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ABSTRACT

In this thesis, our focus is on studying particle correlations in heavy-ion collisions to gain

insights into nuclear systems in the final state reaction. Understanding these correlations

is crucial for accessing the geometry, phase-space features, and time development of the

collision’s final stages. We present two approaches to extract the relative distribution of

particles at the last moment of the collision: the Gaussian parametrization source (GPS)

and the deblurring method.

In the GPS approach, we assume a Gaussian form source to approximate two-particle

correlation functions using the Koonin-Pratt (KP) convolutional formula. This formula

convolves the relative emission source with the squared two-particle relative wave function.

We apply the approach to study the correlations of low-velocity alphas. We start by

constructing the scattering wave function for the alpha-alpha pair by solving the Schrödinger

equation, incorporating a potential tailored to match the measured phase shifts of the system.

With this wave function, we interpret available data on alpha-alpha correlations in terms

of emitting sources.

In the deblurring approach, we propose using the Richardson-Lucy (RL) optical deblur-

ring algorithm to deduce a source from the correlation function. The RL algorithm, derived

from probabilistic Bayesian considerations, requires the optical object, image distributions,

and convolution kernel to be positive definite. Fortunately, these conditions are satisfied

by the corresponding quantities of interest within the KP formula. We demonstrate the

success of the RL algorithm in restoring emitting sources from measured d–𝛼 correlations.

Furthermore, we extend the deblurring approach to another field of nuclear physics

by utilizing the RL algorithm on experimental nuclear physics data, leveraging only the



observed energy spectrum and the detector’s response matrix (also known as the transfer

matrix). This technique provides access to information regarding the shell structure of

particle-unbound systems through the measured decay energy spectrum, which is not

readily attainable through traditional approaches like chi-square fitting. In pursuit of the

same objective, we develop a machine learning model that employs a deep neural network

(DNN) classifier to identify resonance states from the measured decay energy spectrum.

We evaluate the performance of both methods using simulated data and experimental

measurements. Subsequently, we apply both algorithms to analyze the decay energy

spectrum of 26O, as measured via invariant mass spectroscopy. Both the deblurring and

DNN approaches indicate the presence of three peaks in the raw decay energy spectrum of
26O.

Finally, we employ the transport model in this thesis to analyze two-proton (p-p)

correlations in heavy-ion collisions at low incident energies per nucleon (E/A). Specifically,

we utilize the Boltzmann-Uehling-Uhlenbeck (BUU) transport model to simulate the p–p

source. Subsequently, we employ the source and the p-p kernel within the KP formula to

calculate the correlations. Through a comparison between the correlations obtained from

the BUU simulation and the RL algorithm, we gain a better understanding of the influence

of fast and slow emissions on the measured correlations. We compute the angle-averaged

and quadrupole components of the p-p source for the Ar + Sc and Xe + Au reactions at

𝐸/𝐴 =80 MeV. These sources are computed considering both momentum-independent and

momentum-dependent nuclear equation of states (EOS), enabling us to observe the effect

of the momentum-dependent EOS on the quadrupole component source.
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CHAPTER 1

INTRODUCTION

In this thesis, we will focus on heavy-ion collisions at low energy. These are nuclear

processes in which a heavy projectile, typically with a mass number 𝐴 > 4, impinges on

another heavy target at an incident energy less than 100 MeV per nucleon. As illustrated in

Fig. 1.1, initially, the two nuclei come into contact and compress against each other. Due

to nucleon-nucleon collisions, both the temperature and entropy in the reaction will rise,

leading to the formation of a finite system constituted of hot and dense nuclear matter. At

this stage, some particles will leave the system; this is known as fast emission.

Over time, the system undergoes expansion, thereby reducing temperature and density.

The density continues to fall until it reaches the freeze-out moment, i.e., the nucleons in

the system are no longer interacting. Most of the particles detected are those emitted at the

freeze-out moment [1, 2].

Figure 1.1 The figure shows a schematic illustration of particle emission during a heavy-
ion collision. Some particles leave the system early in the process (i.e., fast emission),
while others leave later as a result of the decay of intermediate unstable nuclei (i.e., slow
emission). This figure is a modified version of the figure in [3].

It is also possible that the emitted fragments (i.e., unstable intermediate nuclei) decay
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into daughters at a later time during the collision; this is known as secondary decays (see

Fig. 1.1). These processes provide insights into the properties of the compound nucleus,

the underlying nuclear interactions, and the correlations between the final-state particles.

The aim of this thesis is to investigate the correlations between final-state particles to

gain insights into the nuclear reaction system. These correlations are measured in heavy-

ion collision experiments and are defined as the ratio of coincidence yield (symbolized by

𝐴) to the product of single yield (symbolized by 𝐵):

𝐴(P1,P2) = [𝑅(q) + 1]𝐵(P1,P2), (1.1)

In this equation, 𝑃1 and 𝑃2 represent the momenta of the first and second particles,

respectively. When 𝐴 = 𝐵 (i.e., 𝑅(q) = 0, particularly notable at high values of 𝑞), the

particles are considered uncorrelated; otherwise, they are correlated.

During the collision, as the particles exit the high-density region of the system, they can

interact and establish correlations (or anti-correlations) between their momenta, provided

their separation distance is sufficiently small [1, 4]. When the particles are emitted due to

the decay of unstable intermediate nuclei, the correlations are predominantly characterized

by resonance peaks resulting from nuclear interactions between the particles. All of these

aspects will be considered in this thesis. Additionally, the Coulomb interaction effect

manifests in the correlation as a valley around zero relative momentum [5]. Consequently,

our particular focus lies on charged particles such as 𝛼 − 𝛼 and d−𝛼, as they are likely to

be detected in the heavy-ion collision experiments [6, 7, 8, 9].

Moreover, these correlations can be utilized to gain insights into the geometry of the

emitting system at a later stage of the collision by calculating the relative distribution
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function of particle pairs in the emitting system, referred to as the source function [4, 10,

11, 12, 5, 13]. To extract a reliable source function, we employ trusted methodologies

that utilize the measured correlations and the relative kernel of the pairs to reconstruct the

source function. This thesis discusses the different methods we have developed to obtain

a desirable source.

Furthermore, in this dissertation, we employ a transport model simulation, introduced

in Section 1.2, to calculate proton-proton correlations. Two-proton correlations serve

as important tools for testing transport theory, as they are sensitive to the space-time

properties of nuclear reactions [14] (Refs within). Additionally, we examine the effect

of the momentum-(in)dependent nuclear equation of state (EOS); the EOS represents the

behavior of energy or pressure of nuclear matter under variations in density, temperature,

and neutron-proton asymmetry [15], on the two-proton source.

1.1 Overview on particle femtoscopy

In the 1950s, Hanbury-Brown and Twiss developed a technique called intensity inter-

ferometry [16, 17], which is often referred to as the Hanbury-Brown and Twiss (HBT)

effect, to measure the size of celestial objects. The method works similarly to a two-slit in-

terferometer experiment [18]: two photons emitted from two distant points on the celestial

object interfere and produce interference patterns on their way to detectors (see Fig.1.2).

Due to this interference, there is a correlation in two-photon intensities, which can be used

to measure the size and shape of the photons emitter. Specifically, the technique was used

to examine radio-wave sources in the galaxies Cygnus and Cassiopeia [16]. Additionally,

the method was utilized to measure the angular diameter of Sirius [17]. The advantage of

intensity interferometry over other methods for measuring stellar size was that it reduces
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the effect of phase shifts from photons’ wave function in the measurements [19].

Figure 1.2 Illustration of HBT interferometry experiment [20].

In intensity interferometry, a correlation function, denoted as 𝑅(𝑟1, 𝑟2) + 1, is obtained

from the counts registered at detectors 𝐷1 and 𝐷2 [10]. It is given by:

𝑅(𝑟1, 𝑟2) + 1 =
< 𝑁12 >

< 𝑁1 >< 𝑁2 >
, (1.2)

Here, 𝑁12 represents the number of counts at which particles are observed at both 𝐷1

and 𝐷2, and 𝑁𝑖+1,2 represents the number of counts of particles registered at 𝐷𝑖=1,2.

The HBT technique was later adopted in high-energy physics, where in Ref.[21],

pion-pion correlation was used to determine the radius and lifetime of the hadronic matter

produced during a proton-proton collision. Subsequently, in nuclear heavy-ion collisions, it

was demonstrated through proton-proton correlation that the two-particle correlation can be

used as a tool to study the space-time evolution characteristics of emitting systems[5, 13].

The authors in Ref. [21] and the references within showed that the interaction between
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emitters can be neglected in the correlation for high-energy heavy-ion collisions. However,

in nuclear reactions, the two-particle correlation is sensitive to the interaction between

particles.

Here, we refer to the technique as the two-particle correlation function (CF). Interest-

ingly, the similarity between 𝑅+1 in Eq. (1.2) and the one in (1.1) is apparent, with the only

difference being that 𝑅 for intensity interferometry ((1.2)) is a function of the particles’

position, while it is a function of relative momentum in (1.1).

As an example, in Fig. 1.3, panel (A) illustrates the correlation function calculated for

the 𝑑 − 𝛼 pair, while panel (B) displays the energy levels of 6Li. The observed peaks

in panel (A) correspond to the decay of 6Li and are influenced by the nuclear interaction

incorporated into the correlation function through the wave function obtained from solving

the Schrödinger equation for the d-𝛼 scattering problem. The two-particle correlation

function is theoretically approximated as the convolution between the squared relative

wave function and the source function. In Fig. 1.3, a Gaussian source function with a

half-width of 6 fm was employed. The relationship between panels (A) and (B) can be

understood as follows: the presence of peaks in panel (A) corresponds to the energy levels

of 6Li in panel (B). Specifically, the peaks at 𝑞 ≈ 42 and 80 − 100 MeV/c correspond to

the energy levels of 6Li at 2.18 and 4.31 MeV, respectively.
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Figure 1.3 Panel (A) represents d−𝛼 correlation function calculated using source function
of radius of 6 fm. The peaks are due to nuclear interaction between the particles. Panel (B)
shows the energy levels of different states in 6Li. The first peak in panel (A) corresponds
to the decay of the 3+ state of Li at E= 2.18 MeV into d and 𝛼. While the second peak
corresponds to the decay of 2+ state of Li at E= 4.31 MeV.

1.1.1 The Two-Body Scattering Problem

In order to calculate the wave function for CF, we first need to study the scattering

phase shift. This is achieved by solving the two-body scattering problem, which involves

solving the radial Shrödinger equation in space coordinates:

(𝐻𝑙 𝑗 − 𝐸)𝑢𝑙 𝑗 (𝑟) = 0, (1.3)

where the Hamiltonian operator 𝐻 includes both nuclear and Coulomb interactions, as

well as a centrifugal term. The radial wave function is represented by u(r), while E is the

center of mass energy. We integrate (1.3) with the boundary conditions 𝑢(𝑟 → 0) = 0

and 𝑑𝑢
𝑑𝑟
|𝑟→0 ≠ 0, and 𝑢(𝑟 → ∞) → 𝐶𝐹 + 𝐷𝐺, where 𝐹 and 𝐺 are regular and irregular

Coulomb wave functions, respectively ( more details about coulomb wave function, we

refer readers to the following references: [22, 23], and the factors 𝐶 and 𝐷 are functions

of phase shifts.
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We can then solve for the phase shifts using a relation known as the logarithmic

derivative, which compares the derivative of the logarithm of the solution to the radial

Shrødinger equation inside the nuclear potential and the asymptotic solution 𝑢𝑎𝑠𝑦 ∝ 𝐶𝐹 +

𝐷𝐺 at a point 𝑟 = 𝑅𝑎 where the strong interaction approaches zero. The logarithmic

derivative is written as:

𝑑 log(𝑢)
𝑑𝑟

|𝑟=𝑅𝑎
=
𝑑 log(𝑢𝑎𝑠𝑦)

𝑑𝑟
|𝑟=𝑅𝑎

. (1.4)

Using this relation, we can solve for 𝐷
𝐶
= tan(𝛿), and from there, it is straightforward

to extract the phase shifts (𝛿). In Chapter 2, we present the 𝛼 − 𝛼 and d–𝛼 phase shifts in

Fig. 2.2 and 2.3, respectively. These phase shifts are calculated via this procedure.

1.2 Transport Model

Transport models, such as the Boltzmann-Uehling-Uhlenbeck (BUU) model, are essen-

tial tools for obtaining physics information on the nuclear equation of state (EOS). When

the EOS is well understood, it is possible to relate nuclear heavy-ion collision experiments

(above saturation density 𝜌0) to astrophysical observations and gain insight into astronom-

ical phenomena, such as the evolution of the universe after the Big Bang, supernovas, and

the structure of neutron stars [15].

The BUU describes the time evolution of a single-particle phase-space distribution and

nucleon-nucleon collisions [1, 14, 15]. The particles follow classical trajectories under the

influence of a mean-field potential and subsequently undergo binary collisions. The model

requires several parameters for the scattering cross-section and mean field, but only those

that fit the elementary data and microscopic theory are used. This implies that the model

is a phenomenological model, which allows for flexible tuning of some input parameters
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until the simulations match the experimental data. By adjusting these parameters, we can

constrain the EOS.

For example, in Ref. [14], the BUU transport model was successfully applied to calcu-

late the two-proton correlation function, and it was found that the two-proton correlation

is significantly sensitive to the in-medium cross-section. Additionally, in Ref. [24], the

transport model was used to study the effect of the nuclear symmetry energy, a measure of

the difference between the binding energy of an asymmetric and symmetric nucleus (equal

numbers of protons and neutrons), on two-nucleon correlations in heavy-ion collisions.

The density dependence of the nuclear symmetry energy strongly affects the nucleon emis-

sion times in these collisions, leading to larger values of two-nucleon correlation functions

for those symmetry energies. Therefore, two-nucleon correlations can be used as tools

to extract information about nuclear symmetry energies. Moreover, knowledge about the

density dependence of the nuclear symmetry energy is an important tool to understand the

structure of radioactive nuclei and the nucleosynthesis during the presupernova evolution

of massive stars and the mechanisms for supernova explosions, to name a few.

Furthermore, simulating heavy-ion collisions with BUU can provide access to several

observables that can be used to extract information about the EOS. In this thesis, specifically

in Chapter 6, we focus on using BUU simulations to test the sensitivity of the source function

to momentum-dependent stiff and soft EOS for the p-p correlation function measured in

low-energy heavy-ion collisions. We calculated angle-averaged and quadrupole component

source functions and observed that the quadrupole component of the source function is

more sensitive to the momentum-dependent EOS.
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1.3 Thesis organization

In Chapter 2, we discuss a framework for calculating a two-particle correlation function

using a parameterized Gaussian source. We first calculate the pair’s relative wave function

and subsequently deduce the correlation as a convolution of the squared wave function and

the source function. The framework is applied to the case of low-velocity alphas.

In Chapter 3, we develop a deblurring method that utilizes the inverse Richardson-Lucy

(RL) algorithm, originally developed in optics for optical image restoration. We apply it

to restore the two-particle source function for the case of d–𝛼 correlation. Additionally,

we demonstrate that considering three pairs simultaneously, such as 𝛼-𝛼, d–𝛼, and d–d,

measured simultaneously, would help better constrain the geometry of the emitting system.

In Chapter 4, we apply the deblurring technique to restore the decay energy spectrum

measured in the three-body decay of the 26O nucleus.

In Chapter 5, we develop a machine learning framework, a deep neural network (DNN),

for classification. We specifically demonstrate that the DNN classifier is an important tool

that can be used to identify resonance peaks/states in the measured spectrum.

In Chapter 6, we carry out BUU simulation for low-energy heavy ion reactions to

compute single proton distributions, which are used to simulate two-proton source func-

tions. Subsequently, we use the source function and proton-proton kernel to construct a

two-proton correlation function. We demonstrate that when BUU and deblurring source

functions are compared, we can test the sensitivity of the source to the EOS.

The thesis is concluded with a general summary and outlook in Chapter 7."

9



CHAPTER 2

LOW-MOMENTUM CORRELATIONS OF 𝛼 PARTICLES IN HEAVY-ION
COLLISIONS

This chapter discusses low-momentum alphas’ correlation in heavy-ion collisions. We

use Koonin-Pratt theoretical approximation to analyse those correlations for Gaussian

parametrized emitting source. Section 2.2 provides an introduction to the two-particle

correlation function (CF) and an overview of the calculations for the two-particle wave

function and the two-component source model. The results of 𝛼-𝛼 and d–𝛼 CF calculations

are discussed in Section 2.3. We conclude in Section 2.4.

2.1 INTRODUCTION

Particle correlations at low relative velocities in heavy-ion collision have provided important

insights into geometry and time development of the final stages of reactions [11, 12, 5, 13],

as well as into their phase-space [25] and thermodynamic characteristics [26]. The more

abundant the particle species, the easier it is to measure the correlations for the species and

more relevant such correlations for overall understanding of the reaction. In low energy

collisions, alpha particles are quite abundant, compared to other particles, so it would be

natural to exploit correlations involving these particles, in particular 𝛼–𝛼, to learn about

the collisions. However, the basic theoretic infrastructure for the purpose has been lacking

and is delivered here. Information content in the correlations on a specific reaction could

be augmented by simultaneously analysing correlations within any pair in a set of measured

species, or correlation matrix. We discuss that, in the context of the 𝛼 particles, for the

combination of 𝛼 particles and deuterons.

The features of the geometry and time development of a reaction, that the correlations
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may provide access to, can be summarized [27] in terms of relative distribution of emission

points for the two particles, in their center-of-mass velocity frame, 𝑆(r), where r is the

relative distance. For convenience, 𝑆 can be normalized to 1 under integration over

space. Depending on the physics in the two-particle system and measurement details, the

correlation may be still blind to some aspects of the source function 𝑆 and these often

include the large 𝑟 region. The particles emitted far away from each other tend not to

impact each other much. Accordingly, source functions are often represented in terms

of a combination of the short-range and long-range contributions, 𝑆(r) = _ 𝑆short(r) +

(1 − _) 𝑆long(r) [28]. An effort is made to determine the functional form of 𝑆short, but

for 𝑆long(r) contributes only in an integral form, in that the overall strength of the source

at short distances is incomplete, _ < 1. For historical reasons, specifically the Hanbury-

Brown and Twiss (HBT) interpretation of pion-pion correlations, the parameter _ is often

termed the incoherence factor [28]. We will dedicate some attention to _ in this chapter.

To connect source functions (SF), 𝑆 in the reactions, to correlation functions (CF) 𝐶,

one needs to understand relative wave functions within the studied particle pairs. The 𝛼−𝛼

correlations were measured in the past [29], but the basic infrastructure to interpret them was

missing. To infer the wave functions, and develop such an infrastructure, scattering phase

shifts need to be studied. These studies can inform on the impact of strong interactions

on the wave functions and the probability density in the relative distance between the

particles. Ultimately, deviations of the probability density from an asymptotic average

serve as a lens that maps features of SF onto CF, as schematically indicated in Fig. 2.1.

Any resonances are associated with strong modifications of the probability density at short

relative distances. Coulomb interactions play a role too [5], depleting the wave function at
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short relative distances for low asymptotic relative velocities. In the end, the correlations of

charged particles can be used to learn about SF even when strong-interaction modifications

of the relative wave functions are minor. Needless to say, the charged particles are also

easier to measure precisely. As to the resonances, there might be some narrow states in

heavier products from a reaction, that include narrowly constrained pair of investigated

particles among decay products [30], confusing the interpretation of two-particle SF-CF

relation interpretation. These need to be separately understood and simulated.

Figure 2.1 Interactions and symmetrization, affecting the relative state of two particles
on their way to the detectors, and encoded in the relative wave function, allow to infer
characteristics of particle emission from correlation functions at low relative velocities.

When correlations within one type of particle species are measured, but so are corre-

lations with other species emitted from about the same reaction region, Fig. 2.1, obviously

more information can be gained about that region. We illustrate the principal potential

of a joint analysis within the example of 𝛼 − 𝛼 and d – 𝛼 pairs measured in very similar

reactions.

2.2 Two-Particle Correlation Functions

In this section, we discuss the experimental and theoretical sides of two-particle CF

in reactions with multiparticle final states. CF modeling involves folding of two-particle
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wavefunctions with relative sources for the particles.

2.2.1 Correlation Experiment and Theory

The two-particle correlation function that is sought in an experiment is the ratio [31, 32,

29] of two-particle coincidence observation probability density, 𝑃(p1, p2), to the product

of single particle observation probability densities, 𝑃1(p1,2),

𝐶 (q,K) = 𝑁 𝑃(p1, p2)
𝑃1(p1) 𝑃1(p2)

. (2.1)

Here, p1,2 are the momenta of the two particles, 1 and 2, K = p1 + p2 is the total pair

momentum and q is the relative momentum in the pair center of mass. The factor 𝑁 is a

normalization constant chosen in such a way that𝐶 (q,K) approaches unity for large 𝑞. With

the normalization to be set in (2.1), the probability densities may be taken unnormalized

and equal to the invariant differential yields, 𝑃1(p) = 𝐸 d3 𝑁
d𝑝3 and 𝑃(p1, p2) = 𝐸1 𝐸2

d6 𝑁
d𝑝3

1 d𝑝3
2

[31].

On the theoretical side, using reduction formulas and the assumption of the relative

velocity in the pair being small compared to the characteristic scales for the system reminder,

the correlation function may be expressed as a convolution of the square of the relative

scattering wave function Ψ(r, q) with a relative source 𝑆(r) [19, 5, 33, 34]:

𝐶 (q) =
∫

𝑑3𝑟 𝑆(r) |Ψ(r, q) |2 . (2.2)

The above relation is called the Koonin equation. The wave function Ψ is one with

outgoing boundary conditions. The vector q is the asymptotic relative momentum, 𝑞 =

`(v1 − v2), where ` is the reduced mass and v1,2 are velocities of the two particles in the

pair. For identical particles, or in the center of mass, the relative momentum reduces to
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q = 1
2
(
p1 − p2

)
. The vector r is the relative position within the pair, when the last member

of the pair decouples from the rest of the system, and 𝑆 is the distribution of those positions.

At large 𝑟, the average value of the probability density |Ψ|2 is 1. Deviations of the

modulus square from 1 at shorter distances, regulated by q, allow to probe the shape of

𝑆. The particular features include resonances that correspond to peaks in the probability

density at short distances, Coulomb repulsion yielding depletion in the probability density

at short 𝑟 and low 𝑞 and symmetrization for identical particles, yielding oscillations in |Ψ|2.

The interplay of the features in |Ψ|2, dependent on q, with features of 𝑆, yields structures

in 𝐶 (q) that can be used to learn on 𝑆(r) [32, 27].

From 𝛼 − 𝛼 Phase Shifts to Wave Function

In order to access 𝑆(r) using the Koonin equation, the square of the relative wavefunc-

tion, |Ψ|2, is needed. The wave functions are constrained by any measured phase shifts.

The latter determines the large-𝑟 behavior of partial wave functions, but ambiguities can

remain for shorter-𝑟 restrained only by the 𝑞-dependence of the phase shifts. Fortunately

the typical sources are wide enough for the ambiguities to have quite tolerable impact on

the 𝑆-inference. In fact, at times, the purely asymptotic form of the wave functions may be

used in coarse analyses [35, 36]. Notably, the asymptotic conditions need to be switched

between the wavefunctions describing the scattering experiment, where the conditions are

of an outgoing spherical wave, to those for wavefunctions in the Koonin equation, where

they are of an incoming wave. To generate changes in the wavefunction, to match the

measures phase shifts, strong-interaction potentials are adjusted at short distances.

The steps that we undertake for the 𝛼 − 𝛼 pairs are similar to those for the d – 𝛼 pairs

later on, so we keep some options open even when they are not needed for 𝛼 − 𝛼. The
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experimental 𝛼−𝛼 phase shifts for 𝑠 and 𝑑 waves, from measurements of Afzal et al. [37],

are shown in Fig. 2.2. We exploit them to constrain the relative 𝛼 − 𝛼 wave function by

solving the Schrödinger Equation (SE)[
− ℏ2

2`
∇2 +𝑈 − 𝐸

]
Ψ = 0 (2.3)

and matching the asymptotic behavior in the partial waves to the phase shifts. Here, ` is

the reduced mass for the system, 𝐸 = ℏ2𝑞2/2` and𝑈 is the interaction potential consisting

of the Coulomb potential and adjusted nuclear potential.
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Figure 2.2 𝑆-wave (top panel) and 𝐷-wave (bottom panel) phase shifts for an 𝛼 − 𝛼 system
as a function of the kinetic energy in the center of mass. The symbols represent the
data by Afzal et al. [37] and lines represent our calculations with a Wood-Saxon form
for the strong-interaction potential. Resonance behaviors can be observed at ∼ 0.091 and
∼ 3.04 MeV, in the 𝑠- and 𝑑-wave, respectively.

Benefiting from angular momentum conservation and azimuthal symmetry around the

asymptotic relative momentum 𝑞, we can decompose the wave function into partial waves,

Ψ(r, q) = 1
𝑞𝑟

∑︁
ℓ

𝑖ℓ (2ℓ + 1) 𝑢𝑞 ℓ (𝑟) 𝑃ℓ (𝑐𝑜𝑠\) , (2.4)
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where \ is the angle between r and q and 𝑃ℓ are Legendre polynomials. The radial wave

functions 𝑢𝑞 ℓ satisfy the radial equations

− ℏ2

2`
d2

d𝑟2 𝑢𝑞 ℓ (𝑟) =
(
𝐸 − ℏ2 ℓ(ℓ + 1)

2`𝑟2 −𝑈ℓ (𝑟)
)
𝑢𝑞 ℓ (𝑟) , (2.5)

where we assume𝑈ℓ to be local in each partial wave.

The potential in each partial wave, with ℓ suppressed, is of the form

𝑈 (𝑟) = 𝑉𝑐 (𝑟) +𝑉0 𝑓 (𝑟, 𝑅0, 𝑎0) +𝑉1 𝑓 (𝑟, 𝑅1, 𝑎1)

+𝑖𝑊0(𝐸) 𝑓 (𝑟, 𝑅𝑤, 𝑎𝑤) . (2.6)

Here, 𝑉𝑐 is a Coulomb potential regularized at short distances where the strong-interaction

potential becomes dominant. The Woods-Saxon form factor is

𝑓 (𝑟, 𝑅, 𝑎) = 1
1 + exp 𝑟−𝑅

𝑎

. (2.7)

The energy-dependent imaginary potential is only used for the d –𝛼 system. The parameters

of the potentials from fitting the phase shifts in the 𝛼 −𝛼 system are given in Table 2.1 and

the description of the phase shifts with these parameters is illustrated in Fig. 2.2.

For the relative velocities that are of interest to us and higher angular momenta, the

𝛼−𝛼 pair is not going to penetrate the centrifugal to reach distances where they can interact

strongly, so we can use pure relative Coulomb wave functions there. In constructing the

wave function for the Koonin equation, we make use of the Coulomb scattering wave

function with outgoing boundary conditions, Ψ𝑐, and write the scattering wave function as

Ψ = Ψ𝑐 + (Ψ − Ψ𝑐) . (2.8)

Then we only decompose the second difference term in the angular momentum states and

end up with summing over only two terms there.
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Table 2.1 Wood-Saxon potential parameters (c.f. Eq.(2.6)), arrived at by fitting experimental
phase shifts for the 𝛼−𝛼 system [37]. For describing 𝑠-wave data a single attractive Wood-
Saxon term was sufficient, while the 𝑑-wave data required a combination of an attractive
and a repulsive term.

Partial Potential
Wave Parameters

Attractive Term Repulsive Term
𝑉0 𝑅0 𝑎0 𝑉1 𝑅1 𝑎1

(MeV) (fm) (fm) (MeV) (fm) (fm)
𝑠 -23.398 3.636 0.676
𝑑 -38.838 2.523 0.738 20.000 2.040 0.547

2.2.2 d – 𝛼 Phase Shifts and Wave Function

Deuteron spin couples to spatial angular momentum, complicating the analysis of the

scattering wave function. Still that analysis is simplified by the net angular momentum

and parity conservation. At low relative velocities, coupling between partial waves tends

to be weak and vanishes exactly for the minimally nonlocal potential in Eq. (2.6). Under

those conditions, the experimental analysis of cross sections for the phase shifts and their

theoretical description largely parallels the analysis with no spin. With the coupling the

wave function components are

Ψ𝑀 ′ 𝑀 (r, q) =

√
4𝜋
𝑞𝑟

∑︁
𝐽ℓ

√
2ℓ + 1 𝑖ℓ ⟨ℓ01𝑀 |ℓ1𝐽𝑀⟩

×⟨ℓ 𝑀 − 𝑀′ 1𝑀′|ℓ1𝐽𝑀⟩ (2.9)

×𝑢𝑞ℓ𝐽 (𝑟)𝑌ℓ 𝑀−𝑀 ′ (\, 𝜙) ,

with angles relative to q. In modeling the correlation function, modulus squared of

the pair wave function is employed, c.f. (2.2), and averaging and summing over spin

directions is employed. This principally can add complexity to the angular momentum

structure (see Ref. [38] for insights in another context). However, in this work we consider
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only angle-averaged correlations, both on experimental and theoretical side. Under such

circumstances, only angle-averaged modulus square of the wave function is needed [27],

which greatly simplifies the structure that needs to be convoluted with the source, itself

angle-averaged:

1
2𝑆 + 1

∑︁
𝑀 𝑀 ′

1
4𝜋

∫
dΩr |Ψ𝑀 ′ 𝑀 (r, q) |2

=
1

3(𝑞𝑟)2

∑︁
ℓ 𝐽

(2𝐽 + 1) |𝑢𝑞ℓ𝐽 (𝑟) |2 . (2.10)

Wood-Saxon potential parameters for ℓ = 0, 1, 2 waves, have been determined by

Boal and Shillcock [19], by fitting low-energy experimental phase shifts by McIntyre and

Haeberli [39]. We modified their parametrizations for 3D2 and 3D1 waves, see Table 2.2,

to better fit the data, by including weak imaginary contributions, with 𝑊0(𝐸) = 𝑊0 (𝐸 −

𝐸th)2/[𝐶 + (𝐸 − 𝐸th)2] in Eq. (2.6). Here, 𝐸th is threshold energy for deuteron breakup.

The real values of the phase shifts in 𝑑 waves, from measurements and calculations, are

shown in Fig. 2.3. With nuclear and short-distance regularization of the Coulomb potential

impacting only the few lowest partial waves, the series in (2.10) can be cast again as the

summed up series for the pure Coulomb interaction with a correction for the lowest waves

added.
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Table 2.2 D-Wave Wood-Saxon potential parameters (c.f. Eq. (2.6)), arrived at by fitting
low-energy experimental phase shifts for the d−𝛼 system [39]. For describing 3D3-wave
data a real Wood-Saxon was sufficient, and for describing the 3D2 and 3D1-wave data it
was necessary to add a weak imaginary term. The potential parameters for other low-ℓ
partial waves can be found in [19].

Partial Potential
Wave Parameters

real Term Imaginary Term
𝑉0 𝑅0 𝑎0 𝑊0 𝑅𝑤 𝑎𝑤 𝐶

(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV2)
3D1 -13.019 4.082 0.401 -8.364 3.082 0.312 0.85
3D2 -31.000 2.916 0.638 -3.040 2.082 0.612 0.85
3D3 -43.045 2.765 0.730
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Figure 2.3 Real part of 𝑑 − 𝛼 scattering phase shifts in ℓ = 2 states. The symbols represent
the measurements of Ref. [39] and the lines represent our calculations.

2.2.3 Source Function

The source function 𝑆 in Eq. (2.2) is the distribution of the particles in relative dis-

placement r at the time when the last particle in the pair interacts with the exterior, abruptly

changing momentum [34]. The function can be deduced from transport calculations of the

reactions [40] or parametrized, such as in the Gaussian form [19, 32, 41]. The normalized

Gaussian source function, describing emission localized in space and time, is given by:
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𝑆(𝑟) = 1√︃
(2𝜋𝑟2

0)3
𝑒
− 𝑟2

2𝑟2
0 (2.11)

Here, 𝑟0 is the source radius (i.e., the source size). When particles are emitted from a

localized source over an extended period, the resulting source function becomes anisotropic

and elongated in the direction of the pair velocity [32] and references within. Angle-

averaged correlations only measure the angle-averaged sources [27], and in these, the

prolonged emission gives rise to enhanced tails. For a source emitting particles with a

finite lifetime 𝜏, the Gaussian source can be written([32] and references within):

𝑆(𝑟, 𝑡) = 1√︃
(2𝜋𝑟2

0𝜏)3
𝑒
− 𝑟2

2𝑟2
0
− 𝑡2

2𝜏2 (2.12)

Equation (2.12) provides information about the space-time evolution of the particle-

emitting region, and 𝑡 is the time between emissions. Other source functions, such as

the thermal source function, have also been used in the past. Pratt (1984) [13] studied

the emissions of pions using the Wigner function 𝑓 (𝑟, 𝑡, 𝑝) = 𝛿(𝑟 − 𝑟0)𝑒(−𝑡/𝜏−𝐸 (𝑟,𝑃)/𝑇) by

assuming the pion to be emitted from a spherical shell of radius 𝑟0, temperature 𝑇 , and

lifetime 𝜏, where 𝐸 is the energy of the pions.
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Figure 2.4 Dashed line superposed with crosses (green) represents normalized stationary
Gaussian source function, the solid line normalized source function of the form of reciprocal
of hyperbolic cosine (i.e., ∝ 1

𝑐𝑜𝑠ℎ(𝑟 ′) ). Both functions are significant for low values of r and
fall quickly at large values of r. But clearly, the Gaussian tail falls to zero much quicker
than the tail of 𝑆(r) ∝ 1

𝑐𝑜𝑠ℎ(𝑟 ′) .

In this chapter, we utilize a simple time-independent and isotropic Gaussian form such

as in Eq. (2.11). We cross-checked our calculation for the 𝛼 − 𝛼 CF using a reciprocal

hyperbolic cosine source, denoted as 𝑆(𝑟) ∝ 1
cosh(𝑟 ′) , where 𝑟′ = 𝑟

𝑟𝑐
(see Fig. 2.7), where 𝑟𝑐

is a parameter. In Fig. 2.4, we compare the Gaussian source with the reciprocal hyperbolic

cosine source as a function of relative distance. The latter converges to zero more slowly

compared to the former. This reciprocal hyperbolic cosine function could be a good

candidate for describing the emission source of alpha particles, which are abundant in

low-energy reaction systems.

2.2.4 Two parameters source model (TPSM)

As shown in Fig. 2.4, the model defined in (2.11) is significant at short relative distances

and falls quickly at large relative distances r. Such source correspond to short-range

emissions, but in some cases, long-distance emissions also matter. To consider both

emissions, we represent the source function as a combination of both emissions in terms

of short-range and long-range contributions (see also Section. 2.2 ), given by the equation
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[28]:

𝑆_,𝑟0 (_, 𝑟) = _𝑆𝑠ℎ𝑜𝑟𝑡 (𝑟, 𝑟0) + (1 − _)𝑆𝑤𝑖𝑑𝑒 (𝑟, 𝑟0), (2.13)

where _ is the probability of detecting particles emitted at short relative distance (≤ _ ≤ 1).

1− _ is the probability of detecting particles emitted at wide relative distances. Regarding

the source function at short and large relative distances, 𝑆𝑠ℎ𝑜𝑟𝑡 (𝑟, 𝑟0) and 𝑆𝑤𝑖𝑑𝑒 (𝑟, 𝑟0) we

used Gaussian function. Thus, the source function becomes a two-parameter model (_ and

𝑅0). Substituting this source in (2.2), we get;

𝐶 (𝑞) =
∫

𝑑3𝑟_𝑆𝑠ℎ𝑜𝑟𝑡 (𝑟; 𝑟0)
(
|Ψ(r, q) |2 − 1

)
+ 1. (2.14)

The parameters _ and 𝑟0 play important roles in the calculation of the correlation

function (CF). The parameter _ ensures that short-range sources (i.e., fast emissions)

and long-range sources (i.e., slow emissions) are included in the calculation. Notably, the

effects of both parameters on the correlations are observed, as shown in Fig. 2.5: decreasing

_ decreases both the height and width of the correlation, while decreasing 𝑟0 results in

an increase in both the height and width of the correlation. Our goal is to determine the

combination of these parameters that reproduces the measured correlations. Additionally,

it is easy to observe that Eq. (2.14) returns to Eq. (2.11) when _ is set to unity.

The results shown in Fig. 2.5 were obtained using Eq. (2.14). The left panel in Fig.

2.5a shows the 𝛼-𝛼 correlation function (CF) calculated for a fixed value of 𝑟0, and the

different curves correspond to different values of _. In the right panel, _ is fixed, and the

curves represent different values of 𝑟0. Similarly, in Fig. (2.5b), the left panel shows the

d-𝛼 CF for 𝑟0 = 5.9 fm, and the different curves correspond to different values of _. The

right panel represents the d-𝛼 correlation for _ = 0.3 with different values of 𝑟0.
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Figure 2.5 The plots illustrate the CF as a function of relative momentum (q) obtained from
Eq. (2.14). In row (a): the top left panel represents 𝛼 − 𝛼 correlations for a fixed source
radius, 𝑅0 =6 fm, with varying values of _. The top right panel shows different curves
corresponding to different radii while keeping _ constant. The bottom row (b), left and
right panels represent 𝛼 − 𝑑 correlations and follow a similar pattern to the top row (a) for
varying _ and radii, respectively. The legends or titles of the plots provide the values of the
parameters, _ and 𝑅0 used. Additionally, the insert zooms in on the second peak to offer a
closer view.
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In both cases, we observe resonance peaks from two-particle nuclear interactions; for

the 𝛼 − 𝛼 CF (Fig. 2.5a), the first resonance peak at 𝑞 = 18 MeV/c is due to 𝛼 − 𝛼 S-wave

interaction, while the second resonance peak at 𝑞 = 108 MeV/c is due to d-wave interaction.

For the d–𝛼 CF (Fig. 2.5b), the first sharp peak at 𝑞 ≈ 42 MeV/c corresponds to the state
3D3 of 𝑑−−𝛼, while the second peak at 𝑞 ≈ 84 MeV/c is due to the overlap of 3D2 and 3D1

states of d–𝛼 [42, 43]. Here, spectroscopic notation 2𝑆+1L𝐽 is used to denote the orbital

angular momentum L, where 𝐿 = 2 stands for d-wave, while the upper-script number is

2𝑆+1 and the subscript number is the total angular momentum 𝐽. These quantum numbers

were determined by employing the triangle selection rule, i.e., |𝐿 − 𝑆 | ≤ 𝐽 ≤ 𝐿 + 𝑆, where

𝑆 is the spin number and 𝑆 = 1 for d – 𝛼 and 0 for 𝛼 − 𝛼 systems. In addition, the effect of

long-range interaction (i.e., Coulomb interaction) is observed from the suppression in the

CF at 𝑞 ≈ 0 MeV/c [5]. This effect is only observed for charged particle systems.

2.3 Results: 𝛼 − 𝛼 and 𝑑 – 𝛼 CF

In this section, we discuss the 𝛼 − 𝛼 and d – 𝛼 CF measured in reactions 40Ar+27Al at

E=44 MeV/A [29] and 36Ar+197Au at E=35 MeV/A [44]. We compare those correlations

with theoretical calculation obtained utilizing Eq. (2.14). With this comparison, we extract

the parameters for the emitting sources. In addition, we demonstrate that considering

different particle pairs measured in the same reaction would be key for better constraining

the geometry of the final state emission.

It is important to mention that the correlations measured in an experiment, especially

the structures in the low relative momentum range, are affected by detector resolutions. So

far, these resolutions have not been used in C(q). However, in the rest of this chapter, we

will discuss the measured CF. Therefore, it is necessary to apply the energy resolution in
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the calculated CF, so that we can reproduce all the features in the measured CF accurately.

To account for that resolution in the calculated correlation, we follow the smearing in q

proposed in Ref. [42] by folding C(q) with a Gaussian function in q of width 𝜎𝐸 , adjusted

to the energy resolution. We provide the value of𝜎𝐸 used for each experimental correlation

data that we analyze in this section and we will refer to it as the energy resolution parameter.

2.3.1 𝛼 − 𝛼 CF

The correlations between alpha particles in low-energy reactions have not been well

studied before, to the best of our knowledge. Here, we use the theoretical framework

developed to analyze experimental alpha-alpha correlations.

Fig. 2.7 shows the experimental and theoretical alphas correlations. The experimental

data from Ref. [29] is shown as stars, while the theoretical CFs are shown as a dashed line

( green) for the Gaussian function and as a dashed line (blue) for the reciprocal hyperbolic

cosine function (i.e., 𝑆(𝑟) ∝ 1
cosh(𝑟/𝑟𝑐) ), the energy resolution parameter,𝜎𝐸 = 1.9 MeV/c is

used. Both source models closely reproduce the experimental data, and the corresponding

parameters extracted from the fits are _ = 0.3 and 𝑟0 = 5.8 fm for the Gaussian function,

and _ = 0.224 and 𝑟𝑐 = 3.5 fm for the reciprocal hyperbolic cosine source function. Those

sources are plotted together with squared relative wave function in Fig. 2.6.
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Figure 2.6 We plot the squared 𝛼 − 𝛼 wave function (|Ψ(r, q) |2) as a solid red line, along
with the reciprocal hyperbolic cosine and Gaussian source functions represented by double-
dashed and dash-dotted lines, respectively. These functions are plotted as a function of
the relative distance 𝑟. The squared wave function, |Ψ(r, q) |2, corresponds to the 𝛼 − 𝛼
pair at relative momentum of 𝑞 ≈ 108 MeV/c. The shaded region indicates the range in
the relative distance where both the wave function and source function are significant, i.e.,
the region of short relative distances. The parameters used to construct the sources can be
found in the text.

As mentioned earlier, in Fig. 2.6, we can observe that both the wave function and

the emitting source function are important for small values of relative distances. At

large distances, |Ψ|2 (shown as a solid red line) approaches unity, while the Gaussian

and reciprocal hyperbolic cosine sources (represented by dash-dotted and double-dashed

lines, respectively) decay to zero. At these distances, the interplay between |Ψ|2, which

is dependent on q, and the source results in a correlation of 𝐶 (𝑞) = 1. In Fig. 2.7, the

resonance peaks correspond to the decay of 8Be states are seen, where the first peak around

𝑞 = 18 MeV/c corresponds to the decay of the 𝐸 = 0.092 MeV ground state of 8Be [7],

while the peak located at 𝑞 ≈ 108 MeV/c corresponds to the decay of the 𝐸 = 3.04 MeV
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Figure 2.7 Figure compares calculated 𝛼 − 𝛼 CF and experimental data. Dashed blue line
and dashed green are calculated CF for Gaussian and 1/Cosh source functions respectively
in Fig. 2.6. The dots are experimental data from 40Ar+27Al reaction at 𝐸 = 44 MeV/A
[29]. The insert shows more detail around the peak at 104 MeV/c.

first excited state of 8Be [7]. The energies of these decay states agree with the resonance

energies observed in the phase shifts shown in Fig. 2.2. In addition, a peak around q=50

MeV/c is observed in the data, we discuss this peak in the next subsection.

2.3.1.1 Resonance peak at 𝑞 = 50 MeV/c

In the experimental data, another peak appears at 𝑞 = 50 MeV/c; this peak can not be

easily produced in the theoretical 𝛼 − 𝛼 CF such as shown in Fig. 2.7 because it is not

directly related to any of the states of 8Be. This peak has been attributed to the decay of

the 𝐸 = 2.42 MeV state of 9Be (𝐽𝜋 = 5/2−) into 2𝛼 and an undetected neutron [45, 7, 29].

To obtain the correlation around this peak, we use particle number density distributions

from the thermodynamics model as inputs to Eq. (2.15). First, we determine the proton

and neutron chemical potentials at thermal equilibrium by solving coupled equations for
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the conservation number of protons and the number of neutrons in the system [46]. Then,

we generate alpha particles through the sequential decay of 9Be→ 𝛼+5He, 5He→ n+𝛼.

Subsequently, we use the generated alphas’ kinematics and proton and neutron chemical

potentials to simulate particle number distributions, which are needed to construct 𝛼-𝛼

correlations, as shown in Fig. 2.8a.
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Figure 2.8 Panel (a) represents alphas CF for the peak at around q=50 MeV/c, simulated
using the thermodynamic model and Eq. (2.15). Panel (b) is the same as Fig. 2.7, but now
includes the peak at 𝑞 = 50 MeV/c.

𝑑𝑁𝛼1−𝛼2

𝑑3𝑃𝛼1𝑑
3𝑃𝛼2

= 𝑅(𝑞)
𝑑𝑁𝛼1

𝑑3𝑃𝛼1

𝑑𝑁𝛼2

𝑑3𝑃𝛼2

,

𝑅(𝑞) =

𝑑𝑁𝛼1−𝛼2
𝑑3𝑃𝛼1𝑑

3𝑃𝛼2
𝑑𝑁𝛼1
𝑑3𝑃𝛼1

𝑑𝑁𝛼2
𝑑3𝑃𝛼2

. (2.15)

where 𝑑𝑁𝛼1−𝛼2
𝑑3𝑃𝛼1𝑑

3𝑃𝛼2
, 𝑑𝑁𝛼1
𝑑3𝑃𝛼1

, and 𝑑𝑁𝛼2
𝑑3𝑃𝛼2

are particle number distributions, obtained from ther-

modynamics model (see Appendix B). We can see the analogy between Eq. (2.15) and
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Eq. (2.1); in Eq. (2.15), the numerator and denominator correspond to the probability of

coincidence emission and probability of single particle emission respectively. The thermo-

dynamics parameters used in the calculation are temperature, 𝑇 = 12 MeV, mass, 𝐴 = 67,

normal density, 𝜌0 = 0.15, neutron chemical potential, `𝑛 = −15.98 MeV and proton

chemical potential, `𝑧 = −20.553 MeV. Fig. 2.8a shows the resulting correlations for the

alphas pair produced from the sequential decay of the 𝐸 = 2.42 MeV state of 9Be into

2𝛼 +5 He via the resonance of 5Heg.s, where the neutron was not detected. Finally, the

results in Fig. 2.8a are combined with 𝛼−𝛼 CF such as in Fig. 2.7 to give a full theoretical

calculation of the 𝛼 − 𝛼 CF which reproduce well the experimental data as shown in the

Fig. 2.8. This is done by replacing the portion of the 𝛼 − 𝛼 correlation function spanning

30-60 MeV/c with the correlation shown in Fig. 2.8a, scaled by a factor of .85 to match the

calculated correlation function shown in Fig. 2.7.

2.3.2 d – 𝛼 CF

In this section, we discuss the measured d–𝛼 correlation functions in 40Ar+26Al reac-

tions at 𝐸/𝐴 = 44 MeV [8] and 36Ar+197Au reactions at 𝐸/𝐴 = 35 MeV [44]. For this

system, we obtained the theoretical correlations by calculating the wave function using

potential parameters from Ref. [32], which we revised to include an imaginary potential

(refer to Eq. (2.10) and Table. 2.2 for the specific parameters we used).

Studying the d–𝛼 correlation function provides insight into the geometry of the final

state emission and serves as a valuable tool for understanding the decay of 6Li states.

Fig. 2.11a and Fig. 2.11b depict the calculated d–𝛼 correlation functions plotted alongside

the experimental data for the respective reactions. The best-fit parameters of the model

source were 𝑟0 = 5.5 fm and _ = 0.6 for the plot in Fig. 2.11a (i.e., 40Ar+26Al reactions at
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𝐸/𝐴 = 44 MeV). In Fig. 2.11b, there are two datasets: the triangles represent data from

peripheral collision, while the stars represent data from a central collision in 36Ar+197Au

reactions at 𝐸/𝐴 = 35 MeV. The best parameters for the peripheral collision are 𝑟0 =

5.00 fm and _ = 0.61, and for the central collision, they are 𝑟0 = 6.20 fm and _ = 0.61.

From Fig. 2.9, it is clear that the calculated correlation functions reproduce both peaks

in the experimental data. The first peak at 𝑞 = 42 MeV/c corresponds to the decay of the

𝐽𝜋 = 3+ 6Li excited state at 𝐸 = 2.186 MeV [19, 44, 8], and the second peak between

80 − 100 MeV/c relative momentum corresponds to the overlap of the 𝐸 = 4.31 MeV

(3D1) and 𝐸 = 5.65 MeV (3𝐷2) excited states of 6Li [19, 44, 8]. In the past, reproducing

the shape of the d–𝛼 correlation function has been a very challenging task. Most of

the time, the first resonance peak was successfully predicted, while the second one was

overpredicted [19, 42, 44]. In Ref. [47], the authors attempted to solve this issue by

applying both source geometry and collective motion in the d–𝛼 correlation function in

Xe+Au collisions. However, the method still overpredicted the second peak.

Here, to address this issue, we investigated the d–𝛼 scattering phase shift with close

attention paid to the 3D2 and 3D1 states, as they are responsible for the second peak in the

d–𝛼 CF. We introduced an energy-dependent imaginary Wood-Saxon potential for the 3D2

and 3D1 states of the d–𝛼 system and chose the parameters of the potentials (see Table.

2.2) to accurately reproduce the experimental d–𝛼 scattering phase shifts, as shown in

Fig. (2.3).
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Figure 2.9 The plots represent d – 𝛼 CF as a function of relative momentum; in panel (a)
the dashed line is theoretical calculation and points is experimental data from 40Ar+27Al
reaction at 𝐸 =44 MeV/A [8], and panel (b) is the same as (a) with experimental data (stars
and triangles) from 36Ar+197Au reaction at 𝐸/𝐴 =35 MeV [44]. The energy resolution
parameters used are; 3.5 MeV/c and 1.9 MeV/c for left and right panels, respectively.

2.3.3 𝛼 − 𝛼 and d −𝛼 measured simultaneously

In the previous section, we discussed the correlation functions, namely 𝛼 − 𝛼 and

𝑑 − 𝛼, and extracted the corresponding source functions. In this section, our focus is on

comparing these source functions for pairs measured in the same reaction. Additionally,

we demonstrate that the d–𝛼 distribution function could be directly estimated from 𝛼 − 𝛼

and d–d sources if the three pairs were measured simultaneously. For demonstration, we

plotted in Fig. 2.11b the source functions for the three pairs utilizing the experimental data

from the 40Ar+27Al reaction for 𝛼 − 𝛼 and d–𝛼 correlations, and from the 197Au +40 Ar

reaction at 𝐸/𝐴 = 60 MeV for the d–d correlation. When the source functions from three

pairs measured simultaneously are studied, it may play a crucial role in constraining the

geometry of the final state emission.

Fig. (2.10), (C) presents the 𝛼-𝛼 and d–𝛼 source functions multiplied by the squared
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relative distance for both pairs measured in the 40Ar+27Al reaction at 𝐸 =44 MeV/A. The

dots represent the 𝛼-𝛼 source, while the solid line represents the d–𝛼 source. As depicted

in the figure, the parameters for the 𝛼-𝛼 source are 𝑟0 = 6 fm and _ = 0.3, and for the d–𝛼

source, 𝑟0 = 5.5 fm and _ = 0.55. This results in the d–𝛼 and 𝛼-𝛼 source functions being

different. However, the radii of both sources are approximately equal. Panel (a) and (b)

illustrates the correlation function for 𝛼 −𝛼 and d–𝛼 pairs, respectively, that correspond to

the source functions in (c).
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Figure 2.10 Figure illustrates 𝛼 − 𝛼 correlation function, panel (a), and d–𝛼 correlation,
panel (b), both measured in the same reaction, 40Ar+27Al reaction at 𝐸 =44 MeV/A [8].
Panel (c) displays the source functions: solid line displays d–𝛼 (red) source function and
dots (green) shows 𝛼-𝛼 source function.
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To calculate the 𝑑 − 𝑑 correlation function (CF) depicted in Fig. 2.11a, we utilize Eq.

(2.2) and construct the wave function using the Wooden Saxon potential parameters from

Ref. [32]. The recalculated 𝑑 − 𝑑 correlations are then compared with experimental data

obtained from the 197Au+40 Ar reaction at 𝐸/𝐴 = 60 MeV, where 𝐸1+𝐸2 = 75−125 MeV,

where 𝐸1 and 𝐸2 stand for energies of the first and second deteuron particle, respectively.

This allows us to determine the 𝑑 − 𝑑 source radius, denoted as 𝑅𝑑𝑑 , which has been

found to be 5 fm. Notably, this value is consistent with those reported in Ref. [32]. Our

calculations (solid line) in Fig. 2.11a demonstrate good agreement with the corresponding

experimental data points (squares). Fig. 2.11b displays the source functions as a function

of relative distance, clearly illustrating that the width of the 𝑑 − 𝑑 pair (dashed line) is

smaller than that of the d–𝛼 pair (solid line) and the 𝛼 − 𝛼 pair (dots). We assume that

the distribution of each of the two particles in the system is described by a Gaussian

source function with widths 𝑅1 and 𝑅2 for particles 1 and 2, respectively. To obtain the

two-particle relative distribution (relative source function) in the system, we perform a

convolution of the two Gaussian functions, resulting in another Gaussian function with a

width of 𝑅12 =

√︃
𝑅2

1 + 𝑅
2
2, also referred to as the source radius. Thus, by substituting the

indices 1 and 2 with the particle symbols (i.e., 𝛼 or 𝑑), we can express the widths (i.e.,

radii) of 𝑑–𝑑, 𝛼–𝛼, and 𝑑–𝛼 relative sources as 𝑅𝑑−𝑑 =
√︃
𝑅2
𝑑
+ 𝑅2

𝑑
, 𝑅𝛼−𝛼 =

√︁
𝑅2
𝛼 + 𝑅2

𝛼, and

𝑅𝑑−𝛼 =

√︃
𝑅2
𝛼 + 𝑅2

𝑑
, respectively. Therefore, we deduce the mathematical relationship that

connects the radii of the three pairs:

𝑅2
𝑑−𝛼 =

1
2
[
𝑅2
𝛼−𝛼 + 𝑅2

𝑑−𝑑
]
. (2.16)

For example, if 𝑅𝛼−𝛼 = 6 fm and 𝑅𝑑−𝑑 = 5 fm, then 𝑅𝑑−−𝛼 ≈5.5 fm. It would certainly

be interesting to further validate this concept through simultaneous measurements of the
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pairs.

In addition, it is important to note the difference between the measured𝛼−𝛼 correlations

presented in Fig. (2.10(a)) and 𝛼 − 𝛼 correlations shown in Fig. (2.8(b)). The correlation

in Fig. (2.10(a)) corresponds to alphas’ total energy greater than 140 MeV. As can be

observed, this correlation misses the low relative momentum part, including the resonance

peak at q=18 MeV/c, which may affect the fit for the source function. We believe that this

might explain the difference in source functions (see the parameters 𝑟0 and _ of the two

sources discussed earlier in this section) for the two measured 𝛼 correlations.
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Figure 2.11 Panel (a) shows the d–d correlation function; the solid line represents the
calculated CF, and the squares represent d–d correlations measured in 197Au+40Ar collision
at 𝐸/𝐴 = 60 MeV for 𝐸1 + 𝐸2 = 75 − 125 MeV [32] (and references within). The source
function used to calculate the d–d correlation is displayed as a dashed line in panel (b).
The remaining curves in the panel represent source functions for d–𝛼 (dashed line) and
𝛼 − 𝛼 (dots) pairs measured in the 40Ar +27 Al reaction at 𝐸/𝐴 = 44 MeV [8].

2.4 Conclusion

We solved the Schrd̈inger equation (SE) for 𝛼 − 𝛼 scattering to obtain the scattering

phase shifts, which were compared with experimental phase shifts to determine the best

nuclear potential. Subsequently, the potential was used to determine the relative wave
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function of alphas. The squared relative wave function, along with the parameterized

Gaussian source function, was employed in the Koonin-Pratt equation (Eq. (2.1)) to

compute alphas correlations in low-energy reactions. We calculated the 𝛼 − 𝛼 correlation

function (CF) and compared it to correlations measured in the 40Ar + 27Al reaction at

𝐸/𝐴 = 44 MeV [8] to estimate the parameters of the Gaussian source for this system.

In that reaction, the parameters, radius, and _ for the 𝛼 − 𝛼 pair were found to be 5.80

fm and 0.30, respectively. Similarly, the d-𝛼 CF was evaluated using a two-parameter

source model. In the past, d-𝛼 CF has been analyzed using different approaches, such as a

two-parameter model and collective motion [47], as well as a single-parameter Gaussian

source model [44] but our calculation reproduces the features in the measured d-𝛼 CF much

better. Furthermore, we demonstrated that studying correlations between different particle

pairs measured simultaneously helps to better constrain the geometry of the emission in

the final state. We assumed the example of 𝛼 − 𝛼 and d−𝛼 measured in the same reaction

(Fig. 2.10). Under the assumption that the 𝛼 − 𝛼, d- d, and d-𝛼 correlations are measured

in the same reaction, we can easily predict the size of d−𝛼 if we know the sizes of 𝛼 − 𝛼

and d-d, but data is needed to accomplish this.

This chapter primarily focuses on extracting one-dimensional source function from

two-particle correlation functions, we are also interested to extend this work to three-

dimensional source function information by analyzing three-dimensional particle corre-

lations. Additionally, we may explore the deformation of the source in emission for

distinguishable particles by expanding the source into angular components. While this

phenomenon has been studied in high-energy reactions [48], it has received less attention

in lower-energy cases. Once again, data is necessary to further investigate these aspects.
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CHAPTER 3

DEBLURRING APPROACH

In this chapter, we propose the use of the Richardson-Lucy (RL) optical deblurring al-

gorithm for imaging source from the correlation function. We focus on the cases of

deuteron-alpha (d–𝛼) correlations measured in a heavy-ion collision experiment. The

main results of this chapter have been submitted for publication and are accessible online

in Ref. [49].

The chapter begins with a brief introduction, and in Section 3.2, we discuss the de-

blurring method. In Section 3.15, we apply the method to restore source function from

two-particle correlation. Finally, the chapter concludes with a summary in Section 3.4.

3.1 Introduction

In the previous chapter, the two-particle source functions have been parametrized in a

Gaussian form and fitted to the correlation data. Alternatively, computing source function

from the correlation measurements is an imaging problem, that principally, like elsewhere

for imaging, invokes inversion and thus may suffer from instabilities. In this chapter, rather

than applying an inversion directly, we take inspiration from optical deblurring which is

an imaging problem too. One successful strategy there, that has been already ported into

nuclear physics to restore decay energy spectra measurements [50], and cope with detector

inefficiencies and reaction-plane uncertainties [51], is the Richardson-Lucy (RL) method

[52, 53] that relies on the Bayes theorem and it follows an iterative procedure to find a

self-consistent solution. Here, the algorithm only uses the correlation measurements and

discretized transfer function, or kernel matrix (𝐾), as inputs. The RL method largely

owes its success to the fact that it operates with strictly positive definite quantities, the
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probabilities. Conveniently, the corresponding quantities of interest within the KP formula

(i.e., correlations and kernel matrix) are positive definite, even though the overall meaning

of the KP formula differs from that providing context for the RL method. In maintaining

the restored source function positive throughout the iteration procedure and by avoiding a

direct 𝐾 inversion, serious singularity problems plaguing inverse problems are avoided. In

addition, we test the RL method on the source restoration from the d-𝛼 correlation function

calculated with a Gaussian source function. We take both correlation functions without

and with uncertainties. Those uncertainties are introduced in the correlation by adding

Gaussian noise to the KP formula.

In this chapter, we would like to recall the KP formula since it is important for us

to discuss the deblurring method for restoring the source function from correlations, at

𝑞 −→ 0, the correlation function may be represented in terms of the KP formula:

𝐶 (q) =
∫

𝑑3𝑟 |Ψ(−)
q (r) |2 𝑆(r) ≡

∫
𝑑3𝑟 𝐾 (q, r) 𝑆(r) . (3.1)

Here, Ψ(−)
q is a 2-particle scattering wave function specified with incoming wave bound-

ary conditions and asymptotically representing the center-of-mass relative momentum q.

Possible spin indices are suppressed at this stage. The wave function normalization is such

that the kernel in the KP relation, 𝐾 ≡ |Ψ|2, averages to 1 in the asymptotic zone of large 𝑟.

The function 𝑆(r) is the probability distribution of particles 1 and 2 in their separation r

in their center of mass, for the instant when they separate from the rest of the system and

leave for the detectors. The ability to learn from the low relative-velocity correlations is

further emphasized by subtracting unity from both sides of Eq. (3.1) and arriving at an

equation for the 𝑅 correlation function [54]:

𝑅(q) =
∫

𝑑3𝑟
(
|Ψ(−)

q (r) |2 − 1
)
𝑆(r) . (3.2)
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Provided the interaction within the particle pair is constrained, so that |Ψ| can be faithfully

assessed for 𝑞 and 𝑟 of interest, then 𝑆 may be inferred from any structures in 𝑅. If the

interaction is unknown, but generic assumptions on 𝑆 can be made, then the KP relation

may be used to constrain the interaction between the particles. As illustrated in Fig. 3.1, the

left panel shows the contour of the logarithm of d−𝛼 squared relative wave function, |Ψ|2.

The features (bright spots) observed around 𝑞 = 42 and 80 MeV/c correspond to 3D3, and

overlap of 2D1 and 2D2 interactions (we refer the readers to Chapter 2 for more details about

those interaction). The right panel shows d−𝛼 correlations, obtained using the KP formula

with a Gaussian source. The peaks around 42 and 84 MeV/c result from the interactions

between deuteron and alpha particles, as shown in the left panel, and correspond to the

decay of 6Li at E=2.18 MeV and the overlap states of 6Li at 4.31 and 5.6 MeV.
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Figure 3.1 The left panel displays a contour plot of the logarithm of the squared relative
wave function (|Ψ|2)of deuteron-alpha (𝑑 − 𝛼) pairs. The vertical axis shows the relative
distance (𝑟) between the pairs, and the horizontal axis shows the relative momentum
(𝑞). While, the right panel represents the 𝑑 − 𝛼 correlation function, obtained using the
KP formula discussed previously, for a Gaussian source function, as shown in Fig. 3.2
represented by stars. The first and second peaks in the correlation represent the decay of 6Li
at E=2.18 MeV and the overlap states of 6Li at 4.31 and 5.6 MeV. These peaks correspond,
respectively, to the bright spots observed in the left panel around 40 MeV/c and 84 MeV/c.

The correlation function averaged over directions of q is related to the source function

averaged over the directions of the relative separation r:

𝐶 (𝑞) = 4𝜋
∫ ∞

0
𝑑𝑟 𝑟2 𝐾 (𝑞, 𝑟) 𝑆(𝑟) , (3.3)

and

𝐾 (𝑞, 𝑟) = |Ψ(−)
q (r) |2 , (3.4)

where the r.h.s. is the squared wave function is averaged over orientation of r relative to q.

The squared wave function is given as [55];

|Ψ(−)
q (r) |2 = ( 1

2𝑠 + 1
)
∑︁
𝐿

(2𝐿 + 1)𝐴𝐿 (q, r)𝑃𝐿 (cos \), (3.5)
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where

𝐴𝐿 (q, r) =

𝑙𝑚𝑎𝑥∑︁
𝑙=0

𝑙′𝑚𝑎𝑥∑︁
𝑙′=0

(2𝑙 + 1) (2𝑙′ + 1)
𝑗=𝑙+𝑠∑︁
𝑗=𝑙−𝑠

𝑗 ′=𝑙′+𝑠∑︁
𝑗 ′=𝑙′−𝑠

(2 𝑗 + 1) (2 𝑗 ′ + 1)
©«
𝑙 𝑙′ 𝐿

0 0 0

ª®®¬
2 

𝑙 𝑙′ 𝐿

𝑗 ′ 𝑗 𝑆


2

𝑅𝑒(𝑖𝑙−𝑙′𝑈∗
𝑗 ′𝑙′ (q, r)𝑈 𝑗 𝑙 (q, r)).

The symbols in () and {} are 3-j and 6-j symbol respectively. And 𝑈 𝑗 𝑙 is the radial

wave function, obtained by solving the Schrodinger equation with parameters of optical

potential taken from Chapter 2. For L=0 we reach to angle averaged squared wave function,

|Ψ(−)
q (r) |2 ( or refer to Eq. (2.10)).

As may be apparent in Eqs. (3.1) and (3.2), the inference of 𝑆 from 𝐶 represents an

imaging problem. In fact, for neutral pion pairs, with weak strong-interaction effects within

the pair ignored, the kernel in (3.1) becomes 𝐾 (q, r) = 1+cos 2q · r, so that the correlation

𝑅 in (3.2) becomes a Fourier transform of the source 𝑆. For the general task of imaging, in

this work we reach for the Bayesian RL method that was originally developed for deblurring

optical images, but has been by now invoked for nuclear problems bearing similarity to the

optical deblurring. Here, we will carry that method to the application even farther from

the method’s origins.

3.2 Deblurring method

It is common for differential results of nuclear measurements to be blurred due to

the limited acceptance and resolution of the detectors. Hence, to be able to compare

those measurements to the theory, we need good methodologies that incorporate such

limitations. Due served as our motivation to develop deblurring techniques with a primary

goal to restore source function from the two-particle correlation function, but in Chapter 4

we will demonstrate the use of the method in restoring measured decay energy spectra
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from 26O decay experiment.

In this section, we introduce the terminologies and derive the deblurring method, but

later in the chapter, we apply the method to determine the source function from d–𝛼

correlation function in heavy ion collision.

3.2.1 Blurring relation

Let’s start with the blurring relation between a measured function, 𝑔, and the unknown

function, G, can be stated as [56, 50, 51]

𝑔(𝑡′) =
∫

𝑑𝑡 𝐴(𝑡′, 𝑡) G(𝑡) , (3.6)

where, 𝑡′ is the measured variable, 𝑡 is the true variable, and 𝐴(𝑡′, 𝑡) is the conditional

probability that the particles emitted at 𝑡 is measured at 𝑡′, also known as response function.

The task at hand is to estimate the true function G, we achieve this using the RL algorithm

that is discussed next.

3.2.2 Bayesian theory for RL algorithm

In this section, we use the Bayes theorem to derive the RL algorithm, Eq. (3.12). For

an ideal detector where all produced particles are perfectly measured,
∑
𝑗 𝐴𝑖 𝑗 = 1, implies∑

𝑗 𝑔 𝑗 =
∑
𝑗 G𝑗 = 𝑁 , so the probability of measuring 𝑔𝑖, 𝑝(𝑔𝑖) ≈ 𝑔𝑖

𝑁
and the probability

of G𝑖 to occur is 𝑝(G𝑖) ≈ G𝑖

𝑁
, Hence the conditional probability 𝑃(G𝑘 |𝑔𝑖) of G𝑘 to occur

given 𝑔𝑖 is given by Bayes theorem

𝑃(G𝑘 |𝑔𝑖) =
𝑃(𝑔𝑘 |G𝑖)𝑃(G𝑖)∑
𝑗 𝑃(𝑔𝑘 |G𝑗 )𝑃(G𝑗 )

, (3.7)
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where 𝑃(𝑔𝑘 |G𝑖) is a complement of 𝑃(G𝑘 |𝑔𝑖).

We can then write 𝑃(G𝑘 ) as;

𝑃(G𝑖) =
∑︁
𝑘

𝑃(G𝑘 |𝑔𝑖)𝑝(𝑔𝑘 ), (3.8)

=
∑︁
𝑘

𝑃(𝑔𝑘 |G𝑖)𝑃(G𝑖)𝑝(𝑔𝑘 )∑
𝑗 𝑃(𝑔𝑘 |G𝑗 )𝑃(G𝑗 )

, (3.9)

Using 𝑃(G𝑖) ≈ G𝑖

𝑁
, 𝑃(𝑔𝑘 |G𝑖) = 𝐴𝑘𝑖 and

∑
𝑗 𝑔 𝑗 =

∑
𝑗 G𝑗

G𝑖 = G𝑖
∑︁
𝑘

𝐴𝑘𝑖𝑔𝑘∑
𝑗 𝐴𝑘 𝑗𝑔 𝑗

. (3.10)

Therefore, we can solve G, iteratively as discussed next.

3.2.3 Deblurring algorithm

As mentioned before, the deblurring approach is based on the RL algorithm. In the

optical blurring problem, a photon is measured with a property 𝑡′, while its true property

is 𝑡. When the properties are discretized, such as in attributing the photon to a particular

pixel, the relation in (3.6) becomes one in the matrix form between the distribution vectors:

𝑔𝑖 =
∑︁
𝑖

𝐴𝑖 𝑗 G𝑗 . (3.11)

A deblurring method, such as RL, seeks to determine the distribution G, when knowing

𝑔 and 𝐴. To arrive at the RL strategy, a backward relation between 𝑔 and G is invoked, that

involves a conditional probability 𝑄 that is complementary to 𝐴. Requiring the fulfillment

of a Bayesian relation involving 𝐴 and 𝑄, G is searched through iterations

G (𝔫+1)
𝑗

= G (𝔫)
𝑗

∑
𝑖 𝛼𝑖

𝑔𝑖

𝑔
(𝔫)
𝑖

𝐴 𝑗𝑖∑
𝑖 𝛼𝑖𝐴 𝑗𝑖

≡ G (𝔫)
𝑗
𝑀

(𝔫)
𝑗
. (3.12)
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Here, 𝔫 is the iteration index, 𝑀 (𝔫) is an amplification factor, and 𝑔(𝔫) is prediction for the

observation at 𝔫’th iteration:

𝑔
(𝔫)
𝑖

=
∑︁
𝑖

𝐴𝑖 𝑗 G (𝔫)
𝑗
. (3.13)

If we compare Eqs. (3.1) or (3.3) to (3.6), we can see a connection in the analogous

mathematical structure. Moreover, each of the quantities in (3.1) has a probabilistic

interpretation, though only 𝑆 ties directly to G in (3.6). We will primarily rely on the

analogous mathematical structure in (3.1) or (3.3) and (3.6) and attempt to use the R-L

method to deduce 𝑆. The weights 𝛼 in (3.12) can serve to focus attention on the region

of relative momenta in the correlation function dominated by the interplay of the particles

with each other.

The iteration, 𝑛, in Eq. (3.12) stops when the ratio, 𝑔𝑖/𝑔(𝑛)𝑖
, approaches one (see

the inserted figure in Fig. 3.2). The figure illustrates the restoration of the Gaussian

source function; the stars are the original Gaussian source function, used to construct

d−𝛼 correlation function displayed in Fig. 3.1 right panel. The figure was obtained by

establishing an analogous relationship between the blur function, Eq. (3.6), and discretized

correlation, discussed in the next section. In Eq. (3.6), the quantity 𝑔 is analogous to

the correlation function (𝐶 (𝑞)), 𝐴 to the kernel matrix (𝐾 (𝑟, 𝑞)), and G to the source

function (𝑆). The dashed lines show the restored source function, we show the restoration

for different numbers of iterations (n), where it is clear that when 𝑛 is small, 𝑛 =100 the

restoration is not good and it improved as you increase 𝑛. In this example, convergence (or

better restoration) is achieved at 𝑛 =50000. It is important to note that in the case of noisy

distributions (i.e., Section 3.3 and Chapter 4) it is worth to stop the iteration as soon as a

good restoration is observed because increasing the number of iterations beyond that may
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Figure 3.2 The figure display the restoration of the source function from d−𝛼 correlation
calculated assuming Gaussian using RL method. RL algorithm employed d–𝛼 correlation
and Kernel matrix constructed from d–𝛼 squared wave function shown respectively on the
right and left panel in Fig. 3.1. Different dashed lines correspond to the restoration for n
number of iterations. The insert represents the ratio, 𝐴𝑛 = 𝑔/𝑔𝑛, as it is seen in Eq. (3.12).
The algorithm converges when 𝐴𝑛 approaches one (see red dashed). The stars show the
original source function.
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lead to instabilities in the restoration

In our discussion, we consider the RL algorithm in one dimension case, but the multi-

dimension case should be also straightforward and will be in consideration for our future

works.

3.2.4 Regularization and error consideration

In a typical experiment in nuclear physics, the quantities 𝑔𝑖 in Eq. (3.11) represent

measured values, such as decay energy spectra measurements (see Ref. [50]). These

measurements are often affected by finite statistics due to acceptance and resolution effects

of the detectors, leading to fluctuations. In Ref. [50], we considered the counts in bins

of measured energy spectra to fluctuate in a Poisson-like manner. Thus, the error of the

bin’s counts is given as the square root of the bin content, √𝑔𝑖. However, in the case of

correlations, we construct a noisy correlation by adding a relative momentum-dependent

Gaussian noise of width, 𝜎. In this case, the uncertainty in the inference of G may be

assessed by resampling 𝑔 for restoration, within the errors of the measurement. This

can be done by constructing a set of alternative measurements that occur simultaneously,

consistent with the best mean and variance, through sampling from a normal probability

distribution of 𝑔∗
𝑖
,

N(𝑔∗𝑖 |𝑔𝑖, 𝜎2) ∝ 𝑒−
(𝑔∗
𝑖
−𝑔𝑖 )2

2𝜎2 . (3.14)

Then we perform RL restoration (Eqs. (3.12)-(3.13)) by replacing 𝑔𝑖 with 𝑔∗
𝑖

to obtain G∗.

However, estimating errors in the restored distribution is very challenging because the

statistical error model in this distribution is not well known. In Chapter 4, we discuss

uncertainty quantification in the restored decay energy distribution. But the RL algorithm
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suffers high-frequency instability due to noise amplification after a few iterations. These

instabilities are suppressed by applying regularization in the algorithm. The first level of

regularization is binning in the measured distributions and the response matrix. If the

bin size is small compared to the resolution, it will result in oscillations in the restored

samples. On the other hand, if the binning size is large, the resulting restored sample

will be smooth. The other level of regularization is applied during the iteration process

and works as follows: when instability appears, the regularization reduces it by increasing

or decreasing the height of the oscillation. The regularization remains in effect until

the number of iterations 𝑛 when the scaling ratio 𝑔𝑖/𝑔(𝑛)𝑖
approaches unity. We discuss

regularization in more detail in Chapter 4 (also see Refs. [50, 51]).

3.3 Deblurring to restore source function from two-particle correlation function

As illustration in this chapter, we choose correlations between deuteron and alpha

particles. For this particle combination, scattering phase shifts have been measured and

phenomenological potentials were developed allowing for calculations of scattering wave

functions. Also correlation functions between those particles have been measured. Besides

feasibility of the source inference with a deblurring algorithm, we will consider practical-

ities of the inference, such as the binning decisions for 𝐶 and 𝑆, errors of inference and

impact of detector resolution.

Typical correlation function from measurements is shown in the panel (a) of Fig. 3.3.

The binning in relative momentum and scatter of points is quite typical for the measured

light particle correlations in heavy-ion collisions. The pronounced resonance peak at

𝑞 ∼ 40 MeV/𝑐 represents the formation and decay of a 𝑑-wave resonance in 6Li and

illustrates interest in the correlations as a source of information about interactions in
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Figure 3.3 (a) Deuteron-alpha correlation vs magnitude of relative momentum q = `(v1 −
v2) in the center of mass of the pair. Points represent the correlation measured in the
𝐸/𝐴 = 44 MeV 40Al+27Al reaction by Ghetti et al. [8]. Line and shaded regions represent
results from RL source restoration. (b) Source inferred from the measured correlation
function in (a). The solid line and shaded areas represent results from RL source restoration.
For comparison, a Gaussian source function with radius 𝑅0 = 4.5 fm is shown too.
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different channels. We use the features of the particular measurement as a general guidance

in testing the capabilities of the deblurring algorithm in source restoration. Ahead of the

restoration from data, we carry out tests where we first apply a forward relation between

assumed source and correlation function.

For the sake of deblurring, the source is discretized. To fix attention we take the source

distance range of (0-50) fm and divide it into 𝑀 even bins and represent an isotropic 𝑆 in

the form

𝑆(𝑟) =
𝑁∑︁
𝑗=1

𝑆 𝑗 𝑔 𝑗 (𝑟) , (3.15)

where 𝑔 𝑗 is a characteristic function for the 𝑗’th bin,

𝑔 𝑗 (𝑟) =


1 , if 𝑟 𝑗−1/2 < 𝑟 < 𝑟 𝑗+1/2 ,

0 , otherwise.
(3.16)

We compute the wave functions for the relation (3.1) of the source with the correlation using

the interaction potentials developed by McIntyre and Haeberli to fit the 𝑑-𝛼 phase shifts

from measurements. With the correlation function determined at momenta 𝑞𝑖, 𝑖 = 1, . . . , 𝑁 ,

the mapping of the correlation onto the blurring problem amounts to 𝐶 (𝑞𝑖) ≡ 𝐶𝑖 ↔ 𝑔𝑖,

𝑆(𝑟 𝑗 ) ≡ 𝑆 𝑗 ↔ G𝑗 and

4𝜋
∫ 𝑟 𝑗+1/2

𝑟 𝑗−1/2

𝑑𝑟 𝑟2 |Ψ(−)
q𝑖

(r) |2 ↔ 𝑃𝑖 𝑗 .

We generally use fewer points for the source than in the correlation function, 𝑀 ≤ 𝑁 . For

the selection of 𝑞 in Fig. 3.3(a) (𝑁 = 34), we typically use 𝑀 ∼ 22 and we will provide

supporting arguments for our choice later.

Given the relative success of Gaussian sources in correlation analyses and the features

of the particular measured function, we take the source for testing our restoration in the
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Figure 3.4 Test of source restoration from a correlation function without noise. Panel (a)
displays the discretized 𝑑-𝛼 correlation function (points) generated from the discretized
Gaussian source function displayed in panel (b) (points). Panel (b) displays further the
source restored with RL algorithm (solid line) from the discretized correlation function
in (a). Finally, as a cross-check, panel (a) displays the correlation function (solid line)
produced from the restored source.

form 𝑆𝐺 (r) ∝ exp (− r2

2𝑅2
0
). That source with 𝑅0 = 4.5 fm and normalized to 1 is shown

with points in the panel (b) of Fig. 3.3. The correlation function generated with the forward

source-correlation relation (3.3) is shown with points in the panel (a) of Fig. 3.4.

We test restoration with the RL method both for a smooth and noisy input correlation

functions𝐶 (𝑞). The source restored from the smooth function in the panel (a) of Fig. 3.4 is

illustrated with lines in the panel (b). It may be observed that the input and restored source

cannot be distinguished within the resolution of the figure. To test the case of a noisy 𝐶,

see [50], we add model fluctuations to the smooth 𝐶. Specifically, we observe that we

approximate the scatter of points in the experimental 𝑑-𝛼 correlation function in Fig. 3.3(a)

around a smooth function 𝐶sm with a Gaussian characterized by a 𝑞-dependent width

approximately equal to 0.15
√︁
𝐶sm(𝑞). With this we sample noisy correlation functions for

our tests from𝐶 (𝑞) ∼ 𝐶𝐺 (𝑞) +0.15
√︁
𝐶𝐺 (𝑞) N (0, 1), where𝐶𝐺 (𝑞) is the smooth function

generated with the Gaussian source. A sample correlation function with noise is illustrated
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Figure 3.5 Test of source restoration from a correlation function with noise. Points in panel
(a) represent the correlation function from the model 𝑅 = 5.5 fm Gaussian source, with a
sample Gaussian noise added. The Gaussian source itself is represented with a dashed line
in panel (b). The shaded areas and the solid line in panel (b) represent results of restoration
from an ensemble of correlation functions such as in (a) where the Gaussian noise was
repeatedly sampled. The solid line shows the average restored source and the darker and
lighter shaded areas show the extent of the 1-𝜎 and 2-𝜎 range in the distribution of restored
source function values. Finally, the solid line and the darker and lighter shaded regions
in panel (a) show similar information for the correlation functions from the ensemble of
restored source functions. The narrow width of the 1-𝜎 region in (a), compared to the
original assumed uncertainties in 𝐶, stems from the constraint of 𝑆 being nonnegative,
built into the restoration, and 𝐶 dependent effectively on values of 𝑆 at just few points in 𝑟.

with stars in Fig. 3.5(a). We generate an ensemble of such correlation functions and the

corresponding ensemble of restored sources. The average values of the restored sources at

different 𝑟 are illustrated with a solid line in Fig. 3.5(b). The extent of the 1-𝜎 and 2-𝜎

ranges in the value distributions for restored sources at different 𝑟 are illustrated as dark

and light shaded areas, respectively. It can be observed that the restored values generally

agree within 1-𝜎 with the original Gaussian source.

It is important to note that the RL algorithm can suffer from noise amplification after a

modest number of iterations, see Refs. [51, 50] and references within. In our calculation,

we suppressed potential instability by applying a regularization in the algorithm. The first

level of regularization is the binning choice in the source function (see Eq. (3.15)); too many
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bins lead to oscillations in restoration, and too few bins lead to the loss of information, and

we discuss binning choice in detail later in the section. The second level of regularization,

we use here, is the one developed in Ref. [51], where the parameter _ = 0.015 was chosen.

The main goal of this section remains the restoration of a source from data following

the RL algorithm. The 𝑑-𝛼 pairs yielding the correlation function in Fig. 3.3 have been

measured by Ghetti et al. [8] at forward angles 0.7◦ < \ < 7◦ in 40 MeV/nucl 40Ar+27Al

collisions. When narrow structures are measured in an experiment, such as the 𝑞 ∼

40 MeV/𝑐 peak in the correlation function, then detector resolution needs to be considered.

The impact of the resolution, as far as the forward relation between the source and

correlation is concerned, is in the modification of the kernel in Eq. (3.1), where the original

kernel 𝐾 (q, r) gets convoluted with an appropriate detector resolution function pertaining

to q. Relative to the measured vector, the resolution can modify the magnitude of the

vector q in the wave function, as well as its direction, especially for low 𝑞. However, for

low values of the 𝑞𝑟 product, only low ℓ will matter in the wavefunction squared in the

kernel, so the sensitivity to the q direction will be weak. On the other hand, in the presence

of resonances the sensitivity to the pair c.m. energy, tied to the detector energy resolution,

can be quite strong. In Ref. [42] it has been proposed to account for the smearing in 𝑞

by folding the original kernel with a Gaussian in 𝑞 of width 𝜎𝑞 adjusted to the energy

resolution. For an angle-averaged correlation function, this yields

𝐾 (𝑞, 𝑟) =
∫

𝑑𝑞′
1

√
2𝜋𝜎𝑞

e
− (𝑞−𝑞′ )2

2𝜎2
𝑞 |Ψ(−)

q′ (r) |2 , (3.17)

in Eq. (3.3). In the limit of low relative velocity 𝑣 for the pair, as compared to the velocity

of the pair c.m. 𝑉 , simple kinematic considerations yield a relation between the resolution

in energy 𝜎𝐸 and that in relative velocity 𝜎𝑣, for angle-averaged q: 𝜎𝑣 = 1√
6
𝜎𝐸

𝐸
𝑉 . With
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the energy resolution in the particular experiment 𝜎𝐸

𝐸
∼ 2% [57] and 𝑉 corresponding to

the projectile-like fragments [8], we get 𝜎𝑞 = ` 𝜎𝑣 ≃ 3 MeV/𝑐.

An alternative to estimating𝜎𝑞 using previously inspected𝜎𝐸/𝐸 is to assess𝜎𝑞 directly

from the correlation measurement when a narrow resonant state is present such as for 𝑑-𝛼.

In the source inference from data it is also necessary to decide on the source discretization,

i.e., 𝑟max and 𝑀 in our scheme. For this, we compare the correlation 𝐶𝑅𝐿 from the source

𝑆𝑅𝐿 inferred through RL deblurring to the measured correlation 𝐶 and construct 𝜒2:

𝜒2 =

𝑁∑︁
𝑖=1

(𝐶𝑅𝐿
𝑖

− 𝐶𝑖
𝜖𝑖

)2
. (3.18)

Here, the uncertainties are estimated as 𝜖𝑖 ≈ 0.15
√
𝐶𝑖. At fixed 𝑟max, 𝜎𝑞 and 𝑀 , we carry

out the RL deblurring and then minimize 𝜒2 under variation of 𝜎𝑞 and 𝑀 . With the

number of degrees of freedom (DOF) calculated as 𝑁–𝑀–2, where 𝑀 is for the number of

source bins, and 2 is for 𝑀 and 𝜎𝑞 adjustments, we show in Fig. 3.6(a) 𝜒2/DOF obtained

in this manner as a function of 𝑟max. We find a flat behavior of 𝜒2/DOF at 𝑟max ≳ 50 fm,

close to 1 for the particular parametrization of 𝜖 . In Fig. 3.6(b) we show a contour plot of

𝜒2/DOF at fixed 𝑟max = 56 fm when 𝜎𝑞 and 𝑀 are varied. We typically find the minimum

at 𝜎𝑞 ∼ 3.8 MeV/𝑐 and 𝑟max/𝑀 ∼ 4 fm at different 𝑟max.

In the source restoration illustrated in Fig. 3.3, we use 𝑟max = 56 fm, 𝑀 = 14 and

𝜎𝑞 = 3.7 MeV/𝑐. The proximity of 𝜎𝑞 from the fit to that from the resolution estimate

should be noted. Compared to the Gaussian source there, that restored approaches faster

low values by 𝑟 ∼ 10 fm, but then it has higher values above ∼ 15 fm. Notably, when

an unnormalized Gaussian source parameterization is used to describe correlations it gets

combined with Eq. 3.2 or angle-averaged version thereof. In the latter case, it is assumed

that the strength completing source normalization is located at large 𝑟.

52



20 40
M

1

2

3

4

5

6

q [
M

eV
/c

]

(b)

1
2
3
4
5
6
7
8
9

2 /D
OF

30 40 50 60
rmax [fm]

1.1

1.2

1.3

1.4

1.5

2 /D
OF

(a)

Figure 3.6 𝜒2 per degree-of-freedom results in describing the measured 𝑑-𝛼 correlation
function in terms of the correlation from an RL restored source. Panel (a) shows minimal
𝜒2/DOF for 𝜎𝑞 and 𝑀 optimized, while 𝑟max is set. Panel (b) shows a contour plot of
𝜒2/DOF when 𝑟max = 56 fm and 𝜎𝑣 and 𝑀 are varied. The circle marks the minimum at
𝜎𝑞 = 3.7 MeV/𝑐 and 𝑀 = 14.

3.4 Summary

In this chapter, we have demonstrated the use of a deblurring method, successful

in optics, to infer the emission source from low relative-velocity correlation function.

As the example, we chose the 𝑑-𝛼 correlation that features a narrow and overlapping

broad resonances, as well as Coulomb depletion at low 𝑞. The source inference involves

determination of relative wave function in order to generate the kernel for the KP relation.

In parallel to the binning of the correlation function typical for experiment, the source and,

correspondingly, the kernel gets discretized, yielding a transfer matrix. Impact of detector

resolution can be accounted for in the matrix, in parallel to the physics connecting the source

and correlation function. The source restoration progresses through RL iterations until

source stabilization. Uncertainties in source determination can be assessed by resampling

the experimental correlation function with experimental uncertainties.
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We have tested the source restoration from a 𝑑-𝛼 correlation function with a Gaussian

source, both for an idealized function without uncertainties and with uncertainties. In both

cases, an application of the KP relation followed by the RL deblurring returned a source

information consistent with the input.

In analyzing the measured 𝑑-𝛼 correlation, we demonstrated that, for sharp resonances,

the impact of detector resolution may be read off from the correlation itself. The source

restored from the data through RL deblurring is close, within restoration resolution, to a

Gaussian source in the central part, but it first approaches low values more abruptly, to then

exhibit a tail that the Gaussian source lacks.

We hope that the RL or other optical deblurring algorithms, applied as here, may turn

out being useful in inferring the sources from correlation

54



CHAPTER 4

DEBLURRING EXPERIMENTAL DECAY ENERGY SPECTRA: THE 26O CASE

The deblurring method discussed in Chapter 3 is applied in this chapter to restore the decay

energy spectrum for the three-body decay of 26O, as measured by the MoNA Collaboration

[58]. In the next chapter, we will discuss a deep neural network classifier method to identify

number of states in the measured decay energy, both method test and complete each other.

The material discussed in this chapter was previously published in Ref. [50].

The first two sections provide an introductory description of the MoNa Collaboration

experiments and an overview of the deblurring method. In Section 4.3, we discuss the

practicalities of deblurring, specifically how the procedure is expanded to handle noisy

data. The methodology is then tested on simulated data in Section 4.4. Moving on to

Section 4.5, we delve into the deblurring of the measured 26O decay energy spectrum.

Finally, in Section 4.6, we present our conclusions and outlook.

4.1 Introduction

Invariant mass spectroscopy allows experimental access to unbound states. However,

interpreting and extracting physics from the measured decay energy spectra are often

challenged by limited resolution and distortions caused by experimental acceptance effects.

This is particularly true in investigations of neutron-unbound states, since they involve

the measurement of neutrons and charged decay fragments in coincidence. In a decay

experiment of this type, the neutron-unbound state is populated through a nuclear reaction

induced by a rare isotope beam, typically proton-removal. The unbound state decays

immediately, and by measuring the momentum vectors of the decay products, the invariant

mass of the unbound system can be calculated. The measured decay energy spectrum can
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then be reconstructed by subtracting the masses of all constituents of the system.

In this work, we are focusing on the two-neutron emission decay energy spectrum of
26O. This unbound nucleus was recently measured by the MoNA Collaboration [58], with

the setup illustrated in Fig. 4.1. The exploration typifies efforts to learn about the structure

of nuclei towards the neutron-drip line [59]. In general, measuring neutron momenta

implies the use of a neutron detector array that usually has limited position resolution

and detection efficiency. Similarly, measuring the momenta of charged particles involves

tracking the particle trajectories back through a magnetic field and part of the reaction

target to determine the angle and energy at the point of the breakup reaction, which is not

accessible to direct measurements. The procedures introduce variations and uncertainties

in such a way that the measured decay energy distribution is only a distorted and blurred

image of the true decay energy spectrum of the unbound system. In the present work, we

will utilize two novel methods of inferring features of the true decay spectrum: a deblurring

algorithm and a deep neural network approach. There is much potential for these strategies

outside of the particular problem.

4.2 Interplay of the Experiment and the Analysis Methods

4.2.1 Experiment and Construction of Transfer Matrix

In the experiment considered here, the strongest distortion of the spectrum stems from

the acceptance and resolution effects of the Modular Neutron Array and Large multi-

Institutional Scintillator Array (MoNA-LISA), and the fact that it is hard to detect neutrons

with good efficiency and determine their location with good precision. Detailed simulations

of the detector setup allow to quantify the impact of the detection process on a decay energy

spectrum and cast it in the form of a response matrix or transfer matrix, cf. Figs. 4.2 and 4.3.
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Figure 4.1 (Color online) The MoNA experimental setup for invariant mass measurements
in search of neutron-unbound states includes the Sweeper magnet, charged particle detector
suite, and neutron detector array. The rare isotope beam (orange arrow) impinges on a
reaction target where the unbound state is populated in a nuclear reaction. The charged
breakup fragments (red shaded area) are directed by a magnetic dipole field into the
charged particle detector suite, while the neutrons (green shaded area) travel along the
beam direction to the neutron detector array.

The matrix folded with any input decay spectrum and no detector distortions produces the

spectrum expected to be measured in the experiment with those distortions imposed.

In constructing the matrix, decays are simulated by randomly drawing the decay energy,

𝐸𝑑 , from a uniform distribution and randomly selecting the orientation of the decay event

in the 26O frame. Each decay is processed through a simulation of the detector response.

The decay energy spectrum is then constructed from that response in the same fashion

as for the measured data. By selecting a narrow range of input decay energies, the

resulting ‘resolution-folded’ spectrum, 𝐸′
𝑑
, for a given 𝐸𝑑 is produced (cf. Fig. 4.3). The

𝐸𝑑-values used as examples are shown as thick red lines in Fig. 4.3 and red arrows in

Fig. 4.2. The full response/transfer matrix is built from the resolution-folded spectra 𝐸′
𝑑
.

A difference in normalization for the matrix shown here compared to Fig. 4.3 should be

noted. In Fig. 4.3, the normalization is for practical purposes to illustrate the difference in

response for two example 𝐸𝑑 , and in Fig. 4.2 it is appropriate for the matrix in continuum
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Figure 4.2 (Color online) The response matrix 𝑃(𝐸′
𝑑
|𝐸𝑑) of the MoNA experimental

setup depicted in Fig 4.1 used in measuring the decay energy of the three-particle decay
26O →24 O + 2𝑛. The diagonal line corresponds to 𝐸𝑑 = 𝐸′𝑑 and is plotted on the figure
to guide the eye, and the arrows point to the values of 𝐸𝑑 that correspond to the observed
resonance states of26O. See text for details.

limit, representing conditional probability density. As a further note, integration over the

measured energy yields the probability of the event at a given input energy getting accepted,∫
𝑑𝐸′

𝑑
𝑃(𝐸′

𝑑
|𝐸𝑑) = 𝑃(𝐸𝑑). The 𝐸′

𝑑
= 𝐸𝑑 diagonal is marked in the figure to guide the eye.

The rapid decrease in the probability at high 𝐸′
𝑑

indicates that an event at high 𝐸′
𝑑

has a

low chance to get recorded.

58



0.8
1.0 (a) input at 500 KeV

output from TM

0 2 4 6 8 10
Ed, E′d (MeV)

0.00

0.05

0.10

No
rm

al
ize

d 
yi

el
d

0.8
1.0 (b) input at 2 MeV

output from TM

0 2 4 6 8 10
Ed, E′d (MeV)

0.00

0.05

0.10

No
rm

al
ize

d 
yi

el
d

Figure 4.3 (Color online) Construction of individual columns in the response/transfer
matrix (TM). A single bin (0.2 MeV width) in input energy 𝐸𝑑 is uniformly populated
with events, as illustrated by the solid (red) histograms. Processing of the events through
a simulation of the detection system yields corresponding event partition across bins in 𝐸′

𝑑

illustrated by the open (green) histograms.
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4.2.2 Accessing resonance properties

It is common practice to assess the original, undistorted decay energy spectra with

parameter estimation techniques. For example, neutron-unbound resonances are often

[60, 61, 62, 59] modeled using energy-dependent Breit-Wigner line shapes (See Eq. (4.9))

[63]. Parameter estimation methods, such as 𝜒2 minimization, are used to extract the

resonance energy, width and angular momentum for each resonance state. For the remainder

of this chapter we refer to such methods as traditional fit methods.

The traditional approaches require decisions on the number of parameters to fit for the

original spectrum, such as the choice of the number of resonances present in the explored

energy range. The proposed deblurring method aims at restoring the features of the original

spectrum without assuming how many states it contains. We complement the results from

the novel approach by carrying out the standard chi-square minimization and assuming

different numbers of resonance peaks in the data.

4.2.2.1 The Richardson-Lucy deblurring procedure

Our deblurring procedure employs the Richardson-Lucy (RL) algorithm initially de-

veloped to restore blurred images in optics [64, 65]. Over time the algorithm found use in

astronomy [66] and medicine for medical images analysis [67], to list a few. In high-energy

physics, analogous developments progressed [68] without realization of the prior work

elsewhere. Recently, Danielewicz and Kurata-Nishimura [51] have demonstrated that a

nonlinear extension of the algorithm could be used to determine three-dimensional (3D)

momentum distributions of products in intermediate-energy heavy-ion collisions. The RL

algorithm derivation relies on the Bayes’ theorem and it follows an iterative procedure

to find a self consistent solution. The algorithm only uses the distorted spectrum and
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discretized response function of the apparatus, or Transfer Matrix (TM), as inputs. The

spectrum entries and matrix elements are positive definite and carry probabilistic interpre-

tation. The restoration of the original spectrum is an inverse problem, but it progresses

in the deblurring without directly inverting the TM, an uncommon approach for inverse

problems [69]. In maintaining the restored spectrum positive throughout the iteration

procedure and by avoiding a direct TM inversion, serious singularity problems plaguing

inverse problems are avoided.

In Ref. [51], the RL was implemented without consideration of noise. In this thesis

and the associated paper [50], we expand the utility of the algorithm by considering

measurement statistics and improve on the assessment of what is actually learned from the

data. However, in other fields, it has been demonstrated that the RL algorithm suffers from

short-wavelength instability due to noise amplification after a limited number of iterations

[70, 71, 72]. To overcome this challenge, we introduce a regularization in the algorithm

that tames the short wavelength component in the deblurring solution. There are several

options for such regularization, the Gaussian function smoothing being one such example.

The smoothing requires considerations of a function width and boundary conditions [70].

Another regularization option is the use of denoising algorithms that invoke nonlinear

combinations of derivatives of restored spectra [71, 73], commonly termed Total Variation

(TV).

We use a simple version of TV regularization employed in Ref. [51], but we make its

strength increase with energy, as the impact of noise on a restored spectrum increases at

higher energy. With this approach we are able to arrive at stable deblurring solutions after

just few RL iterations.
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4.3 Richardson-Lucy Deblurring Algorithm

4.3.1 Setting

In a nuclear decay experiment, the decaying nucleus, characterized by a total four

momentum p = (𝐸, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧), can be thought of as an emitter of particles that fly off

towards the detector. The detector records the particles with some efficiency and allows

to determine their four-momenta with some accuracy. From the combination of those

four-momenta, the invariant mass of the decaying nucleus is determined, 𝑀 =
√︁

p2, and,

over many events, the particle decay energy spectrum is established [58, 74]. Structures in

that spectrum can tell us about the resonance states of the decaying nucleus. Limitation in

the detector resolution makes the measured spectrum 𝑓 blurred compared to the true decay

spectrum F of the nucleus.

The blurring relation between 𝑓 and F can be written as

𝑓 (𝐸′
𝑑) =

∫
𝑑𝐸𝑑 𝑃(𝐸′

𝑑 |𝐸𝑑) F (𝐸𝑑) . (4.1)

Here, 𝐸′
𝑑

is the measured energy, 𝐸𝑑 is the true energy and 𝑃(𝐸′
𝑑
|𝐸𝑑) is the conditional

probability that products for a nucleus decaying at 𝐸𝑑 are registered, the event is accepted

and determined to represent the decay energy𝐸′
𝑑
. In the context of an experiment, 𝑃(𝐸′

𝑑
|𝐸𝑑)

represents the response function of the apparatus, but in the context of blurring analyses

it may be called a blurring or transfer function. As an extreme example, 𝑃(𝐸′
𝑑
|𝐸𝑑) =

𝛿(𝐸′
𝑑
− 𝐸𝑑) represents an ideal detector.

Eq. (4.1) invokes the spectra 𝑓 and F in the limit of infinite measurement statistics. In

practice, the spectra get discretized, most often simply binned. Moreover, in an experiment,

𝑓 only gets determined with some accuracy, and even 𝑃 gets established with some
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resolution. Under discretization, the blurring relation (4.1) acquires the matrix form

𝑓𝑖 =
∑︁
𝑗

𝑃𝑖 𝑗 F𝑗 , (4.2)

where 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝑀 and 𝑃𝑖 𝑗 represents the conditional probability density

integrated over a discretization form factor (typically Δ𝐸 bin) in 𝐸𝑑 and averaged over one

in 𝐸′
𝑑
. As such, the matrix elements 𝑃𝑖 𝑗 are positive and 𝑃𝑖 =

∑
𝑗 𝑃 𝑗𝑖 represents probability

than an event at decay energy near 𝐸 𝑖
𝑑

is analysed.

In our analysis of decay-energy spectra, we most often employ Δ𝐸𝑑 = 0.2 MeV

binning. To construct the transfer matrix (TM), 𝑃(𝐸′
𝑑
|𝐸𝑑), for the three-particle decay

26𝑂 →24 𝑂 +2𝑛 experiment [58], we randomly draw the decay energy, 𝐸𝑑 , from a uniform

distribution and draw the orientation of the decay event in the frame of 26O. Each decay is

then processed through the simulated response [58, 74] of the detector setup schematically

illustrated in Fig. 4.1. The outcomes are sorted by bins in 𝐸𝑑 and 𝐸′
𝑑

and their counts

per 𝐸𝑑 bin entry become TM elements. The constructed matrix is illustrated in Fig. 4.2.

The TM construction is additionally illustrated in Fig. 4.3 for individual 𝐸𝑑 bins. An 𝐸𝑑

bin is uniformly populated with events, as indicated by the solid (red) histograms shown

in Fig. 4.3. Those events are processed through the simulation of the detector response

and sorted according to 𝐸′
𝑑

bins, as indicated by the open (green) histograms. After

renormalization, the open (green) distributions in Fig. 4.3 become columns in the TM

normalized as probability density 𝑃(𝐸′
𝑑
|𝐸𝑑), or as contributions to the probability 𝑃𝑖 𝑗 in

practical calculations with discretized spectra.

4.3.2 Deblurring

The goal of deblurring is to estimate F when only 𝑓 and 𝑃 are known. The Richardson-

Lucy (RL) algorithm [64, 65, 68, 51] relies on the conditional probability 𝑄(𝐸𝑑 |𝐸′
𝑑
)
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complimentary to 𝑃(𝐸′
𝑑
|𝐸𝑑). Bayesian theorem linking the two probability densities

yields a set of equations [51] that can be solved for F (𝐸𝑑) by iteration:

𝑓
(𝑛)
𝑗

=
∑︁
𝑖

𝑃 𝑗𝑖 F (𝑛)
𝑖

, (4.3)

F (𝑛+1)
𝑖

= F (𝑛)
𝑖

∑︁
𝑗

𝑓 𝑗

𝑓
(𝑛)
𝑗

𝑃 𝑗𝑖

𝑃𝑖
. (4.4)

Here, 𝑛 is the iteration index.

We have chosen to start RL iterations with a rough guess for F (0) , such as scaled up 𝑓 .

The iterations is stopped once F (𝑛) ceases to change with 𝑛. For distributions that quickly

change with their arguments, such as 𝐸𝑑 here, the long-term convergence may be slow and

for large 𝑛 numerical seesaw instabilities in the arguments may set in. That instability can

be tamed with a renormalization factor [71, 51] 𝐼 (𝑛) applied to the r.h.s. of (4.4):

𝐼 (𝑛) =
1

1 − _D · ∇
(
∇𝐹 (𝑛)

|∇𝐹 (𝑛) |

) . (4.5)

Here, D is a vector with components that are intervals over which F is discretized in

its arguments (bin sizes), the divergence is approximated in low order based on that

discretization and _ is a small positive number. In a one-dimensional case, such as here,

the factor becomes simply

𝐼
(𝑛)
𝑖

=



1
1−_ , if F (𝑛)

𝑖
< F (𝑛)

𝑖−1,𝑖+1 ,

1
1+_ , if F (𝑛)

𝑖
> F (𝑛)

𝑖−1,𝑖+1 ,

1 , otherwise .

(4.6)

This factor suppresses any patterns of maximae and minimae emerging on the discretization

scale. However, when wider-scale maximae or minimae arise, the factor will be impacting
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them too. As uncertainties in the restored F will be of interest here, the use of the above

regulation factor will introduce a relative error of the order of _ around the extrema of the

restored F .

4.3.3 Fluctuations and other practicalities

The blurring relation (4.1) invokes spectra in the limit of infinite statistics. However,

the spectra are measured at finite statistics and its characteristics are expected to fluctuate

compared to those at high statistics.

Let 𝑓 represent the average event numbers registered in different bins of decay energy

for measurement series carried out over a specific measurement time. If we carry out

repeated measurement series over that time, event counts for individual bins will fluctuate

in a Poisson-like manner. If we carry out just one measurement series, then the event count

in the bin 𝑖, 𝑓𝑖, is our best estimate for the mean count and the best estimate for the mean

squared deviation from that mean over repeated series [75].

When assessing uncertainties in the restored spectra, we build up an ensemble of

alternative measurement results over the same time, consistent with the best estimates of

the mean values for decay energy bins and dispersion, by sampling the Poisson probability

distribution for content 𝑓 ∗
𝑖

,

P( 𝑓 ∗𝑖 | 𝑓𝑖) =
𝑒− 𝑓𝑖 𝑓

𝑓 ∗
𝑖

𝑖

𝑓 ∗
𝑖

!
. (4.7)

We then carry out the RL restoration, Eqs. (4.3)-(4.4), with 𝑓𝑖 replaced by 𝑓 ∗
𝑖

, arriving at

F ∗ and we study the distribution of the latter within the ensemble. The algorithm requires

F (0) ≥ 0 to start. However, we have not seen any significant sensitivity of the results to

the fine details of F (0) . In practice, the important factor is the number of iterations, a few

hundreds is sufficient in our case, and the smoothing factor (see Eq. (4.8)).
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Within the higher end of the decay energy window in which we operate, usually up to

10 MeV, the counts tend to be low, fluctuating with energy and these fluctuations tend to

be amplified in the restoration. Correspondingly, we make the parameter _ in the factor 𝐼,

Eq. (4.6), increase with energy:

_ = _0

(
1 +

( 𝐸
𝐸0

)2)
, (4.8)

and we typically use _0 = 0.035 and 𝐸0 = 6 MeV. The form and parameter values have

been adjusted through experimentation. Notably, _ increases the bin-to-bin correlation,

which is illustrated in Fig. 4.7. The values for _0 and 𝐸0 are chosen to reduce the noise

oscillations in the restoration; this could also be done by increasing bin sizes. We choose

_ to depend on E to suppress the oscillations in the restoration in the high E range, which

is due to the finite statistics.

4.4 Tests of deblurring algorithm

In this section we carry out tests of our deblurring procedures when applied to simulated

data. We first consider data with negligible errors and then data with statistical errors

comparable to those for the investigated decay energy measurements [58, 74].

Following physical expectations regarding the forms of input decay-energy spectrum,

the spectrumF (𝐸𝑑) in the tests is modeled as a superposition of Breit-Wigner distributions:

F (𝐸𝑑) ≈
∑︁
𝑖

𝐴𝑖
0.5 Γ𝑖

(𝐸𝑑 − 𝐸𝑖)2 + (0.5 Γ𝑖)2 . (4.9)
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Figure 4.4 (Color online) Restoration of decay-energy spectrum in the absence of noise.
The dots (green) represent the original event distribution modelled with Eq. (4.9). Three
wide peaks were assumed for the spectrum. The dashed (blue) line represents the blurred
distribution, at adjusted normalization, and it has been obtained by folding the original
distribution with the TM, cf. Eq. (4.2). The solid (red) line represents the distribution
obtained by subjecting the blurred spectrum to deblurring with the RL algorithm, Eqs. (4.3)
and (4.4). The restored and original distributions lie practically on top of each another. A
binning in energy of 0.2 MeV was employed in generating these spectra.

We are generally interested in the decay energy region extending up to 10 MeV, though

we have also considered energies up to 14 MeV. Within such regions we have experimented

with distributions containing (1–5) Breit-Wigner peaks at different energies 𝐸𝑖 and of

different widths Γ𝑖 and amplitudes 𝐴𝑖. In the case we will use here for illustration, we take

three peaks at 0.3, 2, and 4.5 MeV, with respective widths of 0.3, 0.85, and 1.3 MeV, see

Fig. 4.4. For simplicity, we take 𝐴𝑖 ≡ 1. At first, we take the modeled input distribution F

and multiply it by the TM to get 𝑓 . Up to some joint normalizing factor for both, these

distributions stand for those in the limit of a very large statistics. The simulated input and

measured distributions are illustrated in Fig. 4.4. To the simulated measured distribution

we apply the RL algorithm, Eqs. (4.3) and (4.4). The restored distribution from the iteration
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Figure 4.5 (Color online) Restoration for four different examples of simulated data sets
when Poisson noise is active. The sampled original spectrum is the same for each set and
event statistics behind each set is similar to that believed to be behind the real data analysed
in this work. The points represent the individually sampled sets with counts scaled up by
a factor of 400. The dark blue and light blue bands illustrate the 𝜎 and 2𝜎 uncertainties
resulting from spectra restoration with error sampling. In each panel, the dashed blue line
represents the mean in the restoration ensemble for the set. The original spectrum (solid
orange line) has three resonance peaks located at 0.3, 2, and 4.5 MeV with respective
widths of 0.3, 0.85, and 1.3 MeV. Generally, we succeed in restoring the structures in the
original spectrum using the RL algorithm. Binning of 0.2 MeV was used for the processed
spectra.
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is also shown in Fig. 4.4 and it lies practically on top of the original. This has been our

typical finding for the limit of large statistics, no matter what input. In the restorations for

large statistics, we usually can drop the smoothing factor (4.6).

Next, we turn to simulations of ensembles of events, such as for real data. Specifically,

we sample the shape of F within the energy range 𝐸𝑑 < 10 MeV, to get 𝐸𝑑 for a single

event. Then we sample the probability density 𝑃(𝐸′
𝑑
|𝐸𝑑) from TM to decide whether this

event is accepted for analysis and what the measured 𝐸′
𝑑

is. We repeat the process until

the number of analysed events is similar to that in the experiment. The needed number of

input events provides a normalization for F . In Fig. 4.5, we show results from such four

separate data simulations. Both the simulated measured 𝑓 (𝐸′
𝑑
) and underlying F (𝐸𝑑) are

shown there.

A measurement carried out over a specific beam time, with finite statistics, can be

viewed as a member of an ensemble of measurements ran over the same time. We next

attempt to simulate such an ensemble using only information in an individual generated

data set, following the Poisson distribution sampling discussed earlier, Eq. (4.7), to get

𝑓 ∗(𝐸′
𝑑
). To the individual 𝑓 ∗, we apply the RL deblurring algorithm to get an estimate of

F . With this, we arrive at an ensemble of restored F that reflects uncertainties inherent

in 𝑓 , within the methodology we adopt. In Fig. 4.5, we further show the characteristics of

the ensemble of restored F , for each simulated data set, specifically the average values for

the bins and 68% and 95% uncertainty ranges. It can be observed that the distributions of

the restored values are generally consistent with the input F . Even if the dataset is noisy,

the three peaks emerge in each case.

We complement the above resampling results by showing in Fig. 4.6 a distribution of
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restored F resulting from averaging over the distributions of restored F from a number of

individual data simulations such as in Fig. 4.5. It can be seen that the average over a large

number of ensembles begins to approach the input F suggesting a faithful nature of the

restored F even for finite statistics at the level of smoothness expected for decay spectra

and accuracy that may be aimed at currently.

Figure 4.6 (Color online) Outcome of averaging over restored distributions from 24 such
simulations as in Fig. 4.5. The overall mean (dots) and the original spectrum (solid) are
largely on top of each other.
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Figure 4.7 (Color online) Contour plot of bin to bin Pearson correlation matrix for the
restored spectrum when carrying out resampling for the case of the simulated spectrum in
Fig. 4.5(d). The solid line guides the eye to indicate average behavior of the width for the
main peak in the correlation – the finer details with energy can depend on the assumed
original spectrum and even particular simulation. On average, the width grows with energy.

The TM with binning for the measured decay energy as well as the RL algorithm with

smoothing will generate correlations in results for different bins in the restored energy

spectrum. Such correlations can limit the resolution that one can aim at for the restored

spectrum. In resampling, we can test the emergence of the inter-bin correlations. This is

demonstrated in Fig. 4.7 which shows bin to bin Pearson correlation matrix built from the

restored spectrum shown in Fig. 4.5(d). A solid line in the figure guides the eye to show the

average behavior for the width of the main peak in the correlation. Beyond variation tied

to specific assumptions on the underlying spectrum, the width generally increases with the

decay energy, starting at about 0.4 MeV at low 𝐸𝑑 and rising to 1.1 MeV at 𝐸𝑑 ∼ 10 MeV.
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4.5 Deblurring 26O decay energy spectrum

In the experiment [58, 74], two-neutron unbound 26O was produced via one-proton

knockout from a 27F beam. The 26O nucleus decayed to 24O + n +n, and position and

time-of-flight measurements of the daughter products were carried out in order to assess

their momenta. The momenta for 24O and two neutrons, measured in coincidence, were

used to reconstruct the decay energy spectrum for 26O using the invariant mass technique.

Previous invariant mass measurements have observed the ground state of 26O decaying

directly into 24O and neutrons very near threshold [77, 76, 59, 58]. A recent experiment

measured the half-life of this state to be 5 ps [74]. An excited state, 26O(2+), was also

measured with a decay energy of 1.28 MeV above threshold [76]. Indications of a high-

lying excited state, at around 4 MeV, were reported in Ref. [59], but Ref. [76] found no

evidence of that state. Panel (a) of Fig. 4.8 shows the energy spectrum of the three-body

decay of 26O as recorded in the experiment performed at NSCL [58]. Only the first

peak, from those mentioned above, is easily seen. The deblurring technique discussed in

the previous section helps to extract more information from the measured decay energy

spectrum. Panel (b) of Fig. 4.8 displays the spectrum restored from the measured spectrum

of the 26O system, using the deblurring method, Eq. (4.4) with an energy-dependent

smoothing parameter of Eq. (4.8). The bumps evident in the restored spectrum near 0 MeV

and 1.3 MeV, respectively, can be recognized as the 𝐽 = 0+ and 2+ states of 26O nucleus

identified in Ref. [76]. We associate the broad peak between 4 and 6 MeV with the third
26O state observed in [59]. The panel (b) in Fig. 4.8 includes peaks that DNN attributed

to the original spectrum and corresponding contributions of those peaks to the observed

spectrum. We discuss the DNN analysis of decay energy spectrum in Chapter 5.
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Figure 4.8 (Color online) Analysis of the measured three-body decay energy spectrum for
26O → 24O+2𝑛. Panel (a) shows the spectrum measured using invariant mass spectroscopy
[58, 74]. Panel (b) shows the deblurred spectrum, as well as the peaks identified for the
spectrum with the Deep Neural Network (DNN). Resonances behind the peaks in the
spectrum near 0 and 1.3 MeV were also identified for 26O in Ref. [76] (0+ and 2+ states,
respectively). Indications of a third peak at about 4 MeV were reported by Caesar et al. [59].
Panel (c) displays contributions from the three peaks identified by DNN, and shown in (b),
to the measured spectrum, i.e., after blurring caused by the apparatus. Combination of
those contributions (dashed line) matches closely the data (points). The width of the energy
bin in processing the spectra is 0.2 MeV.
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Figure 4.9 (Color online) Chi-square per degree of freedom versus the number of peaks
included in the fit to the experimental decay energy spectrum (shown in Fig. 4.8(a)). The
horizontal axis represents the number of peaks, 𝑛, and each peak is described by three
parameters (see the text for details). Increasing the number of peaks is equivalent to
increasing the number of parameters for fitting. It may be seen that the three-peak case
yields the minimal chi-square per degree of freedom.

In comparing our method with traditional methods, we have performed chi-square

minimization by fitting the measured decay energy spectrum with the resolution-folded

BW distribution (see Section. IV). We started with one peak BW function, and gradually

increased the number of peaks to five. Each peak is described by three parameters, i.e.,

amplitude, peak position, and peak width, which implies that the number of fit parameters

is three times the number of peaks. In Fig. 4.9, we present the values of chi-square per

degree of freedom, 𝜒2/𝑛𝑑𝑓 , versus the number of peaks, 𝑛. A decrease in 𝜒2/𝑛𝑑𝑓 may be

observed from 𝑛 = 1 to 𝑛 = 3 and then an increase from 𝑛 = 3 to 5, which implies that

three peaks are sufficient to describe the data.

It is important to emphasize that the deblurring method does not require any assumption

about the number of peaks in the spectrum in order to carry out the restoration, whereas,

in the chi-square approach as well as DNN (to be discussed in the next section), one needs

to invoke some peaks explicitly (or parameters) in the model. From its side, the deblurring
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method can suggest the type and number and type of parameters needed in the chi-square

fitting or DNN.

4.6 Conclusions and Outlook

We applied the deblurring method, successful in optics and employing the RL algo-

rithm, to the restoration of the energy spectrum from the three-body decay of 26O. As

presented here, the algorithm requires only the measured distribution in energy and the

TM, with elements only labeled by energy, to operate. Two-dimensional distributions of

photons are typically employed in optics and such and higher dimensions in nuclear appli-

cations can be envisioned. The inversion implicit in the algorithm is largely stabilized by

the positive-definite probabilistic nature of the measured and restored distributions and of

the TM elements. When significant noise is present in the deblurred distribution, though,

a short wavelength instability may develop in the restored distribution in the limit of many

restoration iterations. With the relative noise growing with energy, due to fewer counts

there, we stabilize that instability with an energy-dependent regularization in the individual

restoration steps.

Ahead of the data, we tested the method in the restoration of a simulated decay energy

spectrum without and with significant noise, as was illustrated in Figs. 4.4 and 4.5. Then,

we applied the method to the measured energy spectrum of the three-body decay of 26O.

Three peaks were observed in restored spectrum. Two of those were found in the low

energy region, at about 0.15 and 1.5 MeV, which may be tied to the previously identified

(0+) and (2+) states of 26O. The third peak is located between 4 and 6 MeV in the restored

spectrum, and such a peak was previously reported in Ref. [59].

Possible nuclear applications of the deblurring method we described, besides recovering
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decay energy spectra, and the aforementioned 3D distributions in heavy-ion collisions, can

include restoration of emitting source distribution from particle correlations in heavy-ion

collisions. The emitting source function gives information about spatial geometry and time

development of the final stages of reactions [11, 12, 5, 13], as well as their phase-space

[78] and thermodynamic characteristics [26].
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CHAPTER 5

MACHINE LEARNING MODELS

This chapter presents our machine learning framework designed for identifying resonance

states from noisy measured decay energy spectra. As an alternative to the deblurring

approach discussed in Chapter 4, which aims to restore the original spectrum features

without making assumptions about the number of states it contains, we employ a deep

neural network (DNN) classifier method for resonance state identification. The latter

involves attributing probabilities to the hypotheses of a different number of states in the

original spectrum. The main results discussed in this chapter were recently published in

Ref. [50].

The chapter is organized as follows: a brief introduction is given in Section 5.1. In

Section 5.2, we introduce the deep neural network (DNN) models. We apply the DNN

classification model to the simulated dataset in Section 5.4. In Section 5.3, we apply DNN

to experimental data. Finally, we provide a summary in Section 5.5.

5.1 Introduction

Machine learning (ML) is a significant research field in modern science. It involves

techniques that allow computers to learn from data and make predictions. By using large

datasets, ML enables us to extract valuable information about different physical processes

and underlying fundamental scientific principles. Ideally, in ML, the models are built to

perform tasks, i.e., to learn and make predictions from data without explicit instructions

being given.

There are numerous machine learning (ML) algorithms, which can be broadly catego-

rized into two groups: supervised and unsupervised learning. Supervised learning involves
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using algorithms like deep neural networks, decision trees, and random forests, among oth-

ers. In supervised learning, the training data is labeled, and the algorithms identify patterns

within the datasets. This enables the algorithms to make predictions about future events

or data that were not part of the training set. On the other hand, unsupervised learning,

such as clustering and the Boltzmann machine algorithm, is a method for finding patterns

and relationships in the datasets without prior knowledge of the system. In this chapter,

we focus on supervised learning, specifically the DNN classification algorithm, and apply

the algorithm to build the model for analyzing measured decay energy spectra. For readers

interested in learning more about supervised and unsupervised algorithms, we refer them

to Ref. [79].

In addition to the RL-based deblurring algorithm, discussed in Chap. 4 and in Ref.

[50], we implemented a Deep Neural Network (DNN) classification algorithm to identify

the number of resonance states in the decaying nucleus (i.e., 26O →24 O + n + n ) from

the measured decay energy distribution. The DNN methods have been popular in face [80]

and speech [81] recognition. In the field of particle and nuclear physics, the methods

have been applied to particle identification and event selection [82, 83, 84, 85, 86, 87, 88].

In the present work, the DNN uses a training dataset generated from a Breit-Wigner

(BW) resonance distribution, folded with the experimental response matrix and sampled

according to a Poisson distribution [50]. This process yields a dataset which resembles

experimental data. The dataset is labeled and grouped into classes based on the number of

resonance peaks introduced in the BW distribution.
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5.2 Deep neural network Model

A Deep Neural Network (DNN) is a machine learning algorithm that belongs to the

family of neural networks. It is characterized by having multiple hidden layers between

the input and output layers. Inspired by the information processing of the brain [89],

DNNs are designed to learn and represent complex patterns and hierarchical features from

data. A key theoretical result for DNNs is the Universal Approximation Theorem, which

states that a feedforward neural network with a single hidden layer can approximate any

continuous function on a closed and bounded input domain, given a sufficient number of

hidden neurons. However, the depth of DNNs (i.e., having more than one hidden layer)

significantly enhances their capabilities to model and learn complex relationships between

inputs features, and outputs. There are two types of DNN models: DNN for regression

problems and DNN for classification. The main difference between them is that the former

uses continuous datasets for prediction; for example, the DNN is applied to predict house

pricing [90]. The advantage of DNN for regression problems over linear regression is

that DNN can learn the complex non-linear relationship between input and output via the

activation function introduced in each layer. The latter is used with categorical datasets to

decide a class y∗ of an unknown data object x∗ based on the class y of a known data object

x [91]. A popular example is the MNIST dataset [92], where DNN is used to classify

handwritten digits.

In this chapter, we use DNN classification to analyze decay energy spectrum mea-

surements. In this section, we discuss DNN terminologies such as training and testing

of the DNN model, feed-forward, and back-propagation, and present the mathematical

relationships that make up the DNN in general.
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5.2.1 Designing DNN

Designing an optimum DNN that does not under-fit or overfit dataset is not an easy task

since training a DNN model involves many parameters that need to be optimized. Among

them, a few are listed: the number of hidden layers, the number of neurons in each layer,

hyperparameters, number of epochs. Here, we briefly describe constructing a DNN that

better serves our purpose. Each DNN consists of three main layers; the input layer, hidden

layers, and output. The depth of a network is determined by the number of hidden layers it

possesses, it is called a deep neuron network when it has more than one hidden layers. It

is simple to determine the number of neurons in the input and output layer when you know

the problem you are trying to solve. For regression problems, the output layer has just one

neuron, and the number of neurons in the input layer is fixed to be the dimensions of the

inputs. Whereas, the number of output neurons in the classification equals the number of

categorical labels (classes) in your problem. In contrast, determining the number of hidden

layers and the corresponding neurons number is complicated. To the author’s knowledge,

there is no fixed mathematical theory to determine the number of neurons in the hidden

layer, but more often the rule of thumb is used. With the rule of thumb, you try different

choices of the number of neurons and hidden layers and select the one which gives the

optimum solution.

An example of fully connected DNN architecture is illustrated in Fig. 5.1. In the

diagram, 𝑎 (0)𝑚 represents m𝑡ℎ neuron in the input layer (0). The a(𝑙)
𝑗

is the 𝑗 𝑡ℎ neuron in

layer 𝑙; 𝑏 (𝑙) is the bias in layer l and 𝑤 𝑗 𝑘 denotes the weight matrix of layer l. While �̃� is

the approximation prediction (solution) of the true function 𝑦.
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Figure 5.1 Fully connected neural network for classification

The outputs of any neuron in a layer are given by a non-linear function known as the

activation function; also, this output serves as an input in the next layer. The activation

function is a differentiable function and the most commonly used are: Sigmoid/Logistic

𝜎(𝑥) = 1
1 + 𝑒−𝑥 ; (5.1)

hyperbolic tangent

𝜎(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 ; (5.2)

Rectifier linear unit (ReLu) function

𝜎(𝑥) = max(0, 𝑥); (5.3)
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Softmax activation function

𝜎(𝑥𝑖) = 𝑒𝑥𝑖∑
𝑖 𝑒
𝑥𝑖

; (5.4)

softmax is used as an activation function of the last layer of a neural network. The

softmax activation function is mostly used in multi-class classification problems because

it calculates the probability of each class.

5.2.2 Training a DNN

Training a DNN model involves teaching the neural network to map the input set to the

output set. This mapping can be expressed as the following relation:

𝐻 (𝐼1, . . . , 𝐼𝑛) → (𝑦1, . . . , 𝑦𝑛), (5.5)

where 𝐻 represents the non-linear function that takes the input set 𝐼1, . . . , 𝐼𝑛 and produces

the outputs (the solution of the DNN model), 𝑦1, . . . , 𝑦𝑛. The goal of training the model

is to minimize the cost function. The most commonly used cost function in regression

problems is sum of square errors (MSE),

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − �̃�𝑖)2. (5.6)

In the classification problem, cross-entropy (CEL) loss is the commonly used cost function,

𝐶𝐸𝐿 = −𝑦𝑖 log( �̃�𝑖) + (1 − 𝑦𝑖) log(1 − �̃�𝑖), (5.7)

where 𝑦 = 𝑦1, 𝑦2, ..., 𝑦𝑛 be the set of targeted values from the data, and �̃� = �̃�1, �̃�2, ..., �̃�𝑛 be

DNN output. Training a DNN consists of two stages; a feed-forward network that consists

of passing a data set from the inputs throughout to the outputs layer, and back-propagation,

which is essentially a process to find optimum parameters of the DNN.
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5.2.3 Feed forward

Feed-forward is one direction flow of information from the input layer to the output.

At the output, the network approximates a function �̃� = 𝑓 (𝑎,𝑊) which is comparable to

the target variable in the data, 𝑦. The measure of how well �̃� reproduces 𝑦 is given the cost

function (see Eq. (5.6) and (5.7)). Mathematically, feed-forward proceeds as the following:

let 𝑎 (𝑙) be the set of the inputs in l𝑡ℎ, 𝑎 (𝑙) =𝑎 (𝑙)0 , 𝑎
(𝑙)
1 , . . . 𝑎

(𝑙)
𝑛 . Then, j𝑡ℎ neuron in the 𝑙𝑡ℎ

layer is defined as a weighted sum:

𝑍 𝑙𝑗 (𝑎) =
𝑛∑︁
𝑘=1

𝑤𝑘 𝑗𝑎
(𝑙−1)
𝑗

+ 𝑏 (𝑙)
𝑗
, (5.8)

where𝑊𝑘 𝑗 weights matrix,and 𝑏 is a bias term. In matrix notation, Eq. (5.8) can be simply

written:

Z = wa + b. (5.9)

The output of the neuron is obtained by applying an activation function on 𝑍 . Here, we

use the Rectified Linear Unit (ReLU) activation function [93] for the hidden layers, and the

softmax for the output layer (See those activation functions in the previous subsection).

𝐴𝑙 (𝑍) = 𝜎(𝑍 𝑙 (a,w))),

using ReLu activation,

𝐴𝑙 (𝑍 (a,W)) = max(0, 𝑍 𝑙 (a,W)), (5.10)

where 𝜎 stands for activation function. It is important to note that the inputs of the current

layer are the outputs of the previous layer. Mathematically, the process from the first layer

to the output is a recurrent process:
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The first hidden layer is represented as 𝐴1 = 𝜎(𝑍1), the second layer as 𝐴2 = 𝜎(𝑍2) =

𝜎(𝜎(𝑍1)), and the 𝑙𝑡ℎ layer as 𝐴𝑙 = 𝜎(𝐴𝑙−1). The outputs in the 𝑙𝑡ℎ layer are summarized

as:

𝐴𝑙 = 𝜎(𝑍 𝑙 (𝜎𝑙−1(𝑍 𝑙−1(...𝜎1(𝑍1)))). (5.11)

The goal of training the DNN is to be able to obtain parameters such as w orb that

minimize the cost function. The procedure to obtain these optimal parameters is called

back-propagation and is discussed in the next subsection.

5.2.4 Back-propagation

Back-propagation is a procedure to update the weights and/or bias from the output

back to the input, as illustrated in Fig. 5.2 until the optimal values are reached. The the

procedure starts by computing the chain derivative of the cost function with respect to the

weight and bias, also known as the gradient of the error function, which is subsequently

used to update the weight,𝑊 , and bias, 𝑏
𝑊∗ = 𝑊 − 𝛼∇𝑤𝐸 ,

𝑏∗ = 𝑏 − 𝛼∇𝑏𝐸 ,
(5.12)

where,𝑊∗ and 𝑏∗ represent the updated weight and bias values, respectively. Moreover 𝛼

denotes the learning rate and ∇𝑤𝐸 =
𝜕𝐸 (𝑊,𝑏)
𝜕𝑊

and ∇𝑏𝐸 =
𝜕𝐸 (𝑊,𝑏)

𝜕𝑏
are the partial derivatives

(or gradients) of cost function (i.e., mean squared error, Eq. (5.6)), denoted as 𝐸 , with

respect to the weights and biases, respectively. These derivatives play a crucial role in the

process of finding the optimum weight and bias values and can be expressed as follows:
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∇𝑤𝐸 =
𝑑𝐸

𝑑𝑊
= 𝑊 𝑙 𝜕𝐸

𝜕𝐴𝑙
𝑊 𝑙−1 𝜕𝐴𝑙

𝜕𝐴𝑙−1𝑊
𝑙−2 𝜕𝐴

𝑙−1

𝜕𝐴𝑙−2 · · ·

𝑊2 𝜕𝐴
2

𝜕𝐴1 𝑋,

=

( 𝑙∏
𝑖=2

𝑊 𝑖
) ( 𝑙∏

𝑖=1
𝜎′
𝑖 (𝑍 𝑖)

)
𝑋, (5.13)

Figure 5.2 The figure shows a schematic illustration of the back-propagation process. The
process starts from outputs as shown by red dashed arrows, and propagation through the
network to inputs. The propagation refers to as chain derivative of a cost function with
respect to weights and bias.

In Equation (5.13), 𝜎′
𝑖
(𝑍 𝑖) represents the derivative of the activation function. The

differentiation process outlined here pertains to the chain derivative of the cost function

𝐸 with respect to the weight 𝑊 . A similar procedure can be carried out for the chain

derivative of 𝐸 with respect to the bias 𝑏.

It is essential to note that the choice of the ReLU activation function,𝜎(𝑍) = max(0, 𝑍),

is crucial. Other activation functions such as sigmoid and hyperbolic tangent have small

derivatives when 𝑍 is large. If several small values of these derivatives are multiplied

together, the product will be even smaller. Consequently, the partial derivative with respect

to the weight will be nearly zero, making it challenging for the algorithm to update the

weight. This issue in deep learning is referred to as the vanishing gradient problem [94].
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In Eq. (5.13), shows how changing the weights and biases in a network affect the cost

function. Different optimization algorithms commonly used in DNN include Gradient

stochastic descent (GSD) algorithm, ADAM algorithm to list a few. We adopted the

ADAM algorithm, which is currently the most effective and popular DNN. The algorithm

is a first-order gradient-based optimization of a stochastic function, and the algorithm

requires a little computational memory [95]. For more details about ADAM algorithm, we

refer the reader to Ref. [95]. When the entire training dataset passes completely through

the feed-forward network and back-propagation, it is said to have completed one cycle,

which is called an epoch. Each epoch corresponds to updated weights and biases. To check

if the optimum values of weights and biases have been reached, we monitor MSE for each

epoch. If the MSE is still improving, it implies that the optimal weights and biases have

not been reached yet. In this case, we continue to increase the number of epochs until the

MSE no longer improves. In the present work, the MSE was found to cease to improve

after 50 epochs (see the training/testing accuracy curves in Section 5.3).

5.3 DNN architecture to discover resonance states from the measured decay energy
spectrum

To complement the results from the deblurring method discussed in Chap. 4, we built

a machine learning (ML) tool to classify the number of peaks in the observed decay energy

spectrum. A fully connected DNN, schematically illustrated in Fig. 5.3, is defined with the

equations:

𝐴
(𝑙+1)
𝑖

= 𝑏
(𝑙+1)
𝑖

+
∑︁
𝑗+1
𝑊

(𝑙+1)
𝑖 𝑗

𝑎
(𝑙)
𝑗
, (5.14)

𝑎 (𝑙) = 𝑍 (𝐴(𝑙)). (5.15)
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where 𝑎 (𝑙) and 𝐴(𝑙+1) are the input and output layers and𝑊 (𝑙+1)
𝑖 𝑗

and 𝑏 (𝑙+1) are the weights and

bias of the (𝑙 + 1)𝑡ℎ layer. The non-linear activation function is 𝑍 (𝑥) = ReLu = max(0, 𝑥).

The Relu [93] is commonly used as the activation function in neural network models. The

function 𝑓 (𝑥)𝑖 = Softmax = 𝑒𝑥𝑖∑𝑁
𝑖 𝑒𝑥𝑖

is used in the output layer to normalize or scale the

output so that it may be interpreted as a probability [96]. We implement the network using

the categorical cross-entropy loss function, 𝐿 = −∑𝑁
𝑖 𝑦𝑖 log( �̃�𝑖), that is suitable for a multi-

class classification problem [97]. Here, 𝑦𝑖 is the 𝑖𝑡ℎ actual value and �̃�𝑖 is the 𝑖𝑡ℎ predicted

value (output of the DNN). Then, the Adaptive Moment Estimate (Adam) algorithm [95],

a popular optimizer in DNN models, is used to solve for the optimal weights 𝑊𝑖 𝑗 . The

architecture and training specifications of the DNN model are displayed in Table 5.1 and

the network design is shown in Fig. 5.3.
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Figure 5.3 (Color online) The figure shows a schematic illustration of deep neuron network
architecture designed for the classification model. In the present work the input (at the
input layer) is the decay energy spectrum, and at the output layer, is a labeled (class) value
that tells the number of states in the spectrum. The parameters used to train and test the
model are displayed in Table 5.1.

The DNN classifier is trained using simulated datasets to learn plausible patterns in

the decay energy spectra. The dataset is simulated by by folding Breit-Wigner line shapes,

Eq. (4.9), with the TM in order to resemble the experimental spectra. We then distort

the folded distribution according to Poisson noise to produce a noisy distribution similar

to experimental measurements. Note that we utilize the bins, which consist of 50 bins

spanning from 0 to 10 MeV, each with a width of 0.2 MeV, as inputs to the DNN. The

parameters 𝐸𝑖 and Γ𝑖 in Eq. (4.9), with 𝑖 = 1, . . . , 5, are randomly drawn from a uniform

distribution. In this work, we consider the parameters to stem from the range of values

displayed in Table 5.1. We divided the training data set into five classes of spectra according

to the number of resonances contributing to the decay energy spectrum. The first class,
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Table 5.1 The table shows the hyper-parameters used to design the DNN classification
model and our assumptions to generate the training data set. The first part of the table
displays parameters that made the DNN architecture (i.e., numbers of layers and neurons
in each layer). The second part (middle) shows other hyper-parameters and also shows
the positions of the peaks (𝐸𝑖) used in Breit-Wigner distribution, Eq. (4.9) which was
multiplied with TM to obtain the training set. The last part consists of classes, C1, C2, C3,
C4, and C5 created in such a way that each class has distributions with a number of peaks
and/or features different from other classes.

DNN architecture
Layers Number of neurons Activation function

Input Layer 50 ReLU
1𝑠𝑡 Hidden layer 300 ReLU
2𝑛𝑑 Hidden layer 500 ReLU

Output layer 5 Softmax
Other hyper-parameters Peak location (MeV) Peak width (MeV)

Optimizer (Adam) 0.00 ≤ 𝐸1 ≤ 0.30 0.08 ≤ Γ1 ≤ 0.50
Epoch number (200) 1.10 < 𝐸2 ≤ 1.80 0.50 < Γ2 ≤ 1.10
Batch number (20) 1.90 < 𝐸3 ≤ 2.70 1.10 < Γ3 ≤ 1.30

Learning rate (0.004) 2.70 < 𝐸4 ≤ 4.00 1.30 < Γ4 ≤ 1.80
Learning rate (0.004) 4.00 < 𝐸5 ≤ 6.00 1.80 < Γ5 ≤ 2.10

prediction of DNN classifier on experimental data
Class Description
label Peak Position (resonances states)

1. C1 𝐸1 and 𝐸2
2. C2 𝐸1, 𝐸2, and 𝐸3
3. C3 𝐸1, 𝐸2, and 𝐸5
4. C4 𝐸1, 𝐸2, 𝐸3 and 𝐸5
5. C5 elsewhere

C1, assumed two resonance states with energies 𝐸1 and 𝐸2. The second class, C2, assumed

three resonances at 𝐸1, 𝐸2, and 𝐸3. The third class, 𝐶3, assumed three resonances at 𝐸1,

𝐸2, and 𝐸5. The fourth class, C4, assumed four resonances at 𝐸1, 𝐸2, 𝐸3, and 𝐸5. The

class C5 contained any other spectrum that does not belong in the first four classes. For

convenience, we assign to class C5 four kinds of spectra: spectra with one peak at E0,

spectra with two peaks at E0 and E2, spectra with three peaks at E0, E3, and E4 and spectra

with four peaks at E0, E1, E2, E3, and E4. It is important to note that, in choosing values

for 𝐸1,2,3,5, we made sure to include all the 26O states that were previously reported (see

Refs. [76, 59]). The mean values of 𝐸1,2,3,4,5 have been equal to about 0.15, 1.50, 2.40,

3.35 and 5.00 MeV, respectively.
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Figure 5.4 (Color online) DNN model to identify resonance states from measured decay
energy spectrum. Panel (a) indicates the training and testing accuracy of the model. The
curves converge at ≈ 0.75 on both data sets, which means the model predicts 75% of the
data set correctly. Panel (b) represents the confusion matrix which tells how well the DNN
classifier was able to classify spectra: C1, C2, C3, C4, and C5 are five classes we used
to train the model, and the detail about each class is discussed in the text and Table.5.1.
Panel (c) displays the ratio of distributions predicted to belong in a given category (C𝑖,
𝑖 =1, 2, 3, 4, 5) over the total number of distributions used in the DNN model prediction.
The ratio helps to estimate the class where the measured spectrum fits. We found that C3
has the highest fraction, which suggests that there is a high chance for the experimental
decay energy spectrum of 26O system decaying 24O+ 2n from invariant mass spectroscopy
measurements belongs to C3.

We generated 6,000 spectra for each class, producing a data set containing 30,000

simulated spectra to train and test the model. From these, 60% of the data set was used for

training, and 40% was used for testing. The optimal model was achieved for the values of

the parameters displayed in Table 5.1. The model’s performance was evaluated based on

the training/testing accuracy curves illustrated in the panel (a) of Fig. 5.4.

The performance of the DNN classifier, as shown in panel (a) of Fig. 5.4, was assessed

in terms of accuracy. The accuracy, as the metric used to evaluate the classification model,

is the number of correct predictions out of the total number of predictions. An accuracy
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equal to 1 stands for the perfect performance of a model, and 0 stands for complete failure.

As shown in the figure, the model achieves an accuracy between 0.7 and 0.75 after training

for 40 epochs. Panel (b) in Fig. 5.4 displays the confusion matrix, which gives information

about the classifier’s performance in assigning each simulated spectrum to the correct

class. The elements on the diagonal represent a normalized number of ideally classified

spectra, and the off-diagonal elements represent the misclassified spectra. The first and the

second class show a high number of misclassified spectra because those two classes have

similar peaks in the low energy regime (< 2.5 MeV). Hence, it is harder for the network

to distinguish them, especially when the data set fluctuates significantly. Each element

of the confusion matrix is estimated from representative test sets, counting the number of

distributions assigned to each class and normalized by the number of spectra in that class.

After the DNN is trained, we use it to in classify the experimental spectrum. For

example, if the assigned class is C1, this means that the spectrum is perceived to have two

states around the positions described before. If it is C4, the spectrum is recognized as

having four peaks.

However, we only have one measured decay energy spectrum from the experiment

investigating the three-body decay of 26O into 24O and 2n. A fair prediction is expected,

when enough samples are passed to the DNN model. For that reason, we carry out error

resampling for the measured spectrum to obtain a dataset that one can use in the model

prediction. With this process, we have generated 10,000 samples of distributions and

estimated the classes to which each spectrum from the resampling belongs. We evaluated

the number of distributions predicted to be in a given class as a fraction of the distributions

in that class per the total number of distributions, see panel (c) of Fig. 5.4. With this,

91



the number of resonance states most likely there in the measured decay energy spectrum

corresponds to the class with the highest fractional value. As evident in Fig. 5.4(c), more

than 75% of the total distributions used in the prediction belong to class C3, which suggests

within our statistical framework the presence of three peaks in the measured spectrum. The

locations of those peaks are approximately equal to the mean values of parameters 𝐸𝑖 of

C3 at 0.15, 1.50, and 5.00 MeV. The mean values of half-widths with which the classifier

sorts the three peaks, are, respectively, 0.29, 0.80, and 1.85 MeV. Finally, these peaks

correspond to the resonance states of 26O reported in Refs. [76, 59].

5.4 DNN Classification model for resonance peaks detection

In this section, we test the DNN classification model developed in the previous section

(Section 5.3) on the distribution simulated in such a way that it resembles the spectrum

measured by MoNA-Lisa detectors. This distribution is simulated assuming that the

resonance state follows the Breit-Wigner (BW) line shape of peak position (decay energy)

𝐸𝑖 and width Γ𝑖. The expression of the BW distribution is exhibited in Eq. (4.9). The

decay energy distributions generated from BW are multiplied with the simulated response

matrix of the MoNA experimental setup [50] that incorporates the detector’s acceptance

and resolution and then distorted with Poisson noise to end up with spectra which resemble

the measured ones. It is worth mentioning that the response matrix used here is built

based on three body decay of 26O experiment [98]. In generating the distribution used

to test the DNN classification model, we assume three peaks at 0.3, 1.4, and 4.5 MeV,

with widths of 0.3, 1, and 1.5 MeV, respectively. This distribution is shown in Fig. 5.5:

the solid line (yellow) represents the original BW distribution and dots (blue) show the

distribution obtained by multiplying the original BW distribution (i.e. solid line) with the
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Figure 5.5 The figure displays simulated decay energy distributions. The solid line corre-
sponding to the energy, 𝐸𝑑 , in the horizontal represents the distribution obtained using the
Breit-Wigner distribution (see Eq. (4.9)). The dots represent energy distribution ( corre-
sponding to the energy, 𝐸′

𝑑
, in the horizontal ) was obtained by multiplying the distribution

shown as a solid line by the transfer matrix shown in Fig. 4.2 and adding Poisson noise to
produce fluctuations in the distribution.

transfer matrix and subsequently fluctuating it with Poison noise. Here, we aim to use the

latter in DNN to request the number of peaks in the original distribution. To do that,

we use the DNN classification model developed in the previous section (Section 5.3) and

follow the procedure used for the measured decay energy spectrum. The corresponding

results are displayed in Fig. 5.6, where the bar shows the percentage of the distributions

predicted to members of each of the five classes. As distributed in the figure, around 73%

of all distributions belong to class C3; this tells us that the considered distribution has 3

peaks and the mean value of their parameters, peak positions and widths are 0.3, 1.4, and

4.5 MeV, peak position and 0.3, 1, and 1.5, peak width. Those parameters agree with the

parameters we used to create the original distribution in Fig. 5.5.
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Figure 5.6 The bar plots displays the ratio of distributions predicted to belong in a given
category (C𝑖, 𝑖 =1, 2, 3, 4, 5) over the total number of distributions used in the DNN model
prediction. The class with a ratio high than 0.6 is estimated as the class where the measured
spectrum fits ( i.e., here, 𝐶3 fulfills that condition).

5.5 summary

We constructed a deep neural network (DNN) classification model with the same

objective as the deblurring technique: to identify resonance states of 26O from the measured

decay energy spectrum. Initially, the DNN was trained and tested using a simulated dataset.

Subsequently, we employed the DNN model to estimate the presence of three peaks in the

spectrum, located approximately at mean positions of 0.15 MeV and 1.50 MeV for the first

and second peaks, and at around 5.00 MeV for the third peak. The half-widths of these

three peaks were determined to be approximately 0.29 MeV, 0.80 MeV, and 1.85 MeV,

respectively.
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The concurrence observed between the deblurring and DNN classification employed

in our analyses suggests that there might be three resonance states of 26O influencing the

measured decay energy spectrum. In the future, it will be interesting to extend the DNN

method by building a DNN that solve an inverse problem to estimate the parameters of the

resonance states.
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CHAPTER 6

TRANSPORT MODEL SIMULATION FOR TWO-PARTICLE SOURCE
FUNCTION

The dynamics of the nuclear collision system can be understood by solving appropriate

transport equations. In the literature, various transport models such as Boltzmann-Uehling-

Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) were developed to study

heavy ion collision dynamics [15] (and the reference within). In this chapter, we will focus

on the BUU transport approach developed by Danielewicz [99]. The BUU code allows us

to calculate the single-particle phase-space distribution, which is then utilized to determine

the source function. However, since BUU involves several adjustable parameters, one can

likely learn correlation data by comparing the source function obtained from BUU with the

one obtained from the deblurring method discussed in Chapter 3. The parameters yielding

the correct source function, which reproduces the measured correlations, can then be used

to infer the nuclear equation of state (EOS).

In this chapter, we employ the BUU transport model to calculate the proton-proton

(p-p) source function and subsequently utilize it to compute p-p correlations in heavy-

ion collisions. Specifically, we focus on low-energy heavy-ion reactions (E/A = 50-100

MeV), specifically the p-p correlation in the 36Ar +45 Sc reaction at 80 MeV/nucleon.

Additionally, we test the model on heavier systems, namely the 131Xe + 197Au reaction

at 80 MeV/nucleon. However, for this system, we only simulate the source function

as experimental measurements are currently unavailable. We then compare the BUU-

calculated source function with the deblurring calculation for proton-proton correlation

and examine the sensitivity of the source function to the momentum-dependent soft and

stiff EOS.
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Section 6.1 discusses the BUU transport model including testing the time evolution of

the reaction from the initial condition at t = 0 fm/c up to t > 100 fm/c. We systematically

examine the effect of EOS on the reaction density as a function of time. In Section 6.2,

we delve into the calculation of p-p correlations and compare them with the deblurring

calculations. Section 6.3 focuses on the quadrupole angular component of the BUU source

function and investigates its sensitivity to the EOS. Finally, we summarize the chapter in

Section 6.4.

6.1 BUU model

The BUU model is a one-body transport model that has been extensively used to

describe the dynamics of the heavy ion collision at the intermediate energies in the semi-

classical limit. In this transport model, the system is characterized by a single particle

density at any time. In the semi-classical limit, the single particle phase space distribution,

𝑓 = 𝑓 (p, r, 𝑡), can completely specify the state of the system if the distribution is given for

all particles. We use the BUU code to solve for the one body phase space distribution 𝑓

that satisfies the Boltzmann equation [99, 100],( 𝜕
𝜕𝑡

+ P
𝑚
.∇𝑟 − ∇𝑟𝑈 (r).∇𝑝

)
𝑓 = 𝐼𝑐𝑜𝑙 (𝜎𝑖𝑛, 𝑓 ). (6.1)

The left-hand side of the Eq. (6.1) accounts for the motion of the particle in the mean-

field potential velocity v = P/𝑚 = ∇𝑝𝐸 and force ∇𝑟𝑈 (r); where 𝑚, P, and 𝐸 are mass,

momentum, and total energy. On the right hand side, 𝐼𝐶𝑜𝑙 is the collision term that accounts

for Nucleon-Nucleon collisions

𝐼𝑐𝑜𝑙 =
𝑔

ℎ3

∫
𝑑3P2

∫
𝑑Ω

𝑑𝜎12
𝑑Ω

𝑣12

[
𝑓1 𝑓2 𝑓1′ 𝑓2′ − 𝑓1 𝑓2 𝑓1′ 𝑓2′

]
, (6.2)
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where 𝑓𝑖=1,2 is single particle phase-space distribution and 𝑓 = 1 + 𝜏 𝑓 ; 𝜏 = −1, 0, 1

correspond Fermi-Dirac, Boltzmann, and Bose-Einstein statistic, 𝑔 is spin degeneracy, and
𝑑𝜎12
𝑑Ω

is differential cross section for scattering angle Ω . The primed indices represent

the final momenta while the initial momenta are P1 and P2 with relative velocity 𝑣12,

relative momentum q12 = P1 −P2 for identical masses and q12 = `(v1 −v2) for distinguish

masses, where ` is a reduced mass. The total momentum P12 = P1 +P2. The final relative

momentum is determined by the scattering angle, Ω = (\, 𝜙) so that the final relative

momentum is 𝑞1′2′ = 𝑞12(sin \ cos 𝜙, sin \ sin 𝜙, 𝑐𝑜𝑠\). Notably, for the elastic collision,

the total momentum remains constant while the final and initial relative momenta are equal

(i.e., q12 = q1′2′ , hence q1′2′ is determined by scattering angle.

The initial locations and momenta of the nucleons in the colliding nuclei are assumed

to populate uniformly a nucleon Fermi sphere with a Fermi momentum determined from

local density using Thomas-Fermi approximation. The local density from Thomas Fermi

approximation is utilized as initial conditions to the BUU transport equation. This density

is obtained by solving the coupled Thomas-Fermi equations, as detailed in Ref. [101]:


�̃�𝑛 (𝐾𝐹 (𝜌𝑛)) + 𝑎1∇2(𝜌/𝜌0) + 𝑎𝑇

4 𝛿(𝑟) − `𝑛 = 0,

�̃� 𝑝(𝐾𝐹 (𝜌𝑝)) + 𝑎1∇2(𝜌/𝜌0) + 𝑎𝑇
4 𝛿(𝑟) +𝑈Coul − `𝑝 = 0,

(6.3)

These equations are obtained by requiring that the energy is at a minimum in the ground

state of the nucleus with a definite number of protons and neutrons, i.e., 𝜌𝑖 = 𝜌0. Here,

`𝑖 is the chemical potential, �̃�𝑖 is the single-particle energy as a function of the Fermi

momentum 𝐾𝐹 , �̃�𝑖 =
√︁
𝐾𝐹 + 𝑚𝑖 (𝜌𝑖). In Eq. (6.1), 𝑈𝑖 represents the mean-field potential

with the isospin asymmetry 𝛿(𝑟) = (𝜌𝑛 − 𝜌𝑝)/(𝜌) and 𝜌 = 𝜌𝑛 + 𝜌𝑝. The index 𝑖 stands
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for the particle species. The values of parameters, such as 𝑎1, 𝑎𝑇 , and other parameters we

used, can be found in Ref. [101].

The Thomas-Fermi equations are solved by employing the boundary condition of

neutron and proton densities: 𝜌𝑛,𝑝 (𝑟 → ∞) = 0 and 𝑑𝜌𝑛,𝑝
𝑑𝑟

|𝑟 = 0 = 0. These equations

are numerically solved by starting with initial values of 𝜌𝑛/𝑝 and iteratively adjusting the

chemical potentials [100].

The momentum dependent is introduced in BUU model, Eq. (6.1) through the potential.

The momentum-dependent potential that we used here was discussed in Ref [101] and is

shown in Fig. 6.1, each curve corresponds to the potential parameterizations, Here only

the value of the ratio, 𝑚∗/𝑚 is for each curve but the complete set of parameters can be

found in Ref. [101]. In the ratio. 𝑚∗/𝑚, 𝑚∗ = 𝑃𝐹

𝑣𝐹
, where 𝑃𝐹 and 𝑣𝐹 are fermi momentum

and velocity, respectively and 𝑚 mass of nucleon. In Fig. 6.1, the linear dependence of

the potentials on energy in the low-energy regime is interpreted as an indication that the

effective mass provides a good characterization of those potentials in that region.

Fig. 6.2 shows the density profile of proton (dashed line) and neutron (dash-dotted

line) for intermedium mass nuclei, 40Ca, 48Ca, 40Ar, and 45Sc obtained from TF equation;

such nuclei are suitable in the low energy heavy ion collision experiments. The solid

lines represent the total density profile 𝜌. As expected from the TF equation, the density

decreases slowly in the range of low 𝑟, butt the tail fall-off rapidly. Notably, the effect

of coulomb interaction is seen in the difference between proton and neutron density in

the case of a symmetric nucleus (i.e., 40Ca). The BUU model is a complex model

which requires many input parameters such as symmetry energy, momentum dependence,

impact parameter, and in medium cross-section to list a few. Changing one parameter
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Figure 6.1 Real part of the optical potential, as a function of nucleon energy, at different
densities, 𝜌. Different curves represent different parametrizations of the mean-field (MF)
potential, the dashed line represents the potential for the ratio, 𝑚∗/𝑚 = 0.65, and the solid
line represent the potential for 𝑚∗/𝑚 = 0.70. The parameters of the potential can be found
in Ref. [101]. For the ratio 𝑚∗/𝑚 = 0.65, the first set of parameters was used. Stars
represent the MF potential without momentum dependence. It is notable that the potential
grows as 𝜌 increases. The figure was extracted from Ref. [101].

can affect several observables. Previously, in Ref. [14], It was reported that the two-

proton source function depends on in-medium cross-section. In fact, in a coarse estimate,

the size of the source function is given by, 𝑅 ∝
√
𝜎𝐴 [14]. Also, the sensitivity of

soft and stiff symmetry energy proton-proton correlation was explored for 52Ca+48Ca

reaction in Ref. [24]. Here, we explore the effect of different factors such as impact

parameter, and momentum-dependent soft and stiff symmetry energy EOS on the two-

proton source functions. For soft and stiff EOS, we consider both momentum-independent

and momentum-dependent cases in the BUU model. Testing the effects of these parameters

on the reaction dynamics can be done at different stages during the collision, starting from

the initial condition to the freeze-out moment (i.e., the moment the last particle leaves the

system).

Additionally, one could include different properties of the equation of state (EoS),

such as symmetry energy and momentum dependence, in the mean-field potential. The
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Figure 6.2 The figure displays the density profile versus distance for nuclei: 40Ca, 48Ca,
40Ar, and 45Sc obtained from TF equation. The dashed line represents proton density,
𝜌𝑝, the dash-dotted line shows the neutron density, 𝜌𝑛, and the solid line shows the total
density, 𝜌 = 𝜌𝑛 + 𝜌𝑝.

potential symmetry energy we use has density dependence, 𝐸sym(𝜌)𝑝𝑜𝑡 = 𝑆0(𝜌/𝜌0)𝛾,

where 𝜌0 = 0.16 fm−3 is the density of nuclear matter, 𝛾 is a constant, and typically 𝛾 < 1

corresponds to a soft EoS, while 𝛾 ≥ 1 corresponds to a stiff EoS and 𝑆0 is a parameter.

We assessed the effect of different EOSs on proton and neutron density profile, Fig. 6.3

(a) and (b) illustrate the proton and neutron densities of 40Ar and 45Sc nuclei obtained

from the solution of TF equation for soft and stiff EOS. In general, for both soft and stiff

EOS, the momentum dependence case decreases the proton(neutron) density in the range

of low values of 𝑟, and then in the intermediate values the densities fall faster for the case of
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Figure 6.3 Proton and neutron density for Ar, and Sc nuclei. The densities were obtained
from the TF equation where different parameters of the nuclear equation of state were
varied. Figure (a) represents soft EOS for both momentum-dependent and independent
cases and Figure (b) is the same as (a) but for stiff EOS.

momentum-independent soft and stiff EOS. We do not see much difference in the densities

of stiff and soft EoS, however, the gap between densities for the momentum-dependent and

momentum-independent models is small for stiff compared to soft EOS.

Progressing in the BUU simulation, we evaluated the time evolution of the reaction

during heavy-ion collisions and tested the effect of input parameters mentioned earlier

(i.e., impact parameter and momentum-dependent soft and stiff EOS of symmetric matter).

Figure 6.4 shows the contour plots for density in the 131Xe+197Au reaction at 50 MeV/A
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in the reaction plane at 0, 50, 100, and 150 fm/c times, obtained from the BUU simulation

with a stiff symmetry energy EOS. The rows represent the different impact parameters: 𝑏 =

1.3, 3.1, and 6.2 fm, respectively, from top to bottom. At t = 0 fm/c, the three systems (in

three rows) are distinguished by their impact parameters. Around 50 fm/c, the projectiles

and targets emerge completely, and it is clear that the particles have started leaving the

system at around 100 fm/c. The neck formation is visible for the case of 𝑏 = 6.2 fm.

Finally, around 150 fm/c, the formation of rings is present for 𝑏 = 1.3 fm and 𝑏 = 3.1 fm.

At this point, the system is separated and forms two fragments for 𝑏 = 6.2 fm.

Furthermore, we investigated the effect of switching to momentum-dependent behavior

in BUU for stiff and soft symmetry energy EOSs on the reaction during the collision. As

an example, we considered two systems: a heavy system, 131Xe+197Au, and a light system,
36Ar+45Sc, at 80 A MeV. The density contour plots of these reactions are shown in Fig.

6.5 and 6.6. As displayed in Figs. 6.5a, 6.5b, 6.6a, and 6.6b, at a time equal to 80 fm/c, the

difference between momentum-dependent (mo-dep.) and momentum-independent (mo-

indep.) EoSs becomes apparent.

Additionally, the effect of the momentum (in)dependent stiff and soft EOS on the

dynamics of the system is also notable. For example, in Fig. 6.5 and 6.6, at a time

equal to 80 fm/c, we can observe the difference between the density contour plots for the

momentum-independent and momentum-dependent EoSs. However, for the small system

(Fig. 6.6), this difference is not significant.

6.2 Two-proton correlation function

Two-particle correlation can be measured in heavy-ion collisions for the final state

emission. By utilizing the BUU transport simulation discussed in the previous section, one
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Figure 6.4 Density contour plots for the reaction 131Xe+197Au at 50 MeV in the reaction
plane, at selected times during the reaction. Results displayed in each row correspond to
a value impact parameter, 𝑏 = 1.3 fm, 3.1 fm, and 6.2 fm for the first, second, and third
low respectively. We considered the momentum-independent stiff equation of state in the
BUU simulation.

can compute the two-particle source function which is used together with the proton-proton

kernel to calculate the correlation function. In this section, we discuss the two-proton

correlation function for the source function obtained using the BUU model. Then we

compare these correlations with the ones obtained using the deblurring method, discussed

in Chapter 3. We explored the source function for two systems that undergo central

collision; one light, 36Ar +45 Sc and a heavy system, 131Xe +197 Au at 80 AMeV but we

calculated the 𝑝 − 𝑝 correlation function for light system (i.e., 36Ar +45 Sc reaction), since

for this system, we have access to experimental data of our interests (i.e., low energy

reactions). Furthermore, we test the sensitivity of the source function on the equation of

state, we consider soft and stiff both momentum-dependent and momentum-independent
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Figure 6.5 Density contour plots for the reaction 131Xe+197Au at 80 MeV in the reaction
plane, at selected times during the reaction. Panel (a) represent densities for a soft EOS,
where the first row shows the results for momentum-independent and the second row
for momentum-dependent soft EOS. Panel (b) is similar to panel (a) for the case of stiff
equation of state results. Results in the first and second rows correspond to densities for
the soft momentum independent and dependent EoS, respectively.
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Figure 6.6 The similar as Fig. 6.5 for 36Ar+45Sc reaction.
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cases. The p-p correlation we discussing here is theoretically defined according to the

Koonin-Pratt equation and can be written as,∫
𝑑3𝑟 [

∫
𝑑3𝑅 𝑓 (P/2,R + r/2, 𝑡′) 𝑓 (P/2, 𝑅 − 𝑟/2, 𝑡′)] |Ψ𝑝𝑝 (q, r) |2

|
∫
𝑑3𝑟 𝑓 (P/2, r, 𝑡′) |2

, (6.4)

where, ∫
𝑑3𝑅 𝑓 (P/2,R + r/2, 𝑡′) 𝑓 (P/2, 𝑅 − 𝑟/2, 𝑡′)

|
∫
𝑑3𝑟 𝑓 (P/2, r, 𝑡′) |2

= 𝑆(𝑟), (6.5)

is the source function calculated directly from the relative position (r) and total momenta

(P) of the particles at the time when the last particle is emitted [14] and references within.

Here, R = 0.5(r1 + r2) is the center of mass coordinate and |Ψ𝑝𝑝 (q, r) |2 p-p kernel at

relative momentum, q and r, Ψ𝑝𝑝 (q, r) is calculated as discussed in Refs. [27, 54, 102].

The phase-space distribution of particles with momentum P, position r = r1 − r2, and

at time 𝑡′ after both particles have been emitted is described by a Wigner distribution

𝑓 (P, r, 𝑡′) [14] and reference within. This Wigner distribution can be expressed as a

function of the single-particle emission function 𝑔(P, r, 𝑡) for the last emission points of

particle at time 𝑡. Therefore, the function 𝑓 (P, r, 𝑡′) is given by

𝑓 (P, r, 𝑡′) =
∫ 𝑡′

−∞
𝑑𝑡.𝑔(P, r − P(𝑡′ − 𝑡)/𝑚, 𝑡), (6.6)

where 𝑚 is the two-particle reduced mass. The dependence of position and time in Eq.

(6.5) shows that the source function describes the space-time evolution of the reaction

(i.e., see Fig. 6.4-6.3). The BUU transport model has predicted two types of emission:

pre-equilibrium emission and late emission [103]. At pre-equilibrium emission (i.e.,

emission after a few fm/c), particles are emitted with high velocity, and the resulting

source function is dominated by spatial properties. On the other hand, the particles
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emitted at a later time, also known as slow emission, originate from the sequential decay of

unstable nuclei produced during the multifragmentation reaction. Both the pre-equilibrium

and slow emissions contribute to the shape of the source function at different distances.

The pre-equilibrium emissions primarily affect the shape of the source function at short

distances, while the slow emissions contribute to the tail of the source function, which is

approximated as an exponential decay [14]. As observed in Fig. 6.7 and 6.8, the tails of the

source function presented in the figures do not decay rapidly with time. This suggests the

possible contribution from late emissions. Concerning the sensitivity of source function

on EoSs, in Fig. 6.7, we observe the difference between soft momentum-dependent and

momentum-independent EoS as well as between soft and stiff momentum-dependent EoSs.

But there is no difference observed between EoSs in. Fig. 6.8.
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Figure 6.7 The two-proton source function, obtained from BUU simulation for 131Xe+197Au
collision at 80 MeV/nucleon and b=3.1 fm, is shown as a function of relative position, r
for 200-400 MeV/c cut in total momentum. The top row displays stiff and soft cases: solid
line for momentum-dependent EoSs and dash-dotted line for no momentum-dependent
EoSs. The bottom row compares soft (dash-dotted line) and soft (solid line) cases, with
the left and the right panels showing the source functions for momentum-dependent and
no momentum-dependent EoSs, respectively.

We employ the source function obtained from a BUU simulation for a central 36Ar+45Sc

collision at 80 A MeV and impact parameter 𝑏 = 2 fm with a 𝑝 − 𝑝 Kernel in the Koonin-

Pratt equation to calculate the correlation functions depicted in Fig. 6.9. In this figure, the

triangles represent correlations measured in the central 36Ar +45 Sc reaction at 80 MeV/A,

with proton pairs’ total momenta restricted to the range of 200-400 MeV/c those data can

be found in Ref. [14] and the references within. The lines in the figure correspond to

correlations computed using sources from BUU simulations.
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Figure 6.8 Similar as Fig. 6.12 but for 36Xe+45Sc reaction at 80 MeV/nucleon with 𝑏 =1.9
fm.

In panel (a), the (dashed) solid lines correspond to the momentum (in)dependent stiff

EOS, while in panel (b), the (dashed) solid lines represent the momentum (in)dependent soft

EOS. Panel (c) presents the comparison between the momentum-dependent stiff (dashed

line) and soft (solid line) EoS, while panel (d) displays the comparison between the

momentum-independent stiff (dashed line) and soft (solid line) EoS. The shape of these

correlation functions reflects the interplay among several factors, including the short-range

nuclear interaction, the antisymmetrization effect, and the long-range Coulomb interaction

between the emitted protons. The attractive S-wave nuclear interaction plays a crucial

role in generating the observed prominent peak at a relative momentum of 𝑞 = 20 MeV/c.

This peak is incorporated in the correlation function, R(q), through the kernel, which is

computed from the radial proton-proton relative wave function. The kernel’s contribution
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Figure 6.9 The 𝑝− 𝑝 correlation functions obtained through BUU simulation for 36Ar+45Sc
collision at 𝐸/𝐴 = 80 MeV with b=1.9 fm impact parameter are displayed as a function
of relative momentum. The lines represent different equations of state (EoSs) in separate
panels, with mo-indep. and mo-dep standing for momentum independent and momentum
dependent, respectively (refer to the Legends). Experimental data, extracted from Ref. [14],
is indicated by triangles. However, the BUU simulation correlations differ from the data
in all panels.
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Figure 6.10 The 𝑝 − 𝑝 correlation function is plotted as a function of relative momentum
(𝑞). The triangles represent data from Ref. [14] for 36Ar+45Sc at 80 MeV/nucleon, with
a 200-400 MeV/c cut in the pair’s total momentum. Different lines show correlations
obtained using BUU simulation source functions, renormalized by a factor _ = 0.5. The
blue band represents the correlation function obtained using the RL source function.

is particularly significant at short relative distances, where the S-wave nuclear interaction

dominates. On the other hand, the minimum at 𝑞 = 0 MeV/c in R(q) arises from the long-

range repulsive Coulomb interaction. As depicted in Fig. 6.9, there is no notable distinction

between the equations of state (EoSs). However, it can be observed that the momentum-
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dependent EoS tends to yield slightly higher values at the peak for both the stiff and soft

EoS. Regarding the comparison between the soft and stiff EoS, it appears that the soft

EoS exhibits a slightly higher value than the stiff EoS at the peak position. Nevertheless,

due to the insignificant difference between the EoSs, solely manipulating different EoSs is

insufficient to reproduce the observed data accurately. The difference observed between

correlations simulated from BUU and the data in Fig. 6.9, is expected because BUU

describes early emissions but not late emissions and both emissions contribute to the data.

Therefore, we need to apply a factor, _, on BUU’s correlations to compensate for the

contribution of the late emissions.

In the existing literature, researchers have made attempts to correct the proton-proton

correlation function obtained from BUU simulations by multiplying it with a factor, _,

resulting in _𝑅(𝑞) (see Refs. [14, 103] or the two-parameter source model in Chapter

(2) for more details). We have followed a similar approach in this study, using _ = 0.5.

The resulting correlation functions for different equations of state are plotted alongside

the experimental data in Fig. 6.10. Additionally, in the same figure, we present the

results obtained from the deblurring method, which is discussed in detail in Refs. [50, 49],

represented by a blue band. Notably, the experimental data fall within the blue band, while

the corrected BUU correlation can only reproduce the data on the right side of the peak

(i.e., in the high 𝑞 region). The reason why the model fails to reproduce the data on the

left side of the peaks (i.e., in the low 𝑞 region) is that the correlation function in that region

is influenced by the contribution of late emissions. Therefore, an effective technique such

as expanding the correlation function into angular components is required to correct the

effect of late emissions in the correlations. In the next section, we will discuss the angular
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Figure 6.11 𝑝-𝑝 source function for 36Ar+45Sc at a beam energy of 80 MeV/nucleon and
an impact parameter of b=1.9 fm. The solid line, superposed with stars, and the blue bands
correspond to the source obtained using the RL algorithm. The different lines represent
source functions from the BUU simulation corrected by the factor _. These sources were
used to produce the correlation function displayed in Fig. 6.10.

component expansion of the source function, but utilizing this source will be considered

to be future work.

The source functions corresponding to the corrected correlations are illustrated in

Fig. 6.11. The solid line superposed with stars represents the source function obtained

using the deblurring method (RL algorithm), with the dark and light blue band denoting

the 𝜎 and 2𝜎 uncertainties associated with error re-sampling [50]. The different lines of

various colors correspond to sources obtained from BUU simulations for different equations

of state, as indicated in the legend of the figure.

114



6.3 Quadrupole moment of Source function

Expanding the source function into angular components is important because it helps

to examine the source function from different directions relative to the beam direction.

This source function can be expressed by summing over all angular components:

𝑆(𝑟) =
∑︁
𝑙=0

∑︁
𝑚

𝑆𝑙𝑚 (𝑟). (6.7)

Here, 𝑙 represents the orbital angular momentum and 𝑚 represents its projection (−𝑙 ≤

𝑚 ≤ 𝑙). In low-energy reactions, where the anisotropies are weak, only a few terms in

the expansion are sufficient. In the case of a pair of identical particles, even values of

𝑙 (𝑙 = 0, 2, 4, ...) are significant due to symmetrization in the emission of particles. The

moments of 𝑆(𝑟) can be obtained using the following expression:

𝑆𝑙𝑚 (𝑟) =
1

√
4𝜋

∫
𝑑Ω 𝑌 ∗

𝑙𝑚 (Ω)𝑆(r). (6.8)

If the function, 𝑆(𝑟) is expanded in Taylor expansion around 𝑟 = 0, the lowest order

terms of the Taylor expansion that contribute to the coefficients of 𝑆 will involve 𝑙-th order

derivatives and increase as 𝑟 𝑙 [104]. The projection 𝑙𝑚 in 𝑆 originates from the spherical

harmonic components 𝑌𝑙𝑚, meaning that 𝑆𝑙𝑚 is related to 𝑌𝑙𝑚 as 𝑆𝑙𝑚 ∝ 𝐴(𝑟)𝑌𝑙𝑚, where

𝐴(𝑟) represents the relative distance-dependent factor of the source function. The spherical

harmonic is a function of spherical coordinates Ω, where Ω = (\, 𝜙), and \ and 𝜙 represent

the polar and azimuth angles, respectively. We can express 𝑌𝑙𝑚 in terms of unnormalized

spherical harmonics denoted as 𝑌𝑚
𝑙

[105]:
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𝑌𝑙𝑚 = (−1)𝑚
[ (2𝑙 + 1) (𝑙 − 𝑚)!

4𝜋(𝑙 + 𝑚)!

]1/2
𝑌𝑚𝑙 (\, 𝜙). (6.9)

Here, 𝑌𝑚
𝑙
(\, 𝜙) = 𝑃𝑚

𝑙
(cos \)𝑒𝑖𝑚𝜙, where 𝑃𝑚

𝑙
represents the associated Legendre function.

For simplicity, we will consider the cases where 𝑚 = 0 and examine the cases for 𝑙 = 0

and 𝑙 = 2, also known as monopole and quadrupole, respectively. For 𝑙 = 0, we have

𝑌00 = 1, which corresponds to the 𝑆00 component of the source function, equivalent

to the angle-averaged source function. The angle-averaged source functions are illus-

trated in Fig. 6.8 and 6.7 for the 36Xe+45Sc and 131Xe+197Au reactions at 𝐸/𝐴 = 80

MeV, respectively. However, as shown in Fig. 6.8 for the 36Xe+45Sc reaction, this

component does not show a significant difference between equations of state (i.e., stiff

momentum-dependent and momentum-independent EOS, and soft momentum-dependent

and momentum-independent EOS). For the 131Xe+197Au reactions, we can see some dif-

ferences between the soft momentum-dependent and momentum-independent EOS in the

pair total momentum spanning 200 − 400 MeV/c. However, in the same total momentum

range, the stiff EOSs are indistinguishable. On the other hand, for high total momentum

spanning 600−800 MeV/c, we can see a difference between the stiff momentum-dependent

and momentum-independent EOS results, similarly for the soft momentum-dependent and

momentum-independent EOS results in the low relative distance regime.
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Figure 6.12 The 𝑝 − 𝑝 𝑆20 source function is plotted for a 0-400 MeV/c cut in the total
momentum of the pair using BUU simulation for 36Xe+45Sc at 80 MeV/nucleon and 𝑏 =1.9
fm. The top row displays stiff and soft cases, with the solid line representing momentum-
dependent EoSs and the dots representing no momentum-dependent EoSs. The bottom
row compares soft (dots) and stiff (solid line), with the left panel showing momentum-
dependent EoSs and the right panel showing no momentum-dependent EoSs.
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Figure 6.13 Similar to Fig. 6.12 but for131Xe+197Au reaction at 80 MeV/nucleon with
𝑏 =3.1 fm.

We extend the calculation to examine 𝑆20, which is related to the spherical harmonic

component 𝑌20 =

√︃
5

4𝜋
(
3(cos \)2 − 1

)
, where \ is the angle between the pair’s total mo-

mentum and the relative distance between the two particles. For the two aforementioned

reactions, we utilized BUU simulation to calculate 𝑆20 and analyzed the cuts in total mo-

mentum as well as other momentum directions relative to the beam direction (i.e., transverse

momentum (𝑃𝑇 ), momentum in the X-direction (𝑃𝑥), and momentum in the Y-direction

(𝑃𝑦), See appendix. B).

In this section, We discussed quadrupole components of the proton-proton relative

source function, 𝑆20 for different equations of state (EoSs). Fig. 6.12 displays quadrupole

(i.e., l=2 for m=0) moment of p-p source function for 36Xe+45Sc at a beam energy of 80

MeV/nucleon with total momentum of the pair spanning in 0-400 MeV/c. The top left
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panel represents stiff momentum-dependent (dots) and no momentum-dependent (solid

line) EoSs and the top right displays soft momentum-dependent (dots) and no momentum-

dependent(solid line) EoSs. In the bottom row, we compared stiff and soft EoSs, where the

left bottom shows stiff (solid line) and soft (dots) both momentum-dependent, while the

bottom right panel represents stiff (solid line) and soft (dots) both no momentum-dependent.

Fig. 6.13 is similar to 6.12 but for 131Xe+197Au reaction.

6.4 Summary and outlook

In this chapter, we discussed proton-proton the source function for different symmetric

matter equations of state using BUU transport model. We investigated both momentum-

dependent and non-momentum-dependent EoSs and found that, in the case of the 36Xe+45Sc

reaction, there was no significant difference in the angle-averaged source function between

the two EoSs. By utilizing this source function, we proceeded to calculate the p-p correla-

tion function and compared it with the correlation function obtained through the deblurring

method. Remarkably, the deblurring method accurately reproduced the measured corre-

lations, while the BUU correlations failed to do so at low relative momentum (𝑞 < 20

MeV/c). This is not surprising as deblurring doesn’t rely on assumptions about dynamics

and is obligated to reproduce the data, unlike BUU.

To gain further insights, we expanded the source functions into angular compo-

nents in both reactions. We specifically focused on the quadripole components, as the

angle-averaged source function is equivalent to the monopole component of the source.

Through this analysis, we discerned a clear distinction between momentum-dependent and

momentum-independent soft EoSs, as well as between momentum-dependent stiff and soft

EoSs.
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Moving forward, it would be intriguing to calculate the correlation function using

expanded source functions to investigate if the disparity between the BUU model’s corre-

lation and the data at low q values is linked to the higher-order angular components of the

source functions. This analysis should be applied to reaction systems with both higher and

intermediate masses, offering an intriguing understanding of the nuclear equation of states.
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CHAPTER 7

CONCLUSION AND OUTLOOK

7.1 Conclusion

In this thesis, we studied the correlations between particles in low-energy heavy-ion

collision to learn about nuclear systems at final state reactions. These correlations are an

important tool to study the space-time information of the system during a collision. We

developed frameworks that allowed us to access that information.

In Chapter 2, we discussed two-particle correlation in heavy-ion collisions at low

relative velocities and demonstrate that to have access to space-time information at the final

stages of reactions. one needs to construct the scattering wave function for a pair at low

relative velocities, by solving the Schrödinger equation with potential constructed to match

measured phase shifts for the system. Using the wavefunction we interpret available data

on 𝛼–𝛼 correlation in terms of emitting sources, to our knowledge for the first time in the

literature. Besides incoherent pair emission, the data contain the effect of 9Be resonances

decaying into the𝛼 pairs. Information on emission geometry can be enhanced by combining

pairs of particles, ultimately considering matrices of correlations and sources. As an

example involving 𝛼 particles, we consider the possibility of simultaneous measurements

OF 𝛼 – 𝛼, d – 𝛼, and d – d correlations.

In Chapter 3, we developed a novel deblurring method, that uses the inverse Richardson-

Lucy algorithm which was originally developed in optics for optical image restoration. We

demonstrated that the method can be used for two-particle source function imaging from

correlation function. The method only needs the kernel of the pair and measured correlation

as inputs. We applied the method on d–𝛼 correlation measured in low energy heavy ion
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collision and showed its success on imaging source function for a positively defined kernel

and correlations. Additionally, in Chapter 4, we utilized the deblurring method to restore

decay energy spectra for the 26O case. Our technique enables accessing information about

the shell structure of particle-unbound systems from the measured decay energy spectrum,

which is not readily attainable using traditional approaches such as chi-square fitting.

Furthermore, in Chapter 5 we were interested in machine learning techniques where

we developed a deep neural network (DNN) classifier as a machine learning model to

identify resonance states from the measured decay energy spectrum of 26O →24 O + n +

n, obtained through invariant mass spectroscopy. The findings from the deblurring and

DNN classifier indicated tree resonance peaks in the measured decay energy spectrum

of 26O. Finally, in Chapter 6, we utilized the BUU transport model to simulate the

proton-proton source function. We compared this source with the one obtained through

the deblurring technique for the p-p correlation function measured in 36Ar+45Sc at 80 A

MeV. Our objective was to examine the sensitivity of the source function to the nuclear

equation of state (EOS). However, we did not observe significant sensitivity of the angle-

averaged p-p source function to the EOS. Additionally, this source function failed to

reproduce the low relative momentum in the measured correlation. This discrepancy may be

attributed to the insufficient constraint on the calculation of the correlation function’s slow

emission contributions. On the other hand, the deblurring method effectively reproduces

the measured p-p correlation function. Furthermore, in search of the sensitivity of the

source function on EOS, we expand the source function into angular components where

we explored the sensitivity of quadrupole moment of the function and as shown in Figs.

6.12 and 6.13 we can observe the difference in EOSs but the corresponding correlations
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have to be yet determined.

7.2 Outlook

The present thesis has yielded novel insights that lay the foundation for future in-

vestigations. Our primary focus has been on angle-averaged two-particle correlations,

encompassing the angle-averaged source function and wave function. However, expanding

the source function to incorporate angular components and examining the system from var-

ious orientations could provide enhanced understanding of the deformed source function

and its impact on particle emission in the final state.

Thus far, we have successfully employed the deblurring method to address one-

dimensional problems, achieving satisfactory outcomes. Our forthcoming endeavors in-

volve extending this method to three-dimensional problems. For instance, we intend to

apply the method to a three-dimensional source function, enabling us to access the requisite

3D information and infer 3D correlation functions.

Furthermore, in relation to the BUU transport model simulation, we have investigated

the quadrupole moment of the p-p source function. The subsequent step entails calculating

the corresponding correlation function for this source. To this end, we will initially

determine the p-p quadrupole kernel and subsequently employ it in conjunction with the

quadrupole source to deduce the correlation. The total correlation function will then be

obtained as the summation of all correlation components, encompassing the monopole and

quadrupole.

Additionally, we possess a keen interest in expanding our proficiency in machine

learning to construct a Deep Neural Network (DNN) model for solving inverse problems.

We plan to test this model by utilizing it to compute two-particle correlations and comparing
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its results with those obtained from the deblurring method.
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APPENDIX A

DERIVATION OF SCATTERING PHASE SHIFT

A.1 Phase shift

In this section, the expression for the phase shift is derived. The calculated phase shift,

along with experimental data, is presented in Fig. 2.3 for the 𝑑 − 𝛼 system and in Fig. 2.2

for the 𝛼 − 𝛼 system.

Let’s start with the two-particle Schrödinger Equation (SE) defined as:

(𝐻 − 𝐸)Ψ(q, r) = 0 (A.1)

where the two-particle Hamiltonian 𝐻 is given by:

𝐻 = − ℏ2

2𝑚1
∇2

r1 −
ℏ2

2𝑚2
∇2

r2 +𝑉ef(r1 − r2) (A.2)

Here, the effective potential 𝑉ef(r1 − r2) depends only on the relative distance r = r1 − r2.

The potential 𝑉ef(r) includes the nuclear central potential, the long-range Coulomb inter-

action, and the centrifugal term ℏ2𝑙 (𝑙+1)
2`𝑟2 . The Hamiltonian in Eq. (A.2) can be transformed

and written as a separable expression:

𝐻 = − ℏ2

2𝑀
∇2

R − ℏ2

2`
∇2

r +𝑉ef(r) (A.3)

In Eq. (A.3), the first term on the right-hand side represents the Hamiltonian of the

center-of-mass motion and represents the motion of a free particle. In contrast, the second

and third terms represent the Hamiltonian of the relative motion of the two particles,

incorporating the interaction between them. We denote the reduced mass of the two-

particle system, ` =
𝑚1𝑚2
𝑚1+𝑚2

, and total mass, 𝑀 = 𝑚1 + 𝑚2. For our purpose, we consider
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the relative motion party of Hamiltonian and write a radial Schrd̈inger equation as the

following:
𝑑2

𝑑𝑟2 (𝑢) =
2`
ℏ2

(
𝑉 (𝑟) + ℏ2𝑙 (𝑙 + 1)

2`𝑟2 − 𝐸
)
𝑢, (A.4)

where 𝑢 is the radial wave function, 𝑉 (𝑟) = 𝑉𝑛 (𝑟) + 𝑉𝑐 (𝑟) is the potential, and 𝑉𝑛 and

𝑉𝑐 represent the nuclear and Coulomb potentials, respectively. In our case, the nuclear

potential is modeled by the Wood-Saxon potential of the form:

𝑉𝑛 (𝑟) ∝
1

1 + 𝑒
𝑟−𝑅0

𝑎

, (A.5)

where 𝑅0 is the potential range and 𝑎 is the diffuseness. The nuclear potential, 𝑉𝑛 may

contain one than one term, be real or complex (i.e., optical potential) depending on your

purpose.

The radial wave function inside the nuclear potential, 𝑅𝑖𝑛 = 𝑈/𝑟 is numerically cal-

culated through solving Eq. (A.4). Outside the potential, we get an asymptotic radial

wave function which goes as combines the regular (𝐹𝑙) and irregular (𝐺 𝑙) Coulomb wave

functions. Please refer to the references for more details [106, 107].

The asymptotic radial wave function can be expressed as:

𝑅𝑎𝑠 (𝑟)𝑟→∞ = 𝑒𝑖𝛿𝑙 (cos(𝛿𝑙)𝐹𝑙 ([, 𝑘𝑟) + sin(𝛿𝑙)𝐺 𝑙 ([, 𝑘𝑟)) ,

∝ 𝐹𝑙 ([, 𝑘𝑟) + tan(𝛿𝑙)𝐺 𝑙 ([, 𝑘𝑟). (A.6)

where [ = 𝑍1𝑍2𝛼
√︁

𝑚
2𝐸 is the Sommerfeld factor, where 𝑍1 and 𝑍2 are the charges of the

two scattering bodies and 𝛼 = 1/137 is the fine-structure constant.

The phase shift tan(𝛿𝑙) may directly obtained from the logarithmic derivative of the

inner solution 𝑅𝑖𝑛 at the matching point 𝑟 = 𝑟0, i.e., when 𝑉 (𝑟) → 0. From,

𝛽 =
𝑑

𝑑𝑟
(ln(𝑅𝑖𝑛 (𝑟))) |𝑟=𝑟0 , (A.7)
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and comparing with asymptotic solution, we get;

tan(𝛿𝑙) =
𝐹𝑙 − 𝛽𝐹′

𝑙

𝐺 𝑙 − 𝛽𝑙𝐺′
𝑙

. (A.8)

where 𝐹′
𝑙

and 𝐺′
𝑙
are derivetive of 𝐹𝑙 and 𝐺 𝑙 with respect to 𝑟 at 𝑟 = 𝑟0.

A.2 Resolution to correlation function

Experimental correlation functions are often affected by the energy resolution of the

detectors. In order for theoretical correlations to reproduce the features observed in the

measured correlation, we need to incorporate the resolution in the theoretical correlation.

This is achieved by folding the calculated correlation with a Gaussian function of an

appropriate width (𝜎𝑞).

The folded correlation can be expressed as in the equation below:

𝐶 (𝑞′) =
∫

𝐺 (q, q′)𝐶 (q)𝑑3q, (A.9)

where, 𝐺 (q, q′) is assumed to be the Gaussian function of momenta vectors q and q′,

𝐺 (q, q′) ∝ 𝑒
− (q−q′ )2

2𝜎2
𝑞 and𝐶 (𝑞) represents the original calculation of the correlation function.

𝐶 (𝑞′) ∝
∫
𝐶 (𝑞)𝑒

− (q−q′ )2

2𝜎2
𝑞 𝑑3𝑞, (A.10)

∝ 2𝜋
∫
𝐶 (𝑞)𝑒

− 𝑞2+𝑞′2−2𝑞𝑞′𝑐𝑜𝑠\
2𝜎2

𝑞 𝑞2𝑑𝑞𝑑 (𝑐𝑜𝑠\).

By integrating over 𝑐𝑜𝑠\ and performing some manipulations, we obtain a simplified

expression;

𝐶 (𝑞′) ∝
2𝜋𝜎2

𝑞

𝑞′

∫
𝑑𝑞𝑞𝐶 (𝑞)

[
𝑒
− (𝑞+𝑞′ )2

2𝜎2
𝑞 − 𝑒

− (𝑞−𝑞′ )2

2𝜎2
𝑞

]
. (A.11)

Thus, the correlation with the correction can be written as;

𝐶 (𝑞′) ∝
2𝜋𝜎2

𝑞

𝑞′

∫
𝑑𝑞𝑞𝐶 (𝑞)

[
𝑒
− (𝑞+𝑞′ )2

2𝜎2
𝑞 − 𝑒

− (𝑞−𝑞′ )2

2𝜎2
𝑞

]
. (A.12)
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The integral in Equation (A.12) is taken over the entire range of relative momentum to

include all resonance peaks.
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APPENDIX B

THERMODYNAMIC MODEL FOR PARTICLE EMISSION

The thermodynamic model, such as the fireball thermal model, allows us to study various

properties of particle emissions in nuclear reactions. This model is employed to compute the

density distribution of particles emitted in heavy-ion collisions. Subsequently, the density

can be utilized to study the correlation between particles in the final state emissions. In

Chapter 2, we used the density distribution of alpha particles produced from the decay of

the 9Be nucleus to calculate correlations between them. To determine the particle density

distribution, one first needs to determine the thermodynamic parameters that characterize

our system, such as temperature, proton and neutron chemical potentials, and then use

these parameters in Eq. (B.1).

Let us consider a non-interacting gas. In momentum space, the density distribution of

particles of type 𝑖 is defined as [46];

𝑑𝑁𝑖

𝑑3𝑃𝑖
=

(2𝑆𝑖 + 1)𝑉
(2𝜋ℏ)3

1

exp
(
𝛽

[
𝑃2

2𝑚 − 𝐵.𝐸
]
− 𝛽`𝑖

)
± 1

≈ (2𝑆𝑖 + 1)𝑉
(2𝜋ℏ)3 exp

(
−𝛽

[
𝑃2

2𝑚𝑖
− 𝐵.𝐸

]
+ 𝛽`𝑖

)
. (B.1)

The total average number of particles of species 𝑖 is obtained by integrating the equation

above (Eq. B.1) over momentum space:

< 𝑛𝑖 >=
𝑉 (2𝑠𝑖 + 1)

ℏ3

(
𝑚𝑖𝑇

2𝜋

)3/2
𝑒

(`𝑖−𝐵.𝐸 )
𝑇 , (B.2)

where `𝑖 = `𝑛𝑁𝑖 + `𝑧𝑍𝑖. Here, `𝑛 and `𝑧 are the neutron and proton chemical potentials,

respectively. 𝑇 is the temperature,𝑉 is the volume of the system, 𝐵.𝐸 is the binding energy,

and 𝑠𝑖 is the spin statistics of particle 𝑖.
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In Equation B.2, we fix temperature and solve for are `𝑛 and `𝑧. To find them, we need

to solve the following system of equations:
𝑍𝑡𝑜𝑡 =

∑
𝑍𝑖 < 𝑛𝑖 >,

𝑁𝑡𝑜𝑡 =
∑
𝑁𝑖 < 𝑛𝑖 > .

Here, 𝑁𝑖 and 𝑍𝑖 are the number of neutrons and protons of species 𝑖, and 𝑁tot and 𝑍tot

are the total number of neutrons and protons, respectively, in the original system. The

proton and neutron chemical potentials were calculated for a system of volume 𝑉 = 𝐴/𝜌

and 𝜌 = 𝑐𝜌0, for a fixed temperature (T). To verify our calculations, we calculated the

ratio of alpha to proton and compared it with the results published in reference [108]. The

comparison is shown in Fig. (B.1), which demonstrates good agreement.
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Figure B.1 Ratio of Alpha to proton numbers versus system volume: The dashed line
represents our calculation (we used parameters 𝑇 = 50 MeV, 𝜌0 = 0.15, 𝑍tot = 30, and
𝑁tot = 30 from Refs. [108]). The blue points display the calculation from Ref. [108].

142



APPENDIX C

QUADRUPOLE COMPONENTS OF SOURCE FUNCTION FROM BUU
SIMULATION

Here, we represent the quadrupole components of p-p source functions when a cut is applied

in different directions of momenta. Fig. C.1 illustrates the p-p quadrupole component of

the source for the BUU simulation of 131Xe+197Au reaction at E/A=80 MeV. The first

row represents the soft nuclear equation of state (EOS), while the second row represents

the stiff EOS. In both rows, the solid line represents the momentum-independent EOS,

and the dots represent the momentum-dependent EOS. The columns represent cuts in

momentum, from left to right: the cut in total momentum, 𝑃, 200-400 MeV/c; the cut

in transverse momentum, 𝑃𝑇 =

√︃
𝑃2
𝑥 + 𝑃2

𝑦, 0-400 MeV/c; the cut in the x-component of

the momentum, 𝑃𝑥 = 𝑃𝑇 cos(𝜙), 0-400 MeV/c; and the cut in the y-component of the

momentum, 𝑃𝑦 = 𝑃𝑇 sin(𝜙), 0-400 MeV/c, where 𝜙 is azumithal angle. Notably, there is

a significant difference between the soft and momentum-dependent soft EOSs, especially

in the case of the PT cut.

The similar description is applied to Fig. C.2 for 36Ar+45Sc reaction at a beam energy

of 80 MeV.
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Figure C.1 Two-proton source function as a function of relative position obtained using
the BUU simulation code for 131Xe+197Au at a beam energy of 80 MeV/nucleon and an
impact parameter of b=3.1 fm. The solid and dashed-dot curves correspond to the stiff and
soft momentum-independent EoS, respectively. The dashed and solid curves superposed
with stars represent the soft and stiff momentum-dependent EoS, respectively.
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Figure C.2 Two-proton 𝑆20 component of the source function as a function of relative
position obtained using the BUU simulation code for 36Ar+45Sc at a beam energy of 80
MeV/nucleon and an impact parameter of b=3.1 fm. The solid and dashed-dot curves
correspond to the stiff and soft momentum-independent EoS, respectively. The dashed and
solid curves superposed with stars represent the soft and stiff momentum-dependent EoS,
respectively.
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