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ABSTRACT

The low-lying structure of the unbound nucleus 13Be remains incompletely understood,

particularly regarding whether neutron decays populate the isomeric second 0+2 state (2.25

MeV, τ = 331 ns) in 12Be. This thesis presents the first dedicated search for this decay

path using invariant mass spectroscopy. Neutron-removal reactions from a 78 MeV/u 14Be

beam incident on a 9Be target were measured in coincidence with delayed γ-rays. The

12Be fragments were identified using a novel charged-particle telescope, while neutrons were

detected with the MoNA-LISA array and γ-rays with the CAESAR array surrounding the

telescope.

No evidence of population and decay of the 12Be 0+2 state was observed in either the 2.1

MeV γ-ray or 511 keV positron annihilation signatures. An upper limit of 13% contribution

was extracted. Simulations confirmed that the expected γ-ray yield from this decay channel

would have been detectable given the measured p-wave resonance strength. Consequently,

the previously observed p-wave resonance near 500 keV must decay directly to the 12Be

ground state, resolving a key uncertainty in the 13Be level scheme. This result constrains

theoretical models of shell evolution near the neutron drip line at N = 8.
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Chapter 1. Introduction

1.1 The atomic nucleus

It is known from the 19th century that the matter in the physical world is composed of

atoms. The species of atoms are called elements and are arranged in the periodic table.

Atoms were believed to be invariable until Antoine Henri Becquerel, Marie Curie and Pierre

Curie did their pioneering research work on radioactivity in the late 1890s [4, 5, 6, 7, 8, 9,

10]. In 1911, Ernest Rutherford announced the discovery of the atomic nucleus, based on

experiments conducted by his student Ernest Marsden [11]. About 20 years later, in 1932,

James Chadwick reported the discovery of the neutron [12]. These groundbreaking findings,

along with the development of quantum mechanics, the invention of the cyclotron [13] and

the linear accelerator [14] in 1932, laid the foundation for a new scientific field dedicated to

understanding the atomic nucleus.

The nucleus is made up of protons and neutrons, which are collectively referred to as

nucleons. The species of a nucleus, called a nuclide, is identified by the number of protons

and neutrons in it. There are more than 3000 known nuclear species. All of them are

arranged in the chart of nuclides, shown in Figure 1.1. A nuclide is usually referred to

as A
ZXN , where Z is the number of protons (or the atomic number), N is the number of

neutrons, A is the mass number, which is the sum of Z and N, and X is the atomic symbol

that also identifies the number of protons. Isotopes are nuclei with the same atomic number

(Z) but different neutron numbers (N) and are represented as rows in the chart of nuclides.

In contrast, isotones have the same neutron number (N) but different atomic numbers (Z),

appearing as columns in the chart. Isobars are nuclei with the same mass number (A) and
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are depicted along the diagonal from the top left to the bottom right in the chart of nuclides.

Figure 1.1: The nuclear chart reproduced from NNDC [1].

The colors in the chart represent the half-life of the nuclide. The black squares in the

middle are stable isotopes, and the other are radioactive isotopes that will spontaneously

decay by emitting various particles like electrons (β−), positrons (β+), helium particles

(α), protons and neutrons; some of them can even capture their own electrons or undergo

spontaneous fission. The half-lives of the nuclides range from longer than the age of the

universe down to ∼ 10−22 s for particle-unbound nuclei [15].

The stability and decay mechanisms of a nucleus depend on the interactions among its

nucleons. The strong force binds quarks together to form nucleons, and its residue binds

protons and neutrons to form the nucleus. The weak nuclear force is related to β decay

where a neutron (or proton) transforms into a proton (or neutron). The electromagnetic

force also plays its part, since the proton has a positive charge. Gravity is totally negligible

within nuclei, but becomes dominant in neutron stars, which are essentially extremely huge
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nuclei [16].

The stability of a nucleus can be measured by its binding energy (BE), which is the energy

required to break the nucleus into its proton and neutron constituents. If a nucleon is added

to a nucleus and the binding energy increases, then a new nucleus is created. Oppositely, it

takes the same energy to remove that nucleon. That amount of energy is called the proton

separation energy (Sp) or neutron separation energy (Sn).

Sn(N,Z) = BE(N,Z)−BE(N − 1, Z) (1.1)

Sp(N,Z) = BE(N,Z)−BE(N,Z − 1) (1.2)

The boundary between positive and negative values of S is known as the drip line [17].

Nuclei within the drip lines are stable against the spontaneous emission of nucleons, whereas

those outside the drip line can spontaneously decay by emitting one or more nucleons. The

neutron drip line marks a distinct boundary: nuclei just inside the drip line undergo β−-

decay with lifetimes on the order of milliseconds, whereas those outside the drip line have

lifetimes around 10−20 seconds or less due to the strong interaction decay widths measured

in MeV. For heavy nuclei, the Coulomb barrier significantly impedes proton decay, resulting

in lifetimes for the one- or two-proton decay of nuclei just outside the proton drip line that

can be comparable to or even longer than those for beta decay.

1.2 Nuclear structure theories

The study of nuclear structure is to understand the building blocks of atomic nuclei and

how they combine and interact to make the variety of isotopes along with describing their
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properties observed in experiments. At different spatial scales or energy levels, different

degrees of freedom are dominant as shown in Figure 1.2, therefore, different theoretical

models are used to explain this evolution.

Figure 1.2: Degrees of freedom in nuclear physics re-
produced from [2].

Ab initio models start from the basic building blocks, quarks and gluons, which can

be described using quantum chromodynamics (QCD). The interactions between nucleons

are calculated on the basis of the results of QCD and lattice QCD. Ab initio models are

predictive but computationally expensive, so they are limited to light nuclei [18].

Configuration interaction (CI) models shrink the model space to the configuration of
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only a part of the nucleons inside a nucleus, so they can be applied to nuclei of up to 100

nucleons [2]. CI models are mostly based on the nuclear shell model and modified according

to experimental results. Each model can only predict the physics properties of nuclei for a

certain area on the nuclear chart.

For superheavy nuclei, configuration interaction models are also limited by computa-

tional power. Density functional theory (DFT) based models, which are widely used in

atomic and condensed matter physics, use continuous densities and currents rather than in-

dividual particles to deal with collective motions such as rotational and vibrational degrees

of freedom [19, 20].

Although nuclear properties can be largely explained using approaches tailored to specific

mass regimes, a unified method with predictive power that extends across a wider range (the

entire nuclear chart) has always been the pursuit of theories. New experimental findings

play a crucial role in challenging and benchmarking these theoretical approaches so that the

theory models used to describe the nuclear properties can become more precise and extensive.

1.3 The nuclear shell model

The origin of the nuclear shell model is the observation that the outstanding stability of the

nuclei with either proton or neutron number equals certain “magic” numbers (2, 8, 20, 28,

50, 82, and 126) [21, 22], indicating a model similar to the atomic electron shell model.

The nuclear shell model simplifies the strong nuclear force by considering a nucleon as

a single particle within the mean field potential created by other nucleons. A Hamiltonian

is constructed with matrix elements determined by an empirically chosen potential suitable

for the specific mass regime. The eigenvalues and eigenstates, characterized by quantum
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numbers (n, l, j, and energy E), are used to predict the properties of the nuclear structure.

The potential V (r) used to describe the nucleon interaction is defined in three key areas of

the nucleus: interior, surface, and exterior.

In practice, the harmonic oscillator (HO) potential was used initially due to its simplicity

and analytical nature, and has been able to reproduce the magic number of 2, 8 and 20.

However, the Woods-Saxon potential more accurately reflects empirically obtained nuclear

density shapes. This nuclear potential V (r) is employed to generate a spectrum of energy

levels available to the nucleons.

For a bound nucleus, the potential should be attractive (V (r) < 0) and approximately

constant in the interior, assuming a short-range nucleon-nucleon interaction and constant

nuclear density. Near the nucleus surface, V (r) decreases to reflect the reduced number of

interactions for the outer nucleons. Beyond the interaction range, V (r) approaches zero. For

heavy nuclei, the density distribution can be described using a Fermi distribution. The fit

to this density distribution gives the Woods-Saxon potential which is defined as

VWS(r) =
V0

1 + e(r−R0)/a0
(1.3)

where R0 = 1.21 fm and V0 ≃ −30 MeV. VWS(r) represents the central potential. After

including the spin-orbit term, V (r) = VWS(r) + Vls(r)
⟨ls⟩
ℏ , the model is able to reproduce

all the observed magic numbers [23, 24, 25], as shown in Figure 1.3.

1.4 Shell evolution in beryllium isotopes

Beryllium is the element that has 4 protons, and the particle-bound isotopes range from

7Be to 14Be [26]. The structure of beryllium isotopes has a variety of interesting features
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Figure 1.3: Single particle states. Figure repro-
duced from [2].

despite its small number of nucleons. Although 7Be is the lightest bound beryllium isotope,

8Be can be viewed as a system of 2α particles unbound by only 5.57 eV [27] while 9Be is

the only stable beryllium isotope also considered to be a α−α− n Borromean system. The

9Be stability is due to its molecular structure [28, 29, 30] and core excitation [31]. The

next isotope of beryllium, 10Be, was experimentally observed to have a weakened cluster

structure, an evidence of the reduced size of its charge radius [32, 33]. The 2α + 2n cluster

structure seen in this latter isotope starts to appear when the excitation energy is close to

the neutron and α separation energies.

On the other hand, 11Be was found to be a one-neutron halo nucleus, with 16% of its core-

excited component in the ground state observed through the 11Be(p,d)10Be reaction [34].

The ground state of 11Be is 1/2+ instead of 1/2−, implying that the last neutron is in the
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sd-shell instead of the p-shell. The ground state and the lowest 0+ excited state of 12Be are

both mixtures of p-shell and sd-shell [35]. The parity inversion in 11Be and the observed

configuration mixing in 12Be suggest the breakdown of the N = 8 shell closure [36].

The next isotope, 13Be, plays a very unique role in the isotopic chain: it is unbound, right

beyond the neutron drip line and belongs to the N = 8 (vanishing) closed shell. The low-

lying structure of this isotope would largely inform theoretical models of nuclear structure

and shell evolution around N = 8.

The last and heaviest particle-bound isotope of beryllium, 14Be, features a 2-neutron

halo and is classified as a Borromean nucleus [37, 38]. According to the simple model of

12Be+n+n, the ground state wave function of 14Be would be expected to be dominated by

the d5/2 orbital. However, due to the level inversion observed in other neutron-rich beryllium

isotopes, contribution from some low-lying s1/2 strength is expected [39].

Beyond the neutron drip line, 15Be has been observed to decay into 12Be through un-

bound states in 14Be [40]. The last beryllium isotope observed is 16Be, which is bound with

respect to the emission of one neutron but is unbound when it comes to the emission of two

neutrons [41].

1.5 Previous experimental results and motivation

1.5.1 Invariant mass spectroscopy

As mentioned above, 13Be is a neutron-unbound nucleus, which means its ground state is

above the neutron separation energy. Unbound neutron states cannot be experimentally

measured directly because their neutron decay occurs immediately (on the order of 10−21 s).
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One appraoch to study such short-lived systems is to reconstruct their decay energy, i.e. the

amount of energy released in the decay in the center-of-mass frame, using the invariant mass

spectroscopy method. A mass is invariant in any inertial frame.

The invariant mass of a single particle or a mass point is just its rest mass m, and satisfies

m2 = P2 = E2 − p · p (1.4)

where P = (E, px, py, pz) is the four-momentum using c = ℏ = 1 as a convention. If

the particle decays into multiple new particles, the four-momentum of the whole system is

conserved

P =
∑
i

Pi (1.5)

In the center-of-mass frame, Equation 1.5 becomes

m =
∑
i

mi + Edecay (1.6)

For a system of multiple particles, the invariant mass M is defined to satisfy

M2 =

(∑
i

Pi

)2

=

(∑
i

Ei

)2

−

(∑
i

pi

)
·

(∑
i

pi

) (1.7)

It is easy to notice that the invariant mass M of the multi-particle system after the decay

is exactly the rest mass m of the one particle before the decay.

M = m (1.8)
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The “invariance” across the decay process is a deduction of the conservation of energy and

momentum. The decay energy can be expressed as

Edecay = M −
∑
i

mi

=

√√√√(∑
i

Pi

)2

−
∑
i

mi

=

√√√√(∑
i

Ei

)2

−

(∑
i

pi

)2

−
∑
i

mi

(1.9)

using the energy and momentum vectors of all decay products. Since the rest masses of all

the decay products are also known, the quantities to be measured in an experiment are the

momentum vectors of every decay product.

1.5.2 Summary of previous experiments

Many experiments on 13Be have been performed over the last 40 years with about half of

them using nucleon exchange reactions or the missing mass method to probe the resonance

states, and the other half using knockout, breakup, or Coulomb dissociation reactions and

the invariant mass technique. Table 1.1 provides a summary of the processes used for each

of these experiments.

Experimental data suggest that there are three low-lying states within 2.5 MeV above the

threshold as depicted in Figure 1.4: a 1/2− around 0.4 MeV, a 1/2+ around 0.8 MeV, and a

5/2+ around 2.3 MeV. The 5/2+ state is well established, but the assignments of the lower-

lying 1/2± states still have disagreements between existing measurements. Furthermore, the

1/2+ state was claimed to be a resonance state according to some measurements, while it

was claimed to be a virtual state by others.
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Figure 1.4: Possible level scheme of 13Be and 12Be from
a one-neutron emission. The solid lines are measured
neutron and γ emissions while the dashed lines indicate
the still unresolved population from 13Be to 12Be.

1.5.3 Thesis experiment motivation

A 1/2− state was assigned to the p-wave resonance around 0.4 MeV: this p-wave character

was determined from the transverse momentum distribution of 13Be after the one-neutron

knockout and subsequent neutron decay into 12Be with no coincident γ-ray measured, thus

indicating that the final state of this decay is likely to be the ground state of 12Be. However,

the final state could also be the 0+ isomeric state of 12Be at 2.25 MeV that has a mean

life time of 331 ns [42, 43] and emits a delayed γ-ray. Prior experiments using in-flight

γ-ray detection were not sensitive to the emission of delayed γ-rays, and therefore no level

assignment can be inferred for this 0+ state: the location of the 1/2− state is yet to

be determined.

Some theoretical calculations [44] predict that the decay from the 1/2− state in 13Be to

the 0+ state in 12Be is prohibited, but another calculation argues that if there is a second

5/2+ state above 2.6 MeV, it can decay to the 0+ state in 12Be by emitting a d-wave

neutron [45]. Whether p-wave or d-wave, a measurement that is sensitive to the
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one-neutron decay into the 0+ isomeric state is needed to solve the puzzle of the

low-lying structure of 13Be.

This thesis discussed an experiment that was conducted by the MoNA Collaboration [46]

at the then National Superconducting Cyclotron Laboratory (precursor of FRIB) [47] of

Michigan State University to study the decay of 13Be by one neutron emission into the

0+(2.25 MeV) isomeric state in 12Be. This experiment also consisted of the first usage of a

dedicated new telescope made of a stack of five silicon detectors and a CsI stopping detector

to identify the 12Be fragment. The telescope was complemented by 96 modules of the MoNA-

LISA neutron array [48] and the gamma ray CAESAR detector [49]. The former was placed

about 5 m behind the target while the latter surrounded the telescope to detect the decay

of the expected isomeric state into its daughter nucleus. This experiment departed from the

usual setup of the MoNA Collaboration that includes a 4 T large gap sweeper magnet thus

also tested the possibility for sweeperless experiments for the MoNA Collaboration.

Table 1.1: Summary of previous experiments studying the level scheme of 13Be. The energy
above threshold are provided in MeV or, when available, the interaction length as in fm−1.
The spin-parity assigned to the measured state (Jπ) are also indicated.

Author (year) Reference Reaction 1/2 state 1/2 state 5/2+ state
(0.5 MeV) (0.8 MeV) (2.1 MeV)

Aleksandrov et al. (1983) [50] 14C + 7Li - - 1.8

Ostrowski et al. (1992) [51] 13C+14C - - 2.01 (5/2+ or 1/2−)
Korsheninnikov et al. (1995) [52] 12Be+d - - 2.0

von Oertzen et al. (1995) [53] 13C + 14C - - 2.01 (5/2+)

Belozyorov et al. (1998) [54] 14C + 11B - 0.80 2.02

Thoennessen et al. (2000) [55] 9Be + 18O 0.20 (1/2+) 0.80 (1/2) 2.02 (5/2+)

Lecouey (2004) [56] 14B + C 0.7 (1/2+) 2.4 (5/2+)

Simon et al. (2007) [57] 14Be + C - (-3.2 fm−1) (1/2+) 2.00 (5/2+)

Kondo et al. (2010) [44] 14Be + p 0.51 (1/2−) (-3.2 fm−1) (1/2+) 2.39 (5/2+)

Aksyutina et al. (2013) [58] 14Be + p 0.44 (1/2−) 0.81 (1/2+) 1.95 (5/2+)

Randisi et al. (2014) [59] 14,15Be + natC 0.40 (1/2+) 0.85 (5/2+) 2.35 (5/2+)

Marks et al. (2015) [60] 13B + 9Be - 0.73 (1/2+) 2.56 (5/2+)

Ribeiro et al. (2018) [61] 14Be +CH2 0.44 (1/2−) 0.86 (1/2+) 2.11 (5/2+)

Corsi et al. (2019) [62] 14Be + p 0.48 (1/2−) (-9.2 fm−1) (1/2+) 2.30 (5/2+)

Kovoor et al. (2023) [63] 12Be+solidD 0.55 (1/2−) - 2.22(5/2+)

Hunt et al. (2023) [64] 12Be + p - 0.6 (1/2+) 2.34(5/2+)
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1.6 Layout of the thesis

This thesis is introduced in Chapter 1 where we also summarize the current state and mo-

tivations for studying the 12Be isomeric state. The theoretical background describing the

level scheme and the special case of the two 1/2− states of 13Be are detailed in Chapter 2.

Chapter 3 describes the various components of our experimental setup and Chapter 4 the

various steps followed in our data analysis. The results of this work are found in Chapter 5

and the discussion and conclusion are in Chapter 6.
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Chapter 2. Theoretical Background

The theory calculations used in this thesis can be divided into two parts: nuclear structure

theories (Section 2.1) and nuclear reaction theories (Section 2.2). NuShellX, a shell model

calculation code, is used for nuclear structure theory calculation to obtain nuclear states

and their overlaps. And the reaction theories includes the eikonal model that calculates the

theoretical cross-section of the one-neutron knock-out reaction of 14Be (Subsection 2.2.1),

and the Breit-Wigner line shape that describes the one-neutron decay reaction of 13Be (Sub-

section 2.2.2).

2.1 Shell model calculations

A shell model calculation begins with selecting a complete basis, determining the matrix el-

ements of the Hamiltonian within this basis, and then obtaining the corresponding eigenval-

ues and eigenvectors. In this study, the shell model is applied using the formalism described

in reference [65]. Wrapper codes are used to incorporate a specific Hamiltonian, allowing

NuShellX to compute the overlaps for the second quantization creation operator a+. These

overlaps are subsequently converted into spectroscopic factors (C2S) and two-nucleon trans-

fer amplitudes. A spectroscopic factor represents the “probability” that the overlap between

the initial and final states aligns with the single-particle assumption made in the calculation.

The one nucleon transfer amplitudes are used to calculate the one nucleon removal cross

sections.
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The Hamiltonian used by NuShellX is written as the sum of three terms

H = Hnn +Hpp +Hpn (2.1)

where Hnn is the interactions between valence neutrons, Hnn is the interactions between

valence protons, and Hpn is the proton-neutron interactions.

The NuShellX uses a proton-neutron coupled basis

|B, J⟩ = |[(Jp, αp)⊗ (Jn, αn)]
J ⟩ (2.2)

where Jp, Jn are angular momenta of proton/neutron subspaces, and αp, αn are additional

quantum numbers. And B represents the set of quantum numbers (Jp, p, Jn, n).

NuShellX uses Lanczos iterations to diagonalize the Hamiltonian and find low-lying eigen-

values/eigenvectors without full matrix storage. The initial and final eigenvectors are

|Ψi; Ji⟩ =
∑
Bi

Ai(Bi) |Bi; Ji⟩ (2.3)

∣∣Ψf ; Jf
〉
=
∑
Bf

Af (Bf )
∣∣Bf ; Jf

〉
(2.4)

where Ai and Af are eigenvector coefficients.

The spectroscopic factor for nucleon removal is

C2S =
1

2j + 1

∣∣⟨Ψf ; Jf∥aj∥Ψi; Ji⟩
∣∣2 (2.5)

where ⟨ΨA+1; Jf∥aj∥ΨA; Ji⟩ is the reduced matrix element, |ΨA; Ji⟩ is the initial state
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wavefunction (mass A, spin Ji), |ΨA+1; Jf ⟩ is the final state wavefunction (mass A+1, spin

Jf ), aj is the annihilation operator for orbital j, and 2j + 1 is the degeneracy factor.

In this study, the spectroscopic factors for both the one-neutron knockout cross sections

populating the states of 13Be and the subsequent one-neutron decay of the neutron-unbound

13Be are examined through

14Be → 13Be∗ + n (2.6)

13Be∗ → 12Be∗ + n (2.7)

The spectroscopic factors are necessary for cross-section calculations.

The Hamiltonian chosen for the present work is psdmod, which was modified from the

psdwbt effective interaction within the full p-sd model space [66]: The p-sd shell gap was

reduced by approximately 3 MeV to explain the multiparticle-multihole states at N=Z=8

like the 0+2 state in 16O. The p-sd shell gap was increased again by 1 MeV to coincide with

a measurement of the configuration mixing of the ground state and the 0+2 isomeric state of

12Be [67]. Therefore, the above Hamiltonian is suitable for this work.

The shell model calculation will give the spectroscopic factors of possible reaction chan-

nels, so that the reaction properties like the cross-section and momentum distributions can

be calculated with reaction theory models as detailed in the next section.
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2.2 Reaction theory calculations

2.2.1 One-neutron knockout reaction of 14Be

The one-neutron knockout reaction of 14Be was calculated using the eikonal model, as de-

tailed in [68, 69, 70]. This model assumes sudden (fast collisions) and eikonal (forward-

scattering) interactions of a projectile of mass A with a target, which are relevant to the

single-nucleon removal channel as studied in our experiment. In this context, the state α of

the reaction residue of mass (A - 1) acts as a spectator. Consequently, the yield of residues

in a specific final state α reflects the contribution (or parentage) of this configuration to

the ground-state wave function of the projectile. The partial cross section for nucleon re-

moval from a single-particle configuration jπ, which populates the residue final state α with

excitation energy E∗
α, is given by:

σth(α) =

(
A

A− 1

)N

C2S(α, jπ)σsp(j, S
∗
α) (2.8)

where S∗
α = Sn,p + E∗

α represents the effective separation energy for the final state α, and

Sn,p is the nucleon separation energy from ground-state to ground-state. The factor N,

which appears in the A-dependent center-of-mass correction that multiplies the shell model

spectroscopic factors C2S(α, jπ), corresponds to the number of oscillator quanta associated

with the major shell of the removed particle [71]. The single-particle cross section, σsp, is the

sum of the elastic and inelastic breakup contributions to the reaction, σsp = σelassp +σinelsp , and

is calculated assuming that the removed nucleon’s single-particle wave function (or overlap)

is normalized.

17



The calculation of σth for each projectile requires several key inputs: (i) realistic spectra

and C2S values, (ii) accurate residue and nucleon-target optical potentials, along with their

derived scattering S-matrices used in the eikonal model’s impact parameter integrals for

σelassp and σinelsp , spatially localizing the reactions, and (iii) realistic geometries for the radial

wave functions (overlap functions) corresponding to the initial bound states of the removed

nucleons in the projectile’s ground state. For exotic nuclei, many of these parameters are not

fully constrained by experimental data. The approach taken in the analyses discussed in this

dissertation is to utilize the best available shell model calculations for input (i), while the

shapes and radial size parameters of the optical potentials and overlaps for inputs (ii) and

(iii) are constrained using Hartree-Fock calculations of neutron and proton densities for the

residues, as well as the root-mean-square (rms) radii of orbitals in the Hartree-Fock mean

field. The detailed procedure applied to all the data sets discussed in this thesis is provided

in [72].

2.2.2 Breit-Wigner line shape of the 13Be one-neutron decay

The decay of an unbound resonant state is defined by its central energy (Edecay) and width

(Γl). To extract these values from experimental data, deconvolution is typically needed to

correct for resolution and acceptance effects. Alternatively, a decay line shape with specified

energy and width can be simulated and then processed through the experimental resolutions

and acceptances, enabling a direct fit to the experimental data to determine the energy and

width of the decay.

Specifically, individual isolated resonance states can be described by a single-level Breit-

Wigner cross-section distribution [73]. The energy-dependent Breit-Wigner line shape used
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in our analysis can be expressed as:

σ(E) ∝ Γl(E)[
Edecay − E

]2
+ 1

4 [Γl(E)]2
(2.9)

Here, E is the relative energy between the fragment and the neutron, and Edecay is the

resonance energy of the isolated state ∆l(Edecay) = 0. The phase factor typically included

in this expression is not required in this context since only a specific decay channel has been

observed in the reaction. The partial width of the state is denoted by Γl(E). Similarly, since

only the outgoing decay channel of the resonance was observed and there is only a single

decay channel via a one-neutron emission, the partial width in this case is also the total

width (referred to simply as the width):

Γl(E) = 2Pl(E)γ2 (2.10)

The width depends on both energy and orbital angular momentum. The factor of 2 represents

the reduced width squared, containing the wave function information of the states. Pl(E) is

the penetrability function, which is related to the spherical Bessel functions.

The Breit-Wigner line shape for the neutron-unbound decay can be derived using R-

matrix theory, following the formalism outlined in reference [74].
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Chapter 3. Experimental Setup

The experiment was performed at the National Superconducting Cyclotron Laboratory

(NSCL) [47] in September 2020 and conducted in the S2 vault. It was also the last ex-

periment performed by the MoNA Collaboration [46] at NSCL. The Coupled Cyclotron

Facility (CCF) and the A1900 Fragment Separator produced a secondary beam of 14Be by

fast fragmentation of an 18O primary beam. The experimental setup included a reaction

target, a charged particle telescope, the CAESAR γ-array, and a subset of the MoNA-LISA

(Modular Neutron Array-Large multi-Institutional Scintillating Array) array. This chap-

ter details the beam production and associated detectors utilized to monitor the beam and

reaction products, along with the data acquisition system.

3.1 Beam production

The NSCL coupled cyclotron facility and the A1900 fragment separator are shown in Figure

3.1. An electron-cyclotron resonance (ECR) ion source produced 18O3+ ions which were

extracted and accelerated through the K500 cyclotron to 10.91 MeV/u. The beam was

then sent to the K1200 cyclotron where the ions were stripped of their remaining electrons

and accelerated to 120 MeV/u. The fully stripped 18O ion beam then impinged on a 2350

mg/cm2 thick beryllium production target, where a range of predominantly lighter fragments

produced in fragmentation reactions are emitted at forward angles.

To isolate the desired secondary beam of 14Be from the rest of the fragments, the A1900

fragment separator was utilized. It was a magnetic separator consisting of 4 main dipoles and

8 quadrupole triplets. The dipole magnetic fields were tuned to the magnetic rigidity (Bρ =

p/q) of the 14Be fragment of interest (4.63 Tm for segment 1 and 2, 4.56 Tm for segment 3
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Figure 3.1: A schematic of the NSCL coupled cyclotrons and the A1900 fragment
separator utilized in this experiment. Figure reproduced from reference [3].

and 4). The fragments followed different trajectories through the magnets according to their

magnetic rigidity, and a set of slits (located at image 1 and image 2 pointed out in Figure 3.1)

was used to select a rigidity range corresponding to a momentum acceptance of 1.44% full

width. To further tune the separation of the fragments, a 300 mg/cm2 aluminum wedge

was included in the middle of the A1900 fragment separator at image I2: the energy loss

through the aluminum wedge is dependent on the atomic number (Z) changing the charged

fragments with similar Bρ before the wedge to have lower momenta and thus get separated

in the magnets downstream. A second set of slits located at the focal plane (pointed out in

Figure 3.1) was used after the wedge to further filter the charged fragments of different Z.

3.2 The S2 experimental vault

After the fragment separator, the 14Be secondary beam was 34% pure with an energy of

78.2 ± 1.1 MeV/u before passing through the A1900 focal plane timing scintillator. The

beam was then transported to the experimental area of the S2 vault where our experiment
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was conducted as depicted in Figure 3.2.

Figure 3.2: Side view of the experimental setup in the S2 vault showing the reaction
target, charged particle telescope and neutron array.

3.2.1 Timing scintillators

Two plastic scintillator based timing detectors located upstream of the reaction target were

utilized to measure the time-of-flight of the secondary beam. The first one (start detector)

was the extended focal-plane (XFP) scintillator located 31.6 m upstream from the reaction

target, made of a 1000 µm thick BC404 material and coupled to a Hamamatsu R329-02

photo-multiplier tube (PMT). The second one was the target scintillator located 63 cm

upstream of the reaction target, made of a 420 µm thick BC404 material and also coupled to

a Hamamatsu R329-02 PMT. The measured time-of-flight between the two scintillators had

a resolution of 2 ns and was used to further isolate the 14Be secondary beam. The target

scintillator was also the timing reference for all detectors used in our setup.

3.2.2 Reaction target

The reaction target consisted of a 486 mg/cm2 thick beryllium. The beam energy in front

of the target was 76.5± 1.1 MeV/u, taking into account the loss through two parallel plate
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avalanche counters (PPACs) beam position monitors and the target scintillator, all positioned

upstream of the reaction target. Unfortunately, the signals from the PPACs were too noisy

and thus not used in the analysis described in this dissertation.

3.3 Charged particle telescope

A dedicated charged particle telescope was developed and used in the experiment (see Fig-

ure 3.3) to perform the particle identification (PID) of the various charged fragments, as well

as measure the momentum of the daughter 12Be fragment emitted from the 13Be decay. It

Figure 3.3: A schematic drawing of the charged fragment tele-
scope.

consisted of 2 Tetra-Lateral Position Sensitive Detectors (TLPSDs), 5 silicon PIN detectors,

and a CsI(Tl) calorimeter. The specifications of these detectors are listed in Table 3.1.

All the telescope signals were connected to pre-amplifiers (MESYTEC MSI-8) with the

ability to adjust all individual voltage settings. The first TLPSD was placed 9 mm upstream

of the reaction target. The remaining detectors were grouped together and placed down-

stream of the reaction target with the front face of the CsI(Tl) detector located at 140 cm.
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Table 3.1: Specifications of the telescope detector components.

Detector Name TLPSD Silicon PIN CsI

Detector Type MSPSD TL63 SI-PIN MSX35-500 CsI(TL)
Manufacturer Micron Micron Scionix

Active Area (cm2) 6.25× 6.25 5× 7 5× 5
Thickness 140 µm 500 µm 3 cm
Bias (+V) > 10− 12 > 40 > 35

Energy Resolution N/A 2.1% FWHM < 6% FWHM

The spatial configuration of the second TLPSD, 5 silicon PIN detectors and the CsI(Tl)

detector is shown in Figure 3.3, the distance between the front face of the second TLPSD

and the first silicon PIN was 14.6 mm, while the neighboring 2 silicon PIN detectors had a

15 mm difference in the z-position. The distance between the front face of the last silicon

PIN and the CsI detector was 12.3 mm.

The silicon PIN detectors measured the energy loss and the CsI(Tl) detector stopped the

fragments to measure their total kinetic energy at that location. Together, these detectors

were used to perform the particle identification (PID). The sum of the energy deposited in all

detectors can also be used to get the total kinetic energy of the fragment or the magnitude

of its momentum at the reaction vertex within the target. The signals of the TLPSDs were

also too noisy and could not be used for position measurements. The fragment momentum,

together with the neutron momentum, was utilized to calculate the single neutron decay

energy of 13Be.

3.4 Veto detector

A plastic scintillator was placed downstream of the telescope to detect charged particles

that were not stopped inside the CsI(Tl) detector, and veto these events. The veto detector
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covered only a slightly bigger solid angle as the telescope, so charged particles originating

from the target and bypassing the charged particle telescope were not vetoed.

Figure 3.4: Measured light output in the MoNA-LISA array as a function of the time-of-
flight without (left) and with (right) requiring a veto signal.

3.5 CAESAR array

The CAESium-iodide scintillator ARray (CAESAR) [49] was placed around the CsI(Tl)

calorimeter to measure the delayed γ-rays from the stopped 12Be fragments. CAESAR is a

high-efficiency spherical-shaped detector array made of 192 CsI(Na) crystals arranged into

10 rings as shown in Figure 3.5.

Figure 3.5: A schematic drawing of CAESAR around
the charged fragment telescope.

In this experiment, only six center rings (from c to h) were used because the diameter

of the beam pipe around the telescope detectors was too large to fit into rings a, b, and
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i, j. Each ring from c to h holds 24 detectors of 2.13” × 2.13” × 4”. The material of the

detectors was chosen to be CsI(Na) because of its 30% higher stopping power than NaI(Tl),

with comparable intrinsic energy resolution, timing property and cost. The middle plane of

the CAESAR array (between ring f and ring e) aligned with the front face of the CsI detector

in the telescope, at 140 cm from the reaction target.

3.6 MoNA-LISA array

In this experiment a subset of the Modular Neutron Array (MoNA) and the Large multi-

Institutional Scintillating Array (LISA) [75] was utilized to detect the emitted neutrons and

reconstruct their four-momenta from their hit position and time-of-flight.

MoNA and LISA each consists of 144 plastic scintillator detectors with dimensions of

200 cm × 10 cm × 10 cm that are coupled to photo-multiplier tubes (PMTs) at each end

through light guides.

The 2 m length of the detector bars extends along the horizontal (x) direction. The stan-

dard configuration of the array is built by stacking 9 layers, each made of sixteen detectors

along the vertical (y) direction: the MoNA layers are labeled A through I, and the LISA

layers are labeled J through R. The stacking is carried out along the beam axis (z) direction

and can be arranged in a variety of configurations.

Each of the LISA bars, made from the EJ-200 [75] plastic scintillator material, is indi-

vidually wrapped with a layer of reflective material and a black plastic on top to reduce

light leaks and avoid introducing ambient light. The PMTs coupled to the detectors are

Hamamatsu R329-02 [75]. Neutrons interact with the hydrogen and carbon nuclei in the

plastic detector volume to generate scintillation photons along the recoils tracks within the
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Figure 3.6: LISA experimental setup. The left panel is viewed from the side, and the right
panel is viewed from above. Neutrons travel left to right through the array. The center of
the array is offset from the beam axis 251 mm in x-direction and 25 mm in y-direction.

bar: since the mass of hydrogen is similar to that of the neutron, the proton recoil energy

is larger than the recoil energy of the carbon nuclei, thus generating more scintillation light.

The light then propagates to both ends of the bar and is detected by the two PMTs: both

the anode signal for timing information and the dynode signal for the charge were collected.

In this experiment, only six layers of LISA from J to O (that will also be referred to

as 9 to 14) were used. The six layers were placed next to each other. Layer 9 is the front

(upstream) layer and the individual bars were numbered 0 to 15 from bottom to top. The

distance from the reaction target to the front (upstream) face was surveyed to be 450 cm.

Figure 3.6 shows a picture of the LISA array and the coordinate reference frame that were

used for our experiment. Since only detectors of LISA are used, the array will be referred to

as LISA instead of MoNA-LISA in the following text.
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The time difference between the left and right PMT anode signals was used to determine

the horizontal (x) position of a neutron interaction along the bar while the average of the

two timing signals was used to determine the time-of-flight from the target position to the

neutron interaction. Segmentation along the vertical (y) direction and the beam axis (z)

direction allow determination of a 3-dimensional location for the neutron interaction. Under

the approximation that the neutrons originate from the center of the reaction target, this

provides all the necessary information for the reconstruction of the neutron four-momentum

at that location.

The charge collected from the dynode represents the light output from the scintillator,

which does not correspond to the kinetic energy of the neutron; however, it can assist in

neutron event selection.

3.7 Electronics and Data Acquisition System

The electronics utilized in this experiment were a combination of the VME-based electronics

used for the LISA array and the digital data acquisition system (DDAS) used for all other

detectors, including the charged particle telescope and the CAESAR γ array. Synchroniza-

tion between the two systems was critical for the correct event characterization. A schematic

of the entire data acquisition system is depicted in Figure 3.7.

The detectors were connected to a logic system which splits into three ”levels”:

Level 1 that controlled each layer of the LISA array;

Level 2 that controlled the entire LISA array; and

Level 3 that controlled the coincidence between LISA and all other detectors, and is re-
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Figure 3.7: A schematic diagram of the DAQ system.

sponsible for generating a system trigger and synchronizing the timestamp between

the 2 systems.

The levels 1 and 2 were handled by the Xilinx Logic Modules (XLMs) with field-programmable

gate arrays (FPGAs), and the level 3 was realized with the DDAS setup. The system trigger

came from the target timing scintillator, and was distributed to both level 2 and DDAS.

3.7.1 LISA electronics

Each of the PMTs for each LISA bar had an anode signal used for timing and a dynode signal

used to measure the amount of generated charge. Each PMT anode signal was sent to a

constant fraction discriminator (CFD), which output was then sent to both a time-to-digital

converter (TDC) and an XLM for the subsystem trigger logic. The CFD provided the start

signal for the TDC, and the stop signal was generated from the target (pot) scintillator. Each
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PMT dynode signal was sent to a charge-to-digital converter (QDC) module that integrates

the charge collected to determine the amount of scintillation light detected. The time (TDC)

and charge (QDC) signals were read out by the DAQ computer. The synchronization with

DDAS was done through a 10 MHz clock signal generated by the level 2 module and used by

both LISA and the DDAS system. The clock ran non-stop and was reset for both systems

at the beginning of each run.

3.7.2 Digital Data Acquisition System

The Digital Data Acquisition System (DDAS) utilized in this experiment was a 250 MHz

XIA Pixie-16 system. It was set to accept an external trigger that worked as a master trigger

for all DDAS channels and an external clock for time stamping. This external trigger was

generated by the target scintillator, which was sent through a discriminator and then served

as the system trigger for both LISA and DDAS, as well as the timing reference for each

DDAS module.

The DDAS had two sets of clocks: internal and external. The former was generated by

the DDAS itself, and reset only when the readout software was restarted. It had a frequency

of 250 MHz (period is 4 ns), and was used for time-of-flight. The latter was a 10 MHz

(period 100 ns) clock provided by the level 2 trigger of LISA, and used only to synchronize

time stamps with LISA.

The external clock and external trigger in DDAS were set by specific modules called

breakout modules. The connection between a breakout module and a DDAS module was

enabled by a harlink cable. There were five harlink connectors that enabled different in-

puts/outputs in the breakout modules.
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3.7.3 Data acquisition software

The data acquisition (DAQ) software used by this experiment was NSCLDAQ version 11.3

running on a dedicated DAQ computer (spdaq09). LISA and DDAS had their own ring

buffers, each with a single producer (LISA or DDAS) and multiple consumers (event builder,

writing into files, or online data visualization and analysis). More details can be found in

the NSCLDAQ documentation [76]. Figure 3.8 shows the data flow of the DAQ software.

Figure 3.8: Data flow of the DAQ system.

The ring buffers of LISA and DDAS were read by the event builder, and converted

through the built data go into the built ring buffer. The outputs were then written into

event files. Other consumers for the LISA and DDAS ring buffers were individual SpecTcl

scripts [77] used to monitor and analyze the data in real time.

The online event builder used a 10 µs event building time window that was set long

enough to record traces of the signals from the telescope detectors. However, this long time

window caused issues like observing two beam particles in the same event or one physical
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event cut in half. The event building was thus modified in the process of converting the

event files to root files with a shorter event building time window of 3 µs.
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Chapter 4. Data Analysis

The goal of the data analysis is to extract physical properties from the detected signals and

to reconstruct observables from the nuclear reaction. These observables are then compared

with simulations in order to test theoretical predictions for the reaction.

The data analysis consists of four steps: calibration, event selection, physics interpreta-

tion, and simulations of the reaction. The calibration step converts electrical signals back

to the parameters representative of the physical interactions between the particles and de-

tectors, such as the energy deposited, time-of-flight, or position. The event selection step

isolates the events that correspond to the reactions of interest which can be identified by

their unique signatures from the detector responses. In the physics interpretation, the cal-

ibrated and selected data are used to reconstruct the parameters of the reactions. These

parameters are then compared to simulations to extract observables related to the structure

of the nuclei of interest such as the decay energy and cross-section.

Figure 4.1: Schematic of a typical data analysis procedure.
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Figure 4.1 shows a schematic of a typical data analysis procedure. The following sections

describe in detail the various steps mentioned above and applied to each of our detectors

described in Chapter 3.

4.1 LISA Calibration

4.1.1 LISA TDC calibration

The Time-to-Digital-Conversion (TDC) calibration uses a pulser with a fixed period to con-

vert TDC channels to real time. In addition to the traditional linear fit method, a convolution

method was explored.

4.1.1.0.1 Linear fit method Figure 4.2 shows the data for a pulser set at an interval of

10 ns (left panel) and the corresponding plot of the channel number versus the peak number

including a linear fit (left panel).

Figure 4.2: Linear fit method. Left panel: TDC data for a sample detector bar (layer 9, bar
0) for a pulser period of 10 ns.; Right panel: Peak channel vs peak number. The red line
corresponds to a linear fit.

Since each peak is located at a well-defined time, one can convert the extracted slope

to ps/channel. The left and right photo-multiplier tubes (PMTs) for all 96 LISA bars were

calibrated using this procedure.
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4.1.1.0.2 Convolution method The convolution method consists of a multi-step algo-

rithm, which shifts the one-dimensional TDC spectrum bin-by-bin, multiplying each shifted

spectrum with the original one and finally taking the integral of the final distribution: for

each shift (e.g., offset), the result (e.g., product integral or convolution) will be close to zero

if the spectra do not overlap.

Figure 4.3: Principle of the convolution method: the original spectrum (top-left panel) is
shifted until the product integral is non-zero for given multiple integers as depicted in the
first (top-right, ×1), second (bottom-left, ×2) and third (bottom-right, ×3) offsets.

The convolution plotted against the offset allows one to identify the integer multiples

of the pulser period oscillating between large numbers and very small values (almost zero).

The peaks of all offset spectra were then fitted with Gaussian distributions (Figure 4.3). The

mean of the fits provides the calibration. The precision of the results was similar to that of

the linear fits, so the results of the convolution method were used for calibration.
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4.1.2 LISA energy calibration

Prior to the experiment the high voltages of the PMTs were approximately gain-matched

to align the cosmic ray peaks. After the experiment the cosmic-rays peaks were used to

calibrate the energy deposited in each detector, which is proportional to the light output of

the scintillator bar. As shown in Figure 4.4, the cosmic ray peaks in the 96 detector bars

are aligned at a certain value. For a few detectors (layer 9 bar 6 and layer 10 bar 2), one of

the PMTs was decoupled and these detector bars were removed from the analysis.

Figure 4.4: LISA light output as a function of the bar ID for a cosmic ray run. The bar IDs
of 144 through 159 correspond to the front layer (Layer 9). The cosmic ray peaks are aligned
at around 1000 (arbitrary unit). Layer 9 bar 6 and layer 10 bar 2 are the two detectors
that one of the PMTs was decoupled, so the cosmic ray peaks of them are lower than other
detectors.

4.1.3 LISA horizontal x-position calibration

While the y- and z-position of a hit in the LISA array are determined by which bar the

hit was recorded from with a precision of ±5 cm, the x-position is determined by the time

difference between the left and right PMTs. Cosmic rays are used to calibrate the LISA

x-position: two Fermi functions were used to fit the left and right edges of the square-shaped
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(TLeft − TRight) distributions for each bar. The left and right edges are then placed at -

100 cm and 100 cm, respectively, through a linear transformation. Figure 4.5 shows a typical

uncalibrated x-position spectrum and the fit.

Figure 4.5: A typical measured x-position from LISA. The red lines are the two modified
Fermi functions that fit the edges of the distribution which correspond to the left and right
end of the detector bar.

Figure 4.6 shows the calibrated LISA x-position as a function of the bar ID. The x-

positions of all detectors are aligned between -1 m to 1 m. The two detectors that have

issues are also marked in the figure, and they are removed from further analysis.

Figure 4.6: LISA x-position as a function of the bar ID for a cosmic ray run. Layer 9 bar
6 and layer 10 bar 2 are the two detectors that one of the PMTs was decoupled. Their
x-position distributions are extremely uneven from one side to the other.
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4.1.4 LISA Tmean offset

The arithmetic average of the left and right LISA PMT times (Tmean) represents the timing

of a hit in the LISA array. Each bar must be properly calibrated to extract the true mean

time.

A cosmic ray run was used to perform this calibration. When a cosmic-ray muon travels

through the LISA array and hits multiple bars, the actual time differences between the hits

can be calculated from the distances between these hits and the speed of the muon. From

this information, the measured time differences in different bars can be corrected by adding

different offsets to every bar. The calibration procedure first finds the offset within each layer

and then connects them between layers. Because cosmic-ray muons are going downward, bar

15 (top bar) was chosen as the reference for each layer, and layer 9 (front layer) bar 15 was

chosen to connect with bar 0 (bottom bar) of each other layers, as depicted in Figure 4.7.

Figure 4.7: A schematic of the Tmean offset calibration. The blue arrows mark the steps of
matching Tmean between the two bars with cosmic ray time-of-flight.
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Figure 4.8: LISA calibrated Tmean as a function of the bar ID for data from the experiment.
The bar IDs of 144 through 159 correspond to the front layer (Layer 9).

A plot of Tmean as a function of the bar ID is shown on Figure 4.8 for data from the

experiment. The intense peak resulting from neutrons hitting the center of each layer is

visible around 30-40 ns. The narrow line at ∼20 ns corresponds to γ-rays. Beam-velocity

charged particles emitted from the target are visible in the front layer.

4.1.5 LISA hits spatial calibration

This calibration allows to extract the (x, y, z) coordinate of each LISA event into the beam

frame where the target is at the origin (0,0,0), and the z-axis is the beam propagation axis

measured from the target to the front face of the stack. The position is also corrected with

the survey and geometry of the experimental setup. The center of the front face of the LISA

array was found to be at (x, y, z) = (25.1, 2.5, 449.6) cm. The 2D position distributions (y

vs. x, z vs. x, and y vs. z) are shown in Figure 4.9.
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Figure 4.9: 2D position distributions in LISA: y vs. x (left panel), z vs. x (middle panel)
and y vs. z (right panel).

4.1.6 LISA global timing offset

The global offset is a value added to (or subtracted from) the time of every LISA hit to set

the time to zero when the beam hits the reaction target, so that the time of a LISA hit is the

time-of-flight from the target. This calibration is done using the time-of-flight of the prompt

γ rays originating from the reaction inside the target.

The prerequisites for the LISA global offset are correct position calibration of the array

with respect to the beam axis, and correct TDC calibration and relative offsets between bars

and layers. Using a subset of the experimental data with the above calibrations, for the

first hit of each event, the distance d from the target to the position of the hit can easily be

calculated by d =
√

x2 + y2 + z2.

The time-of-flight for the γ-rays is tγ = d
c . A shift in the time of the LISA hit by −tγ

is applied to obtain the shifted LISA time tshifted = t − tγ . The peak of the γ ray in the

tshifted histogram is aligned at the time that the beam hit the target. One can then fit

the peak and get its mean value, which is the global offset of the LISA array. This offset

(33.24 ns) needs to be subtract from every time measurement of LISA. Figure 4.10 shows
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Figure 4.10: The LISA global offset fit: a Gaussian fit (red line) of the aligned gamma-ray
peak is used to extract the global timing offset of the LISA array.

the histogram of tshifted and the fit.

4.2 Telescope calibration

The telescope, composed of 5 silicon PIN detectors and a CsI detector, provides ∆E −

E particle identification (PID), that was calibrated by comparing this distribution to the

calculated ∆E − E data from LISE++ [78]. The trace fitting method was utilized in the

telescope calibration to improve resolution and reduce noise.

4.2.1 Particle identification (PID)

Identifying different nuclear species (i.e., A and Z) is crucial in nuclear experiments. There

are multiple types of measurement related to particle identification: (1) total kinetic energy

E in a stopping detector, (2) energy loss ∆E in a thin in-flight detector, (3) time-of-flight
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at a certain distance, and (4) rigidity Bρ in a bending magnet [79].

The secondary beam exiting the A1900 fragment separator has a certain rigidity Bρ (see

details in Section 3.1). The timing scintillators upstream of the reaction target measure the

time-of-flight to identify secondary beam particles by velocity (see details in Section4.4.1).

The ∆E and E measurements of the silicon PIN detectors and the CsI detector can further

identify all different nuclides.

Figure 4.11: 2D plot of silicon PIN 1 energy loss versus CsI deposited energy. Identified
secondary beam particles are labled on the peaks.

According to the simplified Bethe-Bloch equation [80], under non-relativistic condition

(E = mv2/2), in-flight energy loss rate in a thin detector can be approximately expressed as

dE

dx
∝ Z2

v2
. (4.1)

At constant rigidity (Bρ = p/q ∝ Av/Z = Constant),

∆E ∝ Z2

v2
∝ A2,

E ∝ Av2 ∝ Z2

A
.

(4.2)
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Therefore, different nuclides are separated in the 2-D ∆E − E plot. Figure 4.11 shows the

∆E − E PID plot obtained from the charged particle telescope.

4.2.2 Trace fitting method

The trace fitting method was utilized in the calibration of the detectors in the telescope to

improve resolution and reduce noise.

The Digital Data Analysis System (DDAS) has the feature of recording the trace (pulse

shape) of every signal, just like an oscilloscope does, which makes it possible to handle the

signals more carefully after the experiment. A trace can be fitted to determine its start time,

amplitude, whether it is valid, etc., which provides more information than the traditional

amplitudes and times.

The fitting function for the traces of the silicon PIN detectors is

A

1 + e−k1(x−x0)
· e−k2(x−x0) (4.3)

Where A is the amplitude, x is the peak position, k1 is the rise time and k2 is the decay

time.

The CsI traces use only the logistic function part and do not have the decay time because

its dacay time is far longer than the time length of the trace. The fitting function is therefore

A

1 + e−k1(x−x0)
. (4.4)

Examples of trace fittings of the silicon PIN detectors and the CsI detector are shown in

Figures 4.12 and 4.13.

43



Figure 4.12: An example of the silicon PIN trace fit. The top panel is a zoom-in of the rising
edge of the trace. The amplitude (A), peak position (x), rise time (k1), and decay time (k2)
are marked in the plot.

Figure 4.13: An example of the CsI trace fit.
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As shown in Figure 4.14, the PID plot gets cleaner after the trace fitting. In the CsI

energy deposit plot, the noise at higher energy is significantly reduced and the 12 Be peak

appears even without requiring neutron multiplicity > 0. Gaussian fit of the 14Be unreacted

beam peak shows that the resolution of the CsI is 2.5% σ without the trace fitting, and

improves to 2.1% σ when the trace fitting is applied.

Figure 4.14: Fragment energy plots before (left) and after (right) applying the trace fitting
feature: the noise (big tail on the right side of the 14Be peak) is reduced, and the 12Be peak
can be clearly seen.

4.3 CAESAR calibration

4.3.1 Energy Calibration

Data for the energy calibration of the individual CAESAR detectors were taken with sources

before and after the production runs. An 88Y source was taped to the inner wall of the

vacuum chamber at four different locations (top, bottom, left, and right, as depicted in

Figure 4.15). Each of these runs was then analyzed to perform the calibration of all individual

CEASAR detectors.

The 898 keV and 1836 keV peaks from the 88Y decay as well as the 1460 keV background

peak from 40K are used for the CAESAR calibration. The mean value of each peak is

45



Figure 4.15: Schematic of the CAESAR calibration setup showing the four locations of the
88Y source. See text for details.

extracted from a Gaussian fit and a slope and offset were extracted from a linear fit of the

peak position (ADC channel) vs. γ ray energy.

CAESAR detectors at different locations were calibrated with different source runs ac-

cording to the location of the source. Due to the possible gain shift over time, the 5 groups

of CAESAR detector calibrated with the 5 source runs have slightly different peak positions

in the γ ray energy spectra. A further correction was applied on the calibrated CAESAR

data based on the 511 keV positron annihilation peak and the 1460 keV 40K background

peak. Figure 4.16 shows the γ ray energy spectra for the five groups of CAESAR detector

before and after correction.
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Figure 4.16: γ ray energy spectra for the five groups of CAESAR detector calibrated with
different 88Y source runs, before (left) and after (right) correction.

4.3.2 CAESAR time alignment

The CAESAR time represents the relative time of a CAESAR hit to the start of the event.

Thirteen (13) out of the 144 CAESAR detectors had a shift in the CAESAR time over the

experiment runtime. Figure 4.17 shows the CAESAR time versus experiment runtime of a

typical good CAESAR detector and a CAESAR detector with a shift over time.

Figure 4.17: CAESAR time as a function of experiment runtime for a typical good CAESAR
detector (left panel) and a CAESAR detector that have shift over time (right panel).

The 13 CAESAR detectors that shifted over time were removed from the dataset, and

the CAESAR time of the other detectors was aligned by adding a different offset for each
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detector. Figure 4.18 shows the CAESAR time distribution before and after alignment.

Figure 4.18: CAESAR time distribution of the whole CAESAR array before (left panel) and
after (right panel) alignment.

4.3.3 Performance of the CAESAR array

The efficiency and resolution of the CAESAR detector is determined by a standalone GEANT4

simulation of the CAESAR array. The simulation includes the subset of CAESAR array used

in this experiment and a CsI cuboid placed at the center of the CAESAR array to simulate

the CsI detector in the telescope. A point-like, single-energy γ source is placed inside the

CsI cuboid to simulate the 511 keV and 2107 keV signatures.

According to the simulation, the 2107 keV gamma ray has a full energy peak efficiency

of 9.6% with a resolution of 42 keV sigma, and the 511 keV gamma ray has a full energy

Figure 4.19: Visualization of the standalone CAESAR simulation.
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Figure 4.20: CAESAR simulation for 2100 keV γ ray.

Figure 4.21: CAESAR simulation for 2100 keV γ ray, zoomed in to the full energy peak

peak efficiency of 14.4% with a resolution of 19 keV sigma. The geometric efficiency of

the CAESAR array is 53% (taking account the missing and removed detectors). Thus, the

efficiency to detect both 511 keV γ rays of the pair emission is 14.4% · 14.4%
53%

= 3.9%.

Figure 4.22: CAESAR simulation for 511 keV γ ray, zoomed in to the full energy peak
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4.4 Event Selection

This section discusses the event selection methods that rule out backgrounds and keep the

events of interest. Certain conditions (also called gates) are applied to the signals of the

detectors to achieve that goal. Subsections 4.4.1, 4.4.2 and 4.4.3 talk about 14Be beam gate,

neutron gates, and fragment gates respectively.

4.4.1 14Be beam gate

The secondary beam impinging on our target contains the 14Be along with other nuclides

like 11Li and 15B. In order to select the 14Be secondary beam for our experiment, a beam

gate is applied on the A1900 extended focal-plane timing scintillator (ToF xf scint) as shown

in Figure 4.23.

Figure 4.23: The A1900 timing scintillator gate used to select the 14Be isotopes.
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4.4.2 Neutron gates

Figure 4.24 shows a typical 2-D plot of the LISA light output as a function of the normalized

time-of-flight (tnorm, see below) that corresponds to the first LISA hit. For each event, the

distance (d) and time-of-flight (t) is known (see section 4.1). One can then reconstruct the

Figure 4.24: The LISA light output as a function of neutron time-of-flight. Events below 20
ns and in the charged particle region are excluded for further analysis.

corresponding velocity (v = d/t) of those hits. Since the distance from the target to the

center of the front face of the LISA array is known (d0 = 454.7 cm), we can normalize the

time-of-flight of each neutron to that location as

tnorm =
d0
d
t =

d0
v

(4.5)

In Figure 4.24, the prompt gamma-ray peak distribution is centered at d0/c = 15.2 ns as

expected. Although most of the charged particles have been ruled out by the veto detector,

some of them will still reach the LISA array. The charged particles are distributed in curved

bands above the neutron distribution because their mass is equal to or greater than the
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neutron, and they lose all their kinetic energy in materials, while neutrons usually lose only

a part of their energy when interacting with materials. So, at the same velocity, certain

species of charged particles will deposit the same amount of energy in the scintillator bars,

and that amount of energy is greater than the energy deposited by neutrons at the same

velocity. The applied neutron gate selects events over 20 ns and not in the charged particle

region.

Only the first hit in each event is analyzed, as the isotope of interest (13Be) decays by

emitting only one neutron. No gate on the LISA multiplicity is applied in the analysis as

the detected neutron can scatter within the array multiple times, generating multiple hits.

The neutron removed from the 14Be beam is unlikely to reach LISA as it is transferred to

the target or emitted at much lower energies with a much broader angular distribution.

4.4.3 Fragment gates

In order to select the events of interest, the 14Be beam gate and the neutron gate are applied.

The remaining events detected in the charged particle telescope then correspond to 12Be as

shown in the 2-D plot ∆E−E of the first silicon PIN detector and the CsI detector (Figure

4.25). The measured peak at silicon PIN energies of around 14 MeV and CsI energies around

800 MeV is located at the expected position (see the PID plot in 4.2.1).

12Be fragments are selected by the graphical cut shown in Figure 4.25. An additional

gate can be applied in a two-dimensional plot of the neutron velocity versus the CsI energy

shown in Figure 4.26. The 12Be events show a negative correlation, that is, the faster

the fragment, the slower the neutron is. This implies energy conservation in the neutron

decay and is strong evidence that the neutrons were emitted from 13Be fragments or excited

14Be. The vertical distribution around 940 MeV CsI energy corresponds to the unreacted
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Figure 4.25: Energy Loss in Silicon PIN 1 vs CsI Energy. The black circle indicates the
applied 12Be gate.

beam detected in the telescope by random coincidence with backgrounds in the LISA array.

The broad distribution on the left of the 12Be peak corresponds to lighter Be fragments or

incomplete energy deposition in CsI.

Figure 4.26: Neutron velocity versus CsI energy. The black circle indicates the applied 12Be
gate.

All silicon PIN detectors can be used to select valid beryllium isotopes. Two-dimensional

gates were applied to silicon PIN 1 versus silicon PIN 2 (shown in Figure 4.27) and silicon

PIN 4 versus silicon PIN 5 and a one-dimensional gate was applied to silicon PIN 3.
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Figure 4.27: Energy loss in silicon PIN 1 vs silicon PIN 2. The black circle indicates the
applied 12Be gate.

4.5 Decay energy reconstruction

4.5.1 Reactions in the target

The experiment was designed to observe the reactions that occur in the target. However,

reactions can also occur in the charged particle telescope. The energy reconstructions for

these events will be described in the next section.

According to Section 1.5.1, the decay energy of the 13Be single neutron decay can be

reconstructed from the momentum vectors of the 12Be fragment and the neutron.

The neutron time-of-flight and the displacement vector from the target to the LISA array

are measured event-by-event for which the neutron velocity vector can be calculated as

vneut =
dtarget,LISA
ttarget,LISA

(4.6)

The fragment kinetic energy has to be calculated from the energy deposited along its way

in any material it passes through: the target, the TLPSD and silicon PIN detectors, and the
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Figure 4.28: Schematics for the reconstruction of reactions in the target

CsI detector. While the energies in silicon PIN detectors and the CsI detector are measured,

the energy in the TLPSD (which did not function properly) and the target are calculated

with LISE++. The position of the reaction in the target is not known and is assumed to

be in the middle of the target. The kinetic energy of the fragment is the sum of all these

energies:

Ekin,frag = Etarget + ETLPSD + EsiPINs + ECsI (4.7)

The momentum vector of the fragment was supposed to be derived from the positions mea-

surements of the 2 TLPSDs right in front of the target and the silicon PIN detectors. How-

ever, the TLPSDs did not work during the experiment (see details in 3.3). This will make

the resolution of the decay energy slightly worse, but will not severely affect the validity of

the decay energy reconstruction, because the angle of the fragment is much smaller than the

neutron angle because of the mass ratio of the neutron and the fragment.
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4.5.1.1 Transverse momentum correction

Even though it was not possible to measure the transverse momentum with the TLPSDs,

an approximation was implemented.

First, it was assumed that the transverse momentum introduced by the removal of the

neutron in the initial reaction 14Be →13Be + n is small and set to zero:

pfrag,x = 0

pfrag,y = 0

pfrag,z = pfrag

(4.8)

where

pfrag =
√

(Ekin,frag +mfrag)
2 −m2

frag (4.9)

Then, the transverse momentum of the fragment from the decay of 13Be to 12Be and a

neutron was set to be equal and opposite of the neutron (see figure 4.29):

pfrag,x = −pneut,x

pfrag,y = −pneut,y

pfrag,z =
√

p2frag − p2neut,x − p2neut,y

(4.10)

The effect of this approximation is demonstrated by simulations of the decay energy

shown in Figure 4.30. The simulated data including transverse momentum distributions

are shown in green. When the fragment transverse momentum is set to zero (blue) in the

reconstruction, the decay energy spectrum is broadened and shifted to the left. The correct

decay energy−although still broadened− is recovered (red) when the transverse momentum
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Figure 4.29: Transverse momentum schematic

Figure 4.30: Simulation of the decay energy demonstrating the effect of transverse momen-
tum correction.

of the fragment is calculated from the transverse momentum of the neutron as described

above.

The transverse momentum correction does not always restore the true fragment trans-

verse momentum but shifts the decay energy peak to the correct place without losing any

resolution.

57



4.5.1.2 Relative velocity alignment

The relative velocity vrel discussed in this work is defined as the difference in magnitude of

the fragment 12Be and the neutron velocity, instead of the vector difference.

vrel = |vfragment| − |vneutron|, (4.11)

vrel > 0 means the decay neutron is emitted backwards, vrel < 0 means the decay is forwards,

and the distribution should be centered at 0.

The relative velocity alignment is used to add a time shift to the neutron time-of-flight

so that the relative velocity peak is centered at 0.

4.5.1.3 Decay energy simulation

Due to the energy conservation in the decay from 13Be to 12Be and a neutron, the neutron

energy and the fragment energy should add up to a constant value. The left panel of

Figure 4.31 shows the results of a simulation for a 500 keV decay of 13Be to 12Be and a

neutron following a one-neutron removal from 14Be in the target, plotted as the neutron

kinetic energy versus the sum of the neutron kinetic energy and the energy deposited in the

CsI detector. The distribution of a vertical line shows that the total kinetic energy of the

12Be + n system is a constant.

However, the data (right panel) do not agree with the simulations and show a completely

different pattern. Instead of a vertical line, the experimental data still show a negative

correlation between the neutron energy and the sum of the CsI and neutron energies. In

addition, it has a wider range of neutron kinetic energy, from 100 MeV all the way to 0,

while the simulation ranges only from 60 and 90 MeV. The observation of slower neutrons in
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Figure 4.31: Neutron kinetic energy versus the sum of the CsI and neutron energy from
simulation (left) and data (right).

the data indicates reactions of beam particles in the charged particle telescope as they are

slowing down and stopped in the CsI detector.

4.5.2 Determination of Reaction Location

As mentioned earlier, the reaction of interest is a two-step process: a one-neutron removal

from 14Be followed by one-neutron decay of 13Be.

The neutron removal of 14Be can be considered as a peripheral reaction where the 13Be

pre-fragment continues at approximately the same velocity as the 14Be beam. Therefore,

the total kinetic energy is reduced by the kinetic energy of a neutron with the velocity of

the beam.

The subsequent neutron decay of 13Be occurs essentially immediately within the target

(10−21 s) so that the 12Be + n system has the same center-of-mass velocity before and after

decay.

According to the assumptions above, the velocity of the 12Be fragment is the same as the

beam particle at the reaction point, as well as the decay neutron. However, any state in 13Be

is above the neutron emission threshold. So, the available decay energy is shared between
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the 12Be fragment and the neutron increasing or decreasing the velocities depending on the

emission angle.

It should be mentioned that other reactions can also occur, for example, two-neutron

removal, two-neutron decay after Coulomb excitation, and even dineutron emission.

The differences between reactions in the target and in the charged particle telescope are

demonstrated in Figures 4.32 and 4.33.

The in coming 14Be beam particles have a kinetic energy of 76 MeV/u with a 2% spread.

This kinetic energy is deposited in the target and all the detectors before and after the

reaction, and is also carried away by the 2 neutrons emitted in the reaction.

In the case of reactions within the target, the kinetic energy of the beam particle ranges

from 76 MeV/u to 72 MeV/u depending on the position of the reaction within the target,

as shown on the left side of 4.32.

In the center-of-mass frame of the 12Be + n system, the neutron can be emitted in any

direction in the space. Forward decay and backward decay are the two extreme cases in

which the neutron is emitted in the same or opposite direction of the center-of-mass velocity,

respectively. The right panel of figure 4.32 shows the example for a decay energy of 0.5 MeV

in the middle of the target. A forward decay neutron gets the maximum lab frame kinetic

energy of around 90 MeV, while a backward decay neutron gets the minimum of 60 MeV.

This ±15 MeV or ±20% difference in the neutron kinetic energy due to decay is much larger

than the effect of different reaction positions in the target. This spread of neutron energies

is also shown in the 2-D kinematic plot of the simulation shown on the right side of Figure

4.31.

In the case of reactions in the CsI detector, where the beam stops, the beam energy at

the front face of the CsI detector is 67 MeV/u. The reaction can happen at any beam energy
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Figure 4.32: Schematic of a reaction in the target.

Figure 4.33: Schematic of a reaction in the CsI detector.
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from 67 MeV/u all the way to 0 as shown in figure 4.33. The energy difference between the

forward and backward decay neutrons is less than 27 MeV/u, decreasing with decreasing

energies in the reaction. So, the reaction position or the beam energy in reaction is the

dominant influence factor of the outgoing kinetic energy of the neutron and fragment.

If the reaction occurs in the CsI detector the measured energy includes not only the

fragment kinetic energy, but also the energy deposited by the beam particle before the

reaction. In other words, the energy deposited in the CsI detector is the total kinetic energy

of the 14Be beam particle minus the kinetic energy carried away by the removed and emitted

neutrons. Each of these two neutrons carry away approximately the same amount of kinetic

energy corresponding to the beam velocity at the reaction. So, the energy deposited in the

CsI detector plus twice the detected neutron kinetic energy is a constant. This explains

the negative slope in the 2D plot of the neutron energy versus the sum of the CsI plus one

neutron shown in Figure 4.31.

Figure 4.34 shows the neutron kinetic energy versus the sum of the CsI energy plus twice

the neutron energy. The top row shows the results of simulations for reactions in the target

and the CsI on the left and right, respectively. The sum of the two simulations (bottom left)

resembles the experimental data (bottom right). This qualitatively demonstrates that the

experimental data contain both reactions in the target as well as in the CsI. The neutron

kinetic energy of reactions in the target and CsI have a large overlap from 60 to 80 MeV.

So, it is hard to clearly separate the two reaction locations.

4.5.3 Reactions in CsI

For reactions in the CsI, the energy deposited in the detector does not represent the fragment

kinetic energy as mentioned in the previous section. So, the standard method described in
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Figure 4.34: Neutron kinetic energy versus the sum of the CsI energy plus twice the neutron
energy. The top row shows the results of simulations for reactions in the target and the CsI
on the left and right, respectively. In the bottom row the sum of the two simulations (left)
are compared to the experimental data (right).

Section 4.5.1 is not applicable.

Figure 4.35: Reconstruction for reactions in the CsI.
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However, it is still possible to approximate the fragment energy as well as the neutron

velocity which are necessary to reconstruct the decay energy (see Section 1.5.1). According

to section 4.5.2, the unreacted beam enters the CsI detector at 67 MeV/u and its total kinetic

energy is deposited in the detector or carried away by the 2 neutrons. With the assumptions

described in the previous section, the ratio between the energy carried away by the neutrons

and the fragment energy corresponds approximately to the ratio of their mass. Thus, the

fragment kinetic energy can be expressed as

Ekin,frag =
m12Be

m14Be −m12Be
· (ECsI,14Be − ECsI) (4.12)

The drawback of this model is that the approximation of fragment velocity equals to

beam velocity is assuming that the decay energy is zero, which means that this model has no

sensitivity to the decay energy on the fragment side. However, this introduces only a small

uncertainty, as the decay energy is mostly carried away by the neutron.

The calculation of the neutron velocity is also slightly different. The starting point of

the displacement should be moved to the CsI detector. The thickness of CsI is 3 cm, and

the beam stops at a depth of about 1.3 cm. The starting point is chosen at the stop point

of the beam.

The start point of the neutron time-of-flight also needs to be moved to the CsI detector.

The time-of-flight of the 14Be beam from the target to the CsI detector (about 12 ns) needs

to be subtracted from the measured neutron time-of-flight:

vneut =
dCsI,MoNA

ttarget,MoNA − ttarget,CsI
(4.13)
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Reconstruction for reaction in silicon detectors is similar to the one for reaction in the

beryllium target, because they are both in-flight reactions.

4.5.4 Reaction type

In case there are reaction types other than one neutron knockout followed by one neutron de-

cay, simulations for different reaction types are performed and compared to the experimental

data. The other possible reaction types are two-neutron decay and dineutron decay.

Figure 4.36: Neutron multiplicity plots for the experimental data (top left), one-neutron
knockout and one-neutron decay (top right), Excitation and two-neutron decay (bottom
left), di-neutron decay (bottom right).

Figure 4.36 shows the neutron multiplicity plots of different reaction types. The neutron

multiplicity distribution shows that the one-neutron decay reaction is the dominant one,

since its distribution looks almost identical to the experimental distribution, and they both

peak at 1, while the other 2 reaction types peak at 2. The proportions of other reaction

types are negligible. So, they will not be considered in further data analysis.
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4.6 CAESAR spectra analysis

The detection of γ rays in coincidence with the fragments is an essential part of the experi-

ment. The γ ray spectra from the CAESAR array in coincidence with the 0.5 MeV p-wave

neutron decay is key to determining which state in 12Be is the final state of the neutron

decay. As discussed in section 1.5.3, the signatures of populating the 0+2 isomeric state are

511 keV and 2.1 MeV γ rays.

Due to the relatively long lifetime (331 ns mean lifetime) of the isomeric state, the

emission rate of these γ depends on the time after the population of the state and should

be distinguishable from prompt γ. Thus, the timing properties of the γ rays detected in

CAESAR are studied as well as the energy.

The 511 keV γ rays are emitted in pairs from the annihilation of the positron from the E0

decay of the 12Be isomeric state. These two 511 keV photons are emitted at the same time

and in the opposite direction. The detection of two correlated 511 keV γ rays in opposite

detectors is a useful signature to identify this decay.

For γ-rays above about 1 MeV Compton scattering becomes a dominant process for

their interaction with matter. In the Compton scattering process, a photon deposits only a

fraction which depends on the scattering angle. Thus, one γ-ray can interact multiple times.

If these interactions occur in different detectors of CAESAR an algorithm called “CAESAR

addback” can identify such events and recover the full energy of the γ ray. This algorithm

is helpful in extracting the signature of the 2.1 MeV γ ray.
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4.6.1 CAESAR energy and time

Figure 4.37 shows the 2-D plot of CAESAR time versus CAESAR energy. The CAESAR

corresponds to the time difference between an interaction CAESAR and the A1900 extended

focal plane scintillator. Promptly emitted γ rays appear at approximately 410 ns and delayed

γ rays should appear at greater CAESAR time. Some energy peaks can be seen around 50

keV, 200 keV, 400 keV, 511 keV, and 600 keV. There is no apparent peak at about 2100

keV.

Figure 4.37: CAESAR time versus gamma ray energy.

If there is a delayed γ ray signal, there should be a long upward tail at its energy, which

means that the decay time of the peak is longer. To look more closely at the decay time,

projections on time using slices around the energy peaks can be useful.

Figure 4.38 shows the CAESAR time spectra of energy slices around the peaks and also

around 2.1 MeV because that is where the signature is expected. Only the peak below 100

keV has a relatively longer decay time. The other energy slices have roughly the same decay

time and are likely to be prompt γ rays.

Although there is no obvious evidence for delayed γ rays, a more detailed analysis is
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Figure 4.38: CAESAR time plots around the peaks in the energy spectrum.

necessary to rule out the population of the isomeric state.

4.6.2 CAESAR geometric correlations

The subset of the CAESAR array utilized in this experiment has 6 rings from c to h (2 to

7), and each ring has 24 detectors, from 0 to 23. As shown in figure 4.39, if interactions in

ring m1 and ring m2 satisfy

m1 +m2 = 9 (4.14)

they occur in opposite rings. If in addition the interactions trigger in detectors n1 and n2

which satisfy

n1 − n2 ≡ 12 (mod 24) (4.15)

they occurred in opposite directions in the CAESAR array.

The correlations between two γ rays can be seen in a 2-D plot of their energies, as shown

on the left side of Figure 4.40. The data on the top are gated on γ rays emitted in opposite

directions, where a peak at 511 keV is visible (signal plot). The plot is symmetric with
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Figure 4.39: Schematic of CAESAR geometry. The red arrows indicate γ rays interacting in
opposite detectors.

respect to the diagonal because each opposite detector pair or hit pair was counted twice,

with the x and y values swapped.

In order to enhance true coincidences and to eliminate background events, events where

two gγ rays were emitted perpendicular to each other were selected. For a photon in detector

of ring m1 and detector n1, its “90-degree” detector is defined as the detector of ring m2

and detector n2 that satisfies

|m1 −m2| = 3

n1 − n2 ≡ 6 (mod 24)

(4.16)

The energy correlation gate by the “90-degree” events (background plot) is shown on

the middle panel on the left side of Figure 4.40. The background plot was normalized to

the signal plot and subtracted from it. The plot after subtraction is shown on the bottom

left. The (511 keV, 511 keV) peak is the only pronounced peak in the 0 to 1000 keV range,

clearly indicating the decay of a 511 keV γ ray pair.
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Figure 4.40: Left panels: Energy correlation plots of two coincident γ-rays detected in
CAESAR. The top panel is gated on γ rays emitted in opposite directions, the middle panel
is gated on γ rays emitted perpendicular to each other, and the bottom panel shows the
difference spectrum. Right panels: The time difference (top) and the time (bottom) of the
corresponding events from the left panel.

The two plots on the right side of 4.40 show the timing properties of the 511 keV γ

ray pair. The signal, background, and the subtracted data are shown in blue, green, and

red, respectively. The time difference within the pair has a distribution around 0 ns with

a FWHM of about 20 ns as shown on the top. This corresponds to the time resolution of

CAESAR and thus are emitted at the same time. The CAESAR time of one of the two

photons shown on the bottom displays a narrow peak around 410 ns corresponding to the

prompt γ rays. If the pair would have been submitted from the isomeric state in 12Be, the

timing distribution exhibit a long tail on the right side of the distribution.

In summary, the analysis of the 511 keV gamma ray on CAESAR data alone shows no

evidence of delayed emission. Correlation with the neutron dacay measurement and further
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gating is needed to draw a conclusion (see Section 5.2).

4.6.3 CAESAR Addback

In order to improve the search for the 2.1 MeV γ ray, a new CAESAR addback algorithm

was developed which recovers Compton scattering events where not the full γ ray energy

was deposited in one detector.

While an addback routine is included in the original CAESAR analysis code it can only

handle events with 4 hits or less. In the present experiment, the event building time window

is as long as 3 µs, resulting in a significant number of events with more than 4 hits, as shown

in Figure 4.41.

Figure 4.41: Number of CAESAR detectors triggered in a single event.

The new CAESAR addback algorithm defines clusters of hits. If two hits are in neigh-

boring detectors and their time difference is smaller than a certain value (50 ns), then they

are combined into a cluster.

Figure 4.42 is a map of the CAESAR detectors. The eight detectors around a detector

on the map are defined as its neighboring detectors. It should be noted that because the
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Figure 4.42: Map of rings and detectors of CAESAR. The red squares show the detectors
triggered in a sample event.

detectors are arranged in rings, detectors in column 0 have neighbors in column 23, and vice

versa. The red filled cells mark the hits in a sample event. The 13 hits in this event are

combined into 7 clusters.

There can be more than one hit on the same detector in one event. Recording no more

than one hit on one detector will only lose about 1% of hits, but will significantly simplify

the analysis process. So, in the actual data analysis, no more than one hit is kept in each

detector for each event.

Each cluster is reconstructed as one γ ray, its energy is defined as the sum of energy of

all hits in the cluster, and the time and position (which detector) are defined to be the same

as the hit with the highest energy in the cluster.

Figure 4.43 is the histogram of the number of CAESAR hits in one cluster. More than

95% of the clusters have no more than 3 hits. Clusters of too many hits are not trustworthy.

In further analysis on the CAESAR spectrum, gates can be applied to accept only clusters

with no more than 3 or 2 hits.

The effect of the addback is shown in Figure 4.44 for data taken with a 88Y source. The

blue and red curves correspond to the data before and after addback, respectively. The 898

keV and 1836 keV peaks from the decay of 88 Y and the 1460 keV background peak from
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Figure 4.43: Number of CAESAR hits in one cluster.

Figure 4.44: CAESAR spectrum from a 88Y source, before (blue) and after addback (red).

40K are used for CAESAR calibration, and the 2734 keV peak from 88Y is also visible in the

spectrum. The three higher energy peaks are enhanced after the addback is applied, and the

898 keV peak does not change. This is reasonable because Compton scattering is not that

preferable for a γ ray with an energy of less than 1 MeV.

Figure 4.45 shows the addback effect on the experimental data. After addback, the lower

energy part (< 1.5 MeV) is diminished and the higher energy part enhanced, however, no

specific peaks become apparent. Further gating (for example on the decay energy) is needed
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Figure 4.45: The CAESAR spectrum of experimental data (production run), before (blue)
and after addback (red).

to search for the 2.1 MeV γ ray (see Section 5.2).

4.7 Simulations

Monte Carlo simulation plays an important role in data analysis. In the previous sections

simulations have been used to interpret some of the observables measured in the reaction.

To extract the relative contributions of reactions in the target and the CsI detector as well

as the cross-section of each resonance, especially the p-wave resonance, simulations are used

to fit the experimental data.

Simulations of different parts of the experimental setup are performed separately. The re-

action process is simulated using ST MoNA, an in-house C++ based simulation package. The

outgoing neutron information is sent to N2 GEANT, a simulation based on GEANT4 dedi-

cated to neutron interactions in the LISA array. The fragment information from ST MoNA

is sent to a stand-alone GEANT4 simulation for the interactions in the charged particle

telescope. Different reaction locations are also simulated with variants of these simulation
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components. This section will focus on the details of the simulations.

4.7.1 ST MoNA and N2 GEANT

ST MoNA models the beam, the reaction target, and the interaction of the beam within

the target. N2 GEANT models the interaction of neutrons with the LISA array. The

performance of these simulation codes has been bench marked in previous studies.

The incoming beam profile is modeled by Gaussian distributions for the x and y positions

and angles. The kinetic energy of the beam is modeled by a uniform distribution with a

centroid and a width. The target is parameterized by its Z, A, and thickness.

Table 4.1 shows the beam and target parameters used in the ST MoNA simulation.
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Table 4.1: Beam and target parameters

Parameter Value Description

eBeam 76.5 Beam energy (MeV/u)

dEbeam 1.4% Half width of energy distribution (relative)

beamA 14 Beam A

beamZ 4 Beam Z

targA 9 Target A

targZ 4 Target Z

dTarget 486 Target thickness (mg/cm2)

monaDist 454.65 Distance from target to MoNA (middle of the first layer)

bSpotCx 0 Beam spot x centroid (m)

bSpotCtx 0 Beam spot θx centroid (rad)

bSpotCy 0 Beam spot y centroid (m)

bSpotCty 0 Beam spot θy centroid (rad)

bSpotDx 0.0023 Beam spot x width (σ) (m)

bSpotDtx 0.014 Beam spot θx width (σ) (rad)

bSpotDy 0.0020 Beam spot y width (σ) (m)

bSpotDty 0.010 Beam spot θy width (σ) (rad)

As the beam or fragment (after the reaction) propagates through the target, the energy

loss and straggling are taken into account. The reaction position along the thickness of the

target is randomly chosen with a uniform distribution. The dynamics of the one-neutron

knockout of 14Be is modeled in the Glauber formalism, one neutron is removed, and a
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momentum kick is applied to the remaining 13Be. The subsequent one-neutron decay is

modeled by the resonant line-shape.

The output ROOT file of ST MoNA includes the momentum information of the outgoing

fragment and neutron from the target. The neutron information of every event is listed in a

file and sent into N2 GEANT, which simulates the neutron interaction in LISA. The neutron

interactions with hydrogen and carbon nuclei that make up the LISA scintillator bars are

modeled using the MENATE R database. This simulation is able to reproduce the efficiency

and timing and position resolution of the LISA detectors.

The fragment information is sent to a standalone GEANT4 simulation for the telescope.

4.7.2 Standalone GEANT4 simulation for the telescope

A stand-alone Geant4 simulation reads the momentum information of the outgoing charged

fragments from the target and uses it as the “beam”. This simulation includes the TLPSD2,

five siPINs, and the CsI detector. The electromagnetic and hadron physics lists used for the

interactions in the detectors.

The measured values (energy loss in each siPIN and in CsI) are written in a text file.

Those information, as well as the response of the LISA array generated by N2 GEANT, will

be merged into the root tree created by ST Mona. The physics reconstruction will then be

done in the same manner as the reconstruction for the experimental data.

4.7.3 Reaction parameters

For the neutron decay, the decay energies and widths of the expected resonances as listed in

Table 4.2 were taken from reference [44, 58].
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These parameters were fixed because of the low resolution of the experiment so that the

only free parameters were the cross-sections of these resonances.

Table 4.2: Angular momenta, energies E (MeV), and widths Γ (MeV) of the simulated
resonances.

Angular momentum Energy E (MeV) Width Γ (MeV)

l=0 (s) 0.81 2.1

l=1 (p) 0.45 0.45

l=2 (d) 2.0 2.0

4.7.4 Simulation for different reaction locations

In addition to reactions in the target, simulations were also performed for reactions in the

CsI and silicon detectors, as it was not possible to clearly separate them in the data. By

fitting the different contributions to the data, the cross-section of the p-wave neutron decay

can be determined.

For reactions in the CsI the beam and target parameters in ST MoNA are modified. The

CsI detector is regarded as the “target” and the unreacted beam at the entrance of the CsI

detector is the “beam”. Table 4.3 shows the modified parameters.

The 12Be fragment stops in the CsI detector, so there is no outgoing fragment information

that can be sent into a standalone simulation. The outgoing neutron momentum information

is sent to N2 GEANT. The output files of N2 GEANT and ST MoNA are then merged and

reconstructed into physical quantities such as the decay energy.

78



Table 4.3: Beam and target parameters for reactions in CsI detectors

Parameter Value Description

eBeam 66.7 Beam energy at entrance of CsI (MeV/u)

dEbeam 1.58% Half width of energy distribution (relative)

beamA 14 Beam A

beamZ 4 Beam Z

targA 130 Effective A of CsI

targZ 54 Effective Z of CsI

dTarget 13530 Thickness of CsI (mg/cm2)

monaDist 314.72 Distance from target to MoNA (middle of the first layer)

bSpotCx 0 Beam spot x centroid (m)

bSpotCtx 0 Beam spot θx centroid (rad)

bSpotCy 0 Beam spot y centroid (m)

bSpotCty 0 Beam spot θy centroid (rad)

bSpotDx 0.0034 Beam spot x width (σ) (m)

bSpotDtx 0.017 Beam spot θx width (σ) (rad)

bSpotDy 0.0025 Beam spot y width (σ) (m)

bSpotDty 0.013 Beam spot θy width (σ) (rad)

For the simulation of reactions in silicon detectors, the process is similar to that in the

standard target case. The TLPSD2 and the five silicon PIN detectors are simplified as a

single silicon target, and the beam and target parameters are modified accordingly. A stand-

alone GEANT4 simulation is needed to handle the reactions of the outgoing fragment in the
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CsI detector. Table 4.4 shows the beam and target parameters for reactions in the silicon

detectors.

Table 4.4: Beam and target parameters for reactions in silicon detectors

Parameter Value Description

eBeam 72.0 Beam energy at entrance of TLPSD2 (MeV/u)

dEbeam 1.4% Half width of energy distribution (relative)

beamA 14 Beam A

beamZ 4 Beam Z

targA 28 A of Silicon

targZ 14 Z of Silicon

dTarget 615 Thickness of silicon detectors added up (mg/cm2)

monaDist 321.95 Distance from TLPSD2 to MoNA (middle of the first layer)

bSpotCx 0 Beam spot x centroid (m)

bSpotCtx 0 Beam spot θx centroid (rad)

bSpotCy 0 Beam spot y centroid (m)

bSpotCty 0 Beam spot θy centroid (rad)

bSpotDx 0.0023 Beam spot x width (σ) (m)

bSpotDtx 0.014 Beam spot θx width (σ) (rad)

bSpotDy 0.0020 Beam spot y width (σ) (m)

bSpotDty 0.010 Beam spot θy width (σ) (rad)
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4.7.5 Fitting of the experimental data

The purpose of fitting the experimental data is to extract the contribution of the p-wave

neutron decay of 13Be. Based on the extracted number of counts of the p-wave decay,

the expected γ-ray counts assuming a population of the isomeric state can be estimated.

Comparing these counts with the measured γ-ray counts is possible to determine if the

p-wave neutron decays to the isomeric state of 12Be.

As described in Subsection 4.7.3, the experimental data is fit with three resonances. In

addition, an uncorrelated background, which is a flat distribution of decay energy from 0

to 20 MeV is included in the simulation. Simulations for each of these four components is

performed for the three different reaction locations: target, silicon detectors, and the CsI

detector. The results of these twelve simulations were used to fit the 12Be + n decay energy

spectrum and the relative velocity spectrum (difference of the velocity scalars) of the 12Be

fragment and neutron.

The same reconstruction method and event selection gates were applied to the simulations

and the data. The reconstruction method for reaction in the beryllium target is used for

extracting the decay energy because it is the designed reaction location of the experiment

and has the best resolution of the decay energy.

The final kinematic 2-D gate is shown in the overlap with the experimental data in Figure

4.46, and in the overlap with the fitting components in figure 4.47. The 2-D kinematic gate

includes almost all valid events in the experimental data and also covers a major part of all

the fitting components.

The fitting is carried out using a code developed by Thomas Redpath. The code uses

a χ2 minimizing algorithm. The decay energy and decay width of the resonances are fixed
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Figure 4.46: The final 2-D gate (marked in black).

Figure 4.47: Comparing the final 2D gate (marked in black) and the target p-wave gate
(marked in red) with the simulations.
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values obtained from existing experiments. The free parameters in the fit are just the cross-

sections of each resonance at each reaction location. The ratio between the cross-sections

of the beryllium target and the silicon detectors is fixed according to theory calculations,

because (1) reactions in the target and silicon detectors are both in-flight reactions in a thin

target, and the rates can be calculated based on theoretical cross-sections, (2) fixing the ratio

can reduce the amount of fitting parameters from 12 to 8 and simplify the fitting process.

The total simulation Stotal can be expressed as

Stotal =P1(Ss,target + C1 · Ss,Si)

+ P2(Sp,target + C2 · Sp,Si)

+ P3(Sd,target + C3 · Sd,Si)

+ P4(Sflat,target + C4 · Sflat,Si)

+ P5 · Ss,CsI

+ P6 · Sp,CsI

+ P7 · Sd,CsI

+ P8 · Sflat,CsI ,

(4.17)

where P1...P8 are the fitting parameters, Ss,target is the simulation of s-wave decay that

occurs in the beryllium target, other simulation components are expressed in the same logic,

and “flat” represents a flat distribution that simulates the uncorrelated background, C1...C4

are constant coefficients that fix the ratio between reactions in the target and silicon detec-

tors. The result of C1...C4 is shown in Section 5.1.
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4.8 Efficiency and resolution

To extract cross-section information from the decay energy spectrum, the efficiency and res-

olution of the measured decay energy were attained using the simulation packages discussed

in Section 4.7.

Figure 4.48: Efficiency (left panel) and decay energy resolution (right panel) for reactions in
the target as a function of decay energy.

The efficiency was determined by the geometric acceptance and detection efficiency of

the telescope and the LISA array. A simulation of a uniform decay energy distribution

propagated through the experimental setup was reconstructed to obtain the overall efficiency

of the decay energy measurement. The left panel of Figure 4.48 shows the efficiency as a

function of decay energy.

The resolution was estimated by simulations of a series of delta-function-like decay energy

distributions. The events were fed into the experimental setup, where the resolution effects

of each detector were included. The FWHM was extracted from the reconstructed decay

energy distributions. The right panel of Figure 4.48 shows the resolution as a function of

decay energy.
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Chapter 5. Results

5.1 Decay Energy

The final measured decay energy spectrum of 13Be is compared to simulations in the left

side of Figure 5.1. The right side of the figure displays the relative velocity (vrel, see Section

4.5.1.2).

The following gates were applied to the experimental data of the decay energy and the

relative velocity: (1) 14Be beam gate (Section 4.4.1), (2) neutron gates (Section4.4.2), (3)

2D gates on siPIN1 vs siPIN2 and siPIN4 vs siPIN5 (Section 4.4.3), and (4) 2D kinematic

gates (Section 4.7.5).

Figure 5.1: Decay energy (left) and relative velocity (right).

As discussed in Subsection 4.7.5 the simulations were combined into two groups: (1)

reactions in target or silicon detectors, (2) reactions in the CsI detector and fit simultaneously

to the decay energy and the relative velocity data. The relative contributions of the target

and the silicon detectors were calculated from the theoretical one-neutron removal cross

sections based on the eikonal model (see Section 2.2.1) and are listed in Table 5.1.

The constant coefficients from Equation 4.17 can then be calculated from the cross section

and the target thickness ratio:
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Table 5.1: Results of eikonal calculations for beryllium and silicon targets of the first three
levels in 13Be populated from 14Be. The table lists the spectroscopic factors (C2S), the
single-particle cross sections (σsp), the theoretical cross sections (σth), and the ratio of the
single-particle cross sections σSi/σBe. The cross sections are given in mb.

13Be level C2S σsp Be σth Be σsp Si σth Si σSi/σBe
p 0.8276 55.532 52.185 70.729 66.465 1.27
s 0.7167 85.210 70.827 112.951 87.179 1.23
d 1.8307 37.392 79.391 44.060 86.865 1.09

C = σSi/σBe ·NSi/NBe (5.1)

where NBe and NSi correspond to the number of atoms per unit area in the beryllium target

and the silicon detectors, respectively. The 486 mg/cm2 thick beryllium target corresponds

to 3.25 × 1022/cm2. The silicon detectors (TLPSD2 and 5 silicon PINs) totaling 2650 µm

corresponding to 1.32× 1022/cm2. Thus the ratio NBe/NSi is 0.41.

The specific coefficients C1, C2, and C3 for the p, s, and d wave contributions are then

0.52, 0.50, and 0.45, respectively. C4 for the background distribution was set at the average

of value of 0.49.

The results of the reactions in the target and silicon detectors, the reactions in the CsI,

and the sum is shown in Figure 5.1 by the red, blue, and purple histograms. Details of the

fitting algorithm, fitting components, and parameters can be found in 4.7.The decay energy

distribution for reactions in the CsI appear distorted due to the incorrect reconstruction of

the kinematic parameters.

The relative velocity has some sensitivity to the reactions in the target versus the reaction

in the CsI. While the relative velocity of reactions in the target (and the Si detectors) is

centered around zero, the apparent fragment velocity for reactions in the CsI is larger than

the velocity of the neutrons, as calculated from the beam velocity before reacting in the CsI.
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Figure 5.2: Decay energy of reactions in the target and silicon detectors (black). The colored
histograms correspond to the four contributions indicated in the figure.

Figure 5.2 shows the fitting components (s-, p-, d-wave decay and uncorrelated back-

ground) of the in-flight (target and Si detectors) reactions. The integral number of counts

attributed to the p-wave decay in this fit is 5.4(12) × 103, in which 2.5(5) × 103 are in the

target and 2.9(7)× 103 in the silicon detectors.

The relative contributions of the p-wave events in the target/silicon detectors and the CsI

detector are shown in Figure 5.3. The integrated number of counts with the decay energy

less than 1 MeV gate is 5.9(13)×103 with the majority of the events coming from the target

and the silicon detectors. Correcting for the CAESAR time gate (for the decay lifetime of

331 ns, the gate removing the first 40 ns cuts out about 11% of the total decay events),

leaving 5230 events to be used for estimating the expected number of counts of γ rays.
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Figure 5.3: p-wave decay in different reaction locations

5.2 CAESAR spectra

The primary purpose of the experiment was to search for delayed 511 keV and 2.1 MeV

gamma-rays in the decay of 12Be following the neutron emission of 13Be. This would firmly

locate the first 1/2− state of 13Be at 2.7 MeV and not at 0.5 MeV (see Figure 1.4).

The expected counts of γ-ray signatures has to be calculated based on the total measured

counts of the p-wave decay, no matter where the reaction occurs. Because for each reaction

location, the 12Be fragment will finally stop in the CsI detector and have enough time to

emit the delayed γ ray if it is in the isomeric state.

The γ-ray spectrum recorded with CAESAR in coincidence with 12Be fragments and

neutrons were analyzed to search for the delayed γ-ray signatures. Two additional gates

were applied to enhance delayed p-wave events over the background: (1) a gate limiting

decay energies to less than 1 MeV which preferentially selects p-wave emission over the other

resonances, and (2) a gate on the CAESAR time (>450 ns, the prompt peak is located at
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Figure 5.4: CAESAR γ-ray spectra gated on decay energies smaller (red) and larger (blue)
than 1 MeV. The red arrow indicates the position of the expected 2.1 MeV peak.

410 ns with a 20 ns FWHM) eliminating prompt γ-rays and,

5.2.1 2.1 MeV γ ray

The effect of the first gate on the 2.1 MeV γ ray is shown in Figure 5.4. It compares the

CAESAR γ-ray spectra gated on decay energies < 1 MeV (p-wave decay enhanced) and >

1 MeV in red and blue, respectively. The > 1 MeV histogram serves as background and is

normalized to match the integral with the other histogram. There is no indication of any

additional events above background in the region of the expected 2.1 MeV peak (indicated

by the red arrow).

Figure 5.5 shows the same comparison but with the additional CAESAR time gate larger

(red points) and smaller (blue histogram) than 450 ns. The figure zooms in on energies

between 1 and 3 MeV. Again, there is no evidence for a delayed γ-ray peak around 2.1 MeV

as indicated by the red arrow.
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Figure 5.5: CAESAR γ-ray spectra gated on times larger (red points) and smaller (blue
histogram) than 450 ns in addition to the decay energy gates from Figure 5.4. The red
arrow indicates the position of the expected 2.1 MeV peak.

From the number of counts of the p-wave in the decay energy spectrum it is possible to

calculate the number of counts expected for the 2.1 MeV peak assuming that it proceeds

through the isomeric state in 12Be.

As discussed in Section 1.5, the branching ratios for the 2107 keV γ-ray decay is 17.7%.

The efficiency at 2.1 MeV is 9.6% according to the CAESAR simulation in Section 4.3.3.

Thus, the expected counts in the 2.1 MeV peak can be calculated as

N2107,expected = 5.23× 103 · 17.7% · 9.6% = 89(19). (5.2)

Figure 5.6 shows simulations with (solid blue) and without (dashed blue) the possible 2.1

MeV peak compared to the data (red). The experimental data do not show a clear peak at

2.1 MeV, and approximately coincides with 15% of the expected counts.
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Figure 5.6: CAESAR γ-ray spectrum comparing the data (red) with simulation results with
(solid blue) and without (dashed blue) a 2.1 MeV state.

5.2.2 511 keV γ rays

The second possible signature for the population of the isomeric state in 12Be is the direct

decay of this 0+ state to the ground state via internal pair transition and the emission of

two 511 γ-rays.

As can be seen Figures 5.4 and 5.6, there is no clear evidence for a peak around 500 keV

above a relatively large background.

The two 511 keV γ-rays of the internal pair transition are emitted back-to-back so that

such a coincidence condition applied might expose this decay.

The number of expected events can again be calculated from the number of p-wave events

in the decay energy spectrum. According to the CAESAR simulation in Section 4.3.3, the

efficiency to detect both 511 keV γ rays of the pair emission is 3.9%. As discussed in Section

1.5, the branching ratios for the internal pair transition is 82.3% so that the expected counts
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Figure 5.7: Energy correlations of two opposite CAESAR detectors with gates applied as
described in the text.

of the gamma ray signatures can be calculated as

N511,expected = 5.23× 103 · 82.3% · 3.9% = 168(36), (5.3)

The analysis to search for back-to-back emission of two 511 keV γ-rays was presented

in Section 4.6.2. Figure 5.2.2 shows the CAESAR 2-D correlation plot of all possible pairs

of opposite detectors, with decay energy and CAESAR time gates. The events with both

opposite detectors firing and the gamma ray energy falling in the range of 460 keV to

560 keV are recorded in the plot. 8 counts were found. (There are 2 pairs of events that are

symmetrical to the y = x line, so they are actually 2 events that are counted twice instead

of 4 individual events.)

The coincidence condition was somewhat relaxed by also including the eight neighbors

of the opposite detectors as demonstrated in Figure 5.8. The condition for the “90-degree”

background events was similarly relaxed. Table 5.2 lists the number of events for the opposite

and the 90-degree events for the nine different coincidence conditions.

The difference between the opposite and the 90-degrees events (including neighbors)
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Figure 5.8: Definition of the relaxed coincidence condition including the neighbors of the
opposite detectors.

Table 5.2: Number of counts for opposite and 90-degree events for the nine coincidence
conditions defined in Figure 5.8

Correlation conditions 1 2 3 4 5 6 7 8 9 total
Counts (opposite) 1 2 0 3 8 3 1 3 3 24
Counts (90-degree) 1 1 0 1 1 2 5 2 3 16

correspond to the number of real 511 kev γ-ray pairs observed above background, which is

8(6) counts. This number has to be compared to the 168(36) expected events from the decay

energy spectrum.

Even if all observed opposite events would correspond to real pairs, the number would

still be a factor of 20 smaller than the expected events. Considering the uncertainty of the

expected counts and the measured counts, it gives an upper limit of 13%.

This analysis is consistent with the non-observation of delayed 2.1 MeV γ-rays and con-

firms that the p-wave is not located at 2.7 MeV but at 0.5 MeV.
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5.3 Cross sections

The cross-section can be expressed as

σ =
Nreact

Nincident · η ·Ntarget
, (5.4)

where Nreact is the number of observed events, Nincident the number of incident beam

particles, η the efficiency, and Ntarget the number of atoms per unit area in the target. The

value for Ntarget (3.25 × 1022cm−2) was already quoted in Section 5.1 and Nincident was

1.07× 107. As shown in Section 4.8 the efficiency depends in the decay energy, so Nreact/η

was calculated as ΣNreact(Edecay)/η(Edecay). Figure 5.9 shows the decay energy spectra for

the corrected for the efficiency for reactions in the beryllium target for the s-, p-, d-wave

resonances in red, blue, and green, respectively.

Figure 5.9: Decay energy spectra corrected for the efficiency.

The resulting experimental cross sections for the p, s, and d wave resonances are 39(7) mb,

69(15) mb, and 262(10) mb, respectively.

Theoretical cross sections can be calculated from the eikonal reaction model based on

94



the shell model spectroscopic factors (Section 2.2.1). The spectroscopic factors for the one-

neutron removal from 14Be populating the lowest three states of interest in 13Be (p, s, and

d) are listed in Table 5.1.

Table 5.3 compares the theoretical with the experimental cross sections. While the cross-

sections for the p- and s-wave are well reproduced, the experimental values for the d-wave

are significantly larger.

Table 5.3: Angular momenta, energies E, widths Γ of the simulated resonances, and the
experimental (σexp) and theoretical (σth) cross sections.

Angular momentum Energy E (MeV) Width Γ (MeV) σexp (mb) σth (mb)

l=0 (s) 0.81 2.1 69(15) 71

l=1 (p) 0.45 0.45 39(7) 52

l=2 (d) 2.0 2.0 262(10) 79

This can also be seen in Figure 5.10 where the efficiency corrected decay energy spectra

are shown for the experimental data (solid lines) and the theoretical calculations (dashed

lines).
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Figure 5.10: Efficiency corrected decay energy spectra for the experimental data and theo-
retical calculations.
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Chapter 6. Conclusion

The decay energy spectrum of the neutron-unbound 13Be was reconstructed using the invari-

ant mass method by detecting neutrons in coincidence with 12Be fragments. The neutrons

were detected with 96 scintillation detectors of the LISA array and the fragments were

stopped and identified with a newly constructed charged particle telescope. In contrast

to previous MoNA-LISA experiments the fragments were directly detected at 0◦ and not

deflected by the Sweeper magnet.

The charged particle telescope located 140 cm behind the target was surrounded by

the CAESium-iodide scintillator ARray CAESAR to detect delayed γ-rays. The two decay

branches of the isomeric second 0+2 state in 12Be were investigated: (1) the 0+2 → 2+ → 0+1 γ-

ray cascade via the 2107 keV γ ray from the 2+ state and (2) the 0+2 → 0+1 internal transition

via the two annihilation 511 keV γ rays.

No evidence for either branch was observed above the background. An upper limit of 10%

contribution of the p-wave decay via the 12Be isomeric state was given by the coincidence

of the two 511 keV γ rays.

The decay energy and the delayed γ-ray spectra were compared to detailed simulations

based on shell model calculations including the population of the 1/2+-, 1/2−, and 5/2+-

states in 13Be. The simulations also included the acceptances and efficiencies of the detectors.

If the 1/2−-state populated the isomeric 2+ state in 12Be, the expected number of γ-ray

events for either decay branch exceeded the background level by a factor of seven. Thus, the

results of the previous experiments which place the 1/2−-state at about 450 keV above the

ground state of 12Be are confirmed.

The proposed decay branch of a second 5/2+ state in 13Be to the isomeric 0+2 in 12Be
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cannot be ruled out by the present experiment. This state is not expected to be populated by

neutron removal from 14Be as the spectroscopic factor is only about 1% of the spectroscopic

factor for the 1/2− state which is below the sensitivity level for detecting delayed γ rays

with the present setup.
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[32] W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M. L. Bis-
sell, R. Cazan, G. Drake, C. Geppert, M. Kowalska, et al., “Nuclear charge radii of
7,9,10Be and the one-neutron halo nucleus 11Be,” Physical Review Letters, vol. 102,
no. 6, p. 062503, 2009.

[33] A. Krieger, K. Blaum, M. L. Bissell, N. Frömmgen, C. Geppert, M. Hammen, K. Kreim,
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