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ABSTRACT

This dissertation investigates the principles of collective behavior in complex networks,

focusing on how modular architectures and non-reciprocal interactions shape system dynamics

and adaptive responses. The research integrates two complementary approaches: a data-driven

analysis of biological networks (Track I) and a theoretical exploration of a non-reciprocal

Hopfield model (Track II).

Track I employs Differential Network (DN) analysis to examine longitudinal RNA-

sequencing data from two biological systems: human saliva following PPSV23 vaccination

and primary B-cells subjected to Rituximab treatment. This methodology uncovers stimulus-

specific modular reorganization within these networks. Key findings include the identification

of temporally ordered activation patterns among gene communities: in saliva, fifteen gene

communities show a well-ordered activation cascade; in B cells, fourteen communities cluster

into three temporal response classes. Functional enrichment confirms that each module spe-

cializes in coherent pathways, while hub-gene analysis highlights IL4R (saliva) and PELI1 (B

cells) as putative drivers of the observed immune and drug responses. These results suggest

that inter-module couplings are pivotal in orchestrating complex biological processes.

Track II develops a theoretical framework using a non-reciprocal Hopfield network,

featuring two interacting subnetworks (termed similarity and differential), to elucidate the

dynamic mechanisms that could drive such modular behaviors. This investigation utilizes a

combination of mean-field theory, stochastic Langevin equations, Master Equation formalism,

and large-scale Glauber Monte Carlo simulations. The model exhibits a rich phase diagram

with distinct paramagnetic, memory retrieval, and limit-cycle dynamical regimes. These

phases are separated by Hopf and fold bifurcation lines. Critical dynamics near these lines



are characterized by scaling exponents ζ “ 1
2 (Hopf) and ζ “ 1

3 (fold), distinct response-time

laws (|F |´2{3 vs. |F |´1{2), and a limit-cycle coherence time T „N that quantifies finite-size

effects. These analytical predictions are numerically validated.

By bridging empirical observations of adaptive modular responses in biological systems

with a mechanistic understanding derived from a tractable theoretical model, this dissertation

offers significant insights into how interactions both within and between network modules

collectively govern global network behavior and facilitate functional adaptation in complex

systems.
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PREFACE

This dissertation presents an interdisciplinary approach combining computational physics,

network theory, and biological data analysis to advance our understanding of complex

biological systems. The content is based in part on one peer-reviewed publication and one

preprint that has been submitted for review. The relationship between chapters and published

works is as follows:

Chapters 2–3: Adapted from:

Xue S, Rogers LRK, Zheng M, He J, Piermarocchi C, Mias GI. (2022). Applying differen-

tial network analysis to longitudinal gene expression in response to perturbations.

Frontiers in Genetics, 13, 1026487. https://doi.org/10.3389/fgene.2022.1026487.

Code available at: https://github.com/gmiaslab/DifferentialNetworks

Chapters 4–7: Adapted from:

Xue, S., Maghrebi, M., Mias, G. I., & Piermarocchi, C. (2025). Critical Dynamics

of Non-Reciprocal Hopfield Networks. arXiv preprint arXiv:2501.00983. https:

//arxiv.org/abs/2501.00983. (under review). Code available at: https://github.com/

shuyue13/non-reciprocal-Hopfield [1]

In addition, I contributed to related research that informed the work presented in Chap-

ter 3:

Mias, G.I., Singh, V.V., Rogers, L.R.K., Xue, S., Zheng, M., Domanskyi, S., Kanada, M.,

Piermarocchi, C., & He, J. (2021). Longitudinal saliva omics responses to immune

perturbation: a case study. Scientific Reports, 11, 2046. https://doi.org/10.1038/

s41598-020-80605-6

All computational methods, data analysis pipelines, and simulation codes have been made
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available to support reproducible research. All code in the repositories listed above was

authored by Shuyue Xue. For code related inquiries, please contact xueshuy1@msu.edu or

shuyue.xue413@gmail.com.
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Chapter 1. Introduction

1.1 Motivations

1.1.1 Adaptive Responses in Complex Systems

Complex systems, particularly biological organisms, face the fundamental challenge of

navigating and responding effectively to dynamic and often unpredictable environments.

Successful adaptation in such contexts necessitates more than mere reactivity; it demands the

capacity for adaptive responses. This aligns with cybernetic principles, such as Ashby’s

Law of Requisite Variety, which posits that a system’s internal repertoire of responses must

be at least as diverse as the environmental challenges it encounters to maintain stability and

function [2].

Living organisms offer tangible illustrations: a cell, for instance, typically maintains

homeostasis by correcting minor perturbations, yet it can also undergo profound state changes

when presented with specific developmental or environmental signals. This dual capability

(i.e., robustness in the face of noise and transformative flexibility in response to specific

cues) exemplifies the essential balance underlying adaptive responses, often orchestrated

by sophisticated networks of interactions that dynamically adjust to different challenges.

Without mechanisms to produce condition-specific actions, a system would either remain

rigidly unresponsive to external stresses or become erratically unstable, failing to preserve

critical functions. The imperative, therefore, is clear: adaptivity and specificity in responses

are fundamental requirements for complex systems, from engineered networks to living cells.
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1.1.2 Networks and Modularity as an Organising Principle

Whether the basic units are genes, proteins, or neurons, the organisational backbone

of these complex adaptive systems is typically a network of interacting components. A

central tenet in the study of such systems is that a network’s architecture, its structure,

shapes its dynamics and functional capabilities. One architectural principle observed across

diverse complex systems — from biological networks and engineered systems like AI neural

networks [3] to social and technological infrastructures — is modularity. In a broad sense,

modularity refers to a pattern of organization where elements are grouped into subsets that are

relatively autonomous yet interacting; these connections can be physical (e.g., protein-protein

interactions), dynamical (e.g., in gene regulatory networks), or statistical (e.g., correlations

among phenotypic traits leading to variational modules) [4]. The concept of modularity is

contextually defined. For example, a biological network may involve variational, functional,

or developmental modules. The specific type depends on the system and the processes being

considered [4]. This organization echoes Herbert Simon’s insights on nearly-decomposable

systems, which, due to the semi-independence of their modules, can adapt more rapidly and

efficiently to changing environments [5].

Modularity is widely believed to confer significant functional advantages. It facilitates

functional specialization, so different parts of the network can perform particular tasks. It

enhances robustness, as perturbations within one module are less likely to catastrophically

affect the entire system because their impact tends to be localized. And it promotes

evolvability— the capacity to generate adaptive phenotypic variation — by allowing modules

to be refined, recombined, or repurposed with reduced interference to other functions [6, 7, 8, 3].
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Crucially for this dissertation, modularity provides a organizational basis for differential

collective behaviors, where different subunits (modules) of the network exhibit unique

responses yet together they form a coordinated outcome contributing to an overarching

system-wide dynamic.

1.1.3 Differential Modular Responses in Biological Networks

In biological systems, particularly at the molecular level of gene regulatory networks,

observing and understanding these differential modular responses is paramount for deciphering

cellular logic and disease mechanisms. Gene networks must orchestrate precise reactions to

a vast array of signals. Deciphering how these intricate networks achieve such specificity

from high-throughput omics data presents a significant challenge in systems biology [9]. This

dissertation first addresses this challenge through the application of Differential Network

(DN) Analysis (see Chapters 2 and 3). Unlike traditional differential gene expression analysis,

which focuses on individual genes changing in isolation, DN analysis shifts the focus to the

level of interactions, seeking to identify stimulus-specific alterations in connectivity [10, 11].

Importantly, this approach allows for the identification of functional modules or communities

that exhibit differential activity patterns in response to particular perturbations, such

as specific activation, repression, or distinct temporal profiles. As detailed in Chapters 2

and 3, this methodology reveals how biological systems, when faced with stimuli, mobilize

distinct, interacting sets of genes that form functional communities. These communities,

jointly, manifest patterns of sequential activation, thereby empirically substantiating the

strategy of using a modular architecture to generate differentiated responses.
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1.1.4 From Observation to Mechanism

The data-driven approaches such as DN analysis are powerful for documenting what

changes within a network and revealing that these systems deploy differential modular

responses. Nevertheless, they often leave open the question of how and why those changes

arise from the underlying system dynamics. There remains a critical gap in mechanistic

understanding: we may observe that certain modules respond differentially, but we do not

fully understand the governing principles or dynamic mechanisms that drive those modular

responses or enable their selective activation. For instance, how do distinct functional modules

(communities of genes) coordinate their activities or influence one another to produce an

observed systemic response to stress? What interacting dynamics rules govern the flow of the

localized responses from one module to another, eventually cascading an effect across the

entire network? These questions, which probe the causal link between modular organization,

inter-module interactions, and the emergence of specific macroscopic adaptive responses,

cannot be answered by observational network analysis alone. They necessitate integrative

approaches that connect data-driven findings with theoretical models capable of exploring

the factors that determine network behavior and enable such differentiated responses [12]. To

understand these factors, it is insightful to study models with internal organization. These

models either inherently possess or can develop functionally distinct component groups. This

feature allows them to jointly distinguish macroscopic states or selectively process inputs. In

doing so, they move beyond classical models that often assume homogeneity.

4



1.1.5 A Non-Reciprocal Hopfield Network for Modular Dynamics

To this end, the second part of this dissertation (see Chapters 4 through 7) investigates

a non-reciprocal Hopfield network as a theoretical paradigm for studying differential

dynamics and state distinction [13, 14]. Hopfield networks are canonical models of associative

memory, inherently designed to perform differential tasks by distinguishing between, and

retrieving, stored patterns [15, 16, 17]. The focus on a non-reciprocal (asymmetric) variant is

instrumental because asymmetric interactions, where the influence of component A

on B is not equal to the influence of B on A, are highly prevalent and functionally

significant in real-world biological systems, such as group dynamics in active matter

[18, 19], gene regulatory circuits and neural networks [20, 21], often dictating the flow of

information and control.

Non-reciprocity can drive systems out of equilibrium and lead to a rich repertoire of

dynamical behaviors. For instance, the limit cycles and sustained oscillations explored in

this work are not typically found in their symmetric counterparts[22, 23, 24]. Within our

proposed model, internal differentiation is explicitly defined through similarity (S) and

differential (D) subnetworks, which are based on the structure of the encoded memory

patterns. These subnetworks, and their distinct contributions to the system’s dynamics,

are fundamental to the model’s ability to retrieve specific memories or settle into different

dynamical attractors. Our theoretical investigation explores how parameters such as noise,

interaction strengths, external drives, and the degree of non-reciprocity govern the model’s

capacity for these diverse and distinct dynamical behaviors [13]. These parameters shape the

model’s dynamical evolution and possible transitions between distinct states.
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While our Hopfield model is fully connected and does not possess an explicit, pre-defined

modular hierarchy in the same vein as some biological networks, understanding how even such

fundamental internal differentiations (S/D subnetworks) impact dynamics provides a crucial

theoretical baseline. Moreover, these insights are foundational for understanding systems

with more explicit modular architectures, as studies have demonstrated that the dynamics

of Hopfield-like attractor networks are indeed significantly influenced when implemented on

modular graphs, akin to those observed in biological systems ([17], Ch 6.1).

1.1.6 Dissertation Overview and Integrative Perspective

Therefore, this dissertation explores modular interactions in complex systems from two

complementary perspectives, biological and theoretical. Track I employs a data-driven graph

analysis to RNA-seq data from PPSV23 vaccination and Rituximab treatment. It detects

functional modules and traces their sequential activation, suggesting that inter-module

couplings drive the biological response. Track II explores these couplings in a controlled

setting: a non-reciprocal Hopfield network with two predefined subsystems is examined

under varied parameter settings. The comparison links empirical observations to mechanism,

showing how intra- and inter-module interactions tune global network behavior.

1.2 Dissertation Outline

The dissertation is organized along two research tracks that can each stand alone in terms

of methodology, results, and interpretation. Each track — Differential Networks (Chapters 2–3)

and Hopfield spin models (Chapters 4–7) — can be read independently.

Chapter 2, Foundations of Differential Network Analysis, first lays out the funda-

mentals of network science, including graph representations, centrality measures, and the
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concept of community structure. This chapter then briefly surveys community detection

algorithms. Particular focus is given to the Louvain heuristic — its efficiency and scalability

were notable at the time of the research project done in this dissertation, although contem-

porary algorithms like Leiden are now often preferred. The chapter proceeds to define the

differential network (DN) formalism and explain its algebraic construction by contrasting

condition-specific graphs. Finally, this chapter demonstrates how topological descriptors,

such as degree centrality and community structure, can be reapplied to these DNs to reveal

stimulus-specific rewiring patterns.

Chapter 3, Application of Differential Network Analysis to Salivary and B-Cell

Transcriptomic Data, deploys the DN pipeline on two longitudinal RNA-seq datasets: (i)

human saliva sampled hourly for 24 h before and after PPSV23 vaccination, and (ii) primary

B cells tracked for 15 h with and without Rituximab. The analysis reveals temporally ordered

gene communities, pathway activations consistent with vaccine and drug mechanisms, and

hub genes (e.g. IL4R, PELI ) linked to immune modulation.

Chapter 4, Mean-Field Theory of a Non-Reciprocal Hopfield Network, proposes

a Hopfield spin model with asymmetric couplings that generate cyclic retrieval. Mean-field

analysis reveals three dynamical regimes — paramagnetic, memory-retrieval, and limit-cycle —

delimited by Hopf and fold bifurcations. It also provides criteria for fixed-point stability and

for the amplitude of the emergent cycle.

Chapter 5, Critical Cyclic Behaviour, exploits center-manifold analysis and stochastic

Langevin equations to obtain scaling exponents for autocorrelation and response functions on

the Hopf and fold critical lines. Finite-size effects (exponent ζ “ 1{2 on Hopf; ζ “ 1{3 on fold)

are derived analytically as well. Furthermore, the chapter investigates the system’s response to
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external drives, revealing distinct behaviors at each critical line: enhanced resonant sensitivity

and slower response scaling (|F |´2{3) on the Hopf line, versus controlled state-switching with

faster response (|F |´1{2) on the fold line.

Chapter 6, Master Equation and Spectral Analysis, recasts the model in an operator

(Liouvillian) framework. Exact diagonalisation yields system-size–dependent relaxation

spectra and closed-form two-time correlation functions, thereby linking microscopic spin-flip

kinetics to macroscopic observables. The analysis of the Liouvillian spectrum provides insights

into the system’s relaxation dynamics across different phases and near critical boundaries,

complementing the mean-field predictions of critical slowing down at bifurcations like the

Hopf.

Chapter 7, Monte-Carlo Validation with Glauber Dynamics, reports large-scale

simulations that confirm the analyticling laws, map the damping of limit-cycle coherence at

finite N, and quantify noise-induced phase-slip statistics. These numerical validations are

crucial for establishing the model’s relevance to understanding noise and finite-size effects in

systems exhibiting complex oscillatory dynamics, such as those found in biology.

Chapter 8, Conclusions, summarizes the dissertations’ contributions, discusses their

implications for systems biology and theoretical neuroscience, and outlines future research

directions, including the prospect of a unifying framework linking differential networks and

non-reciprocal Hopfield dynamics.
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Chapter 2. Foundations of Differential

Network Analysis

2.1 Introduction to Network Science in Biological Systems

Born from foundational questions in graph theory, the study of networks has evolved

into a formal and dynamic field for understanding complexity in modern science. The oldest

conceptual root can be traced to Euler’s 1736 solution to the Königsberg bridge problem, which

often considered the first result in graph theory and thereby laid the ground for representing

pairwise relations. While originated from graph theory, the modern network science was

crystallized in the late 1990s and early 2000s [25]. In its formative stage, statistical physics

pioneered the field and shaped the landscape of network theory [26, 27, 28, 29, 30, 31, 32].

The major progress during this period centers on universal structural properties in complex

networks, such as small-world topology [33], scale-free degree distributions [34], modular

organization [32], heavy-tailed clustering distributions, and assortative or disassortative

mixing patterns [35, 36], etc.

As the field matured, the focus expanded to how topological structures influence dynamic

processes unfolding on networks. This structural-dynamic coupling [37, 38] has illuminated

phenomena such as percolation transitions, critical behavior in the Ising model, diffusion and

synchronization dynamics, epidemic spreading, and control theory in complex systems [39, 40].

In parallel, the principle of maximum entropy, formulated by Boltzmann and Gibbs, provided

a rigorous statistical framework for inferring probabilistic ensembles of networks, contributing

to both null models and generative models grounded in thermodynamic reasoning [41, 42].

More recently, the proliferation of massive data in biology, social science, and information
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technology has drawn researchers from a wide range of disciplines. This convergence has

transformed network theory into a multidisciplinary field with sustained contributions from

physics, biology, computer science, engineering, and the social sciences [25]. Today, network

science offers a flexible formalism for modeling complex systems, where entities are abstracted

as nodes (vertices) and their relationships as edges (links) [43]. This abstraction supports

a wide range of mathematical and computational tools for probing structural organization,

relational architecture, and collective behavior in systems composed of many interacting

elements.

In biological systems, network representations manifest across multiple scales of organiza-

tion [16]. At the molecular level, intricate webs of interactions govern cellular function: genes

exert regulatory control over one another through complex transcriptional regulatory circuits

[44]; proteins assemble into functional complexes to execute molecular processes such as signal

transduction and enzymatic catalysis; and metabolites participate in elaborate biochemical

pathways [17, 45]. Ascending to cellular and tissue levels, signaling cascades orchestrate

the propagation of information, whereas intercellular communication networks coordinate

collective responses to environmental cues or developmental signals [46]. Abstracting these

multifaceted interactions into network structures enables the application of a unified analytical

toolkit across remarkably diverse biological contexts. This fosters a deeper insights into

systemic behaviors underlying biological complexity [43].

Once a complex system is framed as a network, one can examine its structural and

dynamical details through the lens of mathematical and topological properties established in

the graph theory. For example, centrality, clustering, modularity, connectivity, and network

flow - topological measures widely used in network quantification - are commonly applied
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to the constructed network representation to identify critical element, detect organizational

structure, characterize robustness, or map interaction pathways in the underlying system.

In biological systems, these quantities have revealed key regulatory hubs by centrality

analysis, disease-associated modules through clustering and modularity detection, structural

vulnerabilities from connectivity assessments, and transcriptional or metabolic routing via

flow-based analyses [43, 17, 47, 44].

With the advent and widespread accessibility of high-throughput technologies, enormous

sophisticated network-based computational methods have been developed in the past few

decades, to extract and predict biological functions from large-scale omics data. These newer

approaches extend beyond classical topological descriptors and are often tailored to probe

specific biological aspects. Among this diverse landscape of modeling strategies, where each

tuned to answer different biological questions, one major topic focuses on detecting alterations

in network connectivity driven by external perturbations. Particularly valuable in this context

is Differential Network (DN) analysis.

Rather than relying on a single static network, DN constructs a new network by contrasting

two state-specific networks, typically a control versus perturbed condition. Specifically, by

comparing the networks, it aims to filter out baseline or constitutive interactions and isolate

interaction changes specifically induced by the stimulus. Thereby, the resultant network can

highlight the system’s adaptive response, e.g., signaling or regulatory pathways triggered by

drug treatments or environmental stressors. This derived network can be further characterized

using conventional graph-theoretic measures [11, 10, 48].

The DN analysis has gained wide adoption within systems biology and genomics research

over the past decade [49, 50, 51]. Compared to earlier approaches such as differential expression
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analysis identify individual genes with altered abundance, i.e., differentially expressed genes,

the DN shifts focus toward quantifying changes in the relationships between those genes

[49, 52]. This transition enabled the discovery of condition-specific regulatory switches,

compensatory signaling, and module restructuring that are often inaccessible via single-gene

analyses [52, 53].

When applied to time-resolved data, DN analysis acquires an additional temporal dimen-

sion, allowing one to track dynamic reorganization of networks as biological systems respond

and adapt over time [54]. This temporal extension is essential for identifying coordinated gene

modules exhibiting synchronized activation, and for inferring sequential logic of molecular

events following perturbations [11]. Familiarity with these concepts and their application

equips one with an understanding of how the DN framework can be leveraged to investigate

system-wide dynamics, as further explored in the subsequent chapters.

2.2 Fundamentals of Network Theory

2.2.1 Basics Definitions and Representations

A network (or graph) G “ pV,Eq consists of a set of nodes V and a set of edges E

connecting pairs of nodes. Networks can be directed or undirected, weighted or unweighted.

Directed networks possess edges with assigned directions, often used to represent regulatory

or signaling pathways. Weighted networks attribute a numerical value (weight) to each edge,

capturing interaction strength or correlation magnitude.

Networks are commonly represented using adjacency matrices. For a graph with n nodes,

the adjacency matrix A P Rnˆn is defined such that each entry Aij reflects the presence and,

if applicable, the weight of the edge from node i to node j. For an unweighted, undirected

12



graph:

Aij “

$

’

’

’

&

’

’

’

%

1 if there is an edge between node i and j

0 otherwise

(2.1)

For undirected networks, A is symmetric (Aij “ Aji), while for directed networks, asymmetry

is allowed (Aij represents an edge from i to j).

In weighted networks, the adjacency matrix entry Aij “ wij directly quantifies the

strength, intensity, or confidence of the interaction between nodes i and j, regardless of

whether a thresholded existence condition is applied. In such cases, wij P R and may assume

values based on the domain-specific interpretation of connection weights. For instance, in

social or communication networks, wij could represent message frequency or mutual affinity;

in biological networks, it often reflects measures like gene co-expression, mutual information,

or interaction likelihood [55, 56].

Weights can encode various types of pairwise relationships, depending on the modeling

context:

• Similarity: Such as Pearson correlation between gene expression profiles.

• Influence or Flow: For example, regulatory impact scores in directed biological

networks.

• Statistical Dependence: Including mutual information or partial correlation.

A specific and biologically meaningful subclass of weighted networks is the gene co-

expression network. In such networks, each node represents a gene, and the edge weight

encodes the correlation between expression profiles of gene pairs across a population of

samples. The entries of the adjacency matrix for a correlation-based network are thus given
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by:

Aij “ ρij , (2.2)

where ρij P r´1, 1s is the Pearson or Spearman correlation coefficient between the expression

levels of gene i and gene j [57]. In practice, a threshold is often applied to |ρij | to exclude

weak or spurious associations, resulting in a sparse weighted network.

Gene co-expression networks provide a functional mapping of the transcriptional landscape.

Rather than encoding physical binding or direct regulation, these networks capture statistical

dependencies that often reflect shared pathways, co-regulation, or coordinated cellular roles.

This abstraction enables the identification of gene modules, inference of regulatory programs,

and characterization of system-wide perturbation responses.

2.2.2 Network Centrality: Identifying Important Nodes

Network centrality quantifies the relative importance or influence of a node within

a network’s topology. Among the most commonly used centrality measures is degree

centrality, defined for a node v as

CDpvq “ degpvq “
ÿ

j

Avj , (2.3)

which simply counts the number of edges incident to v. In biological networks, high-degree

nodes often represent regulatory hubs or multifunctional proteins.

Betweenness centrality captures the extent to which a node lies on the shortest paths
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connecting other pairs of nodes in the network. Formally:

CBpvq “
ÿ

s‰v‰t

σstpvq

σst
, (2.4)

where σst denotes the number of shortest paths between nodes s and t, and σstpvq counts

how many of those paths pass through node v. A high betweenness centrality indicates that

a node plays a crucial role as an intermediary or bottleneck for information flow.

While there are other centrality metrics, such as closeness centrality, which measures the

average distance from a node to all others, or eigenvector centrality, which reflects influence

through connectedness, in this work we focus primarily on degree-based hub detection, as it

proves particularly informative for identifying hub genes in response to biological stimuli.

2.2.3 Community Structure

In network science, a community (or module) refers to a subset of nodes that are more

densely connected to each other than to the rest of the network. The presence of communities

is a topological property commonly observed in complex networks [58, 59, 32, 60]. These

clusters suggest a degree of internal cohesion or functional affinity among their members,

reflecting underlying organization and function of complex systems. In biological systems,

nodes in the same community typically share functional relationships [46, 61, 62, 63, 64].

While the qualitative notion of communities is intuitive, in practice, uncovering these

mesoscopic structures within complex networks requires formalization. This necessitates both

quantitative metrics to assess the strength of community structure and the development of

algorithms to partition networks based on various principles.
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2.2.4 Community Detection Algorithms

Several algorithms have been developed for community detection, each with distinct

advantages:

• Hierarchical Clustering: This approach builds nested communities by either progres-

sively merging smaller communities (agglomerative) or dividing larger ones (divisive).

The method developed by Girvan and Newman [58] iteratively removes edges with high

betweenness centrality to reveal natural community divisions.

• Spectral Methods: These techniques use the eigenvectors of matrices derived from

the network (such as the Laplacian matrix) to partition nodes into communities. The

eigenvectors provide a continuous relaxation of the discrete clustering problem.

• Statistical Inference: These approaches frame community detection as a statistical

inference problem, seeking the most likely partition given a generative model for the

network, such as the stochastic block model.

The identification of community structure represents a fundamental task in network

analysis [45, 32] - partition the network into clusters that maximize internal connectivity

while minimizing external connections. The challenge lies in the fact that there is no single,

universally accepted definition of a community, leading to the development of a diverse

array of detection algorithms rooted in different principles and heuristics [32]. Several major

approaches have emerged:

• Hierarchical Clustering: These methods construct a hierarchy of partitions, often

represented as a dendrogram. Agglomerative approaches start with individual nodes

as communities and iteratively merge the most similar pairs or groups, while divisive
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approaches start with the entire network and recursively split it [65]. Similarity or

distance metrics guide the mergingsplitting process.

• Spectral Methods: Leveraging the spectral properties of graph matrices, these

algorithms utilize the eigenvectors and eigenvalues of matrices such as the graph

Laplacian or the adjacency matrix to partition nodes into distinct groups [66]. Often,

the eigenvectors provide a low-dimensional embedding of the nodes where clusters

become more apparent, relating the problem to finding informative ’cuts’ in the network.

• Statistical Inference: This category frames community detection as an inference

problem, seeking the partition that best fits a generative model of network formation.

The most prominent example is the Stochastic Block Model (SBM), which assumes

nodes belong to hidden blocks (communities) and the probability of an edge depends

only on the block memberships of the involved nodes [67, 68]. Algorithms then aim to

find the most likely assignment of nodes to blocks given the observed network structure,

often via maximum likelihood or Bayesian methods [42].

• Optimization of Quality Function: Another major class of algorithms starts by

defining a scalar quality function that measures how good a given partition is, and then

searching the space of possible partitions for one that optimizes this function. The most

widely adopted quality function is modularity, typically denoted as Q [45]. Modularity

quantifies the fraction of edges within communities compared to the expected fraction

if edges were placed randomly, preserving node degrees [66]. Positive and large values

of Q are indicative of strong community structure. The modularity Q is discussed in

Section 2.2.4.1.

Each of these fundamental principles — hierarchical clustering, spectral analysis, statistical
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inference, and quality function optimization — has given rise to a multitude of specific

algorithms, each with its strengths and computational considerations. A comprehensive

review of all categories extends beyond the scope of this chapter [32]. Given its relevance

to subsequent analyses in this thesis, we will focus primarily on methods derived from the

principle of modularity maximization.

A variety of algorithmic approaches have been developed to yield high values of Q. Notable

examples include the spectral partitioning method that specifically uses the eigenvectors of

the modularity matrix (as distinct from the Laplacian) [66], the widely used fast, greedy

agglomerative algorithm by Clauset, Newman, and Moore (CNM) that iteratively merges

communities providing the largest increase in Q [65], and other heuristic approaches such as

extremal optimization techniques [69]. These algorithms offer differing trade-offs between

accuracy, resolution, and computational complexity, but all share the underlying objective

of optimizing modularity to reveal network communities. The Louvain method, another

popular greedy modularity maximization algorithm used later in this work, also falls into

this category [70].

2.2.4.1 Modularity

Modularity, often denoted as Q, is a scalar metric to quantify the quality of a particular

division of a network into communities. It assesses whether the number of edges falling within

groups of nodes (communities) is significantly higher than what one would expect under a

random network model that preserves the node degrees. In essence, modularity evaluates the

deviation of the observed edge distribution from that of a null configuration model.
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Formulated by Newman and Girvan [45], modularity is defined as:

Q “
1

2m

ÿ

i,j

„

Aij ´
kikj
2m

ȷ

δpci, cjq, (2.5)

where:

• Aij is the (weighted) adjacency matrix,

• ki “
ř

j Aij is the strength (or degree, for unweighted graphs) of node i,

• m “ 1
2

ř

i,j Aij is the total edge weight in the network,

• ci represents the community assignment of node i,

• δpci, cjq is the Kronecker delta function, equal to 1 if nodes i and j are in the same

community, and 0 otherwise.

The term
kikj
2m corresponds to the expected weight of the edge between i and j under the null

model. Therefore, a high value of modularity (Q approaching 1) indicates that the observed

network has significantly more intra-community edges than would be expected at random,

thus revealing a pronounced modular structure. However, values of Q typically remain

well below 1 in real networks; values above 0.3 or 0.4 already signify nontrivial modular

organization [65].

Modularity maximization forms the basis of a broad class of community detection al-

gorithms. These methods seek the partitioning that yields the highest modularity value,

when the network is devided into regions with dense internal connectivity and sparse external

ties. As an objective function, modularity is both visually inspectable and computationally

tractable, and enables comparison between different partition configurations. Among the

most prominent algorithms leveraging modularity maximization are the Louvain method[70],
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which applies a greedy hierarchical approach, and spectral optimization techniques[59] that

utilize eigenvectors of the modularity matrix.

The significance of modularity extends far beyond theoretical appeal. In biological systems,

nodes in the same community typically share functional relationships [46, 61, 62, 63, 64].

As noted by Hartwell et al. [46], biological networks exhibit inherent modularity, with

gene modules, protein complexes, and signaling pathways forming the fundamental units of

cellular operations [58]. This structural organization enables both robustness and evolvability:

modules can maintain internal stability while adapting semi-independently to external

pressures [44].

Such modularity is particularly advantageous in fluctuating environments, where localized

rewiring or adaptation must occur without globally compromising system integrity [71]. It

also enhances the capacity for noise buffering and specificity in regulatory processes [17].

In genomic applications, detecting these modules provides a pathway to interpret gene

co-expression patterns, identify coordinated regulatory feedback loops, and elucidate the

molecular basis of disease states or treatment responses. The alignment between topological

modules and annotated biological functions (e.g., Gene Ontology terms or KEGG pathways)

further corroborates the biological relevance of modular organization [57].

The identification and quantification of community structure through the lens of modularity

are one of central algorithms to systems-level analysis in biology. They offer a principled

method to distill complex networks into interpretable, functionally coherent substructures.

2.2.5 The Louvain Algorithm

The Louvain algorithm, introduced in 2008 by Blondel et al. [70], became a highly

influential and computationally efficient method for community detection, particularly suited
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for large-scale networks. Motivated by the need to overcome the scalability limitations

and suboptimal convergence of prior modularity maximization techniques, Louvain employs

a hierarchical greedy strategy capable of revealing community structures across multiple

resolutions.The algorithm proceeds iteratively through two core phases:

1. Local Modularity Optimization: Initially, every node constitutes its own commu-

nity. Subsequently, for each node i, the algorithm evaluates the modularity gain (∆Q)

resulting from relocating i to the community of each of its neighbors. This gain, ∆Q,

represents the change in overall network modularity resulting from moving node i from

its current community Cold to a neighbor’s community D. Blondel et al. provide an

efficient way to calculate this by comparing the change in internal community edge

weights relative to the expected weights based on node degrees [70]. A positive ∆Q

indicates the move improves the community structure according to the modularity

measure. More formally, the change in modularity ∆Q when moving an isolated node

i into a community D can be calculated as [70]:

∆Q “

«

Σin,D ` 2ki,in,D
2m

´

ˆ

Σtot,D ` ki

2m

˙2
ff

´

«

Σin,D

2m
´

ˆ

Σtot,D

2m

˙2

´

ˆ

ki
2m

˙2
ff

where the terms are defined as follows:

• Σin,D: Sum of the weights of the links inside community D (before the potential

move of i).

• ki,in,D: Sum of the weights of the links from i to nodes currently in D.

• Σtot,D: Sum of the weights of the links incident to nodes in D (before the potential

move of i).
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• ki: Sum of the weights of the links incident to node i.

• 2m: Sum of all link weights in the network.

In essence, this calculation assesses whether the increased connection strength of node

i within the potential new community D outweighs the loss of connection strength

within its original community, relative to what would be expected in a random network

configuration based on node degrees. The algorithm assigns node i to the neighboring

community D providing the maximum positive ∆Q; if no such move exists (i.e., no

positive ∆Q is found), the node remains in its original community. This procedure

is repeated iteratively for all nodes, processed in a random order, until no further

relocation yields a positive modularity gain, eventually signifying convergence to a

local modularity optimum. The use of a random processing order implies that different

executions might yield slightly varied, albeit typically congruent, community structures,

due to the heuristic nature of the algorithm.

2. Community Aggregation: Upon convergence of the local optimization phase, a

new, coarse-grained network is constructed. In this network, the nodes represent the

communities identified in the preceding phase. The weight of an edge between two

community-nodes corresponds to the sum of edge weights connecting the constituent

nodes of these respective communities in the original network. Self-loops represent the

summed internal edge weights within each community.

This two-phase process is then recursively applied to the aggregated network. This

iterative refinement and aggregation generates a hierarchical decomposition of the network,

often represented as a dendrogram, where each level corresponds to a partition maximizing

modularity locally. The algorithm terminates when an iteration yields no further increase
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in modularity for the entire network. Figure 2.1 provides a schematic representation of this

iterative process.

Figure 2.1: Schematic overview of the Louvain algorithm’s iterative process. (a-b) Phase
1: Nodes, initially in singleton communities, are moved between communities to optimize
modularity gain. (c) Phase 2: Communities from the optimized partition are aggregated into
super-nodes forming a new network. (d) Phase 1 repeats on the aggregated network. The
cycle continues until convergence. Figure adapted from Traag et al. [72], licensed under CC
BY 4.0.
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Renowned for its computational efficiency and strong empirical performance [70], Louvain’s

iterative local refinement and aggregation strategy yields high-modularity partitions at

relatively low computational expense. Consequently, it was a widely adopted heuristic for

community detection in large networks, particularly during the period from its introduction in

2008 until approximately the time pertinent to this study (circa 2019-2020). It is noteworthy,

however, that subsequent developments in the field led to algorithms like Leiden [72], designed

to address certain limitations of Louvain, such as the potential formation of poorly connected

communities. The capacity for modularity-based community detection enables the parsing of

intricate biological networks, often characterized by considerable scale and inherent noise,

into potentially meaningful functional units, pathways, or groups of co-regulated genes. In

subsequent sections, we present its application to genomic data.

2.2.5.1 Computational Limitations

While algorithms like Louvain offer efficient heuristics for modularity maximization, the

approach itself is not without recognized limitations. Chief among these is the resolution

limit problem [73], where the optimization process may fail to resolve smaller communities if

merging them yields a larger increase in global modularity. This can obscure finer structural

details, particularly within large networks. Furthermore, the modularity landscape itself

is often rugged, possessing numerous local maxima [74]. Greedy algorithms like Louvain,

while fast, are susceptible to converging to these suboptimal solutions (local maxima). This

convergence can result in inconsistent partitions across different runs or yield communities

that are especially poorly connected internally, potentially even becoming disconnected in

some cases [72].

These challenges have motivated further algorithmic development. The Leiden algo-
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rithm, for instance, was introduced as a direct advancement over Louvain [72]. Although

still fundamentally optimizing modularity (or related functions), Leiden incorporates an

intermediate refinement phase designed explicitly to guarantee that detected communities

are well-connected, splitting groups that Louvain might have erroneously kept together. It

also employs a more efficient node movement strategy (’fast local move’) intended to better

explore the partition space and reduce susceptibility to sharp local optima. Its guarantee of

well-connected communities, addressing one key drawback of Louvain, has led to significant

interest and adoption in bioinformatics applications. Leiden is particularly noted, at least as

of the writing of this dissertation, in fields like single-cell transcriptomics, where discerning

subtle cellular subpopulations is crucial. Indeed, ongoing research continues to seek methods

that optimally balance computational tractability with the accurate detection of meaningful

community structures in complex networks.

2.3 Differential Network (DN) Analysis

Differential Network (DN) analysis moves beyond studying single static network snapshots

to characterizing how network connectivity patterns are altered between different conditions,

states, or time points. In doing so, this approach is particularly effective in biological contexts

for isolating perturbation-induced rewiring from the baseline network structure [10].

Differential Network (DN) analysis provides a dynamic perspective by comparing network

structures across different conditions, thereby highlighting perturbation-induced changes

rather than focusing on static snapshots. This approach is particularly effective in biological

contexts for isolating system-specific responses from baseline network architecture [10].
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2.3.1 Concept and Formulation

The core idea is to compare two networks representing the system under different conditions,

typically a control state and a state with perturbation. Let Gcontrol “ pV,Econtrolq and

Gperturbed “ pV,Eperturbedq be two networks defined on the same set of nodes V . These

networks are often constructed from experimental data, such as gene co-expression networks

derived from transcriptomic profiles under control and perturbed conditions. Let Acontrol

and Aperturbed be their respective (weighted) adjacency matrices.

As described in our work [11], one common way to define the Differential Network

D “ pVD, EDq focuses on identifying interactions gained in the perturbed condition relative

to the control. The edge set ED is then defined as the set difference between the edge sets of

the perturbed and control networks:

ED “ Eperturbed
zEcontrol (2.6)

This means an edge pi, jq exists in the differential network D if and only if that edge exists in

Eperturbed but is absent from Econtrol. The determination of edge presence in Eperturbed and

Econtrol typically involves applying a significance threshold (e.g., to correlation coefficient

ρij) and its associated p-values) derived from experimental data under each condition [11].

Thus, an edge pi, jq is included in ED if it is deemed significant under perturbation (e.g.,

|ρ
perturbed
ij | ě τ) but not significant under control (e.g., |ρcontrolij | ă τ). Figure 2.2 illustrates

this process.

The node set VD consists of all nodes incident to at least one edge in ED. Nodes that

become isolated after this edge removal process (i.e., nodes whose only connections were

26



Differential Network Construction
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Figure 2.2: Differential Network (DN) construction using the set difference approach. Edges
present in the perturbed network (Gperturbed) but absent from the control network (Gcontrol)
form the edges (ED) of the resulting differential network (D). Nodes not incident to any
differential edges are excluded from VD.

either present in both networks or only in the control network) are typically excluded from

VD:

VD “ ti P V | Dj such that pi, jq P EDu (2.7)

If the original networks are weighted, the weights for the edges in ED can be directly

inherited from the perturbed network, wD
ij “ A

perturbed
ij @ pi, jq P ED.

This formulation isolates the network connections that emerge or significantly strengthen

specifically due to the perturbation. It effectively filters out constitutive or baseline interac-

tions present in the control state.

(Note: Another common approach defines the DN via direct subtraction of adjacency

matrices, Dmatrix “ Aperturbed ´Acontrol. The entries Dij then represent the change in edge

weight, capturing gained (Dmatrix,ij ą 0), lost (Dmatrix,ij ă 0), and altered interactions.
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While powerful, this approach requires careful handling of positive and negative edge weights

in subsequent analyses [49]. The set-difference approach used in [11] simplifies this by focusing

explicitly on gained interactions.

2.3.2 Topological Analysis of Differential Networks

Once the differential network D “ pVD, EDq is constructed using the chosen formalism

(e.g., the set-difference approach focusing on gained edges), the derived network can then

be analyzed using standard graph-theoretic tools to understand the nature of the system’s

response. In other words, topological measures are applied to the differential network D

itself, rather than the original static networks. This allows for the identification of structures

within the change network:

• Community Detection: Applying algorithms like Louvain (Section 2.2.5) to the

differential network D identifies modules of nodes (e.g., genes) whose connections were

collectively gained or significantly strengthened in response to the perturbation. These

”modules of change” often correspond to coordinated biological responses or pathways

specifically activated by the stimulus [11].

• Centrality Analysis: Calculating centrality measures (Section 2.2) on the differential

network D identifies nodes that are central within the perturbed structure. For example,

high-degree nodes in D might represent key mediators or hubs in the response pathways

activated by the perturbation, even if they were not hubs in the original static networks.

This analysis is often performed within the detected communities of D to find local

hubs driving modular responses.

By applying network analysis techniques to the differential network, we can move beyond

simply listing changed interactions and gain insights into the coordinated, modular nature of
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the system’s adaptation to perturbations.
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Chapter 3. Application of Differential

Network Analysis to Salivary and B-Cell

Transcriptomic Data

Note: Work presented in this chapter has been published as Xue S, Rogers

LRK, Zheng M, He J, Piermarocchi C, Mias GI. Applying differential network

analysis to longitudinal gene expression in response to perturbations. Frontiers

in Genetics. 2022;13:1026487.

To exemplify the analytical capabilities of the Differential Network (DN) framework

detailed in the preceding chapter, this chapter showcases two case studies using experimental

data.

(i) The first case study aimed to gain insights into the adaptive immune responses to

PPSV23 through saliva profiling. Due to its convenience in processing relative to blood

samples, saliva draws much interest for diagnostics as well as health monitoring applications.

Saliva analysis can produce results in a timely manner, its collection is minimally invasive,

and little training is required for saliva sampling, even for non-medically trained professionals.

(ii) The second dataset (GSE100441) was generated from a time course experiment on primary

B cells, where one set was treated with Rituximab and another used as an untreated control.

Rituximab is known for its therapeutic use in targeting B cells [75] to treat cancers such

as lymphomas and leukemias. This drug has a history of safe and effective usage since

1997 [76], and the World Health Organization (WHO) place Rituximab on their list of

essential medicines [77]. Rituximab binds with CD20, expressed on pre-B and mature B

cells, but not on stem cells, early pro-B or normal plasma cells [78]. The binding causes
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perturbations to intracellular signaling and membrane structure [79], mediating the cell

depletion. It is worthwhile mentioning that the B cell pathways of Rituximab activation have

been experimentally validated [80, 81, 82, 83], and can be compared to the pathways identified

by the DN method. Both the saliva and primary B cell experiments involve drug-treated

samples (treatment sets) and untreated samples (control sets) monitored over time.

For both datasets, we started with building gene networks, one for each of the control and

the treatment sets. We used gene-gene correlations between time series signals, over 24 hours

in saliva and 15 hours in B cells, to evaluate pairwise gene connections. Graphically, the time

series correlation networks built from the treatment sets summarized a system-wide pathway

activation due to the perturbation, whereas the networks from the controls sets acted as the

baseline. Within the DN analysis framework, we subtracted the baseline network from the

one obtained using the treatment data, arriving at the final differential network.

3.1 Data Acquisition

Data for this investigation were obtained from Gene Expression Omnibus (GEO) for

two time series studies using RNA-seq experiments, on Saliva (accession GSE108664) and

Rituximab (GSE100441). Both sets of data are further described below. The raw RNA-seq

data were mapped using Kallisto [84], with bootstrap sample parameter, -b, was set to 100.

GENCODE[85] v28 transcripts and genome built GRCh38.p12 were used for annotation. We

used Sleuth [86] (with DESeq [87] adjustment of Transcripts per Million) to compile results

across timepoints.

The saliva dataset was obtained from our previous study of immune responses to the

PPSV23 vaccine (GSE108664) [88]. In this study, hourly saliva samples were collected from a
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healthy individual over two 24 hour periods and profiled with RNA-seq every hour. The first

24 hour period provides a baseline RNA expression dataset, which we call untreated data. In

the second 24 hour period, the same individual was monitored after receiving the PPSV23

vaccine. Saliva samples were again collected hourly over 24 hours and profiled by RNA-seq.

This second step yielded the RNA expression dataset after the PPSV23 vaccination. We call

these data the treated dataset. Both treated and untreated datasets have 24 time points of

84,647 possible expression signals using GENCODE annotation [85]. We note that all data

obtained were made publicly available by the original authors, Mias et al. [88], as described

therein (Michigan State University Institutional Review Board Protocol LEGACY15-071

[15-071]), and no additional institutional review board approvals were required for this

investigation.

The perturbation in the primary B cell experiment was Rituximab, a monoclonal antibody

drug used in the treatment of different types of lymphomas and leukemias. The experimental

study (data from GSE100441) began by culturing in parallel primary B cells with and without

Rituximab. During the 15 hours of Rituximab treatment, the treated and untreated primary

B cells were both sampled at the same 6 time points simultaneously and profiled by RNA-seq.

The untreated group provided a baseline, which we call untreated data, whereas the treated

experiment produced the treated dataset. Since this study included a replicated experiment,

each of the first and second duplicates was processed to generate a separate network.

3.1.1 Data Availability

These data can be found here: Gene Expression Omnibus (GEO; https://www.ncbi.

nlm.nih.gov/geo/), accessions: (i) GSE108664 for the saliva mRNA-sequencing, and (ii)

GSE100441 for the Rituximab Treatment in Primary B Cells mRNA-sequencing. Mapped
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RNA-seq data have been deposited on Zenodo and are publicly available at: http://dx.doi.

org/10.5281/zenodo.7007320. Results and code files have also been deposited on Github

(https://github.com/gmiaslab/DifferentialNetworks) and released on Zenodo. These files are

referred to as Online Data Files (ODFs) in the manuscript. DOI: http://dx.doi.org/10.5281/

zenodo.7007320.

3.2 Application Workflow

In the present study, we applied a DN approach, as introduced in chapter2, to RNA-

sequencing (RNA-seq) time series datasets retrieved from two longitudinal RNA-seq experi-

ments: (i) The first dataset (GSE108664) was generated from saliva samples from a healthy

individual before and after the administration of the Pneumococcal Polysaccharide Vaccine

(PPSV23) [88].

We exploited this property of the differential network to observe fine details of gene groups

affected by the perturbation. That is, we employed one of the most established module

detection algorithms, the Louvain method [70, 89, 90], to identify communities in our final

differential network. We further explored communities by clustering heatmap and pathway

enrichment analysis. The clustering heatmaps enabled us to characterize communities by

their unique temporal patterns. Additionally, we identified early (and late) responding

communities to perturbations and arrived at a sequential activation order for specifically the

saliva DN communities. Lastly, we performed Reactome [91] pathway enrichment analysis on

individual communities and annotated the results with hub genes (based on DN centrality).

Our investigation extends applications of DN to gene expression time series that include

perturbative activation. The two DN applications, and particularly the community-wide
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investigations provide further biological insight in gene expression changes in both Rituximab

treatment, as well as pneumococcal vaccination. Specifically, each of the three investigations

on DN communities provided unique perspectives on the biological response to perturbations:

(i) Using our heatmap analyses, we found that each DN community can have its own temporal

pattern and be used as a categorization of time-resolved gene activation. (ii) Using community

enrichment, we determined the associations between the activated biological pathways and

their gene clusters (communities). Combined with the community temporal patterns, our

results provide a chronological order of pathway activations, and show how these may be

obtained through a DN application. (iii) Lastly, our community hub analysis gave further

insights into the biological functionality of individual genes in a community. These include,

for example, the presence of the hub gene IL4R in one of the saliva DN communities, which

suggests that the respective cluster of genes collectively activated T cells in response to the

PPSV23 vaccine, and may explain a fever event in the experimental subject. Likewise, the

presence of the hub gene PELI, known to be an oncogene in lymphomagenesis, in one of the

B cell DN communities suggests that the entire community participates in the B cell response

to Rituximab. Additional findings are summarized in the results below, and illustrate the

utility of extending DN analyses to investigate time-resolved gene expression changes induced

by drug and vaccine treatments.

The workflow is summarized in Figure 3.1.

3.2.1 Data Preprocessing

For quality control, we pre-processed the experimental data and filtered signals with

multiple missing points right after importing the published data files. We coded all the data

analysis in Python in this study. Using Python’s pandas package [92, 93], we checked for
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Preprocess Data 

• Clean raw data

• Check for missing values

• Check for duplicated genes 

• Eliminate genes with constant value

• Filter sparse data:

• Set to 0 the expression value of missing genes

• Set to 1 the expression value of genes with expression in (0,1)

• Remove genes with >= 1/8 of missing time points   

Gene / Feature Selection 

• Identify common genes in untreated and treated data 

• For each gene, calculate  ∆𝑇𝑈 =
1

𝑁
σ𝑖

𝑇𝑖 − 𝑈𝑖

𝑇𝑖 + 𝑈𝑖
where 𝑇𝑖 (or 

𝑈𝑖) is the expression at time point  𝑖 in the treated  (or 

untreated) dataset and N is the total number of time points

• Select genes below the 25% and above the 75% quantile in 

the distribution of ∆𝑇𝑈

Co-Expression Networks  

• Using selected genes to build co-

expressionTreated and Untreated networks 

respectively

• Keep edges corresponding to correlation above 

the  99.5% quantile in the correlation 

distribution

• Remove isolated genes

Differential Networks (DN)

• Define a differential network DN = Treated – Untreated  
by removing edges in the Treated network that also 

present in the Untreated network

• Perform a community detection analysis in DN using 

the Louvain method

Input Data:

Expression RNA-

seq Time Series

Export Data:

• Plots of DN communities 

• Gene lists of communities

• Reactome Analysis results

• Community heatmaps 

Community Hub Interpretation

• Rank genes by Degree Centrality within community

• Define genes with 5 highest DC values as community hubs

• Discuss hubs’ biological properties

Community Specific Time-Resolved Analysis 

• Dendrogram-Cluster heatmaps by community 

• Determine community-specific activation time

• Order communities by their activation patterns

Pathway Enrichment

• Perform gene over-representation analysis 

on each DN community with Reactome

Figure 3.1: Workflow Overview. Our methodology starts with time course experimental data,
followed by network construction, differential network determination, community detection,
sequential ordering by activation pattern, pathway analyses of individual communities,
community hub gene interpretation, and final results including analyses and temporal trend
visualizations.

missing values for each gene’s expression, removing duplicate records and eliminating genes

with constant values across all the 24 time points for the saliva dataset (6 time points for the

B cell datasets).

We replaced missing signals with zero and also set values less than 1 to 1. Genes with

zero variance in their time series were excluded from our analysis. Moreover, we considered

a gene signal as sparse and removed it if its time series had missing values for more than

1/8 of the time points. The same quality control procedure was used for both the saliva and

primary B cell datasets.
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3.2.2 Gene Selection

After quality control, we further processed the data to pre-screen and identify a pool

of candidate genes that showed response to the perturbations (vaccine in the saliva and

Rituximab in the B cell). We selected genes that are highly expressed in both untreated and

treated cases. Our goal with the differential networks was to identify genes that displayed

notable changes. Hence the cutoffs were selected to exclude constant signals, and signals with

moderate changes when comparing corresponding paired timepoints. For each of these genes,

we calculated the time-averaged relative difference between treated and untreated normalized

intensities, ∆TU :

∆TU “
1

N

ÿ

i

Ti ´ Ui

Ti ` Ui
(3.1)

where Ti is the expression value at time i in the treated dataset, Ui is the expression value at

time i in the untreated dataset, and N is the total number of time points. This calculation

yielded a ∆TU distribution curve, from which we computed the lower and upper quartiles.

As our goal was to identify time-resolved changes, genes were selected if their ∆TU s were

within the bottom 25% or top 25% of the ∆TU distribution respectively. The Python Pandas

package was used for all the above computations [92, 93].

3.2.3 Co-Expression Networks Construction

After gene selection, we calculated their pairwise Pearson correlation coefficients and built

the co-expression networks. Genes were represented as nodes and were joined by edges if there

was a non-zero correlation between them. We used the co-expression coefficient as a weight for

each edge. In the layout representation of the networks, the node-node distance reflects their
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correlation coefficients. Two genes are nearby if they have a high positive correlation. They

are far apart when they have a low positive correlation or remote if negatively correlated. We

used Python’s open source Networkx package [94] for network visualization and calculation

of the network metrics.

We constructed the network with edges in the 99.5% quantile of the correlation distribution,

and excluding singletons. The one-sided quantile cutoff essentially selects for positive

correlations and is consistent with our modularity-based community analysis discussed further

below. For the saliva data, we built one treated and one untreated network. Since we have

data from two repeated experiments for B-cells, we built two networks for the Rituximab

treatment and two networks for the untreated control. Then, we took the intersections

between the two networks corresponding to the repeats to obtain a single Rituximab-treated

network and one single control network.

3.2.4 Differential Networks Construction

We defined the DN as the control network subtracted from the treated networks both for

the saliva and B cell cases. In the subtraction, we remove an edge if that edge appears both in

the treated and untreated networks. Edges appearing only in the treated network and absent

in the untreated are kept in the differential network. Edges appearing only in the untreated

network are not included. Isolated nodes left after this procedure are discarded. We analyzed

the DN’s structure using modularity [58, 59], as complex biological networks usually display

a high degree of modularity [46]. Modularity is a measure to quantify relative edge densities

from within the communities in comparison with those outsides. We utilized the Louvain

community detection method [70], as implemented in a published Python package [95], a

greedy algorithm for modularity maximization, to partition the entire DN into smaller clusters,
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also known as communities. The algorithm consists of two stages: first, individual nodes

are joined into communities to achieve local maximum modularity; second, nodes within the

same community are aggregated to form a new network where the node-assignment procedure

is repeated until the modularity no longer increases. This graph clustering algorithm is not

deterministic and can therefore result in slightly different partitions for the same graph. The

partition yielded a few major components and many tiny communities of fewer than 5 genes,

disconnected from the central islands. We pruned out these small communities from the

DN. We found that the majority of our communities with a low number of genes yield no

significant enrichment [96, 97].

3.2.5 Community Specific Time-Resolved Analysis

In order to investigate the time-resolved response present within the communities, we

applied clustering heatmaps to each of the DN communities. For genes in the same community,

we first retrieved their treated and untreated expressions, then normalized each time series

by subtracting individual time points from the time 0, followed by normalization with the

Euclidean norm, for both expressions. We then took the difference between the normalized

treated and untreated time series. Finally, we dendrogram-clustered these series (rows) with

the complete-linkage method (Farthest Point Algorithm) [98, 99]. The same procedure was

repeated in all communities, and each delivered a clustering heatmap.

As the heatmaps rendered distinctive time-resolved responses in each community, we

identified communities that responded quickly to perturbations and those that responded

slowly. In particular, we characterized saliva communities by their peak times and arranged

them in temporal order. We did not obtain an order for the B cell communities, as the B cell

heatmaps did not show dominant peak times. However, we were still able to characterize B
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cell communities based on 3 distinguishable temporal pattern categories.

3.2.6 Pathway Enrichment

We conducted Reactome Enrichment Analysis [91] on each community to identify over-

represented biological pathways within each community, using the Python package PyIOmica

[100]. As the majority of our communities with a low number of genes yield no significant

enrichment, we focused on results for communities with 8 or more genes [96, 97].

3.2.7 Community Hub Identification

We isolated each community and identified localized hubs, only considering the com-

munities rather than the global DN in our calculations. We adopted the standard Degree

Centrality (DC) algorithm (which has been integrated with the python networkx package)

and identified the genes with the top 5 DC values as the community hub genes. We examined

these hubs using functional annotations (such as pathway and memberships, including from

GeneCards Suite [101]) to evaluate if their biological properties could potentially elucidate

the more general functionality of the module of their membership.

3.2.8 Results formatting and visualization

We stored the DN nodes and edges, communities, and pathway enrichment analyses into

spreadsheets that are provided in the Online Data Files (ODFs) both for the saliva and B

cell data. Using Mathematica [102], we visualized the saliva and B cell DNs with their major

connected components and communities.

3.3 Results

Our RNA-seq time series raw data were retrieved from the Gene Expression Omnibus

(GEO) database under accessions GSE108664 and GSE100441 for the saliva and B cell
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experiments, respectively. The study of the immune response to the PPSV23 vaccine in

saliva probed the expression of a potential 84647 gene identifiers (GENCODE annotation

[85]) at 24 time points [88]. The other study of drug activation by Rituximab in B cells

provided a dataset for 6 time points. Since gene co-expression networks rely on correlations,

our network analysis could be prone to spurious correlations, which we removed as described

in the Methods section.

We constructed our saliva DN by subtracting the saliva network without vaccine from

the network obtained using post-vaccine data. The B cell DN in response to Rituximab

was generated in a similar manner. Next, we clustered the DNs into communities using the

Louvain community detection method [70]. We then conducted a Reactome Enrichment

Analysis [91] using PyIOmica [100], on each community to identify significant pathways and

associated genes. We also visualized the heatmaps of relative gene expression as a function of

time for each community. Finally, we plotted the DNs and their major individual communities.

See the Application Workflow section for additional details.

3.3.1 Saliva DN

Our saliva DN contains 1144 nodes (i.e., genes) and 13,775 edges. The Louvain algorithm

identified 48 communities (modules) in total. Fifteen of the communities have a size of at least

4 nodes, while the remaining 33 are pairs or triplets. In the global saliva DN visualization,

we excluded the communities with pairs or triplets, as none of them belonged to the three

major connected components of the DN network. We also filtered the network to remove

connected components with less than 4 genes. The global saliva DN is presented in Fig. 3.2a,

where communities are visualized using different colors and encircled in loops. Furthermore,

community labels are based on their size (largest to smallest, with C0 being the largest
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community, and C14 the smallest).

0       3        6       9      12     15     18     21

b)

C0

C1

a)

Time (hours)

c)

C0

C1

Figure 3.2: Differential network analysis for the saliva experiment. a) Differential network
with community structure found by the Louvain community detection method. b) Isolated
visualizations of C0 (top) and C1 (bottom) communities with red highlights indicating genes
found in statistically significant Reactome pathways (FDR ă 0.05), and their corresponding
edges in the network. c) Heatmaps of C0 (top) and C1 (bottom) over 24 hours. Columns
represent time points while rows denote gene identifiers. The row data show the difference in
each entry’s expression relative to time 0. The relative values were determined by subtracting
the individual time points from time point 0 and then normalizing using a Euclidean norm,
so that each row ranges from -1 (down-regulation) to 1 (up-regulation). For the dendrogram
clustering we used the complete-linkage method (also known as the Farthest Point Algorithm)
[98, 99].

3.3.2 Saliva Communities Temporal Visualization

The analysis revealed that the response to the vaccination was not a single event across

the network, but rather a temporal cascade of activation across different modules. This

”rolling wave” of modular activation is illustrated in Figure 3.3, which shows the time-resolved

expression heatmaps for key communities arranged in their order of peak activation.

In these heatmaps, each row denotes a gene, while each column corresponds to a time
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C1

C2
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C6

C7
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C11C0

Figure 3.3: Sequential activation of gene communities following PPSV23 vaccination. The
panels display gene expression heatmaps for 12 key communities identified in the saliva
differential network, arranged to show their temporal activation sequence. For each heatmap,
the horizontal axis represents hours post-vaccination and rows represent individual genes.
Red indicates up-regulation relative to baseline, while blue indicates down-regulation. The
analysis reveals a clear temporal cascade, starting with early-responding communities like
C6 and C9 and progressing to late-responding ones like C1. This observation of a modular
activation wave inspired the investigation into cyclic dynamics using a non-reciprocal Hopfield
network in the second part of this dissertation.

.

point post-vaccination. Red indicates up-regulated genes, blue indicates down-regulated

genes, and white signifies unchanged expression relative to baseline. A prominent vertical red

stripe indicates that most genes in a community are up-regulated simultaneously at a specific

time, which we refer to as the community’s peak response time.

As shown in Figure 3.3, the communities exhibit a clear and detailed sequence of peak

response times. The activation cascade begins with a series of early-responding communities:

C6 peaks at the first-hour post-vaccination, followed by C9 at hour 2, C8 at hour 3, C2 at

hour 4, and both C0 and C11 at hour 5. After a brief pause, the sequence continues with
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C3 showing peak activation at hour 11 and C4 at hour 12. Following this, C10 shows a less

pronounced activation around hour 13, and C7 peaks at hour 14. Notably, community C5

displays a multi-phasic response with peaks at hours 15, 20, and 22. The cascade concludes

with the strong activation of the late-responding community C1 at hour 19.

This temporally ordered response strongly suggests a sophisticated, coordinated signaling

cascade within the immune system, rather than a monolithic activation. This key finding

provided the primary motivation for investigating models of sequential dynamics in the second

track of this dissertation.

3.3.3 Pathway Enrichment of Saliva Communities

In our pathway analysis, we queried individual communities to investigate how their

highly co-expressed genes are functionally related. Our analysis is based on the Reactome

pathway database [91, 103, 104].

Statistically significant enrichment of pathways (with False Discovery Rate (FDR) ă 0.05)

was identified in 6 communities, C0, C1, C2, C4, C8 and C9. The majority of statistically

significant Reactome pathways were related to response to stimulus, immune response,

and inflammatory response. Among the six communities, C0 and C1 are the two largest

communities. C0 comprises of 248 genes, colored in red in the global DN shown in Figure 3.2a,

whereas C1 contains 198 genes, colored in yellow in the same panel. We display C0 and C1 in

Figure 3.2b as representative communities. Genes that belong to the statistically significant

biological pathways are highlighted in red in Figure 3.2b.

In the C0 community, the Reactome enrichment analysis identified 15 statistically signifi-

cant pathways (FDR ă 0.05): (i) three pathways for interferon signaling, (ii) three related to

the immune system, (iii) four related to antigen presentation, (iv) one associated with ER-
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Phagosomes, (v) one lymphoid-related, and (vi) three pertaining to interleukin-12 signaling.

In particular, the alpha, beta, and gamma signaling pathways all appear in the interferon

signaling pathways. The immune system pathways include one cytokine signaling and one

related to the adaptive immune system. Among the four antigen-related pathways, two are

explicitly associated to the dependence of Class I MHC. The Endosomal / Vacuolar pathway

implies the involvement of the Class I MHC and of the Antigen processing-Cross presentation.

Lastly, interleukin-12 plays a crucial role in the coordination of innate and adaptive immunity

[105].

In the C1 community, the Reactome analysis identified 9 statistically significant pathways

(FDR ă 0.05). Two of these pathways are broadly related to the immune system and cytokine

signaling. Another two pathways, the NGF-stimulated transcription and the FOXO-mediated

transcription pathways, modulate cell survival, growth, and differentiation. In Table 3.1 we

have listed all the results of the Reactome pathway enrichment analysis for C0 and C1 with

FDR ă 0.05.

Table 3.1: Reactome pathway enrichment analysis. Statistically significant pathways (FDR
ă 0.05) are summarized for saliva DN communities C0 and C1. In the full analysis, we
omitted small communities with fewer than 8 genes [96], and 12 communities (C0 to C11)
qualified for the pathway analysis.

Pathway Name Entities
FDR

Submitted entities found

Saliva DN: C0

Antigen Presentation: Folding,
assembly and peptide loading of
class I MHC

1.2E-14 HLA-B, NAA15

Endosomal/Vacuolar pathway 1.2E-14 HLA-B
Interferon gamma signaling 1.2E-14 STAT1, IRF1, HLA-B, PTPN6
Class I MHC mediated antigen
processing & presentation

1.2E-14 PSMD8, TLR1, CDH1, RPN1, GBF1,
HLA-B, UBR4, CYBA, NAA15,
ELOC, FBXO32, FBXO11
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Table 3.1 (cont’d)

Pathway Name Entities
FDR

Submitted entities found

ER-Phagosome pathway 1.2E-14 PSMD8, TLR1, RPN1, HLA-B
Interferon alpha/beta signaling 1.2E-14 STAT1, IRF1, HLA-B, PTPN6
Interferon Signaling 1.2E-14 EIF4A1, STAT1, IRF1, HLA-B,

PTPN6, ARIH1
Antigen processing-Cross presen-
tation

1.2E-14 PSMD8, TLR1, RPN1, HLA-B,
CYBA

Immunoregulatory interactions
between a Lymphoid and a non-
Lymphoid cell

1.2E-14 CDH1, CD81, HLA-B, FCGR2B

Cytokine Signaling in Immune
system

1.1E-11 EIF4A1, STAT1, IRF1, HLA-B,
PTPN6, ARIH1

Adaptive Immune System 4.1E-09 CD81, TCF25, RPN1, GBF1, HLA-B,
UBR4, CYBA, PPP2R5D, FBXO32,
FBXO11, ANKRD9, TLR1, PSMD8,
CDH1, AKT2, PTPN6, ELOC,
NAA15, FCGR2B, SIPA1, ARF5

Immune System 1.3E-05 CCDC71L, DDX3Y, EIF4A1, ASAH1,
IL1RN, SERPINA1, TCF25, CD81,
RPN1, RPLP0, UBR4, TNFAIP3,
CSF2RA, PLD2, PSMD8, ANKRD9,
CDH1, AKT2, OLR1, ELOC, ARIH1,
SERPINB2, TNFSF14, GSTO1,
STAT1, GBF1, HLA-B, CYBA,
PPP2R5D, FBXO32, FBXO11, FGR,
CEACAM3, CLEC4A, TLR1, IRF1,
TCP1, TXNIP, PTPN6, CYSTM1,
NAA15, FCGR2B, SIPA1, BIRC2,
ARF5, TRIM56

Gene and protein expression
by JAK-STAT signaling after
Interleukin-12 stimulation

3.2E-03 SERPINB2, GSTO1, TCP1, RPLP0,
ARF5

Interleukin-12 family signaling 4.6E-03 SERPINB2, GSTO1, STAT1, TCP1,
RPLP0, ARF5

Interleukin-12 signaling 8.0E-03 SERPINB2, GSTO1, TCP1, RPLP0,
ARF5

Saliva DN: C1

Insulin-like Growth Factor-
2 mRNA Binding Proteins
(IGF2BPs/IMPs/VICKZs) bind
RNA

2.7E-03 CD44
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Table 3.1 (cont’d)

Pathway Name Entities
FDR

Submitted entities found

Nuclear Events (kinase and tran-
scription factor activation)

1.8E-02 PPP2CB, TF, ID2, CHD4, FOS,
DUSP6, DNM2

FOXO-mediated transcription of
cell death genes

1.8E-02 BCL2L11, BCL6, NFYC

Signaling by NTRKs 2.4E-02 PPP2CB, RALA, TF, ID2, CLTA, FU-
RIN, CHD4, FOS, DUSP6, DNM2

Signaling by NTRK1 (TRKA) 2.6E-02 PPP2CB, RALA, TF, ID2, CLTA,
CHD4, FOS, DUSP6, DNM2

Immune System 2.9E-02 NAPA, RALA, CIITA, AHCYL1,
RPN2, UNC93B1, JADE1, CLTA,
BCL10, CFP, TANK, GNS, FCAR,
STK10, PPP2CB, BCL2L11, TRIM29,
ALOX5, NLRP3, FLNA, SIRPA,
SLC12A6, IL6R, GBP4, RAP1GAP2,
DDX17, CR1, WSB1, CISH, SH2D3C,
KLHL21, FNDC3A, FOS, LILRB3,
MTOR, DUSP6, VEGFA, DNM2,
TF, ZNFX1, NASP, BCL6, MAN2B1,
TACC2, CD300C, CALM1, CD44,
LGMN

Cytokine Signaling in Immune
system

3.6E-02 RALA, CIITA, CISH, RPN2,
SH2D3C, FNDC3A, FOS, MTOR,
DUSP6, VEGFA, PPP2CB, ZNFX1,
BCL2L11, NASP, BCL6, TRIM29,
ALOX5, FLNA, IL6R, GBP4, CD44

trans-Golgi Network Vesicle Bud-
ding

3.9E-02 NAPA, CPD, CLTA, GNS, CLINT1,
DNM2

NGF-stimulated transcription 3.9E-02 TF, ID2, CHD4, FOS, DNM2

Of the communities we observed, the C0 community exhibits the strongest response to the

stimulus and immune system, based on FDR „ Op10´14q. The complete pathway enrichment

analysis for all communities in saliva is provided in the Online Data Files (ODFs), available

on Zenodo, in the “Results/SLV results/reactome analysis” folder.
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3.3.4 B Cell DN

Our B cell DN consists of 1,759 nodes (genes) and 10,421 edges that we classified into

145 communities using the Louvain algorithm. Similar to the saliva DN, most of these

communities are small clusters on small components. Due to its larger size relative to the

saliva DN and larger number of communities, our cutoff for plotting was increased to 8 nodes

both for community and component size. The global B cell DN is presented in Figure 3.4a,

with 5 components and 14 communities. Here, we omitted the remaining 130 communities

since they neither belong to any of the 5 main components, nor are they large enough for

Reactome enrichment analysis. Like in the saliva DN, communities were ordered in descending

size (largest to smallest, from C0 to C13 respectively), designated with different colors, and

encircled by loops. Figure 3.4 has the same format of Figure 3.2. In this case, C2 and C4

are displayed in panel b, as magnified representations of the purple cluster and the green

cluster, respectively, in panel a. Panel b’s magnified perspective provides details about the

communities’ internal structures. In Figure 3.4b, for example, we observe that some of the

genes highlighted in red form a clique.

3.3.5 Pathway Enrichment of B Cell Communities

As for the saliva DN, we conducted a community-wise Reactome enrichment analysis

for communities with at least 8 genes. 14 communities in the B cell DN were analyzed.

This analysis found 9 communities with statistically significant pathway enrichment (FDR ă

0.05.): C2, C4, C5, C6, C7, C9, C10, C12, and C13. Most of the pathways associated with

genes in these communities centered around transcriptional regulation, protein metabolism,

DNA binding ability, and signaling. Among its 111 statistically significant pathways, C4

47



c)b)

C2

C4

a)

C4 0         1          2         4         7         15
Time (hours)

C2

Figure 3.4: Differential network analysis for the B cell experiment. a) Differential network
with community structure found by the Louvain community detection method. b) Isolated
visualizations of C2 (top) and C4 (bottom) communities with red highlights indicating genes
found in statistically significant Reactome pathways (FDR¡0.05), and their corresponding
edges in the network. c) Heatmaps of C2 (top) and C4 (bottom) over 15 hours (6 time points).
Columns represent time points while rows denote genes. These row data demonstrate the
difference in each entry’s expression relative to time 0. The relative values were determined
by subtracting the individual time points from time point 0 and then normalizing using a
Euclidean norm, so that each row ranges from -1 (down-regulation) to 1 (up-regulation). For
the dendrogram clustering we used the complete-linkage method (Farthest Point Algorithm)
[98, 99].

was strongly enriched with genes in the FCERI-mediated NF-κB activation pathway, the

B cell receptor (BCR) signaling pathway, and the Fc epsilon receptor (FCERI) signaling

pathway. These pathways and others relevant to Rituximab mechanism of action are listed

in Table 3.2. The NF-κB pathway activation by FCERI leads to the production of cytokines

during mast cell activation, making it important in allergic inflammatory diseases [106]. C4

also contained genes in the B cell receptor pathway, an important pathway related to B cells.

The Fc epsilon gene is expressed on antigen-presenting cells, and its signaling occurs on the
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plasma membrane. A comprehensive list of statistically significant pathways can be found in

the Online Data Files (ODFs) in the “Results/Bcell results/reactome analysis” folder.

Table 3.2: Reactome pathway enrichment analysis. Statistically significant pathways are
summarized for primary B cell DN community C2 and C4. In the full analysis, we omitted
small communities with fewer than 8 genes [96], and 14 communities (C0 to C13) qualified
for the pathway analysis.

Pathway Name Entities
FDR

Submitted entities found

B cell DN: C2

Peptide chain elongation 1.3E-06 EEF1A1, RPL4, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28

Response of EIF2AK4 (GCN2)
to amino acid deficiency

1.3E-06 RPL4, RPL7A, RPL27A, RPS6,
RPL36, RPL14, RPS20, FAU, RPL15,
UBA52, RPL28, ATF3

Eukaryotic Translation Elonga-
tion

1.6E-06 EEF1A1, RPL4, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28

GTP hydrolysis and joining of
the 60S ribosomal subunit

5.9E-06 RPL4, EIF4A1, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28

L13a-mediated translational si-
lencing of Ceruloplasmin expres-
sion

5.9E-06 RPL4, EIF4A1, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28

Nonsense Mediated Decay
(NMD) independent of the Exon
Junction Complex (EJC)

5.9E-06 RPL4, RPL7A, RPL27A, RPS6,
RPL36, RPL14, RPS20, RPL15, FAU,
UBA52, RPL28

Formation of a pool of free 40S
subunits

7.7E-06 RPL4, RPL7A, RPL27A, RPS6,
RPL36, RPL14, RPS20, RPL15, FAU,
UBA52, RPL28

Eukaryotic Translation Termina-
tion

7.7E-06 RPL4, RPL7A, RPL27A, RPS6,
RPL36, RPL14, RPS20, RPL15, FAU,
UBA52, RPL28

Cap-dependent Translation Initi-
ation

9.2E-06 RPL4, EIF4A1, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28

Eukaryotic Translation Initiation 9.2E-06 RPL4, EIF4A1, RPL7A, RPL27A,
RPS6, RPL36, RPL14, RPS20,
RPL15, FAU, UBA52, RPL28
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Table 3.2 (cont’d)

Pathway Name Entities
FDR

Submitted entities found

B cell DN: C4

Metabolism of RNA 1.4E-02 SF3B4, MT-ND6, NUP205, UTP3,
POP1, DDX23, CSTF2, PHAX,
PLRG1, DIEXF, ZFP36L1, FTSJ3,
CHERP, PSMD8, EFTUD2, PSMD9,
PSMC4, PSME3, NUP35, SKIV2L2

Mitotic Anaphase 1.4E-02 PSMD8, PSMD9, NUP205, CCNB1,
SPAST, PSMC4, PSME3, NUP35,
SMC1A, EMD, KPNB1

Mitotic Metaphase and
Anaphase

1.4E-02 PSMD8, PSMD9, NUP205, CCNB1,
SPAST, PSMC4, PSME3, NUP35,
SMC1A, EMD, KPNB1

FCERI mediated NF-kB activa-
tion

1.4E-02 IGLV2-11, PSMD8, PSMD9, IGKV2-
29, IGKV1-16, PSMC4, PSME3,
IGKV4-1

Signaling by the B Cell Receptor
(BCR)

1.4E -02 IGLV2-11, PSMD8, PSMD9, IGKV2-
29, IGKV1-16, PSMC4, PSME3,
IGKV4-1, PIK3AP1

Fc epsilon receptor (FCERI) sig-
naling

1.4E-02 IGLV2-11, PSMD8, PSMD9, IGKV2-
29, IGKV1-16, PSMC4, PSME3,
IGKV4-1

Host Interactions of HIV factors 1.4E-02 PSMD8, PSMD9, NUP205, PSMC4,
PSME3, NUP35, KPNB1

G1/S Transition 1.4E-02 PSMD8, PSMD9, CCNB1, MCM7,
PSMC4, PSME3, KPNB1

ABC-family proteins mediated
transport

1.4E-02 PSMD8, PSMD9, PSMC4, PSME3,
CSTF2, EIF2S1

Assembly of the pre-replicative
complex

1.4E-02 PSMD8, PSMD9, MCM7, PSMC4,
PSME3

In summary, C4 contains the highest number of responsive pathways relevant to the B

cell response to Rituximab. As our representative communities, we display the C2 and C4 in

Figure 3.4b, our two largest among the 9 communities with statistically significant pathways.

Our top 10 pathways based on FDR from the Reactome enrichment analysis for C2 and C4

are listed in Table 3.2.
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3.3.6 B Cell Communities Temporal Visualization

The temporal behavior of the B-cell communities in response to Rituximab was more

varied than the sequential cascade observed in the saliva experiment. As illustrated by the

heatmaps of the major communities in Figure 3.5, the modules organize into at least three

distinct temporal response classes.

In these heatmaps, the horizontal axis represents hours post-treatment, and rows corre-

spond to genes. Red indicates up-regulation, while blue indicates down-regulation relative to

time 0.

The three observed pattern classes are:

• Initial Down-Regulation: Some communities, like C0, C4, C3, C6 and C8, are charac-

terized by an initial down-regulation of most member genes, which in some cases trends

up-regulation or back toward baseline at later time points.

• Initial Up-Regulation: A second class of communities, including C5, C2, C1 and C9,

shows the opposite pattern, with a majority of genes being up-regulated at the initial

time points before gradually diffusing or trending downward.

• Sustained or Mixed Response: A third group, such as C7, C10 and C11, displays a

more sustained or mixed response across the time period without a single, dominant

trend.

This class-based modular response suggests that Rituximab induces several distinct, parallel

biological processes rather than a single signaling cascade.
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Figure 3.5: Temporal response patterns of B-cell gene communities following Rituximab
treatment. The panels display gene expression heatmaps for 12 major communities from the
B-cell differential network. The horizontal axis represents hours post-treatment, and rows
represent individual genes. Red indicates up-regulation and blue indicates down-regulation.
The communities cluster into several distinct response classes, including initial up-regulation
(C0, C4, C3, C6, C8), initial down-regulation (C5, C2, C1, C9), and more sustained or mixed
patterns ( C7, C10, C11), indicating a different mode of modular response compared to the
saliva experiment.

.

3.3.7 Community Hubs

We examined the community hub genes for both saliva and B cell DNs, and reported the

degree centrality in their respective Results tables in the ODFs with sheet name “Degree

Centrality”. When two DC values are the same, the genes are tied in rankings in our

consideration as community hubs.

3.3.8 Biological Considerations

In our results, a number of expected pathways emerged. These included pathways

associated with antigen presentation and processing, Class I MHC mediated antigen processing
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and presentation, and ER-phagocytosis, and pathways governing the immunoregulation of

interactions between Lymphoid and non-Lymphoid cells [103]. Further results indicative of the

participation of immune cells, included the CLEC inflammasome pathway in C4. This pathway

is associated with enabling host immune system to mount a fungal/bacterial defense using T-

Helper 17 cells (TH17) [107, 108]. Interferon signaling, cytokine signaling, immune/adaptive

immune, and interleukin stimulation and signaling are all part of a generalized immune

response [109]. We found these more general pathways in the pathway enrichment analysis of

C0, C1, C2, C9, and C10. Interferon signaling is crucial in antiviral defense, cell regulation

and growth, and immune response modulation [110]. Our Reactome pathway analysis results

are consistent with the results of our saliva multi-omics study [88], which observed that

vaccination activates various immune response and regulation pathways, which are also

identified in our present results, including ER-Phagosome pathway, Interferon alpha/beta

and gamma signaling, cytokine signaling, and MHC antigen presentation.

From our community hub gene analysis, a few hub genes are suggestive of community

functionality. Notably, the community C2 hub gene, BIRC2, regulates NF-κB signaling as well

as inflammatory signaling and immunity [111, 112]. For one of the C2 hubs, URGCP, previous

findings indicate that its upregulation and downregulation are significantly involved in the

molecular mechanisms of non-small cell lung cancer [113, 112]. Accordingly, the presence of

the URGCP is consistent with our vaccine targeting the respiratory system. As for community

C3, the IL4R gene encodes interleukin 4 and interleukin 13 to regulate IgE production, which

further activates the JAK/STAT pathway [114]. This pathway orchestrates cytokine receptors,

modulates T helper cell polarization, and also mediates human monocytes/macrophages

[114, 115]. Lastly, in community C5, the EBF1 is known as a leading transcription factor of
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B-cell specification [116]. In summary, IL4R and EBF1 became the most connected gene in C3

and C5, respectively, which implies that these 2 communities are each centered around T cells

(C3) and B cells (C5). Moreover, given that the experimental subject had a post-vaccination

fever at hour 11 [88], at which our C3 heatmap coincidentally peaks (see figure in ODFs),

the hub gene IL4R in C3 appears to relate the fever event with T cell responses.

Regarding our primary B cell results, previous work [117] has established both the

biological pathways and the mechanisms of action associated with Rituximab. These previous

studies have demonstrated Rituximab’s ability to cause antibody-dependent and complement-

dependent cellular cytotoxicity, growth inhibition and apoptosis, and regulation of the cell

cycle. We also expected to observe Rituximab regulations of the B cell receptor (BCR)

based on prior research. Notably, our findings included the enrichment of the nuclear factor

κB (NF-κB) pathways. According to Jazirehi et al. (2005) [82] and Bonavida (2005, 2007)

[118, 119], treating NHL B cell lines with Rituximab inhibits NF-κB’s signaling pathways by

up-regulating RKIP and Raf-1 kinase inhibitors. RKIP has been found to antagonize signal

transduction pathways that mediate the NF-κB activation [120].

Following NF-κB’s down-regulation due to RKIP’s up-regulation, the Bcl-xl expression

is also down-regulated. As a result, tumor cells become more chemosensitive. Rituximab

also decreased the activity of NF-κB-inducing kinase, IkB kinase, and IkB-a phosphorylation.

Finally, the introduction of Rituximab also decreased the activity of the IKK kinase and

NF-κB binding to DNA from 3 to 6 hours after treatment [82].

Among the more general enriched pathways observed are signaling pathways that play

a role in the molecular mechanisms of chemosensitization, which are also impacted by

Rituximab. In line with those effects, we anticipate impacts in the MAPK signaling pathway,
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the interleukin cytokine regulatory loop, and the Bcl-2 expression. Concerning the expression

of genes involved in the healing process, research has uncovered Rituximab’s role in affecting

pathways associated with immunoglobulin production, chemotaxis, immune response, cell

development, and wound healing. Rituximab can also increase existing drug-induced apoptosis

[117].

In our community of C4, for example, our Reactome analysis found 5 NF-κB related

pathways with FDR ă 0.05. Of these 5 pathways, one is shown in Table 3.1; the remaining are

displayed in the comprehensive table in the ODFs (“Results/Bcell results/reactome analysis”

folder). Alongside these NF-κB pathways in C4 is the BCR pathway. Our results suggest

that the C4 community response is highly relevant because of the activation of both NF-κB

and BCR pathways.

Our C2 community appears to be involved with the metabolism of proteins and cellular

responses to external stimuli. Rituximab targets the CD20 B cell transmembrane protein

that is involved in B-cell development, activation and proliferation [117]. The C2 community

captures cell development pathways included in our expectations of more generalized responses.

We also observed relevant responses in other communities. For example, the C8 community

showed activity in the RAF/MAP kinase cascade pathway. In a similar fashion, C10

demonstrated CD22 mediated BCR regulation, classical antibody-mediated complement

activation, FCGR activation, antigen activation of the BCR, and initial complement triggering,

etc. The pathways that emerged in our results are thus consistent and highly overlap with

established pathways from previous studies.

Hub genes most pertinent to B cell/lymphocytes included PELI1 in community C5,

PRDM2, MALAT1, and SND1 in C2. Other high centrality genes with similar relevance
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included MAPK8 in C6 and AFF3 in C1. Among these, PELI1 turned out to be closely

associated with antitumor immunity in B cells, which is the therapeutic goal of the Rituxmab

treatment. A previous study [121] showed that prolonged expression of PELI1 causes

B cell hyperactivation, which, in turn, promotes various lymphoid malignancies. To a

lesser extent, an increased expression of PELI1 can induce BCL6, an oncoprotein known

for advancing lymphomagenesis, for example, B-acute lymphoblastic leukemia and chronic

myeloid leukemia. This pathway has been recognized as a potential therapeutic target for

treating B cell lymphoma. Out of the C2 hub genes, PRDM2 is a tumor suppressor [122],

whereas the upregulation of MALAT1 is linked to tumor cell proliferation and metastasis,

such as leukemia [123]. The protein encoded by gene SND1 is known to interact with Epstein-

Barr virus nuclear antigen 2 (EBNA 2), which is essential for B-lymphocyte transformation

[124]. As an oncogene [125], SND1 has attracted clinical investigation as a cancer treatment

candidate due to its association with cell proliferation, and malignant transformation [126].

The literature also has reported that MAPK8, which we found in community C6, mediates

starvation-induced BCL2 phosphorylation [127], a sign of cell apoptosis, and AFF3, found in

community C1, serves a role in lymphoid maturation and oncogenesis [128]. The fact that

these genes appear as hubs in the Rituximab’s DN is consistent with their known important

roles in B-cell malignancies and merits further investigation.

3.4 Discussion

Our goal was to use a DN approach to identify the activation of biological processes

caused by a perturbation in saliva and primary B cells. This study applied DN analysis,

community identification and Reactome pathway analysis of the DN communities, and
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identified communities with highly statistically significant enrichment. In this study we

implemented a modularity-based community detection, that works with positive correlations.

This is a limitation of the modularity approach to the DN that may be addressed using

different community detection algorithms and merits followup investigations. We analyzed

the DNs of two gene expression datasets where a perturbation was applied: (i) Saliva dataset

(PPSV23 vaccination as perturbation; 24 time points), (ii) Primary B-Cells dataset (ex-vivo

Rituximab drug treatment as perturbation; 6 time points). In summary, our results from the

saliva DN revealed pathway activation in immunological and inflammatory responses. In the

B cell DN, statistically significant pathways were activated in the regulation of transcription,

immune cell survival, activation and differentiation, and inflammatory response.

Streptococcus Pneumoniae’s virulence and associated host immunity have been extensively

studied [129]. The PPSV23 is an inactivated vaccine that uses purified capsular polysaccha-

rides, and is typically administered to older adults (65+) and susceptible younger individuals

[130, 131, 132, 133]. In our analysis, we focused on the vaccine’s potential pathways of

action. Our initial saliva investigation in PPSV23 established that an immune response to

the vaccination can be detected utilizing non-invasive saliva monitoring at the molecular

level [88]. Since aggregate saliva was sampled, we expected that multiple immune cells

contained therein are involved in the observed patterns and associated immune responses.

Based on our previous findings and general vaccine responses, we anticipated the activation

of pathways involved with antigen presentation and processing, regulation of IgM and B/T

cells, Lymphoid cells, MHC molecules, and phagocytosis. We also expected the activation of

pathways of general immune response to stimuli or inflammation.
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3.4.1 Perturbation Induces Temporal Responses

Communities aid in defining the genes’ collective behavior, and observing the collective

behavior of communities in the entire network can clarify relative trends between these

collective behaviors. The generated heatmaps for each community depicted gene regulation for

individual time points, and also displayed trends over time within the identified communities.

The trends we observed in our saliva data were consistent with a time-dependent regulation.

The results suggest a sequence of communities activations (up- and down-regulation) at

individual timepoints, indicative of sequential immune system responses due to the PPSV23

vaccination. In the primary B cell, data were less clear, as fewer time points were monitored,

and also the network was more densely connected. The B-cell heatmaps still indicate overall

trends associated with Rituximab activation (both up- and down-regulation) within the first

7 hrs of the treatment. Our future work will focus on the possibility of establishing a causal

chained signaling response, and associated pathways across these communities.

Our analysis showed the applicability of a DN approach in evaluating time course RNA-seq

data. Specifically, the DN method results in the saliva experiment data were consistent with

our previous work on profiling PPSV23 vaccination responses [88]. For the primary B cell

responses to Rituximab, the DN has found the same signaling pathway as numerous prior

experimental results, thus helping with our validation from a computational perspective.

The DN approach complements prior studies by offering a systems-level network perspective

of aggregate temporal changes due to drug activation. In future work we plan to address

the identification of sequential activation of network communities, as well determining

directionality/causality in such activations.
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Chapter 4. Mean Field Theory of a

Non-Reciprocal Hopfield Network

4.1 Introduction

The Hopfield model [15] is a spin glass model introduced to describe neural networks. It

addresses the issue of content-addressable, or associative, memory, i.e., how some complex

extended systems are able to recover a host of memories using only partial or noisy information.

The statistical properties of the Hopfield models have been extensively investigated (see, e.g.,

[134, 135] for a review of earlier works). In typical Hopfield models, neural interactions are

symmetric, but as Hopfield pointed out [15], the introduction of asymmetric interactions

can result over time in transitions between memory patterns. In addition to the Hebbian

coupling,

Jij “
1

N

p
ÿ

ν“1

ξνi ξ
ν
j , (4.1)

where ξνi , with ν “ 1, . . . , p are spin memory patterns, one can introduce asymmetric

interactions of the form

J 1
ij “

λ

N

q
ÿ

ν“1

ξν`1
i ξνj , (4.2)

with q ă p. With this modification, some of the spin memory patterns become metastable

and can be replaced in time by other patterns. This allows for the storage and retrieval of a

limited number of temporal sequences of spin patterns. While incoherent asymmetry acts as

a noise mechanism that can help stabilize memory retrieval [136], asymmetric interactions

of the form in Eq. 4.2 enable coherent pattern evolution in time. Moreover, the addition

of terms of the form in Eq. 4.2 makes the spin system non-reciprocal. Recent studies have
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examined how non-reciprocity can induce novel classes of phase transitions that cannot be

described using a free energy [137, 138, 19].

Dynamical spin models that can describe coherent temporal sequences, such as the class

of Hopfield models above, are particularly interesting in the study of out-of-equilibrium

processes. These models have recently been applied beyond modeling brain functions to

many biological and biomedical systems, such as models of cell reprogramming [139, 140],

classification of disease subtypes [141], or disease progression models [142, 143]. In particular,

Szedlak et al. [144] used a Hopfield model with both terms in Eqs. 4.1 and 4.2 to describe the

dynamics of gene expression patterns in the cell cycle of cancer and yeast cells. A key finding

of the paper was the necessity of finely adjusting the model’s parameters, specifically the noise

level and the relative strength between symmetric and asymmetric interactions, embodied

by the parameter λ in Eq.4.2. This adjustment guarantees that the model maintains cyclic

behavior while remaining sufficiently responsive to perturbations, such as targeted inhibitions

that result in observable changes. This parameter tuning aligns with the idea of operating at

the ”edge of chaos”, where biological systems exhibit both maximal robustness and sensitivity

to external conditions [145].

Here, we study two-memory Hopfield networks with N -sites, characterized by asymmetric

interactions that drive the system toward a critical threshold of oscillatory instability, a

dynamic process conceptually illustrated in Figure 4.1. The non-reciprocity leads to time-

reversal symmetry breaking and introduces an extended region of criticality in the phase

diagram, a feature typically observed in biological systems [146, 147]. Similar behavior can

be observed in other classes of non-reciprocal kinetic Ising models with on-site interactions

between two different types of spin [148]. These asymmetric models can exhibit noise-induced
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interstate switching leading to non-equilibrium currents or oscillations [149]. Biological

networks often operate far from the N Ñ 8 limit. For instance, the cell cycle program only

involves hundreds of genes. The role of fluctuations and their dependence on N becomes,

therefore, critical in their dynamical behavior. Here, we focus on the role of fluctuations in

dynamical phase transitions to limit cycles. We find that the limit cycle phase is bounded by

two critical lines: a Hopf bifurcation line and a fold bifurcation line. The autocorrelation

function Cpτq on these lines scales as C „ C̃pτ{Nζq, where C̃ are universal scale-invariant

functions and ζ is a dynamical critical exponent previously introduced to characterize out-of-

equilibrium critical behavior [150]. The dynamical exponent ζ “ 1{2 on the Hopf line and

ζ “ 1{3 on the fold line. The sensitivity to an external perturbation of strength F in these

two critical regions also differs. On the Hopf line, the system exhibits enhanced sensitivity

to periodic perturbations resonant with the limit cycle frequency and features a response

time that scales as |F |´2{3. In contrast, an external bias on the fold line can only induce

switches between memory patterns in a limited and controlled way, without ever pushing

the state into sustained limit cycles. Moreover, the characteristic response time is faster and

scales as |F |´1{2. While it was established that Hopf oscillators form a dynamic universality

class relevant in biology, such as in the sensitivity of hair cells in the cochlea [151, 152], the

fold line identifies a distinct critical behavior that could help understanding transitions from

stable points to cycles or more complex multi-step biological programs.

61



Traditional Hopfield Networks

♦  Symmetric Hebbian couplings → static 

attractors (fixed points)

NR Extension
♦ Asymmetric couplings → Cyclic 
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Figure 4.1: Comparison of traditional and non-reciprocal Hopfield network dynamics. (Left)
The panel illustrates a traditional Hopfield network with symmetric Hebbian couplings.
This symmetry creates an effective energy landscape where the dynamics converge to static,
fixed-point attractors (e.g., ξ1 and ξ2 ), all of which represent stored memories. (Right)
The non-reciprocal (NR) extension introduces asymmetric couplings, which break the energy
landscape and allow for persistent, non-equilibrium dynamics. This results in a cyclic attractor,
or limit cycle, where the system’s state continuously rotates through a sequence of patterns
instead of settling. This dynamic behavior is highly relevant for modeling inherently cyclic
biological processes, such as cell cycles and gene regulation, and forms the theoretical basis
for the study in Chapters 4-7.

In Sect. 4.2, we introduce a two-memory non-reciprocal Hopfield model and analyze its

phase diagram in a mean-field approximation. We show that the dynamical phase diagram

is characterized by a cyclic behavior phase, bounded by two critical lines, Hopf and fold

bifurcation lines. In Sect. 5.1 we examine the critical properties of the system on and near

these two lines using analytical methods. We introduce an exact form of the Master Equation

for the system in Sect. 6.1, explicitly accounting for the spin symmetry under pattern

exchange. Based on this Master Equation approach, we explore the system in the large N

limit using a Glauber Monte Carlo procedure in Sect. 7.1 In Sect. 7.1.1, we numerically test
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the critical behavior and dynamic critical exponents derived analytically in Sect. 5.1. Finally,

we summarize conclusions in Sect. 7.2.

4.2 Cyclic Hopfield networks

We consider Hopfield networks with N Ising spins σi “ ˘1 interacting through non-

reciprocal couplings Jij ‰ Jji. We focus on a network encoding two memory patterns, ξ1i

and ξ2i , with couplings of the form

Jij “
λ`

N

´

ξ1i ξ
1
j ` ξ2i ξ

2
j

¯

`
λ´

N

´

ξ1i ξ
2
j ´ ξ2i ξ

1
j

¯

. (4.3)

The term proportional to λ` describes the Hebbian coupling, while λ´ introduces a bias

between the two memory patterns. By applying the Mattis gauge transformation [153] to the

spins σi Ñ ξ1i σi, Jij reduces to

Jij “
λ`

N

`

1 ` ξiξj
˘

`
λ´

N

`

ξj ´ ξi
˘

, (4.4)

where ξi “ ξ1i ξ
2
i , which is equivalent to setting the first memory pattern to all spin up. The

symmetric case, with λ´ “ 0, has been previously introduced and solved by Van Hemmen

[154]. In this two-memory Hopfield network, the N spins separate into two sub-networks,

which we call similarity (S) and differential (D) subnetworks [155]: S corresponding to spins

with ξi “ 1 (i.e. ξ1i “ ξ2i ) and D corresponding to spins with ξi “ ´1 (i.e., ξ1i “ ´ξ2i )). We
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can then define two magnetizations along the two memory patterns:

m1 “
1

N

ÿ

jPS,D

σj (4.5)

m2 “
1

N

ÿ

jPS

σj ´
1

N

ÿ

jPD

σj . (4.6)

4.2.1 Mean field solution

To describe the dynamics of this Ising system we consider the probability pSpσ, tq that a

spin in the subnetwork S has spin σ at time t. This probability satisfies in the large N limit

the equation [156, 157]

BpSpσ, tq

Bt
“ ´pSpσqwSpσq ` pSp´σqwSp´σq , (4.7)

here wSpσq is the spin-flip transition rate. Assuming the system is in a thermal reservoir

with inverse temperature β “ 1{kBT , the spin-flip transition rates take the form

wSpσq “ p1 ´ σ tanh βhSq {2τ0 , (4.8)

where the field hS in the subnetwork S and can be written as

hS “ pλ` ´ λ´qxm1y ` pλ` ` λ´qxm2y . (4.9)

The xm1p2qy are expectation values of Eqs. 4.5 and 4.6, and τ0 is an arbitrary constant

that determines the time scale of Ising dynamics, originally introduced in one dimension by
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Glauber [158] and extended to higher dimensions by Suzuki and Kubo [159]. The equation

for pDpσ, tq, the probability for a spin σ in the differential subnetwork D, is similar to the

one in Eq. 4.7 but with a field:

hD “ pλ` ` λ´qxm1y ´ pλ` ´ λ´qxm2y . (4.10)

A mean-field system of equations for xm1y and xm2y can then be obtained from the

equations for pSpσ, tq and pDpσ, tq as

9xm1y “ ´
xm1y

τ0
`

1

τ0
tnS tanh β rλaxm1y ` λsxm2ys ` nD tanh β rλsxm1y ´ λaxm2ysu ,(4.11)

9xm2y “ ´
xm2y

τ0
`

1

τ0
tnS tanh β rλaxm1y ` λsxm2ys ´ nD tanh β rλsxm1y ´ λaxm2ysu ,(4.12)

where the coupling constants λa “ λ`´λ´ and λs “ λ``λ´ account for the asymmetric and

symmetric components of the interaction, respectively. The coefficients nSpDq “ NSpDq{N

take into account the number of spins in the similarity and differential networks. Unless

indicated, we will assume the case ND “ NS below. To simplify the notation, we drop the

x y and assume mean field variables.

In Figure 4.2, the phase portrait of the mean-field equations is presented. For λ´ “ 0, a

phase transition occurs at βλ` “ 1. This transition separates the paramagnetic phase, (see

orbits in a), from the memory retrieval phase (see orbits in f).

In the latter phase, either m1 ‰ 0 or m2 ‰ 0, and |m1p2q| Ñ 1 when βλ` " 1. Symmetric

steady-state solutions with m1 “ m2 ‰ 0 ď 1{2 are observed for βλ` ą 1. These solutions,

represented as empty circles in f, are mixed memory states equidistant from the two patterns.
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Figure 4.2: Phase portraits (left) and the phase diagram (right) for the two-memory cyclic
Hopfield model. Left: The panel shows the dynamical behavior for different values of λ`

and λ´. The six phase portraits (a to f) show the trajectory dynamics, with green arrows
indicating the vector fields of the derivatives. In e and f, empty circles represent saddle
points, while solid circles denote stable points (sinks). Right: The phase diagram is divided
into three regions of different dynamical behavior: Limit Cycles (diagonal lines with a purple
background), Memory Retrieval (dotted dark green background), and Paramagnetic (vertical
stripes with a light green background). These phases are bounded by bifurcation lines: fold
bifurcation lines (dark green lines) and the Hopf bifurcation (purple vertical line). The
positions of the six trajectory plots (a - f) are indicated by corresponding labels on the phase
diagram.

Such symmetric states are saddle point solutions and are always unstable in a two-memory

scenario. In this reciprocal two-memory model, mixed asymmetric solutions are not permissi-

ble, in contrast to what is observed in Hopfield networks with more than two patterns, as

shown by Amit et al. [160].

Next, we explore how these stable and unstable fixed points change in the presence

of the asymmetric interaction λ´. We rewrite Eqs. 4.11 and 4.12 in compact form as

9m “ F pm, λ`, λ´q, where m is the vector of magnetizations. In a neighborhood of m
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which is a solution of F pm, λ`, λ´q “ 0, we can linearize the mean field equations as

9m “ A ¨ pm ´ m q (4.13)

where the Jacobian matrix A at m can be expressed as

A “

»

—

—

–

´1 ` βλ`∆ ` 2βλ´Γ βλ´∆ ´ 2βλ`Γ

´βλ´∆ ´ 2βλ`Γ ´1 ` βλ`∆ ´ 2βλ´Γ

fi

ffi

ffi

fl

(4.14)

with ∆ “ 1 ´ m1
2 ´ m2

2 and Γ “ m1 m2.

The stability of steady-state solutions is determined by the eigenvalues of the Jacobian

matrix A. This matrix has either two real or two complex conjugate eigenvalues. In the

scenario where m “ 0, the eigenvalues of A are µ˘ “ βλ` ´ 1 ˘ iβλ´, revealing that for

βλ` ă 1 and λ´ ‰ 0, the solution m “ 0 is stable, with focus-type orbits (see b). The line

in βλ` “ 1, where the eigenvalues transition to being purely imaginary is a Hopf bifurcation

line. This line is the projection of the curve defined in pm1,m2, λ`, λ´q by F pm, λ`, λ´q “ 0

and TrrApm, λ`, λ´qs “ 0 on the pλ`, λ´q plane [161].

When βλ` ą 1, the phase diagram splits into two distinct regions, contingent upon

the existence of solutions with m ‰ 0. The boundary between these regions is a fold

bifurcation line (also called saddle-node bifurcation line) derived from projecting the curve

in pm1,m2, λ`, λ´q, defined by F pm, λ`, λ´q “ 0 and DetrApm, λ`, λ´qs “ 0 onto the

pλ`, λ´q plane [161]. Along this line, a single real eigenvalue transitions to zero while its

counterpart maintains a negative value. This behavior can be interpreted as a merging of the

memory retrieval fixed points, which are stable node-type, and the mixed memory states,
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which are saddle points. In this system, the non-reciprocal parameter λ´ shifts the fixed

points, causing four memory retrieval fixed points to approach the mixed memory states

progressively. This convergence facilitates a circular directionality in the orbits, acting as a

harbinger for the limit cycle solutions apparent above the fold bifurcation line, where only

the unstable solution m “ 0 persists.

4.2.2 Near cusp dynamics

The limit cycle phase can be better described by introducing a complex variable z “

m1´ im2. By approximating tanhpxq « x´x3{3 in Eqs. 4.11 and 4.12, we obtain an equation

for zpt{τ0q:

9z “ pΛ ´ 1qz ´
Λ2Λ̄

2
z2z̄ `

Λ̄3

6
z̄3, (4.15)

where Λ “ βpλ` ` iλ´q, the bar indicates complex conjugation and the dot refers to

derivation with respect to t{τ0. The last term in Eq.4.15 is an anti-resonant term, which can

be eliminated using a smooth change of variables:

w “ z ´
hpΛ, Λ̄q

6
z̄3, (4.16)

where hpΛ, Λ̄q “ Λ̄3{p3Λ̄ ´ Λ ´ 2q. By substituting Eq.4.16 into Eq.4.15 and retaining only

terms up to the cubic order in w, we obtain the Poincaré normal form:

9w “ pΛ ´ 1qw ´
Λ2Λ̄

2
w2w̄. (4.17)
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For ρptq “ |wptq|, we can then write:

9ρ “ ρ

„

βλ` ´ 1 ´
pβλ`q2 ` pβλ´q2

2
pβλ`qρ2

ȷ

, (4.18)

which indicates that non-zero steady solutions exist for βλ` ą 1. Focusing near the cusp

point at βλ` “ 1 and βλ´ “ 0 and retaining terms only up to the first order in pβλ` ´ 1q

and βλ´, we find that the amplitude of the limit cycles increases with βλ` as:

ρ20 “ 2pβλ` ´ 1q. (4.19)

To observe the change in the dynamical behavior corresponding to the fold line, we can write

the equation for the phase θptq “ argrzptqs from Eq.4.15, which keeps the anti-resonant term

proportional to z̄3. Then, retaining terms up to the first order in pβλ` ´ 1q and βλ´ we

have:

9θ “ βλ´ ´
βλ` ´ 1

3
sin 4θ. (4.20)

Using this equation, we can determine the period of the limit cycles as:

T

τ0
“

1

4βλ´

ż 8π

0

dθ

1 ´ α sin θ
“

1

βλ´

ż 2π

0

dθ

1 ´ α sin θ
“

2π

βλ´

1
?

1 ´ α2
, (4.21)

where α “ pβλ` ´ 1q{3βλ´. Near the vertical Hopf line, the period is only determined by

βλ´. As we move right in the region with βλ` ą 1, the period increases and then diverges
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when we approach the fold line, which, near the cusp point, corresponds to1

βλ´ “
βλ` ´ 1

3
. (4.22)

1The zero temperature β “ 8 limit of the Eqs. 4.11,4.12 can be studied by noting that tanhβx Ñ sgn x
for β Ñ 8. The only possible values for the steady states m1 and m2 are the ones compatible with the half
sum of two sign functions, which can only give 0, ˘1 or ˘1{2. The solutions with |m1| “ 1 and |m2| “ 0
and vice-versa describe the perfect memory retrieval. Consider the solution m1 “ 1 and m2 “ 0. By
replacing these values in Eq. 4.11, we find 1 “ psgn λa ` sgn λsq {2 which is possible only for λ` ą λ´. If
this condition is violated, the dynamics has limit cycles [157]. The equation for the fold line, which is given
by Eq. 4.22 near the cusp, changes asymptotically to βλ´ “ βλ` for β approaching 8. Also, the unstable
mixed memory solutions with |m1| “ |m2| “ 1{2 exist in this limit only for λ´ “ 0. This can be verified, for
instance, by replacing the solution m1 “ m2 “ 1{2 in Eqs. 4.11 and 4.12, which give sgn λ` ` sgn λ´ “ 1
and sgn λ` ´ sgn λ´ “ 1, and is possible only for λ´ “ 0 .
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Chapter 5. Critical Cyclic Behavior

5.1 Critical Dynamics

To study the effect of fluctuations near the critical lines we modify Eq. (4.15) as

9z “ pΛ ´ 1qz ´
|Λ|2Λ

2
|z|

2z `
Λ̄3

6
z̄3 `

1
?
N
ζptq , (5.1)

where we have included the complex-valued white noise variable ζptq,

xζptqζ̄pt1qy “ Dδpt ´ t1q , (5.2)

to account for noise beyond the mean-field equation. In this section, we put τ0 “ 1 to simplify

the notation. The constant D is phenomenological, and the scaling with the system size N is

chosen to match the standard mean-field equation plus noise for collective models (see, e.g.,

[150]). Let us consider the following distinct regions.

5.1.1 Near the cusp with βλ´ “ 0 and βλ` « 1

In this case, the equation is better represented in terms of m1 and m2. In the absence of

the asymmetric term, the dynamics is governed by a free energy F as

9mi “ ´
BF
Bmi

`
1

?
N
ξiptq, (5.3)

with a real white noise

xξiptqξjpt1qy “ Dδijδpt ´ t1q , (5.4)
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where

F “
r

2
pm2

1 ` m2
2q ` u1m

4
1 ` u2m

4
2 ` 2u12m

2
1m

2
2 . (5.5)

Here r “ 1 ´ βλ` and u1 “ u2 “
pβλ`q3

6 « 1
6 , u12 “

pβλ`q3

2 « 1
2 . Note that the model

exhibits a Z2ˆZ2 symmetry. The phase diagram is determined by the sign of r and u1u2´u212.

Since u1u2 ă u212, there are only three phases: m1 “ m2 “ 0 when βλ` ă 1 and either

m1 ‰ 0 “ m2 or m1 “ 0 ‰ m2 when βλ` ą 1. This is analogous to a multi-critical point in

a magnetic system where anisotropies break the On rotational symmetry along more than

one direction (see, e.g., Sect. 4.6 of Ref. [162]).

To understand the critical behavior at the critical point βλ` “ 1 (and λ´ “ 0), we

consider the stochastic Langevin equation

9m1 “ ´p4u1m
3
1 ` 4u12m1m

2
2q `

1
?
N
ξptq , (5.6)

and a similar equation for m2. The linear term vanishes since r “ 0 at the critical point.

Now, a rescaling of time and field variables,

t̃ “ t{N1{2, m̃i “ N1{4mi , (5.7)

leads to a scale-invariant equation (i.e., independent of N) as

dm̃1{dt̃ “ ´p4u1m̃
3
1 ` 4u12m̃1m̃

2
2q ` ξpt̃q , (5.8)
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and similarly for m2. This observation leads to useful scaling relations. For example, the

two-time correlation function for t, τ " τ0 can be written as

Cijpt, τq “ xmipt ` τqmjptqy „ δijN
´1{2C̃pτ{

?
Nq , (5.9)

where C̃ is a universal scaling function. The Kronecker delta function follows from the Z2ˆZ2

symmetry of the model.

5.1.2 Hopf bifurcation line: βλ´ ‰ 0 while βλ` “ 1

In this case, we use the transformation w “ e´iβλ´tz, and we assume that the oscillation

is sufficiently fast to neglect the anti-resonant terms, which can be viewed as a rotating wave

approximation. The resulting equation for w becomes

9w “ ´rw ´
1

2
|w|

2w `
1

?
N
ζptq , (5.10)

where we have replaced Λ « 1 in the nonlinear term. Note that the rotating wave ap-

proximation is equivalent to the Poincaré transformation in Eq. (4.16) for large βλ´ and

βλ` “ 1. While the Poincaré method is more general and also valid in the small βλ´ limit,

we will discuss this case using the rotating wave ansatz, which provides a more intuitive

interpretation. Interestingly, the symmetry is now Op2q rather than Z2 ˆ Z2. We can still

describe the dynamics by a free energy defined as

F̃ “ r|w|
2

`
1

4
|w|

4 . (5.11)
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Similar approaches have appeared before [163, 148, 164, 165]. Scaling relations similar to the

ones in Eq. (5.7) at the critical point r “ 0

t̃ “ t{N1{2, w̃ “ N1{4w, (5.12)

leads to a scale-invariant equation, and to

xwptqw̄p0qy “ N´1{2C̃pt{
?
Nq . (5.13)

The universal scaling function C̃ differs from the previous case because the underlying

symmetries and the dynamics are different. We will show in Sect. 7.1.1 that this scaling

behavior is consistent with numerical simulations.

5.1.3 Limit cycle phase near the Hopf line

The continuous Op2q symmetry breaking in the ordered (limit cycle) phase in the regime

where the rotating wave approximation applies results in a Goldstone mode, which is

susceptible to noise. Defining w “ ρ0e
iϑ, the dynamics of the phase is given by

9ϑ “
1

ρ0
?
N
ξptq , xξptqξpt1qy “ Dδpt ´ t1q . (5.14)

It then follows that xpϑptq ´ ϑp0qq2y „ Dt{pρ20Nq. Therefore, the oscillations in the limit

cycle phase are suppressed due to noise at any finite N as (restoring z “ eiβλ´tw)

Czpt, τq “ xzpt ` τqz̄ptqy “ ρ20e
iβλ´τ´Dτ{pρ20Nq , (5.15)
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thus oscillations remain coherent up to a characteristic time T „ ρ20N . Below, we will show

how the exact master equation approach and Glauber simulations reproduce this damping

effect for finite systems. Deep in the limit cycle phase and/or closer to the fold line, the limit

cycle dynamics is not uniform (i.e., not governed by a single frequency). However, we later

show that the oscillations are similarly damped.

5.1.4 Fold line

Fluctuations on the fold line can be studied by adding a white noise term to Eq. 4.20.

As one approaches the transition line βλ´ “ pβλ` ´ 1q{3, the frequency of the limit cycle

vanishes, and θ describes a soft mode. After making the transformation θ Ñ θ ` π{8 and

re-scaling noise strength and time using appropriate powers of βλ´, we obtain the stochastic

equation

9θ “ 1 ´ cosp4θq `
1

?
N
ξptq . (5.16)

Expanding around a fixed point, say θ “ 0, we find to the first nonzero order

9θ « 8 θ2 `
1

?
N
ξptq . (5.17)

It follows from this equation that small but negative θ slowly converges to θ “ 0 while small

but positive θ slowly diverges from θ “ 0 before a quick phase slip occurs from 0` Ñ π{2´.

For an initial condition with θpt “ 0q ă 0, the phase variable converges to θ “ 0 as

θptq „ ´
1

8 t
, t Ñ 8 . (5.18)
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The divergence for θ0 “ θpt “ 0q ą 0 is slow as well: the phase variable spends a time of

the order t „ 2{θ0 near θ “ 0 before a quick escape to a value close to, but below, θ “ π{2.

Without noise, depending on the initial condition, the phase variable converges to one of the

fixed points (in the above scenario, it would be θ “ 0, π{2). However, the noise qualitatively

changes this picture.

As shown above, without nonlinearity, the noise will induce a mean square displacement

given by xpθptq ´ θ0q2y “ 2Dt{N . Therefore, even with θ0 ă 0, noise would induce excursions

to θ ą 0, followed by a long plateau, and then a quick slip to π{2´. This is again followed

by a noise-induced excursion to π{2` slightly above π{2, another long plateau, and then a

phase slip to π´, and so on and so forth; see Figure 5.1. The resulting effect is a slow net

rotation of the complex order parameter. Note that this rotation disappears as N Ñ 8 since

the noise is suppressed. The following argument gives the dynamical scaling behavior in

0 20 40 60 80 100
t

0
π/2
π

3π/2
2π

5π/2
3π

7π/2
4π

9π/2

θ(
t)

Figure 5.1: Representative trajectories at the fold transition as a function of t with N “ 1300
and D “ 1. One can notice several features that are absent (deep) in the limit cycle phase:
First, there is a larger variation between different trajectories. This highlights the role of
noise in inducing phase slips. Second, the interval between jumps is rather long, and scales as
T „ N1{3, in this case roughly of the order T „ 10 compared to deep in the limit cycle phase
where it is of order 1. Again this is due to noise as the period should diverge when N Ñ 8.
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N : Suppose we are close to θ “ 0. At short times, the nonlinearity is unimportant, while

the noise induces a displacement of the order of θptq2 „ t{N . At a sufficiently long time t˚,

when θ is sufficiently large, and importantly also positive, the nonlinearity becomes relevant,

making the phase variable diverge from 0`. A slow dynamics of the order 1{θpt˚q is followed

by a quick phase slip before arriving at π{2´. The time scale t˚ (or rather θ˚ “ θpt˚q) is

determined by minimizing (dropping constant factors for simplicity)

ttot “ Nθ2˚ `
1

θ˚
. (5.19)

It follows that θ˚ „ N´1{3 and

t˚ „ N1{3 . (5.20)

This means that the frequency of oscillations (at the critical point) goes to zero as N´1{3.

This behavior is also reflected in the correlation function, which for t, τ " τ0 scales as

Czpt, τq „ ρ20C̃pτ{N1{3
q (5.21)

with C̃ being a scale-free function. This scaling behavior is verified, and the form of the

scaling functions is calculated numerically in Sect. 7.1.1.

5.1.5 Near the fold line

Our discussion has focused on the phase transition exactly at the fold line. We next

discuss what happens slightly away from this line into either the limit cycle or the fixed

memory retrieval phase. In the limit cycle phase, another scale appears away from the phase
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transition, ϵ “ βλ´ ´ pβλ` ´ 1q{3 described by a modification of Eq. 5.16:

9θ “ 1 ` ϵ ´ cosp4θq `
1

?
N
ξptq. (5.22)

The motion is highly non-harmonic and resembles a step-wise rather than a smooth linear

increase of the phase variable (hence, it is not described by a single frequency). Next we

investigate whether the argument leading to Eq. 5.15 still follows and a damping with a

characteristic time T „ N appears. The noise-less version of Eq. 5.22 admits an exact

solution. While the precise form of the equation is not directly used in the following discussion,

we report it for completeness:

θ0ptq “ 2 tan´1 `

ϵ tan
´

2
a

ϵpϵ ` 2qpt ´ t0q

¯

a

ϵpϵ ` 2q

˘

. (5.23)

The characteristic oscillation frequency can then be extracted as ωLC92
a

ϵpϵ ` 2q. To

describe small fluctuations around this (noiseless) solution, we can take t0 Ñ ´fptq and

expand the equation of motion to the first order in fptq. Since fptq “ const is an exact

solution, the expansion only involves the time derivative, and we obtain

4ϵpϵ ` 2q

cos
´

4t
a

ϵpϵ ` 2q

¯

` ϵ ` 1

9f ` Opf2q “
1

?
N
ξptq. (5.24)

Also, we note that

θptq “ θ0ptq `
4ϵpϵ ` 2q

cos
´

4t
a

ϵpϵ ` 2q

¯

` ϵ ` 1
fptq ` Opf2q. (5.25)
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The same prefactor, which we denote by θ1ptq, appears in both equations above. We can

then show that, up to a phase factor due to limit cycle oscillations, autocorrelation function

scales as

|Czpt, τq| „ ρ20e
´ D
2N θ21ptq

şt`τ
t dt11{θ21pt1q

. (5.26)

One can then see that the above term decays with time roughly exponentially (when coarse

graining the features over each cycle) approximately as expp´Dτ{2Nq, as in Eq. 5.15. We

conclude that the latter equation is more general than the assumptions that were used to

derive it, and is likely valid throughout the limit cycle phase. Indeed the above equation

suggests that the anharmonicity in the oscillations can be made uniform by reparametrizing

the time as dt̃ “ dt{θ21ptq, leading to an equation similar to Eq. 5.14 that describes the

dynamics of θpτq.

Near the fold line, the limit cycle frequency scales as ωLC „
?
ϵ. Comparing this with the

behavior on the critical line, where ω „ N´1{3, a rescaled variable ϵN2{3 emerges governing

the crossover between the two limits. This scaling follows from an application of the Arrhenius

law on the other side of the phase transition where the point memory retrieval phase emerges.

To this end, we consider ϵ ă 0 describing the point memory phase. We can approximate the

dynamics by introducing a tilted Sine-Gordon effective potential (see Figure 5.2) :

V pθq “ ´p1 ´ |ϵ|qθ `
1

4
sin 4θ. (5.27)

For ϵ ă 0, a small barrier emerges, whose height scales1 as ∆V „ |ϵ|3{2. Now according

to the Arrhenius law, we find the decay rate given by Γ „ expp´βeff∆V q, where the

1More precisely, V p´x0q ´ V px0q „ |ϵ|3{2 where V 1p˘x0q “ 0.
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ε : −0.5
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Figure 5.2: Effective potential V pθq for different values of ϵ. Depending on its sign, ϵ alters
the steepness in V pθq, thereby affecting system’s stability. A negative ϵ initiates an uphill
start in V , which poses a potential hill for θ as a metastable state till it overcomes the hill.
For ϵ = 0, V starts flat, then slips down at a faster rate than in the negative ϵ scenario. A
positive ϵ triggers an immediate downhill movement in V , swiftly driving the system into the
oscillatory phase at an even faster rate. The two horizontal dashed lines mark the 1st local
minima of the ϵ “ ´0.5 and ϵ “ 0 cases.

effective temperature, characterizing the noise strength, scales as βeff „ N . Therefore,

Γ „ expp´AN |ϵ|3{2q and

Czpt, τq „ e´Γτ . (5.28)

Note that the same scaling variable (|ϵ|3{2N) governs both sides of the fold transition. This

is a known characteristic dependence for fluctuation-induced transitions in nonlinear systems

near bifurcations [166].

5.1.6 External drive

Let us now consider the effect of an external drive on systems at the two critical lines.

We assume that the external drive has the form Feiωt, where ω is nearly resonant with the

cycle frequency, determined by λ´ near the Hopf line, and approaching zero near the fold

line. On the Hopf line, we can shift to a rotating frame by setting w “ e´iωLCtz, which gives
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an equation similar to Eq. 5.10

9w “ ´iδw ´
1

2
|w|

2w ` F (5.29)

with the detuning δ “ βλ´ ´ ωLC while dropping the noise term. By rescaling to units

t̃ “ tF 2{3 and w̃ “ wF´1{3, Eq. (5.29) leads to

wptq9F 1{3w̃ptF 2{3, δF´2{3
q, (5.30)

where w̃ is a parameter-free function. This suggests that, at δ “ 0, the response gain

w{F „ F´2{3 diverges for small perturbations. Therefore, near the Hopf line, the system

behaves like a filter with larger gain for weaker perturbations. This enhanced sensitivity at

criticality is known to be relevant in biological functions, such as in the auditory sensitivity of

hair cells in the cochlea [152]. The scaling analysis also shows that the dynamics at criticality

is slowed down by a factor F´2{3, so while smaller perturbations give enhanced gain, it also

takes longer for the oscillator to respond to the external drive.

The response behavior on the fold line is qualitatively different. Since, without noise, the

system is frozen on the fold line, we consider a constant complex drive F with a fixed phase.

Retaining only the phase dynamics, we find a modified Eq. 5.22

9θ “ 1 ` ϵ ´ cosp4θq ` ImpFe´iθ
q. (5.31)

The term e´iθ can only be ˘1 or ˘i except during a fast switch between the memory pattern.

Consider then a system initially frozen on the fold line (without noise) or in the memory
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retrieval phase with a small ϵ ă 0. The last term in Eq. 5.31 can shift the value of ϵ by

˘ReF or ˘ImF , and a switch happens only if the result is positive. Since the sign of the

shift is state-dependent, the maximum number of memory switches is limited to two. In other

words, a static drive F will never be able to push the system at criticality into a phase with

sustained limit cycles. Such a drive can only switch between memory patterns in a limited

and controlled way. Finally, near an equilibrium position, a scaling analysis shows that

θptq9F 1{2ΘptF 1{2, ϵ{F q (5.32)

at short times before the switch; here, Θ is a parameter-independent scaling function. This

suggests that the response time on the fold line scales as F´1{2 and is faster than the F´2{3

dependence on the Hopf line.
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Chapter 6. Master Equation and Spectral

Analysis

6.1 Master Equation

We now introduce a formulation for the Master Equation to describe the full dynamics

of the network, allowing us to explore exactly the critical behavior studied in the previous

section. Taking into account the separation of the full network into similarity and differential

networks, we can rewrite the probability distribution at time t for a given configuration of all

spins pσ1, σ2, ¨ ¨ ¨ , σN q “ tσiu as:

P ptσiu , tq “ P̃ pMS ,MD, tq, (6.1)

where the variables

MSpDq P

”

´NSpDq,´NSpDq ` 2, ¨ ¨ ¨NSpDq

ı

identify the sum of the spin configuration tσiu over the subnetworks S and D. Each value of

pMS ,MDq is associated with a number of equivalent spin configurations given by:

gpMS ,MDq “

ˆ

NS

N`
MS

˙

˚

ˆ

ND

N`
MD

˙

,

where N˘
MSpDq

“ pNSpDq ˘ MSpDqq{2 indicate the number of spins up or down for a given

MSpDq. This degeneracy can be taken into account by defining a probability distribution

P pMS ,MD, tq “ gpMS ,MDq ˚ P̃ pMS ,MD, tq, (6.2)
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which satisfies:

ÿ

MS,MD

P pMS ,MD, tq “ 1, (6.3)

and its dynamics are determined by the Master Equation:

BP pMS ,MD, tq

Bt
“ Iin ´ Iout, (6.4)

where

Iin “ N`
MS`2w

`
S pMS ` 2,MDqP pMS ` 2,MD, tq ` N´

MS´2w
´
S pMS ´ 2,MDqP pMS ´ 2,MD, tq`

` N`
MD`2w

`
DpMS ,MD ` 2qP pMS ,MD ` 2, tq ` N´

MD´2w
´
DpMS ,MD ´ 2qP pMS ,MD ´ 2, tq ,

Iout “

”

N`
MS

w`
S pMS ,MDq ` N´

MS
w´
S pMS ,MDq ` N`

MD
w`
DpMS ,MDq ` N´

MD
w´
DpMS ,MDq

ı

P pMS ,MD, tq ,

(6.5)

with Iinpoutq as the flux into (out of) the state pMS ,MDq, and the ˘ spin-flip transition rates

defined as

w˘
S pMS ,MDq “

1

2τ0

ˆ

1 ¯ tanh
2

N
rβλ`pMS ¯ 1q ´ βλ´MDs

˙

“
1

2τ0

ˆ

1 ¯ tanh
2β

N
h˘
S pMS ,MDq

˙

, (6.6)

w˘
DpMS ,MDq “

1

2τ0

ˆ

1 ¯ tanh
2

N
rβλ`pMD ¯ 1q ` βλ´MSs

˙

“
1

2τ0

ˆ

1 ¯ tanh
2β

N
h˘
DpMS ,MDq

˙

. (6.7)

The terms MSpDq ¯ 1 in Eqs. 6.6 and 6.7 take into account the exclusion of the spin

self-interaction. Previous studies have explored the effect of including versus omitting self-

interaction terms in Hopfield dynamics [167, 168] and exclusion of self-interactions has been

shown to lead to larger information storage capacities [168]. The effect of the ˘ 1
N is irrelevant
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in the mean-field solutions discussed above, and for the remainder of the paper, we focus on

the case that omits self-interaction.

The single spin flip rates in Eqs. 6.6 and 6.7 can be rewritten in terms of the local energy

change δϵ˘
SpDq

due to a spin-flip:

w˘
SpDq

“

˜

1 ` e
βδϵ˘

SpDq

¸´1

, (6.8)

where δϵ˘
SpDq

“ ´h˘
SpDq

pMS ,MDqδM˘
SpDq

with δM˘
SpDq

“ ¯2. Any cyclic process that starts

from a given spin configuration and involves flipping only spins within either subnetwork S

or D conserves the total energy, resulting in a net energy change of zero. However, when

processes involve spins from both subnetworks S and D, the energy change depends on the

cycle path. Consider, for instance, the two-spin cycle

pMS ,MDq Ñ pMS ´ 2,MDq Ñ pMS ´ 2,MD ´ 2q

Ñ pMS ,MD ´ 2q Ñ pMS ,MDq , (6.9)

where two spins up are sequentially flipped down and then back up, with the S spin flipped

before the D spin. The total energy change in this case is δϵ “ ´16λ´{N . In contrast,

the time-reversed process in which the spin in D is flipped before the one in S results in

δϵ “ `16λ´{N . This path dependence implies the violation of Kolmogorov’s criterion for

the transition rates [169, 170] and, therefore, breaking of the detailed balance principle.

A schematic representation of these state transitions, which form the basis of the Master

Equation and its subsequent Liouvillian formulation, is provided in Figure 6.1.
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Figure 6.1: Schematic of the Master Equation formulation. The evolution of the probability
P pMS ,MD, tq for the system to be in a state with magnetization MS and MD is governed
by the balance of probability flux into (Iin) and out of (Iout) that state. The diagram
demonstrates how single spin-flip transitions connect a central state to its four nearest
neighbors. A spin flip in the similarity (S) or differential (D) subnetwork changes the
corresponding magnetization by ˘2, with state-dependent transition rates given by w. The
Master Equation can also be expressed in a compact Liouvillian operator form as well, as
shown at the bottom.

6.2 Numerical diagonalization of Liouvillian

By enumerating the states using a single index k “ pMS ,MDq we can rewrite the Master

Equation in Eq. 6.4 as:

9P pk, tq “ ´
ÿ

k1

Lk,k1P pk1, tq (6.10)

where L is the Liouvillian matrix. The all-ones vector is always a left eigenvector of the

nonsymmetric matrix L with eigenvalue Λ1 “ 0, which guarantees the probability conservation

in Eq. 6.3, and, for finite N , all the eigenvalues of the Liouvillian have a positive real part.

To study the system’s phase diagram, we focus in Fig. 6.2 on the second smallest eigenvalue
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Λ2 and its dependence as a function of N . Note that the real part of Λ2 remains nonzero

in the region βλ` ă 1 of the phase diagram in Fig. 4.2, corresponding to the paramagnetic

phase. For βλ` ą 1, the real part of Λ2 converges to zero, allowing for the memory retrieval

of a constant magnetization value as N Ñ 8. The imaginary part of Λ2, on the other hand,

changes its behavior as a function of N for βλ` „ 1.3, which is near the fold line of the

mean-field model, separating the limit cycle and the memory retrieval phases where the

oscillations disappear. Observing the sharp features of the diagram in Fig. 4.2 by analyzing

Figure 6.2: Real and Imaginary part of the second smallest eigenvalue of the Liouvillian
matrix, Λ2, as a function of βλ` for a fixed value of βλ´ “ 0.17 and NS “ ND “ N{2.
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the eigenvalues of the Liouvillian is computationally demanding, and even for N “ 80,

resulting in an L of dimensions 1681 by 1681, the transitions in Fig. 6.2 are not sharply

defined. Below, we will implement a Glauber Monte Carlo algorithm that allows us to explore

significantly larger N .

6.2.1 Exact expectations and correlation functions

The Liouvillian matrix can be used to calculate exact expectation and correlation functions.

For instance, given a probability distribution at t “ 0, P pk, 0q, the average magnetization

along the first memory pattern as a function of time can be calculated as

xm1ptqy “
1

N

ÿ

k

rM1sk P pk, tq , (6.11)

where

P pk, tq “
ÿ

k1

”

e´Lt
ı

k,k1
P pk1, 0q , (6.12)

and M1 “ MS ` MD. Similarly, the two-time correlation function for M1 can be defined as

C1,1pt, τq “
1

N2

ÿ

k,k̄

rM1sk̄ rM1sk P pk̄, t ` τ ; k, tq. (6.13)

The joint probability P pk̄, t ` τ ; k, tq can be rewritten as

P pk̄, t ` τ ; k, tq “ P pk̄, t ` τ |k, tqP pk, tq, (6.14)

where P pk̄, t ` τ |k, tq is the conditional probability of the system to be in state k̄ at time

t ` τ , given it was in state k at time t. This conditional probability can be calculated by
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shifting the initial condition t Ñ 0 and using

P pk̄, t ` τ |k, tq “
ÿ

k1

”

e´Lτ
ı

k̄,k1
P pk1, 0q , (6.15)

with the initial probability set to P pk1, 0q “ δk1,k . The two-time correlation can then be

expressed as [159]

C1,1pt, τq “
1

N2

ÿ

k

xM1pτqyk rM1sk P pk, tq, (6.16)

where

xM1pτqyk “
ÿ

k̄

rM1sk̄

”

e´Lτ
ı

k̄,k
(6.17)

is the expectation of M1 at τ given having been in configuration k at t “ 0. Similar averages

and two-time correlations can be defined for other quantities such as M2 and Z “ M1 ´ iM2.

Figure 6.3 shows the exact xm2ptqy for different values of N calculated using the Liouvillian.

The initial state was configured such that m1p0q “ 1 and m2p0q “ 0, with the parameters

βλ` “ 1.3 and βλ´ “ 0.17. This positions the system slightly above the fold line in the phase

diagram of Figure 4.2. Figure 6.4 shows the two-time correlation function for M2, denoted

as C2,2pt, τq. The function is dependent on N as well. In smaller systems (N “ 50, 100),

C2,2pt, τq quickly drops to zero, indicating that M2pt ` τq becomes uncorrelated with M2ptq

as τ increases due to fluctuations, while in larger systems, oscillations in C2,2pt, τq emerges.
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Figure 6.3: Exact xm2ptqy solved from the master equation for different system sizes N
with βλ` “ 1.3 and βλ´ “ 0.17. As N increases, the oscillations become slower and more
pronounced.
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Figure 6.4: Two-time correlation function C2,2pt, τq for M2 at t “ 15, βλ` “ 1.3 and
βλ´ “ 0.17, for various N . As N increases, C2,2pt, τq exhibits defined oscillations.
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Chapter 7. Monte Carlo Validation with

Glauber Dynamics

7.1 Glauber Dynamics

In parallel with deriving the master equations for P pMS ,MD, tq, we implemented a

Glauber dynamics that utilizes the division into subnets, rather than relying on random spin

flips across the entire network. This adaptation not only provides a direct comparison with

the predictions of the master equations but also allows us to examine much larger systems.

Major features and contributions of this computational approach are:

• The algorithm circumvents the need to store the state of all N individual spins. Instead,

the system’s configuration is tracked using only the total magnetizations of the similarity

(MS) and differential (MD) subnetworks.

• This implementation reduces the memory complexity of the simulation from OpNq to

Op1q, which makes it feasible to simulate systems with very large N (up to 105 and

larger in this work)

• The method is a direct numerical realization of the stochastic process described by the

Master Equation in Chapter 6. The transition rates for spin flips are calculated using

the exact same formulation, ensuring consistency between the analytical theory and

the computational validation .

Specifically, in our implementation we consider the total magnetizations M1 “ MS ` MD

and M2 “ MS ´ MD. Each Monte Carlo step involves a probabilistic decision to flip a

spin within one of the two subnets, with the selection between S and D being randomized.

The corresponding transition rates, as defined in Eqs. 6.6 and 6.7, incorporate the effects of
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λ` and λ´. Our implementation tracks these magnetizations at intervals of N iterations.

Below we show results from our simulations where we varied network sizes N , with additional

adjustments in interaction strengths λ` and λ´. We focused on assessing the system’s

finite-size effects and convergence towards the mean field solutions.

0 50 100 150 200 250 300 350

t/τ0

−0.5

0.0

0.5

m
2

Mean Field
N : 100
N : 1000
N : 10000
N : 100000

Figure 7.1: Magnetization m2ptq in Glauber dynamics as it approaches the mean field
solution. Each dashed line with markers represents a single realization for system sizes
N “ 100 (blue circles), 1, 000 (orange triangles), 10, 000 (red crosses), and 100, 000 (green
diamonds) at βλ` “ 1.3 and βλ´ “ 0.17, compared to the mean field solution (solid black
line). As N increases, the simulations match the mean field predictions, with larger systems
nearly overlapping with the mean field curve.

Figure 7.1 illustrates the convergence of the Glauber dynamics toward the mean field

solution for N Ñ 8. The observations are consistent in both m1ptq and m2ptq. At N “ 100,

deviations from the mean field solution are notable, particularly in the oscillation frequency

and noise levels. As N increases to 1, 000 and 10, 000, the discrepancies between the

simulations and mean field solutions decrease, with progressively smoother magnetization

dynamics. At N “ 10, 000 and 100, 000, stochastic effects significantly recede. In these larger

systems, the dynamics closely resemble those of an infinite, continuous medium.

While individual realizations of Glauber dynamics for very large N align well with the
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Figure 7.2: Average magnetization, m2ptq in Glauber dynamics over 1,000 realizations. The
N “ 100 system shows a significant decay within approximately two periods. At N “ 1, 000,
the oscillation initially matches the mean field period but begins to shorten around t{τ0 “ 400
while damping out. A larger system exhibits prolonged oscillation persistence, yet still with
a noticeable damping. The largest N (the green curve) approximates an infinite system and
more closely recovers the oscillations of the mean field solution.

mean-field solution, smaller systems exhibit significant variability. A comparison between

ensemble-averaged simulations and the mean-field solution reveals damping as a net result of

averaging over realizations. In Figure 7.2, the averaged m2ptq displays oscillation damping,

even in relatively large systems. This damping effect due the ensemble average remains

pronounced even in a relatively larger system with N “ 1, 000. As expected, larger systems

recover the mean field oscillation amplitude and maintain persistent oscillations over an

extended range.

Figure 7.3 contrasts the ensemble-averaged magnetization m2ptq from Glauber dynamics

simulations with the exact Liouvillian solution of Figure 6.3. As the sampling increases, the

stochastic ensemble mean converges towards the Liouvillian dynamics, demonstrating the

equivalence between the statistical expectations of stochastic processes and the deterministic
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Figure 7.3: Equivalence of the master equation solution and averages of Glauber dynamics.
System parameters and initial conditions are same of those in Figure 7.1 and 7.2: βλ` “ 1.3,
βλ´ “ 0.17, m1p0q “ 1, and m2p0q “ 0. The system has 100 spins in each subnet S and D,
totaling N “ 200. Colored dashed curves represent the averages from Monte Carlo simulation
runs. As the sampling size increases, the average trajectory of all stochastic paths converges
to the Liouvillian solution.

predictions derived from the master equation. For larger sampling (purple and green trajec-

tories), the averaging of individual dynamics leads to destructive interference and damped

oscillations. A single realization (blue trajectory) still preserves the characteristic oscillation

within the limit cycle regime, albeit with inconsistent periods. This can be attributed to the

high susceptibility to noise in smaller systems. Our simulation was limited to N “ 200, a rel-

atively small configuration, due to the computational expense associated with the Liouvillian

matrix calculation, as discussed above.
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7.1.1 Numerical tests of critical behavior

In this last section, we test the predictions obtained using Langevin’s equations in Sect.

5.1 with Glauber numerical simulations. We focus first on predictions related to the fold line.

The first observation from Eq. 5.21 is that the oscillations of the autocorrelation function for

a system exactly on the fold line are purely driven by fluctuations and are characterized by a

period that scales as N1{3. We show this behavior in Figure 7.4, where after rescaling the

delay time τ by N1{3, the autocorrelation functions calculated numerically with N ranging

from N “ 1000 to N “ 50000 collapse to a single universal function. The autocorrelation

is calculated starting at t “ 100τ0 to remove transients related to the choice of the initial

conditions. The expected scaling behavior is observed for the real and imaginary components

of the autocorrelation of z “ m1 ´ im2.
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Figure 7.4: Autocorrelation on the fold line at βλ` “ 1.25 and βλ´ “ 0.1025. For different
values of N . The time axis is scaled according to Eq. 5.21 to show collapsing into a single
function. The absolute value of the autocorrelation decays purely exponentially, while its
real and imaginary components show underdamped oscillations.

The second prediction relates to the response of a system on the fold line to an external

drive and its dependence on the strength of the drive, F . According to Eq. 5.32, we expect
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that in the limit of large N where the noise-induced switching is suppressed, the characteristic

time for switching scales as F´1{2. We tested this behavior in Figure 7.5, where we show the

rotation of the angle θ “ arctanm2{m1 right after the activation of a constant field F in a

system initially at m2 “ 1. The constant F pushes the state towards m1, and the amplitude

of rotation and its time dependence scale as predicted by Eq. 5.32 in the limit of small θ.

Figure 7.5: θ rotations following the activation of a constant F for a system of N “ 106 on
the fold line with βλ` “ 1.25 and βλ´ “ 0.1025. Time and angles are rescaled according to
Eq. 5.32, which is valid for θ ! 1.

We also find N -dependent damped oscillations for the autocorrelation function on the

Hopf bifurcation line. This is consistent with the scaling relation obtained in Eq. 5.13 using

a rotating wave z̃ “ e´iβλ´tz. Figure 7.6 shows how, by rescaling the autocorrelation in

amplitude and time, simulation runs for networks of different sizes N collapse into a universal

function. We have verified that this behavior holds for different values of βλ´ along the Hopf

line.

Finally, we numerically studied the behavior of the autocorrelation functions slightly

outside the critical lines, identifying two distinct behaviors. Near the Hopf line and above the
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Figure 7.6: Hopf critical exponent: βλ` “ 1.0, βλ´ “ 1.7. The time axis and autocorre-
lation are scaled according to Eq. 5.13 to show collapsing into a single function.

fold line, the damping of the autocorrelation is associated with a characteristic time T that

scales linearly with N , following the analytical predictions of Eqs. 5.15 and 5.26. In contrast,

below the fold line, in the regime where memory retrieval is effective, the characteristic time

increases exponentially with N , as described by Eq. 5.28. Figure 7.7 presents the results

of numerical simulations where the decay of the autocorrelation function was fitted to an

exponential model with a characteristic time T .
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Figure 7.7: Characteristic decay times of autocorrelation near the Hopf line and above
the Fold line grow linearly with N , following predictions of Eqs. 5.15 and 5.26. Below the
Fold line, the decay time grows exponentially with N , following Eq. 5.28. Errors in the data
are too small to be visible and have been omitted for clarity. The fits for all three regimes
indicate strong statistical agreement between the data and the respective fitted models, with
R2 values of 0.969 (near Hopf), 0.980 (above Fold), and 0.993 (below Fold).
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7.2 Conclusions

Several biological processes evolve through multi-step sequential transitions. Hematopoiesis,

for instance, is a multi-step cascade that starts with stem cells and progresses through oligopo-

tent and lineage-committed progenitors. Similarly, central pattern generators are neural

circuits producing rhythmic or periodic functions such as breathing or walking. Another

example is the cell cycle, which consists of a finely-tuned sequence of cellular phases. From

a theoretical perspective, developing and understanding effective models that can address

questions related to these biological sequential transitions is important. For instance, are

these transitions controlled by intrinsic or extrinsic factors? What is the role of stochasticity,

and how does it scale with the number of involved components? Are there critical regions

that separate phases of different behaviors and exhibit some scale invariance properties? Are

there critical regions of the phase space with enhanced sensitivity to external perturbations?

The two-memory non-reciprocal Hopfield model studied here addresses many of the above

questions. Switching is encoded through non-reciprocal interactions that modify Hebbian

coupling. In this N -body system, we explore the effects of the number of components, N ,

and noise. We found that two distinct regions of critical behavior emerge at the interface of

different dynamical phases. We identified and studied these regions, which correspond to

Hopf bifurcations and fold bifurcations. Previous studies have explored the hypothesis that

some biological systems operate at Hopf bifurcation criticality. However, behaviors near the

fold line could explain other biological phenomena involving state switching. The dynamic

scaling behavior, marked by different critical exponents ζ in the autocorrelation function,

suggests these two regimes are qualitatively distinct. Furthermore, we showed that sensitivity
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to external signals varies significantly. Specifically, in the Hopf bifurcation line, the system is

sensitive to perturbations resonant with the limit cycle frequency. In contrast, perturbations

to a system in the fold line do not induce sustained limit cycles but enable controlled state

switching. The time required to respond to perturbations also differs, scaling faster in the

fold line than in the Hopf line.

The model studied here can be generalized to more than two patterns. For a system

encoding p patterns, the N spins partition into 2p ´ 1 subnetworks, analogous to the division

into similarity (S) and differential (D) spins introduced earlier. For instance, in Ref. [144],

four patterns were used to extend the Z2ˆZ2 (C4) model considered here to the C8 symmetry

case. A modification of the interaction using a Moore-Penrose pseudoinverse matrix of spins

and patterns [168] was also used in that paper to reduce errors due to correlation among

the memory patterns. However, for larger p, the model’s ability to recover sequences of

patterns quickly diminishes [135]. One way to address this limitation involves introducing

a delay in the switching term [21], which could be realized through a modulation of the

interaction, as recently explored by Herron et al. [171]. Hopfield networks do not need to

be complete networks for memory retrieval. For instance, in random asymmetric networks,

memory retrieval is preserved when the average network connectivity is above a critical value

[172]. This property can be exploited to integrate the models with additional biological

information. For example, in Ref.[155], the wiring of gene regulatory networks was combined

with the memory retrieval property of the Hopfield model to identify bottleneck genes more

susceptible to cell state switching. Another exciting extension involves defining branching

points for memory patterns. Instead of cycles or fixed points, one can represent dynamics in

which a memory pattern ξ1 can transition into ξ2 or ξ3 patterns. This can be implemented by
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adding a random switch in the Glauber dynamics that randomly chooses between ξ2 and ξ3

in the dynamics. This approach was implemented in Ref.[143] to model the random switching

between clonal states in disease progression.

While the present study has been motivated by biological questions, Hopfield networks

with dilute memory patterns (i.e., p ă log2pNq) have been explored in the presence of a

transverse field on the x-axis, which renders the system quantum mechanical [173]. Although

non-reciprocity in physical systems is less common than in biological settings, integrated

photonics systems can be engineered to exhibit real space asymmetric coupling [174]. Non-

reciprocity resulting from quantum mechanical effects in coupled parametric oscillators has

also been recently demonstrated [174]. Studying these physical systems in critical regions

near oscillatory instability could help understand the effects of noise and driving in truly

out-of-equilibrium systems. Hopfield networks and their modern improvements [175] have

also received renewed attention due to their connection to machine learning and artificial

intelligence. For instance, new message-passing algorithms for Restricted Boltzmann Machines

(RBM) have been proposed based on the mapping of Hopfield networks to RBM by a Hubbard-

Stratonovich Gaussian transformation [176, 177]. Moreover, Hopfield networks have been

suggested as a better alternative to the attention mechanism used in transformers [178].

Since the attention mechanism is the key innovation of the transformer architecture [179], a

fundamental understanding of the properties of symmetric and asymmetric Hopfield neural

networks could suggest more powerful architectures for AI applications.

7.2.1 Code Availability

The code developed for chapter 4–7 is available on GitHub and has been archived with

a persistent identifier [1]. The repository can be accessed at https://github.com/shuyue13/
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non-reciprocal-Hopfield or through Zenodo (DOI: 10.5281/zenodo.16503490)
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Chapter 8. Conclusions

Many complex adaptive systems, from immune networks to neural circuits, rely on modular

architectures and non-reciprocal interactions to generate context-specific responses to external

stimuli. This dissertation has addressed the fundamental question: How do modular structure

and asymmetric couplings jointly shape the dynamics of such networks, and what theoretical

framework can elucidate the underlying mechanisms?

To answer this, we pursued two complementary research tracks — (I) a data-driven

Differential Network (DN) analysis of high-throughput gene-expression time series, and (II) a

theoretical study of non-reciprocal Hopfield networks. Together, these tracks illuminate both

the observable modular reorganization and the underlying dynamical mechanisms that could

drive such behavior.

Having laid the empirical foundations in Chapters 2–3 (Track I) and the theoretical

foundations in Chapters 4–7 (Track II), we now synthesize their key findings and contributions

and outline future directions that could further deepen our understanding of modular networks

and their adaptive responses.

8.1 Track I: key findings and contributions

Track I employed DN analysis to investigate how biological networks reorganize after

external perturbations. The saliva dataset tracked innate immune responses to PPSV23

vaccination, whereas the B-cell dataset monitored responses to Rituximab treatment. Louvain

community detection, combined with temporal ordering and pathway enrichment, yielded

the following insights.

• Modular temporal organization. In the saliva network we retained 15 communities
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of size ě 4. Ranking each module by the peak time of its ∆-expression heat-map

revealed a clear cascade C6 ÑC9 ÑC8 ÑC2 ÑC0, C11 Ñ . . .ÑC1, suggesting that

early-responding modules may trigger later ones. In contrast, the B-cell network (14

communities retained after component and size filtering) exhibited three broad temporal

pattern classes rather than a single cascade, hinting at heterogeneous sensitivity to

Rituximab.

• Functional enrichment confirmation. Reactome and KEGG analyses showed that

each community possesses a coherent biological signature (e.g. innate-immune signalling,

metabolic regulation, or stress responses) highlighting how modular organization enables

specialized yet coordinated functionality.

• Structure–function correlations. Hub-gene analysis pinpointed clinically relevant

drivers. In saliva, IL4R peaks in community C3 exactly when the subject recorded

fever, spotting gene-level changes to physiology. In B cells, the oncogene PELI1 serves

as a hub in community C5; as an E3 ubiquitin ligase that amplifies TRAF-mediated

NF-κB activation, its prominence suggests that Rituximab may also modulate this

pro-survival axis.

• Conceptual insights into inter-modular dynamics. We propose that network

modules engage in a sophisticated choreography of cross-talk rather than acting in

isolation. This conceptual framework, validated by observing staggered activation

patterns and module-specific pathway enrichments, offers a novel lens for understanding

how biological systems mount targeted responses while preserving essential functions.

• Methodology contribution. We released a fully reproducible DN-analysis pipeline

(authored by Shuyue Xue): https://github.com/gmiaslab/DifferentialNetworks which
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integrates alignment-free quantification, community detection, heat-map ordering, and

enrichment statistics — advancing the methodological toolkit available for future multi-

condition time-series studies.

8.2 Track II: key findings and contributions

While DN analysis documents whatchanges, it cannot by itself explain how interactions

among subnetworks drive the global network’s dynamic responses. Motivated by the empir-

ical observations of Track I, Track II employed techniques from statistical mechanics and

dynamical-systems theory to build a non-reciprocal Hopfield network— an infinite-range

Ising model with asymmetric couplings that naturally supports multiple attractors and

limit-cycle dynamics. This theoretical paradigm allowed us to probe how internal differentia-

tion (similarity vs. differential subnetworks), stochastic noise, external drive, and coupling

asymmetry shape collective behavior.

In this theoretical pursuit, the dissertation makes the following contributions to Hopfield

theory and, more broadly, to systems with non-reciprocal interactions. Both are significant

area within theoretical condensed matter physics and statistical mechanics.

• Phase topology and bifurcations. Mean-field fixed-point analysis unveils a phase

diagram with three dynamical regimes — paramagnetic, memory retrieval, and limit-

cycle — separated by a Hopf line (given by TrrAs “ 0) and a fold line (given by

detrAs “ 0), where A is the Jacobian of the mean-field map at the fixed point; both

symmetric (λ`) and asymmetric (λ´) couplings control the transitions.

• Critical behaviour (beyond mean-field). A stochastic centre-manifold treatment

of the critical lines yields dynamical exponents ζ “ 1
2 (Hopf) and ζ “ 1

3 (fold), with
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response-time scalings |F |´2{3 and |F |´1{2, respectively, and predicts a limit-cycle

coherence time T „ N within the oscillatory phase.

• Exact finite-N kinetics. A Master-Equation/Liouvillian diagonalisation exact system-

size-dependent relaxation spectra and two-time correlation functions, bridging micro-

scopic spin-flip rules to macroscopic observables.

• Efficient Monte Carlo Scheme & Numerical Validation We devised a subnetwork-

partitioned Glauber Monte-Carlo algorithm that randomly updates spins in the similarity

subnetwork and in the differential subnetwork, which exploits the resulting block

structure in the coupling matrix. This reduces per-step complexity and enabled

simulations up to N “ 105 and even larger in scale. The resulting trajectories confirm

all analytical scaling laws and capture the damping of limit-cycle coherence at finite N .

8.3 Future Directions

The central question that threads this dissertation together is how to fuse data-driven

network structure with the parameters and dynamics of non-reciprocal Hopfield-like models.

A natural future direction is therefore to build a more explicit unifying framework that maps

empirical differential-network communities onto model architecture. Or conversely, using the

phase diagram to generate testable predictions about which parameter should be tuned.

Equally important is broadening the theoretical model space toward greater biological

realism. Incorporating nested or overlapping modules, hierarchical organization, or adaptive

learning rules would allow the model to capture developmental plasticity and long-term

re-wiring. Such extensions promise not only richer dynamical phenomena but also a tighter

feedback loop with experiments, where hypotheses about specific interaction mechanisms
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can be validated or refined. Taken together, these avenues move us toward an integrative

framework in which empirical network analysis and non-equilibrium theory mutually inform

and constrain one another.
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APPENDIX

NOTE ON TERMINOLOGY

Here are the primary terms used interchangeably throughout the dissertation, grouped by

their shared meaning in the context of this work.

Community / Module / Cluster A group of nodes (e.g., genes) in a network that

are more densely connected to each other than to the rest of the network. In this work,

they often represent functionally related biological units.

Network / Graph A mathematical representation of a system consisting of nodes (or

vertices) and the edges (or links) that connect them.

Asymmetric / Non-Reciprocal Describes interactions in the Hopfield model where

the influence of node i on node j is not equal to the influence of j on i (Jij ‰ Jji). This

condition is what allows for the emergence of non-equilibrium, cyclic dynamics.

Spin / Neuron / Node / Site The fundamental, interacting units of a network model.

In the context of the Hopfield model (Chapters 4-7), these terms are used interchangeably

to refer to the N individual Ising variables of the system.
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