˜⃗p emit

n cos θ̃emit
n

Parrallel Components : p emit
n∥

cos θ emit
n = γ

(
p̃ emit
n cos θ̃emit

n + ˜Eemit
n β

)
Perpendicular Components : p emit

n⊥
sin θ emit

n = p̃ emit
n sin θ̃emit

n ,
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and dividing the two equations against each other results in

cot θ emit
n = γ

cos θ̃emit
n + ρemit

n

sin θ̃emit
n

, (1.36)

where ρemit
n is introduced to simply the equations and is defined as

ρemit
n =

Ẽemit
n β

p̃ emit
n

. (VIII)

In an effort to isolate θ̃emit
n , squaring both sides of Equation 1.36 leads to

cot2 θ emit
n = γ2

cos2 θ̃emit
n + ρemit

n
2
+ 2ρemit

n cos θ̃emit
n

1− cos2 θ̃emit
n

cot2 θ emit
n − cot2 θ emit

n cos2 θ̃emit
n = γ2 cos2 θ̃emit

n + γ2ρemit
n

2
+ 2γ2ρemit

n cos θ̃emit
n ,

and with some rearranging

0 =
(
γ2 + cot2 θ emit

n

)
cos2 θ̃emit

n +
(
2γ2ρemit

n

)
cos θ̃emit

n +
(
γ2ρemit

n

2 − cot2 θ emit
n

)
.

Note that this is in the form of a quadratic equation. Applying the quadratic formula results

in

cos θ̃emit
n =

−2γ2ρemit
n ±

√
4γ4ρemit

n
2 − 4 (γ2 + cot2 θ emit

n )
(
γ2ρemit

n
2 − cot2 θ emit

n

)
2 (γ2 + cot2 θ emit

n )

=
−γ2ρin ±

√
γ4ρemit

n
2 − γ4ρemit

n
2 + γ2 cot2 θ emit

n − γ2ρemit
n

2 cot2 θ emit
n − cot4 θ emit

n

γ2 + cot2 θ emit
n

=
−γ2ρemit

n ± cot θ emit
n

√
γ2
(
1− ρemit

n
2
)
+ cot2 θ emit

n

γ2 + cot2 θ emit
n

.

It is important to know that ρemit
n > 1 and therefore results in the use of a “+” to keep

the numerator a positive quantity. Therefore, the CM neutron emitted scattering angle is

related to its respective L angle by

θ̃emit
n = arccos

(
−γ2ρemit

n + cot θ emit
n

√
γ2 (1− [ρemit

n ]2) + cot2 θ emit
n

γ2 + cot2 θ emit
n

)
. (IX)

In the CM frame, the emitted neutron angle will be the same as the detected angle in the

CM frame and the same reasoning is true for the L frame angles, as these are already known
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by the experimenter. Additionally, a particle emitted into a solid angle in the CM frame will

be emitted into a corresponding but different solid angle in the L frame such that integrating

across a range of angles, either in the CM or L frame, results in the integrated cross section

being the same in both the CM and L frame. Mathematically, this is represented as

dσ

dΩ̃

(
θ̃emit
n , ϕ̃emit

n

)
sin θ̃emit

n dθ̃emit
n dϕ̃emit

n =
dσ

dΩ

(
θemit
n , ϕemit

n

)
sin θemit

n dθemit
n dϕemit

n . (1.37)

Note that the ϕ axis is the same in both the L and CM frame so dϕ̃emit
n = dϕemit

n . In

order to turn Equation 1.37 into factors of experimental parameters, one needs to know how

dθ̃emit
n and dθemit

n can be represented as known quantities. This is accomplished by utilizing

Equation 1.36 and differentiating both sides with respect to θ′, the differential angle in either

the CM (dθ̃emit
n ) or L frame (dθemit

n ), results in the following

d

dθ′
[
cot θemit

n

]
=

d

dθ′

[
γ
cos θ̃emit

n + ρemit
n

sin θ̃emit
n

]

−1

sin2 θemit
n

dθemit
n =

(
−γ sin θ̃emit

n dθ̃emit
n

)(
sin θ̃emit

n

)
−
(
cos θ̃emit

n dθ̃emit
n

)(
γ cos θ̃emit

n + γρemit
n

)
sin2 θ̃emit

n

dθemit
n

dθ̃emit
n

= γ
(
1 + ρemit

n cos θ̃emit
n

) sin2 θemit
n

sin2 θ̃emit
n

, (1.38)

If the CM differential angular cross section is isolated in Equation 1.37 and plugging in

Equation 1.38 produces

dσ

dΩ̃

(
θ̃emit
n

)
=
dσ

dΩ

(
θemit
n

) sin θemit
n

sin θ̃emit
n

dθemit
n

dθ̃emit
n

dσ

dΩ̃

(
θ̃emit
n

)
=
dσ

dΩ

(
θemit
n

) sin θemit
n

sin θ̃emit
n

(
γ
(
1 + ρemit

n cos θ̃emit
n

) sin2 θemit
n

sin2 θ̃emit
n

)
,

with simplification finally yields

dσ

dΩ̃

(
θ̃emit
n

)
=
dσ

dΩ

(
θemit
n

)
γ
(
1 + ρemit

n cos θ̃emit
n

) sin3 θemit
n

sin3 θ̃emit
n

, (X)

showing that the distributions measured in the L frame require a scale factor to correct into

the CM frame.
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1.6 Uncertainties & Covariance

While obtaining a new cross section measurement over a range of incident neutron en-

ergies is valuable, understanding and quantifying the correlation between data points of a

result is equally valuable for nuclear data evaluators and for users of nuclear data. Reporting

covariance matrices for nuclear data quantifies the relationship between the recorded data

(e.g. scattering cross section) over the range of the measured quantity (e.g, neutron incident

energy Einc
n ).

The covariance, Cov, is a linear measure of how data points are related and in which

direction the relationship is [41]. Values can range from −∞ to ∞ where positive values

indicate that the data change in the same direction, negative values indicate the data change

in opposite direction, and 0 meaning there is no correlated relationship between the two

quantities. Similarly, the correlation is the measure of the strength and direction of the

relationship on a normalized range (-1 to 1) with uncertainty magnitude removed. Like the

covariance, the value of the correlation, Corr, indicates if the data have positive relationship

(positive correlation value and change in the same direction), negative correlation (opposite

direction of change), or no correlation at all (correlation value of 0).

A more efficient process for presenting the relationship of the data is in the form of a ma-

trix. The covariance matrix (and correlation matrix) then visually presents the relationship

of quantities (such as the elastic scattering cross section) over the measured quantity. Each

element (points i and j) in the matrix then provides the covariance value at the respective

points. When two points are equal (i = j), the value of the covariance simplifies to the

variance, Var, which is equal to the square of the standard deviation, where the standard

deviation is the Gaussian uncertainty in the measured values [41, 42, 43].

For a given function f(x), the covariance matrix is calculated utilizing matrix notation,

as described in references [43, 44], and is shown in Equation 1.39

Kf = AVAT , (1.39)

where Kf is the covariance matrix of f(x), A is the “sensitivity” matrix, and V is the
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covariance matrix of quantities used in f(x) (such as counts, flux, detector efficiency, etc.).

The sensitivity matrix A is conceptually a measure of how f(x) varies with variable(s)

x at different data points (i and j) [43, 44]. This amounts to taking the partial derivative of

f(x) at points i and j with respect to x. The sensitivity matrix is calculated, as presented

in Ref. [44], as

A =

 ∂fi
∂x1

· · · ∂fi
∂xM

· · · ∂fi
∂xN

∂fj
∂x1

· · · ∂fj
∂xM

· · · ∂fj
∂xN

 , (1.40)

where xM is a variable (counts, flux, detector efficiency, etc.) used in the calculation of f(x),

to the the total number of variables N , as shown in Equation 1.40.

The covariance matrix V is comprised of variances and covariances of xM along the

diagonal. The covariance matrix is constructed from previously understood quantities as

V =



Var[x1i ] Cov[x1ij ] 0 0 0 0 0 0

Cov[x1ji ] Var[x1j ] 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0

0 0 0 Var[xMi
] Cov[xMij

] 0 0 0

0 0 0 Cov[xMji
] Var[xMj

] 0 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 Var[xNi
] Cov[xNij

]

0 0 0 0 0 0 Cov[xNji
] Var[xNj

]



, (1.41)

where Var[xMi
] is the variance (square of the Gaussian 1σ uncertainty) of xM at data point i,

Var[xMj
] is the variance of xM at data point j, and Cov[xMij

] = Cov[xMji
] is the covariance

of xM at data points i and j if a covariance exists for such variable.

It is important to note, and is suggested that, when evaluating functions f(x) they should

be expressed in the “most fundamental” components, such as measured counts, referenced

literature values, etc. as these are quantities that are best understood and formulate more

complicated quantities such as cross sections. This allows for a methodical and detailed
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propogation of uncertainties to be quantified and has the added advantage of having zeros

in the majority of the off diagonals in Equation 1.41.

Carrying out the matrix multiplication in Equation 1.39 produces a covariance matrix

Kf of function f(x). The calculated covariance Kf contains the variance (square of the

uncertainties) along the diagonal and the covariance on the off diagonals and should be

symmetric about the diagonal. For plotted quantities, the uncertainties on presented data

are obtained by taking the square root of the variance at each given data point.
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CHAPTER 2

EXPERIMENTAL SETUP

The experiment for measuring the carbon neutron elastic scattering reaction was con-

ducted during the 2023 run-cycle at the Weapons Neutron Research (WNR) Facility at

the Los Alamos Neutron Science Center (LANSCE) and used the neutron white source

produced by the LANSCE accelerator. The experiment utilized the Correlated Gamma

Neutron Array for sCattering (CoGNAC) setup for the cross section measurement. Each of

the resources are described in the sections below.

2.1 Los Alamos Neutron Science Center (LANSCE)

The LANSCE facility [45], located at Los Alamos National Laboratory [46], was originally

constructed during the late 1960’s into the early 1970’s. The highlighting feature of the

facility is the linear accelerator (LINAC) that accerlates both positive H+ (protons) and

negative H− hydrogen ions up to 800 MeV to make a proton beam [47]. A collection of

similar ions are bunched together to make a pulsed beam that is sent through the LANSCE

LINAC.

The first stage of the LANSCE LINAC involves sending the proton beam through the

Drift Tube Linear Accelerator which increases the beam energy up to 100 MeV [48]. The

H+ beams are diverted from the original beam line to the Isotope Production Facility (IPF)

to make a variety of isotopes for medical and societal needs. The H− beam continues to

the second stage Side-Coupled-Cavity Linear Accelerator which accelerates the beam to 800

MeV before being sent to any of the 6 experimental areas at LANSCE: Proton Radiography

(pRad), Ultracold Neutrons (UCN), “Area A” (future experimental possibilities), Proton

Storage Ring (PSR), Lujan Center, and WNR. The H− beam gets charge-exchanged to be

H+ before reaching the “decision point” of being sent to Lujan, Blue Room (facility just

before WNR), or WNR. A schematic of the LANSCE Facility and the WNR Facility are

shown in Figure 2.1. The WNR facility is the location of the discussed experiment and

detector array of this work.
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Figure 2.1 A generalized overview of the LANSCE Facility and WNR Facility (rectangular
inset). Blue lines areH− /H+ beamlines. The beam starts with the hydrogen ion source (blue
rhombus) and proceeds through the Drift Tube Linear Accelerator (thicker blue rectangle)
and can proceed to IPF. The H− beam is accelerated down the Side-Coupled-Cavity linear
Accelerator (thiner blue rectangle) before proceeding to pRad (orange circle), UCN (violet
rectangle), or Area A (white rectangle). The H− beam can also proceed south towards PSR
(red ring), Lujan Center (salmon rectangles), Blue Room, and WNR. The WNR Facility
receives the H+ beam before impinging on Target 4. The 6 flight paths along the neutron
beam (gray lines) are labeled with their angular and directional classification. The 90 m
shed, located on flight path 15L is also shown and labeled. Buildings/areas, flight paths,
and locations are not to scale.

2.2 Weapons Neutron Research (WNR)

The time structure of the WNR proton beam consists of “micropulses” and “macropulses”

[47, 48, 49]. A micropulse (collection of protons) of beam is ≈150 ps long. Micropulses

are separated by ≈1.8 µs while ≈347 micropulses are grouped together to make a single

macropulse. Macropulses are ≈625 µs long with ≈8.3 ms of separation. A diagram of the

time structure of the WNR beam is shown in Figure 2.2.
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Figure 2.2 The time structure of the proton beam for WNR. Macropulses (the two larger
box structures) are composed of approximately 347 micropulses (short ticks in the bottom
of the figure). The length of a macropulse is approximately 625 µs while micropulses are
approximately 150 ps long. Macropulses are separated by approximately 8.3 ms while mi-
cropulses are separated by approximately 1.8 µs from each other.

The WNR Facility produces a neutron white source at Target 4, a tungsten target. The

proton beam impinges upon the tungsten target to produce a neutron spectrum, referred to

as a “white” source, via spallation. The tungsten target is cylindrical, measuring 3 cm in

diameter and 7.5 cm in length and is suspended in a vacuum chamber that is shielded with

ports to the flight paths at the WNR Facility [50]. Charged particle fragments that may

emerge from the target are magnetically removed.

The energy spectrum of the WNR neutron source changes with flight path angle allow-

ing for experimenters to chose from different neutron flux profiles based on the location of

the flight path [51]. The differing flux profiles are shown in Figure 2.3. Neutrons are pro-

duced from the WNR tungsten target, also referred to as the “spallation target” or “neutron

source”. Gamma rays are also emitted as a reaction product and are collectively known as

a “gamma flash” and can be used to indicate the start of a micropulse.

The flight paths at WNR are named based on their angle from the incident proton beam
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Figure 2.3 A calculation of the different neutron flux profiles from the WNR facility based
on the angle of the flight path from the incident proton beam axis. Figure inspired by flux
information from Ref. [51].

axis and the spatial direction: left or right of the proton beam axis. For example, 15L refers

to 15 degrees, left of the incident proton beam axis. The WNR Facilty consists of 6 flight

paths: 60R, 30R, 15R, 15L, 30L, and 90L with the CoGNAC experiment residing on flight

path 15L. For more forward focused flight paths, such as flight paths located at 15 degrees,

the overall flux profile yields more neutrons at higher energies (200 - 800 MeV range) whereas

there are lower neutron yields at lower energies (0.1 - 10 MeV) in comparison to flight paths

located at wider angles such as 60 and 90 degrees.

2.3 The Correlated Gamma Neutron Array for sCattering (CoGNAC)

As indicated in the previous section, the CoGNAC setup resides along flight path 15L

with the center of the detector array located 21.5 meters from the tungsten spallation target.
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The array is made of 54 EJ-309 liquid scintillators [52] in the upper hemisphere and 72

lithium-6 enriched Cs2LiYCl6 (CLYC) detectors in the lower hemisphere [53]. The CLYC

detectors have vastly superior gamma-ray energy resolution in comparison to the liquid

scintillators. The benefit of these liquid scintillators and CLYC detectors is in their ability

to discriminate between neutrons and gamma rays, eliminating the need for more specialized

detector systems to identify these particles. The neutron elastic cross section presented and

discussed in this work comes from the data recorded by the liquid scintillators.

Pulse-shape-discrimination (PSD) is commonly utilized to distinguish between neutron

and gamma ray detected events. Figure 2.4 illustrates an examples of such neutron-gamma

PSD which is determined by the ratio of the signal tail integral to the total signal integral.

The liquid scintillators are located 1 m from the center of the detector, where the reaction

target resides, with an active volume of ≈7 in. in diameter and 2 in. thick. The combined

distance from the center of the array to the center of the scintillating material results in a

total flight path length of 1.02 m (including the distance of the average interaction depth in
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Figure 2.4 An example PSD gate (black) selecting neutron (n) events. The second excluded
peak, centered near a PSD value of 0.1, are gamma (γ) detected events.
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the liquid scintillator). This results in each detector spanning ≈ ±5◦ of angular coverage in

the lab. Each liquid scintillator is attached to a R4144 Hamamastu PMT (photo-multiplier

tube) [54] to amplify the produced scintillation light into a readable signal. The individual

detector voltages are set using a CAEN SY4527 High Voltage supply [55]. Signals are then

processed by a series of CAEN 1730B waveform digitizers [56] and are then recorded using

the MIDAS data acquisition system [57] for analysis.

The liquid scintillators are centered at 9 evenly spaced angles (θ) of 30, 45, 60, 75, 90, 105,

120, 135, and 150 degrees relative to the incident neutron beam direction. This arrangement

forms a “rack” of detectors, with a simplified schematic shown in Figure 2.5. Six racks make

up the upper hemisphere of the CoGNAC setup located along the azimuthal (φ) angle of ±

24, ± 57, and ± 90 degrees to complete the 54 detector array. The full detector array setup

is shown in Figure 2.6.

Figure 2.5 A simplified schematic of the CoGNAC setup at the WNR facility along flight
path 15L. Going from left to right, spallation neutrons (gray circle labeled n) and the gamma
flash (green wavy arrow) are produced and travel 21.5 m to the carbon target (black disk
labeled “C”). The carbon target sits in the center of the detector array 1.02 m away from
the front face of the liquid scintillator (gray rectangles), each located at one of the 9 different
angles θ with respect to the incoming neutron beam axis. Objects are not to scale.

The cylindrical carbon target (reaction/scattering target), made of natural isotopic com-

position with dimensions 4 cm in diameter and 1 cm thick, is located in the center of the

CoGNAC setup and sits at the end of a 4-armed sample changer, resembling that of a

pinwheel. The neutron beam, post-collimation specific to the CoGNAC flight path, has a
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Figure 2.6 The CoNAC setup on flight path 15L at the WNR facility with a carbon target
in the center of the detector array. In this image, the beam comes out of the steel collimator
(gray circular disk in the center of the image) and reacts with the carbon (small black
disk in the center of the array) before neutrons and gamma rays are detected in the liquid
scintillators (upper hemisphere) and CLYC detectors (bottom hemisphere). An alignment
laser (green) is used to ensure that the reaction target is centrally located along the incoming
neutron beam. Figure reused with permission from Keegan Kelly.
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measured diameter of 1.65 cm and was therefore within the physical size of the carbon tar-

get. The sample changer rotates in 90 degrees increments approximately every 10 minutes.

Therefore, each data acquisition “run” lasts ≈10 minutes and allows for natural variation

in the neutron beam to be matched when targets are in and out of the beam. The fourth

“blank” arm allows for a background measurement to be taken with the CoGNAC setup

while allowing the neutron beam to enter a 235U fission chamber to monitor the beam rate

and provide a flux for the experiment. The fission chamber is located downstream of the

CoGNAC setup, past the detector array.

In an effort to minimize environmental backgrounds and scattered neutrons, the nearest

shielding walls surrounding the CoGNAC setup are just over 2 m away from the detector

setup. The CoGNAC setup also sits above a 2 m “get-lost” pit (resembling a basement)

with the whole detector array supported by a thin floor just above the basement.

As mentioned in Section 2.2, both neutrons and gamma rays arrive at the CoGNAC

setup from the spallation target. While the gamma-induced reactions are not measured in

the reaction target, the scattering of the gamma flash produced during the spallation reaction

will scatter off the reaction target and into the detector array. Given the fact that the gamma

rays travel at the speed of light, while the neutrons will have varying energies corresponding

to varying velocities and therefore will travel slower than the speed of light, the detection of

the scattered gamma flash serves as a reference for the start of each micropulse and are given

a time difference value of 0 ns. All neutron energies are then calculated from time-of-flight

relative to the gamma flash transit time. The time-difference is calculated as

Time-Difference = tn − tγ , (2.1)

where tn is the neutron time-of-flight as calculated in Equation 1.28 (solving for t) and tγ is

the gamma ray produced from spallation time-of-flight. The total flight path length from the

spallation target to a liquid scintillator is the sum of the distance of the flight path length

to the center of the CoGNAC array dfp (21.5 m) and the distance from the center of the

array, where the scattering target is located, to a liquid scintillator dd (1.02 m). This total
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distance of 22.52 m, along with the measured time difference of the neutrons, allow for the

calculation of the incident neutron energy (Einc
n ) and emitted neutron energy (Eemit

n ). The

ability to calculate Einc
n and Eemit

n from the recorded data is further explained in Chapter 3.

Figure 2.7 shows the measured neutrons recorded by a liquid scintillator.

Figure 2.7 A 2D histogram of measured data, from a liquid scintillator, from neutron
scattering with a carbon target. Time-difference, as described in Equation 2.1, is on the
x-axis and the detector pulse-integral on the y-axis. The gamma flash is located at a time
difference value of 0 ns.

The gamma flash (spallation produced gamma rays), as recorded by the detector, are

located at the 0 ns mark. The triangular structure that slopes away with increasing time

difference are neutron recorded events as seen by a liquid scintillator. The term “pulse-

integral” is the total area under the recorded pulse created from a gamma or neutron event.

The pulse integral is correlated with the measured energy of a detected particle (gamma-

ray or neutron) and a relation between the emitted neutron energy and pulse-integral is

developed in Chapter 3.
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CHAPTER 3

DATA ANALYSIS

In order to calculate the neutron elastic scattering cross section off carbon, we start with

selecting elastically scattered neutron events, converting the elastic events into an energy

spectrum, correcting the spectrum for detector efficiency, calculating the differential angular

cross section, and lastly, calculating the integrated cross section. Equally important is the

uncertainty quantification of each quantity analyzed as well as the respective covariance

and correlation matrix for the integrated cross section. The uncertainty quantification,

covariance, and correlation matrix of the integrated cross section will be discussed in Chapter

4. Each step will focus on one detector in the whole array with the implication that the same

analysis process is applied to the whole detector array unless explicitly stated. Each of these

steps will be explained in detail and how the results are used to produce a final integrated

cross section, angular differential cross section, and neutron angular distributions. Analysis

was done utilizing the CERN ROOT software, version 6.32.06 [58].

3.1 Background Subtraction

One of the first steps in the analysis is removing background events from the carbon

foreground data. This is accomplished by taking “blank” data (data where no target is in

the neutron beam as explained in Chapter 2, Section 2.3) and subtracting from the data with

the carbon target in the neutron beam. An example of measured “blank” data is shown in

Figure 3.1 and another of measured carbon data (without background subtraction) is shown

in Figure 3.2.

One can already see in the “blank” data that there is structure to the background data

that can lead to inaccurate results when analyzing the carbon data if the background is not

subtracted out. A scale factor between the carbon data and “blank” data is needed to ensure

that the number of events are as close to being equal between the two datasets. A ratio of

“to” signals, the number of micropulses arriving at the spallation target, between the carbon

to“blank” is calculated to be 2.00387 and is used to scale the background before subtraction.
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Figure 3.1 A liquid scintillator histogram where no target is in the neutron beam. This
functions as a background and gets subtracted from the recorded carbon data.

Figure 3.2 A liquid scintillator histogram with a carbon target in the neutron beam that
has not been background subtracted.
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Figure 3.1 is subtracted from Figure 3.2 to produce a background subtracted histogram that

is used in analysis (Figure 3.5).

3.1.1 Gamma Flash Correction

Additionally, the location of the gamma flash as recorded by the detector histograms

needs to be corrected. While the definition in Equation 2.1 will equal 0 for a tn = tγ, the

gamma flash is not always centrally located at 0 ns for each liquid scintillator histogram as

shown in Figure 3.3. Finding the, still small, offset ensures consistency with the definition

of using the gamma flash at a time difference value of 0 ns.

Figure 3.3 The gamma flash (yellow structure) for a liquid scintillator detector where the
central location is not centered at 0 ns.

Looking at Figure 3.3, it is noticeable that the gamma flash (the yellow structure) is

not centered at 0 ns but rather closer to -1 ns. The time offset is corrected by selecting

the gamma flash structure by placing a cut from -1.5 – 0 ns and fitting the resulting x-axis
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projection (projecting the counts on to the time axis) and fitting the resulting gamma flash

to a Gaussian to obtain the central value from the mean. An example of the gamma flash

projection and fit are shown in Figure 3.4.

Figure 3.4 The gamma flash data fit with a Gaussian (red) to obtain the mean location for
kinematic corrections.

This time offset, while not large, is still noticeable enough to produce incorrect results

utilizing the relativistic kinematics discussed in Chapter 1, Section 1.5. For example, nor-

mally a 2 MeV incident neutron would have a time difference of ≈1085.0253 ns for a detector

at 120◦. With the gamma flash being off ≈0.7481 ns, This corresponds to a Einc
n energy value

of 2.00258 MeV (2.58 keV increase) which is within the resolution of the liquid scintillators.

This offset only gets amplified at higher incident neutron energies. For example, at Einc
n

= 6.5 MeV at 120◦ corresponds to a time difference of ≈570.6996 ns normally, but with ≈

0.7461 ns offset the Einc
n = 6.5152 MeV (15.2 keV increase).
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The time offset obtained from the fit is subtracted from the theoretical time difference

calculated by Equation 2.1. This is done because a negative time offset, as is the case for all

the liquid scintillators in the carbon data set, will correct the gamma flash to be centered

at 0 ns. Similarly, if the time offset is positive, subtraction by a positive time offset will

relocate the gamma flash to be centered at 0 ns.

3.2 Elastic Event Selection

In order to extract a neutron elastic scattering cross section, identification of elastically

scattered neutrons is required. The starting point for analyzing the detector data is identi-

fying the major features in the data corresponding to each state in 12C. The choice to use

12C is motivated by the fact that the natural composition of carbon is 98.84 – 99.04 % [31]

12C. The major features in the recorded data are identified visually with explicit markings

and is shown in Figure 3.5.

Figure 3.5 The 2D histogram data from a carbon target (same a Figure 2.7). The two
clearly visible states of 12C are labeled: “Ground State” which are elastically scattered
events and “1st” which corresponds to the first excited state of 12C and are inelastically
scattered neutrons.
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Looking from right to left in Figure 3.5, the major features are neutrons scattering from

the ground state, which are the elastically scattered neutrons from reactions with 12C, and

the band labeled “1st (Inelastic)” is the 12C(n,n′) reaction populating the first excited state.

The task is to isolate the elastically scattered neutrons and ideally, only those that reside

at higher pulse-integrals as they correspond to detected neutrons that satisfy the kinematic

conditions, as previously derived, for elastic scattering and have not scattered from the

environment prior to detection. This also minimizes selection of events from cross talk

between detectors. This suggests that a thin cut centered on the “ledge” of elastic events

(the region where, moving from high pulse integrals to low pulse integrals, for a given time

difference the counts dramatically increase) ensures selection of “purely” elastically scattered

events and minimizes any further possible environmentally scattered neutrons.

It is important to remember that while the time that is recorded on the x axis of Figure 3.5

is the time difference (containing time information of both Einc
n and Eemit

n ), the detector

measures the emitted neutron energy Eemit
n . It is therefore necessary to build a relationship

between neutron time difference to Einc
n , then Einc

n to Eemit
n , Eemit

n to pulse integral, and

lastly Eemit
n to time difference. This process allows for a graphical cut to be applied on the

the detector (data) histogram and select only elastically scattered neutrons. For developing

each of the aforementioned relationships, Einc
n values from 0.5 – 20 MeV were sampled in 1

keV (0.001 MeV) intervals.

Establishing a relationship between the Einc
n and Eemit

n is done utilizing the kinematic

equations in Chapter 1, Section 1.5 and is shown in Figure 3.6. Note that for each detector

angle, more forward focused detectors, such as 30 (gray) and 45 (purple) degrees, have

neutron emitted energies closer to the incident beam energy in comparison to more backward

scattered angles such as 150 (black) and 135 (red) degrees.

For converting the neutron emitted energy Eemit
n to a pulse integral, this is accomplished

phenomenologically by applying scale factors to the emitted neutron values and the measured
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Figure 3.6 The relationship between neutron incident energy Einc
n and neutron emitted

energy Eemit
n at different emitted angles. Angles are the central angle of each detector.

time difference. The equation used to convert Eemit
n into a pulse integral is

Pulse Integral (PI) = 0.95 ∗
[
Eemit

n

275
+ 0.375e−(time-difference)∗0.13 − 0.001

]
. (3.1)

The form of Equation 3.1 is motivated by the fact that the elastic events in Figure 3.5 are

in the form of a decaying exponential and the division of Eemit
n by a scale factor is done to

reduce the calculated values onto the range of pulse integral values of the liquid scintillator

(0 – 0.1). All other scale factors were found through an iterative process with the intent

of making Equation 3.1 best resemble the trend of the elastically scattered neutrons. The

relation between Eemit
n and pulse integral is shown in Figure 3.7.

This conversion gets applied to every detector as each detector is a liquid scintillator

operating in the same manner. A relationship between neutron time difference can be estab-

lished based on the incident neutron energy. Equation 3.1 is used for each detector allowing
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Figure 3.7 The conversion of neutron emitted energy Eemit
n to pulse integral utilizing Equa-

tion 3.1.

for each detector to get an individualized “kinematic curve” based on the underlying scat-

tering kinematics covered in Chapter 1, Section 1.5. An example of a kinematic curve placed

onto a detector is shown in Figure 3.8.

The purpose of the kinematic curve is to visually show on the detector histogram where

the “true” elastically scatter neutrons should reside and is motivated by the natural curve

as represented by the data. The next step is defining the boundaries around the kinematic

curve with the intention of a having a thin selection to ensure selection of “pure” elastic

scattered neutrons. In order to describe an appropriate thickness that is needed for selecting

the desired neutron elastically scattered events, a resolution function shown in Equation 3.2

and described in Ref. [59] as used for an EJ-309 liquid scintillator [60] and EJ-315 scintillator

[61], is used to provide the 1σ value of the liquid scintillator as a function of the detected
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Figure 3.8 The kinematic curve (red) shown on the liquid scintillator histogram using Equa-
tion 3.1 to describe how elastically scattered neutrons are detected in a liquid scintillator.

neutron energy (Eemit
n )

σ =

√
a2x2 + β2x+ γ2

2
√
2 ln 2

, (3.2)

where α, β, and γ are user defined constants that are adjusted to change the thickness of the

cut across varying energies (pulse-integrals), x. The values used in this work are summarized

in Table 3.1

Parameter Value
α 0.10
β 0.03
γ 0.00

Table 3.1 The resolution equation (Equation 3.2) parameters that are used to generate the
cut to select neutron elastically scattered events as seen in Figure 3.8.

The values in Table 3.1 were found through an interactive process to ensure that elasti-

cally scattered neutrons were selected while avoiding inelastically scattered neutrons (labeled
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1st excited state in Figure 3.5). Additionally, the value of the parameters were further re-

fined to the reported values based on ensuring the calculated integrated cross section (see

Chapter 5) agreed with the “standard region” (refer to Chapter 1, Section 1.3) trend [27].

The resulting 1σ values provided the upper and lower bounds to the cut. The bounds

are found by taking the results of Equation 3.1 and Equation 3.2 and are calculated as

Upper & Lower Bounds = PI ± σ . (3.3)

Finally, a cut can be generated on the liquid scintillator histogram data that selects on

elastically scattered neutrons. The cut on the desired data is shown in Figure 3.9.

Figure 3.9 The liquid scintillator histogram with the desired cut (red) applied to the data
that selects elastically scattered neutrons.

This cut is then applied to the detector histogram to produce a time spectrum that

is converted into an energy spectrum using the relativistic scattering kinematics equations

discussed in Chapter 1, Section 1.5.
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3.2.1 Cut Algorithm

The boundaries of the cut described in Section 3.2 are physically motivated based on

the nature of the detector, how elastically scattered neutrons behave due to relativistic

kinematics, and utilize an established definition to produce the boundaries of the cut given

by Equation 3.2. The default method in ROOT locates the bin center of each bin and checks

if a bin, via the location of the bin center, is within the boundaries of the defined cut. If the

bin center is within the boundaries of the cut, the entire bin contents (counts) are included,

and if the bin center is outside of the boundaries of the cut then the entirety of the bin is

excluded from the selection [62]. The portion of a bin the cut intersects is a valid region and

does not necessitate “throwing away” entire bins if the bin center is not within the confines

of the cut and similarly, portions of the bin that is excluded from the cut. The default

algorithm in ROOT, if utilized as it currently exists, produces unphysical results.

In order to recover bins of counts that are intersecting with the cut boundaries, a more

ideal scenario is to find the percentage of the bin that is included in the cut and multiply

this factor by the number of counts in a bin. The 10 different scenarios that one has to

account for are demonstrated in Figure 3.10. In order to determine which scenario a given

bin is classified as, each of the 4 corners of the bins are compared to the location of cut. In

particular, the lower and upper bin edges are obtained on the x and y axis. The cut is then

evaluated at the x lower and upper x-axis bin edges to obtain the cut y coordinates and are

compared to the y lower and upper y-axis bin edges.

The two trivial cases are when the cut excludes the entirety of the bin and includes the

entire bin. In this case, no special handling is required and the default ROOT cut process is

allowed to proceed. For bins that are intersected by the cut, the shaded region (see Figure

3.10) is broken into two sections: a rectangular region and triangle/trapezoid, depending on

the cut type scenario type. The rectangular section excludes the cut boundary is calculated

using the area of a rectangle (l ∗w) and the triangular/trapezoid region, which contains the

cut boundary, approximates the cut as a linear function given the small size of the bins when
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Figure 3.10 The different scenarios of how the cut (red) overlays on bins (black rectangles)
with respect to the location of the bin center (black dots). Shaded regions are regions of the
bin that are included in the cut and are calculated using the cutting algorithm.
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applied to the data and is calculated using the triangle/trapezoid area (1
2
bh or 1

2
[b1 + b2]h,

respectively) formula to calculate the area of the bin that is included in the cut. The two

areas (rectangular + triangular/trapezoidal) are then summed to together and divided by

the total bin area to get a percentage of the bin that is included in the cut. This percentage is

then multiplied by the total counts within the bin. This assumes uniform count distribution

within each bin, justified from bin definitions.

A secondary 2D histogram is produced using the explained cutting algorithm to account

for more accurate event selection before the production of an energy spectrum. A liquid

scintillator histogram that has a cut applied is shown in Figure 3.11. The post-cut histogram

is ready to be converted into an energy spectrum.

Figure 3.11 The liquid scintillator histogram, as seen in Figure 3.9, with the cut applied
to the histogram using the describe cutting algorithm.
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3.3 Energy Spectra

Using the liquid scintillator histogram with elastically scattered neutrons selected, as

shown in Figure 3.11, it is possible to now create an energy spectrum. This is accomplished

by taking the selected events and projecting onto the time axis (x axis) to produce a counts

vs. time histogram. This is easily accomplished in ROOT with the ProjectionX() command

that takes a 2D histogram and projects the histogram onto the x axis to make a 1D histogram.

Utilizing the aforementioned command produces a time spectrum as show in Figure 3.12.

Figure 3.12 The selected elastic scattered neutron events as shown in Figure 3.11 projected
onto the time axis to create a spectra of neutron counts as a function of time difference (ns).
The black dots are the recorded counts.

As seen in Figure 3.12, some structure in the time spectra can already be seen from

selecting elastic scattered neutrons. To turn the time spectrum into an energy spectrum

for efficiency correction, the relativistic scattering kinematics in Chapter 1, Section 1.5 are

45



utilized to establish a relationship between time difference and Einc
n .

Figure 3.13 The kinematic relation between time difference (ns) to incident neutron energy
Einc

n (MeV) over different lab detected angles, θ. A zoomed in subset of the full time-
difference region is shown see the differences of Einc

n for a given time difference across different
detector angles more clearly.

The conversion from time difference to incident neutron energy as shown in Figure 3.13

is used on the time spectrum (Figure 3.12), accounting for the appropriate detector angle,

to produce an energy spectrum. In the process to produce an energy spectrum, the bin

center of the time spectra is used and bin edges of the time spectrum is converted to Einc
n ,

to produce the respective data point, and corresponding upper and lower uncertainty on

the Einc
n value. Additionally, given that a bin is an integration over constant time intervals

corresponding to variable energy intervals, the counts are divided by the bin width. This

effectively divides out the time integration and ensures that comparison of spectra (energy,

cross section, etc.) is consistent between datasets and literature values as will be the case for
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efficiency calculation and correction. This is also consistent with the theoretical motivation

given in Chapter 1, Section 1.1. The resulting conversion, with uncertainties, is shown in

Figure 3.14.

Figure 3.14 The energy spectrum produced using the kinematic relation between time
difference and neutron incident energy Einc

n .

The energy range that is displayed in Figure 3.14 is 0.85 – 7 MeV. The lower limit of 0.85

MeV is primarily driven by low counting statistics in the production of a detector efficiency as

described in Section 3.4 and the arrival of the next micropulse (where lower energy neutrons

would be overlapped with high energy neutrons from the next arriving pulse). The upper

limit of 7 MeV is determined as a cutoff due to the decrease in measured neutron counts

starting at 7 MeV from prompt fission neutron spectrum from 252Cf and subsequently effi-

ciency, as discussed in Section 3.4. As was the case with Figure 3.12, structures of interest

begin to appear within the energy spectra as these structures will become notable features
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in the integrated cross section.

3.4 Efficiency Correction

In reality, a detector is not able to measure every neutron that is incident upon the

detector, resulting in an unwanted shape effect on the measured energy spectrum. To correct

for this effect the detector efficiency (ε), defined as the relative probability for detecting a

neutron at a given energy, is derived. This detector efficiency, which is energy dependent, is

then applied to the measured carbon spectrum shown in Figure 3.14. The reference spectrum

comes from the prompt fission neutron spectrum (PFNS) from the spontaneous fission of

252Cf, which is considered a neutron data standard [27].

3.4.1 Efficiency Calculation

The calculation of the liquid scintillator detector efficiency begins with obtaining the 252Cf

PFNS and uncertainties from the IAEA (International Atomic Energy Agency) Neutron Data

Standards [63]. The reference data are based upon the Mannhart evaluations [64, 65], plotted

in Figure 3.15.

The range of energies for which the 252Cf PFNS is considered a standard is 10 eV –

30 MeV. For the incident neutron energy range mentioned in Section 3.3, the smallest neutron

energy occurs at Eemit
n ≈ 0.62 MeV for Einc

n = 0.85 MeV and a maximum Eemit
n ≈ 6.85 MeV

for Einc
n = 7 MeV. The range of Eemit

n values, for the Einc
n range used in this work, is well

within the bounds over which the 252Cf PFNS is considered a standard.

A 252Cf source was placed in the center of the CoGNAC array and data were recorded

measuring the prompt gamma rays and neutrons from the spontaneous fission source. By

measuring the PFNS, this is similar to measuring the Eemit
n values in the carbon scattering

setup. This allows for a relation between the two dataset to be developed through the

translation of the cut, developed in Section 3.2, via scattering kinematics (Chapter 1, Section

1.5) to be applied onto the 252Cf dataset.

Similar to the carbon dataset, the prompt gamma rays are centered at a time difference

value of 0 ns and the subsequent neutrons are recorded. A correction for the prompt gamma
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Figure 3.15 The 252Cf PFNS as a function of neutron emitted energy Eemit
n obtained from

the IAEA Neutron Data Standards [63] based on Refs [64, 65]

rays is also needed and the same procedure as in Section 3.1.1 is applied to the recorded 252Cf

dataset. The measured neutrons emitted from the 252Cf source along with the translated cut

is shown in Figure 3.16.

The cut algorithm in Section 3.2.1 is also applied to the 252Cf histogram and the same time

spectrum to energy spectrum procedure is used from Section 3.3 to produce a measured PFNS

spectrum as seen in the liquid scintillator. For background subtraction, counts recorded at

negative time differences before the prompt gamma ray (time difference < -15 ns) were used.

The selection is shown in Figure 3.17.

The background is developed as a function of pulse integral (can also be thought of Eemit
n )

and counts are projected onto the y axis. During the conversion from a time spectrum, to en-

ergy spectrum, each corresponding energy bin gets subtracted by the respective background

counts based on pulse integral value and is shown in Figure 3.18. The number of background

counts is also divided by the time width of the background cut as a number of bins to obtain
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Figure 3.16 The 252Cf liquid scintillator data recorded from spontaneous fission with the
kinematically translated carbon cut (red) applied to the detector histogram.

Figure 3.17 The liquid scintillator histogram data with the negative time difference values,
ranging from -150 to -15 ns, selected (red). Near 0 ns is the prompt gamma ray from
spontaneous fission of 252Cf.
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Figure 3.18 The used background of the 252Cf data based on the cut and y-axis projection of
Figure 3.17. The 252Cf background is a function of pulse integral. The background presented
is not divided by the number of time bins for clarity purposes so that the overall shape of
the background can be viewed more clearly.

a background per bin value (not shown in Figure 3.18 for clarity purposes). Similarly, the

recorded counts for a given energy bin (time bin that has been converted into an energy bin

using scattering kinematics) are divided by the width of the energy bin. The recorded 252Cf

PFNS compared to the IAEA standard is shown in Figure 3.19. The IAEA 252Cf values

have been arbitrarily scaled by a factor of 1013 to ensure that the reference spectrum (Figure

3.15) is greater than the recorded spectrum.

The detector efficiency is found by dividing the data at each energy value, s(Eemit
n ), by

the scaled 252Cf PFNS spectrum, ξ(Eemit
n ), and is given in Equation 3.4

ε(Eemit
n ) =

s(Eemit
n )

ξ(Eemit
n )

. (3.4)

The calculated liquid scintillator detector efficiency is shown in Figure 3.20 is then applied

to the measured carbon neutron elastic scattering spectrum shown in Figure 3.14.
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Figure 3.19 The recorded 252Cf PFNS from the 252Cf source placed in the center of the
CoGNAC setup (black) compared with an arbitrarily scaled 252Cf standard (blue). The
plotted energy range for Eemit

n is 0.6 – 7 MeV.

Figure 3.20 The calculated liquid scintillator detector efficiency using Equation 3.4. The
plotted energy range for Eemit

n is 0.6 – 7 MeV.
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3.4.2 Efficiency Application

The efficiency of the liquid scintillator calculated and shown in Figure 3.20 can now be

applied to the energy spectrum shown in Figure 3.14. A conversion between neutron Einc
n

and Eemit
n is required as the PFNS and calculated efficiency are a function of Eemit

n . This

can be done with Figure 3.6. The efficiency corrected spectrum is calculated as

cε
(
Einc

n

)
=

c (Einc
n )

ε (Eemit
n )

, (3.5)

where c (Einc
n ) is the raw counts of neutron elastically scattered neutrons from the carbon

data and ε (Eemit
n ) is the efficiency (Figure 3.20) and cε (E

inc
n ) is the efficiency-corrected

spectrum as a function of Einc
n . The Eemit

n used in Equation 3.5 for the liquid scintillator

efficiency is the same Eemit
n that is measured by the liquid scintillator for neutrons that

scatter from 12C at a given combination of Einc
n and θ. No further bin width division is

needed as the dimensions of the bins have already been divided in the production of the

energy spectrum and the efficiency allowing for direct use of the two different quantities.

The efficiency corrected spectrum is shown in Figure 3.21b.

(a) (b)

Figure 3.21 The original energy spectrum as measured by the liquid scintillators is shown
in Figure 3.21a. The energy spectrum of with efficiency correction is shown in Figure 3.21b.
Plotted Einc

n range is 0.85 – 7 MeV.

Looking at Figure 3.21, there is an overall shape agreement between the energy spectrum

that does not have an efficiency applied (Figure 3.21a) but correcting the liquid scintillator
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with the detector efficiency results in the most noticeable shape change at lower Einc
n as seen

in Figure 3.21b.

3.5 Neutron Flux

The flux was measured with a fission chamber located downstream of the CoGNAC

array. The neutron beam induces fission events from the 235U foil in the fission chamber.

The neutron flux is calculated as

Φ
(
Einc

n

)
=

f (Einc
n )

σf (Einc
n )∆E

, (3.6)

where Φ (Einc
n ) is the neutron flux as a function of incident neutron energy, f (Einc

n ) is the

number of fission events (neutron beam counts), σf (E
inc
n ) is the fission cross section of 235U,

and ∆E is the bin width (for bin width division as explained in Section 3.3). The fission

cross section of 235U is obtained from ENDF-B/VIII.0 [13, 66, 67], is a neutron cross section

standard (standard energy range of Einc
n = 0.15 – 200 MeV) [27, 29] within the range of this

work (Einc
n = 0.85 – 7 MeV) and is shown in Figure 3.22a. The fission cross section is divided

out of the measured spectrum (Figure 3.22b) as the spectrum is measured relative to fission

events of 235U. The neutron flux is lastly calculated according to Equation 3.6 (Figure 3.22b

divided by Figure 3.22a) and is shown in Figure 3.23.

(a) (b)

Figure 3.22 The fission cross section of 235U (Figure 3.22a) obtained from ENDF-B/VIII.0.
The spectrum from the fission chamber (Figure 3.22b), with bin width division from Einc

n =
0.85 – 7 MeV.
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Figure 3.23 The neutron flux measured during the same beam cycle as the recorded carbon
data at the fission chamber down beam of the CoGNAC setup from Einc

n = 0.85 – 7 MeV.

3.6 Differential Angular Cross Section

To calculate the differential angular cross section dσ
dΩ
, one needs the measured spectrum

of carbon elastic scattered neutrons, efficiency for the detector, and the measured neutron

flux. The differential angular cross section as a function of incident neutron energy Einc
n is

calculated as shown in Equation 3.7

dσ

dΩ

(
Einc

n

)
=

c (Einc
n )

ε (Eemit
n ) Φ (Einc

n )
=
c (Einc

n ) ξ (Eemit
n )σf (E

inc
n )

s (Eemit
n ) f (Einc

n )
. (3.7)

The later term in Equation 3.7 will be used to calculate the differential angular cross

section and is in a useful form for uncertainty quantification and covariance calculation

explained in Chapter 4. The carbon spectrum, c (Einc
n ), is a function of incident neutron

energy (Figure 3.14), s (Eemit
n ) is the measured PFNS spectrum from the 252Cf source (Figure

3.19), f (Einc
n ) is the measured neutron flux spectrum (Figure 3.22b), ξ (Eemit

n ) is the scaled

252Cf PFNS from the Mannhart evaluation (Figure 3.15), and σf (E
inc
n ) is the 235U fission

cross section (Figure 3.22a). Calculating Equation 3.7 results in Figure 3.24.
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Figure 3.24 The differential angular cross section of a single liquid detector as describe by
Equation 3.7 on the range of 0.85 - 7 MeV for Einc

n

3.7 Integrated Cross Section

In order to calculate the integrated cross section utilizing the whole detector array, the

liquid scintillators at the same angle are averaged together and then are integrated over

the solid angle of the detector face. For example, all 6 liquid scintillators at θ = 120◦

will have their respective differential angular cross section dσ
dΩ

averaged together. Averaging

the differential angular cross section becomes clear when using Equation 3.7 with some

simplification. If xi =
ci
si

where i is the detector index, then summing each of the detectors

produces

∑
i

dσ

dΩ i
=
xiξσf
6f

= ξσf

[
x1 + x2 + x3 + x4 + x5 + x6

6f

]
=

1

6

[
dσ

dΩ1
+
dσ

dΩ2
+
dσ

dΩ3
+
dσ

dΩ4
+
dσ

dΩ5
+
dσ

dΩ6

]
=
dσ

dΩ
(θ) ,
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with the factor of 6 originating from the fact that 6 detector are shared at one given scattering

angle, θ. This produces 9 averaged differential angular cross sections for each of the given 9

different θ values.

To calculate the integrated cross section for comparison with ENDF-B/VIII.0, the dif-

ferential angular cross section is calculated as

σ
(
Einc

n

)
=

∫
dσ

dΩ
(Einc

n )dΩ =

∫ ϕ2

ϕ1

∫ θ2

θ1

dσ

dΩ
(Einc

n ) sin θdθdϕ , (3.8)

where θ1 and θ2 are ±5◦ from the θd angle (Example: θ1 = 115◦ and θ2 = 125◦ for θd =

120◦). Finding the limits of integration for ϕ (ϕ1 and ϕ2) will depend on the value of θ given

the fact that ϕ is not constant with changing θ. The necessary geometry to calculate what

the respective limits of integration for ϕ is shown in Figure 3.25.

Figure 3.25 The geometric relationships to calculate the limits of integration for ϕ as shown
from a top, side, and front view of the liquid scintillator. “D” is the distance from the center
of CoGNAC to the liquid scintillator (1.02 m), “d” is the detector diameter, “y” is the
effective distance of the liquid scintillator at a given θ and ϕ is the azimuthal value needed
for the limits of integration.

The azimuthal angle ϕ is dependent upon the diameter of the liquid scintillator “d” and

the distance from the center of CoGNAC to the liquid scintillator “D” as explained by the

equation at the bottom of Figure 3.25 under the “Side View” section. Though, one needs

an effective distance “y” that is smaller than the diameter of the liquid scintillator based
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on the θ value. This effective distance is what is plugged into the equation to calculate ϕ

is found simply by using the Pythagorean Theorem, as shown in the “Front View” section

of Figure 3.25. The value of θ away from the detector center (θd) is ∆θ (as seen in the

“Top View” in Figure 3.25) and is used to calculate the distance away from the center of

the detector Dtan(∆θ) which is used in the calculation of ϕ. This process is done for each

θd value spanning from ±5◦ in 0.1◦ intervals. Table 3.2 summarizes the integration factor(∫ ϕ2

ϕ1

∫ θ2
θ1

sin θdθdϕ
)
applied to each of the averaged differential angular cross sections.

θd (◦) Integration Factor
150 0.13711
135 0.193903
120 0.236341
105 0.263569
90 0.272835
75 0.263508
60 0.236223
45 0.192839
30 0.136315

Table 3.2 The integration factor applied to each of the differential angular cross section
data.

Once the differential angular cross sections have had their respective integration factors

applied, the integrated cross section is calculated by summing each of the 9 spectra to

produce an integrated angular cross section. The calculated integrated cross section result

is presented in Chapter 5.

3.8 Peak Alignment Issue

During the data analysis process, it was discovered that there is a discrepancy with the

location of structures within the calculated integrated cross section and what is reported

in ENDF-B/VIII.0 for 12C (n, el) cross section and previous experimental results. This

discrepency is with respect to the Einc
n location of structures in the integrated cross section.

A plot of the integrated cross section without any time offset to the 252Cf data and the

carbon data is shown in Figure 3.26.
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Figure 3.26 The 12C integrated neutron elastic scattering without any time offset to the
Carbon or 252Cf data on the Einc

n range of 2 – 6.75 MeV

Figure 3.27 The same as Figure 3.26 but on the full analyzed Einc
n range of 0.85 – 7 MeV.

There is visible disagreement between the neutron standard region and the calculted cross
section.
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It can be seen when looking at the peak near 2 MeV and valley near 3 MeV, that the

location of the peak is lower than was is indicated by ENDF-B/VIII.0 for neutron elastic

scattering. Additionally, the peaks near 4.4 MeV, 5.4 MeV, and 6.3 MeV are higher than

the reported location. Lastly, on the reported energy range, the standard region of the cross

section (1 keV - 1.8 MeV) is not consistent with ENDF-B/VIII.0 as seen in Figure 3.27.

This misalignment indicates that there is an energy dependent offset. In an effort to

align the measured integrated cross section with known resonances, a time offset of -1 ns is

added to the time difference vs. Eemit
n relationship in the 252Cf data. A uniform time offset

corresponds to a non-uniform energy offset due to relativistic kinematics. This procedure

results in the analyzed data being in agreement with the standard region for 12C. The

environmental conditions between the data taking setup for carbon and for measuring the

PFNS of 252Cf are different enough such that a 1 ns time difference is minimal enough

to account for environmental differences in the two experimental data-taking setups. The

integrated cross section with a -1 ns time offset (without any time offset in the carbon data)

is shown in Figure 3.28. This level of time offset is consistent with time offsets required for

CoGNAC (n, n′γ) measurements to obtain alignment with known resonance features.

Though when one zooms in on the structures around 2 MeV, 2.8 MeV, and 3 MeV, there

is still a discrepancy in the data as seen in Figure 3.29.

Significant time and checks have been made to ensure that the relativistic kinematics

presented in Chapter 1, Section 1.5 were implemented correctly and accurately in analysis

codes. Additionally the methodology of analysis is similar to other analysis techniques done

for cross section measurements with CoGNAC and no issues were able to be found. The

difference in structure location disagreement was tracked back to the location of structures

on the liquid scintillator histogram (Figure 3.2) disagreeing with the relativistic kinematics

as predicted using the equations in Chapter 1, Section 1.5.

A simulation utilizing MCNP® (Monte Carlo N-Particle) [68, 69] ran by Josef Svoboda

of P-2: Applied and Fundamental Physics, yielded the neutron time difference for neutrons
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Figure 3.28 The calculated integrated cross section with a -1 ns offset applied to the 252Cf
data in the time difference vs. Eemit

n . The overall trend of the data agrees with the neutron
standard region (1 keV – 1.8 MeV) of the 12C neutron elastic scattering cross section.

Figure 3.29 Same as Figure 3.28 but on zoomed in on the Einc
n range of 2 - 3.2 MeV.
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along flight path 15L coming from Target 4. The Einc
n was taken in intervals of 1 MeV from

1 – 20 MeV with widths of 0.01% (Einc
n = 2 ± 0.0002 MeV). A simulated neutron flux is

shown in Figure 3.30.

Figure 3.30 Simulated neutron flux using MCNP provided by Josef Svoboda of a Einc
n =

2 ± 0.0002 MeV neutron beam. The vertical line is the predicted neutron time difference
utilizing scattering kinematics presented in Chapter 1, Section 1.5.

Even with a small spread in beam energy, there is structure of the neutron flux towards

higher energies neutrons. A weighted average of the neutron time difference is taken with

the weights being the respective flux values to produce a comparison between the predicted

scattering kinematics values for a given Einc
n and what is simulated in MCNP. The resulting

comparison is shown in Figure 3.31.

As seen in Figure 3.31, MCNP tends to predict neutrons to have a shorter time difference

than is predicted by scattering kinematics and is energy dependent. An offset with energy

dependence is consistent with what appears in the carbon analysis. An additional time offset
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Figure 3.31 Top half of the plot shows the weighted average time difference of a neutron at
a given Einc

n (blue points) compared to using relativistic kinematics equations (black line).
The difference between simulation and theory is shown in the bottom plot with the horizontal
dashed line being equal to 0 (no difference).

was found by taking the difference between MCNP and Theory (scattering kinematics) and

multiplying this time offset by 5 resulted in agreement between the calculated integrated cross

section and what is seen in ENDF-B/VIII.0. A zoom in of the agreement with structures near

2 MeV, 2.8 MeV, and 3 MeV is shown in Figure 3.32 along with the previously mentioned

-1 ns time offset included earlier.

Given the agreement by multiplying the time offset from MCNP to theory by a factor of 5,

and the suggestion by simulation for shorter time differences by MCNP, this time difference

is included into the integrated cross section calculation. Additionally, the total neutron cross

section of carbon is equal to the elastic cross section up to the 1st excited state of 12C (4.4398

MeV). The total cross section has been measured over numerous experiments implying the

location of structures in the cross section below the 1st excited state is well know. As such,

the introduction of a time offset to the carbon data to have structure below the 1st excited
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Figure 3.32 The 12C integrated cross section with time offsets applied to the 252Cf dataset
and carbon using Figure 3.31.

state is justified. This time offset introduced into the carbon data is valid from 0.8 – 7 MeV

based on best structure location agreement in the integrated cross section. An additional

systematic uncertainty has been applied to the integrated result to reflect the need for the

additional time corrections.
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CHAPTER 4

UNCERTAINTY & COVARIANCE CALCULATION

While the analysis (Chapter 3) and results (Chapter 5) by themselves provides insight

into the analyzed data, uncertainty quantification and the corresponding covariance and

correlation matrices of the dataset provide a more complete picture of the obtained data

and quantify the relationship of the presented results with itself over the range of reported

energies. The covariance derivation procedures and results for the analysis performed for

this dissertation are described in this chapter.

4.1 Covariance Calculation

Introduced in Chapter 1, the covariance Cov of a function f(x) is found for the carbon

spectrum, efficiency, flux, differential angular cross section, average differential angular cross

section, and integrated cross section. The diagonal of the covariance matrix contains the

variance Var for each of the calculated quantities. The variance is the square of the standard

deviation (Gaussian 1σ) which is treated as the uncertainty for the measured and calculated

quantities [41, 42, 43]. The main goal of calculating the covariance is to obtain uncertainties

for calculated quantities (Var) and quantify the statistical relationship between the measured

and calculated quantities across the reported neutron incident energy Einc
n range.

The methodology of calculating the covariance matrix will involve solving the partial

derivative of a given function f(x) and carrying out the matrix multiplication as seen in

Chapter 1, Section 1.6 given by Equation 1.39. In order to keep equations clear, x will not

be displayed in equations and should be known to be the incident neutron energy Einc
n or the

emitted neutron energy Eemit
n dependent upon the quantity being calculated. Additionally,

the subscripts i and j are used to denote two different neutron energies (either incident or

emitted). For example yi means quantity y (counts, PFNS, cross section, etc) at energy point

i and the similar is true for yj. For quantities notated as Cov[yij], means the covariance of

y at the energy points of i and j. This notation is used in the case for the 252Cf PFNS and

235U fission cross section.
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4.2 Carbon Spectrum

The function for calculating the carbon spectrum is

C =
c− b

∆E
, (4.1)

where c is the carbon foreground counts, b is the background, and ∆E is the bin width (for

bin width division). The covariance matrix V, the matrix containing the uncertainties (as

explained and defined in Equation 1.41 from Chapter 1, Section 1.6) of the quantities used

in C, is simply constructed using the variance of the quantities at energies i and j on the

diagonal. The uncertainty of measured counts is just the square root of the counts. The

variance of c and b is the square of the uncertainty meaning Var[c] = c. V is therefore

V =



Var[ci] 0 0 0

0 Var[cj] 0 0

0 0 Var[bi] 0

0 0 0 Var[bj]


. (4.2)

The sensitivity matrix A is found by taking the partial derivative of f in Equation 4.1

with respect to each quantity (c or b) at energy i or j. This is then calculated to be

A =

 ∂fi
∂ci

∂fi
∂cj

∂fi
∂bi

∂fi
∂bj

∂fj
∂ci

∂fj
∂cj

∂fj
∂bi

∂fj
∂bj

 =

 1
∆E

0 −1
∆E

0

0 1
∆E

0 −1
∆E

 . (4.3)

The covariance matrix KC of C is given by

KC = AVAT (4.4)

=

 1
∆E

0 −1
∆E

0

0 1
∆E

0 −1
∆E




Var[ci] 0 0 0

0 Var[cj] 0 0

0 0 Var[bi] 0

0 0 0 Var[bj]





1
∆E

0

0 1
∆E

−1
∆E

0

0 −1
∆E


(4.5)

=

Var[ci]+Var[bi]
∆E2 0

0
Var[cj ]+Var[bj ]

∆E2

 . (4.6)
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The diagonals in Equations 4.6 are the variance of the carbon spectrum at energy points of

i and j. It is important to note that the off diagonals in the calculated covariance matrix

are 0 meaning there is no relationship between the background and measured carbon counts.

This makes sense as these are two separate and independent measurements. The matrix in

Equation 4.6 can further be simplified to

Cov[Cij] = δij

[
Var[ci] +Var[bi]

∆E2

]
, (4.7)

where δij is the Kronecker delta (δij = 1 if i=j and 0 otherwise) and knowing that Cov[xi=j]

= Var[xi]. Equation 4.7 shows that the form of the variance, and therefore the uncertainty

(standard deviation) which is found by taking the square root of the variance, does not

change with energy and each data point is only dependent upon the measured quantities at

a given energy. Secondly, this is also a valuable form for implementation in analysis codes

making covariance calculations iterative when the form becomes more complicated, as is the

case with the integrated cross section.

4.3 Detector Efficiency

The calculation of the covariance matrix Kε of the liquid scintillator detector efficiency

follows the same process as the carbon spectrum with the addition of an existing covariance

matrix for the 252Cf PFNS. It is also important to note that for the efficiency, the neutron

emitted energy Eemit
n is the energy of interest in this calculation. The equation for calculating

the liquid scintillator efficiency is given by Equation 4.8

ε =
s

ξ
, (4.8)

where s is the measured PFNS with background subtraction and bin width division, ∆E,

accounted for and has a covariance of the same form of Equation 4.7. The 252Cf PFNS

standard is represented as ξ and also has an accompanying covariance that will be included

in the covariance matrix V. The sensitive matrix A is given by

A =

 1
ξi

0 −si
ξ2i

0

0 1
ξj

0
−sj
ξ2j

 , (4.9)
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and the covariance matrix V is given by

V =



Var[si] 0 0 0

0 Var[sj] 0 0

0 0 Var[ξi] Cov[ξij]

0 0 Cov[ξji] Var[ξj]


, (4.10)

where the off diagonal contains the covariance of the 252Cf PFNS. Conceptually, this is comes

from the fact that each detector will measure a slightly different neutron spectrum from the

252Cf source (due to small variations between each detector), but each detector is compared

to the same reference standard and therefore becomes “linked”. The covariance of the 252Cf

PFNS is obtained from the ENDF-B/VIII.0 correlation plot [13, 70] and is multiplied by the

uncertainties in the 252Cf PFNS standard from Refs. [63, 64, 65]. The PFNS correlation

matrix of 252Cf as used in this work is shown in Figure 4.1.

The correlation matrix is chosen to be shown to more clearly see the overall structure

and behavior of the 252Cf PFNS correlation matrix as well as to foreshadow some of the the

major features that should appear in the integrated cross section correlation matrix (and

similarly, the covariance matrix).

The covariance matrix Kε is then calculated to be

Kε = AVAT (4.11)

=

 1
ξi

0 −si
ξ2i

0

0 1
ξj

0
−sj
ξ2j




Var[si] 0 0 0

0 Var[sj] 0 0

0 0 Var[ξi] Cov[ξij]

0 0 Cov[ξji] Var[ξj]





1
ξi

0

0 1
ξj

−si
ξ2i

0

0
−sj
ξ2j


(4.12)

=

Var[si]

ξ2i
+

s2i
ξ4i
Var[ξi]

sisj
ξ2i ξ

2
j
Cov[ξij]

sisj
ξ2i ξ

2
j
Cov[ξij]

Var[sj ]

ξ2j
+

s2j
ξ4j
Var[ξj]

 . (4.13)

Notice that off diagonal terms appear in the covariance matrix Kε originate from the covari-
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Figure 4.1 The correlation matrix of the 252Cf PFNS obtained from ENDF-B/VIII.0 [13,
70] of the 252Cf PFNS standard [63, 64, 65]. The x- and y-axis are plotted on the range of
Eemit

n = 0.6 – 7 MeV.

ance of the 252Cf PFNS. Equation 4.13 can be further simplified to

Cov[εij] = δij

[
Cov[sij]

ξiξj

]
+
sisj
ξ2i ξ

2
j

Cov[ξij] . (4.14)
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4.4 Neutron Flux

The process for calculating the covariance matrix of the neutron flux KΦ is very similar

to the process used for the detector efficiency. The flux is calculated to be

Φ =
f

σf
, (4.15)

where f is the number of counts in the fission chamber detector (with bin width division

accounted for) and σf is the neutron induced fission cross section of 235U. Similar to the

PFNS of 252Cf, there is also a correlation matrix for the fission cross section of 235U. The

correlation matrix is obtained from ENDF-B/VIII.0 [13, 71] and based on the work in Ref.

[67]. The correlation matrix is shown in Figure 4.2.

The covariance is found by multiplying the correlation matrix by the appropriate un-

certainty in the 235U fission cross section. The block structure along the diagonal should

also appear in the final correlation and covariance matrices of the integrated cross section.

Similar to the calculation of the efficiency covariance, the calculation of the flux covariance

KΦ follows the same procedure and is shown to be

KΦ = AVAT (4.16)

=

 1
σf i

0 −fi
σf

2
i

0

0 1
σf j

0
−fj
σf

2
j




Var[fi] 0 0 0

0 Var[fj] 0 0

0 0 Var[σf i] Cov[σf ij]

0 0 Cov[σf ji] Var[σf j]





1
σf i

0

0 1
σf j

−fi
σf

2
i

0

0
−fj
σf

2
j


(4.17)

=

Var[fi]

σf
2
i

+
f2
i

σf
4
i
Var[σf i]

fifj
σf

2
i σf

2
j
Cov[σf ij]

fifj
σf

2
i σf

2
j
Cov[σf ij]

Var[fj ]

σf
2
j

+
f2
j

σf
4
j
Var[σf j]

 , (4.18)

where Equation 4.18 is of the same form as Equation 4.13. Equation 4.18 can be simplified

to

Cov[Φij] = δij

[
Cov[fij]

σf iσf j

]
+

fifj
σf 2iσf

2
j

Cov[σf ij] . (4.19)
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Figure 4.2 The correlation matrix of the 235U fission cross section [67, 72] from ENDF-
B/VIII.0 [13, 71]. The x- and y-axis are plotted on the range of Einc

n = 0.85 – 7 MeV.
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4.5 Differential Angular Cross Section

For calculating the covariance of the differential angular cross section K dσ
dΩ

, the equation

to calculate dσ
dΩ

is

dσ

dΩ
=
cξσf
sf

, (4.20)

the sensitivity matrix A is given by

A =

 ξiσf i

sifi
0

−ciξiσf i

s2i fi
0

−ciξiσf i

sif2
i

0
ciσf i

sifi
0 ciξi

sifi
0

0
ξjσf j

sjfj
0

−cjξjσf j

s2jfj
0

−cjξjσf j

sjf2
j

0
cjσf j

sjfj
0

cjξj
sjfj

 , (4.21)

the covariance matrix V is

V =



Var[ci] 0 0 0 0 0 0 0 0 0

0 Var[cj] 0 0 0 0 0 0 0 0

0 0 Var[si] 0 0 0 0 0 0 0

0 0 0 Var[sj] 0 0 0 0 0 0

0 0 0 0 Var[fi] 0 0 0 0 0

0 0 0 0 0 Var[fj] 0 0 0 0

0 0 0 0 0 0 Var[ξi]Cov[ξij] 0 0

0 0 0 0 0 0 Cov[ξji]Var[ξj] 0 0

0 0 0 0 0 0 0 0 Var[ξi]Cov[ξij]

0 0 0 0 0 0 0 0 Cov[ξji]Var[ξj]



, (4.22)

and lastly, the covariance of the differential angular cross section K dσ
dΩ

is found to be

K dσ
dΩ

=

 Var[ dσ
dΩ i

] Cov[ dσ
dΩ ij

]

Cov[ dσ
dΩ ji

] Var[ dσ
dΩ j

]

 , (4.23)

with

Var

[
dσ

dΩ i(j)

]
=
ξ2i σf

2
i

s2i f
2
i

Var[ci] +
c2i ξ

2
i σf

2
i

s4i f
2
i

Var[si] +
c2i ξ

2
i σf

2
i

s2i f
4
i

Var[fi] +Cov

[
dσ

dΩ ij

]
, (4.24)

and

Cov

[
dσ

dΩ ij

]
=
cicjσf iσf j
sisjfifj

Cov[ξij] +
cicjξiξj
sisjfifj

Cov[σf ij] , (4.25)
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again noting that if i = j then Cov[ξij] and Cov[σf ij] are just Var[ξi] and Var[σf i] respec-

tively. Similarly, the covariance can be simplified to

Cov

[
dσ

dΩ

]
= δij

[
ξ2i σf

2
i

s2i f
2
i

Var[ci] +
c2i ξ

2
i σf

2
i

s4i f
2
i

Var[si] +
c2i ξ

2
i σf

2
i

s2i f
4
i

Var[fi]

]
+
cicjσf iσf j
sisjfifj

Cov[ξij] +
cicjξiξj
sisjfifj

Cov[σf ij] ,

(4.26)

where only the covariance of the 235U fission cross section and the 252Cf PFNS contribute on

the off diagonals.

4.6 Detector Average

For the covariance matrix calculation of the detector average K dσ
dΩ

, it is desirable to

represent terms in the variance and off diagonal covariance in simplified terms of already

calculated quantities. In order to establish a pattern for the detector average only two

detectors (x and y) that share the same θd are used in the derivation. This simplification also

more clearly shows the relationship and pattern in the variance and off diagonal covariance

term. The function for the average differential angular cross section dσ
dΩ

is given by

dσ

dΩ
=
ξσf
nf

(
cx
sx

+
cy
sy

)
, (4.27)

where the subscripts of x and y correspond to detectors x and y and n is the number of

detectors at a given θd (in this example, n = 2).

For the covariance matrix V

V =


VX 0 0

0 VY 0

0 0 VO

 , (4.28)

where VX is the matrix pertaining to the x detector (cx and sx), VY is the matrix pertaining

to the y detector, and VO is the matrix for shared terms such as the neutron flux counts f ,
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235U fission cross section σf , and the 252Cf PFNS ξ and are defined as

VX =



cxi
0 0 0

0 cxj
0 0

0 0 sxi
0

0 0 0 sxi


, (4.29)

VY =



cyi 0 0 0

0 cyj 0 0

0 0 syi 0

0 0 0 syi


, (4.30)

VO =



fi 0 0 0 0 0

0 fj 0 0 0 0

0 0 Var[ξi] Cov[ξij] 0 0

0 0 Cov[ξji] Var[ξj] 0 0

0 0 0 0 Var[σf i] Cov[σf ij]

0 0 0 0 Cov[σf ji] Var[σf j]


, (4.31)

resulting in a 14x14 matrix for Equation 4.28. The sensitivity matrix is then calculated to

be

A =

[
AX AY Af Aξ Aσf

]
, (4.32)

with the x detector sensitivity matrix AX, y detector sensitivity matrix AY, neutron flux

sensitivity matrixAf , the
252Cf PFNS sensitivity matrixAξ, and the 235U fission cross section

sensitivity Aσf
matrix are all defined to be

AX =

 ξiσf i

nsxifi
0 − cxiξiσf i

ns2xifi
0

0
ξjσf j

nsxj fj
0 − cxj ξjσf j

ns2xj fj

 =

 1
ncxi

dσ
dΩxi

0 − 1
nsxi

dσ
dΩxi

0

0 1
ncxj

dσ
dΩxj

0 − 1
nsxj

dσ
dΩxj

 , (4.33)

AY =

 ξiσf i

nsyifi
0 − cyiξiσf i

ns2yifi
0

0
ξjσf j

nsyj fj
0 − cyj ξjσf j

ns2yj fj

 =

 1
ncyi

dσ
dΩyi

0 − 1
nsyi

dσ
dΩyi

0

0 1
ncyj

dσ
dΩyj

0 − 1
nsyj

dσ
dΩyj

 , (4.34)
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Af =

− cxiξiσf i

nsxif
2
i
− cyiξiσf i

nsyif
2
i

0

0 − cxj ξjσf j

nsxj f
2
j

− cyj ξjσf j

nsyj f
2
j

 =

−1
nfi

(
dσ
dΩxi

+ dσ
dΩyi

)
0

0 −1
nfj

(
dσ
dΩxj

+ dσ
dΩyj

)
 , (4.35)

Aξ =

 cxiσf i

nsxifi
+

cyiσf i

nsyifi
0

0
cxjσf j

nsxj fj
+

cyjσf j

nsyj fj

 =

 1
nξi

(
dσ
dΩxi

+ dσ
dΩyi

)
0

0 1
nξj

(
dσ
dΩxj

+ dσ
dΩyj

)
 , (4.36)

Aσf
=

 cxiξi
nsxif

2
i
+

cyiξi
nsyif

2
i

0

0
cxj ξj

nsxj f
2
j
+

cyj ξj

nsyj f
2
j

 =

 1
nσf i

(
dσ
dΩxi

+ dσ
dΩyi

)
0

0 1
nσf j

(
dσ
dΩxj

+ dσ
dΩyj

)
 , (4.37)

with the right-most matrices highlighting a simplification into already calculated differential

angular cross section with A having dimensions of 2x14. The covariance matrix of the

average differential angular cross section K dσ
dΩ

can then be calculated to be

K dσ
dΩ

= K dσ
dΩx

+K dσ
dΩy

+K dσ
dΩ f

+K dσ
dΩ ξ

+K dσ
dΩσf

, (4.38)

which is a sum of individual component matrices of the x detector K dσ
dΩx

, the y detector

K dσ
dΩy

, the counts in the flux K dσ
dΩ f

, the PFNS of 252Cf K dσ
dΩ ξ

, and the fission cross section of

235U K dσ
dΩσf

. Each component matrix is defined respectively

K dσ
dΩx

=

 1
n2

dσ
dΩ

2

xi

(
Var[cxi ]

c2xi
+

Var[sxi ]

s2xi

)
0

0 1
n2

dσ
dΩ

2

xj

(
Var[cxj ]

c2xj
+

Var[sxj ]

s2xj

)
 , (4.39)

K dσ
dΩy

=

 1
n2

dσ
dΩ

2

yi

(
Var[cyi ]

c2yi
+

Var[syi ]

s2yi

)
0

0 1
n2

dσ
dΩ

2

yj

(
Var[cyj ]

c2yj
+

Var[syj ]

s2yj

)
 , (4.40)

K dσ
dΩ f

=

Var[fi]

n2f2
i

(
dσ
dΩxi

+ dσ
dΩyi

)2
0

0
Var[fj ]

n2f2
j

(
dσ
dΩxj

+ dσ
dΩyj

)2
 , (4.41)

K dσ
dΩ ξ

=

 Var[ξi]

n2ξ2i

(
dσ
dΩxi

+ dσ
dΩyi

)2
Cov[ξij ]

n2ξiξj

(
dσ
dΩxi

+ dσ
dΩyi

)(
dσ
dΩxj

+ dσ
dΩyj

)
Cov[ξji]

n2ξiξj

(
dσ
dΩxi

+ dσ
dΩyi

)(
dσ
dΩxj

+ dσ
dΩyj

)
Var[ξj ]

n2ξ2j

(
dσ
dΩxj

+ dσ
dΩyj

)2
 , (4.42)
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K dσ
dΩσf

=

 Var[σf i
]

n2σf
2
i

(
dσ
dΩxi

+ dσ
dΩyi

)2 Cov[σf ij
]

n2σf i
σf j

(
dσ
dΩxi

+ dσ
dΩyi

)(
dσ
dΩxj

+ dσ
dΩyj

)
Cov[σf ij

]

n2σf i
σf j

(
dσ
dΩxi

+ dσ
dΩyi

)(
dσ
dΩxj

+ dσ
dΩyj

)
Var[σf j

]

n2σf
2
j

(
dσ
dΩxj

+ dσ
dΩyj

)2
 , (4.43)

where once again, the off diagonal in the average differential angular cross section covariance

K dσ
dΩ

contains the combined covariances of the 252Cf PFNS and 235U fission cross section as

each detector shares the same neutron flux and each detector is referenced against the same

252Cf PFNS standard and 235U fission cross section. The simplified calculated covariance of

dσ
dΩ

is

Cov

[
dσ

dΩ ij

]
= δij

[
1

n2

dσ

dΩ

2

xi

(
Var[cxi

]

c2xi

+
Var[sxi

]

s2xi

)
+

1

n2

dσ

dΩ

2

yi

(
Var[cyi ]

c2yi
+

Var[syi ]

s2yi

)
+

Var[fi]

n2f 2
i

(
dσ

dΩxi

+
dσ

dΩyi

)2
]
+

Cov[ξji]

n2ξiξj

(
dσ

dΩxi

+
dσ

dΩyi

)(
dσ

dΩxj

+
dσ

dΩyj

)
+

Cov[σf ij]

n2σf iσf j

(
dσ

dΩxi

+
dσ

dΩyi

)(
dσ

dΩxj

+
dσ

dΩyj

)
.

(4.44)

It can be seen in the covariance matrix in Equation 4.38 and the simplified covariance in

Equation 4.44 that the variance is of a form that is dependent on the sum of the individual

counts (c, s, and f) along with the variance of the 252Cf PFNS and the 235U fission cross

section. Similarly, the off diagonal in the calculated covariance matrix is dependent on the

covariance of the 252Cf PFNS and the 235U fission cross section and is scaled by the square of

the sum of the individual differential angular cross section divided by the number of detectors

squared.

4.7 Integrated Cross Section

Finding the covariance matrix of the integrated cross section Kσ(n,el) will follow in a

similar form and manner as calculating the covariance matrix of the average differential

angular cross section in Section 4.6. A simplified example will be used once again to be able

to see the pattern in the covariance matrix Kσ(n,el) easily. The calculation of the integrated
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cross section for elastic scattering is calculated as

σ(n, el) =
ξσf
f

[
θ1
n

(
cx
sx

+
cy
sy

)
+
θ2
m

(
ca
sa

+
cb
sb

)]
, (4.45)

where θ1 and θ2 are the integration factors from Table 3.2 in Chapter 3, Section 3.7, n is the

number of detectors related to θ1 and similarly m is the number of detectors related to θ2,

x and y are individual detectors related to θ1 while a and b are individual detectors related

to θ2, ξ is the value of the 252Cf PFNS, σf is the fission cross section of 235U, and f is the

number of flux counts.

The covariance matrix Vσ(n,el) is constructed as

Vσ(n,el) =


Vθ1 0 0

0 Vθ2 0

0 0 VO

 , (4.46)

where the sub matrix of covariances related to the θ1 term is given by Vθ1 , the sub matrix

of covariances related to θ2 term is given by Vθ2 , and the sub matrix containing the flux

counts, 252Cf PFNS, and fission cross section of 235U is given by VO

Vθ1 =



Var[cxi
] 0 0 0 0 0 0 0

0 Var[cxj
] 0 0 0 0 0 0

0 0 Var[sxi
] 0 0 0 0 0

0 0 0 Var[sxj
] 0 0 0 0

0 0 0 0 Var[cyi ] 0 0 0

0 0 0 0 0 Var[cyj ] 0 0

0 0 0 0 0 0 Var[syi ] 0

0 0 0 0 0 0 0 Var[syj ]



, (4.47)
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Vθ2 =



Var[cai ] 0 0 0 0 0 0 0

0 Var[caj ] 0 0 0 0 0 0

0 0 Var[sai ] 0 0 0 0 0

0 0 0 Var[saj ] 0 0 0 0

0 0 0 0 Var[cbi ] 0 0 0

0 0 0 0 0 Var[cbj ] 0 0

0 0 0 0 0 0 Var[sbi ] 0

0 0 0 0 0 0 0 Var[sbj ]



, (4.48)

VO =



Var[fi] 0 0 0 0 0

0 Var[fj] 0 0 0 0

0 0 Var[ξi] Cov[ξij] 0 0

0 0 Cov[ξji] Var[ξj] 0 0

0 0 0 0 Var[σf i] Cov[σf ij]

0 0 0 0 Cov[σf ji] Var[σf j]


, (4.49)

where the dimension of the covariance matrix Vσ(n,el) is 22x22. The sensitivity matrix

Aσ(n,el) is given by (with simplification of terms using the differential angular cross section

when appropriate
cξσf

sf
= dσ

dΩ
)

Aσ(n,el) =

[
Aθ1 +Aθ2 +Af +Aξ +Aσf

]
, (4.50)

where Aθ1 is the sensitivity matrix for the quantities related to θ1, Aθ2 is the sensitivity

matrix for the quantities related to θ2, Af is the sensitivity matrix with respect to the flux

counts, Aξ is the sensitivity matrix with respect the 252Cf PFNS, and Aσf
is the sensitivity

matrix for the fission cross section of 235U. Each sensitivity matrix is given by

Aθ1 =

 θ1
ncxi

dσ
dΩxi

0 −θ1
nsxi

dσ
dΩxi

0 θ1
ncyi

dσ
dΩyi

0 −θ1
nsyi

dσ
dΩyi

0

0 θ1
ncxj

dσ
dΩxj

0 −θ1
nsxj

dσ
dΩxj

0 θ1
ncyj

dσ
dΩyj

0 −θ1
nsyj

dσ
dΩyj

 , (4.51)
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Aθ2 =

 θ2
mcai

dσ
dΩai

0 −θ2
msai

dσ
dΩai

0 θ2
mcbi

dσ
dΩ bi

0 −θ2
msbi

dσ
dΩ bi

0

0 θ2
mcaj

dσ
dΩaj

0 −θ2
msaj

dσ
dΩaj

0 θ2
mcbj

dσ
dΩ bj

0 −θ2
msbj

dσ
dΩ bj

 , (4.52)

Af =

−θ1
nfi

(
dσ
dΩxi

+ dσ
dΩyi

)
+ −θ2

mfi

(
dσ
dΩai

+ dσ
dΩ bi

)
0

0 −θ1
nfj

(
dσ
dΩxj

+ dσ
dΩyj

)
+ −θ2

mfj

(
dσ
dΩaj

+ dσ
dΩ bj

)
 , (4.53)

Aξ =

 θ1
nξi

(
dσ
dΩxi

+ dσ
dΩyi

)
+ θ2

mξi

(
dσ
dΩai

+ dσ
dΩ bi

)
0

0 θ1
nξj

(
dσ
dΩxj

+ dσ
dΩyj

)
+ θ2

mξj

(
dσ
dΩaj

+ dσ
dΩ bj

)
 , (4.54)

Aσf
=

 θ1
nσf i

(
dσ
dΩxi

+ dσ
dΩyi

)
+ θ2

mσf i

(
dσ
dΩai

+ dσ
dΩ bi

)
0

0 θ1
nσf j

(
dσ
dΩxj

+ dσ
dΩyj

)
+ θ2

mσf j

(
dσ
dΩaj

+ dσ
dΩ bj

)
 , (4.55)

where similar to Equations 4.33, 4.34, 4.35, 4.36, 4.37, there is a dependence on the individual

differential angular cross sections, with the added integration factor. The covariance matrix

for the integrated cross section Kσ(n,el) is calculated to be

Kσ(n,el) = Kθ1 +Kθ2 +Kf +Kξ +Kσf
, (4.56)

where the submatrix Kθ1 pertaining to θ1 is given by

Kθ1 =

Dθ1i
0

0 Dθ1j

 , (4.57)

where the diagonal components Dθ1k
with energy index k = i or j given by

Dθ1k
=
θ21
n2

[
dσ

dΩ

2

xk

(
Var[cxk

]

c2xk

+
Var[sxk

]

s2xk

)
+
dσ

dΩ

2

yk

(
Var[cyk ]

c2yk
+

Var[syk ]

s2yk

)]
. (4.58)

Similarly, for quantities related to θ2

Kθ2 =

Dθ2i
0

0 Dθ2j

 , (4.59)
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with

Dθ2k
=

θ22
m2

[
dσ

dΩ

2

ak

(
Var[cak ]

c2ak
+

Var[sak ]

s2ak

)
+
dσ

dΩ

2

bk

(
Var[cbk ]

c2bk
+

Var[sbk ]

s2bk

)]
. (4.60)

For quantities related to the flux counts f

Kf =

Dfi 0

0 Dfj

 , (4.61)

with

Dfk =

[
θ1
n

(
dσ

dΩxk
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Quantities related to the 252Cf PFNS ξ can be expressed as

Kξ =

Dξi Cξij

Cξji Dξj

 , (4.63)

where the diagonal (variance) Dξk and the off diagonal (covariance) Cξij is given by

Dξk =
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and

Cξij = Cξji =
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(4.65)

Quantities related to the 235U PFNS σf can be expressed as

Kσf
=

Dσf i
Cσf ij

Cσf ji
Dσf j

 , (4.66)

where the diagonal (variance) Dσf k
and the off diagonal (covariance) Cσf ij

is given by

Dσf k
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and
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(4.68)
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The generalized covariance of the integrated cross section Cov[σ(n, el)] can be expressed as

Cov[σ(n, el)ij] =

δij
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(4.69)

where the pattern becomes clear with the generalized form being shown in Equation 4.70

as a sum over each θ where it is implied that n will change with the respective number of

detectors (x, y correspond to θ1 for example) for a given θ
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(4.70)

The resulting covariance for the integrated cross section is a scaled of the number of detectors

that are used. For the covariance terms in Equation 4.69, it can be seen that the covariance

of the 252Cf PFNS and 235U fission cross section get scaled by the average differential angular

cross section multiplied by the square of the integration factor.
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The final range of the calculated uncertainties of the integrated cross section, as given by

Equation 4.70, and the respective relative uncertainty is given in Table 4.1 over the incident

neutron energy range of Einc
n = 0.85 – 7 MeV.

Quantity Uncertainty Min. Value Max Value
Scaled Integrated Cross Section (barns) 0.00703902 0.0262674

Relative (%) 2.14572 6.49204

Table 4.1 The calculated uncertainties of the measured integrated cross section over the
incident neutron energy range of Einc

n = 0.85 – 7 MeV.

4.8 Correlation Matrix

The correlation matrix for the integrated cross section σ(n, el) is calculated to show the

relationship between data points on a scale of -1 (anti correlated) to +1 (correlated). The

correlation matrix Corr[σ(n, el)] is simply calculated by taking the value of the covariance

matrix at energy point i and j and is divided by the square root of the variance at energy

point i and j. Explicitly, this is calculated as

Corr[σ(n, el)ij] =
Cov[σ(n, el)ij]√

Var[σ(n, el)i]Var[σ(n, el)j]
, (4.71)

where it can be see that when the indices are equal (i = j) that the expression in Equation

4.71 is equal to 1 given the fact that the covariance on the diagonal is equal to the variance.

The covariance matrix and correlation matrix for the integrate cross section σ(n, el) are

presented in Chapter 5 along with other results.
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CHAPTER 5

RESULTS & DISCUSSION

In this chapter the integrated cross section of carbon elastic scattering 12C(n, el), the

differential angular cross section dσ
dΩ

as a function of neutron incident energy Einc
n , and the

differential angular cross section as a function of CM (center-of-mass) scattering angle θ̃n

(angular distributions) are all presented. All results will be plotted on an incident neutron

energy Einc
n range of 0.85 – 7 MeV unless otherwise stated.

5.1 ENDF-B/VIII.0 Cross Sections

The recorded and analyzed data should be compared with the existing evaluation for 12C

elastic scattering cross section in order to see consistencies or divergence. ENDF-B/VIII.0

[13] provides the needed comparison, as one intention for the reported data in this work is to

provide experimental data for evaluators when reviewing the elastic scattering evaluation of

12C. The neutron elastic scattering cross section of 12C, from the ENDF-B/VIII.0 edition of

the evaluation, is shown in Figure 5.1 with the data being provided by Ref. [40]. It is worth

mentioning that the latest edition of the ENDF evaluation is ENDF-B/VIII.I, but the 12C

is identical to version VIII.0 and version VIII.I does not yet have a published citation.

It is not possible to obtain complete coverage around the carbon target (4π solid an-

gle) due to the physical constraints of the detector size, the needed space for the neu-

tron beam to enter and exit the detector array, along with the desire to minimize back-

ground/environmental scattered neutrons. As such, the evaluation (Figure 5.1) can be used

to calculate the theoretical ENDF-B/VIII.0 12C (n, el) cross section as would be observed

by the geometry of the liquid scintillators in the CoGNAC setup.

ENDF-B/VIII.0 provides differential angular cross sections in the evaluation file via Leg-

endre polynomial coefficients aℓ (found in Ref. [73]) across the incident neutron energy range

of 10 µeV – 20 MeV. To produce a differential angular cross section dσ
dΩ

using the evaluation,
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Figure 5.1 The 12C neutron elastic scattering cross section, with uncertainty bands, ob-
tained from ENDF-B/VIII.0 with data points from Ref. [40].

the following equation is used as provided by the ENDF-6 Formats Manual [74]

dσ

dΩ

(
θ̃n, E

inc
n

)
=
σ(n, el)

2π

Nℓ∑
l=0

2ℓ+ 1

2
aℓ(E

inc
n )Pℓ(cos θ̃n) . (5.1)

Here, θ̃n is the neutron scattering angle in the CM frame, Einc
n is the incident neutron energy,

σ(n, el) is the integrated neutron elastic scattering cross section (in this case, 12C as shown

in Figure 5.1), ℓ is the order of the Legendre polynomial, Nℓ is the highest order with Nℓ =

8 for 12C(n,el), aℓ is the Legendre coefficient provided by Ref. [73] in the CM frame, and Pℓ

is the Legendre polynomial term as a function of the cosine of the CM scattering angle. An

example of the differential angular cross section is shown in Figure 5.2 for θn = 120◦.

In order to produce differential angular cross sections for comparisons with the data, a

scattering angle θn in the lab frame, which is the same as the detector angle θd, is converted

into the appropriate CM scattering angle θ̃n = θ̃d based on the Einc
n value. An example
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Figure 5.2 The differential angular cross section of neutron elastic scattering at a lab
scattering angle of θn = 120◦.

relationship between the lab scattered angle and the same angle in the CM frame as a

function of Einc
n is shown in Figure 5.3.

The conversion of the lab scattering angle, that is dependent upon the location of the

detector, into a CM scattering angle is due to the fact that the Legendre polynomials that are

reported in Ref. [73] for the differential angular cross section are given in the CM frame. The

calculated θ̃n is then inserted into the the cosine term of Equation 5.1 to produce a Legendre

polynomial that is then summed over all ℓ values and produces the resulting differential

angular cross section seen in Figure 5.2 for the lab frame. The differential angular cross

section is in the lab frame because θn is fixed causing θ̃n to vary over Einc
n .

If Equation 5.1 is used to calculate the differential angular cross sections in successive

small θn intervals one can integrate over the full solid angle of 4π: 0-180◦ in θn (2 radians) and
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Figure 5.3 Relationship between lab scattering angle θn to CM scattering angle θ̃n as a
function of the neutron incident energy Einc

n .

2π radians in φ with the assumption that neutrons scatter symmetrically in the azimuthal

direction [74], and recover the full integrated cross section as seen in Figure 5.1.

Utilizing Equation 5.1 over the angular coverage that the liquid scintillators spans from

the central angle θn ± 5◦ and in φ, which each θ value spanning a different range of angles for

φ based on the geometric relationships described in Chapter 3, Section 3.7, Figure 3.25, it

is possible to derive an integrated cross section based on the ENDF-B/VIII.0 evaluation for

an elastically scattered neutron incorporating the geometry and resolution of the CoGNAC

liquid scintillator array. This integrated cross section is shown in Figure 5.4 and is what the

analyzed data are compared with.

As can be seen in Figure 5.4, the order of magnitude is reduced from the evaluation

as not all angles are covered by the liquid scintillators. As such, only a subset of the full

angular range in θ and φ are covered. Additionally, structures in the evaluation are reduced in
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Figure 5.4 The derived integrated neutron elastic scattering cross section as observed by
the CoGNAC setup using the liquid scintillators using ENDF-B/VIII.0 and accounting for
detector resolution, in dashed red.

magnitude such as the peaks near 2.1 MeV, 2.8 MeV, and just below 5 MeV. This arises from

introducing the detector resolution when deriving the neutron elastic scattering integrated

cross section.

5.2 Integrated Cross Section

Given the analysis method and uncertainty quantification discussed in Chapters 3 and 4

respectively, and presenting the ENDF-B/VIII.0 evaluation accounting for the geometry and

resolution of the CoGNAC setup, it is now possible to present the measured integrated cross

section compared with the evaluation along with relative uncertainties and the corresponding

correlation and covariance matrix. The measured integrated cross section is shown in Figure

5.5, the relative uncertainty of the measurement is shown in Figure 5.6, and the correlation

and covariance matrices are shown in Figure 5.7 and Figure 5.8, respectively.
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Figure 5.5 The measured integrated neutron elastic scattering cross section of 12C
(black) compared wtih the calculated integrated cross section using ENDF-B/VIII.0 for
the CoGNAC setup (dashed red).

The measured integrated cross section presented in Figure 5.5, is scaled to the derived

integrated cross section at 1.8 MeV due to the fact that the carbon elastic scattering cross

section is a standard from 10 eV to 1.8 MeV. The scaled factor used is 0.00961096 which

accounts for parameters such as number of target nuclei, flux magnitude, beam density,

beam diameter, etc. There is good agreement with the ENDF-B/VIII.0 evaluation that is

derived in comparison with the measured data. Additionally, the trend of the data in the

standard region, 0.85 – 1.8 MeV for the reported data, agrees with evaluation. The measured

cross section also follows the structures seen in the evaluation and is in good agreement with

respect to magnitude and overall trend as Einc
n increases.

The only major point of difference between the data and evaluation is at the peak in the

evaluation just below 5 MeV. The only known dataset on EXFOR that reports measurement
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Figure 5.6 The relative uncertainty of the measured integrated cross section from Figure
5.5.

of this peak is found in Ref. [75] but is not seen in other available datasets. This peak is

also not seen in the differential angular cross section data that are presented in Section 5.3,

suggesting that it is not being suppressed when integrating over angles that are measured

in this work. In contrast, the aforementioned peak is noticed in the inelastic cross section

(n,n′γ) using the CoGNAC setup for 12C, as reported in Ref. [76], while ENDF-B/VIII.0

does not include this peak in the inelastic evaluation.

Looking at the relative uncertainty of the measured integrated cross section in Figure 5.6,

the relative uncertainty increases with increasing energy and at low Einc
n (0.85 – 1.8 MeV).

The overall shape mimics a flip about the x axis of the efficiency of a liquid scintillator.

This follows the trend with decreased measured counts at low energies and with increasing

energy starting at ≈ 3 MeV. The measured relative uncertainty does not go lower than

the relative uncertainty in the 235U (n,f) cross section (1.27314%) nor the PFNS of 252Cf
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Figure 5.7 The correlation matrix of the measured integrated cross section from Figure 5.5.

(1.16586%) within the measured energy ranges as reported in ENDF-B/VIII.0 [71, 70], as

these quantities were utilized directly in this analysis.

In the correlation matrix, Figure 5.7, the matrix is symmetric about the diagonal with

the digonal values being equal to 1. Additionally, one can see the features of the 252Cf PFNS

correlation matrix (Figure 4.1), as the block structures along the diagonal and rectangles

from the 2 – 3 MeV range, as well as those from the correlation matrix from the 235U fission
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Figure 5.8 The covariance matrix of the measured integrated cross section from Figure 5.5.

cross section (Figure 4.2), as the block structures along the diagonal. This behavior comes

from the fact that each detector shares a measured neutron flux that contains the information

of the 235U fission cross section and in the derivation of a detector efficiency measured relative

to the PFNS of 252Cf as described in Chapter 3.

Similar to the correlation matrix, the covariance matrix in Figure 5.8 is symmetric about

the diagonal and the major features of the 252Cf and 235U correlation matrices (using the
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process described in Chapter 4, Section 4.8 to covert between the correlation and covariance

matrices) appear in the measured integrated cross section covariance matrix. The lines that

run horizontally and vertically correspond to resonance structures within the measured cross

section due to having higher absolute uncertainty but a lower relative uncertainty because

of statistics. For example, the peaks in the measured integrated cross section close to 2.1

MeV, 3 MeV, 5.4 MeV, and 6.3 MeV appear as “bright” lines in the covariance matrix along

with valleys in the measured integrated cross section near 3 MeV and 6.6 MeV.

5.3 Differential Angular Cross Section

The differential angular cross section dσ
dΩ

can be measured at each of the 9 angles θd of

the liquid scintillators. The corresponding differential angular cross sections are obtained

by taking the average differential angular cross section across the detectors that share the

same θd. The measured differential angular cross section is scaled to the value of the ENDF-

B/VIII.0 differential angular cross section, that has CoGNAC liquid scintillator geometry

and resolution applied, at 1.8 MeV for easy shape comparison. The scale factor for each of

the differential angular cross section spectra is summarized in Table 5.1.

θd (◦) Scale Factor Figure
150 0.00120035 5.9
135 0.001678793 5.10
120 0.00248327 5.11
105 0.00279897 5.12
90 0.0036084 5.13
75 0.00294293 5.14
60 0.00265083 5.15
45 0.192839 5.16
30 0.000817875 5.17

Table 5.1 The scale factor applied to each measured differential angular cross section based
on the value of the ENDF-B/VIII.0 value at 1.8 MeV.
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Figure 5.9 The measured differential angular cross section (black) for the averaged detectors
at θd = 150◦ compared to the ENDF-B/VIII.0 differential angular cross section (red) with
the liquid scintillator geometry and resolution applied.

Figure 5.10 The measured differential angular cross section (black) for the averaged detec-
tors at θd = 135◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.
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Figure 5.11 The measured differential angular cross section (black) for the averaged detec-
tors at θd = 120◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.

Figure 5.12 The measured differential angular cross section (black) for the averaged detec-
tors at θd = 105◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.
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Figure 5.13 The measured differential angular cross section (black) for the averaged de-
tectors at θd = 90◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.

Figure 5.14 The measured differential angular cross section (black) for the averaged de-
tectors at θd = 75◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.
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Figure 5.15 The measured differential angular cross section (black) for the averaged de-
tectors at θd = 60◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.

Figure 5.16 The measured differential angular cross section (black) for the averaged de-
tectors at θd = 45◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.
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Figure 5.17 The measured differential angular cross section (black) for the averaged de-
tectors at θd = 30◦ compared to the ENDF-B/VIII.0 differential angular cross section (red)
with the liquid scintillator geometry and resolution applied.

Across all the measured θd, there is good shape agreement between the measured differ-

ential angular cross section and what is reported in the evaluation in the standard region

(0.85 – 1.8 MeV). Similarly, there is good shape agreement up to 3 MeV and the overall

trend of decreasing differential angular cross section values with increasing Einc
n is consistent

with the evaluation. Above 3 MeV, there is an amplitude difference between the measured

differential angular cross section as shown in the evaluation. Detectors located at backward

scattered angles, 150◦ and 135◦, show higher values for the differential angular cross section

than the evaluation whereas for other angles such as 105◦, 90◦, 75◦, 60◦, the measured dif-

ferential angular cross section is lower than the evaluation. For detectors located at 120◦,

the measured differential angular cross section is lower than the evaluation in the range of

3 – 4 MeV and 5.5 – 6.3 MeV while agreeing in magnitude with the evaluation outside of

this energy range. The two forward-scattered detectors located at 30◦ and 45◦ show the

best agreement with the evaluation across the measured energy range. The respective con-

tribution, as a percentage of the integrated cross section, is shown in Figure 5.18a for the
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(a) (b)

Figure 5.18 The contribution of the differential angular cross section to the integrated cross
section as a percentage. Figure 5.18a shows the contribution from the analyzed data while
Figure 5.18b shows the contribution using the ENDF-B/VIII.0 evaluation.

measured data and for ENDF-B/VIII.0 in Figure 5.18b.

Looking at Figure 5.18, the two plots are made by taking the differential angular cross

section as a percentage of the integrated cross section. As seen in both the measured data

(Figure 5.18a) and in the evaluation (Figure 5.18b), the two forward angles of 30◦ and 45◦

are the two largest contributors to the integrated cross section. Additionally, the ordering

of the contributions (from highest to lowest) is consistent between the two figures with only

the two most backward scattered angles of 135◦ and 150◦ flipping in the ≈ 3 – 4 MeV region.

5.4 Angular Distributions

Similar to the differential angular cross section data, it is possible to view the data

as an angular distribution by keeping the Einc
n value fixed and looking at the differential

angular cross section as a function of the CM scattering angle θ̃n. The angular distributions

are compared with the ENDF-B/VIII.0 angular distributions at reported Einc
n values using

Equation 5.1. For a given Einc
n , as provided in Ref [73], at a given detection angle θd,

the differential angular cross section is evaluated (via interpolation) at the reported Einc
n of

interest and is shown in Figures 5.19 – 5.21 . Additionally, to correct for the forward focusing

effect from special relativity, as mentioned near the end of Chapter 1, Section 1.5, the data

points have the solid angle scale factor given by Equation X (from the Roman numeral
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equations from Chapter 1) applied for accurate comparison of the angular distributions of

the data and evaluation. Each data point is also multiplied by the integration factor, given

in Table 3.2 (Chapter 3), that accounts for the solid angle size of the liquid scintillator. The

angular distribution made by the data points are then scaled to 90◦ of the ENDF-B/VIII.0

angular distribution for easier shape comparison of the data with the evaluation.

(a) (b)

(c) (d)

Figure 5.19 The measured CM angular distributions for Einc
n values of 0.85 MeV (5.19a),

0.95 MeV (5.19b), 1.4 MeV (5.19c), and 1.9 MeV (5.19d) compared to the CM angular
distributions from ENDF-B/VIII.0 (red dashed).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20 The measured CM angular distributions for Einc
n values of 2.48 MeV (5.20a),

3 MeV (5.20b), 3.49 MeV (5.20c), 3.99 MeV (5.20d), 4.49 MeV (5.20e), and 5 MeV (5.20f)
compared to the CM angular distributions from ENDF-B/VIII.0 (red dashed).
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(a) (b)

(c) (d)

Figure 5.21 The measured CM angular distributions for Einc
n values of 5.49 MeV (5.21a),

5.98 MeV (5.21b), 6.48 MeV (5.21c), and 6.97 MeV (5.21d) compared to the CM angular
distributions from ENDF-B/VIII.0 (red dashed).

It can be seen from Figures 5.19, 5.20, and 5.21 that there is overall shape agreement

between the measured and evaluated (ENDF-B/VIII.0) angular distributions in the energy

ranges of 2.49 – 6.97 MeV (Figures 5.20 and 5.21). The best agreement occurs at 3.99

MeV (Figure 5.20d) minus the measured differential angular cross section for θd = 135◦.

For lower Einc
n values shown in Figure 5.19, the measured data oscillates more than the

evaluation does with lower differential angular cross section values at forward scattered

angles, before rising with increasing θ̃n and decreasing again near θd = 90◦ before repeating

the same behavior with increasing scattering angle. Figure 5.20a shows general agreement

with lower measured differential angular cross section values at θd = 30◦ and 150◦. Similarly,
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Figure 5.20c shows a widening of the angular distribution in comparison to the evaluation.

For angular distributions that decrease with oscillatory behavior with increasing scattering

angles (Einc
n values of 3, 4.49 - 6.97 MeV in Figures 5.20b and 5.20e - 5.21d), there is

shape agreement between the measured angular distribution and ENDF-B/VIII.0 with the

exception of an increase in the differential angular cross section at θd = 135◦ that is consistent

across the reported energy values and opposite of what is seen in the evaluation.
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CHAPTER 6

CONCLUSIONS

The goal of this dissertation project was to measure the neutron elastic scattering cross

section of 12C. A measurement of the integrated cross section was accomplished along with

analysis of the angular cross section information en route to producing the integrated cross

section. Additionally, this measurement utilizes an established neutron data standard in the

252Cf prompt fission neutron spectrum (PFNS).

Nuclear data impact not only experiments and simulations but also societal and applica-

tions of nuclear science. If the underlying data informing nuclear evaluations and simulations

are incorrect and/or lacking, as is the case for scattering reactions on common nuclei such as

carbon, this can have compounding uncertainties and inaccuracies. There is a lack of cross

section data for the 12C neutron elastic scattering cross section as shown in Figure 1.2, which

is a common element found in structural, scientific, and biological systems.

The measurement made and presented in this dissertation takes advantage of the fact

that the 252Cf PFNS is a neutron data standard from 10 µeV to 30 MeV, which spans well

beyond the limits of the emitted neutron energy range that is presented in this work. This

makes the measured 12C neutron elastic scattering cross section a reference measurement

with respect to the 252Cf PFNS.

This measurement utilized the CoGANC setup at the WNR Facility located at LANSCE

where a range of neutron energies were simultaneously available, from the white neutron

source, to measure the neutron elastic scattering cross section. The reported energy range

for the incident neutron energy, Einc
n , is 0.85 – 7 MeV which includes a portion of the carbon

neutron elastic scattering cross section neutron data standard, ranging Einc
n = 10 eV –

1.8 MeV, which serves as an anchor point for shape comparison of the measured cross section.

Figure 5.5 there is shape agreement in the measured cross section and the ENDF-B/VIII.0

evaluation for 12C neutron elastic scattering, with the evaluation having the geometry of the

liquid scintillator coverage and resolution included.
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Additionally, differential angular cross sections have been shown in comparison with their

respective quantities from the ENDF-B/VIII.0 evaluation in Figures 5.9 through 5.17. The

data are scaled to the standard region of the carbon standard for shape comparison and

it can be seen that at lower incident neutron energies, that there is shape agreement with

the evaluation. At higher energies, there are magnitude differences between the measured

and evaluated differential angular cross section. This difference is not consistent across all

detector angles as some have lower values than the evaluation while at other angles the

values are higher than the evaluation; yet for the two most forward scattered angles, there

is agreement with the evaluation across the range of measured incident neutron energies.

Angular distributions of the differential angular cross section are also shown across 14

incident neutron energies in Figures 5.19 through 5.21 where there are noticeable differences

between the ENDF-B/VIII.0 evaluation and what has been measured in the data. For

lower incident neutron energies, there is a noticeable difference in the shape behavior in

comparison with the evaluation. With increasing incident neutron energy, there is better

agreement between the measured angular distribution and the evaluation with respect to

the shape across the reported scattering angles.

The measured integrated neutron elastic scattering cross section agrees well with the

evaluation while showing shape differences when looking at the angular data. Such infor-

mation is extremely valuable for evaluators when updating future versions of evaluations

and for simulations and codes that rely on nuclear databases such as EXFOR. Given the

demonstrated ability of the analysis techniques to produce a neutron elastic scattering cross

section, along with detailed uncertainty quantification and covariances, it is desirable to ap-

ply such techniques to other stable nuclei that are also lacking in cross section data in the

fast neutron region. Ongoing analysis is occurring for 28Si and 16O elastic scattering within

the CoGNAC experimental program, with silicon [77] and oxygen [78] inelastic scattering

results already published.

With respect to future developments and improvements, it is preferable to expand the
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incident neutron energy range beyond the one studied in this work. While the lower energy

value is limited by the arrival of the next micropulse, suppressing lower energy neutrons,

expanding the measurement to higher incident neutron energies is possible. Two possible

routes for increasing the measurement to higher incident neutron energies include further

understanding the cause of the time shift as presented in Chapter 3, Section 3.8 and increasing

the statistics of the 252Cf PFNS measurement. For the former, more understanding into how

the detectors behave at lower neutron energies versus high neutron energies is one avenue

to explore that quantifies the liquid scintillator behavior beyond what has been done with

respect to the derivation of an experiment-driven detector efficiency. Increasing the collection

time for measuring the 252Cf PFNS, or using a 252Cf source with a higher activity, would

allow more neutrons at higher emitted energies to be registered and collected, which is a

current limitation with the measured 252Cf PFNS.

These results are shared with the intention and hope of being of value to the nuclear

data community and evaluators, but especially for users of nuclear data that rely upon

accurate and well-characterized data. It is this effort of careful analysis and uncertainty

quantification that can ultimately yield a more accurate and complete understanding of the

nuclear landscape.
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