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ABSTRACT

Accreting neutron stars in low-mass X-ray binary (LMXB) systems provide an avenue for studying

the thermal properties of the crust and core. When material falls onto a neutron star’s surface,

the matter in its outer layers is compressed and nuclear reactions are induced. In quasi-persistent

transient systems, accretion outbursts last years to decades followed by periods of quiescence that

can last years to decades. During an outburst, the accretion-induced reactions heat the crust out

of thermal equilibrium with the core. When accretion ends, the core cools back into thermal

equilibrium with the core which we can observe as a decrease in surface temperature: the cooling

curve. The shape of the cooling curve depends on the thermal properties of the crust.

In this work, I model the thermal evolution of the crust using dStar. By fitting dStar models

to observed cooling curves, we can estimate the properties of the crust such as the core temperature

(𝑇c), the impurity of the composition (𝑄imp), and the accretion-induced heating in the shallow layers

(𝑄sh) and depths of the crust (𝑄in).

Prior to this work, the cooling curves of several LMXBs have been independently analyzed. It

is unknown to what extent different neutron stars share crust properties, such as composition and

accretion-induced heating. In this thesis, I perform joint fits of five LMXBs, where I simultaneously

fit the cooling curves of all sources with the value of 𝑄imp, 𝑄sh, or 𝑄in being shared across all

sources. I compare the goodness-of-fit of the joint fits to independent fits for each source. I

find that jointly fitting 𝑄imp or 𝑄sh has little impact on the quality of the fits, suggesting that the

sources either do share the same value for these parameters or that the data does not sufficiently

constrain them. When jointly fitting 𝑄sh, the quality of the fits significantly decreases, suggesting

that different sources must have different values of 𝑄sh.

The predicted composition, accretion-induced heating rates, and location of heat release depend

on the behavior of free neutrons in the deep crust. Crust models that allow free neutrons to diffuse

throughout the inner crust predict that the crust is more pure and the inner heating rate is lower

than models that do not. Additionally, some nuclear models predict the existence of non-spherical

“pasta” phases of nuclear matter at the bottom of the crust. A pasta layer acts as a thermally



insulating layer in thermal evolution models and its presence affects the rate of cooling. I compare

models that allow neutron diffusion to those that do not, and models with pasta layers to those that

do not by estimating the Bayesian evidence with nested modeling. I find that the cooling curves

of the five LMXBs to which I fit the models do not consistently favor the same models. This is

inconsistent with expectations because the the existence of pasta and diffusion of free neutrons

depend solely on the local density; in particular, they are not expected to depend on the accretion

history and therefore should not differ among neutron stars.
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CHAPTER 1

INTRODUCTION

Neutron stars, which result from core-collapse supernovae, have played an important role in the

development of astronomy and nuclear physics and are essential in advancing our understanding

of stellar evolution and nuclear physics. They allow us to study matter in extreme conditions, in

particular at high densities.

Neutron stars are observed in all bands across the electromagnetic spectrum. They were the

first non-solar sources of X-rays detected and are the brightest point sources of X-ray and 𝛾-ray

emission. In recent years, binary mergers of neutron stars have produced detectable gravitational

waves. They also sit in an important place in our understanding of stellar evolution. As one possible

remnant of core-collapse supernova, they mark an end stage in the evolution of massive stars, and

during binary mergers contribute to heavy element nucleosynthesis.

With masses and radii of about 1.4𝑀⊙ and 10 km, respectively, neutron stars contain the densest

matter in the universe. Their surface gravity exceeds 1011 times that of the Earth, and their gravity

is significantly non-Newtonian. The matter in their cores may reach densities 10–20 times that

of a heavy atomic nucleus. Because of their extreme densities and gravity, neutron stars lie at

the intersection of many branches of physics including nuclear physics and general relativity. In

addition, neutron stars are host to a wealth of plasma processes and (magneto) hydrodynamics.

Their extreme central densities make neutron stars especially appealing for testing theoretical

models of cold, dense matter. The conditions in their cores are so far from terrestrial conditions

that experimental data provides limited information that can describe the matter there (see Figure 1.1

for a schematic of the phase space explored by heavy ion collisions compared to neutron stars). The

interiors of neutron stars are at high baryon chemical potential (i.e., super-nuclear density) and low

temperature. As such, they are complementary to the conditions probed by heavy-ion collisions,

which are at low chemical potential and high temperature. Under these conditions, other forms of

matter (kaons, hyperons) could appear or the matter could be described in terms of quarks.

We don’t need to look only at the core to find interesting nuclear physics processes. In the crust
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Figure 1.1 Schematic of the chemical potential-temperature phase space.

and envelope, the layers outside of the core, the matter is still in an environment of strong gravity

and its density spans over 14 orders of magnitude. In particular, neutron stars in binary systems

that accrete matter from a companion exhibit many interesting nuclear processes in their outer

layers. The continual accretion of matter induces nuclear reactions throughout the outer layers of

the neutron star on timescales ranging from seconds to centuries.

Additionally, the electromagnetic emission that we observe from a neutron star originates at the

surface. So in order to properly interpret the observational data necessary for probing the physics

of the interior, we need to understand the properties of the outer layers. One way of studying the

properties of the crust is to observe the thermal evolution of a neutron star after a period of active

accretion.

1.1 History

Our understanding of neutron stars has been closely tied to the development of nuclear physics.

Baade & Zwicky (1934) first theoretically predicted the existence of neutron stars just two years after

the discovery of the neutron (Chadwick, 1932). For the next three decades, neutron stars remained

firmly in the realm of theoretical curiosities. Tolman (1939) and Oppenheimer & Volkoff (1939)

independently derived the equation for hydrostatic equilibrium of a spherically symmetric star in the

framework of general relativity, known as Tolman-Oppenheimer-Volkoff (TOV) equation. Given

an equation of state (EOS), which describes the relationship between pressure and density 𝑃(𝜌),

one can integrate the TOV equation to obtain the mass-radius relationship 𝑀 (𝑅) of neutron stars.
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Oppenheimer & Volkoff (1939) further showed that the TOV equation implied a maximum stable

mass for a given EOS. Assuming neutron star matter was composed of non-interacting degenerate

neutrons, they calculated a maximum mass of 0.7𝑀⊙. Cameron (1959) calculated a maximum

mass of about 2𝑀⊙, with an EOS derived using the nuclear potential of Skyrme (1958). Pulsars

in neutron star-white dwarf binaries have been measured to have masses up to ≈ 2𝑀⊙ (Demorest

et al., 2010; Antoniadis et al., 2013); see Özel & Freire (2016) for a review. These measurements

provide evidence for a repulsive strong force at supranuclear densities.

The first widely accepted direct detection of a neutron star came in 1967, when Jocelyn Bell,

a student of Antony Hewish at the University of Cambridge, discovered a rapidly pulsating radio

source using the recently constructed Interplanetary Scintillation Array (Hewish et al., 1968)1.

Three other similar pulsating sources were discovered in the following months. Hewish et al.

proposed that they were either oscillating white dwarfs or neutron stars. Pacini (1967) and Gold

(1968) independently proposed that these pulsating radio sources, or pulsars, were rotating magne-

tized neutron stars. Because of the extreme regularity of their pulsation periods, pulsars have been

instrumental for measuring neutron star masses and testing general relativity. Notably, Hulse &

Taylor (1975)2 measured the orbital period of a pulsar in a binary system with another neutron star

by an observed systematic variation in its pulsation period. After several years of observation, the

orbital period was observed to decay, consistent with the predictions of general relativity (Taylor &

Weisberg, 1982, 1989).

While the pulsar discovery of Hewish et al. was the first widely accepted direct detection of

a neutron star, the first detection actually occurred several years earlier by the rocket-borne X-ray

detectors of Giacconi et al. (1962)3. Giacconi et al. intended to detect fluorescent X-rays produced

on the lunar surface by solar X-rays but incidentally detected X-rays coming from the direction of
1Hewish was awarded a share of the Nobel Prize in Physics in 1974 “for his decisive role in the discovery of

pulsars.” Controversially, Bell was omitted from the award, despite her contribution to the construction of the radio
telescope and analysis of the data that led to the discovery.

2Hulse and Taylor were awarded the Nobel Prize in Physics in 1993 “for the discovery of a new type of pulsar, a
discovery that has opened up new possibilities for the study of gravitation.”

3Giacconi was awarded a share of the 2002 Nobel Prize in Physics “for pioneering contributions to astrophysics,
which have led to the discovery of cosmic X-ray sources.”
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the Scorpius constellation. As this source was the first X-ray source detected in the constellation

Scorpius, it was given the designation Scorpius X-1 or Sco X-1. Follow-up observations identified

the optical counterpart to the source (Sandage et al., 1966). Using the optical data, Shklovsky

(1967) correctly argued that it was an accreting neutron star, though this conclusion was not widely

accepted at the time. Sco X-1 was the first observed low-mass X-ray binary (LMXB), a binary

system in which a lower mass donor star transfer mass onto a higher mass black hole or neutron star.

Because of the compactness of the accretor, the infalling matter releases substantial gravitational

potential energy which is emitted in the form of X-rays

Detailed X-ray and gamma ray observations came from space-based observatories, beginning

with the launch of NASA’s Uhuru satellite in 1970. In the following decades, more advanced

X-ray observatories, including Einstein, RXTE, XMM-Newton, and Chandra expanded the catalog

of known LMXBs and provided detailed observations of their behavior. These observations have

uncovered phenomena such as X-ray bursts, thermonuclear explosions on the neutron star surface

(see Strohmayer & Bildsten, 2004, for a detailed review of X-ray burst observations). Many LMXBs

are transient, in which the source alternates between states of outburst, during which the X-ray

luminosity is much higher, indicating a high accretion rate, and quiescence, during which accretion

stops or is low enough to be unobservable (for a review, see King, 2004). Quiescence can last years

to decades while outbursts typically last weeks to months. This varying accretion rate is probably

caused by a thermo-viscous instability in the accretion disk, similar to dwarf novae in accreting

white dwarf systems. Some transients, however, are quasi-persistent, in which outbursts can last

years to decades. The origin of these quasi-persistent transients, however, is much less clear (see,

e.g., King & Ritter, 1998; Dubus et al., 1999, 2001; Ritter et al., 2000). As we shall discuss later,

this time-varying accretion induces nuclear reactions in the ashes of X-ray bursts; the response of

the neutron star provides us with a probe of the interior physics.

1.2 Neutron Star Structure

Here I will summarize the structure of a neutron star. For a detailed description, see Haensel

et al. (2007).
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A neutron star with a mass 𝑀 = 1.4𝑀⊙ and radius 𝑅 = 10 km will have a mean density

exceeding the density of a heavy nucleus4, 𝜌0 = 2.8×1014 g cm−3. To satisfy hydrostatic equilibrium

and mechanical stability, the pressure and density are greatest in the center of the neutron star and

decrease outward. Therefore, the outer layers are composed of matter at sub-nuclear densities

where the EOS is well-known from terrestrial experiments. The high-density interior is composed

of uniform nuclear matter, but where 𝜌 ≲ 0.5𝜌0, the matter breaks into nuclei. The thickness of

the layer composed of nuclei is roughly a pressure scale scale height, ∼ 𝑃/(𝜌𝑔), where the gravity

𝑔 depends on 𝑀 and 𝑅, and 𝑃 and 𝜌 are set by the nuclear equation of state at this transition from

uniform matter to nuclei. The thickness of this outer layer is thus approximately 1 km and contains

a mass of ∼ 0.01𝑀⊙.

This outer layer, which includes the crust and envelope, is composed of nuclei, electrons, and,

in the deepest layers, free neutrons. Measured surface temperatures of X-ray-emitting neutron stars

have temperatures of ∼ 106 K. Assuming the opacity is set by Thomson scattering, the pressure

at the photosphere (where the optical depth 𝜏 = 2/3) is ≈ 𝑔𝜏 ∼ 1014 dyn cm−2 and the density is

𝜌 ∼ 1 g cm−3. Let us now explore the neutron star, beginning at the photosphere.

1.2.1 The Envelope and Crust

Starting from the photosphere, the cm-thick layer where observable emission originates, and

moving inwards toward the core of the neutron star, we encounter several distinct layers (Figure 1.2).

The envelope is the regime in which the electrons are non-degenerate and the plasma is fluid

(𝜌 ≲ 105 g cm−3). Because the electrons are non-degenerate, the opacity is high and the temperature

has a significant gradient.

Beneath the photosphere, the matter is a fully ionized plasma. To describe the properties of the

different regions of the neutron star, we need to begin by describing the properties of the plasma.

For simplicity, let us consider a one-component plasma (OCP) with ions with charge number 𝑍 ,

mass number 𝐴, and number density 𝑛N. Due to charge neutrality, the electron number density is

𝑛e = 𝑍𝑛N. The ratio of the Coulomb energy to the thermal energy of the ions is quantified by the
4𝜌0 is called the nuclear saturation density. Technically, it is defined as the density that minimizes the energy

density of bulk nuclear matter. Heavy nuclei have densities near 𝜌0.
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ate. For an accreting system, the envelope is mostly 
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As the pressure and density increase, the electrons 
become relativistic and degenerate. Coulomb 
interactions lock the nuclei into a rigid lattice, the 
outer crust.

The rising electron chemical potential forces nuclei 
to become enriched in neutrons. Eventually, at
ρ ≈ 1/1000th nuclear density, neutrons “drip” from 
nuclei. The region of electrons, free neutrons, and 
(neutron-rich) nuclei is the inner crust. 
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≈1 km

Figure 1.2 The crust of a neutron star. Starting at the photosphere, the density is roughly that of
water, ≈ 1 g cm−3, but rapidly increases by 1014 over the ≈ km descent to the crust-core boundary.

plasma coupling parameter,

Γ =
𝑍2𝑒2

𝑎𝑘B𝑇
, (1.1)

where 𝑒 is the elementary charge, 𝑘B is the Boltzmann constant, 𝑎 = [3/(4𝜋𝑛N)]1/3 is the ion

sphere radius, and 𝑇 is the plasma temperature. When Γ ≳ 1, ion correlations are important, and

the ions form a non-ideal Coulomb liquid. When Γ > 175, the plasma forms a crystal lattice

(Hughto et al., 2011). Re-arranging Equation (1.1), we can define the melting temperature 𝑇m,

𝑇m =
𝑍2𝑒2

175𝑘B

(
4𝜋
3

)1/3 (
𝜌

𝐴𝑚u

)1/3
= 1.3 × 106 K

(
𝑍2

𝐴1/3

) (
𝜌

109 g cm−3

)1/3
. (1.2)

Because 𝑇m increases with density, it is easier for the plasma to crystallize at greater depth in the

neutron star.

6



As we move deeper into the neutron star and the density increases, the electrons become more

degenerate. The level of degeneracy is characterized by the Fermi temperature,

𝑇F,𝑒 =
𝐸F,𝑒 − 𝑚e𝑐

2

𝑘B
, (1.3)

where 𝐸F,𝑒 = 𝑚e𝑐
2(1 + 𝑥2

r )1/2 is the electron Fermi energy and 𝑥r = 𝑝F,𝑒/𝑚e𝑐 = ℏ(3𝜋2𝑛e)1/3/𝑚e𝑐

is a dimensionless relativity parameter. Where 𝑇 ≪ 𝑇F,𝑒, the electrons are strongly degenerate.

Degenerate electrons have high thermal conductivity (see, e.g., Shternin & Yakovlev, 2006), so the

temperature becomes nearly isothermal in the deep interior.

Figure 1.3 shows 𝑇m and 𝑇F,𝑒 for a pure 56Fe plasma along with the temperature-density profile

of a neutron star atmosphere with an effective surface temperature 𝑇eff = 106 K and consisting of

a thin 4He layer (column density
∫
𝜌 d𝑟 = 104 g cm−2) resting on an 56Fe substrate. Note how the

temperature becomes nearly constant where 𝜌 ⪆ 105 g cm−3 and the electrons become degenerate.

The intermediate regime where the electrons are degenerate but the ions are non-crystallized is

sometimes referred to as the ocean.

The crust encompasses the regime where the ions form a crystal lattice (𝜌 ≳ 108 K). The free

electrons are highly degenerate and relativistic. As we increase the depth, the density increases

which increases 𝐸F,𝑒. With higher 𝐸F,𝑒, more neutron-rich compositions are produced via electron

capture reactions. Eventually, at a density of about 4 × 1011 g cm−3, the composition becomes

so neutron-rich that further electron captures induce neutron emissions. The appearance of free

neutrons marks the location of neutron-drip and the transition from the outer to the inner crust.

The inner crust is composed of a lattice of neutron-rich nuclei, free, degenerate electrons, and

free, degenerate neutrons. As the density increases, the distinction between nuclei and free neutrons

becomes ambiguous so groupings of neutrons and protons at the lattice points are sometimes

referred to as “nuclear clusters” rather than nuclei (see, e.g., Chamel & Haensel, 2008). The

predicted composition and structure of the nuclear clusters strongly depends on theoretical nuclear

models.

At the bottom of the crust, where 𝜌 ≈ 1
3𝜌0 to 𝜌 ≈ 1

2𝜌0, the competition between the Coulomb

energy and nuclear surface energy of the clusters leads to Coulomb frustration and spherical clusters

7
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Figure 1.3 Fermi temperature 𝑇F,𝑒 and melting temperature 𝑇m as a function of density for a OCP
of 56Fe. The dashed line marks the temperature profile of a neutron star atmosphere comprising
a thin 4He layer superincumbent on a layer of 56Fe with 𝑇eff = 106 K. Where 𝑇 < 𝑇m, the plasma
crystallizes. Where 𝑇 ≪ 𝑇F,𝑒, the electrons are strongly degenerate.

become unstable to deformation. Using the compressible liquid-drop model of Mackie & Baym

(1977), Ravenhall et al. (1983) found that as the density increased, the most stable shape of the

clusters sequentially progressed from spheres to cylinders, slabs, tubes, and then bubbles (see also

Hashimoto et al., 1984; Oyamatsu et al., 1984). These different phases have been referred to as

“pasta” phases for their similarities to different pastas (rods resemble spaghetti, slabs resemble

lasagna, etc.). Not all models, however, predict the existence of pasta phases in the crust (see, e.g.,

Cheng et al., 1997; Douchin & Haensel, 2000; Maruyama et al., 2005; Oyamatsu & Iida, 2007).

The region where the pasta phases may exist (sometimes called the mantle) contains the majority

of the mass of the crust.
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As the density further increases at greater depth, the clusters occupy a greater fraction of the

volume until the matter is composed of uniform, nuclear matter. This marks the transition from the

crust to the core and occurs at 𝜌 ≈ 0.5𝜌0 (Pethick et al., 1995).

1.2.2 The Core

At the bottom of the crust, the nuclear clusters blend together forming uniform nuclear matter.

This marks the transition from the crust to the core. With a radius of ∼10 km, the core comprises

about 75% of the total volume of the neutron star and over 99% of the mass. The outermost

core, where 0.5𝜌0 ≲ 𝜌 ≲ 2.0𝜌0, is composed of uniform neutrons, protons, electrons, and—where

𝐸F,𝑒 > 𝑚𝜇𝑐
2—muons. All of these particles are highly degenerate, and the neutrons and protons

may be superfluid. Where 𝜌 ≳ 2.0𝜌0, the composition and EOS are unknown and model-dependent.

Some hypothesized compositions include hyperons, a pion condensate, or deconfined quark matter.

The central density of the neutron star depends on its total mass (more massive neutron stars have

greater central densities), but may be up to ∼ 20𝜌0.

1.3 Investigating the Crust Properties of LMXBs in Quiescence

In the absence of accretion, a neutron star’s crust is in thermal equilibrium5 with the core. As

described in Chapter 2, accretion of matter onto the neutron star’s surface compresses the matter

beneath it and induces nuclear reactions in the envelope and in the crust. These reactions heat

the crust out of thermal equilibrium with the core. When the system enters quiescence, the hot

crust cools back into thermal equilibrium with the core. The observed temperature from surface

emission following an outburst is called a cooling curve.

In the following chapters, I will describe the work I have done investigating the properties of

the crust of accreting neutron stars.

The accreting neutron star KS 1731−260, which had been persistently accreting since its

discovery in 1989 (Sunyaev, 1989), went into quiescence in 2001 (Wĳnands et al., 2001). When

KS 1731−260 faded into quiescence, its cool quiescent surface effective temperature 𝑇eff suggested
5Strictly speaking, since the core gradually cools over time, the system is never truly in thermal equilibrium.

However, the cooling timescale of the core is significantly greater than the cooling timescale for the crust, so to good
approximation, we can describe the crust as in thermal equilibrium with the core when discussing its thermal properties.
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that the source had a long quiescent interval (Wĳnands et al., 2001). Rutledge et al. (2002)

pointed out that the long accretion outburst would substantially heat the crust out of thermal

equilibrium with the core, and that monitoring observations of the quiescent lightcurve could

measure the crust cooling timescale and the amount of heat stored in the crust. Ushomirsky

& Rutledge (2001) computed the thermal relaxation timescale for quasi-persistent transients and

showed that observations of crust thermal relaxation would convey information about the thermal

conductivity of the crust. Fits to the lightcurve of KS 1731−260 and another quasi-persistent

transient, MXB 1659−29, found that the thermal conductivity is high (Shternin et al., 2007; Brown

& Cumming, 2009).

The shape of the cooling curve is determined by the reactions that are induced by accretion

and the thermal properties of the crust. In Ch. 2, I will describe dStar, the code I use to model

the thermal evolution of accreting neutron stars. I will also explain the methodology by which I

fit dStar models to observed cooling curves. By modeling the thermal evolution of the crust and

comparing the predicted surface emission to observed cooling curves, we can test our theories that

describe cold, dense matter. While we cannot directly observe the matter in the core or crust of

a neutron star, accreting neutron stars provide a window into the crust. In Chapter 3, I fit dStar

models to eight of the nine neutron stars for which cooling curve data has been obtained. I test

whether we can accurately model these neutron stars using the same crust properties or whether

different neutron stars require different properties. In Chapter 4, I compare crustal heating models

in which free neutrons in the inner crust diffuse freely to models in which the free neutrons are not

allowed to diffuse. I test whether observed cooling curves favor one model or the other.
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CHAPTER 2

COOLING QUIESCENT NEUTRON STARS

When a neutron star is formed, its temperature is high (> 1011 K) and its interior is in thermodynamic

equilibrium with respect to all interactions (Burrows & Lattimer, 1986). During the fiery birth,

matter in the primordial crust is in nuclear statistical equilibrium. As the crust thermally relaxes

over 10–100 yr (Yakovlev & Pethick, 2004), the composition is annealed and reaches an absolute

ground state of lowest energy: the catalyzed state (see, e.g., Baym et al., 1971; Baym et al., 1971;

Negele & Vautherin, 1973). This state is obtained at any given baryon density by minimizing the

energy density under the conditions of 𝛽-equilibrium and charge neutrality.

In an accreting system, matter from the outer layers of the neutron star’s companion falls onto

the neutron star’s surface and becomes part of the envelope. The accreted matter is often assumed to

have roughly solar composition with H and He fractions of 𝑋H ≈ 0.75 and 𝑋He ≈ 0.25, respectively.

The newly accreted material compresses the matter in the envelope and the crust. The increase in

pressure brings the matter out of nuclear equilibrium and induces nuclear reactions.

In the envelope, the increased pressure induces thermonuclear reactions. Over a wide range of

observed accretion rates, these reactions are subject to a thin-shell thermal instability (Hansen &

Van Horn, 1975), which leads to a rapid increase in X-ray emission, observed as a Type I X-ray

burst. These bursts can last tens to hundreds of seconds and recur over hours to days. If enough

carbon is produced during repeated Type I X-ray bursts, unstable 12C burning can eventually occur

and produce a superburst. Superbursts produce about 1000 times the energy of Type I X-ray bursts,

last for hours to days, and have recurrence times of years.

Continual accretion compresses these ashes of light element burning. Where the ions form a

crystalline lattice (Γ > 175), the tunneling through the Coulomb barrier is set by the zero-point

motion of nuclei about their lattice sites, rather than the thermal motions that would occur in a

rarefied plasma. Instead, where electron captures have reduced the nuclear charge 𝑍 sufficiently,

a pycnonuclear1 reaction occurs instead. The accretion-induced nuclear reactions in the crust are
1From the Greek pycnos meaning “dense”
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restricted primarily to electron captures, neutron emissions, and pycnonuclear reactions. As a

result, the crust cannot reach the catalyzed state, and the composition of an accreting neutron star’s

crust will deviate significantly from that of an isolated neutron star. Over the course of long-term

accretion, the whole crust is replaced by the accreted matter. For a fiducial mass accretion rate

1017 g s−1 ≈ 10−9 𝑀⊙ yr−1, the total replacement of the crust takes ≲ 106 yr.

2.1 The Composition of the Accreted Crust

The composition of the accreted crust was first calculated by Bisnovatyi-Kogan & Chechetkin

(1979) and Sato (1979). Haensel & Zdunik (1990) showed that the pressure-induced nuclear

reactions during accretion deposit about 1.4 MeV per accreted nucleon deep in the crust (see also

Haensel & Zdunik, 2003, 2008; Lau et al., 2018, for more recent calculations with similar estimates).

In this section I will describe the crust composition calculations of Haensel & Zdunik (1990).

Let us follow an element of matter as it is buried deeper in the crust and eventually merges into

the core during accretion. The composition at the top of the crust will be the ashes of the nuclear

processes in the envelope above. Unstable He burning and superbursts primarily produce iron-peak

elements. For simplicity I will use the OCP approximation, so we will begin with pure 56Fe at the

top of the outer crust.

With 𝑍 = 26, 𝑇 = 108 K, and 𝜌 > 108 g cm−3, 𝑘B𝑇/𝐸F,𝑒 ≪ 1. Thermal contributions to

thermodynamic potentials are negligible, and the equation of state becomes barotropic, 𝑃 = 𝑃(𝜌).

I therefore use the𝑇 → 0 K limit for computing the mechanical structure of the crust, while including

thermal effects in determining transport coefficients. The density profile will be discontinuous

where there are changes in the composition. The pressure, however, is always continuous and

monotonically increases with depth to satisfy hydrostatic equilibrium, which makes 𝑃 a useful

coordinate for the depth of a layer.

We model the crust as a lattice of a single species of atomic nucleus embedded in a degenerate

electron gas, along with a free neutron gas in the inner crust. To account for the Coulomb interaction

between electrons and nuclei, we will use the Wigner-Seitz (WS) approximation. We decompose

the crust into spherical cells centered on the nuclei at the lattice points. The radius of a cell is
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defined as 𝑅cell = (4𝜋𝑛N/3)−1/3 so that the volume of a WS cell is equal to 1/𝑛N. Each WS cell is

electrically neutral, so the density of electrons is 𝑛e = 𝑍𝑛N. We can assume point-like nuclei since

the lattice spacing is much larger than the size of nuclei everywhere except for near the bottom of

the crust.

2.1.1 Outer Crust

The energy density in a layer in the outer crust consists of the energy contributions from the

ions, the electrons, and the Coulomb interactions of the lattice:

𝜖tot = 𝑛N𝐸N{𝐴, 𝑍} + 𝜖e + 𝜖L. (2.1)

Here 𝑛N is the number density of nuclei, 𝐸N{𝐴, 𝑍} is the energy of a nucleus, including the rest

mass, with 𝐴 total nucleons and 𝑍 protons, 𝜖e is the energy density of electrons including the

electron rest mass, and 𝜖L is the lattice energy density due to electron-electron, electron-ion, and

ion-ion Coulomb interactions. 𝐸N{𝐴, 𝑍}has been experimentally measured for over 3000 nuclides

(see Wang et al., 2021, for the most up-to-date Atomic Mass Evaluation). For nuclides whose

masses have not been measured experimentally, 𝐸N{𝐴, 𝑍} must be calculated using a theoretical

model, for example the finite-range droplet model (Möller et al., 2016).

In the conditions of the crust, electron-charge-screening effects are negligible so we can treat

the electrons as an ideal Fermi gas with uniform density uniform (Watanabe & Iida, 2003, see,

e.g.,).

In the WS approximation, the lattice energy density is the Coulomb energy of one WS cell times

the density of nuclei,

𝜖L = −𝐶
(
4𝜋
3

)1/3
𝑍2/3𝑒2𝑛

4/3
𝑒 . (2.2)

The factor 𝐶 is determined by the lattice configuration. If we ignore the interactions between

WS cells, and only consider the Coulomb energy contribution from each cell, 𝐶 = 9/10. For a

body-centered cubic (bcc) lattice, which results in the lowest lattice energy, 𝐶 decreases to 0.89593

(see, e.g., Chamel & Haensel, 2008).
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For a given pressure, 𝑃, the equilibrium composition is determined by minimizing the Gibbs

free energy per nucleon of a WS cell, 𝑔(𝑃) = (𝜖tot + 𝑃)/𝑛b, where 𝑛b is the density of baryons.

In the outer crust, we are restricted to electron capture reactions, so we generally can’t reach the

absolute minimum of 𝑔(𝑃).

The total pressure is made of contributions from the electrons and the lattice, 𝑃 = 𝑃𝑒 + 𝑃L.

The lattice pressure 𝑃L = 1
3𝜖L and the electron pressure 𝑃𝑒 = 𝜇e𝑛e − 𝜖e, where 𝜇e is the electron

chemical potential. Since the electrons are degenerate, 𝜇e = 𝐸F,𝑒.

As we move to greater depths, 𝜇e and 𝜖e increase because 𝑛e increases. As a result, electron

capture reactions will occur when they result in lower 𝑔(𝑃). Due to nuclear pairing effects, the

most stable nuclides tend to have even 𝑁 and 𝑍 (even-even nuclides) and the electron captures

proceed in pairs. So for our initial composition of 56Fe, we have

56Fe + 𝑒− → 56Mn + 𝜈𝑒
56Mn + 𝑒− → 56Cr + 𝜈𝑒 .

More generally, for some composition with A nucleons and Z protons, we have

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈𝑒 (2.3)

(𝐴, 𝑍 − 1) + 𝑒− → (𝐴, 𝑍 − 2) + 𝜈𝑒 +𝑄 𝑗 . (2.4)

The first capture (Equation (2.3)) will proceed once 𝜇e > 𝐸{𝐴, 𝑍 − 1} − 𝐸{𝐴, 𝑍} in a quasi-

equilibrium manner with negligible energy release, producing an odd-odd nucleus which is strongly

unstable. The second capture (Equation (2.4)) will proceed in a non-equilibrium manner, releasing

some energy 𝑄 𝑗 where 𝑗 is a label for the non-equilibrium reaction. Because electron capture

reactions convert a proton to a neutron, 𝐴 is constant through the outer crust.

Electron capture reactions increase the neutron richness of the composition until it reaches

neutron drip, where the separation energy of neutrons is negative. At this point, electron captures
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will trigger neutron emissions:

(𝐴, 𝑍) + 𝑒− → (𝐴, 𝑍 − 1) + 𝜈𝑒 (2.5)

(𝐴, 𝑍 − 1) + 𝑒− → (𝐴 − 𝑘, 𝑍 − 2) + 𝑘n + 𝜈𝑒 +𝑄 𝑗 . (2.6)

Here 𝑘 is the number of neutrons emitted. Neutron drip occurs at at the neutron drip density,

𝜌ND ≈ 4×1011 g cm−3. This marks the transition to the inner crust, where a fraction of the neutrons

form a neutron gas outside the nuclei.

2.1.2 Inner Crust

The conditions of the inner crust are not producible in laboratory experiments due to the

presence of the neutron gas. As a result, we cannot use experimental data to determine the energy

contribution of the free neutrons nor can we use nuclear mass measurements to determine the

energy contribution from nuclei. In fact, we expect that in the deepest layers of the inner crust

the nuclei will deform into non-spherical shapes, with the nuclei in adjacent lattice points merging

into rod-like or sheet-like phases. At this point, distinct “nuclei” can no longer be defined; rather,

the system is divided into two regimes: nuclear clusters of high baryon density that include both

protons and neutrons, and a lower density neutron gas outside the clusters. For the sake of clarity

and consistency, when discussing a system where free neutrons are present (as is the case throughout

the inner crust), I will use the term “nuclear cluster” instead of “nucleus” to refer to the higher

density regions.

To determine the energy density of the nuclear clusters and the free neutrons, we must rely

on theoretical models. These models may include: microscopic models of the nucleon-nucleon

interactions such as the Hartree-Fock approximation; semi-classical models such as the Thomas-

Fermi approximation; and classical models such as the compressible liquid drop model (CLDM).

The general process by which we will determine the composition will be similar to how we

determined the composition in the outer crust in that we will minimize 𝑔(𝑃) in a WS cell under the

condition of charge neutrality. Compositional changes are restricted to electron captures, neutron

emissions, or pycnonuclear reactions.
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To demonstrate how we can calculate the nuclear energy contributions in a WS cell I will use

the CLDM (Mackie & Baym 1977; see Steiner 2012 for a more recent treatment), because it is

intuitive and illustrates some of the significant physical properties of the system as it approaches

𝜌0. We treat the nuclear clusters and liquid drops of nuclear matter. In a WS cell centered on a

nuclear cluster, the densities of protons and neutrons inside the cluster are constant (𝑛pi and 𝑛ni

respectively). We will initially assume spherical clusters with proton radius 𝑟p such that the number

of protons in the cluster is 𝑟p = (4𝜋𝑛pi/3𝑍)−1/3. The neutron density outside the clusters 𝑛ni is

constant and less than the density inside the clusters, 𝑛no < 𝑛ni. We assume there are no protons

outside the clusters. The energy density of a WS cell can be expressed as

𝜖cell = 𝑤𝜖bulk,i + (1 − 𝑤)𝜖bulk,o + 𝐸surf/𝑉c + 𝐸Coul/𝑉c + 𝜖e. (2.7)

Here 𝜖bulk,i and 𝜖bulk,o are the energy densities of bulk nuclear matter inside and outside the nuclear

cluster respectively. 𝐸surf is the surface energy of the cluster. 𝐸Coul is the Coulomb energy of the

cell. 𝑉c is the volume of the cell and 𝑤 = (𝑟p/𝑅cell)3 is the fraction of the cell’s volume that is

occupied by the nuclear cluster.

The bulk energy density of nuclear matter 𝜖bulk(𝑛p, 𝑛n) depends on the densities of protons

and neutrons and can be calculated using a microscopic model such as a Skyrme model (Skyrme,

1958). The bulk nuclear energy terms are then 𝜖bulk,i = 𝜖bulk(𝑛pi, 𝑛ni) and 𝜖bulk,o = 𝜖bulk(0, 𝑛ni).

For the neutron-rich nuclear clusters we expect in the crust, excess neutrons will form a “neutron

skin” on the surface of the cluster. The surface term 𝐸surf accounts for the energy contribution of

this skin. Similar to 𝜖bulk(𝑛p, 𝑛n), 𝐸surf can be calculated using a microscopic nuclear model (see,

e.g., Douchin et al., 2000). For consistency, 𝜖bulk(𝑛p, 𝑛n) and 𝐸surf should be calculated using the

same microscopic model.

We calculate the Coulomb energy density slightly differently than we did for 𝜖L in the outer

crust. First, we must now include the Coulomb contribution of protons in the nuclear cluster (the

nuclear energy 𝐸N{𝐴, 𝑍} includes the Coulomb contribution of the protons within the nucleus so

we did not have to account for it in Equation (2.2). Second, at the high densities of the inner crust,

we must account for the finite size of the nuclear clusters.
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Given Equation (2.7), we can determine the composition in a manner similar to the way in

which we did for the outer crust. We begin at the top of the inner crust with the composition

that resulted from neutron drip. As we increase the pressure (increase depth), neutron emissions

and electron captures occur when they result in a decrease in 𝑔(𝑃). If both neutron emission and

electron capture are energetically favorable, then we assume neutron emission occurs first because

it is more rapid. When electron captures occur, they generally trigger a neutron emission.

Electron captures systematically reduce the number of protons within the nuclear clusters

which reduces the Coulomb barrier between adjacent clusters in the lattice. This, combined with

the decreased spacing between lattice points with increased depth, increases the likelihood of

pycnonuclear fusion reactions in which nuclear clusters in adjacent lattice points fuse via quantum

mechanical tunneling through the Coulomb barrier.

Pycnonuclear fusion reaction rates are highly uncertain and as a result, there is high uncertainty

in where they begin to occur in the crust. The pycnonuclear fusion timescale depends sensitively

on the number of protons in the nuclear clusters. Pycnonuclear fusion begins to occur when this

timescale is less than the accretion timescale, 𝑦/ ¤𝑀 , which describes the time it takes for a layer in

the crust to be replaced via accretion, where 𝑦 =
∫
𝜌 d𝑟 ≈ 𝑃/𝑔 is the column density. Because the

pycnonuclear fusion timescale is so sensitive to 𝑍 , it decreases significantly when electron captures

on the nuclear clusters occur which can induce pycnonuclear fusion. So following the reactions

in Equations (2.5) and (2.6), we have a pycnonuclear fusion reaction possibly followed by neutron

emission and other non-equilibrium processes:

(𝐴, 𝑍) + (𝐴, 𝑍) → (2𝐴, 2𝑍) +𝑄 𝑗 ,1 (2.8)

(2𝐴, 2𝑍) → (2𝐴 − 𝑘, 𝑍) + 𝑘n +𝑄 𝑗 ,2 (2.9)

. . . → . . . +𝑄 𝑗 ,3 (2.10)

The reaction in Equation (2.10) represents any nonequilibrium processes that follow the neutron

emissions after pycnonuclear fusion. The total energy release resulting from pycnonuclear fusion

then is𝑄 𝑗 = 𝑄 𝑗 ,1 +𝑄 𝑗 ,2 +𝑄 𝑗 ,3. Pycnonuclear reactions account for the majority of the heat release
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in the inner crust during accretion.

2.2 Observations of Accreting Neutron Stars

After KS 1731−260 was first observed to go into quiescence following an outburst lasting

12 years, Rutledge et al. (2002) proposed that observations of the quiescent cooling neutron star

transients could provide insight into the properties of the neutron star’s crust. Motivated by

this, Cackett et al. (2006) began monitoring the evolution of the quiescent flux from these quasi-

persistent transients. A few years later, detailed thermal evolution models were fit to the quiescent

luminositites of KS 1731−260 (Shternin et al., 2007; Brown & Cumming, 2009) and MXB 1659−29

(Brown & Cumming, 2009). Since then, several other LMXBs cooling in quiescence have been

observed and described with thermal evolution models (e.g. Degenaar & Wĳnands, 2011; Degenaar

et al., 2014; Ootes et al., 2016; Parikh et al., 2017a, 2019).

I will summarize here the observational signatures during an accretion outburst and the observed

cooling during quiescence. For more detailed descriptions, see the review article by Wĳnands et al.

(2017). During an accretion outburst, emission from the accretion disk dominates and we are

unable to observe the surface of the neutron star. When a nucleon falls onto the neutron star’s

surface, it releases 𝜂𝑚u𝑐
2 ≈ 𝐺𝑀𝑚u/𝑅 ≈ 200 MeV of gravitational potential energy, most of which

is emitted in the form of X-rays. As a result, we can estimate the accretion rate from the X-ray flux

via

¤𝑀 (𝑡) = 𝜉4𝜋𝑑2

𝜂𝑐2 𝐹 (𝑡), (2.11)

where 𝑑 is the distance to the source, 𝜉 is a bolometric correction factor, and 𝐹 (𝑡) is the observed

X-ray flux.

During outburst, sources typically exhibit luminosities of 𝐿 > 1036–39 erg s−1 (Wĳnands et al.,

2017). The X-ray fluxes of many outbursts have been measured by all-sky monitoring telescopes

such as the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE) and the Monitor

of All-Sky X-ray Image (MAXI) aboard the International Space Station. By regularly observing

X-ray sources via all-sky surveys, these instruments can obtain nearly daily measurements of

outburst X-ray fluxes. When an LMXB’s X-ray flux drops below the detectable threshold of the
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monitoring telescopes, the source is considered quiescent. Follow-up observations with more

sensitive telescopes such as Chandra or XMM-Newton are necessary to study the quiescent X-ray

emission in detail.

Quiescent X-ray spectra can be described by a combination of a soft component (dominating

below 1 keV) and a hard component (dominating above 3 keV). The soft component likely originates

from the surface of the neutron star and could be due to the cooling emission from a hot neutron

star that has been heated due to accretion. It is typically modeled using a neutron star atmosphere

model. The hard component is typically modeled using a simple power-law. The source of the hard

component is not well understood.

It is usually assumed that when the quiescent spectra are dominated by the soft component that

we are observing surface emission a hot neutron star. When the power-law component contributes

significantly (more than several tens of percent of the observed quiescent luminosity), then the

inferred surface temperatures and quiescent luminosities should be regarded as upper limits.

2.3 Modelling the Thermal Evolution of the Crust

We model the thermal evolution of the neutron star interior using dStar (Brown, 2015), which

uses a method-of-lines algorithm (Schiesser, 1991) to solve the general relativistic heat transport

equations under spherical symmetry in the crust. We use the HELM EOS (Timmes & Swesty,

2000) to compute the electron equation of state; for the strongly coupled ions, we use the results of

Chabrier & Potekhin (1998) for the liquid state with corrections from Potekhin & Chabrier (2000)

and the treatment of Baiko et al. (2001) for the bcc lattice energy. Anharmonic corrections are

handled following Potekhin & Chabrier (2010). The electron-ion EOS routines used in dStar are

based on those available from the Ioffe Institute2. We use a compressible liquid-drop treatment

(Mackie & Baym, 1977) for the free neutrons. For the thermal conductivity, we use the treatment of

Potekhin et al. (1997) for electron-electron scattering, and that of Baiko et al. (1998) for electron-ion

scattering, with impurity corrections from Itoh & Kohyama (1993).

To reduce computational time, dStar does not calculate a reaction network and therefore does
2http://www.ioffe.ru/astro/EIP/
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not directly calculate the heat generated during accretion. Instead, the heating rate and the location

of the heat deposition are parameters of the model. For example, we can implement the heating

calculated by Haensel & Zdunik (1990) with an inner crustal heating rate of 1.4 MeV per accreted

nucleon, deposited over a density range of 9.1 × 1011 g cm−3 < 𝜌 < 1.1 × 1013 g cm−3.

The model parameters we fit to quiescent cooling data are the neutron star core temperature,

the impurity of the crust composition, and the accretion-induced heating rates in the shallow layers

of the crust (“shallow heating”) and deep in the inner crust (“inner heating”).

The core temperature (𝑇c) sets the crust’s baseline temperature. Computationally, it sets the

boundary condition for the crust temperature at the crust-core interface. Constraining its value also

provides insight into the structure of the core. In the absence of accretion, a neutron star’s core

gradually cools due to neutrino emission. The neutrino emissivity depends on the composition of

the core and what neutrino processes dominate (see Yakovlev et al., 2001, for a thorough overview

of neutrino emission from neutron stars). The most efficient neutrino cooling process is the direct

Urca reactions,

𝑝 + 𝑒 → 𝑛 + 𝜈𝑒, 𝑛→ 𝑝 + 𝑒 + 𝜈𝑒 . (2.12)

These reactions maintain 𝛽-equilibrium, but each reaction emits a neutrino that carries away energy.

In order to satisfy momentum conservation, the direct Urca process can only occur in matter where

the proton fraction exceeds 1/9 (see, e.g. Yakovlev et al., 2001). If the proton fraction is not large

enough, a spectator nucleon is needed to satisfy momentum conservation. This is the modified

Urca process,

𝑝 + 𝑛 + 𝑒 → 𝑛 + 𝑛 + 𝜈𝑒, 𝑛 + 𝑛→ 𝑝 + 𝑛 + 𝑒 + 𝜈𝑒 (2.13)

𝑝 + 𝑝 + 𝑒 → 𝑛 + 𝑝 + 𝜈𝑒, 𝑛 + 𝑝 → 𝑝 + 𝑝 + 𝑒 + 𝜈𝑒 . (2.14)

Because of the spectator particle, the integration over phase space for the modified Urca process

has an additional factor of (𝑘B𝑇/𝐸F)2 and proceeds much more slowly than the direct Urca process.

For typical conditions in a neutron star core, the direct Urca process is more efficient than the

modified Urca process by roughly 6 orders of magnitude (see, e.g., Potekhin et al., 2015).
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The rate at which the core heats or cools is also set by its specific heat. Cumming et al. (2017)

placed a lower limit of the heat capacities of KS 1731−260, MXB 1659−29, and XTE J1701−462

based on their core temperatures after observed accretion outbursts and ruled out cores dominated by

a quark color-flavor-locked phase. Brown et al. (2018) found that the inferred low core temperature

of MXB 1659−29 suggests that a rapid neutrino emissivity, such as the direct Urca process, is

operating in the core. This is not the case for KS 1731−260, which appears to cool primarily via

modified Urca processes.

Electrical and thermal conductivity in the inner crust are primarily determined by impurity

scattering, and are inversely proportional to the impurity of the composition,𝑄imp ≡ 𝑛−1
ion

∑
𝑖 𝑛𝑖 (𝑍𝑖−

⟨𝑍⟩)2 (Itoh & Kohyama, 1993). For dStarmodels,𝑄imp therefore functions as a proxy for thermal

conductivity in the inner crust. The impurity at the top of the crust can vary widely depending on

the composition resulting from thermonuclear reactions in the envelope. Lau et al. (2018) found

a range of 𝑄imp ≈ 4 for superburst ashes up to 𝑄imp ≈ 80 for extreme X-ray burst ashes, which

result from systems with high accretion rate and low metallicity (Schatz et al., 2001). However, in

the inner crust, they find that the impurity decreases for all compositions, with the most extreme

case yielding 𝑄imp ≈ 10. By constraining 𝑄imp, we can test the validity of crust composition

calculations and, in principle, may be able to determine the nuclear processes in the envelope that

set the composition of the crust.

The depth and amount of accretion-induced heating in the crust depend on the particular re-

actions that occur throughout the crust. Modelling the thermal evolution using a detailed heating

profile by including heating zones for every exothermic nuclear reaction that occurs is computation-

ally expensive. To increase the computational efficiency, I divide the heating in the crust into three

broad regimes: outer heating, inner heating (𝑄in), and shallow heating (𝑄sh). These parameters

are all implemented as heating rates per accreted nucleon such that a specified amount of heat is

deposited uniformly within a specified pressure range for each accreted nucleon. For example, the

outer heating, which parameterizes the heat produced from electron capture reactions in the outer

crust, has a heating rate of 0.3 MeV per nucleon which is deposited over a region where the pressure
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is 26.86 ≤ log[𝑃/(dyn cm−2)] ≤ 30.13 (Haensel & Zdunik, 1990). In this density regime, the

reactions are well-constrained by experimental data, so I use fixed values for the outer heating rate

and depth.

The inner heating parameterizes the heat deposited due to reactions in the inner crust, which

primarily comes from pycnonuclear reactions (described in Section 2.1.2). This heating is estimated

to be 1.5–2.0 MeV u−1 deposited over a range of pressures 30.42 ≤ log[𝑃/(dyn cm−2)] ≤ 31.20

(Haensel & Zdunik, 1990, 2003, 2008; Lau et al., 2018). In this regime, the degenerate, free neutrons

drive the composition to extremely neutron-rich nuclides. We have limited data this far from 𝛽-

stability, so we depend on theoretical models to calculate the inner heating rate. For the calculations

in this chapter, rather than fixing inner heating parameters to values from theoretical calculations

(e.g. Haensel & Zdunik, 1990, 2003, 2008) or reaction network calculations (e.g. Lau et al., 2018),

I leave the heating rate as a free parameter. I do this to determine how well the observational data

constrains the heating rate in the inner crust. If the heating rate is well-constrained, we may be able

to select between different theoretical models.

Accurately fitting models to the early observed temperatures of several sources requires an

additional heat source at shallow depths in the crust (see, e.g., Brown & Cumming, 2009; Degenaar

et al., 2011). The heat required for most sources is up to 4 MeV per accreted nucleon and occurs

at depths where the density is 𝜌 < 1010 g cm−3 (see, e.g., Brown & Cumming, 2009; Merritt et al.,

2016; Parikh et al., 2019; Degenaar et al., 2014). This density is much less than the density required

for pycnonuclear reactions (Haensel & Zdunik, 2008; Horowitz et al., 2008) and the energy release

is much greater than what is produced by electron capture reactions. Current nuclear physics

models are unable to explain the shallow heating and it is currently unknown what other physical

mechanism(s) may be responsible. Inogamov & Sunyaev (2010) proposed that turbulent braking

induced by accretion would significantly heat the envelope, but the temperatures they predicted are

significantly higher than is observed (see also Inogamov & Sunyaev, 1999). Medin & Cumming

(2015) found that including compositionally driven convection in the neutron star ocean lessens

but does not entirely eliminate the need for an extra source of shallow heat (see also Medin &
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Cumming, 2011; Medin & Cumming, 2014).

The source of shallow heating is currently one of the biggest open questions in the study of

neutron star LMXBs. Understanding shallow heating is important for interpreting observed cooling

curves which may provide deeper insight into the physics of dense nuclear matter. It may also be an

important component in understanding superbursts. The apparent ignition properties of observed

superbursts require significantly higher crust temperatures than can be explained by nuclear heating

models without additional shallow heating (Altamirano et al., 2012).

2.4 Fitting Model Parameters to Observational Data

Estimating the surface effective temperature, 𝑇eff , of an LMXB in quiescence requires fitting the

soft X-ray emission to a spectral model—which requires a model of the neutron star’s atmosphere

and assumptions about the neutron star’s mass, radius, and distance. When I fit my dStar models

to observations, I do not estimate 𝑇eff from the X-ray data; rather, I compare my dStar estimates of

𝑇eff to the estimates of 𝑇eff based on X-ray data reported in the literature. The masses and radii of

the observed neutron stars are unknown and the distance estimates often have large uncertainties.

Because the reported estimates of 𝑇eff depend on assumptions for these parameters as well as the

choice of atmosphere model, our dStar model fits are subject to systematic uncertainties.

To fit our models to the temperature data, I use emcee (Foreman-Mackey et al., 2013), a

Python implementation of the Markov Chain Monte Carlo (MCMC) ensemble sampler proposed

by Goodman & Weare (2010). MCMC methods are a class of algorithms for sampling from a

probability distribution. They are useful for estimating model parameters, particularly in high-

dimensional parameter spaces and when the shape of the probability distribution is not known a

priori. For a detailed description and discussion of MCMC methods see a review such as Mackay

(2003), Hogg et al. (2010), or Sharma (2017). Here I will give a high-level, conceptual description

of the MCMC methods I use in my analysis.

Our goal with our model is to determine the model parameters that yield results that most closely

fit the observed data. However, since the model is not a perfect description of the physical system

we are studying and because the observational data has some uncertainty to it, there is a non-zero
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probability for a large range of parameter sets to yield the data. We therefore want to know the

probability distribution of parameter sets given the observed data. Let us consider a model with 𝑀

parameters, described by the parameter set 𝚯 = {𝜃1, 𝜃2, . . . 𝜃𝑀}. We can calculate the probability

distribution of 𝚯 given a set of data D using Bayes’ Theorem,

𝑃(𝚯|D) = 𝑃(D|𝚯)𝑃(𝚯)
𝑃(D) or P(𝚯) = L(𝜽)𝜋(𝚯)

Z . (2.15)

The likelihood L(𝜽) ≡ 𝑃(D|𝚯) is the probability that our model will yield D given 𝚯. The

prior 𝜋(𝚯) ≡ 𝑃(𝚯) describes our prior knowledge of what we expect the parameters may be.

The evidence Z ≡ 𝑃(D) =
∫
L(𝜽)𝜋(𝚯)d𝚯 is a normalizing factor that quantifies the overall

probability of the model. Since we are updating our knowledge of 𝚯 given a new set of data D,

P(𝚯) ≡ 𝑃(𝚯|D) is called the posterior3.

In practice, we typically cannot determine L(𝜽) analytically and so must use numerical methods

to approximate the posterior distribution P(𝚯). This could be done using grid-based methods,

in which we create a grid in parameter space, calculate the likelihood at each grid point, and use

numerical integration techniques to calculate Z. Since the posterior must be normalized, however,

large regions of the parameter space must yield near-zero probability. Therefore, a significant

amount of calculation time will be spent gaining little to no useful information. Unless we know

about the shape of the posterior distribution a priori, we can’t know where in the parameter space

we should place more grid points.

This computational inefficiency becomes a significant issue when we have a large number

of parameters due to the curse of dimensionality. The volume of the parameter space increases

exponentially with the number of dimensions; as a result, the number of grid points we need to

sample the space also increases exponentially. This will become computationally prohibitive.

MCMC methods are designed to generate samples proportionally to P(𝚯) so that we can more

optimally estimate the posterior distribution. This is done by creating a chain of 𝑁 sets of parameter

values {𝚯1 → 𝚯2 → . . . → 𝚯𝑁 } such that the number of elements of the chain that are within a
3When applying Bayes’ Theorem to model-fitting as I am, P(𝚯) is a distribution over parameter space. I will

interchangeably refer to this as the “posterior”, “posterior distribution”, or “posterior probability distribution”.

24



region of parameter space is approximately proportional to P(𝚯) in that region. More precisely,

if 𝑚(𝚯𝑖) is the number of chain elements within a region 𝛿𝚯𝑖
centered on 𝚯𝑖, then the normalized

density of samples in that region is 𝜌(𝚯𝑖) = 𝑚(𝚯𝑖)/𝑁 and∫
𝚯∈𝛿𝚯𝑖

𝜌(𝚯𝑖)d𝚯 ≈
∫
𝚯∈𝛿𝚯𝑖

P(𝚯)d𝚯. (2.16)

For a finite chain length 𝑁 , the sample density will only approximate the posterior distribution;

in the limit as 𝑁 → ∞, however, 𝜌(𝚯) → P(𝚯) throughout the parameter space. So with a

sufficiently large chain, the sample density can tell us the model parameters that best fit the data

and how well-constrained those parameters are by the data. We can also use the sample density to

calculate expectation values of any parameter-dependent functions.

The most well-known MCMC algorithm is the Metropolis-Hastings algorithm, first developed

by Metropolis et al. (1953) for the case of symmetrical proposal distributions and later generalized

by Hastings (1970). The Metropolis-Hastings algorithm is a random walk algorithm where the

chain of samples is generated by following a “walker” as it steps through the parameter space.

We initiate the walker at some point 𝚯1 and have it take steps in parameter space to generate the

elements of the chain. We will sample from the function 𝑓 (𝚯) = L(𝜽)𝜋(𝚯) since it is proportional

to P(𝚯) (see Equation (2.15)). For any element in the chain 𝚯𝑖, the walker takes steps in parameter

space according to the following steps.

1. Propose a new set of parameters 𝚯′
𝑖+1 = 𝚯𝑖 + 𝛿𝚯 where the step 𝛿𝚯 is selected randomly

from a proposal distribution (for example, via a Gaussian centered on 𝚯𝑖).

2. Calculate the acceptance ratio 𝛼 = 𝑓 (𝚯′
𝑖+1)/ 𝑓 (𝚯𝑖).

3. Accept or reject the step:

a) If 𝛼 >= 1, accept the step.

b) If 𝛼 < 1, accept the step with a probability of 𝛼 and reject the step with a probability of

1 − 𝛼.

4. If the step is accepted, 𝚯𝑖+1 = 𝚯′
𝑖+1; if rejected, 𝚯𝑖+1 = 𝚯𝑖.
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This process can occur with multiple walkers, each following the algorithm independently. This

is advantageous because it increases the chances of the walkers exploring all of the relevant regions

of parameters space. With a small number of walkers, they can get stuck in local minima for long

periods of time and we may miss some of the posterior distribution. So even though increasing

the number of walkers increases the computational time, it increases the number of samples we

produce and allows us to converge more quickly. Because each walker proceeds independently, the

algorithm is trivial to parallelize.

Each element of the chain depends only on the previous element, either because the proposed

step is accepted and 𝚯′
𝑖+1 tends to be near 𝚯𝑖, or because the proposed step is rejected so that

𝚯𝑖+1 = 𝚯𝑖. Because of this, samples in the chain are correlated with their predecessors. The farther

two elements in the chain are from one another, the less likely they are to be correlated. Correlated

samples provide less information about the underlying posterior distribution than uncorrelated

samples because they are somewhat redundant (they sample the same region of the parameter

space). We therefore want to have a sufficiently long chain to have enough uncorrelated samples to

sufficiently approximate the posterior distribution.

We can quantify the amount of correlation for each parameter between pairs of samples that are

𝑡 iterations apart with the auto-covariance4 𝐶 𝑗 (𝑡) of the parameter 𝜃 𝑗 . Let us consider an infinitely

long chain {𝚯1 → . . . → 𝚯𝑖 → . . .}, where 𝚯𝑖 = {𝜃𝑖,1, . . . , 𝜃𝑖, 𝑗 , . . . , 𝜃𝑖,𝑀}, so that 𝜌(𝚯) → 𝜋(𝚯).

The auto-covariance for the parameter 𝜃 𝑗 is

𝐶 𝑗 (𝑡) = E[(𝜃𝑖, 𝑗 − 𝜃 𝑗 ) (𝜃𝑖+𝑡, 𝑗 − 𝜃 𝑗 )] = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

[(𝜃𝑖, 𝑗 − 𝜃 𝑗 ) (𝜃𝑖+𝑡, 𝑗 − 𝜃 𝑗 )], (2.17)

where E(𝑋) denotes the expectation value of the quantity 𝑋 and 𝜃 𝑗 = lim𝑁→∞
1
𝑁

∑𝑁
𝑖=1 𝜃𝑖, 𝑗 . For

sample separation 𝑡 such that 𝜃𝑖, 𝑗 and 𝜃𝑖+𝑡, 𝑗 are completely uncorrelated, 𝐶 𝑗 (𝑡) = 0. For 𝑡 = 0

the auto-covariance is at its maximum for all parameters because all pairs are equal and therefore

perfectly correlated.
4Here I define the auto-covariance for each parameter because this is how it is handled in emcee. Often a

single auto-covariance is calculated for samples in the parameter space as 𝐶 (𝑡) = E[(𝚯𝑖 − �̄�) · (𝚯𝑖+𝑡 − �̄�)] =

lim𝑛→∞
1
𝑛

∑𝑛
𝑖=1 (𝚯𝑖 − �̄�) · (𝚯𝑖+𝑡 − �̄�)

26



We can normalize the auto-covariance by its maximum value to get the auto-correlation 𝐴 𝑗 (𝑡):

𝐴 𝑗 (𝑡) ≡
𝐶 𝑗 (𝑡)
𝐶 𝑗 (0)

. (2.18)

The sum of 𝐴 𝑗 (𝑡) for all non-zero lags (𝑡 ≠ 0) gives us the autocorrelation time 𝜏𝑗 :

𝜏𝑗 =

𝑡=∞∑︁
𝑡=−∞

𝐴 𝑗 (𝑡) − 1 = 2
𝑡=∞∑︁
𝑡=1

𝐴 𝑗 (𝑡) (2.19)

which is the number of steps required to produce samples that have independent values of 𝜃. This

is a useful quantity for determining when the chain has sufficiently converged. Unfortunately,

there is actually no guarantee that a finite-length chain will converge for any but the most simple

models. A common practice (recommended, e.g., by Goodman & Weare, 2010) is to have a chain

at least the length of the autocorrelation time to ensure that we have independent samples. Different

parameters may have different autocorrelation times, so to ensure that samples are independent in all

parameters, we would ensure that the length of the chain is greater than the greatest autocorrelation

time across all parameters.

Calculating 𝜏𝑗 exactly requires a chain of infinite length because we need pairs of samples

with separation 𝑡 → ∞ to solve Equation (2.19). Estimating 𝜏𝑗 from a finite-length chain is more

complicated because if we simply replace the upper limit of the sum in Equation (2.19) with the

chain length 𝑁 , then we have fewer pairs of samples with large 𝑡, so our estimates of 𝐴 𝑗 (𝑡) are very

noisy. As a result, we need to have a chain much longer than 𝜏𝑗 in order to accurately approximate

its value. Foreman-Mackey et al. (2013) find that estimating 𝜏𝑗 with emcee requires chains of

length 𝑁 ≥ 50𝜏. To ensure that we can accurately estimate 𝜏𝑗 for each parameter and that our

chain is long enough that it has sufficiently explored the parameter space, Foreman-Mackey et al.

recommend a convergence criterion that 𝑁 > 50 max ({𝜏1, . . . , 𝜏𝑀}).

2.5 Accounting for Variable Accretion History

In some cases, the accretion rate during an outburst varies enough that it can have an observable

impact on the predicted cooling curve as well as the temperature profile in the crust (see Ootes

et al., 2016). This can be particularly important when modeling Type I X-ray bursts or superbursts

because the temperature at the top of the crust determines the temperature at the base of the envelope
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or ocean where the thermonuclear runaway responsible for the X-ray bursts occurs. Notably, for

the quasi-persistent transient KS 1731−260, in the months leading up to its observed superburst in

1996 (Kuulkers et al., 2002), the observed accretion rate was significantly higher than its average

accretion rate over the outburst. The system maintained this higher accretion rate for approximately

2 years then the accretion rate subsequently dropped below the average rate for another few years

before going into quiescence (see Figure 2.1). In order to accurately calculate its temperature

profile at the time of the superburst, we need to account for the increase in the accretion rate leading

up to the superburst. We also need to be able to account for the decrease in the accretion rate before

quiescence in order to properly fit our crust cooling models to the observed cooling curve. Here I

will demonstrate how I account for the variable accretion history of KS 1731−260. The process

for any other source will be the same.

In principle, there exists some continuous function for the accretion history ¤𝑀 (𝑡). However,

we don’t have continuous observations of any quasi-persistent transients throughout the duration of

an accretion outburst. Instead we have measurements of X-ray counts during observation periods

that were often not taken at regular time intervals. If we convert the observed X-ray photon count

rates5 to accretion rates using Equation (2.11), we obtain an array of measured accretion rates with

their corresponding times. I will refer to these as ¤𝑀𝑖 and 𝑡𝑖 for the 𝑖th observed accretion rate and

its corresponding time respectively.

The time 𝑡 can be measured by the modified Julian date (MJD), which is how observations are

usually recorded, or by the time relative to the end of the outburst. For consistency with my cooling

models, I set 𝑡 = 0 at the end of the outburst: accretion occurs when 𝑡 < 0 and quiescent cooling

occurs when 𝑡 > 0. To approximate the continuous function ¤𝑀 (𝑡), I linearly interpolate between

observed accretion rates.

In dStar, accretion is implemented by simulating accretion epochs with constant accretion

rates. An outburst can have an arbitrary number of accretion epochs each with a specified duration.

In the simplest accretion model, we have only one accretion epoch with an accretion rate equal to
5Daily averaged X-ray counts and bolometric correction factor for KS 1731−260 received from Laura Ootes,

private communication

28



4000 3000 2000 1000 0
Time (days)

0

1

2

3

4

Ac
cr

et
io

n 
Ra

te
 (g

/s
)

1e17 Accretion History - KS 1731-260

Figure 2.1 Observed accretion rates of KS 1731−260 during its 12.5 year outburst. Accretion rates
calculated from X-ray observations taken by ASM, PCA, TTM, and ART-P. Distance to KS 1731−260
is assumed to be 7 kpc. The time is measured relative to the end of the outburst. The vertical,
dashed line marks the time of the observed superburst.

the average of ¤𝑀 (𝑡) over the duration of the outburst. If we want the model to take into account the

variability of the accretion rate, we can partition ¤𝑀 (𝑡) into accretion epochs where the accretion

rate in each epoch is equal to the average of ¤𝑀 (𝑡) over its respective time interval.

Increasing the number of accretion epochs increases the computational time of a model. So

there is a tradeoff between the accuracy of the model and the computational time. Using an MCMC

to fit the model parameters to observational data requires a large number (typically thousands to tens

of thousands) of models so reducing the computational time as much as possible while maintaining

sufficient accuracy is important.

First, I must determine what is sufficiently accurate for the purposes of the model. My goal is
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to fit the crustal cooling model to an observed cooling curve to determine the model parameters

described in Section 2.3. Given the same set of model parameters, two models with different

accretion history partitioning schemes (i.e, using different numbers of accretion epochs for different

accretion time resolution) will produce different cooling curves. Therefore, when fitting the models

to the data using an MCMC, the estimated posterior probability distributions of the parameters of

the two models will differ. If the difference between the two distributions is negligible (i.e., the

best-fit parameters differ by less than the standard deviation of the distributions for each parameter),

then the two accretion partitioning schemes are equivalent enough for the purposes of estimating

the model parameters.

However, comparing the posterior distribution estimates of many different accretion partitioning

schemes is very computationally expensive because it would require running a large number of

models for each partitioning scheme. Fortunately, we can take advantage of the fact that the

timescale of thermal diffusion to the surface is much less near the surface than at deeper layers

in the neutron star (see Brown & Cumming, 2009). When an outburst ends, the heat in the

crust diffuses to the surface and to the core. The time for heat to diffuse to the surface increases

with the square of the depth in the crust (Henyey & L’Ecuyer, 1969). So the temperature we

observe at the surface over time roughly traces the heat produced at different depths in the crust

(early temperature observations correspond to the heat produced near the surface; late temperature

observations correspond to the heat produced deep in the crust).

This also means that early temperature observations are more sensitive to variations in the

accretion rate. For example, if the accretion rate varies on a timescale of 10 days (i.e., the accretion

rate increases dramatically for a 10 day period, or the accretion rate fluctuates between a high-

accretion rate and a low-accretion rate with 10 day periods), then we would expect the temperature

in layers of the crust with 𝜏 ≲ 10 d (where 𝜏 is the timescale of diffusion to the surface) to vary with

the variation in accretion rate while the temperature in layers with 𝜏 ≫ 10 d would stay relatively

constant.

Rather than producing a whole posterior distribution for each accretion partitioning scheme,
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I focus only on how much the different schemes affect the first temperature observation during

quiescence because this corresponds to the layer in the crust whose temperature is most sensitive

to variations in the accretion rate.

For KS 1731−260, the first temperature observation during quiescence occurred 64 days after

the end of the outburst (Cackett et al., 2006). This means we are largely unable to make constraints

on our models that depend on the heat generated in layers with thermal diffusion timescales much

less than 64 days. I generate a cooling curve from one high-time-resolution dStarmodel with ¤𝑀 (𝑡)

partitioned into 1-day long accretion epochs and use the model parameters found by Merritt et al.

(2016). For all other accretion history partitioning scheme, I find the first-point-error which I define

as the absolute difference in temperature from the high-resolution model for the first temperature

observation: 𝜖 = |𝑇 −𝑇0 | where 𝑇 and 𝑇0 are the observed surface temperatures of the model being

tested and the high-resolution model respectively at 𝑡 = 64 d.
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Figure 2.2 Comparison of the high resolution accretion partitioning scheme and the average
accretion rate over the duration of the outburst. On the left is the accretion rate as a function
of time over the duration of the outburst. On the right are the resulting cooling curves for each
partitioning scheme as well as the observed temperatures. The constant accretion rate fits the data
better because the dStarmodel parameters I used came from a fit using the average accretion rate.

The simplest way to partition the accretion history is to split the accretion into 𝑁 epochs of
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equal duration such that

Δ𝑡const =
Δ𝑡tot
𝑁

(2.20)

where Δ𝑡const is the duration of each epoch and Δ𝑡tot is the total duration of the outburst. By

increasing 𝑁 , we can increase the time resolution which gives us greater detail in the accretion

history, eventually converging on the true accretion rate ¤𝑀 (𝑡). I will refer to this scheme as the

constant epoch scheme.

However, we don’t need to use epochs of equal duration. In fact, intuitively we can reason that

we likely want to have higher resolution partitioning near the end of the outburst than earlier in

the outburst. This is because the thermal evolution of the crust depends on the thermal diffusion

timescales at different depths in the crust. Any layer in the crust will “forget” the accretion on

timescales greater than the diffusion timescale at that layer’s depth. Since we can only measure the

surface temperature after the outburst, we don’t need detailed information about the accretion rate

at times long before the outburst’s end.

I test two different schemes where later accretion epochs are shorter than earlier epochs which I

call the linear scheme and the exponential scheme. In both schemes, the last epoch of the outburst

is the shortest. I then go backwards in the outburst (from the end of the outburst to the start of the

outburst) and each successive epoch increases in duration relative to its predecessor. The schemes

differ in the way in which the epoch duration increases with successive epochs.

In the linear scheme, successive epoch durations grow at a linear rate,

Δ𝑡lin,i = 𝑖Δ𝑡lin,1, (2.21)

where Δ𝑡lin,1 is the duration of the last epoch and 𝑖 counts the epochs from the last epoch to the

first (so Δ𝑡lin,2 is the second-to-last epoch, Δ𝑡lin,3 is the third-to-last-epoch, etc.). The sum of the

durations of all epochs must equal the total outburst duration Δ𝑡tot. This gives us the constraint

Σ𝑁1 𝑖Δ𝑡lin,1 = Δ𝑡tot. The duration of the last epoch is thus

Δ𝑡lin,1 =
2Δ𝑡tot

𝑁 (𝑁 + 1) . (2.22)
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Figure 2.3 Three different partitioning schemes for the accretion rate. The constant scheme has
epochs with a constant duration. The linear scheme has epochs that increase in duration linearly
when iterating backwards from the last epoch. The exponential scheme has epochs that increase
exponentially (with an exponential base of 2 in this example) when iterating backwards from the
last epoch. The observed values of the accretion rate are shown in each plot for reference.
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In the exponential scheme, successive epoch durations grow at a rate 𝑟: Δ𝑡𝑖 = 𝑟Δ𝑡𝑖−1. If the last

epoch has a duration Δ𝑡exp,1, then

Δ𝑡exp,i = 𝑟
𝑖−1Δ𝑡exp,1. (2.23)

As with the linear scheme, the sum of the durations of all epochs must equal the total duration of

the accretion outburst. This gives us a geometric series: Σ𝑁1 𝑟
𝑖−1Δ𝑡exp,1 = Δ𝑡tot. We can again solve

for the duration of the last epoch given 𝑁 and Δ𝑡tot:

Δ𝑡exp,1 =
(1 − 𝑟)Δ𝑡tot

1 − 𝑟𝑁
. (2.24)

The duration of the outburst Δ𝑡tot is an observed value so it is fixed for any partitioning scheme.

For any value of 𝑁 , I can partition the accretion history using the constant (Equation (2.20)),

linear (Equations (2.21) and (2.22)), and exponential (Equations (2.23) and (2.24)) schemes. See

Figure 2.3 for the accretion outburst of KS 1731−260 partitioned into 10 epochs with each scheme.

To determine the effectiveness of each scheme, I will compare the first-point error of each

scheme as a function of number of epochs. As the number of epochs increases, the error decreases,

but the computational time increases. So I will consider the most effective scheme to be the one

such that the error falls below a desired threshold with the fewest epochs. The error threshold I use

will be the observational uncertainty on the first observed temperature, which for KS 1731−260 is

0.015 MK (Merritt et al., 2016).

Figure 2.4 shows the results of the first-point error tests. In this test, for the exponential scheme,

I use an exponential growth rate of 𝑟 = 2.0 for Equations (2.23) and (2.24). In my high-resolution

model, I use 1-day long epochs, so for each partitioning scheme I never use so many epochs that the

shortest epoch is less than one day. Note from Equation (2.24), that due to the 𝑟𝑁 in the denominator,

the exponential scheme can’t have very many epochs before its shortest epoch becomes less than

one day. For each scheme, the error decreases with the number of epochs and eventually drops

below the error threshold. However, the exponential scheme requires the fewest epochs to drop

below the threshold.

Having determined that the exponential scheme yields the best results of the three schemes, I

further test the effect of using different growth rates in the range 1.2 ≤ 𝑟 ≤ 3.0. Figure 2.5 shows
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Figure 2.4 Comparison of the first-point error for each partitioning scheme as a function of number
of epochs. The first-point error is defined as 𝜖 = |𝑇 − 𝑇0 | where 𝑇 and 𝑇0 are the observed surface
temperatures of the model being tested and the high-resolution model respectively. The horizontal
dashed line is the error threshold which I set to be equal to the observational uncertainty on the first
observed temperature measurement from Merritt et al. (2016).

the results of exponential schemes with 𝑟 = 1.2, 𝑟 = 2.0, and 𝑟 = 3.0. For a set number of epochs,

schemes with larger values of 𝑟 will have greater resolution at the end of the outburst and worse

resolution at early times in the outburst. When partitioning into only 2–3 epochs, larger values of

𝑟 yield lower error because the early quiescent temperature depends more heavily on the accretion

history at the end of the outburst. As the number of epochs increases, however, schemes with large

𝑟 do not benefit as much as those with small 𝑟 because they don’t improve the early accretion history

resolution as much. I find that 𝑟 = 2.0 yields error below the error threshold with the fewest epochs

and nearly no error with 6–7 epochs.

Given these tests, I conclude that for KS 1731−260, using an exponential partitioning scheme
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Figure 2.5 Comparison of different growth rates for the exponential partitioning scheme.

for the accretion history with a growth rate of 𝑟 = 2.0 yields the best results. In all following

models of KS 1731−260, I use 6 epochs which yielded a first-point error of less than half of the

observational error of the first observed quiescent temperature.

In Chapters 3 and 4, I will use the methodology described here to model crustal cooling of

observed LMXBs using dStar.
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CHAPTER 3

JOINTLY FITTING CRUSTAL PROPERTIES OF MULTIPLE NEUTRON STARS

In Chapter 2, I demonstrated how I can can fit dStarmodels to observed cooling curves to estimate

the core temperature, the impurity of the composition, the shallow heating rate, and the inner

heating rate of neutron stars in LMXBs.

It is unknown to what extent neutron stars in different LMXBs share crustal properties such

as composition and deep crustal heating rates. In Section 2.1, I discussed how accretion induces

compositional changes on a layer of matter as it is buried deeper in the crust. The reactions

that cause these compositional changes are responsible for the heat produced during an accretion

outburst. The reactions and composition may depend significantly on the composition at the top

of the crust when accretion occurs. Lau et al. (2018) calculated the reactions, composition, and

heat release of several different initial compositions: pure 56Fe, extreme rp-process ashes (based

on the X-ray burst model of Schatz et al., 2001), mixed H/He X-ray burst ashes, and superburst

ashes. They found that the deep crustal heating rate does not differ significantly with different

initial compositions, but the impurity of the composition in the outer crust does depend strongly

on the initial composition.

Additionally, the catalyzed crust composition differs significantly from that of the accreted

crust. Because of this, accretion onto a neutron star with a catalyzed crust would induce heating at

a different rate than calculated for accreted crusts. As accretion occurs over thousands of years, the

catalyzed crust is replaced by the accreted one. At a typical mass accretion rate of ¤𝑀 ∼ 1017 g/s, it

would take ∼ 106 yr to completely replace the crust. During this intermediate period, the neutron

star has a partially-accreted crust which would also have different thermal diffusion properties and

accretion-induced heating rates from catalyzed crusts and fully accreted crusts (Wĳnands et al.,

2013).

Because the time to fully replace a catalyzed crust is relatively short compared to the binary

evolution timescale, it seems likely that most, if not all, observed LMXB neutron stars have fully

accreted crusts. However, since we have only been able to observe accretion for the last several
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decades, we can’t be certain that the neutron star in any given LMXB has a fully accreted crust

rather than a catalyzed or partially-accreted crust.

To test whether or not different observed accreting neutron stars share crust properties, I follow

the methodology described in Chapter 2 to fit dStar models to the cooling curves of most of the

LMXBs in which crustal cooling has been observed. First, I fit to the cooling curve data of each

LMXB independently by estimating the posterior distribution of the core temperature 𝑇c, impurity

𝑄imp, shallow heating rate 𝑄sh, and inner heating rate 𝑄in. I then jointly fit to the cooling curves of

all sources by allowing three of the four dStar parameters to vary independently for each source

while the remaining parameter varies jointly across all sources. By comparing the goodness of fit

of the independent fits to the joint fits, I can determine whether or not a given parameter may be

shared across all of the neutron stars.

3.1 Independently Fitting Neutron Star Models to Observations

Crustal cooling following an accretion outburst has been observed in 9 LMXBs: KS 1731−260

(Merritt et al., 2016), MXB 1659−29 (Parikh et al., 2019), XTE J1701−462 (Parikh et al., 2020),

EXO 0748−676 (Parikh et al., 2020), IGR J17480−2446 (Degenaar et al., 2013), MAXI J0556−332

(Parikh et al., 2017a), Aql X-1 (Waterhouse et al., 2016), Swift 174805.3−244637 (Degenaar et al.,

2015), and 1RXS J180408.9−342058 (Parikh et al., 2017b). Crustal cooling following multiple

outbursts has been observed in MXB 1659−29, MAXI J0556−332, and Aql X-1. Masses and

radii have not been measured for any of these sources, so canonical values have been used for

interpretation of observational data. Most of the sources are estimated to be at a distance of

5–9 kpc away, though MAXI J0556−332 appears to be much farther with an estimated distance of

43.6 kpc. The duration of their outbursts, 𝑡acc, ranges from weeks to decades and their accretion

rates vary by nearly two orders of magnitude. Table 3.1 summarizes these system’s properties. In

Sections 3.1.1–3.1.9, I will discuss each of these sources in greater detail.

For the accretion rates and quiescent temperatures, I use data reported by the papers cited in

Table 3.1. To be consistent with the observational data, I use the masses, radii, and distances used

to obtain the observed temperatures. I also set, for all sources, the column depth of the light element

38



Table 3.1 Neutron stars with observed and fitted crust cooling.

Source 𝑀 𝑅 𝑑 ⟨ ¤𝑀⟩ 𝑡acc Reference
(𝑀⊙) (km) (kpc) (1017g s−1) (yr)

KS 1731−260 1.4 10 7 1.5 12 1
MXB 1659−29 I 1.6 12 9 1.2 2.5 2
MXB 1659−29 II 1.6 12 9 0.58 1.5 2
XTE J1701−462 1.6 12 8.8 11 1.6 3
EXO 0748−676 1.6 12 7.4 0.3 24 3
IGR J17480−2446 1.4 10 5.5 1.9 0.22 4
MAXI J0556−332 I 1.4 10 43.6 13 1.3 5
MAXI J0556−332 II 1.4 10 43.6 5.1 0.17 5
MAXI J0556−332 III 1.4 10 43.6 7.1 0.25 5
Aql X-1 I 1.6 11 5 4 0.17 6
Aql X-1 II 1.6 11 5 4 0.18 6
Aql X-1 III 1.6 11 5 0.8 0.05 6
Swift 174805.3−244637 1.4 10 5.5 0.96 0.15 7
1RXS J180408.9−342058 1.6 11 5.8 0.58 0.15 8

References: (1) Merritt et al. (2016); (2) Parikh et al. (2019); (3) Parikh et al. (2020); (4)
Degenaar et al. (2013); (5) Parikh et al. (2017a); (6) Waterhouse et al. (2016); (7) Degenaar et al.
(2015); (8) Parikh et al. (2017b)

layer to 108 g cm−2, which is roughly where 4He unstably ignites.

For each source, I perform MCMC analysis using emcee, with the following free parameters:

core temperature (𝑇c), impurity (𝑄imp), shallow heating rate (𝑄sh), and inner heating rate (𝑄in). I

assume Gaussian errors in the observational data to calculate the 𝜒2 and determine the likelihood1,

L(𝜽) = exp(−𝜒2/2), where 𝜽 is the vector of the parameters, 𝜽 = (𝑇c, 𝑄imp, 𝑄sh, 𝑄in).

I use a uniform prior probability distribution that is bounded by a set of minimum and maximum

values for each parameter (see Table 3.2). I choose the bounds such that the allowable parameter

space is much larger than the values expected based on prior results. This is because for some

sources, the data does not constrain one or some of the parameters very well; the MCMC will take

too long to converge because the walkers are not bound to any preferential region in parameter space

along the unconstrained parameter(s). By choosing a large, but finite prior distribution, the walkers

are more bound, allowing the MCMC to converge even if the resulting posterior distribution is
1In Section 2.4, I used the notation 𝑃(D|𝚯) to represent the likelihood for clarity when discussing it in the context

of Bayes’ Theorem and the underlying principles of Bayesian statistics. From here on, I will use the notation L(𝜽) to
be consistent with most references on quantifying goodness of fit and model selection.
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uniform in one or more parameters.

Core temperatures for sources tend to be around 108 K (see references in Table 3.1), so I choose

a minimum and maximum of 107 K and 109 K respectively.

The impurity in the outer crust can vary widely depending on the initial composition determined

by thermonuclear reactions in the envelope. Lau et al. (2018) found a range of 𝑄imp ≈ 4 for

superburst ashes up to 𝑄imp ≈ 80 for extreme X-ray burst ashes. However, in the inner crust,

they find that the impurity decreases for all compositions, with the most extreme case yielding

𝑄imp ≈ 10. Since impurity scattering dominates the thermal conductivity at high densities where

phonons are frozen out, our cooling models are most sensitive to 𝑄imp in the inner crust. Because

of this, I choose a minimum value of 𝑄imp = 0 and a maximum value of 𝑄imp = 40, which gives

significant room in parameter space above the expected upper limit of 𝑄imp ≈ 10.

Similarly, for the shallow heating rate and inner heating rate, I choose minimum values of

0 MeV u−1 and maximum values of 40 MeV u−1. Fits to most outbursts previously have required no

more than a few MeV u−1 of shallow heating (see, e.g., Brown & Cumming, 2009; Page & Reddy,

2013; Merritt et al., 2016). One outburst of MAXI J0556−332 required a shallow heating rate of

𝑄sh ≈ 17 (Deibel et al., 2015; Parikh et al., 2017a), which is the greatest for any observed outburst.

The inner heating rate is predicted to be 1.5–2 MeV u−1 (Haensel & Zdunik, 2003). In order to

quantify how well our data allows us to constrain the inner heating rate, however, I set its upper

limit to a much higher value.

Table 3.2 Maximum and minimum values for each parameter. I use a prior probability distribution
that is uniform between these values and 0 otherwise.

Parameter Minimum Maximum
Core Temperature (K) 106 109

Impurity 0 40
Shallow Heating Rate (MeV u−1) 0 40
Inner heating rate (MeV u−1) 0 40

I let the MCMC chain continue until the number of iterations is equal to 100 times the maximum

autocorrelation time (see Section 2.4 for description of MCMC convergence criteria). For my
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resulting posterior probability distributions I discard a number of initial samples equal to 2 times

the maximum autocorrelation time.

With the set of samples from the converged MCMC chain, I can estimate the posterior probability

distribution of the model parameters. I can then determine which parameters are well-constrained,

what correlations exist among parameters, and what set of parameters fit the data best (by minimizing

𝜒2 and therefore maximizing L(𝜽)). The posterior distribution can be estimated using a kernel

density estimator to produce a smooth probability distribution function. However, it can be

computationally expensive and complicated to perform integration and other operations this way.

For simplicity and computational ease, I approximate the posterior distribution with a histogram in

parameter space with the MCMC samples.

Due to the random nature of the sampler, it is unlikely to actually sample the best-fit parameters.

To find the best-fit parameters, I use the optimize subpackage of SciPy (Virtanen et al., 2020) to

minimize the 𝜒2. I tested all available minimization methods with different sets of initial parameters

for a few different sources and found that the Nelder-Mead method (Nelder & Mead, 1965) most

consistently found parameters with a smaller 𝜒2 than other minimization methods so that is the

method I use for the following results. To determine the initial guess for 𝜽 , I chose the midpoint of

the histogram bin with the greatest number of samples.

To quantify how well-constrained the parameter distributions are, I calculate an approximate

68% credible region (often called a credible interval for unimodal distributions). A 68% credible

region is a volume in parameter space that contains 68% of the mass of the posterior probability

distribution. The Bayesian interpretation of such a credible region is that there is a 68% probability

that the true parameters lie within the region (see Jaynes & Kempthorne, 1976, for a thorough

discussion on credible regions and how they differ from their frequentist counterparts, confidence

intervals). A credible region is not unique; one can always choose another volume in parameter

space that contains the same mass of the probability distribution. The credible region I approximate

is the highest density 68% credible region, which is the region of smallest volume that contains

68% of the posterior probability distribution’s mass. An advantage of using the highest density
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credible region is that it will always contain the set of parameters with the maximum probability.

Because the MCMC chain produces samples such that their density is proportional to posterior

probability, a 68% credible region should contain 68% of the MCMC samples. I approximate the

highest density 68% credible region by selecting the histogram bins in ascending order of sample

counts until I have selected bins containing 68% of the samples. For each parameter, I find the

smallest and greatest values among my selected bins and report the difference between these values

and the best-fit parameters as the uncertainties in my results. Note that uncertainties reported

this way only give a general idea of the spread of the posterior distribution; they don’t capture

correlations between parameters and can be misleading if a distribution is multimodal. To better

convey more complicated features of the distributions, I also include corner plots which show how

each pair of parameters correlates.

The reduced chi-squared statistic has been commonly used in astronomy as a measure of how

well a model fits observed data (Wall & Jenkins, 2012), including previous analysis of cooling

curves (see, e.g., Cackett et al., 2010; Merritt et al., 2016; Parikh et al., 2019; Ootes et al.,

2018). The reduced chi-squared statistic is defined as 𝜒2
𝜈 = 𝜒2/𝜈 where 𝜈 is the number of

degrees of freedom (dof). The number of degrees of freedom is typically calculated as 𝜈 =

number of observation−number of parameters. A model that fits the data well should have 𝜒2
𝜈 ≈ 1;

as a general rule, if 𝜒2
𝜈 ≳ 4, then we would consider the model a poor fit (Wall & Jenkins, 2012). The

reduced chi-squared statistic is useful because it is simple to calculate and accounts for overfitting

by penalizing models with a large number of parameters relative to the number of observations.

To provide a general measure of how well my dStar models fit the data to each source and for

comparison to other, previous cooling curve analysis, I report 𝜒2
𝜈 for each model.

However, the reduced chi-squared statistic is often not a good measure of a model’s goodness

of fit or for model selection or rejection (see Andrae et al., 2010, for a more thorough discussion

on the possible pitfalls of the reduced chi-square statistic). In part, this is because the number

of degrees of freedom can generally only be directly determined for linear models without priors.

For other models, for example when there are strong degeneracies among model parameters, the
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degrees of freedom will not simply be the difference between the number of data points and the

number of parameters. This means that naively using 𝜒2
𝜈 to determine whether a model fits well or

for choosing between competing models may lead to incorrect results. Despite this, I still calculate

and report 𝜒2
𝜈 as a rough indicator of the goodness of fit and for comparison to previous analysis.

3.1.1 KS 1731−260

KS 1731−260 was the first LMXB for which crustal cooling was observed. It was discovered in

outburst by the Mir-Kvant instrument in August 1989 (Sunyaev, 1989). Further analysis found that

the source was in outburst as early as October 1988 (Sunyaev, 1990). Over its 12.5 year outburst,

it was observed by many instruments: the ART-P (Sunyaev, 1990) and Sigma (Barret et al., 1992)

telescopes aboard GRANAT; Ginga (Yamauchi & Koyama, 1990); ROSAT (Barret et al., 1998);

RXTE (Smith et al., 1997; Wĳnands & van der Klis, 1997; Muno et al., 2000); ASCA (Narita et al.,

2001); and BeppoSAX (Kuulkers et al., 2002). It went into quiescence some time between January

21 and February 7 of 2001 and the first measurement of its surface temperature in quiescence was

taken March 27 2001 (Wĳnands et al., 2001).

The source exhibits Type I X-ray bursts (Sunyaev, 1989) and photospheric radius expansion

(PRE) bursts (Muno et al., 2000) and has exhibited one superburst (Kuulkers et al., 2002). Assuming

the peak luminosity of the PRE burst is equal to the Eddington luminosity, Muno et al. (2000)

estimated that the upper limit of the source’s distance is 7 kpc and that it is located near the galactic

center. Özel et al. (2012) fit the blackbody emission of the PRE bursts to obtain mass and radius

constraints for the neutron star: 𝑅 ≤ 12.5 km and 𝑀 ≤ 2.1𝑀⊙.

I fit my dStar model to the 8 quiescent temperature observations reported by Merritt et al.

(2016) who use the neutron star atmosphere (nsa) model of Zavlin et al. (1996) and assume a

distance of 𝑑 = 7 kpc, a mass of 𝑀 = 1.4𝑀⊙, and a radius of 𝑅 = 10 km. I partition the accretion

history as described in Section 2.5 into six accretion epochs using the exponential scheme with an

exponential growth rate of 2.0. Over the 12.4 yr accretion outburst, the average accretion rate was

1.5 × 1017 g/s.

I find best-fit parameters of 𝑇c = 6.3+1.0
−0.6 × 107 K, 𝑄imp = 6.3+4.2

−6.3, 𝑄sh = 1.1+1.0
−0.6 MeV u−1, and
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𝑄in = 0.0+8.1
−0.0 MeV u−1 with 𝜒2

𝜈 = 7.7 (4 dof). A corner plot of the distribution and the cooling

curve using the best-fit parameters is shown in Figure 3.1.

The posterior distributions for the core temperature and the shallow heating rate appear close

to normal, centered on their best-fit values. Low values of impurity and inner heating rate appear

to be favored. These parameter estimates are all consistent with prior analysis performed on the

cooling curve of KS 1731−260 (see, e.g., Brown & Cumming, 2009; Cackett et al., 2010; Merritt

et al., 2016; Ootes et al., 2016). Merritt et al. (2016) were able to fit the cooling curve better (with

𝜒2
𝜈 = 2.0) by setting the column depth of the light element layer to 104 g cm−2. Though such a

shallow light element layer apparently fits the observed data better, it seems physically improbable.

If the light elements in the envelope were removed, such as via a type I X-ray burst, it would

take ∼ 1 s to accumulate a light element layer of 104 g cm−2 at ¤𝑀 = 1017 g s−1. With this system’s

observed type I X-ray burst recurrence time of a few hours (Galloway et al., 2008), it is very unlikely

that accretion shut off within a few seconds of a type I X-ray burst.
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Figure 3.1 Left: Posterior distribution for KS 1731−260. Right: Observed surface effective
temperatures (points; Merritt et al., 2016) and the model with best-fit parameters 𝑇c = 6.3 × 107 K,
𝑄imp = 6.3, 𝑄sh = 1.1 MeV u−1, and 𝑄in = 0.0 MeV u−1.
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3.1.2 MXB 1659−29

MXB 1659−29 was first discovered as an LMXB that exhibited Type I X-ray bursts by Lewin

et al. (1976). It was in outburst for about 2–2.5 yr but follow-up observations of the quiescent

crust temperature were not possible at the time. It has since had two more accretion outbursts,

both of which have had follow-up observations of the crust temperature (Parikh et al., 2019).

MXB 1659−29 also exhibits X-ray eclipses with an orbital period of about 7.1 hr and duration of

about 900 s (Cominsky & Wood, 1984, 1989; Oosterbroek et al., 2001), suggesting that we are

viewing the accretion nearly disk edge-on. The distance to MXB 1659−29 is estimated from PRE

bursts Galloway et al. (2008) to be 9.2 ± 2 kpc (12 ± 3 kpc) for hydrogen-rich (helium-rich) bursts.

The first observed outburst of MXB 1659−29 lasted for 2.5 yr, with the source going into

quiescence in September 2001 (Wĳnands et al., 2003). Observations taken about 1400 and 2400 d

after the end of the outburst were consistent with each other, suggesting that the crust had stopped

cooling and returned to thermodynamic equilibrium with the core (Cackett et al., 2008). However,

another observation taken 4 yr later showed an unexpected drop in temperature (Cackett et al.,

2013). It was unknown at the time if this was due to continued cooling or to an increase in internal

absorption (e.g., due to an increase in the height of the accretion disk). Unfortunately, before it

could be further investigated, its second accretion outburst began, preventing further observations

of the surface. The second outburst lasted for 1.7 yr, going into quiescence in March 2017.

I fit my dStar model to the quiescent temperature data of Parikh et al. (2019) who use

the neutron star atmosphere (nsatmos) model of Heinke et al. (2006) and assume a distance of

𝑑 = 9 kpc, a mass of 𝑀 = 1.6𝑀⊙, and a radius of 𝑅 = 12 km. Parikh et al. (2019) omit the last

temperature observation of the first outburst and argue that it is most likely due to increased internal

absorption rather than crustal cooling. I use a single accretion epoch for each outburst. Parikh

et al. (2019) report the bolometric fluences for outburst I and outburst II to be 0.17 erg cm−2 and

5.18 ×10−2 erg cm−2 respectively. I calculate the average accretion rate using Equation (2.11) with

𝜂 = 0.2 and 𝜉 = 1. This yields average accretion rates of 1.18× 1017 g s−1 and 5.82× 1016 g s−1 for

outbursts I and II respectively.
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I find best-fit parameters of 𝑇c = 4.5+0.9
−1.2 × 107 K, 𝑄imp = 0.0+4.7

−0.0, 𝑄sh = 1.4+0.7
−0.2 MeV u−1, and

𝑄in = 17.0+3.6
−17.0 MeV u−1 with 𝜒2

𝜈 = 3.5 (9 dof). A corner plot of the distribution and the cooling

curve using the best-fit parameters is shown in Figure 3.2.

These values for 𝑇c, 𝑄imp, and 𝑄sh are similar to the estimates of Parikh et al. (2019) who

found that they could use the same shallow heating rate for both outbursts. An inner heating rate

of 17 MeV u−1 is much higher than any theoretical predictions, though the credible region includes

values down to 0 MeV u−1. The marginal distributions of the core temperature and shallow heating

rate are roughly normal, while the marginal distributions of the impurity and inner heating rate

are right-skewed, favoring low values. The marginalized distribution for the inner heating rate

has a long tail extending to high values, which suggests that the data for MXB 1659−29 does not

constrain the inner heating very well. So even though the best-fit parameters include a very high

inner heating rate, lower values of inner heating can likely still fit the data well.
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Figure 3.2 Left: Posterior distribution for MXB 1659−29. Right: Observed surface effective
temperatures (points; Parikh et al., 2019) and the model with best-fit parameters 𝑇c = 4.5 × 107 K,
𝑄imp = 0.0, 𝑄sh = 1.4 MeV u−1, and 𝑄in = 17.0 MeV u−1.

3.1.3 XTE J1701−462

XTE J1701−462 was discovered in outburst in January 2006 by ASM (Remillard et al., 2006).

This outburst was exceptionally luminous, with a luminosity near the Eddington limit, and lasted
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about 1.6 yr, going into quiescence in August 2007 (Homan et al., 2007). Lin et al. (2009) estimated

its distance to be 8.8 kpc with 15% error based on analysis of an observed PRE burst.

The system has possibly exhibited some short-term low-level flares during quiescence (Fridriks-

son et al., 2010). These flares are distinguished from surface temperature observations by their

large contribution from the hard, power-law-shaped component of their spectra. Fridriksson et al.

(2011) determined that they are unlikely to have had a measurable effect on the overall cooling

curve due to their short duration.

Parikh et al. (2020) report cooling curve data 3200 d into quiescence. They use the nsatmos

atmosphere model and assume a distance of 𝑑 = 8.8 kpc, a mass of 𝑀 = 1.6𝑀⊙, and a radius of

𝑅 = 12 km. They omit the observations corresponding to the low-level accretion flares. For my

dStarmodel I use a single accretion epoch with a rate of 1.1×1018 g s−1 (Fridriksson et al., 2010).

I find best-fit parameters of 𝑇c = 2.38+0.23
−0.65 × 108 K, 𝑄imp = 40.0+0.0

−40.0, 𝑄sh = 0.2+0.1
−0.0 MeV u−1,

and𝑄in = 0.0+5.0
−0.0 MeV u−1 with 𝜒2

𝜈 = 5.5 (12 dof). A corner plot of the distribution and the cooling

curve using the best-fit parameters is shown in Figure 3.3.

The fit suggests that the core is very hot and a small, but non-zero amount of shallow heating

occurred during its accretion outburst. A small inner heating rate appears to be favored, which is

consistent with theoretical predictions. The impurity is very unconstrained—the credible region

extends from the minimum to the maximum of the prior distribution—but appears to slightly favor

lower values.

3.1.4 EXO 0748−676

EXO 0748−676 was discovered with EXOSAT in 1986 (Parmar et al., 1986). It exhibited a

24-year-long accretion outburst at an average luminosity of 5% the Eddington luminosity (Degenaar

et al., 2009) which ended in September 2008 (Wolff et al., 2008).

Galloway et al. (2008) found that the spectral properties of observed PRE bursts suggest that

ignition occurred in a He-rich environment. Assuming helium-rich bursts, Galloway et al. estimate

the distance to be 7.4 ± 0.9 kpc. EXO 0748−676 exhibits X-ray eclipses with 8.3 min duration and

a period of 3.82 hr, likely due to obscuration from a thickened region of its accretion disk which
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Figure 3.3 Left: Posterior distribution for XTE J1701−462. Right: Observed surface effective
temperatures (points; Parikh et al., 2020) and the model with best-fit parameters 𝑇c = 2.4 × 108 K,
𝑄imp = 40.0, 𝑄sh = 0.2 MeV u−1, and 𝑄in = 0.0 MeV u−1.

we are viewing nearly edge-on (Parmar et al., 1986).

Parikh et al. (2020) report the observed temperatures nearly 3500 d into quiescence. They use

the nsatmos atmosphere model and assume a distance of 𝑑 = 7.4 kpc, a mass of 𝑀 = 1.6𝑀⊙, and

a radius of 𝑅 = 12 km.

I find best-fit parameters of 𝑇c = 2.20 ± +0.02 × 108 K, 𝑄imp = 0.0+2.4
−0.0, 𝑄sh = 3.7+0.3

−0.4 MeV u−1,

and 𝑄in = 0.0+0.9
−0.0 MeV u−1 with 𝜒2

𝜈 = 111.5 (9 dof). A corner plot of the distribution and the

cooling curve using the best-fit parameters is shown in Figure 3.4.

Such a large value of 𝜒2
𝜈 suggests that my dStar model fits the data very poorly. While the

cooling curve captures the general decrease in temperature that is observed, there is a significant

amount of variation relative to the reported temperature uncertainties. This includes an apparent

unexpected increase in temperature around 1000 days into quiescence (as noted by Parikh et al.,

2020). This suggests that we are likely not correctly interpreting the temperature data. One possible

explanation for this is that the accretion disk may be interfering with direct observations of the

neutron star’s surface.

If we accept the parameter estimates as they are, the results are generally consistent with the

estimates for other sources. All of the parameters have tight fits. The core temperature is high and
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a very low impurity is strongly favored. The shallow heating rate is slightly higher than for most

other sources, but fairly tightly constrained. A very low inner heating rate is strongly preferred,

which is inconsistent with the theoretical estimates of 1.5–2 MeV u−1. My results are somewhat at

odds with those of Degenaar et al. (2014) who estimated a similar core temperature but 𝑄imp = 40

and 𝑄sh = 1.8 MeV u−1.
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Figure 3.4 Left: Posterior distribution for EXO 0748−676. Right: Observed surface effective
temperatures (points; Parikh et al., 2020) and the model with best-fit parameters 𝑇c = 2.2 × 108 K,
𝑄imp = 0.0, 𝑄sh = 3.7 MeV u−1, and 𝑄in = 0.0 MeV u−1.

3.1.5 IGR J17480−2446

IGR J17480−2446 is an 11 Hz pulsar with a companion of mass 𝑀 ≈ 0.8𝑀⊙ (Testa et al.,

2012) located in the Terzan 5 globular cluster (Strohmayer et al., 2010) which is a distance of

𝑑 ≈ 5.5 kpc away (Ortolani et al., 2007). An accretion outburst was detected beginning in October

2010 (Bordas et al., 2010; Pooley et al., 2010) that lasted for 79 d with an average accretion rate of

2 × 1017 g s−1 (Degenaar & Wĳnands, 2011).

Quiescent surface effective temperatures for IGR J17480−2446 are taken from Degenaar et al.

(2013) which includes data up to 784 d after the end of the outburst. They also include temperature

observations taken 2776 days before and 582 days before the end of the outburst. These temperatures

estimated during these two observations are consistent with each other and lower than all post-
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outburst observations, so I assume that they represent the surface temperature when the crust is

in equilibrium with the core. Degenaar et al. use the nsatmos atmosphere model and assume a

distance of 𝑑 = 5.5 kpc, a mass of 𝑀 = 1.4𝑀⊙, and a radius of 𝑅 = 10 km.

I find best-fit parameters of 𝑇c = 7.7+2.2
−1.6 × 107 K, 𝑄imp = 14.3+25.6

−14.3, 𝑄sh = 1.2+0.5
−0.7 MeV u−1, and

𝑄in = 7.1+23.6
−7.1 MeV u−1 with 𝜒2

𝜈 = 1.0 (5 dof). A corner plot of the distribution and the cooling

curve using the best-fit parameters is shown in Figure 3.5.

The impurity is not well constrained, with a credible region that includes the whole range of the

prior. Based on the marginalized distribution, though, it appears that values less than 𝑄imp ≲ 10

are disfavored. An inner heating rate in the range of 4–9 MeV u−1 is favored, which is a factor of

several higher than the theoretical estimates of 1.5–2 MeV u−1. The shallow heating rate is similar

to the fits to most other sources.

Ootes et al. (2019) also fit crust cooling models to the cooling curve of IGR J17480−2446,

including three temperature measurements that were taken after those of Degenaar et al. (2013).

Ootes et al. fixed the inner heating to 𝑄in = 1.93 MeV u−1 and divided the crust into 5 density

regimes, each with an impurity that could vary independently with a uniform prior of 0 ≤ 𝑄imp ≤

1500. They found that the impurity was not well constrained in any of the regions of the crust,

though the outermost region slightly favored 𝑄imp ≲ 500. Their results for core temperature and

shallow heating were similar to mine.

3.1.6 MAXI J0556−332

MAXI J0556−332 is an LMXB that was discovered in January 2011 (Matsumura et al., 2011)

and exhibited a 16 month accretion outburst that ended in May 2012. Thermonuclear X-ray bursts

have not been observed but the source was determined to likely contain a neutron star because its

optical-to-X-ray and radio-to-X-ray flux ratios are similar to galactic NS LMXBs (Russell et al.,

2011; Coriat et al., 2011). Additionally, analysis of RXTE data shows that it is similar to “Z

sources”, a class of near- and super-Eddington NS LMXBs that trace out distinct tracks in their

X-ray color-color diagrams and hardness-intensity diagrams (Homan et al., 2011). Spectral fits of

XMM-Newton and Chandra data suggest that it is at a distance of 43.6+0.9
−1.6 kpc (Parikh et al., 2017a).
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Figure 3.5 Left: Posterior distribution for IGR J17480−2446. Right: Observed surface effective
temperatures (points; Degenaar et al., 2013) and the model with best-fit parameters𝑇c = 7.7×107 K,
𝑄imp = 14,𝑄sh = 1.2 MeV u−1, and𝑄in = 7.1 MeV u−1. The pre-outburst temperature observations
are not included in this figure, though they were used to fit the model.

Since its detection, MAXI J0556−332 has exhibited 4 accretion outbursts: from January 2011

to May 2012; from October 2012 to December 2012; from January 2016 to April 2016; and from

April 2020 to November 2020.

Though MAXI J0556−332 has exhibited 4 accretion outbursts, there is only one quiescent

observation following the fourth outburst. Since this doesn’t provide enough data to reliably fit the

model parameters, I only fit to the quiescent data of the first three outbursts which are reported by

Parikh et al. (2017a). They use the nsa atmosphere model and assume a distance of 𝑑 = 43.6 kpc,

a mass of 𝑀 = 1.4𝑀⊙, and a radius of 𝑅 = 10 km.

I find best-fit parameters of 𝑇c = 1.0+23.2
−0.0 × 107 K, 𝑄imp = 0.0+40.0

−0.0 , 𝑄sh = 3.9+0.4
−1.2 MeV u−1,

and 𝑄in = 17.9+0.6
−17.9 MeV u−1 with 𝜒2

𝜈 = 399.4 (13 dof). A corner plot of the distribution and the

cooling curve using the best-fit parameters is shown in Figure 3.6.

My model fits very poorly to the cooling curves of MAXI J0556−332. The distributions for all

parameters exhibit some degree of bimodality. Parikh et al. (2017a) found that fitting the cooling

curves of the first three outbursts required different rates of shallow heating for each outburst. They

found an exceptionally high heating rate (𝑄sh ≈ 17 MeV u−1) for the first outburst (see also Deibel
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et al., 2015). The following two outbursts required heating rates similar to the observed outbursts

of other sources (𝑄sh = 2.2 MeV u−1 and 𝑄sh = 0.33 MeV u−1 for the second and third outburst

respectively). Page et al. (2022) suggested that the high shallow heating rate of the first outburst

can be explained by the occurrence of a “hyperburst”, an extremely rare, energetic burst caused by

unstable thermonuclear burning of oxygen and neon in the crust.

The different heating properties of the first outburst explain the bimodal distributions of my fits.

I do not allow the model parameters to vary for different outbursts so the MCMC will generally

favor parameters that are consistent with either the first outburst or the later outbursts.
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Figure 3.6 Left: Posterior distribution for MAXI J0556−332. Right: Observed surface effective
temperatures (points; Parikh et al., 2017a) and the model with best-fit parameters 𝑇c = 1.0× 107 K,
𝑄imp = 0, 𝑄sh = 3.9 MeV u−1, and 𝑄in = 18 MeV u−1.

3.1.7 Aql X-1

Aql X-1 was detected during some of the earliest surveys of X-ray sources using rocket-borne

X-ray detectors (Friedman et al., 1967). It exhibits type I X-ray bursts (Koyama et al., 1981) and

mHz quasi-periodic oscillations (Revnivtsev et al., 2001; Altamirano et al., 2008). Casella et al.

(2008) inferred that it has a spin frequency of 550 mHz, based on observations of pulsations during

persistent emission. Rutledge et al. (2001b) estimate its distance to be in the range of 4–6.5 kpc

with the best estimate being 5 kpc, based on optical observations of its main sequence companion.
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Aql X-1 exhibits accretion outbursts of varying luminosity and duration roughly once per year

(Kaluzienski et al., 1977; Kitamoto et al., 1993; Güngör et al., 2014). Campana et al. (2013)

examined ASM data from 1996-2012, revealing 20 outbursts with durations ranging from 1–26

weeks with X-ray luminosity ranges from 1035–1036 (𝐷/5.0 kpc)2 erg s−1 (where 𝐷 is the distance

to Aql X-1). During quiescence, Aql X-1 displays non-monotonic variability with the observed

flux sometimes increasing by a factor of up to 5 (Cackett et al., 2011; Coti Zelati et al., 2014). This

suggests that low-level accretion flares may occur during quiescent periods.

An LMXB is considered to be in a state of outburst when the observed X-ray flux is high

enough to be detected by an all-sky monitoring telescope and quiescent otherwise. This means

that accretion-induced X-ray emission may still occur in a source in a quiescent state if it is below

the detection threshold. When some LMXBs, including Aql X-1, transition from outburst to

quiescence, they display a brief, rapid decay in flux followed by a longer, gradual decay (see, e.g.,

Fridriksson et al., 2011; Campana et al., 2014; Homan et al., 2014). The rapid decay is usually

interpreted as a decay in the accretion-induced emission while the gradual decay is interpreted

as cooling from the surface. In order to use observations in quiescence to determine the surface

temperature and therefore the crustal properties of a neutron star in an LMXB, it may be important

to distinguish between observations where X-ray emission is dominated by thermal emission at the

surface and observations that contain a significant portion of emission due to accretion.

Waterhouse et al. (2016) analyzed quiescent observations following three accretion outbursts

from 2011-2015. Two of these outbursts (in 2011 and 2013) lasted about 8 weeks with average

accretion rates of 4 × 1017 g s−1 while the outburst in 2015 lasted 3 weeks with an accretion rate of

8× 1016 g s−1. The variability of the quiescent emission poses a challenge for analyzing the surface

emission of Aql X-1. To account for these complications, Waterhouse et al. (2016) classified each

quiescent observation into one of three states: decay, flare, or quiescence. Observations in the

decay state occur within the period of rapid decay immediately following the end of the outburst.

Observations in the flare state are those whose spectra have a significant contribution from the hard,

power-law component and tend to have higher flux values. Observations in the quiescent state are
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those whose spectra are dominated by the soft component. The temperatures from the quiescent

observations were estimated using the nsatmos atmosphere model and assumed a distance of

𝑑 = 5 kpc, a mass of 𝑀 = 1.6𝑀⊙, and a radius of 𝑅 = 11 km.

I find best-fit parameters of 𝑇c = 1.17+0.67
−1.07 × 108 K, 𝑄imp = 12.8+27.2

−12.8, 𝑄sh = 2.2+0.8
−1.4 MeV u−1,

and 𝑄in = 19.6+20.4
−19.6 MeV u−1 with 𝜒2

𝜈 = 8.2 (10 dof). A corner plot of the distribution and the

cooling curve using the best-fit parameters is shown in Figure 3.7.

Only the shallow heating rate appears normally distributed and fairly well-constrained. The

core temperature distribution is left-skewed, with a non-negligible tail extending to the bottom of

my allowed temperature values. The impurity is poorly constrained with nearly uniform probability

above 𝑄imp ≳ 4. The inner heating peaks at 𝑄in ≈ 16 MeV u−1, but the credible includes the

maximum and minimum values allowed in the prior.

Waterhouse et al. (2016) fit several models to these outbursts, assuming 𝑄imp = 1. In some

models, they fixed the core temperature to 𝑇c = 1.75 × 108 K, based on the lowest temperature ever

reported for Aql X-1. Their models varied by whether they included the observations in the flare

state and whether they fixed the core temperature. They found shallow heating rates ranging from

1–3 MeV u−1, which is consistent with my results.

Ootes et al. (2018) modelled 23 of the observed outbursts of Aql X-1. They fit to the quiescent

observation data of 5 of the outbursts, allowing the shallow heating rate and depth of shallow heating

to vary across these outbursts (shallow heating was fixed for all other outbursts at𝑄sh = 1.5 MeV u−1

at a depth of 𝜌 = 4 × 108g cm−3). They found that they needed to allow the shallow heating rate,

depth of shallow heating, and envelope composition to vary between these outbursts to properly

fit the data. The heating properties could not be connected to spectral properties of the outbursts.

They also found that there is not enough time between outbursts for the crust to return to equilibrium

with the core, so that the crust heating during any outburst affects the cooling curve of subsequent

outbursts.
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Figure 3.7 Left: Posterior distribution for Aql X-1. Right: Observed surface effective temperatures
(points; Waterhouse et al., 2016) and the model with best-fit parameters𝑇c = 1.2×108 K,𝑄imp = 13,
𝑄sh = 2.2 MeV u−1, and 𝑄in = 20 MeV u−1.

3.1.8 Swift 174805.3−244637

Swift 174805.3−244637 was discovered in outburst in early July 2012 and was last detected

in outburst late August 2012. It was identified as a NS LMXB due to the detection of a Type I

X-ray burst during this accretion outburst (Bahramian et al., 2014). Analysis of archival Chandra

data showed that, prior to the accretion outburst, the source’s X-ray spectrum was dominated by a

thermal component with a constant temperature from 2003-2012 which suggests that accretion was

either not active or occurred only at a low level (Bahramian et al., 2014).

Degenaar et al. (2015) analyzed quiescent observations up 668 d after the end of the outburst.

They assumed a distance of 𝑑 = 5.5 kpc, a mass of 𝑀 = 1.4𝑀⊙, and a radius of 𝑅 = 10 km and

modelled the atmosphere using nsatmos. They include seven pre-outburst quiescent observations,

which provides a stronger constraint on the core temperature.

I find best-fit parameters of 𝑇c = 1.18 ± 0.17 × 108 K, 𝑄imp = 0.0+40.0
−0.0 , 𝑄sh = 0.9+0.7

−0.9 MeV u−1,

and𝑄in = 0.0+40.0
−0.0 MeV u−1 with 𝜒2

𝜈 = 0.2 (8 dof). A corner plot of the distribution and the cooling

curve using the best-fit parameters is shown in Figure 3.8.

Both the core temperature and the shallow heating are well constrained. The fit favors a low,

but non-zero shallow heating rate. This is consistent with the results of Degenaar et al. (2015),

55



who found that adding any shallow heating increased the 𝜒2 of the fit. The impurity is very poorly

constrained, with a nearly uniform probability across my allowed range. A low inner heating rate

is favored, though the constraint is not very strong.
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Figure 3.8 Left: Posterior distribution for Swift 174805.3−244637. Right: Observed surface
effective temperatures (points; Degenaar et al., 2015) and the model with best-fit parameters
𝑇c = 1.2 × 108 K, 𝑄imp = 0, 𝑄sh = 0.9 MeV u−1, and 𝑄in = 0.0 MeV u−1. The pre-outburst
temperature observations are not included in this figure, though they were used to fit the model.

3.1.9 1RXS J180408.9−342058

1RXS J180408.9−342058 was discovered in 1990 by ROSAT (Voges et al., 1999). It was

detected again when it briefly went into outburst in 2012 and exhibited a Type I X-ray burst

(Chenevez et al., 2012). Based on the brightness of this burst, Chenevez et al. (2012) estimated the

upper limit of its distance to be 5.8 kpc. Shortly afterwards it went into quiescence again (Kaur &

Heinke, 2012). It then was observed in outburst again in 2015 (Barthelmy et al., 2015a,b; Krimm

et al., 2015) and remained in outburst for 4.5 months.

Parikh et al. (2017b) monitored 1RXS J180408.9−342058 during quiescence following its 2015

outburst. They found that the quiescent spectra were dominated by the thermal component, but

all observations still required a power-law component to fit. Though their fits show decrease in

temperature over time, the non-negligible contribution of the power-law component suggests that

low-level accretion may have continued throughout the observed quiescent period. This makes
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the interpretation of the observations difficult because we cannot determine whether the apparent

decrease in temperature is due to crustal cooling or some other process. Because of this uncertainty,

I do not fit a dStar model to the cooling curve data of 1RXS J180408.9−342058.

3.1.10 Summary of Independently Fit Cooling Curves

It is likely that my results for EXO 0748−676, MAXI J0556−332, and Aql X-1 are not accu-

rately representative of of the crustal heating and cooling that has been observed. In the case of

EXO 0748−676, the amount of variability relative to the reported measurement uncertainties is very

high, suggesting that we may not be correctly interpreting the temperature data. MAXI J0556−332

and Aql X-1 both exhibited multiple outbursts and the shallow heating rate between outbursts likely

varies. The first outburst of MAXI J0556−332 requires an extremely high shallow heating rate.

This may be due to a hyperburst, though confirmation requires further investigation. For Aql X-1,

the short recurrence time of the outbursts prevents the crust from thermally relaxing to equilib-

rium with the core, which makes it difficult to estimate the core temperature without modelling

many outbursts simultaneously. Additionally, the variability in the spectral state of its quiescent

observations makes it difficult to interpret the temperature data.

Table 3.3 gives a summary of the best-fit parameters of all models. Excluding EXO 0748−676,

MAXI J0556−332, and Aql X-1, I find good constraints for all core temperatures; for all sources, the

IQR is less than 15% of the median value. KS 1731−260 and MXB 1659−29 are the only sources

with good constraints on the impurity, and each of these sources favors low values (𝑄imp ≲ 4).

The impurity is very unconstrained for the remaining sources. The shallow heating rate is well-

constrained for all sources and consistent with previous results. For KS 1731−260, MXB 1659−29,

and IGR J17480−2446, 𝑄sh ≈ 1–4 MeV u−1. Both XTE J1701−462 and Swift 174805.3−244637

seem to favor nearly no shallow heating. There is some variation in the predicted values of the

inner heating rate. IGR J17480−2446 and Swift 174805.3−244637 favor significantly greater inner

heating than the theoretical estimate of 1.5–2 MeV u−1. The middle 50% of the distributions for

KS 1731−260, MXB 1659−29, and XTE J1701−462 overlap with the range of theoretical values.

One potential shortcoming of my analysis is that I do not analyze the observational data directly
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Table 3.3 Best-fit parameters for all independent models.

Source 𝑇c 𝑄imp 𝑄sh 𝑄in 𝜒2
𝜈 (𝜒2)

(107 K) (MeV u−1) (MeV u−1)
KS 1731−260 6.3+1.0

−0.6 6.3+4.2
−6.3 1.1+1.0

−0.6 0.0+8.1
−0.0 7.7 (30.7)

MXB 1659−29 4.5+0.9
−1.2 0.0+4.7

−0.0 1.4+0.7
−0.2 17.0+3.6

−17.0 3.5 (31.7)
XTE J1701−462 23.8+2.3

−6.5 40.0+0.0
−40.0 0.2+0.1

−0.0 0.0+5.0
−0.0 5.5 (66.5)

EXO 0748−676 22.0 ± 0.2 0.0+2.4
−0.0 3.7+0.3

−0.4 0.0+0.9
−0.0 111.5 (1004)

IGR J17480−2446 7.7+2.2
−1.6 14.3+25.6

−14.3 1.2+0.5
−0.7 7.1+23.6

−7.1 1.0 (4.9)
MAXI J0556−332 1.0+23.2

−0.0 0.0+40.0
−0.0 3.9+0.4

−1.2 17.9+0.6
−17.9 399.4 (5191.6)

Aql X-1 11.7+6.7
−10.7 12.8+27.2

−12.8 2.2+0.8
−1.4 19.6+20.4

−19.6 8.2 (82.1)
Swift 174805.3−244637 11.8 ± 1.7 0.0+40.0

−0.0 0.9+0.7
−0.9 0.0+40.0

−0.0 0.2 (1.7)

to estimate the quiescent temperatures and quantify the uncertainties myself. Instead, I fit my

dStar models to the temperature measurements reported from other sources. Temperature values

are not directly measured; counts of X-ray photons are measured. The temperature is then estimated

using neutron star atmosphere models which depend on assumptions about the neutron star’s mass,

radius, distance, and atmosphere properties and the column of hydrogen between the LMXB and

the observing telescope. These quantities may be highly uncertain, but for the purpose of obtaining

temperature estimates, they are typically fixed to a specific value. The resulting uncertainties that

are reported are due statistical uncertainties of X-ray photon counts, but don’t include uncertainties

about the neutron star’s properties. Accounting for the uncertainties in the atmosphere models

would lead to systematic errors in the cooling curves. Additionally, there are other possible sources

of apparent temperature variation such as low-level accretion flares or eclipses due to the accretion

disk that can be difficult to identify. As a result, the temperatures uncertainties are likely smaller

than they should be.

To be consistent with the reported temperatures, I use the same neutron star mass, radius,

and distance in dStar as the values that were used for the temperature estimates (see Table 3.1).

Unfortunately, without doing a more thorough analysis of how all of the observational uncertainties

impact the uncertainty in individual temperature measurements, I have no way to determine what

more realistic uncertainties should be. The primary effect of fitting to data with artificially small

58



errors is that the 𝜒2 for any set of parameters is higher and the width of my posterior distributions

for each parameter is narrower than they otherwise would be.

3.2 Testing Whether All Sources Share Crust Properties

In previous studies, as well as in my results above, each source was modeled independently

with no assumptions that the shallow heating rates or compositions of the crusts were the same for

all neutron stars. To test this assumption, I will model multiple sources under the constraint that

they must share the same value of 𝑄imp, 𝑄sh, or 𝑄in. I will compare the overall goodness-of-fit of

the models fit to each source independently (the “independent fits”) to the models which are fit to

all sources simultaneously with one parameter varying jointly (the “joint fits”).

My dStar models fit observations of KS 1731−260, MXB 1659−29, XTE J1701−462,

IGR J17480−2446, and Swift 174805.3−244637 with reasonable 𝜒2
𝜈 , but are inadequate for de-

scribing EXO 0748−676, MAXI J0556−332, and Aql X-1. For my joint fit tests, I will only include

the 5 sources that I can fit well independently.

To perform the joint fits, I perform MCMC analysis similar to that described in Section 3.1.

For each step of the MCMC, I run one dStar model each for KS 1731−260, MXB 1659−29,

XTE J1701−462, IGR J17480−2446, and Swift 174805.3−244637. Three of the dStar parameters

for each source vary independently while 1 parameter is shared among all sources. When jointly

fitting 𝑄imp, for example, I run dStar for each model with independent values of 𝑇c, 𝑄sh, and 𝑄in,

but every source has the same value of 𝑄imp. The parameter vector can be represented as

𝜽 = (𝑇1
c , 𝑄

1
sh, 𝑄

1
in, . . . , 𝑇

5
c , 𝑄

5
sh, 𝑄

5
in, 𝑄imp).

Here the superscripts 1, . . . , 5 are labels for the sources KS 1731−260, . . . , Swift 174805.3−244637.

For each source, I calculate 𝜒2 and then calculate a total 𝜒2, 𝜒2
tot = Σ𝑖𝜒

2
𝑖
, where 𝑖 is a label for each

source. I calculate the overall likelihood of 𝜽 as L(𝜽) = exp (−𝜒2
tot/2). The MCMC then proceeds

in the same way as for the independent fits by proposing steps in 𝜽 , then accepting or rejecting steps

based on L(𝜽). I stop the MCMC using the same convergence condition as for the independent

fits: when the number of iterations is equal to 100 times the maximum autocorrelation time.
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I use the same accretion rates, masses, and radii as for the independent fits (see Table 3.1) and

the same priors for all parameters (see Table 3.2), and the same convergence condition. I also find

the best-fit parameters using the Nelder-Mead method the same way I did with the independent fits.

When jointly fitting 𝑄sh or 𝑄in, the procedure is the same. The only difference is that in

the parameter vector 𝜽 , 𝑄sh or 𝑄in will be the shared parameter while there will be independent

variables representing the other parameters for each source.

3.2.1 Model Selection

There are many possible metrics which can be used for comparing the independent fits to the

joint fits such as: the likelihood ratio test (Wilks, 1938), the Akaike information criterion (Akaike,

1974), the Bayesian information criterion (Schwarz, 1978), and the Bayes factor (Kass & Raftery,

1995) (see also Hogg et al., 2010, for a review on fitting models to data and quantifying their

goodness of fit). Of these, the Bayes factor, which is the ratio of the marginal likelihoods (or

evidences, 𝑃(D)) of the two models, would be the most effective since it accounts for all possible

parameters in the parameter space rather than just the best-fit parameters. Estimating the marginal

likelihood is computationally expensive, however, which is one of the motivations for using MCMC

methods in the first place (see Section 2.4).

Due to the fact that my models don’t properly capture all of the uncertainties of the data (as

discussed in Section 3.1.10), even the most rigorous statistical methods may not produce reliable

criteria for model selection. Because of this, I will simply compare the independent fits to the joint

fits by calculating the overall 𝜒2
𝜈 (𝜒2

𝜈 = 𝜒2
tot/𝜈) of each set of fits, using their respective best-fit

parameters. Across all 5 sources, there are 58 total observations. For the independent fits, there

are 20 total parameters (4 for each of the 5 sources) which gives 𝜈 = 38. For the joint fits, there are

16 total parameters (3 independent parameters for each of the 5 sources and 1 shared parameter)

which gives 𝜈 = 42.

As with the independent fits, I find the best-fit parameters for the joint fits using the Nelder-Mead

minimization method. However, it is not practical to create a 16-dimensional histogram to identify

the bin with the greatest number of samples to act as the initial guess for minimization. Instead, I
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use the MCMC sample with the lowest 𝜒2 as the initial guess.

Since my primary objective is to compare the independent fits to the joint fits using the 𝜒2
𝜈 of

the best-fit parameters, I only find the best-fit parameters of the joint fits and don’t estimate any

credible intervals. As a result, I don’t quantify any uncertainty on my parameter estimates.

3.2.2 Joint Fits Results

The best-fit parameters and 𝜒2
𝜈 for the independent fits and each of the joint fits for KS 1731−260,

MXB 1659−29, XTE J1701−462, IGR J17480−2446, and Swift 174805.3−244637 are summarized

in Table 3.4. For the independent fits, 𝜒2
tot = 135.6 and 𝜒2

𝜈 = 3.6 (38 dof). When jointly fitting

𝑄imp, 𝜒2
tot = 198.0 and 𝜒2

𝜈 = 4.7 (42 dof). When jointly fitting 𝑄sh, 𝜒2
tot = 776.4 and 𝜒2

𝜈 = 18.5 (42

dof). When jointly fitting 𝑄in, 𝜒2
tot = 167.1 and 𝜒2

𝜈 = 4.0 (42 dof). The cooling curves for each

source and each set of fits are in Figure 3.9.

The 𝑄imp and 𝑄in joint fits do not fit significantly worse than the independent fits. Most of

the best-fit parameters of the joint fits fall within the 68% credible regions of the independent fits

for each source. The 𝑄imp joint fits favor very low impurity. This is not surprising because the

independent fits for most sources either favor very low 𝑄imp or do not constrain 𝑄imp very well so

their data allow low values. Similarly for the 𝑄in joint fits, a very low value is favored because the

independent fits either favor low values or do not constrain 𝑄in very well. The cooling curves of

the𝑄imp and𝑄in joint fits do not differ significantly from the cooling curves of the independent fits

for most sources.

This is consistent with theoretical calculations of the crust composition which predict that the

composition and accretion-induced heating rate in the inner crust do not depend strongly on the

initial composition of the matter in the envelope (see, e.g., Lau et al., 2018).

Jointly fitting𝑄sh substantially increases 𝜒2
𝜈 compared to the independent fits. All of the sources

fit poorly, with 𝜒2 values significantly greater than for the independent fits and the other joint fits.

When fit independently, XTE J1701−462 favors a very low value of𝑄sh and all other sources favor

𝑄sh ≈ 1 MeV u−1. However, unlike for 𝑄imp and 𝑄in, all sources have fairly good constraints on

𝑄sh so there is no value of 𝑄sh that can fit the data for all sources well simultaneously, As a result,
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Table 3.4 Best-fit parameters and 𝜒2
𝜈 for the independent fits and each set of joint fits. The values

for 𝜒2 are the individual contribution of each source to the overall 𝜒2
tot.

Source 𝑇c 𝑄imp 𝑄sh 𝑄in 𝜒2

(107 K) (MeV u−1) (MeV u−1)
Independent fits

KS 1731−260 6.3+1.0
−0.6 6.3+4.2

−6.3 1.1+1.0
−0.6 0.0+8.1

−0.0 30.7
MXB 1659−29 4.5+0.9

−1.2 0.0+4.7
−0.0 1.4+0.7

−0.2 17.0+3.6
−17.0 31.7

XTE J1701−462 23.8+2.3
−6.5 40.0+0.0

−40.0 0.2+0.1
−0.0 0.0+5.0

−0.0 66.5
IGR J17480−2446 7.7+2.2

−1.6 14.3+25.6
−14.3 1.2+0.5

−0.7 7.1+23.6
−7.1 4.9

Swift 174805.3−244637 11.8 ± 1.7 0.0+40.0
−0.0 0.9+0.7

−0.9 0.0+40.0
−0.0 1.7

𝜒2
𝜈 = 3.6 (38 dof)
𝑄imp fit jointly

KS 1731−260 6.6 0.0 1.6 6.0 43.1
MXB 1659−29 4.5 0.0 1.4 16.8 32.0
XTE J1701−462 22.4 0.0 0.3 2.1 78.8
IGR J17480−2446 8.6 0.0 1.1 18.8 41.6
Swift 174805.3−244637 11.8 0.0 0.9 3.4 2.5

𝜒2
𝜈 = 4.7 (42 dof)
𝑄sh fit jointly

KS 1731−260 6.2 8.0 0.4 2.1 47.3
MXB 1659−29 4.2 0.0 0.4 29.0 432.7
XTE J1701−462 13.7 10.9 0.4 6.3 207.3
IGR J17480−2446 9.0 40.0 0.4 3.8 83.0
Swift 174805.3−244637 12.0 32.4 0.4 0.6 6.0

𝜒2
𝜈 = 18.5 (42 dof)
𝑄in fit jointly

KS 1731−260 6.4 5.2 1.2 0.0 31.8
MXB 1659−29 4.3 2.7 1.7 0.0 39.3
XTE J1701−462 23.8 38.8 0.2 0.0 67.0
IGR J17480−2446 8.5 38.4 1.1 0.0 25.6
Swift 174805.3−244637 12.0 29.0 0.5 0.0 3.5

𝜒2
𝜈 = 4.0 (42 dof)
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Figure 3.9 Cooling curves of KS 1731−260, MXB 1659−29, XTE J1701−462, IGR J17480−2446,
and Swift 174805.3−244637, using the best-fit parameters of the independent and joint fits.
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the best-fit value of𝑄sh for the joint fit is outside the 68% credible regions for all sources. This can

be seen in the cooling curves were the temperatures in the first ∼ 100 days of quiescence deviate

significantly from the cooling curves of the independent fits.

This may suggest that the physical process responsible for heating in the shallow layers of the

crust can differ between different neutron stars or it may depend on properties of the accretion

flow onto the neutron star’s surface. If nuclear processes are not the dominant physical process

responsible for shallow heating, the heating rate may not actually be proportional to the accretion

rate. In this case, the way in which shallow heating has typically been modelled may be incorrect,

which could explain why the shallow heating can’t be fit jointly across all sources.

3.3 Conclusion

I have fit dStar models to observations of KS 1731−260, MXB 1659−29, XTE J1701−462,

EXO 0748−676, IGR J17480−2446, MAXI J0556−332, Aql X-1, and Swift 174805.3−244637.

Using emcee, I have estimated the posterior probability distributions of the core temperature,

impurity of the crustal composition, and the accretion-induced heating rates in the shallow layers

of the crust and deep in the inner crust.

I first fit my models to all sources independently, so that my parameter estimates apply only to

their respective sources. My models fit well to the cooling curves of KS 1731−260, MXB 1659−29,

XTE J1701−462, IGR J17480−2446, and Swift 174805.3−244637 but do not fit well to the cooling

curves of EXO 0748−676, MAXI J0556−332, and Aql X-1. MAXI J0556−332 and Aql X-1 have

each exhibited multiple outbursts that likely have different shallow heating rates between outbursts.

Low-level accretion flares on Aql X-1 and eclipsing due to the accretion disk of EXO 0748−676 make

it difficult to determine with a high level of confidence when we observe the surface temperature

directly. Accurately modelling these 3 sources will require more sophisticated crustal thermal

evolution models than I have used and a better understanding of the accretion properties to properly

interpret the observational data.

To test whether the crust properties of accreting neutron stars can be shared by all neutron

stars, I perform joint fits to the cooling curves of KS 1731−260, MXB 1659−29, XTE J1701−462,
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IGR J17480−2446, and Swift 174805.3−244637. In the joint fits, I fit dStar models to all 5 of

these sources simultaneously with the value of 𝑄imp, 𝑄sh, or 𝑄inbeing shared across all sources. I

compare the goodness-of-fit of each set of joint fits to the independent fits by measuring the 𝜒2
𝜈 of

the best-fit parameters of each set.

Jointly fitting 𝑄imp and 𝑄in does not significantly impact the quality of the fits to the observed

cooling curves when compared to the independent fits. This suggests that the neutron stars of these

sources either have the same impurity and accretion-induced heating rates in their inner crusts or

that these quantities differ from source-to-source, but the data we have available does not constrain

the parameters of our models sufficiently to differentiate among sources.

Jointly fitting 𝑄sh decreases the quality of the fits significantly for all 5 sources. This suggests

that different values of𝑄sh are required to accurately model the crusts of different sources. This may

suggest that the physical mechanism responsible for shallow heating differs for different sources or

that the heating rate depends on some other properties of the accretion outburst.

It is important to note that further analysis is necessary to draw conclusions with greater

confidence. I had to exclude 3 of the 8 LMXBs from my analysis due to poorly fit models. My

modelling method is too simplistic to accurately model some systems that have exhibited multiple

outbursts and for some systems, it is difficult to interpret whether the observational data is capturing

the surface temperature or other features of accretion.

Additionally, the surface temperature measurements to which I compare my models do not fully

reflect the true uncertainties in the observational data. The estimated surface temperature values

depend on neutron star atmosphere models which require assumptions about the neutron star’s

mass, radius, distance, and atmosphere properties as well as the density of the hydrogen column

between the neutron star and the Earth. These quantities often have high uncertainties, but have

been fixed to specific values in order to obtain well-constrained surface temperature estimates. As

a result, the reported temperatures have systematic uncertainties that are not reported. Accounting

for all the observational uncertainties in the data would likely change the posterior probability

distributions of the model parameters.
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One way to account for all of the observational uncertainties would be to combine the atmosphere

models with the thermal evolution models. For each observation of an X-ray photon count rate and

a set of model parameters, the atmosphere model would produce an estimate of the temperature.

This temperature estimate would then be compared to the prediction of the thermal evolution model

using the same set of parameters. Each time the parameters vary, both the atmosphere model and the

thermal evolution model would produce new estimates of the temperature that would be compared.

Because the MCMC may take tens or hundreds of thousands of steps to converge, estimating the

temperature from the atmosphere model for each step may not be computationally practical. Instead,

it may be possible to use other methods to estimate how the temperature uncertainty depends on the

atmosphere model’s parameters independent of the thermal evolution models. Bayesian hierarchical

models combine sub-models to form a hierarchy of models so that the posterior distribution of the

model parameters account for all uncertainties of the sub-models (see Sharma, 2017, for a review

of MCMC methods and how to apply Bayesian hierarchical modelling).
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CHAPTER 4

THE EFFECT OF NEUTRON DIFFUSION ON ACCRETION-INDUCED CRUSTAL
HEATING

In Section 2.1, I described how accretion induces nuclear reactions in the crust of a neutron star.

These reactions heat the crust and determine its composition. Typically the heat release and

composition have been calculated (see, e.g., Haensel & Zdunik, 1990) by tracking the composition

and reactions within a closed, Lagrangian fluid element as it is buried deeper in the crust over

the course of accretion. These calculations have been performed both by using a one-component

approximation (Haensel & Zdunik, 1990, 2003, 2008) and by using reaction networks that allow

mixtures from which the impurity can be directly calculated (Steiner, 2012; Lau et al., 2018;

Shchechilin & Chugunov, 2019). In these calculations, the reactions are determined under the

condition of charge neutrality and conservation of baryons in a Lagrangian fluid element. In the

outer crust, we expect the mass number of nuclei to remain constant because the nuclear reactions

are limited to electron capture reactions. At neutron drip, neutron emissions and neutron captures

may occur locally so the number of baryons stays constant within a fluid element. In the inner

crust, however, the local enforcement of baryon conservation implies that the free neutrons in a

fluid element move with the nuclei in the lattice.

4.1 Neutron Diffusion

Except for a narrow layer at the outer-inner crust boundary and possibly near the crust-core

transition, we expect the free neutrons in the inner crust to be superfluid (see, e.g., Chamel &

Haensel, 2008). The superfluid neutrons move with a velocity 𝑣sn, governed by the linearized su-

perfluid equation (Schmitt, 2015) 𝑚n𝜕𝑣sn/𝜕𝑡 = −∇𝜇∞n , where 𝜇∞n ≡ 𝜇n exp(𝜙/𝑐2) is the redshifted

neutron chemical potential and 𝜙 is the gravitational potential. Hydrostatic equilibrium implies that

𝜇∞n = const in the whole superfluid region. Gusakov & Chugunov (2020) argue that conserving

the baryon number in the WS cell violates this condition (see also Chugunov & Shchechilin, 2020;

Gusakov & Chugunov, 2021; Shchechilin et al., 2021; Gusakov et al., 2021) and instead propose an

EOS that is consistent with neutron hydrostatic and diffusion equilibrium (which they call “nHD”).
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They find that in the inner crust, the nHD EOS produces a crust that is very similar in composition

to the catalyzed crust.

Using the nHD EOS, Gusakov & Chugunov (2021) calculated the accretion-induced heat release

to be 0.21–0.53 MeV u−1, a factor of a few less than the 1.5–2.0 MeV u−1 predicted by the non-

diffusive models. Additionally, some nuclear physics models predict the existence of a pasta phase

at the bottom of the inner crust (Pethick & Potekhin, 1998; Chamel & Haensel, 2008). Molecular

dynamics simulations predict that a pasta layer should have low electrical and thermal conductivity

due to its disordered structure (Horowitz et al., 2015). The inner heating rate and the thermal

conductivity (which depends on the impurity of the composition) impact the thermal evolution of

the crust of an accreting neutron star. This means that whether a thermal evolution model uses the

heat release and composition of the nHD model or of a non-diffusive model and whether a pasta

layer is included may produce observationally distinguishable cooling curves.

In this chapter, I use dStar to compare the nHD model to non-diffusive models. I perform

model selection for each source by estimating the Bayes factor using nested sampling to determine

whether the observational data favors models the nHD model or a non-diffusive model. I also

compare models that include a pasta layer to those that don’t include a pasta layer. For each nHD

and non-diffusive model, I perform model selection to determine whether the data favors the pasta

or the non-pasta models.

4.2 Incorporating Neutron Diffusion Into Cooling Models

Using methodology similar to that described in Section 3.1, I model the observed cooling of

KS 1731−260, MXB 1659−29, XTE J1701−462, IGR J17480−2446, and Swift 174805.3−244637.

I use the same neutron star masses, radii, distances, and accretion rates and fit to the same observed

temperature data (see Table 3.1). I exclude EXO 0748−676, MAXI J0556−332, and Aql X-1 from

my analysis for the reasons I described in Section 3.1.10. I create one set of dStar models for the

nHD crust, and three sets of models for non-diffusive crusts, each corresponding to different initial

conditions for the non-diffusive crust calculations. For all models, 𝑇c and 𝑄sh are free parameters.

𝑄in and 𝑄imp are set according to the calculated values of the respective models.
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For the nHD crust dStar models, I set 𝑄in = 0.37 MeV u−1. In the outer crust, the heat

released from electron capture reactions is 0.3 MeV u−1 for 26.86 ≤ log[𝑃/(dyn cm−2)] ≤ 30.13.

As predicted by Gusakov & Chugunov (2021), nearly all the heat due to deep crustal heating is

released very near neutron drip. I set the depth of the inner heating to occur at a pressure range

of 29.9 ≤ log[𝑃/dyn cm−2)] ≤ 30.0. It is a good assumption that the catalyzed crust of a neutron

star is highly pure because the matter is allowed to reach its absolute ground state (see, e.g., Baym

et al., 1971; Baym et al., 1971). Since the nHD crust composition is similar to that of the catalyzed

crust, I set 𝑄imp = 0.

For the non-diffusive dStar models, I use compositions and heating profiles calculated by the

reaction network of Lau et al. (2018). The composition, impurity, and heat release as a function

of depth depend on the initial composition of the WS cell which represents matter at the top of the

crust. I use the results of three different initial compositions1: 56Fe, superburst ashes, and extreme

rp-process ashes (based on the X-ray burst model of Schatz et al., 2001).

The reaction network calculations yield the nuclear composition, impurity, and cumulative

heat release per accreted nucleon as a function of pressure (which can be treated as a proxy for

depth). The calculations are performed up to a density of 6.36×1012 g cm−3 for the initial 56Fe and

superburst ash compositions and 5.43 × 1012 g cm−3 for the initial rp-process ashes. Above those

densities, I use the composition of Haensel & Zdunik (1990). The mean charge and mass numbers

and impurity of each reaction network as functions of pressure are shown in Figure 4.1.

For each reaction network calculation, I load the composition and impurity directly into their

respective dStarmodels. Each reaction that releases heat could be treated as a very narrow heating

zone at the precise pressure where the reaction occurs. However, there are hundreds of heating

zones for each reaction network and the computational time increases with the number of heating

zones.

To speed up the computation, I approximate the heat release by dividing the crust into three

different heating zones where the heat is released uniformly over the whole zone. For each reaction
1Results of calculations received from Rahul Jain, private communication
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Figure 4.1 Profiles of mean charge number (top), mean mass number (middle), and impurity
(bottom) of initial compositions of pure 56Fe, superburst ashes, and rp-process ashes.
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network, I create a piecewise function 𝑄(𝑃) to represent the cumulative heat release as a function

of pressure. The domain of 𝑄(𝑃) is the same as the domain of pressure in the reaction networks.

𝑄(𝑃) is continuous and its value at the maximum 𝑃 in the domain is equal to the cumulative energy

calculated in the reaction network. Within 3 subdomains (the heating zones), d𝑄/d𝑃 is constant

and positive; outside of the heating zones, 𝑄(𝑃) is constant. I choose heating zone subdomains

and heating rates (quantified by d𝑄/d𝑃 within the heating zones) such that the root-mean square

error relative to the reaction network cumulative heat release is minimized.

Figure 4.2 shows my approximations of 𝑄(𝑃) compared to the reaction network calculations

for each of the three initial compositions. Note that I have plotted the heating profile on a log 𝑃

scale so that it is easier to visualize, so 𝑄(𝑃) does not have a constant slope in the heating zones.

The heating rates and boundaries of the heating zones for 𝑄(𝑃) are summarized in Table 4.1.

Table 4.1 The heating rates per accreted nucleon and pressure ranges for each heating zone. In each
heating zone, heat is released uniformly over the domain 𝑃low ≤ 𝑃 ≤ 𝑃high.

Initial Composition Heating Rate log 𝑃low log 𝑃high
(MeV u−1) (dyn cm−2) (dyn cm−2)

56Fe 0.17 27.90 28.11
0.37 28.39 30.62
1.56 30.63 31.21

Superburst 0.12 27.48 28.22
0.38 28.22 30.61
1.59 30.63 31.20

Rp-Process 0.13 27.36 27.71
0.40 28.16 30.50
1.22 30.50 31.12

4.2.1 Adding a Pasta Layer

Horowitz et al. (2015) model nuclear pasta using a molecular dynamics simulation to estimate

the effective impurity at a baryon density of 𝑛 = 0.05 fm−3, which is about 1/3 nuclear saturation

density and is a typical density where nuclear pasta is expected. They estimate that 𝑄imp ≈ 40, but

note that there is a large degree of uncertainty.

I create two sets of models for the nHD crust and for each reaction network calculation: one

without a pasta layer and one with a pasta layer. For the set of models with no pasta layer 𝑄imp
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Figure 4.2 Cumulative heat release in the crust based on the reaction network calculations of Lau
et al. (2018) for initial compositions of pure 56Fe (top), superburst ashes (middle), and rp-process
ashes (bottom). The solid blue lines are the cumulative energy released up to a depth of log 𝑃
calculated by the reaction network. The dashed yellow lines are my approximation of the heat
release where heat is released uniformly over three heating zones. The shaded regions indicate the
locations of the heating zones.

72



throughout the crust is determined by the reaction network calculations or is fixed at𝑄imp = 0 for the

nHD crust. For the set of models with a pasta layer, at baryon densities greater than 𝑛 = 0.05 fm−3,

the impurity is equal to the pasta impurity, 𝑄imp,pasta. Because of the uncertainty in the value of

𝑄imp,pasta, I leave it as a free parameter with a uniform prior ranging from 20–200. This allows

the pasta impurity to vary significantly around the estimate of 𝑄imp,pasta ≈ 40, but constrains it to

remain at a level much higher than is expected in the rest of the crust.

4.3 Model Selection

For each source, I select from three sets of competing models: first, the three non-diffusive

reaction network models against each other; second, the non-diffusive models against the nHD

models; and third, models without a pasta layer against models with a pasta layer. To select

between competing models, I will calculate the Bayes factor (Kass & Raftery, 1995). For two

competing models, the Bayes factor is the ratio of the marginal likelihoods of the two models. As

introduced in Section 2.4, evidence is the marginal likelihood of all possible model parameters,

Z =
∫
Ω𝚯

L(𝜽)𝜋(𝚯)d𝚯, where Ω𝚯 represents the whole parameter space. This provides more

information about the overall fits of competing models than many model selection methods which

only account for the maximum likelihoods of the competing models (for example, the likelihood ratio

test, the Akaike information criterion, or the Bayesian information criterion). One disadvantage of

the Bayes factor is that it is usually impossible to calculate directly and is typically very difficult to

approximate numerically.

Most commonly used MCMC methods, such as the Metropolis-Hastings algorithm and its

variants, are effective at estimating the posterior probability distribution of a model given a set

of data but do not estimate Z, which is the quantity we need for estimating the Bayes factors for

competing models. To estimate Z, I use another type of MCMC sampling method called “nested

sampling” (Skilling, 2004).

Estimating Z by numerically integrating L(𝜽)𝜋(𝚯)d𝚯 over the parameter space is impractical

for more than a small number of dimensions due to the curse of dimensionality. However, we can
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reformulate the integral by introducing the prior mass,

𝑋 (𝜆) ≡
∫
𝚯:L(𝜽)>𝜆

𝜋(𝚯)d𝚯. (4.1)

𝑋 (𝜆) is the mass of the prior in the parameter space for which L(𝜽) > 𝜆 and decreases from 1 to

0 as 𝜆 increases from 0 to ∞. Using d𝑋 = 𝜋(𝚯)d𝚯, we can evaluate the evidence,

Z =

∫
Ω𝚯

L(𝜽)𝜋(𝚯)d𝚯 =

∫ 1

0
L(𝑋)d𝑋, (4.2)

where L(𝑋) ≡ L(𝑋 (𝜆)) = 𝜆. By evaluating iso-likelihood contours L𝑖 ≡ L(𝑋𝑖) for prior masses

ranging from 0 to 1, we can numerically integrate Equation (4.2).

The complete nested sampling algorithm and its mathematical justification is beyond the scope

of this chapter (see Skilling, 2004), but works by estimating the prior masses of iso-likelihood

contours based on samples from the prior. Dynamic nested sampling is a generalization of the

nested sampling algorithm that improves sampling efficiency for more accurate estimates of both

the evidence and the posterior (Higson et al., 2019).

I use the code dynesty to estimate Z for each source and each crust model. For two competing

models, I calculate the Bayes factor 𝐾 = Z1/Z2. If 𝐾 > 0, the data favors model 1 over model 2,

with larger values of 𝐾 indicating stronger favor towards model 1 over model 2. The thresholds of

log𝐾 for model selection are in Table 4.2.

Table 4.2 Thresholds of log𝐾 for model selection and hypothesis testing suggested by Kass &
Raftery (1995).

log𝐾 Strength of Evidence
0 to 0.5 Not worth more than a bare mention
0.5 to 1 Substantial
1 to 2 Strong
> 2 Decisive

4.4 Comparison of Models

There are eight total models for each source: four models with no pasta layer for each of the

crust compositions (56Fe, superburst ashes, rp-process ashes, and nHD) and four models with a

pasta layer for each of the crust models. The estimated evidence for each model, calculated using
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dynesty, is in Table 4.3. Cooling curves for nHD models and the most probable non-diffusive

model for each source are shown in Figure 4.3. The posterior distributions of each model can be

found in the Appendix.

Table 4.3 Estimated evidence lnZ for each of the non-diffusive and nHD models. The greatest
evidence (most favored model) for each source is in bold.

Source Crust Model No Pasta Pasta
KS 1731−260 56Fe −25.410 ± 0.062 −28.165 ± 0.104

Superburst ashes −23.334 ± 0.056 −27.741 ± 0.084
Rp-process ashes −25.314 ± 0.063 −43.832 ± 0.084

nHD −27.011 ± 0.067 −28.977 ± 0.079
MXB 1659−29 56Fe −26.855 ± 0.065 −22.269 ± 0.069

Superburst ashes −27.687 ± 0.060 −24.593 ± 0.064
Rp-process ashes −113.806 ± 0.064 −128.232 ± 0.079

nHD −34.952 ± 0.068 −37.470 ± 0.070
XTE J1701−462 56Fe −60.591 ± 0.074 −62.126 ± 0.079

Superburst ashes −62.613 ± 0.071 −64.188 ± 0.076
Rp-process ashes −57.268 ± 0.075 −58.046 ± 0.077

nHD −49.793 ± 0.254 −50.222 ± 0.254
IGR J17480−2446 56Fe −33.251 ± 0.069 −30.013 ± 0.070

Superburst ashes −31.166 ± 0.060 −28.407 ± 0.064
Rp-process ashes −24.816 ± 0.067 −23.514 ± 0.069

nHD −35.850 ± 0.226 −34.658 ± 0.229
Swift 174805.3−244637 56Fe −9.624 ± 0.062 −9.838 ± 0.063

Superburst ashes −8.402 ± 0.057 −8.478 ± 0.058
Rp-process ashes −10.198 ± 0.063 −10.368 ± 0.064

nHD −9.971 ± 0.216 −9.765 ± 0.214

For any given source, the most favored model yields the greatest value of lnZ. Any pair of

models can be compared by calculating ln𝐾 = lnZ1 − lnZ2; when using the model selection

thresholds from Table 4.2, lnZ1 is the more favorable of the two models. There are three sets of

model comparisons I would like to discuss with these sources. First, I will compare the non-diffusive

models to each other. The initial compositions of the reaction network calculations represent the

composition at the top of the crust during accretion. This depends on the types of thermonuclear

burning that have occurred in the envelope and may depend on the accretion history. Second, I will

compare the non-diffusive models to the nHD models. Third, I will compare the pasta models with

the no-pasta models.
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Figure 4.3 Cooling curves of KS 1731−260, MXB 1659−29, XTE J1701−462, IGR J17480−2446,
and Swift 174805.3−244637, using the best-fit parameters of the nHD models and the non-diffusive
models. Only the cooling curve of the non-diffusive model with the greatest evidence is shown.
Solid lines represent models with no pasta layer; dashed lines represent models with a pasta layer.
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There does not appear to be one non-diffusive model that is favored consistently by all the

sources. KS 1731−260 and Swift 174805.3−244637 favor the initial superburst ashes composition;

MXB 1659−29 favors the initial 56Fe composition; XTE J1701−462 and IGR J17480−2446 favor

the initial rp-process ashes composition. The preferences among the non-diffusive models for

each source are consistent between the pasta and no-pasta models. We don’t necessarily expect

different neutron stars to have the same crust composition since the accretion history varies from

source-to-source. So it is not unexpected for different sources to favor different reaction network

compositions.

However, when comparing the pasta models to the no-pasta models, we would expect all

sources to favor one or the other. Whether or not pasta phases exist depends on the physics of the

dense matter at the bottom of the crust, which should not differ between neutron stars. However,

the sources here do not consistently favor either pasta or no-pasta models. KS 1731−260 and

XTE J1701−462 favor no pasta layer for all crust compositions (with only a slight preference for

XTE J1701−462 with the rp-process and nHD compositions). IGR J17480−2446 favors a pasta

layer for all crust compositions. MXB 1659−29 favors a pasta layer for the 56Fe and superburst

ashes compositions and no pasta layer otherwise. The differences between the no-pasta and pasta

models for each composition for Swift 174805.3−244637 are too small to favor one over the other.

Similarly, when comparing the non-diffusive models to the nHD models, we do expect all

sources to favor one or the other. This is because the difference between the non-diffusive models

and the nHD models is in how the free neutrons are treated. A comparison between the sets of

models is, in principle, a test of which treatment better captures the behavior of the free neutrons in

the inner crust. Regardless of the inclusion of a pasta layer, XTE J1701−462 favors the nHD models,

while the other sources all favor one of the non-diffusive models. In the cases of KS 1731−260 with

a pasta layer and Swift 174805.3−244637 with or without pasta, the preference for the superburst

ashes composition is not decisive (log𝐾 < 2).

One interesting feature of the pasta models is that for KS 1731−260 and MXB 1659−29, the

data appears to favor very low 𝑇c compared to the no-pasta models (see the posterior distributions

77



in Figures A.2 and A.4). The no-pasta models predict that the crusts have finished cooling and have

returned to thermal equilibrium with the cores, while the pasta models predict that the crusts are

still cooling (see Figure 4.3). Further X-ray observations could help determine if these two sources

are still cooling which could be an effective test of the existence of a pasta layer. If KS 1731−260

and MXB 1659−29 did in fact have significantly cooler cores, this would imply a larger inferred

specific heat capacity (Cumming et al., 2017) and/or a more efficient neutrino emissivity (Brown

et al., 2018).

4.5 Conclusion

I have compared neutron star crust models with different crust compositions and heating profiles

using the observed cooling of KS 1731−260, MXB 1659−29, XTE J1701−462, IGR J17480−2446,

and Swift 174805.3−244637. I have also compared models with a low thermal conductivity pasta

layer at the bottom of the crust to models with no pasta layer. I do not find any consistent preference

across all sources for any set of models. Different accreting neutron stars have different accretion

histories and exhibit different types of thermonuclear burning in their envelopes, so we expect that

the composition at the top of the crust may differ from source-to-source. However, when comparing

non-diffusive models to the nHD model or the pasta models with the no-pasta models, we expect

the data for all sources to prefer one or the other.

The cause for the unexpected results may be due to the fact that we are not fully accounting for

all the uncertainties in the data (as discussed in Sections 3.1.10 and 3.3). The observed 𝑇eff values

to which I compare my models may have significant systematic errors that I do not account for

and their random errors are likely greater than reported. Properly quantifying these errors would

change the estimated Z values of each of my tested models and may change which models are

favored by the data. Alternatively, it may lead to estimated Z values that are too close to distinguish

between different models. Coming to a proper conclusion will require more accurately quantifying

the observational errors.
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CHAPTER 5

CONCLUSIONS

Accreting neutron stars provide a window into the physics of the dense matter that is present in

a neutron star. By fitting models of the thermal evolution of the crust to the cooling observed

during quiescence follow an accretion outburst, we can estimate the core temperatures, accretion-

induced heating rates, and impurity of the composition. Using Bayesian MCMC methods, we can

approximate the posterior probability distributions of model parameters and compare competing

models.

5.1 Jointly Fitting Crustal Properties of Multiple Neutron Stars

There are nine LMXBs in which crustal cooling has been observed following an accretion

outburst: KS 1731−260, MXB 1659−29, XTE J1701−462, EXO 0748−676, IGR J17480−2446,

MAXI J0556−332, Aql X-1, Swift 174805.3−244637, and 1RXS J180408.9−342058. Several of

these sources have been analyzed independently prior to this work. Joint fits for multiple sources,

in which it is assumed that multiple sources share the same heating rates or compositional impurity,

had never been performed before. It was unknown whether different neutron star crusts share the

same properties or if they differ based on other factors such as their accretion history.

I fit dStarmodels to the cooling curves of all of these sources except 1RXS J180408.9−342058.

All quiescent observations of 1RXS J180408.9−342058 exhibit spectral properties that suggest

that low-level accretion may be occurring, so we can’t reliably interpret the observational data

as thermal emission from the neutron star’s surface. For the remaining sources, I estimated the

posterior probability distributions of 𝑇c,𝑄imp,𝑄sh, and𝑄in using emcee. I found that my models fit

poorly to the observed cooling of EXO 0748−676, MAXI J0556−332, and Aql X-1, as measured

by the 𝜒2
𝜈 values for the best-fit parameters. EXO 0748−676 exhibits a high degree of variability

relative to the reported temperature uncertainty, which may be due to interference from its accretion

disk. Both MAXI J0556−332 and Aql X-1 have exhibited multiple accretion outbursts with shallow

heating rates that likely vary between outbursts. Additionally, low-level accretion was likely present

for many of the quiescent observations of Aql X-1.
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MydStarmodels fit well the cooling curves of KS 1731−260, MXB 1659−29, XTE J1701−462,

IGR J17480−2446, and Swift 174805.3−244637 so I use these sources for all remaining tests. I

performed joint fits where all sources share the same value of 𝑄imp, 𝑄sh, or 𝑄in. I compared the

goodness-of-fit of these joint fits to the overall goodness-of-fit of these sources when fit indepen-

dently. I found that jointly fitting 𝑄imp or 𝑄in does not significantly decrease the goodness-of-fit,

which suggests that all sources may have the same impurity and inner heating rates. However, I

found that jointly fitting 𝑄sh significantly decreases the goodness-of-fit. This suggests that differ-

ent accreting neutron stars very likely have different shallow heating rates. The physical process

responsible for the shallow heating is unknown, but its variability suggests that it is likely not

primarily due to nuclear processes.

5.2 The Effect of Neutron Diffusion on Accretion-Induced Crustal Heating

Most calculations of the composition and deep crustal heating rates do not account for the

diffusion of neutrons throughout the inner crust. Gusakov & Chugunov (2020) argue that because

the unbound neutron are superfluid, they should diffuse easily and that this should reduce the

heating rate and drive the composition closer to that of the catalyzed crust. I made dStar models

using the calculated heat release and impurity of three non-diffusive reaction network calculations

using different initial compositions (Lau et al., 2018) and the nHD calculation of Gusakov &

Chugunov (2021). For each of these heat release and impurity calculations, I made one model

with a low-conductivity pasta layer at the bottom of the inner crust and one model with no pasta

layer. I fit these models to the cooling curves of KS 1731−260, MXB 1659−29, XTE J1701−462,

IGR J17480−2446, and Swift 174805.3−244637 and calculated the Bayesian evidence Z using

dynesty. I compared the estimated values of Z for each model to determine which models are

preferred by the data for each source.

I found that there are no models that are generally preferred across all sources. It is not

surprising to find that the data from different sources favor different initial compositions among the

non-diffusive models. The initial composition in the reaction network calculation represents the

composition at the top of the crust, which we expect to vary depending on the history of accretion
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and thermonuclear burning in the envelope.

However, we expected to find that all sources favored either a non-diffusive model or the nHD

model. Whether or not free neutrons in the inner crust diffusive significantly should depend on the

underlying physics of neutrons in the high density regime and should not vary for different neutron

stars. Similarly, we expected all sources to favor either a model with a pasta layer or a model with

no pasta layer. The existence of pasta phases at the bottom of the crust depends on the EOS of the

matter just below nuclear saturation density, which should be different for different neutron stars.

5.3 Future Work

The results I have reported in this work are subject to several shortcomings that could be

improved in future work. I was only able to fit my dStar models to five of the nine sources well,

which is particularly problematic when attempting to determine whether some crust properties

are global or differ for different neutron stars. Fitting to MAXI J0556−332 and Aql X-1 requires

varying the shallow heating rate for different outbursts (which has been done by, e.g., Parikh et al.,

2017a; Ootes et al., 2018; Degenaar et al., 2019). Properly interpreting the quiescent observations of

Aql X-1 and 1RXS J180408.9−342058 requires properly distinguishing between surface emission

and low-level accretion or other disk emission. This may also necessary for the quiescent emission

of EXO 0748−676, which exhibits X-ray eclipses and high estimated temperature variability.

It will also be necessary to more accurately account for all observational uncertainties when

fitting models to available data. In my work and all prior analysis of quiescent crust cooling,

thermal evolution models have been fit to observed surface temperatures that have been estimated

from neutron star atmosphere models based on assumptions about the neutron star’s distance,

mass, and radius, and the intervening column of hydrogen between the neutron star and the Earth.

The values of each of these parameters are uncertain, but the temperature estimates and their

corresponding uncertainties all assume precise values. By fitting thermal evolution models to these

temperatures, we are only able to estimate our model parameters and quantify the goodness-of-fit

on the condition that the parameters assumed in the surface temperature calculations are true.

Future analysis of cooling curves should quantify the uncertainties in the estimates of the surface
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temperature. One method that may be effective for this is Bayesian hierarchical modelling, where

we combine sub-models to form a hierarchical model that accounts for the uncertainty in each

sub-model (see, e.g., Sharma, 2017).
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APPENDIX

DETAILED RESULTS FOR MODELS WITH AND WITHOUT NEUTRON DIFFUSION

Included here are the posterior distributions of the non-diffusive and nHD models discussed in

Chapter 4. For each source, there are eight models, distinguished by the heating profile and

impurity of the crust and by the exclusion or inclusion of a pasta layer.

The heating profile and impurity of the crust are set by the crust composition, which may be

one of the non-diffusive, reaction network calculations of Lau et al. (2018) or the nHD crust of

Gusakov & Chugunov (2020). The non-diffusive crusts differ in their initial composition: 56Fe,

superburst ashes, or rp-process ashes. Both 𝑄sh and 𝑇c are left as free parameters for all models.

Pasta may be included in a model by adding a layer at the bottom of the crust where the impurity

is equal to the pasta impurity, 𝑄imp,pasta. Although uncertain, the value of 𝑄imp,pasta is expected to

be high (see, e.g., Horowitz et al., 2015, who estimate 𝑄imp,pasta ≈ 40). I leave 𝑄imp,pasta as a free

parameter in the pasta models under the constraint that 𝑄imp,pasta ≥ 20.

For models without pasta, 𝑇c and 𝑄sh are well-constrained with normal marginal distributions.

For the models with pasta, 𝑄sh is well-constrained and normally distributed for all sources and

models. 𝑄imp,pasta is not well-constrained by most of the models. For KS 1731−260, all crust

compositions favor 𝑄imp,pasta ≲ 25. For MXB 1659−29 with initial rp-process ashes composition

𝑄imp,pasta ≲ 30 is favored, while for all other compositions, 𝑄imp,pasta ≈ 40–60 appears to be

favored.

One notable feature of the pasta models for KS 1731−260 and MXB 1659−29 is that they

tend to favor very low 𝑇c. The marginalized distributions of 𝑇c all appear to be truncated at the

minimum value allowed by the prior (log [𝑇c/(K)] = 6.5). A core temperature this low seems very

unlikely, because it is inconsistent with the sources being in a long-term steady-state. For example,

Brown et al. (2018) estimate that, given its observed accretion history, MXB 1659−29 would

reach a steady-state core temperature in a few centuries, which is much shorter than the accretion

lifetime of a LMXB; further, MXB 1659−29 would need a neutrino luminosity of 3 × 1034 erg s−1

to maintain a steady-state core temperature. For a direct Urca process, operating over the entire
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neutron star core (assuming a radius of 11 km), to supply this luminosity requires 𝑇c ≳ 107 K.

While the posterior distributions can inform us of the parameter values that are favored by

the data as well as how well-constrained the parameters are, they do not inform us of the overall

goodness-of-fit of each model. That is quantified with the evidence Z, which is reported in

Table 4.3 and discussed in Section 4.4.
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Figure A.1 Posterior distributions of 𝑇c and 𝑄sh for KS 1731−260. The non-diffusive and nHD
models without a pasta layer are shown.
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Figure A.2 Posterior distributions of 𝑇c, 𝑄sh, and 𝑄imp,pasta for MXB 1659−29. The plots display
the non-diffusive and nHD models with a pasta layer.
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Figure A.3 Posterior distributions of 𝑇c and 𝑄sh for MXB 1659−29. The non-diffusive and nHD
models without a pasta layer are shown.
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Figure A.4 Posterior distributions of 𝑇c, 𝑄sh, and 𝑄imp,pasta for MXB 1659−29. The plots display
the non-diffusive and nHD models with a pasta layer.
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Figure A.5 Posterior distributions of 𝑇c and 𝑄sh for XTE J1701−462. The non-diffusive and nHD
models without a pasta layer are shown.
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Figure A.6 Posterior distributions of𝑇c,𝑄sh, and𝑄imp,pasta for XTE J1701−462. Each non-diffusive
model and the nHD model, both with a pasta layer, are shown.
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Figure A.7 Posterior distributions of 𝑇c and 𝑄sh for IGR J17480−2446. The plots show the non-
diffusive and the nHD models without a pasta layer.
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Figure A.8 Posterior distributions of 𝑇c, 𝑄sh, and 𝑄imp,pasta for IGR J17480−2446. Each non-
diffusive model and the nHD model with a pasta layer are displayed.
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Figure A.9 Posterior distributions of 𝑇c and 𝑄sh for Swift 174805.3−244637. The plots display the
non-diffusive and the nHD models without a pasta layer.
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Figure A.10 Posterior distributions of 𝑇c, 𝑄sh, and 𝑄imp,pasta for Swift 174805.3−244637. The
non-diffusive and nHD models with a pasta layer are shown.
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