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ABSTRACT

CRITICAL PROPERTIES OF THE DRIVEN-DISSIPATIVE ISING MODEL

By

Daniel Paz

Driven-dissipative quantum systems have become an important paradigm of nonequilibrium quan-

tum systems, and aptly describe many common experimental setups in atomic, molecular, and

optical physics. However, they are not understood as well as their equilibrium counterparts, and

analytical solutions to the nonequilibrium dynamics are few and far between. Furthermore, phase

transitions in driven-dissipative systems may host new universality classes, or connect to universality

classes seen in equilibrium. In this work, we present a thorough analytical and numerical treat-

ment of the driven-dissipative Ising model with infinite-range interactions and local spontaneous

emission. This model is amenable to an exact field-theoretical solution via a quantum-to-classical

mapping. We primarily focus on the critical properties, which show interesting similarities and

differences in comparison with equilibrium and classical phase transitions. Notably, we identify

two distinct universality classes in the phase diagram. A generic point on along the phase boundary

falls under the same universality class as the infinite range classical Ising model with Glauber dy-

namics. However, in the weakly-dissipative limit we find that the system is in the same universality

class as the finite-temperature equilibrium transition of the quantum Ising model. Furthermore, we

discover a new notion of time-reversal symmetry which occurs near the phase boundary due to the

interplay of drive and dissipation. Finally, we characterize various measures of entanglement in

the model throughout the phase diagram by calculating the quantites known as the quantum Fisher

information, the logarithmic negativity, and spin squeezing. We complement these findings by also

calculating measures of total correlations in the system such as the von Neumann entropy and the

mutual information.
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CHAPTER 1

INTRODUCTION

1.1 Quantum Many-Body Physics and Critical Phenomena

A system of one or several atoms may be solved exactly. In contrast, realistic physical systems are

composed of a macroscopic number of particles that are interacting with one another, and it is this

fact that makes many-body systems difficult to solve but just as interesting in the phenomena they

produce.

A principal feature of interest in quantum many-body systems is the phase transition, where a

system transitions from one phase of matter to another. This transition may give rise to a critical

behavior. The object that distinguishes these two phases is the order parameter, which is typically

defined to be zero on one side while it assumes a finite value on the other. Second-order phase

transitions, the primary focus of this work, are accompanied by spontaneous symmetry breaking,

where a symmetry of the state is broken upon crossing the phase boundary. The symmetry-breaking

is driven by the interactions of the model, not an external field. In addition, the fluctuations of the

order parameter diverge at the phase boundary and the dynamics slows to a crawl, a primary signal

of the phase transition.

Systems that exhibit the above properties are deemed critical. However, most critical phenomena

is understood from the perspective of thermal equilibrium, where a many-body system is weakly

coupled to a bath, and the state 𝜌 is given by the Gibbs state

𝜌EQ = 𝑒−𝐻/𝑇 , (1.1)

where 𝐻 is the system Hamiltonian and 𝑇 is the bath temperature. In this work, we will instead be

focusing on the phase transitions of nonequilibrium systems, where the state is no longer described

by the thermal state in Eq. (1.1), and the dynamics is not governed by a hermitian, time-independent

Hamiltonian (or a Hamiltonian at all!).
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1.2 Driven-Dissipative Systems

Equilibrium physics describes many systems of interest, yet it only occupies a small corner of the

space of physics. There are various nonequilibrium paradigms such as non-hermitian Hamiltonians,

Floquet systems, and quench dynamics, each yielding their own plethora of rich physics. Of

interest to us are driven-dissipative systems, or open quantum systems, where a Hamiltonian system

is externally driven by a classical drive while weakly coupled to a bath. In this paradigm, the

competition between the external drive and the dissipation due to the bath lead to a nonequilibrium

steady state (NESS) at long times, which we denote as 𝜌SS. In general, this state is not equivalent

to the thermal state, i.e. 𝜌SS ≠ 𝜌EQ.

Open quantum systems have received much attention both experimentally and theoretically in

the past decade due to recent experimental advancements in AMO systems that allow for precise

control over physical systems and, therefore, enable the engineering of various kinds of Hamiltonian

and non-Hamiltonian dynamics. Dissipation is naturally present in any physical system. While

dissipation is commonly considered detrimental to quantum behavior, together with specific drive

fields, it can even lead to quantum coherence and entanglement. In this thesis, we will explore this

point further by investigating the entanglement in a many-body NESS of dissipative dynamics.

The dynamics of open quantum systems is governed, under generic approximations, by a

quantum master equation. Hence, these systems are more difficult to treat both analytically and

numerically, and necessitate new techniques such as Keldysh field theory, which we discuss next.

1.3 Keldysh Field Theory

Many-body systems have a macroscopic number of degrees of freedom, and thus have a large Hilbert

space. Specifically, the interaction leads to complicated many-body states. One cannot generally

solve these systems exactly in a fashion similar to one, or few, particle systems. Therefore, many-

body systems require a different framework. The natural language for a broad range of quantum

many-body systems is quantum field theory, a description of the system that encodes the individual

degrees of freedom into coarse-grained fields. This powerful representation significantly reduces
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the variables one needs to keep track of. Field theory also has the added advantage of making

many concepts of phase transitions and criticality explicit in the formalism. For example, the

symmetry corresponding to the phase transition can always be made apparent at the level of the

action. Furthermore, perturbative expansions with respect to the interaction strength can be made

systematic, and semi-classical approximations are readily available. In addition to these benefits,

field theory provides access to correlation and response functions, the principle objects of interest

in many-body systems.

We will investigate nonequilibrium dynamics of driven-dissipative systems. This requires a

more general kind of field theory, known as Keldysh field theory, to tackle. This field theory can

be seen as the real-time path integral formulation, as opposed to the imaginary time formulation

commonly used in equilibrium. While we gain the advantage of working in real time, and thus

straightforward access to dynamics, we pay the price in additional degrees of freedom and a sign

problem. More explicitly, Keldysh field theory requires twice the number of fields when compared

with the imaginary time and Feynman path integral formulations. In addition to this, the field

theory comes with additional properties and quirks which we will discuss later in the text.

1.4 Thesis Overview

The thesis will be organized as follows: Chapter 2 will introduce the fundamental concepts required

to understand the rest of the thesis. These fundamental concepts range from the density matrix

formalism, necessary to treat open systems, to Keldysh field theory and mapping open quantum

system to Keldysh path integrals. In Ch. 3, we discuss the relevant models that we will be

investigating, namely the open Dicke model and the driven-dissipative Ising model. Furthermore,

we show how one would map the driven-dissipative Ising model to a field theory as well as the

tools necessary to treat such a field theory. Our primary tools will be the saddle-point solution of

the Keldysh action, a quadratic expansion of said action, and diagrammatics. Up to this point, we

have only discussed analytical techniques, however, it is important to utilize numerical simulations

to supplement analytical results; we introduce the required numerical techniques in Ch. 4. In this

3



chapter, we discuss exact diagonalization and quantum trajectories, and show how they are modified

to take advantage of the system’s permutation symmetry. Chapter 5 utilizes the concepts developed

in Ch. 3 and Ch. 4 to investigate the critical properties of the driven-dissipative Ising model. We

focus on the effective temperature of the steady state, as well as the critical exponents and finite-

size scaling of the correlation and response functions near the phase boundary. Next, we shift

focus in Ch. 6 to the emergent modified time-reversal symmetry exhibited by the driven-dissipative

Ising model near the phase transition. We show how this symmetry emerges by constructing an

effective field theory. Finally, Ch. 7 reports the entanglement features of the steady state in the

driven-dissipative Ising model throughout the entire phase diagram. We calculate entanglement

quantities such as the logarithmic negativity, the quantum Fisher information, and the spin squeezing

parameter. These quantities are compared with measures of total correlations, i.e. the von Neumann

entropy and the mutual information.

4



CHAPTER 2

OPEN SYSTEMS FUNDAMENTALS

In this chapter we introduce the reader to the fundamental concepts upon which the rest of the

thesis is built upon. We begin by introducing the density matrix, a powerful representation of

a quantum state, and discuss its important properties. Next, we discuss the dynamical equation

governing the time-evolution of a subsystem of a larger quantum system, the so-called Lindblad

equation. The Lindblad equation will describe the dynamics of all models considered in this

thesis. Finally, we require the tools to handle open many-body quantum systems and so we

provide a compact introduction to Keldysh field theory. This field theory is capable of describing

nonequilibrium dynamics of open many-body systems and will prove necessary for our analysis.

Before proceeding, we note that most of what we will be covering in this chapter is more thoroughly

described in the textbooks of the field. Extensive discussions on density matrices and open quantum

systems can be found in Refs. [1–3], and a comprehensive text on Keldysh field theory in Ref. [4].

2.1 The Density Matrix

The dynamics of any closed system in Quantum Mechanics is governed by the Schrodinger equation,

𝑖𝜕𝑡 |𝜓(𝑡)⟩ = 𝐻 |𝜓(𝑡)⟩ , (2.1)

where |𝜓(𝑡)⟩ is a state at time 𝑡, and𝐻 is a general Hamiltonian. This equation governs the dynamics

of the quantum state at all times, and (for a time-independent Hamiltonian) has the solution

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡 |𝜓(0)⟩ . (2.2)

Quantum states have the unique property of posibbly being entangled, where a wavefunction

describing two or more particles cannot be separated into a product state. As an example, consider

two particles where each particle can be in either the |1⟩ state or the |0⟩ state. The wavefunction of

the two-particle state can be a product state

|𝜓⟩ = |𝜓1⟩ |𝜓2⟩ , (2.3)
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where |𝜓1/2⟩ is the wavefunction for particle 1 or 2. However, it is also possible for |𝜓⟩ to be an

entangled state, where |𝜓⟩ ≠ |𝜓1⟩ |𝜓2⟩. An example of an entangled state is

|𝜓⟩ = 1
√

2
( |1⟩ |1⟩ + |0⟩ |0⟩) . (2.4)

Equation (2.4) cannot be separated into a product of single-particle states like we see in Eq. (2.3),

which is the definition of entangled. It is important to emphasize that there exists no analogue

of this phenomena in classical systems, and that entanglement is a signature feature of quantum

mechanics and the source of much of the interesting physics observed in quantum systems.

At the level of the wavefunction, we learn that the expectation value of an operator 𝑂 with

respect to a state |𝜓⟩ is given by

⟨𝑂⟩𝑡 = ⟨𝜓(𝑡) |𝑂 |𝜓(𝑡)⟩ . (2.5)

However, this is a specific case of a more general form of the expectation value. More generally,

the expectation value can be written in terms of the density matrix 𝜌 as

⟨𝑂 (𝑡)⟩ = Tr(𝑂 (𝑡)𝜌) . (2.6)

In the case that

𝜌(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡) | , (2.7)

the density matrix is in a pure state, and we reproduce the expectation value in Eq. (2.5). Density

matrices can also be mixed,

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝑝𝑖⟩⟨𝑝𝑖 | , (2.8)

where 𝑝𝑖 and |𝑝𝑖⟩ are the eigenvalues and eigenvectors of 𝜌 respectively. The density matrix has

three important properties: it is

1. Hermitian: 𝜌† = 𝜌, where we have taken the adjoint of the density matrix.

2. Positive semi-definite: All eigenvalues 𝑝𝑖 of the density matrix satisfy 𝑝𝑖 ≥ 0∀𝑖.

3. Unit trace: Tr(𝜌) = ∑
𝑖 𝑝𝑖 = 1, i.e. the state is normalized.
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Properties 2 & 3 imply that the eigenvalues of the density matrix can be interpreted as probabilities of

being in the corresponding quantum state. In other words, the density matrix is a classical mixture

over quantum states, where the probability of being in the eigenstate |𝑝𝑖⟩ is the corresponding

eigenvalue 𝑝𝑖. For a pure state like we have in Eq. (2.7), we only have one non-zero eigenvalue

which equals one. We can take this as the definition of a pure state. In the more general case of a

mixed state, there will be more than one non-zero eigenvalue of the density matrix. Taking the time

derivative of Eq. (2.7), we obtain the equation that governs the dynamics of the density matrix,

𝜕𝑡𝜌 = −𝑖[𝐻, 𝜌] , (2.9)

where the brackets denote the commutator. This equation is known as the von Neumann equation,

and is essentially the Schrodinger equation for density matrices. It has the same form as the

Heisenberg equation that describes operator dynamics, up to a minus sign,

𝜕𝑡𝑂 = 𝑖[𝐻,𝑂] , (2.10)

where 𝑂 is a generic operator.

It is often the case that the entire quantum system is composed of multiple subsystems, however,

we are typically only interested in one of the subsystems. More formally, suppose we had two

subsystems denoted by 𝐴 and 𝐵 with the state |𝜓𝐴𝐵⟩ and Hamiltonian 𝐻𝐴𝐵, and we chose the

basis states |𝑖𝐴⟩ ∈ H𝐴 , | 𝑗𝐵⟩ ∈ H𝐵, where H𝐴,H𝐵 are the Hilbert spaces for subsystems 𝐴 and 𝐵

respectively. The basis states of the composite system reside in the composite space spanned by

|𝑖𝐴⟩ ⊗ | 𝑗𝐵⟩ ∈ H𝐴 ⊗ H𝐵. If we are interested in only subsystem 𝐴, then we must introduce some

operation that integrates over the degrees of freedom in subsystem 𝐵. To perform this operation,

we require the density matrix picture. When starting from a wavefunction describing the entire

system, the density matrix is a pure state given by

𝜌 = |𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵 | , (2.11)

where

|𝜓𝐴𝐵⟩ =
∑︁
𝑖𝐴, 𝑗𝐵

𝑐𝑖𝐴, 𝑗𝐵 |𝑖𝐴⟩| 𝑗𝐵⟩ . (2.12)
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In the case that 𝜌 already describes a subsystem entangled with a larger quantum system, we instead

have a mixed state. We now introduce the partial trace operation, which traces over the Hilbert

space of one subsystem,

𝜌𝐴 = Tr𝐵 (𝜌) =
∑︁
𝑖𝐴, 𝑖

′
𝐴

(∑︁
𝑗𝐵

𝑐𝑖𝐴, 𝑗𝐵𝑐
∗
𝑖′
𝐴
, 𝑗𝐵

)
|𝑖𝐴⟩⟨𝑖′𝐴 | . (2.13)

The resultant reduced density matrix 𝜌𝐴 is still a bonafide density matrix that satisfies properties

1 through 3. However, the density matrix describing subsystem 𝐴 is, in general, a mixed state, as

opposed to the pure state in Eq. (2.11) describing the entire system. This is a common feature

of tracing out degrees of freedom. We reduce the size of the state and the number of degrees of

freedom to keep track of, but lose the explicit information pertaining to the traced out degrees of

freedom. Furthermore, correlations between the two subsystems appear as a classical mixture of

different quantum states in the resultant reduced density matrix. Once can see this final point by

supposing that 𝜌 = 𝜌𝐴 ⊗ 𝜌𝐵 is a product state and tracing out subsystem 𝐵. It is straightforward

to see that the state of the subsystem 𝐴 remains unchanged, which is purely due to the absence of

correlations between the two subsystems.

Expectation values are handled straightforwardly when the Hilbert space is composed of mul-

tiple subsystems. For operators 𝑂𝐴 : H𝐴 →H𝐴 (and similarly for subsystem B), we have

⟨𝑂𝐴⟩ = Tr
(
(𝑂𝐴 ⊗ 𝐼𝐵)𝜌

)
, ⟨𝑂𝐵⟩ = Tr

(
(𝐼𝐴 ⊗ 𝑂𝐵)𝜌

)
. (2.14)

Most importantly, the reduced density matrix defined in Eq. (2.13) preserves the expectation values

of the original density matrix,

⟨𝑂𝐴⟩ = Tr(𝑂𝐴𝜌𝐴) = Tr
(
(𝑂𝐴 ⊗ 𝐼𝐵)𝜌

)
. (2.15)

This shows that we still have access to all observables in system 𝐴 once we trace out system 𝐵.

2.2 Lindblad Equation

To determine the dynamics of the reduced density matrix, we must take the partial trace of Eq.

(2.9). In general, this is a non-trivial task for interacting subsystems. To make analytical progress,
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let us take subsystem 𝐵 to consist of a bath or a reservoir of many degrees of freedom. Furthermore,

we assume that the bath and our system of interest are weakly coupled (the Born approximation)

and that the bath has a short-time memory of its interactions with the system of interest (the

Markov approximation). We define 𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝐻𝐼 , where 𝐻𝐴 and 𝐻𝐵 are the system and

bath Hamiltonians respectively, and 𝐻𝐼 characterizes the interactions between the bath and the

system. Taking the partial trace over subsystem 𝐵 in Eq. (2.9), in combination with the above

approximations, leads to the well-known Lindblad equation [5, 6],

𝜕𝑡𝜌 ≡ L[𝜌] = −𝑖[𝐻, 𝜌] +
∑︁
𝛼

𝐿𝛼𝜌𝐿
†
𝛼 −

1
2
{𝐿†𝛼𝐿𝛼, 𝜌} . (2.16)

In an abuse of notation, we denote the density matrix of subsystem 𝐴 as 𝜌. We also neglect the

Lamb shift, which is typically small compared to the energy scales of the Hamiltonian [3].

In its entirety, the Lindblad equation is composed of two parts: the first term is simply the von

Neumann term for subsystem 𝐴 and characterizes the coherent dynamics of the state, and the sum

over 𝛼 is the dissipative contribution that was introduced after tracing out the bath. The operators

𝐿𝛼 are called Lindblad operators, or jump operators, in the literature, and they represent dissipative

processes whose origin lies in the interaction between the environment and the system. The exact

form of the Lindblad operators depends on the form of the system Hamiltonian, as well as the

system-bath interaction. A microscopic derivation of the master equation may be found in many

textbooks; see for example [3, 5, 7].

The object L is called the Liouvillian and is what is known as a superoperator, an object that

takes operators to operators and acts on them from both sides. It is the principle object of interest

in open quantum systems that satisfy the Born-Markov approximation, including many quantum

optical systems and those with light-matter interactions; examples are cavity QED and circuit QED

[8–11].

The Liouvillian generates non-unitary dynamics, as seen by the dissipative terms, but still

preserves the three important properties of the density matrix:

1. Hermiticity: L[𝜌]† = L[𝜌].
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2. (Complete) Positivity: L[𝜌] ≥ 0.

3. Unit Trace: Tr(𝑒𝑡L [𝜌]) = 1.

In fact, Eq. (2.16) is the most general equation that satisfies these requirements [12]. Complete

positivity (Point 2 above) states that L is completely positive if (L ⊗ 1𝐵) [𝜌] ≥ 0, where we have

enlarged the Hilbert space to include subsystem 𝐵, and 1𝐵 is the identity in this new subspace. The

three properties listed above make L a completely positive trace preserving (CPTP) map.

As an operator of operators, the Liouvillian has eigenoperators with corresponding eigenvalues,

as opposed to eigenvectors in the case of the Hamiltonian, such that L[𝜌𝑖] = 𝜆𝑖𝜌𝑖. The eigenvalues

of the Liouvillian always have Re[𝜆𝑖] ≤ 0, and are purely real or come in complex conjugate

pairs. The condition on the real part of the eigenvalues tells us that most of the eigenoperators

are short-lived and decay away, as any state evolving under Liouvillian dynamics can be written as

𝜌(𝑡) = ∑
𝑖 𝑐𝑖𝑒

𝜆𝑖𝑡𝜌𝑖 where 𝑐𝑖 are constants. Most notably, the Liouvillian typically has at least one

eigenoperator with a corresponding eigenvalue of zero, i.e. L[𝜌ss] = 0. This is the steady state of

the system, and is what we will be focusing on in the rest of this thesis.

2.2.1 Vectorization

It is difficult, in general, to solve a many-body Hamiltonian system due to interactions as well as the

size of the Hilbert space. For example, for a Hamiltonian comprised of𝑁 2-level systems, the Hilbert

space will have dimension 2𝑁 . This limits numerical techniques like exact diagonalization to a

system size of about 𝑁 = 25 with state of the art methods. Analytically, if we are interested in ground

state physics, then we must deal with the non-trivial problem of finding the ground state eigenvector

of the Hamiltonian (or use many-body methods such as field theory or statistical mechanics). Now

consider the Liouvillian superoperator L. To learn about its long-time behavior we must now

solve for the steady state eigenoperator as opposed to a vector, for which the Hamiltonian toolbox

does not necessarily apply. However, we can transform the superoperator into a matrix (albeit a

non-hermitian one!) by performing a simple procedure called vectorization. There are different
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ways to define vectorization. Here, we define the following operation

𝜌 =
∑︁
𝑖, 𝑗

𝑐𝑖, 𝑗 |𝑖⟩ ⟨ 𝑗 | → |𝜌⟩⟩ =
∑︁
𝑖, 𝑗

𝑐𝑖, 𝑗 |𝑖⟩ | 𝑗⟩ , 𝐴𝜌𝐵→ 𝐴 ⊗ 𝐵𝑇 |𝜌⟩⟩ , (2.17)

where 𝐴 and 𝐵 are any operator. Applying this operation to L, we find

L = −𝑖(𝐻 ⊗ 𝐼 − 𝐼 ⊗ 𝐻𝑇 ) +
∑︁
𝛼

𝐿𝛼 ⊗ 𝐿∗𝛼 −
1
2

(
𝐿†𝛼𝐿𝛼 ⊗ 𝐼 + 𝐼 ⊗ 𝐿𝑇𝛼𝐿∗𝛼

)
. (2.18)

For the rest of this work, we use the double angle brackets on vectorized states which we call

superkets, and we use the blackboard font to denote vectorized superoperators that now take the

form of matrices in a larger space. From now on, we also define the “upper” and “lower” branches

of the vectorized Liouvillian, such that 𝑂 (𝑢) = 𝑂 ⊗ 𝐼 and 𝑂 (𝑙) = 𝐼 ⊗ 𝑂 denote operators on the

upper and lower branches respectively.

With this transformation, we have successfully converted the Liouvillian into a matrix but at the

cost of doubling the size of the Hilbert space. This means that numerical simulations are restricted

to roughly half of the system size available to Hamiltonian systems. In addition, the matrix L can

be viewed as a non-hermitian Hamiltonian, L† ≠ L, which prohibits the use of certain numerical

techniques that require hermiticity. The vectorization procedure, however, does make analytical

treatment easier as it makes the mapping of Hamiltonian/equilibrium tools to this nonequilibrium

setting straightforward. We will see this explicitly when we take advantage of the form in Eq.

(2.18) to map the system to a field theory using a quantum-to-classical mapping in Sec. 2.3.

Expectation values of operators take on a different form in this vectorized representation. We

first note that the space of operators acting on H𝐴 can also be interpreted as a vector space for

the space of superoperators (i.e. L or L). This interpretation is directly related to the vectorized

picture, as exhibited by the inner prodcut,

Tr(𝐴†𝐵) = ⟨⟨𝐴|𝐵⟩⟩ , (2.19)

for two operators 𝐴 and 𝐵. It is simple to prove this equality by vectorization of the left-hand

side. Applying this to the relation Tr(𝜌) = 1, we find that we can alternatively represent the trace

condition as

Tr(𝜌) = 1→ ⟨⟨𝐼 |𝜌⟩⟩ = 1 , (2.20)
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where |𝐼⟩⟩ is the vectorized Identity matrix. Applying the same procedure to Eq. (2.6), we find

⟨𝑂⟩ = ⟨⟨𝑂 |𝜌⟩⟩ , (2.21)

the vectorized representation of the expectation value of the operator 𝑂. However, we can con-

struct two other, equivalent, forms for the expectation value of 𝑂 in the vectorized representation.

Recalling that 𝑂𝜌 → 𝑂 (𝑢) |𝜌⟩⟩ and 𝜌𝑂 → 𝑂 (𝑙)𝑇 |𝜌⟩⟩, we can equivalently define the expectation

value as

⟨𝑂⟩ = ⟨⟨𝐼 |𝑂 (𝑢) |𝜌⟩⟩ = ⟨⟨𝐼 |𝑂 (𝑙)𝑇 |𝜌⟩⟩ . (2.22)

In the rest of the thesis, we will use whichever of the three definitions is most suitable.

2.3 Keldysh Field Theory Crash Course

The treatment of nonequilibrium many-body systems demands powerful tools. The presence

of interactions drastically increases the complexity of the many-body states due to non-trivial

correlations between system constituents. One such tool is Keldysh field theory, a field theory

designed to handle nonequilibrium dynamics of a density matrix. In this section we will describe

the damped quantum harmonic oscillator with a field theory in the form of a path integral, and

discuss some basic properties of Keldysh field theories. Most of this section will be taken from

the review in [13] as well as section III of [14]. Also helpful is the bible of Keldysh field theory,

Kamenev’s thorough textbook [4].

Our starting point is the Lindblad equation for a single cavity mode coupled to the external

vacuum. The QED vaccuum is to be taken as the bath and is assumed to satisfy the Born-Markov

approximation. In this case, the Hamiltonian 𝐻 = 𝜔0𝑎
†𝑎 is simply that of a harmonic oscillator

with detuning 𝜔0, and the Lindblad operator 𝐿 =
√
𝜅𝑎 represents the dissipative process of the

cavity leaking a photon out to the environment at a rate 𝜅. The resultant Lindblad equation takes

the form

L[𝜌] = −𝑖𝜔0 [𝑎†𝑎, 𝜌] + 𝜅(𝑎𝜌𝑎† −
1
2
{𝑎†𝑎, 𝜌}) . (2.23)

The operators 𝑎 and 𝑎† are the bosonic raising and lowering operators, and satisfy the bosonic

commutation relation [𝑎†, 𝑎] = 1.
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The density matrix at time 𝑡 is given by 𝜌(𝑡) = 𝑒𝑡L [𝜌], where the exponential of the super-

operator is defined with the usual power series. We define the nonequilibrium partition function

𝑍 = Tr(𝜌(𝑡)) = 1, different from the equilibrium partition function which could take any (positive)

value. Our goal now is to map 𝑍 to a path integral over the fields. We apply our vectorization

process to the nonequilibrium partition function to find

𝑍 = ⟨⟨𝐼 | 𝑒𝑡L |𝜌⟩⟩ . (2.24)

The vectorized form of the Liouvillian is

L = −𝑖𝜔0(𝑎 (𝑢)†𝑎 (𝑢) − 𝑎 (𝑙)𝑇𝑎 (𝑙)∗) + 𝜅
(
𝑎 (𝑢)𝑎 (𝑙)∗ − 1

2
(𝑎 (𝑢)†𝑎 (𝑢) + 𝑎 (𝑙)𝑇𝑎 (𝑙)∗)

)
(2.25)

The form of this equation should be reminiscent of the starting point for the derivation of the

Feynman path integral. Following a similar process, we perform a Trotter decomposition [15] of

the time translation generator

⟨⟨𝐼 | 𝑒𝑡L |𝜌⟩⟩ = lim
𝑀→∞

⟨⟨𝐼 |
(
𝑒𝛿𝑡L

)𝑀
|𝜌⟩⟩ , (2.26)

where 𝛿𝑡 = 𝑡/𝑀 . This relation is exact. After every time step 𝑘 we introduce a resolution of the

identity in the basis of the coherent states,

I𝑘 =

∫
𝑑𝜙
(𝑢)
𝑘
𝑑𝜙
(𝑢)∗
𝑘

𝜋

∫
𝑑𝜙
(𝑙)
𝑘
𝑑𝜙
(𝑙)∗
𝑘

𝜋
𝑒−𝜙

(𝑢)∗
𝑘

𝜙
(𝑢)
𝑘 𝑒−𝜙

(𝑙)∗
𝑘

𝜙
(𝑙)
𝑘 |𝜙(𝑢)

𝑘
⟩⟨𝜙(𝑢)

𝑘
| ⊗ |𝜙(𝑙)∗

𝑘
⟩⟨𝜙(𝑙)∗

𝑘
| , (2.27)

where the coherent states are defined by 𝑎 |𝜙⟩ = 𝜙 |𝜙⟩ and, through complex conjugation, 𝑎∗ |𝜙∗⟩ =

𝜙∗ |𝜙∗⟩. In writing Eq. (2.27), we have used the (over)completeness relation of the coherent states

[13]. While it is not convention to define coherent states with a conjugate parameter as |𝜙∗⟩, we do

so for future convenience.

Now the partition function looks like

𝑍 = lim
𝑀→∞

𝑀∏
𝑘=0

(∫
D[𝜙(𝑢)

𝑘
]
∫
D[𝜙(𝑙)

𝑘
]𝑒−𝜙

(𝑢)∗
𝑘

𝜙
(𝑢)
𝑘 𝑒−𝜙

(𝑙)∗
𝑘

𝜙
(𝑙)
𝑘

)
× ⟨⟨𝐼 | 𝜙(𝑢)

𝑀
, 𝜙
(𝑙)∗
𝑀
⟩
𝑀∏
𝑘=1

(
⟨𝜙(𝑢)

𝑘
, 𝜙
(𝑙)∗
𝑘
| 𝑒𝛿𝑡L |𝜙(𝑢)

𝑘−1, 𝜙
(𝑙)∗
𝑘−1⟩

)
⟨𝜙(𝑢)0 , 𝜙

(𝑙)∗
0 |𝜌⟩⟩ ,

(2.28)
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where we use the D to denote the measures of the integrals in Eq. (2.27). Consider one factor of

the exponential and expand to linear order in 𝛿𝑡, i.e. 𝑒𝑡L ∼ 1 + 𝛿𝑡L + O(𝛿𝑡2). This expansion is

valid in the 𝑀 → ∞ limit, which is identical to taking 𝛿𝑡 → 0. Then, using the overlap between

two coherent states ⟨𝜙|𝜓⟩ = 𝑒𝜙
∗𝜓 , we evaluate the matrix element between the coherent states at

time step 𝑘 and 𝑘 − 1,

⟨𝜙(𝑢)
𝑘
, 𝜙
(𝑙)∗
𝑘
| (1 + 𝛿𝑡L) |𝜙(𝑢)

𝑘−1, 𝜙
(𝑙)∗
𝑘−1⟩ = 𝑒

𝜙
(𝑢)∗
𝑘

𝜙
(𝑢)
𝑘−1𝑒𝜙

(𝑙)
𝑘
𝜙
(𝑙)∗
𝑘−1 (1 + 𝛿𝑡L[𝜙(𝑢)∗

𝑘
, 𝜙
(𝑙)
𝑘
, 𝜙
(𝑢)
𝑘−1, 𝜙

(𝑙)∗
𝑘−1])

≈ 𝑒𝜙
(𝑢)∗
𝑘

𝜙
(𝑢)
𝑘−1+𝜙

(𝑙)
𝑘
𝜙
(𝑙)∗
𝑘−1+𝛿𝑡L[𝜙

(𝑢)∗
𝑘

,𝜙
(𝑙)
𝑘
,𝜙
(𝑢)
𝑘−1,𝜙

(𝑙)∗
𝑘−1] .

(2.29)

We have taken advantage of the fact that Eq. (2.25) is normal ordered so that the operators can be

replaced by the corresponding coherent state fields. Inserting Eq. (2.29) into Eq. (2.28) we find,

𝑍 =

∫
D[𝜙(𝑢) , 𝜙(𝑙)]

𝑀∏
𝑘=1

𝑒
𝑖𝛿𝑡

(
−𝑖𝜙 (𝑢)

𝑘−1𝜕𝑡𝜙
(𝑢)∗
𝑘−1 +𝑖𝜙

(𝑙)
𝑘−1𝜕𝑡𝜙

(𝑙)∗
𝑘−1−𝑖L[𝜙

(𝑢)∗
𝑘

,𝜙
(𝑙)
𝑘
,𝜙
(𝑢)
𝑘−1,𝜙

(𝑙)∗
𝑘−1]

)
× const. (2.30)

We have used the notation 𝜕𝑡𝜙𝑘 = (𝜙𝑘 − 𝜙𝑘−1)/𝛿𝑡 and have grouped the boundary terms (which

will soon be neglected) into the constant multiplicative factor at the end.

We may now take the continuum limit, extend the range of time evolution from (0, 𝑡) →

(−∞,∞), and push the boundaries out to infinity. As we are interested in the steady state which is

assumed to be unique, we ignore the initial conditions. The contribution from the final state that

connects the two branches at 𝑡 = ∞ (i.e. enforces the trace) is also negligible as the boundary has

been pushed out to infinity. This leaves us with the (almost) final form of our Keldysh path integral

𝑍 =

∫
D[𝜙(𝑢) , 𝜙(𝑙)]𝑒𝑖

∫ ∞
−∞ 𝑑𝑡(−𝑖𝜙 (𝑢)𝜕𝑡𝜙 (𝑢)∗−𝑖𝜙 (𝑙)∗𝜕𝑡𝜙 (𝑙)−𝑖L[𝜙 (𝑢)∗,𝜙 (𝑙) ,𝜙 (𝑢) ,𝜙 (𝑙)∗]) , (2.31)

where

L[𝜙(𝑢)∗, 𝜙(𝑙) , 𝜙(𝑢) , 𝜙(𝑙)∗] = (−𝑖𝜔0 −
𝜅

2
)𝜙(𝑢)∗𝜙(𝑢) + (𝑖𝜔0 −

𝜅

2
)𝜙(𝑙)∗𝜙(𝑙) + 𝜅𝜙(𝑢)𝜙(𝑙)∗ . (2.32)

The partition function retains its normalization, 𝑍 = 1, as we have done nothing but map the trace

to a path integral. This path integral, due to the limits on the time integral, describes the field

theory of the steady state of the system (which we have assumed to be unique).
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2.3.1 Keldysh Action

The final ingredient necessary to bring the path integral into our desired form is the Keldysh

rotation, 𝜙(𝑢/𝑙) = (𝜙𝑐 ± 𝜙𝑞)/
√

2. The field 𝜙𝑐 is called the “classical” field as it is allowed to have

a finite expectation value ⟨𝜙𝑐⟩ ≠ 0. On the other hand, the field 𝜙𝑞 is called the “quantum” field as

it is related to fluctuations and always obeys ⟨𝜙𝑞⟩ = 0. We also introduce the Fourier transform of

the fields 𝜙(𝑡) = 1
2𝜋

∫
𝑑𝜔𝜙(𝜔)𝑒−𝑖𝜔𝑡 . After the Keldysh rotation and Fourier transform, we arrive

at the Keldysh action for a single mode cavity coupled to the vacuum,

𝑆 =

∫
𝜔

(
𝜙𝑐
𝜙𝑞

)†
𝜔

(
0 𝑃𝐴

𝑃𝑅 𝑃𝐾

)
𝜔

(
𝜙𝑐
𝜙𝑞

)
𝜔

(2.33)

where

𝑃𝑅 (𝜔) = 𝑃𝐴 (𝜔)∗ = 𝜔 − 𝜔0 +
𝑖𝜅

2
, 𝑃𝐾 (𝜔) = 𝑖𝜅 , (2.34)

and we have used the compact notation
∫
𝜔
=

∫
𝑑𝜔
2𝜋 . The path integral now takes the concise form

𝑍 =

∫
D[𝜙𝑐, 𝜙𝑞]𝑒𝑖𝑆 = 1 . (2.35)

We note that the measure of the path integral has changed according to the Keldysh rotation, while

we still have 𝑍 = 1. The mapping to the path integral preserves the partition function’s value of

unity. Furthermore, the Keldysh action exhibits a general feature that 𝑆[𝜙𝑐, 𝜙𝑞 = 0] = 0. This is

equivalent to the statement that the Liouvillian dynamics conserves the probabilities of the density

matrix. One can see this by realizing that 𝜙𝑞 = 0←→ 𝜙(𝑢) = 𝜙(𝑙) , which is identical to taking the

trace. A consequence of this feature is that every term in the action has at least one quantum field,

and therefore it is a property of all quadratic Keldysh actions that the 𝜙∗𝑐𝜙𝑐 element is zero.

The matrix elements of the kernel in Eq. (2.33) take on the typical Keldysh structure [4, 13, 14].

The retarded/advanced elements 𝑃𝑅/𝐴 characterize the dynamics of the field, while the Keldysh

element 𝑃𝐾 represents the noise. The inverse of this kernel yields the Green’s functions

𝐺𝑅 (𝜔) = 𝐺𝐴 (𝜔)∗ = −𝑖⟨𝜙𝑐 (𝜔)𝜙∗𝑞 (𝜔)⟩ =
1

𝑃𝑅 (𝜔)
(2.36)

𝐺𝐾 (𝜔) = −𝑖⟨𝜙𝑐 (𝜔)𝜙𝑐 (𝜔)∗⟩ = −𝐺𝑅 (𝜔)𝑃𝐾 (𝜔)𝐺𝐴 (𝜔) . (2.37)
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The Green’s functions 𝐺𝑅/𝐴 are the retarded/advanced response functions, and 𝐺𝐾 is the Keldysh

correlation function. These can be recast in terms of the original operators we started with. Going

back to the time domain,

𝐺𝑅 (𝑡 − 𝑡′) = −𝑖Θ(𝑡)⟨[𝑎(𝑡), 𝑎†(𝑡′)]⟩ (2.38)

𝐺𝐾 (𝑡 − 𝑡′) = −𝑖⟨{𝑎(𝑡), 𝑎†(𝑡′)}⟩ . (2.39)

We have used the fact that the steady state is time translation invariant in time to write the Green’s

functions as functions of only the time difference. A derivation of these relations can be found in

Ref. [13]. Returning to the frequency domain for a moment, we can compute the Keldysh Green’s

function:

𝐺𝐾 (𝜔) = 𝜅

(𝜔 − 𝜔0)2 + 𝜅2/4
. (2.40)

Performing the frequency integral, we find 1
2𝜋

∫ ∞
−∞ 𝑑𝜔 𝑖𝐺

𝐾 (𝜔) = 𝑖𝐺𝐾 (𝑡 = 0) = 1. Recalling that

𝐺𝐾 (0) = ⟨{𝑎, 𝑎†}⟩, we use the bosonic commutation relation to find 𝐺𝐾 (0) = 2⟨𝑎†𝑎⟩ + 1 = 1

which implies ⟨𝑎†𝑎⟩ = 0. In other words, the steady state of the cavity is the vacuum state! This

result is intuitive. The dissipation from the environment, taking of the form of photons leaking

from the cavity, always depletes the cavity in the long-time limit.

This simple exercise, while overkill for a single mode cavity, demonstrates the use of the

Keldysh formalism. We have been able to translate the Liouvillian superoperator into a classical

action in a path integral that makes the correlation and response functions readily apparent. Once

we include interactions, the field theory will contain terms beyond quadratic order, complicating

the analysis. In this thesis, we focus on a nontrivial model which is, however, amenable to an exact

field-theoretical description.

2.3.2 Source Fields

Because the nonequilibrium partition function always takes the value 𝑍 = 1, there is no functional

dependence on the system’s parameters to take derivatives w.r.t. and generate expectation values

as one does in equilibrium. In other words, there is no object like the free energy as ln(𝑍) = 0. To
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circumvent this, we introduce source terms 𝑗 (𝑢) (𝑡) and 𝑗 (𝑙) (𝑡) into the Liouvillian, which couple to

an operator (𝑎 or 𝑎† for example) which we are interested in. The new terms arise in the coherent

part of the Liouvillian, and modify the commutator:

L[ 𝑗 (𝑢) , 𝑗 (𝑙)] = −𝑖
(
𝐻 (𝑢) + 𝑗 (𝑢)𝑂 (𝑢) − 𝐻 (𝑙)𝑇 − 𝑗 (𝑙)𝑂 (𝑙)𝑇

)
, (2.41)

where𝑂 is the operator whose expectation values we are interested in. These source terms have the

crucial property of being distinct on each branch of the vectorized Liouvillian, i.e. 𝑗 (𝑢) ≠ 𝑗 (𝑙) . This

spoils the conservation of probability of the dynamics and directly implies that 𝑍 [ 𝑗 (𝑢) , 𝑗 (𝑙)] ≠ 1.

The advantage now is that we may take derivatives of 𝑍 with respect to these source fields to

generate correlation and response functions. This connection is made transparent after applying

the Keldysh rotation to the source fields in the path integral representation. Introducing source

fields for the bosonic annihilation operator 𝑎, we may write [13]

𝑍 [ 𝑗𝑐, 𝑗𝑞] =
〈
𝑒−𝑖

∫
𝑡
𝑗∗𝑐 (𝑡)𝜙𝑞 (𝑡)+𝑖

∫
𝑡
𝑗∗𝑞 (𝑡)𝜙𝑐 (𝑡)

〉
, (2.42)

where the expectation value is taken with respect to the Keldysh path integral. One could also

introduce source fields for the conjugate bosonic fields if desired. Equation (2.42) is the so called

characteristic function. We can define a more convenient quantity akin to a free energy, which we

call the generating function:

𝑊 [ 𝑗𝑐, 𝑗𝑞] = −𝑖 ln 𝑍 [ 𝑗𝑐, 𝑗𝑞] . (2.43)

Functional derivatives of the generating function produce connected correlation functions. For

example, 𝛿2𝑊/𝛿 𝑗∗𝑞 (𝑡)𝛿 𝑗∗𝑞 (𝑡′) | = ⟨(𝜙𝑐 (𝑡) − ⟨𝜙𝑐⟩)(𝜙𝑐 (𝑡′) − ⟨𝜙𝑐⟩)⟩ = ⟨𝜙𝑐 (𝑡)𝜙𝑐 (𝑡′)⟩𝑐. Connected

correlation functions subtract out the contribution from lower order averages (in this case the first

moment). This is relevant when one is interested in the fluctuations in a system and wants to remove

the trivial extensive contribution.

2.4 Keldysh Field Theory for a Spin Coupled to a Cavity

In the previous section we derived the path integral for a single bosonic mode. Here, we introduce

a mapping to represent a dissipative two-level system coupled to a cavity as a Keldysh path integral
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over a real field. We take a spin-cavity system coupled to the vacuum with The Lindblad equation

L[𝜌] = −𝑖[𝐻, 𝜌] + ΓD𝜎− [𝜌] + 𝜅D𝑎 [𝜌] , (2.44)

D𝐿 [•] = 𝐿 • 𝐿† −
1
2
{𝐿†𝐿, •} , (2.45)

𝐻 = 𝜔0𝑎
†𝑎 + Δ𝜎𝑧 + 𝑔𝜎𝑥 (𝑎† + 𝑎) . (2.46)

The operators 𝜎𝛼, 𝛼 ∈ {𝑥, 𝑦, 𝑧} are the Pauli matrices

𝜎𝑥 =

(
1 0
0 −1

)
𝜎𝑦 =

(
0 𝑖

−𝑖 0

)
𝜎𝑧 =

(
0 1
1 0

)
, (2.47)

with 𝜎− = (𝜎+)𝑇 = (𝜎𝑥 − 𝑖𝜎𝑦)/2. The Hamiltonian is known as the Tavis-Cummings model [5].

We can take this model to be phenomenological. The only jump operator for the spin is the lowering

operator corresponding to spontaneous emission at a rate Γ. Photons leak out of the cavity to the

environment at a rate 𝜅. We denote the spin-cavity interaction strength as 𝑔. Following the same

procedure as before, we vectorize the Liouvillian to obtain

L = −𝑖
(
𝐻 ⊗ 𝐼 − 𝐼 ⊗ 𝐻𝑇

)
+ Γ

(
𝜎− ⊗ 𝜎− − 1

2
𝜎−𝜎+ ⊗ 𝐼 − 1

2
𝐼 ⊗ 𝜎−𝜎+

)
+ 𝜅

(
𝑎 (𝑢)𝑎 (𝑙)∗ − 1

2
(𝑎 (𝑢)†𝑎 (𝑢) + 𝑎 (𝑙)𝑇𝑎 (𝑙)∗)

)
.

(2.48)

This Liouvillian can be interpreted as a non-hermitian Hamiltonian describing two spins coupled

through the dissipative terms, and these spins are each separately coupled to their own cavity. These

cavities are also interacting with each other through the dissipative coupling. This is a feature of

vectorization that the doubled degrees of freedom interact with each other through the dissipative

terms in the Liouvillian.

Now we repeat the process of of obtaining the path integral by trotterizing the partition function

as before, 𝑍 = lim𝑀→∞ ⟨⟨𝐼 | (𝑒𝛿𝑡L)𝑀 |𝜌0⟩⟩. Furthermore, we can split the exponential into two

parts, 𝑒𝛿𝑡L → 𝑒𝛿𝑡L0𝑒𝛿𝑡L1 , where L0 contains the atom-cavity interaction term and L1 = Lspin + Lcav

all of the non-interacting terms. This split is exact due to the 𝑀 → ∞ limit. Separating the

exponentials this way allows us to insert resolutions of the identity in a basis that makes treating

L0 easy, i.e. we expand in the basis Ispin,𝑘 ⊗ Icav,𝑘 , where

Ispin,𝑘 =
∑︁

𝜎 (𝑢) ,𝜎 (𝑙)

|𝜎 (𝑢)
𝑘
, 𝜎
(𝑙)
𝑘
⟩⟨𝜎 (𝑢)

𝑘
, 𝜎
(𝑙)
𝑘
| , (2.49)
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with 𝜎𝑥(𝑢/𝑙) |𝜎 (𝑢) , 𝜎 (𝑙)⟩ = 𝜎 (𝑢/𝑙) |𝜎 (𝑢) , 𝜎 (𝑙)⟩; the quantity Icav,𝑘 is given by Eq. (2.27). Once again,

we label each resolution with the time-step 𝑘 . Inserting these resolutions after every time-step, we

find

𝑍 = lim
𝑀→∞

∑︁
{𝜎}

∫
D[𝜙(𝑢) , 𝜙(𝑙)] 𝑓𝑚 𝑓0

𝑀−1∏
𝑘=0

𝑒
−𝑖𝑔

(
𝜎
(𝑢)
𝑘+1 (𝜙

(𝑢)
𝑘+1+𝜙

(𝑢)∗
𝑘+1 )−𝜎

(𝑙)
𝑘+1 (𝜙

(𝑙)
𝑘+1+𝜙

(𝑙)∗
𝑘+1 )

)

× ⟨𝜎 (𝑢)
𝑘+1, 𝜎

(𝑙)
𝑘+1 | 𝑒

𝛿𝑡Lspin |𝜎 (𝑢)
𝑘
, 𝜎
(𝑙)
𝑘
⟩ 𝑒𝑖𝛿𝑡

(
−𝑖𝜙 (𝑢)

𝑘
𝜕𝑡𝜙
(𝑢)∗
𝑘
−𝑖𝜙 (𝑙)∗

𝑘
𝜕𝑡𝜙
(𝑙)
𝑘
−𝑖Lcav [𝜙 (𝑢)∗𝑘+1 ,𝜙

(𝑙)
𝑘+1,𝜙

(𝑢)
𝑘
,𝜙
(𝑙)∗
𝑘
]
)
.

(2.50)

The coefficients 𝑓𝑚, 𝑓0 are the the boundary terms for both the spin and the cavity. Now, we can

pull the exponential factor that is linear in 𝜎 (𝑢/𝑙) into the ⟨𝜎 (𝑢)
𝑘+1, 𝜎

(𝑙)
𝑘+1 | 𝑒

𝛿𝑡Lspin |𝜎 (𝑢)
𝑘
, 𝜎
(𝑙)
𝑘
⟩ matrix

element, and turn it back into an operator while absorbing it into 𝑒𝛿𝑡Lspin . We define this new matrix

as T𝑘 . At this intermediate step, our partition function takes the form

𝑍 = lim
𝑀→∞

∫
D[𝜙(𝑢) , 𝜙(𝑙)]𝑒𝑖𝑆cav ⟨⟨𝐼spin |

∏
𝑘

(
Ispin,𝑘𝑒

𝛿𝑡T𝑘
)
|𝜌spin,0⟩⟩ . (2.51)

The action 𝑆cav is given by Eq. (2.33). We have assumed that the initial state is a product state

between the spin and the cavity. Furthermore, we have resummed the resolution of identities,

allowing us to return back to an operator form. Removing the identities and taking the 𝑀 → ∞

limit (i.e. the continuum limit) while extending the integration limits to infinity, we find

𝑍 =

∫
D[𝜙𝑐, 𝜙𝑞]𝑒𝑖𝑆 , (2.52)

where we have recalled the Keldysh rotation and defined the action

𝑆 = 𝑆cav − 𝑖 ln Tr
(
T 𝑒

∫
𝑡
T(𝑡)

)
. (2.53)

The object T is the time-ordering operator and is required as T is a function of time. The matrix

T(𝑡), in our chosen basis that diagonalizes 𝜎𝑥 , is given by

T(𝑡) =

©­­­­­­­­­­­­«

−Γ
4 − 𝑖
√

2𝑔𝑥𝑞 𝑖Δ −𝑖Δ Γ
4

𝑖Δ − Γ
2 −3Γ

4 − 𝑖
√

2𝑔𝑥𝑐 −Γ
4 −𝑖Δ − Γ

2

−𝑖Δ − Γ
2 −Γ

4 −3Γ
4 + 𝑖
√

2𝑔𝑥𝑐 𝑖Δ − Γ
2

Γ
4 −𝑖Δ 𝑖Δ −Γ

4 + 𝑖
√

2𝑔𝑥𝑞

ª®®®®®®®®®®®®¬
, (2.54)
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with 𝑥𝑐/𝑞 = (𝜙𝑐/𝑞 + 𝜙∗𝑐/𝑞)/
√

2 the classical and quantum components of the cavity quadrature. We

have also made the simplification of setting ⟨⟨𝐼 |• |𝜌0⟩⟩ → Tr(•), which is valid due to expanding the

integration limits out to infinity in combination with the fact that T captures dissipative dynamics

and will take any initial state to a unique steady state. Furthermore, in making this simplification

we have assumed the initial state of the cavity and spin is separable.

Equation (2.53) represents our mapping of the Liouvillian dynamics of a single spin coupled

to a cavity to a path integral over a pair of fields, and at this point is exact. We will see that the

action for the driven-dissipative Ising model takes a very similar form and is obtained using almost

exactly the same procedure. The action in Eq. (2.53) is a formal expression, but it can be expanded

in powers of the cavity quadrature. If there is some small expansion parameter, it is possible to

truncate this expansion and obtain a relatively simpler description of the field theory that well

describes the original model. While there is no obvious expansion parameter in the present model,

we show in Sec. 3.2 how this would be done on a closely related model.
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CHAPTER 3

MODELS AND FIELD THEORY

In this chapter we will introduce the relevant models to our work. While this thesis primarily

focus on the DDIM, we will begin this chapter by first introducing the closely related open Dicke

model as it provides experimental motivation and is required in the derivation of the DDIM. Then,

the equilibrium properties of the Ising model will be discussed; they provide a useful point of

comparison for the nonequilibrium results we obtain later. We then elaborate on the various

symmetries of the model, their physical significance, as well as how we can take advantage of these

symmetries when studying these models. Finally, we will map the DDIM Liouvillian to a Keldysh

path integral using the techniques established in the previous chapter. This path integral will serve

as the starting point for the rest of our analysis.

3.1 Open Dicke Model

The Dicke model [16, 17] is a paradigmatic model of light-matter interactions. It describes a cavity

mode coupled to atoms modeled as 2-level systems. At sufficiently large coupling strengths, this

system exhibits a phase transition from a normal phase to a superradiant phase where the cavity

is macroscopically occupied and the spins spontaneously align. In principle, the cavity and the

atoms are coupled through the underlying dipole coupling, but the coupling strength would be much

smaller than the cavity frequency and the atom energy splitting. Furthermore, there is the subtlety

known as the diamagnetic term (or the 𝐴2 term) which has sparked much debate on the existence

of a no-go theorem [18] for the superradiant transition. However, both of these problems can be

circumvented by utilizing driving schemes [17, 19] to generate the atom-cavity coupling. These

schemes have the added benefit of bringing the detuned cavity frequency (in the rotating frame of

the drive) within the same order of magnitude as the coupling strength. Using this scheme, in the

rotating frame of the drive the Hamiltonian can be modeled as [17]

𝐻Dicke = 𝜔0𝑎
†𝑎 + Δ𝑆𝑧 +

2𝑔
√
𝑁
𝑆𝑥 (𝑎† + 𝑎) (3.1)
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Figure 3.1 (Note: From Ref. [19]) Balanced Raman channels used to derive the Dicke
Hamiltonian in [19]. The cavity couples two sets of levels, 1↔ 𝑠 and 0↔ 𝑟. Two drives of
frequency Ω𝑠 and Ω𝑟 couple 0↔ 𝑠 and 1↔ 𝑟. By detuning the drive frequencies from the
excited states, these states can be adiabatically eliminated to leave an effective two level system
consisting of |1⟩ and |0⟩ with level splitting 𝜔1.

where 𝑆𝛼 =
∑
𝑖 𝜎

𝛼
𝑖

are the collective spin operators. We have 𝜔0 the detuned cavity frequency, Δ

the atom level splitting, and 𝑔 is the atom-cavity coupling generated by the drive (time-independent

as we are in the rotating frame).

There are different microscopic physical systems that yield Eq. (3.1) in certain regimes. One

of the primary examples was proposed by Charmichael et. al. [19], where the system consists

of actual atoms with two pairs of internal levels coupled to the cavity. In addition, two driving

lasers are applied to the atoms that couple these two pairs of internal levels; see Fig. 3.1. The

lasers are detuned such that the higher excited states of each pair of levels can be adiabatically

eliminated, and we are left with an effective two level system comprised of the ground state of each

original pair. This scheme was experimentally realized in [20]. A different scheme involves using a

Bose-Einstein condensate (BEC) in a driven cavity, where at high enough pump strengths the BEC

self-organizes into even and odd checkerboard lattices [8, 21]. The cavity couples to the motional

states of the BEC, and this interaction can be mapped to a similar type of Dicke model as in Eq.

(3.1).
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Now we consider the more general case where the atom and the cavity are coupled to the QED

vacuum. The atom-vacuum coupling (i.e. sponteaneous emission of the individual atoms) was

typically assumed to be negligible in comparison with photon leakage from the cavity, however,

it has been shown to have observable effects on the behaviour of system [20, 22]. Therefore,

we consider both types of coupling here. Assuming that the bath satisfies the Born-Markov

approximation discussed in Sec. 2.2, and that the driving strength is weak compared to the bare

cavity frequency and internal level splittings of the atom, we can justifiably write down the Lindblad

equation for the open Dicke model (ODM) [8, 14, 17, 19, 22–25]

L[𝜌] = −𝑖[𝐻Dicke, 𝜌] + Γ
∑︁
𝑖

D𝜎−
𝑖
[𝜌] + 𝜅D𝑎 [𝜌] . (3.2)

We have included the most probable kinds of dissipation, namely photon loss and spontaneous

emission.

The Liouvillian has aZ2 symmetry, which can be seen by its invariance under the transformation

𝑎 → −𝑎, 𝜎𝑥 → −𝜎𝑥 . However, in contrast to Hamiltonian systems this does not imply conservation

of parity [26]. At large enough atom-cavity coupling strengths, the system undergoes a superradiant

phase transition which is of the Ising type, i.e. it is a second-order phase transition that corresponds

to a broken Z2 symmetry. In the normal phase ⟨𝑎⟩ = ⟨𝜎𝑥⟩ = 0, and in the ordered phase

these quantities become finite and spontaneously choose to be positive or negative in accordance

with the broken symmetry. It has been shown [22] that spontaneous emission is non-negligible

in determining the location of the critical point in the ODM. Furthermore, there is a permutation

symmetry that can be seen by swapping 𝑖 ↔ 𝑗 for any two spins 𝑖 and 𝑗 which leaves the Liouvillian

invariant. This symmetry will prove useful when performing numerical simulations as it reduces

the dimensionality of the steady state Hilbert space from 4𝑁 to 𝑂 (𝑁3) (for details on how this is

done see Sec. 4.1).

3.2 Driven-Dissipative Ising Model

In this work, we are interested in the critical properties of the NESS as it undergoes the phase

transition. However, the ODM can actually be simplified further to an atom-only description that
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still captures much of the essential physics; see Sec. 3.4. In other words, we seek a minimal

model with which we can perform our analysis. There are various limits that can be taken to yield

an atom-only description, most of them yielding non-Lindbladian dynamics [27], but we will be

focusing on the large-detuning limit (𝜔0, 𝜅 ≫ 𝑔, Γ,Δ) which preserves the Lindblad form. In this

case, the cavity dynamics occur on a much shorter timescale than that of the spins and therefore

can be adiabatically eliminated. This yields a new Liouvillian,

L[𝜌] = −𝑖[𝐻, 𝜌] + Γ
∑︁
𝑖

D𝜎−
𝑖
[𝜌] + Γ𝑥D𝑆𝑥 [𝜌] , (3.3)

with the Hamiltonian

𝐻 =
−𝐽
𝑁
𝑆2
𝑥 + Δ𝑆𝑧 , (3.4)

where 𝐽 = 16𝑔2𝜔0/(𝜅2 + 4𝜔2
0) and Γ𝑥 = 𝐽𝜅/𝜔0. We see that elimination of the cavity mode

introduces collective dephasing in the 𝑥-direction. In the limit that 𝜔0 ≫ 𝜅, we can neglect this

term to arrive at the final form of the DDIM,

L[𝜌] = −𝑖[𝐻, 𝜌] + ΓD𝜎− [𝜌] . (3.5)

This represents the minimal many-body model that is host to a phase transition and will be the

focus of the rest of this thesis. We emphasize that Eq. (3.5) is a driven-dissipative model despite

the absence of an explicit driving term. We are several steps removed from the microscopic

dynamics and are operating in the rotating frame of the drive. Furthermore, one can check that a

system is driven-dissipative when the Lindblad operators do not take you between eigenstates of the

Hamiltonian. This is equivalent to the condition [𝐻, 𝐿(𝜔)] = −𝜔𝐿 (𝜔), where 𝐿 (𝜔) are Lindblad

operators that take you between all eigenstates with energy difference 𝜔 [6].

In the absence of dissipation, the Hamiltonian in Eq. (3.4) is known as the Lipkin-Meshkov-

Glick (LMG) model and has been studied extensively [28–33]. This model is integrable, i.e. it has

infinitely many conserved quantities in the thermodynamic limit, and is therefore exactly solvable.

The infinite-ranged nature of the interactions means that the collection of spins can be interpreted

as a single large spin, and can be treated semi-classically in the thermodynamic limit [28, 34]. The
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Figure 3.2 (a) Schematic diagram of the DDIM. There is an infinite-range interaction of strength J
between the all of the spins, while each spin experiences spontaneous emission at a rate Γ. In
addition, the spins experience a transverse field of strength Δ. (b) The phase diagram of the
DDIM. Shaded regions represent the ordered phase where ⟨𝑆𝑥⟩ ≠ 0. The weakly-dissipative point
at Δ = 2𝐽 represents a unique limit of the model and coincides with the critical point of the
equilibrium model at zero temperature.

most important conserved quantity is the total spin operator 𝑆2 = 𝑆2
𝑥 + 𝑆2

𝑦 + 𝑆2
𝑧 , which satisfies

[𝐻, 𝑆] = 0. However, this feature of the model is spoiled by spontaneous emission which does not

conserve total spin. The lack of conservation of total spin in the DDIM can be interpreted as a

positive as it enriches the possible space of states. Despite this, Eq. (3.5) is still exactly solvable.

Equation (3.5) is a descendent of the ODM and, therefore, has the same symmetries, namely the

Z2 and permutation symmetries. It also experiences the same Ising phase transition from a normal

phase, where ⟨𝑆𝑥⟩ = 0, to an ordered phase with ⟨𝑆𝑥⟩ ≠ 0; see Fig. 3.2(b). In equilibrium, at zero

temperature, this model has a quantum phase transition at Δ = 2𝐽 [28] as shown in Fig. 5.11(b).

The driven-dissipative model instead has the ordered phase extend outwards in the parameter space

to finite Γ. We note that the nature of phase transitions in driven-dissipative systems is distinct

from those of equilibrium. Driven-dissipative phase transitions occur in the NESS of the dynamics,

while zero-temperature phase transitions occur in the ground state and finite-temperature phase

transitions in the thermal state. As we will show in Ch. 5, the steady state of the DDIM is host to

two different universality classes. The system exhibits different sets of critical exponents when Γ

is finite compared to the weakly-dissipative critical point where Γ→ 0,Δ = 2𝐽.
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3.2.1 Mean-Field Theory

Mean-field theory is the simplest analysis one can perform on an interacting theory. It is based on

the notion that the interaction may be replaced by a single field proportional to the single-particle

expectation value of a spin. In other words, mean-field theory reduces a many-body theory to

a single-particle theory, a tremendous simplification. The DDIM is what is known as a “mean-

field” type model, meaning that the phase diagram is exactly given by the mean-field solution in

the thermodynamic limit. Before proceeding with an exact treatment of the model that includes

fluctuations, we perform a simple mean-field analysis.

The standard mean-field equations of motion are obtained by calculating the expectation values

⟨𝜎𝛼
𝑖
⟩ and assuming that the density matrix is factorized in space and is uniform:

𝜌 =
⊗
𝑖

𝜌𝑖 = 𝜌
⊗𝑁
MF , (3.6)

where 𝜌MF is the mean-field density matrix, uniform across all sites. Using this approximation, we

find the mean-field Heisenberg equations of motion (in the 𝑁 →∞ limit)

𝜕𝑡 ⟨𝜎𝑥⟩ = −2Δ⟨𝜎𝑦⟩ − Γ

2
⟨𝜎𝑥⟩ , (3.7a)

𝜕𝑡 ⟨𝜎𝑦⟩ = (4𝐽⟨𝜎𝑧⟩ + 2Δ)⟨𝜎𝑥⟩ − Γ

2
⟨𝜎𝑦⟩ , (3.7b)

𝜕𝑡 ⟨𝜎𝑧⟩ = −4𝐽⟨𝜎𝑦⟩⟨𝜎𝑥⟩ − Γ(1 + ⟨𝜎𝑧⟩) , (3.7c)

where we have dropped the spatial index due to the uniform ansatz. By setting the LHS to zero,

we can solve for the nonequilibrium steady-state values of the three observables. In the normal

phase, the only solution is the trivial one: ⟨𝜎𝑥⟩ss = 0, ⟨𝜎𝑦⟩ss = 0, ⟨𝜎𝑧⟩ss = −1 with the subscript

indicating the steady state. In the ordered phase, we identify two stable solutions as

⟨𝜎𝑥⟩ss = ±
√

32𝐽Δ − 16Δ2 − Γ2

4
√

2𝐽
, (3.8a)

⟨𝜎𝑦⟩ss = ∓
Γ
√

32𝐽Δ − 16Δ2 − Γ2

16
√

2𝐽Δ
, (3.8b)

⟨𝜎𝑧⟩ss = −
Γ2 + 16Δ2

32𝐽Δ
, (3.8c)
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from which the phase boundary follows as

Γ2 + 16Δ2 − 32𝐽Δ = 0 . (3.9)

The phase diagram defined by this equation is given in Fig. 3.2(b). The mean-field solution is exact

in the thermodynamic limit due to the collective interactions. However, to characterize fluctuations

and to identify the critical behavior of the model, we must go beyond mean field. Using a quantum-

to-classical mapping, we shall provide an exact field-theoretical description, allowing us to perform

a systematic study of fluctuations beyond mean field.

3.3 DDIM Field Theory

The DDIM Liouvillian, given by Eq. (3.5), is a many-body system and is better described in the field-

theoretical framework. Mapping the system to a field-theory will allow us to go beyond the simple

mean-field treatment performed in Sec. 3.2.1. In this section, we will map the nonequilibrium

partition function to a Keldysh path integral using the techniques developed in Ch. 2. Our starting

point is the vectorized partition function

𝑍 = ⟨⟨𝐼 | 𝑒𝛿𝑡L |𝜌0⟩⟩ . (3.10)

We trotterize the evolution operator and split the Liouvillian into interacting terms (i.e. the Ising

term), L0, and non-interacting terms, L1,

𝑍 = lim
𝑀→∞

⟨⟨𝐼 |
(
𝑒𝛿𝑡L0𝑒𝛿𝑡L1

)𝑀
|𝜌0⟩⟩ . (3.11)

Next, we introduce resolutions of the identity I𝑘 labeled in accordance with the time steps, their

form is given by Eq. (2.49), but expanded to include all 𝑁 spins. Inserting these resolutions of the

identity and taking advantage of the fact that L0 is diagonalized by our chosen basis, we find

𝑍 = lim
𝑀→∞

∑︁
{𝜎}

𝑓𝑚 𝑓0

𝑀−1∏
𝑘=1

𝑒
𝑖 𝐽
𝑁

(
(𝑆 (𝑢)

𝑘
)2−(𝑆 (𝑙)

𝑘
)2

)
⟨{𝜎 (𝑢)

𝑘
}, {𝜎 (𝑙)

𝑘
}| 𝑒𝛿𝑡L1 |{𝜎 (𝑢)

𝑘−1}, {𝜎
(𝑙)
𝑘−1⟩} , (3.12)

where 𝑆(𝑢/𝑙) =
∑
𝑖 𝜎
(𝑢/𝑙)
𝑖

is the classical collective spin and 𝑓0 = ⟨⟨{𝜎 (𝑢)0 }, {𝜎
(𝑙)
0 }|𝜌0⟩⟩ , 𝑓𝑚 =

⟨⟨𝐼 |{𝜎 (𝑢)
𝑀
}, {𝜎 (𝑙)

𝑀
}⟩⟩ arise from the boundary terms. The curly brackets around spins, {𝜎}, represent
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the collection of all 𝑁 spins. At this point we require one additional ingredient to proceed with the

recipe established in Sec. 2.4. We introduce the Hubbard-Stratonovich transformation [4, 15],

𝑒
𝑖 𝐽
𝑁

(
(𝑆 (𝑢)

𝑘
)2−(𝑆 (𝑙)

𝑘
)2

)
=

1
N

∫ ∞

−∞
𝑑𝑚
(𝑢)
𝑘
𝑑𝑚
(𝑙)
𝑘
𝑒−𝑖𝛿𝑡𝐽𝑁 [(𝑚

(𝑢)
𝑘
)2−(𝑚 (𝑙)

𝑘
)2]+𝑖2𝐽𝛿𝑡 (𝑚 (𝑢)

𝑘
𝑆
(𝑢)
𝑘
−𝑚 (𝑙)

𝑘
𝑆
(𝑙)
𝑘
) , (3.13)

where N is an unimportant normalization factor such that we retrieve the left hand side after

performing the Gaussian integration over the real fields 𝑚 (𝑢/𝑙) .

The Hubbard-Stratonovich transformation allows us to decouple the Ising interaction at the cost

of introducing new fields, and linearizes the argument of the exponential with respect to the classical

spins. This allows us to proceed with the usual recipe and pull the now linearized exponential inside

of the inner product ⟨{𝜎 (𝑢)
𝑘
}, {𝜎 (𝑙)

𝑘
}| 𝑒𝛿𝑡L1 |{𝜎 (𝑢)

𝑘−1}, {𝜎
(𝑙)
𝑘−1}⟩ and absorb the new term into L1; we

call this new matrix T𝑘 . We point out that T𝑘 =
∑
𝑖 T𝑘,𝑖 is actually a sum of identical terms,

T𝑘,𝑖 =𝑖2𝐽
(
(𝑚 (𝑢)

𝑘
𝜎
𝑥(𝑢)
𝑖
− 𝑚 (𝑙)

𝑘
𝜎
𝑥(𝑙)
𝑖

)
− 𝑖Δ

(
𝜎
𝑧(𝑢)
𝑖
− 𝜎𝑧(𝑙)

𝑖

)
+ Γ𝜎−(𝑢)

𝑖
𝜎
−(𝑙)
𝑖
− Γ

2

(
𝜎
+(𝑢)
𝑖

𝜎
−(𝑢)
𝑖
+ 𝜎+(𝑙)

𝑖
𝜎
−(𝑙)
𝑖

)
.

(3.14)

After we sum up and remove the resolution of identities, we can take advantage of the above fact to

write

𝑍 = lim
𝑀→∞

∫
D[𝑚 (𝑢) , 𝑚 (𝑙)]𝑒−𝑖𝛿𝑡𝐽𝑁 [(𝑚

(𝑢)
𝑘
)2−(𝑚 (𝑙)

𝑘
)2]

(
⟨⟨𝐼 |

∏
𝑘

𝑒𝛿𝑡T𝑘 |𝜌0⟩⟩
)𝑁

(3.15)

where we have replaced T𝑘,𝑖 with T𝑘 as they are all equivalent. In writing the above equation,

we have assumed that the initial state is a product state of identical spin states which is valid

considering we are only interested in the steady state. We have also defined the measure for the

Hubbard-Stratonovich fields, D[𝑚 (𝑢) , 𝑚 (𝑙)] = ∏
𝑘

𝑑𝑚
(𝑢)
𝑘
𝑑𝑚
(𝑙)
𝑘

N .

Taking the continuum limit, extending the initial and final times out to infinity, and performing

the Keldysh rotation on the Hubbard-Stratonovich fields, we arrive at the DDIM Keldysh path

integral 𝑍 =
∫
D[𝑚𝑐, 𝑚𝑞]𝑒𝑖𝑆, where

𝑆 = −2𝐽𝑁
∫
𝑡

𝑚𝑐 (𝑡)𝑚𝑞 (𝑡) − 𝑖𝑁 ln Tr
(
T 𝑒

∫
𝑡
T(𝑡)

)
. (3.16)

We have repeated the simplification made in Sec. 2.4, where extending the initial time out to

infinity allows us to make the replacement ⟨⟨𝐼 | • |𝜌0⟩⟩ → Tr(•) as the matrix T will yield a unique

28



steady state no matter the initial state. The matrix T is almost identical to Eq. (2.54),

T(𝑡) =

©­­­­­­­­­­­­«

−Γ
4 + 𝑖2

√
2𝐽𝑚𝑞 𝑖Δ −𝑖Δ Γ

4

𝑖Δ − Γ
2 −3Γ

4 + 𝑖2
√

2𝐽𝑚𝑐 −Γ
4 −𝑖Δ − Γ

2

−𝑖Δ − Γ
2 −Γ

4 −3Γ
4 − 𝑖2

√
2𝐽𝑚𝑐 𝑖Δ − Γ

2

Γ
4 −𝑖Δ 𝑖Δ −Γ

4 − 𝑖2
√

2𝐽𝑚𝑞

ª®®®®®®®®®®®®¬
. (3.17)

This matrix is akin to a transfer matrix for two spins on the upper and lower branch of the Keldysh

contour respectively. Imaginary matrix elements describe coherent evolution, and real matrix

elements describe dissipation. This matrix will be an important object in the rest of our analysis,

and we will show how to manipulate it and the ln Tr term of the action. Most importantly, we will be

able to truncate an expansion of the action thanks to the overall factor of 𝑁 . In the thermodynamic

limit, this overall factor of 𝑁 makes the saddle-point solution exact and only allows for quadratic

fluctuations, which we will show in the following sections.

3.3.1 Field-Spin Relationship

The quantum-to-classical mapping utilizes the Hubbard-Stratonovich transformation to introduce

a real field 𝑚 (𝑢/𝑙) in place of the classical total spin 𝑆(𝑢/𝑙) . Therefore, expectation values of 𝑚𝑐/𝑞

should be naturally related to those of the original spin operator 𝑆𝑥 . To derive this relationship, we

introduce time-dependent source fields 𝛼(𝑢/𝑙) (𝑡) coupled to 𝑆𝑥 on both the upper and lower branches

of the vectorized DDIM Liouvillian, 𝑖(𝛼(𝑢)𝑆(𝑢)𝑥 − 𝛼(𝑙)𝑆(𝑙)𝑥 ), where we can have 𝛼(𝑢) ≠ 𝛼(𝑙) so that

the nonequilibrium partition function 𝑍 ≠ 1 as discussed in Sec. 2.3.2 [13]. The source fields do

not alter the mapping to the field theory, they simply introduce new elements to the matrix T as

T
′ (𝑡) = T(𝑡) + 𝑖

√
2
©­­­«
𝛼𝑞 0 0 0
0 𝛼𝑐 0 0
0 0 −𝛼𝑐 0
0 0 0 −𝛼𝑞

ª®®®¬ , (3.18)

where we have performed the Keldysh rotation 𝛼𝑐/𝑞 = (𝛼(𝑢) ± 𝛼(𝑙))/
√

2 on the source fields.

The fields 𝑚𝑐/𝑞 are dummy variables under the path integral. Making the change of variables
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𝑚𝑐/𝑞 (𝑡) → 𝑚𝑐/𝑞 (𝑡) + 𝛼𝑐/𝑞 (𝑡)/2𝐽, we can move the source terms out into the quadratic portion of

the action to find (using the same field variables)

𝑆 = 𝑁

∫
𝑡

(
𝑚𝑐 (𝑡)𝛼𝑞 (𝑡) + 𝑚𝑞 (𝑡)𝛼𝑐 (𝑡) −

𝛼𝑞 (𝑡)𝛼𝑐 (𝑡)
2𝐽

)
+ 𝑆0 [𝑚𝑐/𝑞], (3.19)

where 𝑆0 is the original action without the source fields in Eq. (3.16). Taking derivatives of the

generating functional 𝑍 [𝛼(𝑡)] with respect to the source fields generates correlation functions [13].

Specifically, taking a derivative with respect to 𝛼𝑞 yields
√

2
𝑁
⟨𝑆𝑥 (𝑡)⟩ = −𝑖

𝜕𝑍

𝜕𝛼𝑞 (𝑡)

����
𝛼𝑐/𝑞=0

= ⟨𝑚𝑐 (𝑡)⟩ , (3.20)

which provides a clear translation between the two descriptions (the factor of
√

2 arises due to the

Keldysh rotation). Next, we consider the two-point correlation function and response function,

respectively:

1
𝑁2 ⟨{𝑆𝑥 (𝑡), 𝑆𝑥 (𝑡

′)}⟩ = − 𝛿𝑍

𝛿𝛼𝑞 (𝑡)𝛿𝛼𝑞 (𝑡′)

����
𝛼𝑐/𝑞=0

= ⟨𝑚𝑐 (𝑡)𝑚𝑐 (𝑡′)⟩,
(3.21)

and

1
𝑁2 ⟨[𝑆𝑥 (𝑡), 𝑆𝑥 (𝑡

′)]⟩ = −
(

𝛿𝑍

𝛿𝛼𝑞 (𝑡)𝛿𝛼𝑐 (𝑡′)
− 𝛿𝑍

𝛿𝛼𝑐 (𝑡)𝛿𝛼𝑞 (𝑡′)

) ����
𝛼𝑐/𝑞=0

= ⟨𝑚𝑐 (𝑡)𝑚𝑞 (𝑡′)⟩ − ⟨𝑚𝑞 (𝑡)𝑚𝑐 (𝑡′)⟩ .
(3.22)

This establishes the relationships between the spin operator and the fields. The Hubbard-Stratonovich

fields essentially represent 𝑆𝑥/𝑁 , which could have been inferred from the Hubbard-Stratonovich

transformation in Eq. (3.13). It is straightforward to find the analogs of these relations at higher

orders by taking appropriate derivatives with respect to the source fields.

Source fields can also be introduced to calculate expectation values of 𝑆𝑦 and 𝑆𝑧, however, the

procedure is more complicated as the relationship between 𝑚𝑐/𝑞 and these expectation values is not

straightforward. These calculations will be expanded upon in Ch. 6.
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3.3.2 Saddle-Point Solution

The overall factor of 𝑁 in Eq. (3.16) signifies that the saddle-point solution to the path integral

is valid when 𝑁 is large [13]. While the saddle-point solution is essentially equivalent to the

mean-field solution and neglects fluctuations, it provides a good starting point for further analysis.

More importantly, we will expand the action around the saddle-point solution. First, we take the

functional derivative of the action with respect to both 𝑚𝑐 and 𝑚𝑞 and set them to zero:

𝛿𝑆

𝛿𝑚𝑐 (𝑡)

����𝑚𝑐=𝑚
𝑚𝑞=0

= 0 ,
𝛿𝑆

𝛿𝑚𝑞 (𝑡)

����𝑚𝑐=𝑚
𝑚𝑞=0

= 0 . (3.23)

The solutions for the fields ⟨𝑚𝑐⟩ = 𝑚, ⟨𝑚𝑞⟩ = 0 that satisfy these conditions are the saddle-point

solutions. Because we are interested in the steady state, we are guaranteed that 𝑚 is a constant, and

⟨𝑚𝑞⟩ is always zero by definition of the Keldysh path integral as discussed in Sec. 2.3. Furthermore,

because every term in the action contains at least one quantum field, the first condition in Eq. (3.23)

is trivially zero. The second condition will give us the saddle-point solution 𝑚,

𝛿𝑆

𝛿𝑚𝑞 (𝑡)

����𝑚𝑐=𝑚
𝑚𝑞=0

= −2𝐽𝑁𝑚 − 𝑖𝑁
Tr

(
𝑒(𝑡 𝑓−𝑡)T0T𝑞𝑒

(𝑡−𝑡𝑖)T0
)

Tr
(
𝑒(𝑡 𝑓−𝑡𝑖)T0

)
= −2𝐽𝑁𝑚 − 𝑖𝑁 ⟨⟨𝐼 | T𝑞 |𝜌ss⟩⟩ = 0 .

(3.24)

There are quite a few important points to take into account when going from the first to the second

line of Eq. (3.24). First, we take the derivative of the time-ordered exponential which inserts the

matrix 𝜕T/𝜕𝑚𝑞 (𝑡) at time 𝑡 in the product of the resultant time-ordered exponentials. For clarity,

we define the three matrices

T0 = T(𝑚𝑐 = 𝑚, 𝑚𝑞 = 0) (3.25)

T𝑐 =
𝜕T

𝜕𝑚𝑐 (𝑡)

���𝑚𝑐=𝑚
𝑚𝑞=0

= 𝑖2
√

2𝐽 diag{0, 1,−1, 0} , (3.26)

T𝑞 =
𝜕T

𝜕𝑚𝑞 (𝑡)

���𝑚𝑐=𝑚
𝑚𝑞=0

= 𝑖2
√

2𝐽 diag{1, 0, 0,−1} . (3.27)

Next, we take advantage of the fact that T0 is non-hermitian and has a left and right eigenvector with

eigenvalue zero (i.e. the steady states). We know that it must have such an eigenvalue because T0 is
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equivalent to a fully-fledged single-particle Liouvillian. The left eigenvector with eigenvalue zero

is simply the vectorized identity matrix ⟨⟨𝐼 | = (1, 0, 0, 1)𝑇 . The right eigenvector is the mean-field

steady state

|𝜌ss⟩⟩ =
(

1
2
+ 8

√
2Δ𝐽𝑚

Γ2 + 16Δ2 + 16𝐽2𝑚2 ,−
Γ2 + 16Δ2 + 4𝑖

√
2Γ𝐽𝑚

2(Γ2 + 16Δ2 + 16𝐽2𝑚2)
,− Γ2 + 16Δ2 − 4𝑖

√
2Γ𝐽𝑚

2
(
Γ2 + 16Δ2 + 16𝐽2𝑚2) , 1

2
− 8

√
2Δ𝐽𝑚

Γ2 + 16Δ2 + 16𝐽2𝑚2

)𝑇
.

(3.28)

Using the property of the steady state, lim𝑡→∞ 𝑒𝑡T0 |𝑖⟩ = |𝜌ss⟩⟩ for the right eigenvector in addition

to lim𝑡→∞⟨𝑖 |𝑒𝑡T0 = ⟨⟨𝐼 | for some vector |𝑖⟩, we can simplify the trace in the numerator of Eq. (3.24).

The trace in the denominator simplifies to unity because the left and right eigenvectors of T0 are

bi-orthonormal, i.e. ⟨⟨𝐼 |𝜌ss⟩⟩ = 1. The second line of Eq. (3.24) may be solved for 𝑚, where we

find three solutions:

𝑚 =


0 Normal Phase

±
√
−Γ2 − 16Δ2 + 32Δ𝐽/4𝐽 Ordered Phase

. (3.29)

We see that this solution agrees with Eq. (3.7) up to a factor of
√

2 which comes from the Keldysh

rotation. Equipped with the saddle-point solutions, we are now able to expand the action.

3.3.3 Quadratic Expansion

Equipped with the saddle-point solutions, we can now investigate Gaussian fluctuations; i.e. the

quadratic terms in the expansion of the action around the saddle-point solution. Expanding Eq.

(3.16) to second-order around the saddle-point solutions in the normal phase (𝑚 = 0), we have

𝑆(2) =
1
2

∫
𝑡,𝑡′

(
𝑚𝑐, 𝑚𝑞

)
𝑡

(
0 𝑃𝐴

𝑃𝑅 𝑃𝐾

)
𝑡−𝑡′

(
𝑚𝑐
𝑚𝑞

)
𝑡′
, (3.30)

where a factor of
√
𝑁 has been absorbed into the fields for convenience. Note that the kernel is a

function of the time difference only, reflecting the fact that time translation symmetry is restored

in the NESS. The kernel also exhibits the Keldysh structure [4, 13, 14] as discussed in Sec. 2.3.1,

therefore the elements 𝑃𝑅/𝐴 can be interpreted as the retarded/advanced inverse Green’s functions
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and 𝑃𝐾 as the Keldysh component. These terms are given by

𝑃𝑅 (𝑡) = 𝑃𝐴 (−𝑡) = 𝛿S
𝛿𝑚𝑞 (𝑡)𝛿𝑚𝑐 (0)

����𝑚𝑐=0
𝑚𝑞=0

= −2𝐽𝛿(𝑡) − 𝑖Θ(𝑡) ⟨⟨𝐼 | T𝑞𝑒𝑡 T0T𝑐 |𝜌ss⟩⟩

= −2𝐽𝛿(𝑡) + Θ(𝑡)8𝐽2𝑒−
Γ
2 𝑡 sin (2Δ𝑡) , (3.31a)

and

𝑃𝐾 (𝑡) = 𝛿S
𝛿𝑚𝑞 (𝑡)𝛿𝑚𝑞 (0)

����𝑚𝑐=0
𝑚𝑞=0

= −𝑖 ⟨⟨𝐼 | T𝑞𝑒 |𝑡 | T0T𝑞 |𝜌ss⟩⟩

= 𝑖8𝐽2𝑒−
Γ
2 |𝑡 | cos (2Δ𝑡) . (3.31b)

The above elements take a relatively simple form, with the dissipation leading to the exponential

decay and the transverse field to oscillations. In addition, a delta function emerges in (3.31a) as a

remnant of the Hubbard-Stratonovich transformation and ensures the proper normalization of the

partition function. This delta function dissapears when calculating correlations of the original spin

operators, as seen in Eq. (3.22) where it is subtracted out. The step function in the second and third

line comes from ⟨⟨𝐼 | T𝑐𝑒𝑡T0T𝑞 |𝜌𝑠𝑠⟩⟩ = 0, and enforces the proper time ordering of the matrices.

Because we absorbed a factor of
√
𝑁 into the fields, higher-order terms in the expansion are at least

of the order O(1/𝑁), rendering Eq. (3.30) exact in the thermodynamic limit.

It will be convenient to recast these expressions in frequency space. With the Fourier transform

𝑚𝑐/𝑞 (𝑡) =
∫

𝑑𝜔
2𝜋𝑚𝑐/𝑞 (𝜔)𝑒

−𝑖𝜔𝑡 , the kernel elements are

𝑃𝑅 (𝜔) = −2𝐽 − 4𝑖𝐽2
(

1
−Γ/2 − 𝑖(2Δ − 𝜔) −

1
−Γ/2 + 𝑖(2Δ + 𝜔)

)
, (3.32a)

and

𝑃𝐾 (𝜔) = 4𝑖𝐽2Γ

(
1

Γ2/4 + (𝜔 − 2Δ)2
+ 1
Γ2/4 + (𝜔 + 2Δ)2

)
. (3.32b)

These analytic expressions follow from the simple form of the steady-state vector in the normal

phase, |𝜌𝑠𝑠⟩⟩ = (1,−1,−1, 1)𝑇/2.

An advantage of our quantum-to-classical mapping and resultant exact action, is that we are

not limited to the normal phase, we can instead explore the entire phase diagram. In the ordered
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phase, evaluating expressions like Eq. (3.31) becomes difficult as they require the nontrivial form

of |𝜌𝑠𝑠⟩⟩ shown in Eq. (3.28), as well as the fact that the T matrix is now evaluated at finite 𝑚. We

nevertheless derive formal expressions for the above functions as follows. We first decompose the

exponential matrix 𝑒𝑡T𝑚 , where T𝑚 = T
(
𝑚𝑐 (𝑡) = 𝑚, 𝑚𝑞 (𝑡) = 0

)
, into its spectral form

𝑒𝑡T𝑚 =

3∑︁
𝑖=0

𝑒𝜆𝑖𝑡 |𝜆𝑅𝑖 ⟩⟩ ⟨⟨𝜆𝐿𝑖 |

= |𝜌𝑠𝑠⟩⟩ ⟨⟨𝐼 | +
3∑︁
𝑖=1

𝑒𝜆𝑖𝑡 |𝜆𝑅𝑖 ⟩⟩ ⟨⟨𝜆𝐿𝑖 | .
(3.33)

The vectors ⟨⟨𝜆𝐿
𝑖
| and |𝜆𝑅

𝑖
⟩⟩ denote the 𝑖’th left and right eigenvectors of T𝑚 with eigenvalue 𝜆𝑖,

respectively, and are normalized as ⟨⟨𝜆𝐿
𝑖
|𝜆𝑅
𝑗
⟩⟩ = 𝛿𝑖 𝑗 ; the bi-orthonormal structure is due to T𝑚

being non-Hermitian. The expressions for the inverse response and Keldysh components in the

frequency domain are then

𝑃𝑅 (𝜔) = −2𝐽 − 𝑖
3∑︁
𝑖=1

𝐶𝑖

∫
𝑡

𝑒𝑖𝜔𝑡Θ(𝑡)𝑒𝜆𝑖𝑡 = −2𝐽 + 𝑖
3∑︁
𝑖=1

𝐶𝑖
1

𝜆𝑖 + 𝑖𝜔
, (3.34a)

and

𝑃𝐾 (𝜔) = −𝑖
3∑︁
𝑖=1

𝐶̃𝑖

∫
𝑡

𝑒𝑖𝜔𝑡𝑒𝜆𝑖 |𝑡 | = 2𝑖
3∑︁
𝑖=1

𝐶̃𝑖
𝜆𝑖

𝜆2
𝑖
+ 𝜔2

. (3.34b)

The accompanying coefficients are given by

𝐶𝑖 = ⟨⟨𝐼 | T𝑞 |𝜆𝑅𝑖 ⟩⟩ ⟨⟨𝜆𝐿𝑖 | T𝑐 |𝜌𝑠𝑠⟩⟩ , (3.35a)

𝐶̃𝑖 = ⟨⟨𝐼 | T𝑞 |𝜆𝑅𝑖 ⟩⟩ ⟨⟨𝜆𝐿𝑖 | T𝑞 |𝜌𝑠𝑠⟩⟩ . (3.35b)

𝑃𝑅 (𝜔) and 𝑃𝐾 (𝜔) can be obtained by numerically solving for the eigenvalues and the eigenvectors

of T𝑚.

3.3.4 Diagrammatics

Despite the quadratic action being exact in the thermodynamic limit, we need to include quartic

terms when considering finite-size effects. It is also at times necessary to calculate terms beyond
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Figure 3.3 Left: Diagrammatic representation of the action expansion. (a) The solid and dashed
legs in (a) represent classical (𝑚𝑐) and quantum (𝑚𝑞) fields, respectively. (b) The wavy line
represents the time evolution where time ordering is understood from right to left. (c) Connected
legs correspond to Green’s functions with 𝐺𝑅 the response function and 𝐺𝐾 the Keldysh
correlation function. Right: A representative (classical) vertex. The interaction coefficient
𝑢𝑞𝑐𝑐𝑐 ( 𝒕) is time ordered such that 𝑡1 ≥ 𝑡2 ≥ 𝑡3 ≥ 𝑡4, and is given explicitly by Eq. (3.38).

quartic when performing perturbative expansions about the critical point in the ordered phase. To

go beyond the quadratic action, we introduce a diagrammatic representation of the interaction terms

in the expansion of the action. These terms can be found by first expanding the argument of the

logarithm in Eq. (3.16) in powers of the fields as

𝑆 = −2𝐽
∫
𝑡

𝑚𝑐 (𝑡)𝑚𝑞 (𝑡) − 𝑖𝑁 ln

(
1 +

∑︁
𝑖,𝜶

D𝑖,𝜶

)
, (3.36)

where, as stated before, a factor of
√
𝑁 has been absorbed into 𝑚𝑐/𝑞, and D𝑖,𝜶 is the 𝑖’th-order

connected diagram:

D𝑖,𝜶 =
1
𝑁

𝑖
2

∫
𝒕
𝑢𝜶 ( 𝒕)𝑚𝛼1 (𝑡1) · · ·𝑚𝛼𝑖−1 (𝑡𝑖−1)𝑚𝛼𝑖 (𝑡𝑖). (3.37)

Here, we have used 𝒕 as a shorthand for {𝑡1, · · · , 𝑡𝑖−1, 𝑡𝑖} and𝜶 = (𝛼1, · · · , 𝛼𝑖) with 𝛼𝑘 ∈ {𝑐, 𝑞}. The

sum over 𝜶 in Eq. (3.36) is only over distinct orderings of 𝑐/𝑞 to avoid overcounting. The rules for

constructing these diagrams can be found in Fig. 3.3. Connected diagrams are time ordered from

right to left, therefore the interaction coefficient 𝑢𝜶 is time ordered too with 𝑡1 ≥ · · · ≥ 𝑡𝑖−1 ≥ 𝑡𝑖.

These coefficients are given by

𝑢𝜶 = Tr
(
T𝛼1U(𝑡1, 𝑡2)T𝛼2 · · ·U(𝑡𝑖−1, 𝑡𝑖)T𝛼𝑖

)
, (3.38)

where we have defined the “trace” operation Tr(•) = ⟨⟨𝐼 | • |𝜌𝑠𝑠⟩⟩, have utilized the matrices T𝑐/𝑞

defined earlier, and have introduced the propagators U(𝑡 − 𝑡′) = 𝑒(𝑡−𝑡′)T0 with T0 = T(𝑚 = 0). The

latter propagators are depicted as wavy lines in our diagrammatic notation; see Fig. 3.3(b). This
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time-ordered representation of the interaction coefficients (and diagrams) is best understood in a

scattering picture. The superket |𝜌𝑠𝑠⟩⟩ describes the nonequilibrium steady state of a pair of spins

on the upper and lower branch of the vectorized space, and is taken as the “in” state. This state

propagates freely (via U) while scattering off the mean-field (𝑚𝑐/𝑞) intermittently. In other words,

the interaction coefficients follow from the time-dependent perturbation theory in the expansion of

the evolution operator T 𝑒
∫
𝑡
T(𝑡) , with T(𝑡) = T0 + 𝑚𝑐 (𝑡)T𝑐 + 𝑚𝑞 (𝑡)T𝑞, in powers of the scattering

potentials 𝑚𝑐/𝑞T𝑐/𝑞.

The scattering interpretation becomes manifest in Fourier space. Let’s first consider the free

propagator in Fourier space:

U(𝜔) =
∫
𝑡>0

𝑒−𝑖𝜔𝑡𝑒𝑡T0 = − 1
T0 − 𝑖𝜔

. (3.39)

Here, we have used the fact that the matrix T0 is diagonalizable, and that the real part of its

eigenvalues 𝜆 is non-positive. For an eigenvalue with a zero real part, we substitute𝜔→ 𝜔− 𝑖𝜖 due

to causality with the understanding that the limit 𝜖 → 0 is taken at the end of the calculation. The

above expression is reminiscent of the Lippmann-Schwinger equation with T0 taking the role of the

Hamiltonian, though we must recall that T0 is non-Hermitian and acts on two copies of a spin. It is

often convenient to compute the interaction coefficient in the Fourier space. Some algebra yields

𝑢(𝝎)𝜶 = Tr
(
T𝛼1U(𝜔̃1)T𝛼2 · · ·U(𝜔̃𝑖)T𝛼𝑖

)
, (3.40)

where 𝜔 𝑗 = 𝜔1 + ... + 𝜔 𝑗 − 𝜔 𝑗+1 − ... − 𝜔𝑖.

So far, we have considered the connected diagrams that arise inside the logarithm in Eq. (3.36).

However, the full diagrammatic expansion of the action requires an expansion of the logarithm

too. Expanding Eq. (3.36) in powers of the connected diagrams, we obtain all interaction vertices

comprising connected as well as disconnected diagrams. Formally, a multi-legged diagram with

𝑀 =
∑𝑝

𝑗=1 𝑙 𝑗 disconnected parts is given by

𝑖
(𝑀 − 1)!(−1)𝑀

𝑁−1 ∏𝑝

𝑗
𝑙 𝑗 !

(D𝑖1,𝜶1)𝑙1 (D𝑖2,𝜶2)𝑙2 · · · (D𝑖𝑝 ,𝜶𝑝
)𝑙𝑝 (3.41)
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where each D𝑖,𝜶, integrated over the corresponding time coordinates, represents one of the 𝑝

unique connected diagrams with multiplicity 𝑙 𝑗 . The combinatorial factor 1
𝑀

𝑀!∏𝑝

𝑗
𝑙 𝑗 !

=
(𝑀−1)∏𝑝

𝑗
𝑙 𝑗 !

is

included, where the factor of 1
𝑀

is due to the expansion of the logarithm, and 𝑀!∏𝑝

𝑗
𝑙 𝑗 !

accounts for

each set of identical disconnected diagrams with multiplicity 𝑙 𝑗 . As an example, Fig. 3.3 depicts

the diagrammatic representation of the “classical vertex” −𝑖
𝑁

∫
𝒕
𝑢𝑞𝑐𝑐𝑐 ( 𝒕)𝑚𝑞 (𝑡1)𝑚𝑐 (𝑡2)𝑚𝑐 (𝑡3)𝑚𝑐 (𝑡4)

with the time integral constrained as 𝑡1 ≥ 𝑡2 ≥ 𝑡3 ≥ 𝑡4. We remark that the disconnected

diagrams discussed here emerge at the level of the action, before expanding the exponential factor

in the partition function. Expanding the latter exponential factor will further generate disconnected

diagrams whose coefficients should be properly determined from the combinatorial factors reported

above. In this sense, we must keep track of the origin of various disconnected diagrams (whether

they appear in the action itself or result from the expansion of the exponential factor). This

pattern is in contrast with the standard diagrammatic representation and is a unique feature of our

nonequilibrium setting.

The diagrams discussed here have certain causal properties. First, each diagram must come

with at least one quantum leg (dashed line), reflecting the property of the Keldysh action that

𝑆(𝑚𝑐, 𝑚𝑞 = 0) = 0. Furthermore, the last leg of all connected diagrams is always a quantum field

which enforces causality and ensures that the partition function retains its normalization (𝑍 = 1).

Curiously, only certain orderings of classical and quantum legs are allowed. The diagrammatic

notation developed here will prove very useful when calculating quantities such as self-energy

corrections as well as expanding the action in the ordered phase. The former can be determined

systematically by contracting quantum and classical fields in these diagrams.

3.4 Mapping ODM to DDIM

Here, we show that the model in Eq. (3.5) exactly follows from the open Dicke model given by Eq.

(3.2) in the limit of large cavity detuning. We emphasize that this procedure is exact and does not

rely on any assumptions about the cavity mode. Beginning with Eq. (3.2), the full quantum master
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equation takes the form

𝑑𝜌

𝑑𝑡
= − 𝑖[𝐻Dicke, 𝜌] + 𝜅

(
𝑎𝜌𝑎† − 1

2
{𝑎†𝑎, 𝜌}

)
+ Γ

∑︁
𝑖

(
𝜎−𝑖 𝜌𝜎

+
𝑖 −

1
2
{𝜎+𝑖 𝜎−𝑖 , 𝜌}

)
.

(3.42)

Following the same steps as outlined in Sec. 2.4, we obtain an action that consists of cavity, atomic

and interaction terms:

𝑆𝐷 = 𝑆cav + 𝑆int + 𝑆spin . (3.43)

The cavity term in the action is given by

𝑆cav =

∫
𝜔

(
𝑎𝑐
𝑎𝑞

)† ( 0 𝜔 − 𝜔0 − 𝑖 𝜅2
𝜔 − 𝜔0 + 𝑖 𝜅2 𝑖𝜅

) (
𝑎𝑐
𝑎𝑞

)
. (3.44)

Defining 𝑎 = (𝑥 − 𝑖𝑝)/2, we can integrate out the imaginary component of the cavity field, 𝑝,

exactly as 𝑆int does not depend on 𝑝. Tracing out the spins (see Sec. ??), we then find an exact

expression for the action

𝑆𝐷 =

∫
𝜔

x𝑇 (−𝜔)D(𝜔)x(𝜔) − 𝑖𝑁 ln Tr
(
T 𝑒

∫
𝑡
T𝐷 (𝑥𝑐/𝑞 (𝑡)

)
, (3.45)

where x(𝜔) = (𝑥𝑐 (𝜔), 𝑥𝑞 (𝜔))𝑇 and the kernel D(𝜔) is given by

D(𝜔) ≡
(

0 𝐷𝐴 (𝜔)
𝐷𝑅 (𝜔) 𝐷𝐾 (𝜔)

)
=

©­«
0 1

4

(
− (𝜅+2𝑖𝜔)

2

4𝜔0
− 𝜔0

)
1
4

(
− (𝜅−2𝑖𝜔)2

4𝜔0
− 𝜔0

)
𝑖𝜅(𝜅2+4(𝜔2+𝜔2

0))
16𝜔2

0

ª®¬ .
(3.46)

The matrix T𝐷 is rather similar to that in Eq. (2.54):

T𝐷 (𝑥𝑐 (𝑡), 𝑥𝑞 (𝑡)) =

©­­­­­­­­­­­­«

−Γ
4 − 𝑖

2
√

2𝑔√
𝑁
𝑥𝑞 (𝑡) 𝑖Δ −𝑖Δ Γ

4

𝑖Δ − Γ
2 −3Γ

4 − 𝑖
2
√

2𝑔√
𝑁
𝑥𝑐 (𝑡) −Γ

4 −𝑖Δ − Γ
2

−𝑖Δ − Γ
2 −Γ

4 −3Γ
4 + 𝑖

2
√

2𝑔√
𝑁
𝑥𝑐 (𝑡) 𝑖Δ − Γ

2

Γ
4 −𝑖Δ 𝑖Δ −Γ

4 + 𝑖
2
√

2𝑔√
𝑁
𝑥𝑞 (𝑡)

ª®®®®®®®®®®®®¬
.

(3.47)
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We then make the transformation 𝑚𝑐 ≡ 𝐷𝑅
0 𝑥𝑐/
√
𝑁𝑔 and 𝑚𝑞 ≡ 𝐷𝑅

0 𝑥𝑞/
√
𝑁𝑔 with D0 ≡ D(𝜔 = 0),

and further define 𝐽 ≡ −𝑔2/𝐷𝑅
0 = 16𝑔2𝜔0/(𝜅2 + 4𝜔2

0) and Γ𝑥 ≡ 𝐽𝜅/𝜔0. The action is then cast as

𝑆𝐷 =

∫
𝜔

m𝑇 (−𝜔)P(𝜔)m(𝜔) − 𝑖𝑁 ln Tr
(
T 𝑒

∫
𝑡
T(𝑚𝑐/𝑞 (𝑡))

)
, (3.48)

where m(𝜔) = (𝑚𝑐 (𝜔), 𝑚𝑞 (𝜔))𝑇 , the kernel P is given by

P(𝜔) = 𝑁
©­­­«

0 −𝐽 (1 + 4𝑖𝜅𝜔−4𝜔2

𝜅2+𝜔2
0
)

−𝐽 (1 − 4𝑖𝜅𝜔+4𝜔2

𝜅2+𝜔2
0
) 𝑖Γ𝑥 (1 + 4𝜔2

𝜅2+4𝜔2
0
)

ª®®®¬ , (3.49)

and the matrix T(𝑚𝑐 (𝑡), 𝑚𝑞 (𝑡)) is identical to that in Eq. (3.17).

Now we consider the limit of large 𝜔0 and 𝜅, in which case we can ignore those terms in

Eq. (3.49) that are suppressed by a factor of 1/(𝜅2 +𝜔2
0). This eliminates the frequency-dependent

terms and yields the kernel

P(𝜔) ≈ 𝑁
©­­­«

0 −𝐽

−𝐽 𝑖Γ𝑥

ª®®®¬ . (3.50)

Using the quantum-to-classical mapping, one can show that the diagonal term (∼ 𝑖Γ𝑥) can be

identified with dephasing in the form of the Lindblad operator 𝐿𝑥 =
√︁
Γ𝑥/𝑁𝑆𝑥 . Indeed, this agrees

with the large-detuning limit discussed in Ref. [27]. Our model is different, however, due to the

atomic spontaneous emission, which allows for a nontrivial nonequilibrium steady state. Finally,

to obtain the DDIM, we consider the detuning 𝜔0 to be the largest frequency frequency scale,

even compared to 𝜅. In this limit, we can neglect the dephasing term, since Γ𝑥 = 𝐽𝜅/𝜔0 ≪ 𝐽,

and recover the driven-dissipative Ising model introduced in Eq. (3.16). The advantage of this

process compared to the usual adiabatic elimination procedure, is that we have not discarded any

information about the cavity. We are simply showing that the action of the open Dicke model in

the large detuning limit is exactly identical to the DDIM action.
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CHAPTER 4

NUMERICAL METHODS

In the previous chapter, we developed a field theoretical description of the DDIM that will prove

useful for analytical calculations. At the same time, it is important to benchmark analytical results

against numerical simulations. This is done for a variety of reasons: the analytics often involves

approximations and we want to make sure these approximations are valid and produce correct

results which can be becnhmarked against numerics, or perhaps the analytics describe an effective

theory of a microscopic system and we need numerics to simulate the microscopics for comparison.

In our case, the analytics are performed in the thermodynamic limit, but we are also interested in

finite-size scaling effects. For this, we utilize numerical simulation to obtain explicit results for

finite system sizes and compare these with our scaling predictions and results in the thermodynamic

limit.

In this chapter, we will discuss the two main numerical techniques we used to calculate observ-

able quantities such as dynamical correlations and entanglement. The first is the standard exact

diagonalization which makes no approximations beyond machine error, however, we take advantage

of the permutation symmetry of the DDIM which requires a special basis. The second technique

is the well established quantum trajectories [35], but with the added twist of using different jump

operators that incorporate the permutation symmetry. Although both numerical techniques used in

this work are prevalent in the literature, we must adapt them to our specific model and its symme-

tries. A reader mainly interested in analytical techniques and/or the physics and results, may skip

this chapter without issue.

4.1 Exact Diagonalization

The simplest approach to solving for eigenstates in any quantum system is to construct the matrix

governing the dynamics, e.g. a Hamiltonian or a vectorized Liouvillian, and decompose it into

its eigenvectors and eigenvalues using freely available linear algebra packages in any standard
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computational language. Equipped with the eigenvectors and eigenvalues, we know everything

about the system and can compute any quantity we wish. A fundamental issue is that exact

diagonalization must deal with the entire Hilbert space, which grows exponentially with the system

size. Typically, this would heavily limit the maximum possible system size that can be ran on

even high-performance computing clusters. In certain cases, we can take advantage of the system’s

symmetries to reduce the size of the relevant Hilbert space.

As discussed in Sec. 3.2, Eq. (3.5) has a permutation symmetry, which means that the

Liouvillian remains invariant under permutation of the site indices. More rigorously, we have

P−1
PL = L , (4.1)

where PP is the permutation operator that permutes the site indices according to the permutation

P ∈ 𝑆𝑁 , and 𝑆𝑁 is the permutation group (or symmetric group) [36]. This symmetry lends structure

to the form of the vectorized Liouvillian, breaking it into block-diagonal matrices where each block

corresponds to a different permutation symmetry sector. This is analogous to Hamiltonian systems

where symmetries of the Hamiltonian lead to separate sectors defined by the eigenvalues of the

symmetry operator.

We are only interested in the sector that contains the steady state, which we reasonably assume

(and later prove) belongs in the totally-symmetric sector, i.e. the sector where PP [𝜌] = 𝜌 for all

P and eigenstate 𝜌. An example of another sector is the completely anti-symmetric sector, where

PP [𝜌] = 𝜌 for even permutations and PP [𝜌] = −𝜌 for odd permutations. The totally symmetric

sector of the Liouvillian must have eigenstates that respect this symmetry, therefore, we introduce

a permutation symmetric basis

𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
=

1
N

∑︁
P

PP (𝜎𝑥1 ⊗ ... ⊗ 𝜎
𝑥
𝑁𝑥
⊗ 𝜎𝑦

𝑁𝑥+1 ⊗ ... ⊗ 𝜎
𝑦

𝑁𝑥+𝑁𝑦

⊗ 𝜎𝑧
𝑁𝑥+𝑁𝑦+1 ⊗ ... ⊗ 𝜎

𝑧
𝑁𝑥+𝑁𝑦+𝑁𝑧

⊗ 𝐼𝑁𝑥+𝑁𝑦+𝑁𝑧+1 ⊗ ... ⊗ 𝐼𝑁 ) ,
(4.2)

with the normalization factorN =
√︁
𝑁!𝑁𝑥!𝑁𝑦!𝑁𝑧!𝑁𝐼!. The sum is over all permutations P of the

indices, making the overall state clearly symmetric under any permutation. These basis elements are
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normalized as Tr(𝜌𝜇𝜌𝜈)/2𝑁 = 𝛿𝜇,𝜈 where 𝜇 = (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧), and the Liouvillian matrix elements

are given by

L𝜇,𝜈 =
1

2𝑁
Tr

(
𝜌𝜇L[𝜌𝜈]

)
. (4.3)

In this basis, the dimensionality of totally symmetric subspace grows polynomially with the system

size as (𝑁 + 1) (𝑁 + 2) (𝑁 + 3)/6 ∼ O(𝑁3) in contrast with the exponential growth in a generic

many-body system. This scaling can also be contrasted with the O(𝑁4) growth of the angular-

momentum basis with basis elements ⟨𝐽, 𝑚 |𝐽′.𝑚′⟩; each of the quantum numbers is proportional

to 𝑁 .

Because the Liouvillian is permutation symmetric, action of L on this basis will keep us in the

fully symmetric subspace. To efficiently construct the matrix L𝜇𝜈 from the permutation symmetric

basis given by Eq. (4.2), we should identify how the basis itself is transformed by L defined in Eq.

(3.5). The action of the Liouvillian on a state can be determined analytically by inspecting how the

total-spin operators act on one of our basis elements:

𝑆𝑥𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
=
√︁
𝑁𝑥 (𝑁𝐼 + 1) 𝜌𝑁𝑥−1,𝑁𝑦 ,𝑁𝑧

+ 𝑖
√︃
𝑁𝑦 (𝑁𝑧 + 1) 𝜌𝑁𝑥 ,𝑁𝑦−1,𝑁𝑧+1

− 𝑖
√︃
(𝑁𝑦 + 1)𝑁𝑧 𝜌𝑁𝑥 ,𝑁𝑦+1,𝑁𝑧−1 +

√︁
(𝑁𝑥 + 1)𝑁𝐼 𝜌𝑁𝑥+1,𝑁𝑦 ,𝑁𝑧

,

(4.4)

𝑆𝑦𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
=

√︃
𝑁𝑦 (𝑁𝐼 + 1) 𝜌𝑁𝑥 ,𝑁𝑦−1,𝑁𝑧

+ 𝑖
√︁
𝑁𝑧 (𝑁𝑥 + 1) 𝜌𝑁𝑥+1,𝑁𝑦 ,𝑁𝑧−1

− 𝑖
√︁
(𝑁𝑧 + 1)𝑁𝑥 𝜌𝑁𝑥−1,𝑁𝑦 ,𝑁𝑧+1 +

√︃
(𝑁𝑦 + 1)𝑁𝐼 𝜌𝑁𝑥 ,𝑁𝑦+1,𝑁𝑧

,

(4.5)

𝑆𝑧𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
=
√︁
𝑁𝑧 (𝑁𝐼 + 1) 𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧−1 + 𝑖

√︃
𝑁𝑥 (𝑁𝑦 + 1) 𝜌𝑁𝑥−1,𝑁𝑦+1,𝑁𝑧

− 𝑖
√︃
(𝑁𝑥 + 1)𝑁𝑦 𝜌𝑁𝑥+1,𝑁𝑦−1,𝑁𝑧

+
√︁
(𝑁𝑧 + 1)𝑁𝐼 𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧+1 ,

(4.6)

where 𝑁𝐼 = 𝑁 − 𝑁𝑥 − 𝑁𝑦 − 𝑁𝑧, and the action from the right can be found by taking the adjoint of

the RHS. The only other non-trivial term is the dissipative term
∑
𝑖 𝜎
−
𝑖
𝜌𝜎+

𝑖
, whose action on the

basis elements is given by∑︁
𝑖

𝜎−𝑖 𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
𝜎+𝑖 =

1
2
[
(𝑁𝐼 − 𝑁𝑧)𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧

+
√︁
𝑁𝑧 (𝑁𝐼 + 1)𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧−1 −

√︁
𝑁𝐼 (𝑁𝑧 + 1)𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧+1

]
.

(4.7)
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Using the above relations, we find the action of the Liouvillian on our basis as

L[𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧
] =4𝐽

𝑁

(√︃
(𝑁𝑥 + 1) (𝑁𝑦 + 1)𝑁𝑧𝑁𝐼 𝜌𝑁𝑥+1,𝑁𝑦+1,𝑁𝑧−1 +

√︃
𝑁𝑥 (𝑁𝑦 + 1)𝑁𝑧 (𝑁𝐼 + 1)𝜌𝑁𝑥−1,𝑁𝑦+1,𝑁𝑧−1

−
√︃
𝑁𝑥𝑁𝑦 (𝑁𝑧 + 1) (𝑁𝐼 + 1) 𝜌𝑁𝑥−1,𝑁𝑦−1,𝑁𝑧+1 −

√︃
(𝑁𝑥 + 1)𝑁𝑦 (𝑁𝑧 + 1)𝑁𝐼 𝜌𝑁𝑥+1,𝑁𝑦−1,𝑁𝑧+1

)
+ 2Δ

(√︃
𝑁𝑥 (𝑁𝑦 + 1) 𝜌𝑁𝑥−1,𝑁𝑦+1,𝑁𝑧

−
√︃
𝑁𝑦 (𝑁𝑥 + 1) 𝜌𝑁𝑥+1,𝑁𝑦−1,𝑁𝑧

)
+ Γ

2

(
(𝑁𝐼 − 𝑁𝑧 − 𝑁)𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧

− 2
√︁
(𝑁𝑧 + 1)𝑁𝐼𝜌𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧+1

)
.

(4.8)

Using this equation, it is possible to construct the Liouvillian matrix as defined in Eq. (4.3). In the

rest of this section, we take L to mean the matrix constructed in the numerics using Eq. (4.3), not

the superoperator form.

Equipped with Eq. (4.2), we can efficiently construct the Liouvillian matrix. However, for large

system sizes it is still prohibitive to store the entire matrix in memory, so it must be stored as a

sparse matrix. Furthermore, finding the full spectrum of a sparse matrix is not efficient. We are

only interested in the extremal state of the spectrum, namely the steady state with eigenvalue zero.

In this case we can more efficiently find the steady state by employing the so-called shifted-inverse

power method [37]. This technique consists of performing the iteration

|𝜌𝑘+1⟩⟩ =
(L′)−1 |𝜌𝑘⟩⟩����(L′)−1 |𝜌𝑘⟩⟩

���� (4.9)

where 𝑘 is the iteration step, L′ = L− 𝜖 𝐼, and |𝜌⟩⟩ = ∑
𝜇 𝑐𝜇 |𝜌𝜇⟩⟩ , 𝜇 = (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) are the states

represented in our permutation symmetric basis. The quantity 𝜖 is chosen such that the iteration

converges on the eigenstate with eigenvalue closest to 𝜖 , i.e. the state |𝜆 𝑗 ⟩⟩ where (𝜆 𝑗 − 𝜖)−1 is the

largest. While this procedure is iterative, it typically converges after only one iteration as we know

that the desired state has eigenvalue zero, so we choose 𝜖 ∼ 10−14.

The iterative procedure showed in Eq. (4.9) involves the inversion of the Liouvillian matrix L.

Inverting a matrix is resource intensive, especially if needed at every step of the iteration, however,

we can instead equivalently solve the linear equation L′ |𝑣⟩⟩ = |𝜌𝑘⟩⟩ for some vector |𝑣⟩⟩. There

are a myriad of linear solvers in every popular coding language. For systems sizes 𝑁 < 90, it is
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efficient to solve this linear equation by direct LU decomposition [38], but for larger system sizes

more approximate methods are required (such as BICGSTAB [39]).

To characterize the dynamics, we typically investigate correlation and response functions of

the collective spin operators 𝑆𝑥/𝑦/𝑧. As an example, we will consider observables of 𝑆𝑥 only.

We define the correlation function 𝐶 (𝑡) = ⟨{𝑆𝑥 (𝑡), 𝑆𝑥 (0)}⟩/𝑁 and response function 𝜒(𝑡) =

−𝑖⟨[𝑆𝑥 (𝑡), 𝑆𝑥 (0)]⟩/𝑁 . The two-time expectation values can be calculated as [5]

⟨{𝑆𝑥 (𝑡), 𝑆𝑥 (0)}⟩ = Tr
(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠] + 𝑆𝑥𝑒𝑡L [𝜌𝑠𝑠𝑆𝑥]
)
= 2ReTr

(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠]
)
, (4.10)

1
𝑖
⟨[𝑆𝑥 (𝑡)𝑆𝑥 (0)]⟩ =

1
𝑖
Tr

(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠] − 𝑆𝑥𝑒𝑡L [𝜌𝑠𝑠𝑆𝑥]
)
= 2ImTr

(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠]
)
, (4.11)

with 𝜌𝑠𝑠 being the steady state density matrix. We can instead represent the above equations in a

vectorized form using our permutation symmetric basis:

𝐶 (𝑡) = 2
𝑁

ReTr
(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠]
)
=

2
𝑁

Re
⟨⟨𝑆𝑥 | 𝑒𝑡L |𝑆𝑥𝜌𝑠𝑠⟩⟩
⟨⟨𝐼 |𝜌𝑠𝑠⟩⟩

, (4.12)

𝜒(𝑡) = 2
𝑁

ImTr
(
𝑆𝑥𝑒

𝑡L [𝑆𝑥𝜌𝑠𝑠]
)
=

2
𝑁

Im
⟨⟨𝑆𝑥 | 𝑒𝑡L |𝑆𝑥𝜌𝑠𝑠⟩⟩
⟨⟨𝐼 |𝜌𝑠𝑠⟩⟩

, (4.13)

where we have defined the vectorized state

|𝜌(𝑡)⟩⟩ =
∑︁
𝜇

𝑐𝜇 (𝑡) |𝜌𝜇⟩⟩ . (4.14)

The denominator in Eq. (4.12) is due to the normalization of the steady state (this is equivalent to

dividing the state by 𝑐0,0,0). In the case of static correlations, one can see that the auto-correlation

function takes the simple form

𝐶 (0) = 2
𝑁𝑐0,0,0

(√︁
2𝑁 (𝑁 − 1)𝑐2,0,0 + 𝑁𝑐0,0,0

)
. (4.15)

Using these techniques, we are able to numerically investigate dynamical correlations with system

sizes up to 𝑁 ∼ 200. However, this permutation symmetric basis does not provide the density matrix

elements, only the vector of coefficients 𝑐𝜇. This means we do not have access to entanglement

quantities that require eigenvalues of the density matrix. We will introduce another numerical

technique in the next section to remedy this.
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4.2 Quantum Trajectories for a Permutation Symmetric Liouvillian

We wish to calculate various entanglement measures that each require explicit access to the density

matrix and its eigenvalues. To do this, we utilize the numerical technique known as quantum

trajectories [35, 40]. This technique simulates the dynamics of open systems through stochastic

evolution of the wavefunction. To do this, it utilizes an effective non-hermitian Hamiltonian in

addition to stochastic quantum jumps taking the place of the Lindblad operators from the Lindblad

equation. Formally, given a Liouvillian of the form Eq. (2.16) with Lindblad operators 𝐿𝛼, we can

write an equivalent dynamics as follows: we evolve the wavefunction according to the Schrödinger

equation

𝑖𝜕𝑡 |𝜓⟩ = 𝐻eff |𝜓⟩ , (4.16)

where the effective Hamiltonian is given by

𝐻eff = 𝐻 − 𝑖
2

∑︁
𝛼

𝐿†𝛼𝐿𝛼 . (4.17)

We discretize this differential equation and have 𝜕𝑡 |𝜓(𝑡)⟩ = ( |𝜓(𝑡 + 𝛿𝑡)⟩ − |𝜓(𝑡)⟩)/𝛿𝑡, where 𝛿𝑡

is chosen to be smaller than all other timescales in the system. A quantum jump occurs at each

timestep with probability

𝑝 = 𝛿𝑡
∑︁
𝛼

⟨𝜓(𝑡) | 𝐿†𝛼𝐿𝛼 |𝜓(𝑡)⟩ =
∑︁
𝛼

𝑝𝛼 , (4.18)

and leaves the wave function in the state

|𝜓(𝑡 + 𝛿𝑡)⟩ = 𝐿𝛼 |𝜓(𝑡)⟩√︁
𝑝𝛼/𝛿𝑡

(4.19)

where the specific Lindblad operator that acts on the state is chosen with probability 𝑝𝛼/𝑝. No

jump occurs with probability 1 − 𝑝, in which case we simply renormalize the wave function that

has been evolved with respect to the effective Hamiltonian,

|𝜓(𝑡 + 𝛿𝑡)⟩ = 1√︁
1 − 𝑝

(1 − 𝑖𝛿𝑡𝐻eff) |𝜓(𝑡)⟩ . (4.20)

The renormalization is necessary because the norm of the wavefunction decays as the state evolves

with respect to a non-hermitian Hamiltonian.
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This procedure can be repeated for as many timesteps as desired, and produces the dynamics

for a single trajectory of the quantum state. Clearly, we must repeat this dynamics for many initial

states to generate enough trajectories such that we sufficiently sample the entire state space. With

enough trajectories, we can average over them to produce an approximate density matrix,

𝜌𝑀 (𝑡) =
1
𝑀

𝑀∑︁
𝑘

|𝜓𝑘 (𝑡)⟩⟨𝜓𝑘 (𝑡) | , (4.21)

which equals the exact density matrix given by the original Lindblad equation in the limit 𝑀 →∞.

This final density matrix can then be used to calculate desired observables.

In this work, we aim to take advantage of the permutation symmetry of the DDIM Liouvillian

in the context of quantum trajectories. This has been established in previous works [40–42], so we

will briefly introduce it here for the convenience of the reader.

Consider the angular momentum basis |𝐽, 𝑚, 𝑖⟩ where 𝐽 is the total angular momentum quantum

number,𝑚 is the projection along the 𝑧-axis, and 𝑖 is the degeneracy label of the state. Any state of 𝑁

spin-1/2’s may be represented completely in this basis, we simply have 𝐽 ∈ {𝑁/2, 𝑁/2− 1, · · · , 0}

(assuming 𝑁 is even), 𝑚 ∈ −𝐽,−𝐽 + 1, · · · , 𝐽, and the degeneracy of each total angular moment

sector is given by

𝑑𝐽𝑁 =
𝑁!(2𝐽 + 1)

(𝑁/2 − 𝐽)!(𝑁/2 + 𝐽 + 1)! . (4.22)

As shown in Ref. [41], for a Liouvillian that exhibits permutation symmetry it is convenient to

introduce the so-called collective basis

|𝐽, 𝑚⟩ = 1√︃
𝑑𝐽
𝑁

𝑑𝐽
𝑁∑︁
𝑖

|𝐽, 𝑚, 𝑖⟩ , (4.23)

which groups together all states with the same 𝐽 and𝑚, but different degeneracy labels 𝑖. The insight

here is that permutation symmetric processes do not distinguish between the different degenerate

sectors, and therefore allows for a more compact representation by utilizing the collective basis.

With this representation, we can represent a quantum state as

|𝜓⟩ =
∑︁
𝐽,𝑚,𝑖

𝑐𝐽,𝑚,𝑖 |𝐽, 𝑚, 𝑖⟩ =
∑︁
𝐽,𝑚

√︃
𝑑𝐽
𝑁
𝑐𝐽,𝑚 |𝐽, 𝑚⟩ , (4.24)
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where we have taken advantage of the fact that different degenerate sectors are indistinguishable to

enforce 𝑐𝐽,𝑚 = 𝑐𝐽,𝑚,𝑖 ∀ 𝑖. This representation can be extended to density matrices as well,

𝜌 =
∑︁
𝐽

∑︁
𝑚,𝑚′

𝑑𝐽𝑁𝑐𝐽,𝑚;𝑚′ |𝐽, 𝑚⟩⟨𝐽, 𝑚′| , |𝐽, 𝑚⟩⟨𝐽, 𝑚′| = 1
𝑑𝐽
𝑁

∑︁
𝑖

|𝐽, 𝑚, 𝑖⟩⟨𝐽, 𝑚′, 𝑖 | . (4.25)

The factor of 𝑑𝐽
𝑁

in the definition of the collective states preserves normalization, and can actually

be omitted when performing calculations until expectation values or traces or performed. We note

that the density matrix element |𝐽, 𝑚⟩⟨𝐽, 𝑚′| in the collective basis is not the outer product of Eq.

(4.24) with itself, as that would lead to two sums over the degeneracy label. We are abusing notation

for convenience.

In Ref. [41], it was shown that a permutation symmetric Liouvillian preserves collective states,

i.e.

L[|𝐽, 𝑚⟩⟨𝐽, 𝑚′|] =
∑︁

𝐽′,𝑚1,𝑚2

𝑓
𝐽,𝑚,𝑚′

𝐽′,𝑚1,𝑚2
|𝐽′, 𝑚1⟩⟨𝐽′, 𝑚2 | , (4.26)

where 𝑓 is simply a function of its indices. Note that after action by the Liouvillian we retrieve

a linear combination of collective states, and that the Liouvillian does not introduce coherence’s

between sectors of different 𝐽. Therefore, the collective states are a good basis with which to

characterize the dynamics of the state with respect to the permutation symmetric Liouvillian. In

fact, this basis represents the same subspace as the permutation symmetric basis introduced in Eq.

(4.2), as they both scale with system size as (𝑁 + 1) (𝑁 + 2) (𝑁 + 3)/6.

We aim to utilize this representation in the context of quantum trajectories, which means we

need to determine how the jump operators behave in this collective basis representation. In Ref.

[40], it was shown that the permutation symmetric decay channels of the form

D𝜎− [•] = Γ
∑︁
𝑖

𝜎−𝑖 • 𝜎+𝑖 −
1
2
{𝜎+𝑖 𝜎−𝑖 , •} (4.27)

can be described by three separate jump operators which transform the state amplitudes as follows

𝑐𝐽+𝑞,𝑚−1(𝑡 + 𝛿𝑡) =
√
𝛿𝑡Γ𝑃𝐽,𝑚𝑞 𝑐𝐽,𝑚 (𝑡) , (4.28)
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where 𝑞 ∈ {−1, 1, 0} and each channel occurs with probability 𝑝𝑞 = 𝛿𝑡Γ𝑑𝐽𝑁
∑
𝑚 |𝑃𝐽,𝑚𝑞 𝑐𝐽,𝑚 (𝑡) |2. The

coefficients 𝑃𝐽,𝑚𝑞 are given by

𝑃
𝐽,𝑚

−1 = −

√︄
(𝑁 + 2𝐽 + 2) (𝐽 + 𝑚) (𝐽 + 𝑀 − 1)

4𝐽 (2𝐽 + 1) (4.29)

𝑃
𝐽,𝑚

0 =

√︄
(2 + 𝑁) (𝐽 + 𝑚) (𝐽 − 𝑚 + 1)

4𝐽 (𝐽 + 1) (4.30)

𝑃
𝐽,𝑚

1 =

√︄
(𝑁 − 2𝐽) (𝐽 − 𝑚 + 1) (𝐽 − 𝑚 + 2)

4(𝐽 + 1) (2𝐽 + 1) . (4.31)

These are all the ingredients necessary to evaluate the quantum trajectory dynamics of the DDIM

Liouvillian in the collective state basis. Furthermore, we can see from Eq. (4.28) the origin of the

properties of Eq. (4.26). Most notably, the wavefunction has one definite value of 𝐽 at any given

time such that when the outer product is taken to obtain the density matrix, there are no coherences

generated between states with different 𝐽’s.

In this work, we apply this formalism to the case where we split the system in to two subsystems.

Consider the case where we have 𝑁 spins, and we wish to divide the system into to two equally

sized subsystems 𝐴 and 𝐵. It is straightforward to define the split system collective spin operators

𝑆𝛼 = 𝑆𝐴𝛼 + 𝑆𝐵𝛼 for 𝛼 ∈ {𝑥, 𝑦, 𝑧}, and to write the Liouvillian in terms of the two subsystems:

L[•] = −𝑖[𝐻, •] + D𝐴
𝜎− + D𝐵

𝜎− , (4.32)

where

𝐻 = − 𝐽
𝑁

(
𝑆𝐴𝑥 + 𝑆𝐵𝑥

)2
+ Δ

(
𝑆𝐴𝑧 + 𝑆𝐵𝑧

)
. (4.33)

Each of the dissipatorsD𝐴/𝐵 strictly act on their respective subsystem. We now introduce the split

system collective basis,

|𝜓⟩ =
∑︁
𝐽𝐴,𝐽𝐵

∑︁
𝑚𝐴,𝑚𝐵

𝑐
𝐽𝐴,𝐽𝐵
𝑚𝐴;𝑚𝐵

|𝐽𝐴, 𝑚𝐴⟩ |𝐽𝐵, 𝑚𝐵⟩ ,
∑︁
𝐽𝐴,𝐽𝐵

∑︁
𝑚𝐴,𝑚𝐵

𝑑𝐽𝐴𝑑𝐽𝐵 |𝑐𝐽𝐴,𝐽𝐵𝑚𝐴;𝑚𝐵
|2 = 1 (4.34)

where we have defined 𝑑𝐽
𝑁/2 = 𝑑𝐽 for each of the multiplicities as it is always understood that we

have divided the system in half. The density matrix follows straightforwadly,

𝜌 =
∑︁
𝐽𝐴,𝐽𝐵

∑︁
𝑚𝐴,𝑚

′
𝐴

∑︁
𝑚𝐵,𝑚

′
𝐵

𝑐
𝐽𝐴,𝐽𝐵
𝑚𝐴,𝑚

′
𝐴
;𝑚𝐵,𝑚

′
𝐵

|𝐽𝐴, 𝑚𝐴⟩⟨𝐽𝐴, 𝑚′𝐴 | ⊗ |𝐽𝐵, 𝑚𝐵⟩⟨𝐽𝐵, 𝑚′𝐵 | , (4.35)
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with normalization ∑︁
𝐽𝐴,𝐽𝐵

∑︁
𝑚𝐴,𝑚𝐵

𝑑𝐽𝐴𝑑𝐽𝐵𝑐
𝐽𝐴,𝐽𝐵
𝑚𝐴,𝑚𝐴;𝑚𝐵,𝑚𝐵

= 1 . (4.36)

Now, it is easy to see that Eq. (4.32) preserves the collective basis states, even in this split basis.

The Hamiltonian portion is given purely in terms of collective operators which are guaranteed to

keep the state in the collective basis. The dissipative terms act solely on system 𝐴 and system 𝐵

individually and are permutation symmetric within the given subsystem. More explicitly, we have

D𝐴
𝜎− [|𝐽𝐴, 𝑚𝐴⟩⟨𝐽𝐴, 𝑚′𝐴 |] (and similarly for 𝐵), which is of the same form as Eq. (4.26) and thus

takes collective states to collective states. Therefore, we have shown that the formalism developed

in [41] applies to the split system collective basis as well.

Finally, we discuss what various entanglement quantities are formally in terms of the collective

basis. Care must be taken with the placement of the multiplicity factor. To make sure it is in the

correct place, simply perform the calculation while including the degeneracy label explicitly and

then drop the label at the end. This should yield an expression with the multiplicity factor in the

correct place. For example, consider the von Neumann entropy, 𝑆vN = −Tr(𝜌 log 𝜌). Writing this

in terms of the eigenvalues of the complete density matrix 𝜆𝐽
𝑚,𝑖

with 𝑖 the degeneracy label, we find

𝑆vN = −
∑︁
𝐽,𝑚

∑︁
𝑖=1

𝜆𝐽𝑚,𝑖 log𝜆𝐽𝑚,𝑖 = −
∑︁
𝐽,𝑚

𝑑𝐽𝑁𝜆
𝐽
𝑚 log𝜆𝐽𝑚 . (4.37)

To obtain the final equality, we utilized the property of the collective states to set 𝜆𝐽
𝑚,𝑖

= 𝜆𝐽𝑚 ∀ 𝑖.

The quantities 𝜆𝐽𝑚 are the eigenvalues of the density matrix 𝜌𝐽 in angular momentum sector 𝐽.

From this simple procedure, we have identified the correct location for the multiplicity factor 𝑑𝐽
𝑁

.

The structure shown here can be used for studying any non-linear function of the density matrix,

i.e. the logarithmic negativity.
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CHAPTER 5

CRITICAL PROPERTIES

In this chapter we utilize the formalism developed in the previous chapter to calculate a host of

interesting features near the phase boundary of the DDIM. Namely, we investigate the effective

temperature, which can be defined for nonequilibrium systems, as well as the critical exponents that

characterize the phase transition. Furthermore, we find that the DDIM has two distinct universality

classes. The details of these two universality classes will be discussed in Sec. ??, but we briefly

introduce them here. Along the entire phase boundary, except for a single point, the DDIM is in

the same universality class as the classical Ising model with Glauber dynamics. The singular point,

which we denote as the weakly-dissipative critical point, is at Δ = 2𝐽, Γ→ 0 and has the system in

the same universality class as the infinite-range transverse-field Ising model at finite temperature.

We characterize these classes and their exponents using a simple finite-size scaling analysis.

5.1 Correlation and Response Functions

The principle quantities of interest in a many-body system are correlation and response functions.

Correlation functions characterize fluctuations in the system, and are signatures for many physical

phenomena such as phase transitions and dynamics [4, 43]. Response functions tell us how a

system responds to a small perturbation (as they are derived from linear response theory [43], and

this response contains information about the excitation spectrum of the system as well as how it

relaxes [4, 13, 14].

In the thermodynamic limit, where the quadratic action in Eq. (3.30) is exact, we can easily

find the correlation and response functions by inverting the kernel. This inversion is more easily

done in frequency space, where we find

𝐶 (𝜔) = 1
𝑁
F𝜔⟨{𝑆𝑥 (𝑡), 𝑆𝑥 (0)}⟩ = ⟨𝑚𝑐 (𝜔)𝑚𝑐 (−𝜔)⟩

=
−𝑖𝑃𝐾 (𝜔)

𝑃𝑅 (𝜔)𝑃𝐴 (𝜔)
, (5.1a)
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and the response function

𝜒(𝜔) = 1
𝑖𝑁
F𝜔⟨[𝑆𝑥 (𝑡), 𝑆𝑥 (0)]⟩

=
1
𝑖
⟨𝑚𝑞 (𝜔)𝑚𝑐 (−𝜔) − 𝑚𝑐 (𝜔)𝑚𝑞 (−𝜔)⟩

=
1

𝑃𝑅 (𝜔)
− 1
𝑃𝐴 (𝜔)

. (5.1b)

We have defined the Fourier transform operation, F𝜔 ( 𝑓 (𝑡)) =
∫
𝑡
𝑒𝑖𝜔𝑡 𝑓 (𝑡). The explicit forms of

these functions can be obtained from Eqs. (3.32a) and (3.32b) as

𝐶 (𝜔) = Γ(Γ2 + 4(4Δ2 + 𝜔2))
2(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)
, (5.2a)

and

𝜒(𝜔) = 4Δ
( (𝜔 − 𝜔∗1) (𝜔 − 𝜔∗2) − (𝜔 − 𝜔1) (𝜔 − 𝜔2)
(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)

)
. (5.2b)

The poles in these equations are given by

𝜔1 = − 𝑖
2
(Γ − Γ𝑐) , 𝜔2 = − 𝑖

2
(Γ + Γ𝑐) , (5.3)

where Γ𝑐 = 4
√︁
(2𝐽 − Δ)Δ. We thus observe that 𝜔1 is the “soft mode” which vanishes at the

phase transition, while we can identify 𝜔2 as the “fast mode” that remains finite. The soft

mode is responsible for critical dynamics and signifies the critical slowdown as we approach the

phase transition. The intuition behind this can be seen by writing the correlation function as

𝐶 (𝑡) = 𝑐1𝑒
−𝑖𝜔1 |𝑡 | + 𝑐2𝑒

−𝑖𝜔2 |𝑡 | and considering the case where Γ → Γ𝑐. At long times, we see that

𝐶 (𝑡) ∼ 𝑐1𝑒
−𝜔1𝑡 survives, while 𝑐2 dies out because 𝜔2 ≫ 𝜔1. We also see that the time-scale

of the dynamics, 1/𝜔1, diverges as we approach the phase boundary which is the reason for the

nomenclature critical slowdown. Therefore, 𝑐1 and 𝜔1 will determine the static and dynamical

critical behaviour of the correlation function respectively. The limit Γ𝑐 → 0, where both poles

become soft, gives rise to qualitatively different behavior as we shall discuss later.

We can easily Fourier transform Eqs. (5.2a) and (5.2b) back to the time domain by performing

the contour integral over their simple poles. In the time domain, the correlation and response

function are given by

𝐶 (𝑡) = 𝑒−Γ|𝑡 |/2

Γ𝑐

(
ΓΓ𝑐 + 16(𝐽 − Δ)Δ

Γ + Γ𝑐
𝑒−Γ𝑐 |𝑡 |/2 + ΓΓ𝑐 − 16(𝐽 − Δ)Δ

Γ − Γ𝑐
𝑒Γ𝑐 |𝑡 |/2

)
, (5.4a)
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Figure 5.1 The response function (a) and correlation function (b) in the ordered phase
(𝐽 = 1,Δ = 1) for different values of Γ. (a) As we move away from the phase boundary, 𝜒(𝜔) at
low frequencies plateaus before changing sign, indicating a gainy rather than lossy behavior. (b)
The peak at 𝜔 = 0, signifying the dominant soft mode near the phase boundary, splits into two as
Γ is decreased. For sufficiently small Γ (≲ 2.3), another peak appears at 𝜔 = 0.

and

𝜒(𝑡) = sgn(𝑡)4Δ
Γ𝑐
𝑒−Γ|𝑡 |/2

(
𝑒−Γ𝑐 |𝑡 |/2 − 𝑒Γ𝑐 |𝑡 |/2

)
. (5.4b)

We can identify two distinct regimes in the disordered phase. For Δ < 2𝐽, we see that Γ𝑐 is real,

and that both 𝐶 (𝑡) and 𝜒(𝑡) are purely relaxational. On the other hand, Γ𝑐 becomes imaginary for

Δ > 2𝐽, hence complex-valued poles, and the dynamics becomes underdamped. In this regime,

the overall decay rate is controlled by Γ, and the oscillation time scale is set by Γ𝑐. This behavior

arises due to the competition between the interaction 𝐽 and the transverse field Δ. For sufficiently

large Δ, the transverse field is dominant and causes the large spin to precess about the 𝑧-axis;

while on average the longitudinal spin components are zero, their temporal correlations expose the

oscillations.

In the ordered phase, the correlation and response function can be evaluated numerically starting

with the inverse response and Keldysh elements in Eqs. (3.34a) and (3.34b). In Fig. 5.2, we plot

𝜒(𝜔) and 𝐶 (𝜔) within the ordered phase and for different values of Γ. As Γ is decreased, the

low-frequency region of 𝜒(𝜔) changes sign, indicating that the system is no longer lossy and is

rather “gainy” at low frequencies. This behavior is of course related to the driven nature of the

system. Similarly, the correlation function shows a single peak at 𝜔 = 0 for larger Γ close to the
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Figure 5.2 The response function (a) and correlation function (b) in the ordered phase
(𝐽 = 1,Δ = 1) for different values of Γ. (a) As we move away from the phase boundary, 𝜒(𝜔) at
low frequencies plateaus before changing sign, indicating a gainy rather than lossy behavior. (b)
The peak at 𝜔 = 0, signifying the dominant soft mode near the phase boundary, splits into two as
Γ is decreased. For sufficiently small Γ (≲ 2.3), another peak appears at 𝜔 = 0.

phase boundary (within the ordered phase); this behavior can be attributed to the soft mode. As we

move away from the phase boundary, this peak splits into two and eventually gives rise to a smaller

peak at 𝜔 = 0. Indeed, this appears at the same point where the low-frequency behavior of 𝜒

changes qualitatively. In Sec. 5.2, we show that this behavior can be interpreted as the emergence

of a negative effective temperature.

5.2 Effective Thermalization Near Criticality

Driven-dissipative systems are inherently nonequilibrium, and therefore there is no intrinsic notion

of temperature. However, a standard procedure is to define an effective temperature by imposing a

fluctuation-dissipation relation (FDR)[13, 14, 33, 44–46],

𝑃𝐾 (𝜔) = 𝐹 (𝜔)
(
𝑃𝑅 (𝜔) − 𝑃𝐴 (𝜔)

)
, (5.5)

where 𝐹 (𝜔) is a distribution function defined by this equation. In equilibrium, and at finite

temperature, the distribution function only depends on temperature and takes the form 𝐹 (𝜔) =

coth(𝜔/2𝑇). Specifically, the low-frequency limit of the distribution function yields the classical

FDR with 𝐹 (𝜔) = 2𝑇/𝜔. While there is no intrinsic temperature in our driven-dissipative system,

we can still impose the classical form of the FDR (to be justified later) to identify the effective
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Figure 5.3 Numerical plot of the correlation and response functions with a system size of 𝑁 = 100
obeying the classical FDR near the phase boundary. (Left) Generic critical point
(𝐽 = 1,Δ = 1, Γ = 4), where we see that the classical FDR 𝜒(𝑡) = 𝜕𝑡𝐶 (𝑡)/2𝑇eff holds at long times
(𝑡 ≳ Γ−1) with 𝑇eff = 𝐽. (Right) The weakly-dissipative critical point (𝐽 = 1,Δ = 2, Γ = 0.1) where
the classical FDR holds for exact numerics almost perfectly at all times with 𝑇eff = 𝐽.

temperature; in the normal phase, we find

𝑇eff = lim
𝜔→0

𝜔

2
𝑃𝐾 (𝜔)

𝑃𝑅 (𝜔) − 𝑃𝐴 (𝜔)
=
Γ2 + 16Δ2

32Δ
. (5.6)

The effective temperature diverges as Δ → 0 in harmony with the observation in Ref. [47] that,

in the absence of a transverse field, the population (in the 𝑆𝑥 basis) is that of a fully mixed state,

hence infinite temperature. We must note however that an effective temperature defined at low

frequencies is only sensible near a critical point where a slow mode dominates the dynamics. In

contrast, various modes contribute to the effective temperature away from criticality, i.e., away from

the phase boundary, which further complicates the interpretation of the low-frequency effective

temperature.

Exactly at the phase transition, we find that the effective temperature is simply given by 𝑇eff = 𝐽

everywhere along the phase boundary. Equation (5.6) can also be expressed in the time domain,

𝜒(𝑡) = 𝜕𝑡𝐶 (𝑡)/2𝑇eff, which provides another form of the classical FDR [48]. This relationship

holds analytically for the correlation and response functions in Eqs. (5.4a) and (5.4b) with 𝑇eff = 𝐽.

We can further inspect the classical FDR at criticality using exact numerics: in Fig. 5.3(Left),

we show that, with the exception of short times differences, this relation holds at criticality. We

further inspect the behavior at the weakly dissipative critical point Γ → 0 in Fig. 5.3(Right) and
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Figure 5.4 Density plot of |𝑇eff | in the ordered phase as a function of Δ and Γ; we have set 𝐽 = 1.
The thick curve indicates the phase boundary and the highlighted region indicates the region with
negative effective temperature. (Inset) The effective temperature in the ordered phase
(𝐽 = 1,Δ = 0.5) as a function of Γ, taken along the dashed line in the main figure. As Γ decreases,
the effective temperature diverges and then flips sign.

find that the classical FDR holds remarkably well at all times. The agreement between 𝑇eff in

the time and frequency domains at the phase boundary further cements the applicability of the

fluctuation-dissipation relation near phase transitions.

In the ordered phase, we can numerically evaluate the effective temperature by combining the

expressions given in Eqs. (3.34a) and (3.34b) together with the definition of the effective temperature

in Eq. (5.5). Interestingly, as Γ is lowered, the effective temperature diverges deep in the ordered

phase and then flips sign; see the inset of Fig. 5.4. This behavior occurs due to the change in sign

of the low-frequency behavior of 𝜒(𝜔) as was pointed out in Fig. 5.2(a). The curve corresponding

to infinite temperature ends at the weakly dissipative critical point Γ→ 0 and Δ = 2𝐽. We can thus

employ our field-theoretical toolbox to analytically investigate the origin of this behavior.

At a technical level, we want to characterize the fluctuations around the ordered field, 𝑚, within

the ordered phase. To this end, we consider the action describing the fluctuations around the ordered

field as

𝑆 =

∫
𝜔

𝑚𝑞𝑃
𝑅
ord(𝜔)𝛿𝑚𝑐 + · · · (5.7)

where 𝛿𝑚𝑐 (𝑡) = 𝑚𝑐 (𝑡) − 𝑚 and 𝑃𝑅ord(𝜔) is given exactly by Eq. (3.34a) (recall that ⟨𝑚𝑞⟩ = 0
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always!) This quadratic description is found by first expanding Eq. (3.16) to the necessary order

about 𝑚𝑐 = 0, and then expanding that expression to second-order about 𝑚𝑐 = 𝑚. To probe the

effective temperature 𝑇eff, we must expand 𝑃𝑅ord(𝜔) at low frequencies as

𝑃𝑅ord(𝜔) ∼ −𝑟 + 𝑖𝛾ord𝜔 + · · · (5.8)

Now, 𝛾ord > 0 indicates dissipation, while 𝛾ord < 0 implies gain as this coefficient characterizes

friction in the low-frequency dynamics. Due to the definition of the low-frequency effective

temperature in Eq. (5.6), there is no straightforward analogy with the equilibrium notion of

population inversion. While the full expression for 𝑃𝑅 in the ordered phase is not analytically

tractable, we can utilize the diagrammatics developed in Sec. 3.3.4: the diagrams that contribute to

𝑃𝑅ord in the ordered-phase can be found in Fig. 5.5. The explicit forms of the interaction coefficients,

and an example calculation, can be found in Appendix 5.A. It turns out that to capture the negative

temperature, we must include the sixth-order terms in the diagrammatic expansion. We find

𝑃𝑅ord(𝜔) = 𝑃
𝑅 (𝜔) + 𝑚2𝑃𝑅1 (𝜔) + 𝑚

4𝑃𝑅2 (𝜔) + · · · , (5.9)

where 𝑚 is given by Eq. (3.29), 𝑃𝑅 (𝜔) by Eq. (3.32a), 𝑃𝑅1 (𝜔) is given by

𝑖𝑃𝑅1 (𝜔) =𝑢𝑞𝑐𝑐𝑐 (−𝜔, 𝜔, 0, 0) + 𝑢𝑞𝑐𝑐𝑐 (−𝜔, 0, 𝜔, 0)

+ 𝑢𝑞𝑐𝑐𝑐 (−𝜔, 0, 0, 𝜔) , (5.10)

and 𝑃𝑅2 (𝜔) is given by

𝑖𝑃𝑅2 (𝜔) = 𝑢𝑞𝑐𝑐𝑐𝑐𝑐 (−𝜔, 𝜔, 0, 0, 0, 0) (5.11)

+ 𝑢𝑞𝑐𝑐𝑐𝑐𝑐 (−𝜔, 0, 𝜔, 0, 0, 0) + 𝑢𝑞𝑐𝑐𝑐𝑐𝑐 (−𝜔, 0, 0, 𝜔, 0, 0)

+ 𝑢𝑞𝑐𝑐𝑐𝑐𝑐 (−𝜔, 0, 0, 0, 𝜔, 0) + 𝑢𝑞𝑐𝑐𝑐𝑐𝑐 (−𝜔, 0, 0, 0, 0, 𝜔) .

Expanding Eq. (5.9) to first order in 𝜔, we find the friction coefficient

𝛾ord =
127𝐽2Δ

Γ(Γ2 + 16Δ2)4

[
26Γ6 − 4096Δ4(Δ − 2𝐽)2+

16Γ4Δ(53Δ − 84𝐽) + 256Γ2Δ2(68𝐽2 − 80𝐽Δ + 25Δ2)
]
,

(5.12)
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Figure 5.5 Diagrams contributing to (a) 𝑃𝑅1 and (b) 𝑃𝑅2 in calculating 𝛾ord. A cross (x) at the end
of a leg corresponds to evaluating the corresponding classical field at its saddle-point value.

which indeed captures the negative effective temperature in the ordered phase near the phase

boundary at Δ = 2𝐽 and Γ → 0; see Fig. 5.4. Indeed, we find that the infinite-temperature curve

near the weakly dissipative critical point is given by the line Γ = 2
√

2(2𝐽 − Δ), in harmony with

Fig. 5.4. We finally remark that, for Δ < 2𝐽, the effective temperature 𝑇eff → 0− in the limit Γ→ 0.

Before closing this section, a remark about the effective temperature is in order. The latter

temperature characterizes fluctuations and dissipation of the system at low frequencies. However,

it does not imply that the steady state is a thermal state, i.e. 𝜌 ≠ 𝑒−𝐻/𝑇eff . This can be seen by

comparing the equilibrium phase diagram [28] versus the nonequilibrium phase diagram in Fig.

3.2. Specifically, the infinite-range Ising model in a transverse field undergoes a phase transition at

a critical value of the transverse field that is Δ𝑐 (𝑇) < 2𝐽 at any finite temperature, a behavior that

should be contrasted with our driven-dissipative model where at Δ = 0 there is no phase transition.

5.3 Critical Behavior

Just like their equilibrium counterparts, nonequilibrium steady states may undergo phase transitions

and exhibit critical phenomena. A characteristic feature of criticality is a diverging correlation

length, where the length-scale of two-body correlations grows as the system approaches criticality

[43]. The dynamical analog of this phenomena is called critical slowdown and is signaled by a

diverging time scale in the dynamics of correlations [48] (as discussed in Sec. 5.1. While there
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is no intrinsic length scale in an infinite-ranged model, we will identify the dynamical critical

behavior of the model considered here and investigate the finite-size scaling with the system size 𝑁

[31, 49] using standard scaling techniques. Interestingly, we shall see that two distinct dynamical

critical behaviors emerge depending on the strength of dissipation.

It is well known that phase-transitions, in their exact sense, occur only in the thermodynamic

limit [50]. However, signatures of the phase transition remain visible at finite system sizes. For

example, suppose we have a correlation function 𝐶 (𝑟, 𝑁) that is a function of the distance from

the critical point as well as the system size. We know that in the limit 𝑁 → ∞, the correlation

function should diverge as 𝑟 → 0, and at finite 𝑁 the correlation function 𝐶 (𝑟, 𝑁) remains finite.

These two limits imply that the correlation function must scale in a way with 𝑁 such that it diverges

in the thermodynamic limit, i.e. 𝐶 (𝑟 = 0, 𝑁) ∼ 𝑁𝛼 where 𝛼 is the static scaling exponent. This

exponent is a feature of the physics at the phase transition, and is one of the properties that defines

the phase transition’s universality class. A similar framework may be applied to the dynamics. As

discussed previously, the dynamics of the correlation function experience critical slowdown, where

the timescale of the dynamics diverges in the limit 𝑟 → 0. This occurs because the “gap”, i.e. the

distance of the Liouvillian’s eigenvalue with the smallest real part from zero, closes at criticality.

However, the gap remains finite for a finite system size 𝑁 , therefore, critical slowdown is a feature

of the thermodynamic limit. The timescale of the dynamics must then also scale with the system

size, 𝑡 ∼ 𝑁 𝜁 , where 𝜁 is the dynamical exponent. The static exponent 𝛼 and dynamical exponent 𝜁

together characterize the universality class of the phase transition, and are our primary quantities

of investigation in this section.

5.3.1 Criticality at Finite Γ

Before investigating the finite-size scaling, we first determine the scaling dimensions of the fields

at the quadratic level of the action. A low-frequency expansion of Eq. (3.30) yields the quadratic

action

𝑆 ∼
∫
𝑡

𝑚𝑞 (−𝛾𝜕𝑡 − 𝑟)𝑚𝑐 +
1
2
𝐷𝑚2

𝑞 , (5.13)
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Figure 5.6 Exact numerics of the finite-size scaling behavior of the correlation function at a
generic critical point (𝐽 = 1,Δ = 1, Γ = 4). The critical dynamics is overdamped and is governed
by a characteristic time scale that scales as 𝑡 ∼ 𝑁1/2, typical of critical driven-dissipative systems.

with 𝑟 the distance from the critical point, 𝛾 a damping parameter, and 𝐷 the strength of the noise:

𝑟 = −𝑃𝑅 (𝜔 = 0) = 2𝐽 [Γ2 − 16Δ(2𝐽 − Δ)]
Γ2 + 16Δ2 , (5.14a)

𝛾 = −𝑖𝜕𝜔𝑃𝑅 (𝜔) |𝜔=0 =
256𝐽2ΓΔ

(Γ2 + 16Δ2)2
, (5.14b)

𝐷 = 𝑃𝐾 (𝜔 = 0) = 32𝑖𝐽2Γ

Γ2 + 16Δ2 . (5.14c)

The 𝑚2
𝑞 term is referred to as “noise” because Eq. (5.13) may be mapped to a dynamical equation

with a random noise term with strength 𝐷; see Sec. 5.4. To find the scaling dimensions of the

fields, we demand that the action be scale invariant at the critical point (𝑟 = 0). One can see that

the action is invariant upon rescaling [23]

𝑡 → 𝜆𝑡, 𝑚𝑐 →
√
𝜆𝑚𝑐 , 𝑚𝑞 →

1
√
𝜆
𝑚𝑞 , (5.15)

with 𝜆 an arbitrary scaling parameter that can be chosen freely. These scaling relations determine

the scaling dimensions of the fields to be [𝑚𝑐] = 1
2 , [𝑚𝑞] = −1

2 ; simply their dimensions with

respect to time. These scaling dimensions in turn determine the scaling behavior of the correlation

and response functions, and are consistent with Eqs. (5.4a) and (5.4b) in the limit Γ→ Γ𝑐; see also

[51].
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To determine the finite-size scaling behavior of the model, we must include finite-size correc-

tions to the quadratic action in Eq. (5.13). To lowest order in O(𝑁−1), the finite-size corrections are

given by the 4-legged diagrams derived in Sec. 3.3.4. Furthermore, it follows from the above scal-

ing dimensions that the most relevant correction (in a renormalization-group sense) is the classical

vertex which has a low-frequency limit of [14]

𝑆int =
−𝑢
2𝑁

∫
𝑡

𝑚3
𝑐𝑚𝑞 + · · · , (5.16)

with

𝑢 = 2𝑖𝑢𝑐𝑐𝑐𝑞 (𝝎 = 0) = 2048𝐽4Δ

(Γ2 + 16Δ2)2
. (5.17)

To see that this is true, perform the rescaling according to the prescription in Eq. (5.15) on the

classical vertex and the quantum vertex. The classical vertex scales as 𝜆2
∫
𝑡
𝑚3
𝑐𝑚𝑞 and the quantum

vertex scales as ∼ 𝜆0
∫
𝑡
𝑚𝑐𝑚

3
𝑞. Ignoring the subtlety about the quantum vertex being marginally

relevant (which is actually not a problem when we consider the scaling of 𝑁 next), we see that the

classical vertex grows with 𝜆→∞.

We now demand that the full low-frequency expansion of the action, with the inclusion of the

classical vertex and at a finite distance from the critical point (𝑟 ≠ 0), remains scale invariant. This

is achieved upon rescaling

𝑡 → 𝜆𝑡, 𝑚𝑐 →
√
𝜆𝑚𝑐 , 𝑚𝑞 →

1
√
𝜆
𝑚𝑞,

𝑟 → 1
𝜆
𝑟 , 𝑁 → 𝜆2𝑁 , (5.18)

where the first line, also given by Eq. (5.15), is included for completeness. Equipped with these

scaling dimensions, the correlation function takes on the scaling form

𝐶 (𝑡) = ⟨𝑚𝑐 (𝑡)𝑚𝑐 (0)⟩ = 𝜆−1𝐶̂ (𝜆 |𝑡 |, 𝜆−1𝑟, 𝜆−2𝑁−1) , (5.19)

with 𝐶̂ a universal scaling function with scale invariant arguments. Setting 𝜆 = 𝑟 , 𝑡 = 0, and taking

the thermodynamic limit 𝑁 → ∞, we obtain the “photon-flux” exponent 𝐶 ∼ 1/𝑟𝜈 through the

relation

𝐶 (0) = 1
𝑟
𝐶̂ (0, 1, 0) , (5.20)
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Figure 5.7 Finite-size scaling behavior of the response function at a generic critical point
(𝐽 = 1,Δ = 1, Γ = 4) from exact numerics. The amplitude of the response function does not scale
with 𝑁 , while the characteristic time scale of the dynamics scales as 𝑡 ∼ 𝑁1/2, identifying the
dynamical exponent 𝜁 = 1/2.

which establishes the exponent 𝜈 = 1 [14]. Next we determine the finite-size scaling at criticality

(𝑟 = 0). Here, we set 𝜆 = 𝑁−1/2 in Eq. (5.19), which leads to the scaling form

𝐶 (𝑡) =
√
𝑁𝐶̂ (𝑡/

√
𝑁, 0, 1) . (5.21)

This equation identifies both static and dynamic finite-size critical exponents: the amplitude of

correlations (i.e., fluctuations) scale as 𝐶 ∼ 𝑁𝛼 with the exponent 𝛼 = 1/2, while a critical time

scale emerges as 𝑡 ∼ 𝑁 𝜁 with the dynamical exponent 𝜁 = 1/2. A similar analysis yields the scaling

form of the response function:

𝜒(𝑡) = 𝜒̂(𝑡/
√
𝑁, 0, 1) . (5.22)

We thus see that the amplitude of the response function does not scale with 𝑁 . We confirm the

(static as well as dynamic) scaling behavior of both the correlation and response functions in

Figs. 5.6 and 5.7, respectively. Additionally, we see that the critical dynamics observed here is

purely relaxational. In the next section, we show that a distinct dynamical critical behavior emerges

at low dissipation.
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5.3.2 Criticality at Γ→ 0

The effective classical behavior at a generic critical point is due to the competition between drive

and dissipation. It is then interesting to consider the limit Γ → 0 where dissipation is small

compared to the energy scales in the system. Interestingly, the phase transition persists in this limit

and occurs at Δ = 2𝐽 as Γ→ 0; see Fig. 5.11. One must be careful when considering this point as

setting Γ to zero would make the problem unphysical since dissipation is required to find a unique

nonequilibrium steady state. Rather, we shall consider the asymptotic behavior in the limit Γ→ 0

at the level of the low-frequency expansion of Eq. (3.30). The resulting action then becomes

S ∼
∫
𝑡

𝑚𝑞 (−𝑎𝜕2
𝑡 − 𝛾𝜕𝑡 − 𝑟)𝑚𝑐 +

1
2
𝐷𝑚2

𝑞 , (5.23)

where the parameters 𝛾, 𝑟, and 𝐷 are provided in Eq. (5.24) upon taking the appropriate limit:

𝑟 = lim
Γ→0
−𝑃𝑅 (𝜔 = 0) =


2𝐽 (Δ−2𝐽)

Δ
Δ > 2𝐽

Γ2

32𝐽 Δ = 2𝐽
, (5.24a)

𝛾 = lim
Γ→0
−𝑖𝜕𝜔𝑃𝑅 (𝜔) |𝜔=0 =

𝐽2Γ

256Δ3 , (5.24b)

𝐷 = lim
Γ→0

𝑃𝐾 (𝜔 = 0) = 𝑖2𝐽
2Γ

Δ2 . (5.24c)

The new parameter 𝑎 is given by

𝑎 = lim
Γ→0

𝜕2
𝜔𝑃

𝐾 (𝜔) |𝜔=0 =
𝐽2

Δ3 . (5.25)

Indeed, the inertial term in the action (proportional to 𝑎) is required in the limit of vanishing

dissipation, because the damping parameter 𝛾 ∼ Γ and the noise 𝐷 ∼ Γ both vanish with Γ. To

determine the new scaling dimensions of the fields, we once again seek a scaling transformation

that keeps the action scale invariant, but this time we also should include the scaling of Γ itself.

We find that the quadratic action at the critical point is invariant under

𝑡 → 𝜆𝑡 , Γ→ 1
𝜆
Γ , 𝑚𝑐 → 𝜆𝑚𝑐 , 𝑚𝑞 → 𝑚𝑞 , (5.26)
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establishing the new scaling dimensions [𝑚𝑐] = 1, [𝑚𝑞] = 0. The new scaling dimensions alter the

original scaling dimensions of the correlation and response functions, again in harmony with their

behavior in the limit Γ→ 0; see also Ref. [51].

To obtain the finite-size scaling behavior, we once again include the classical vertex, which

remains the most relevant interaction term. The full action (including the mass term) remain

invariant if we impose the rescaling

𝑟 → 1
𝜆2 𝑟, 𝑁 → 𝜆4𝑁, (5.27)

in addition to those in Eq. (5.26). From this, we find the scaling form for the correlation function

as

𝐶 (𝑡) = 1
𝜆2 𝐶̂0(𝜆 |𝑡 |, 𝜆−1Γ, 𝜆−2𝑟, 𝜆−4𝑁−1) , (5.28)

where the subscript 0 denotes the scaling function near the weakly dissipative critical point. Also,

notice the dependence of the nontrivial scaling of Γ in contrast with a generic critical point; cf.

Eq. (5.19).

First, we consider the point Δ = 2𝐽 at finite yet small Γ. Setting 𝜆 = Γ and 𝑡 = 0 in the

thermodynamic limit, we find

𝐶 (0) = 1
Γ2 𝐶̂0(0, 1, const., 0) ∝ 1

𝑟
, (5.29)

where the scaling behavior in the last step follows from the fact that 𝑟 ∼ Γ2, rendering the same

photon-flux exponent 𝜈 = 1.

Next, we shall focus on finite-size scaling. To this end, we consider a weakly-dissipative critical

point at finite yet small Γ; we shall choose Δ ⪅ 2𝐽 to ensure criticality. Now, we set 𝜆4 = 𝑁−1

together with 𝑟 = 0 to find

𝐶 (𝑡) =
√
𝑁𝐶̂0( |𝑡 |𝑁−

1
4 , Γ𝑁

1
4 , 0, 1) . (5.30)

From this equation, we find that the weakly-dissipative limit does not affect the static scaling

exponent, 𝛼 = 1
2 , but it does change the dynamical exponent to 𝜁 = 1

4 . We thus conclude that a

weakly dissipative point changes the dynamical critical behavior. Repeating the above analysis for
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Figure 5.8 Finite-size scaling of the correlation function near the weakly dissipative critical point
(𝐽 = 1,Δ = 2, Γ = 0.1). The dynamics is underdamped in contrast with the purely relaxational
behavior at a generic driven-dissipative phase transition, and exhibits the critical scaling 𝑡 ∼ 𝑁1/4

to be contrasted with 𝑡 ∼ 𝑁1/2 of relaxational dynamics; cf. Fig. 5.6.

the response function, we find the finite-size scaling form

𝜒(𝑡) = 𝑁 1
4 𝜒̂0(𝑡𝑁−

1
4 , Γ𝑁

1
4 , 0, 1) . (5.31)

In contrast with a generic critical point (Eq. (5.22)), the amplitude of the response function in the

above equation grows with the system size as 𝜒 ∼ 𝑁 1
4 . Figures 5.8 and 5.9 show the finite-size

critical behavior of the correlation and response function, respectively, and confirm the prediction

of the scaling analysis. In conclusion, while the static exponent 𝛼 and the flux exponent 𝜈 remain

the same everywhere on the phase boundary, the dynamical exponent 𝜁 takes a different value in

the weakly-dissipative limit.

What further distinguishes the weakly dissipative critical point is the fact that the dynamics is

underdamped (see Figs. 5.8 and 5.9) in contrast with the typical relaxational/overdamped dynamics

seen at a generic critical point, and generally in driven-dissipative systems. As Γ is further increased

along the phase boundary, one should expect a crossover to overdamped critical dynamics. This is

somewhat analogous to the quantum critical region and the crossover to thermal critical behavior

[52]. In the context of the infinite-range model that we have considered in this work, the crossover

behavior becomes manifest as a function of system size. Indeed, we can determine the crossover

behavior from Eq. (5.30): for Γ𝑡 ≲ 1 and Γ ≲ 𝑁−
1
4 , the critical dynamics is underdamped, while
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Figure 5.9 Finite-size scaling of the response function near the weakly dissipative critical point
from exact numerics (𝐽 = 1,Δ = 2, Γ = 0.1). The dynamics is distinguished from a generic
critical point in that the dynamical critical exponent is different, 𝜁 = 1/4 and that it is
underdamped; cf. Fig. 5.7.

for large times and/or large Γ the system experiences a dynamical crossover where we recover the

usual relaxational behavior (while remaining on the phase boundary). To quantitatively investigate

the crossover, we define the first zero of the correlation function, denoted by 𝜏, as a measure of

the oscillatory behavior of the underdamped dynamics. In Fig. 5.10, we plot 𝜏 as a function of Γ

and for different system sizes. Indeed, we find that for sufficiently large values of Γ, this time scale

diverges where the dynamics becomes overdamped. Furthermore, this figure shows that this time

scales as 𝜏 ∼ 𝑁 1
4 𝜏(Γ𝑁 1

4 ) with 𝜏 a universal scaling function, hence it confirms the scaling of the

crossover value, Γcr ∼ 𝑁−1/4.

One can gain some intuition for the underdamped critical behavior near the weakly-dissipative

critical point from several different angles. First, the pointΔ = 2𝐽 is exactly where Γ𝑐 switches from

real to imaginary, as a result of which Eq. (5.4a) shows underdamped dynamics even away from the

phase boundary (when Δ > 2𝐽). Second, one can imagine that the underlying coherent dynamics

generated by the first term in the Liouvillian in Eq. (3.5) could have a stronger effect in the limit

Γ → 0. Additionally, the infinite-range Ising model is integrable in the absence of dissipation;

while dissipation generically spoils integrability, a property denoting systems with infinitely many

conserved quantities, the dynamics is approximately integrable in the limit Γ → 0, which could
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Figure 5.10 The first zero of the correlation function, 𝜏, as a function of the dissipation rate Γ and
at different system sizes (𝐽 = 1). Transverse field values Δ are chosen to lie along the right side of
the phase boundary, Δ𝑐 (Γ) = 𝐽 +

√︁
𝐽2 − Γ2/16. Both 𝜏 and Γ are scaled with system size to make

the scaling behavior manifest. The time scale 𝜏 diverges at sufficiently large Γ approximately
when Γ𝑁1/4 ≈ 6. The inset shows the unscaled plots for comparison.

lead to nontrivial dynamics [53–56]. Nevertheless, in Sec. 5.5, we show that the underdamped

dynamics survives to the first nontrivial order of integrability-breaking perturbations.

5.3.3 Comparison with Equilibrium

From the scaling dimensions and critical exponents, we can place each phase transition in its

respective universality class. Remarkably, both finite-Γ and Γ → 0 phase transitions are in

equilibrium universality classes, albeit with a classical and quantum flavor, respectively. For a

generic critical point at finite Γ, the scaling dimensions are [𝑚𝑐] = 1
2 , [𝑚𝑞] = −1

2 with the critical

exponents 𝛼 = 1/2, 𝜁 = 1/2. These quantities place this phase transition in the same universality

class as the classical infinite-ranged Ising model at finite temperature with Glauber-type dynamics

(i.e. non-conserving dynamics) [57], which itself belongs to the “model A” class of Hohenberg

& Halperin [58]. Despite the microscopic quantum dynamics, the combination of drive and

dissipation render the critical behavior effectively classical and equilibrium-like. This appears

to be the generic behavior in driven-dissipative phase transitions [13, 14, 59, 59–68]. However,

there are exceptions such as classical yet truly nonequilibrium critical behavior [69], as well as the
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emergence of quantum criticality in the limit of weak dissipation and drive [70, 71].

In the weakly-dissipative limit, we have found the scaling dimensions [𝑚𝑐] = 1, [𝑚𝑞] = 0, which

are distinct from both classical ([𝑚𝑐] = 1
2 , [𝑚𝑞] = −1

2 ) and quantum ([𝑚𝑐] = 1
2 , [𝑚𝑞] = 1

2 ) cases

[14, 33]. These scaling dimensions lead to the new set of critical exponents 𝛼 = 1/2, 𝜁 = 1/4,

as opposed to the quantum critical exponents 𝛼 = 1/3, 𝜁 = 1/3 [33]. The former exponents

place this phase transition in the same universality class as the finite-temperature transverse-field

infinite-range Ising model, i.e. the Hamiltonian in Eq. (3.4). Therefore, while the phase transition is

equilibrium-like, it resembles the quantum Ising model at finite temperature rather than the classical

stochastic Ising model. For comparison, see Fig. 5.B.1 in Appendix 5.B. Various exponents and

the comparison against classical and quantum equilibrium settings can be found in Table 5.1.

The comparison between the driven-dissipative and equilibrium behaviors can be taken one step

further due to the existence of a dynamical crossover in both cases. As shown previously, the weakly-

dissipative point is an unstable fixed point with respect to dissipation, where upon renormalization

the critical dynamics undergoes a crossover from underdamped to overdamped dynamics; see

Fig. 5.11(a). This crossover can be understood as Γ scaling inversely to time upon rescaling at

the weakly-dissipative critical point, which then sets a crossover-time that scales as ∼ 𝑁1/4. The

equilibrium analog of a dynamical crossover occurs at finite temperature. Upon renormalization, the

(perfectly oscillatory) coherent quantum critical dynamics undergoes a crossover to underdamped

dynamics, as shown in Fig. 5.11(b). Similarly to our driven-dissipative system, the temperature 𝑇

scales inversely as that of time; one can see this from the equilibrium fluctuation-dissipation relation

𝐶 = 𝑖 coth(𝜔/2𝑇)𝜒 where 𝜔 and 𝑇 scale in the same way [14, 48]. A similar line of reasoning

indicates a crossover-time ∼ 𝑁1/3. In short, the dynamical crossover of the driven-dissipative Ising

model is distinguished from its equilibrium analog not only by the critical exponents but also by

the nature of the crossover (underdamped-to-overdamped vs coherent-to-underdamped crossover,

respectively).

Despite both universality classes being equilibrium-like, there are still signatures of the mi-

croscopic nonequilibrium nature of the model. As we will discuss in Ch. ??, the FDR between
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Figure 5.11 Schematic phase diagrams of the infinite-range (a) driven-dissipative Ising model
(DDIM), and (b) equilibrium Ising model in a transverse field. The shaded regions denote the
ordered phase. The weakly dissipative critical point of the DDIM, Γ→ 0 in (a), exhibits
underdamped dynamics in contrast with the relaxational dynamics at a generic critical point.
Analogously, the equilibrium model in (b) exhibits distinct (quantum and thermal) dynamics at
zero and finite temperature. Both Γ→ 0 and 𝑇 → 0 define unstable fixed points but with respect
to dissipation and thermal fluctuations, respectively. The weakly dissipative dynamics in (a)
exhibits identical critical scaling to a finite-temperature critical point in (b)

correlation and response functions for 𝑆𝑥 and 𝑆𝑦 are modified from their equilibrium form, some-

thing that is only possible in nonequilibrium. The modified form of the FDR is indicative of the

breaking of detailed balance (i.e. time reversal symmetry).

5.4 Langevin Description

An alternative, and established, way of understanding the critical behavior of a driven-dissipative

system is through the lens of the Langevin equation, a stochastic differential equation used to

describe noisy systems [5]. Near a critical point, where we have shown the classical vertex is the

most relevant finite-size correction, we can map the low-frequency limit of the Keldysh action to

a Langevin equation [4, 13, 14]. Putting together the quadratic action from Eq. (3.30) with the

interaction in Eq. (5.16), the action reads

𝑆 ∼
∫
𝑡

[
− (𝛾𝜕𝑡 + 𝑟)𝑚𝑐 (𝑡) −

𝑢

2𝑁
𝑚3
𝑐 (𝑡) +

1
2
𝐷𝑚𝑞 (𝑡)

]
𝑚𝑞 (𝑡) , (5.32)

with the action parameters given by Eqs. (5.17), (5.24) and (5.25). The first step in mapping to the

Langevin equation is a Hubbard-Stratonovich transformation of the quantum field 𝑚𝑞 to introduce
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Driven-Diss. Class. Quantum

Γ > 0 Γ→ 0 𝑇 > 0 𝑇 > 0 𝑇 → 0

𝑡 ∼ 𝑁 𝜁 1
2

1
4

1
2

1
4

1
3

𝐶 ∼ 𝑁𝛼 1
2

1
2

1
2

1
2

1
3

Table 5.1 Driven-dissipative vs. equilibrium classical/ quantum Ising models. A generic (finite-Γ)
critical point exhibits the same critical behavior as the classical stochastic Ising model, while the
weakly dissipative (Γ→ 0) critical point can be identified with the quantum Ising model at finite
temperature.

a noise field 𝑓 (𝑡) as

𝑆 =

∫
𝑡

[
− (𝛾𝜕𝑡 + 𝑟)𝑚𝑐 (𝑡) −

𝑢

2𝑁
𝑚3
𝑐 (𝑡) +

√
2 𝑓 (𝑡)

]
𝑚𝑞 (𝑡)

−
∫
𝑡

1
𝐷
𝑓 (𝑡)2 . (5.33)

Now, integrating over 𝑚𝑞 yields a delta function whose argument is the Langevin equation (𝑚 =

𝑚𝑐/
√

2):

𝛾𝜕𝑡𝑚(𝑡) = −𝑟𝑚(𝑡) −
1
𝑁
𝑢𝑚3(𝑡) + 𝑓 (𝑡) . (5.34)

The term 𝑓 (𝑡) characterizes a white noise with a Gaussian distribution, mean ⟨ 𝑓 (𝑡)⟩ = 0, and

variance ⟨ 𝑓 (𝑡) 𝑓 (𝑡′)⟩ = −𝑖 12𝐷𝛿(𝑡 − 𝑡
′) = 2𝛾𝑇eff𝛿(𝑡 − 𝑡′). It is now clear that Eq. (5.32) near

criticality is equivalent to an overdamped Langevin equation, with an effective temperature 𝑇eff and

in an effective potential given by

H =
1
2
𝑟𝑚2 + 1

4𝑁
𝑢𝑚4 . (5.35)

Indeed, Eq. (5.34) reproduces the overdamped critical dynamics discussed in Sec.5.3.1. The

stochastic Langevin equation can be turned to a Fokker-Planck equation that describes the evolution

of the probability distribution [4, 48]; with the effective equilibrium dynamics, the steady-state

probability distribution of 𝑚 takes the form

𝑃eq(𝑚) ∼ 𝑒−H/𝑇eff . (5.36)

The nature of the dynamics changes in the limit Γ→ 0. In this case, dissipation is vanishingly

small, 𝛾 ∼ Γ→ 0, therefore we should also include the term proportional to𝜔2 in the low-frequency
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expansion of 𝑃𝑅 (𝜔). Following a similar procedure in this limit, we arrive at the Langevin equation

𝑎𝜕2
𝑡 𝑚(𝑡) + 𝛾𝜕𝑡𝑚(𝑡) = −𝑟𝑚(𝑡) −

𝑢

𝑁
𝑚3(𝑡) + 𝑓 (𝑡) , (5.37)

with the parameters taken from Eq. (5.24) in the same limit. Incidentally, we have identified

underdamped dynamics and persistent oscillations in Sec. 5.3.2. Now, we can see that these

oscillations are due to the inertial term that can be of the same order as dissipation (since 𝛾 → 0).

Again, one can identify the corresponding Fokker-Planck equation, also known as the Kramers-

Chandrasekhar equation, whose steady-state solution is just the Maxwell-Boltzmann distribution

[72]:

𝑃(𝑚, ¤𝑚) ∼ 𝑒−(H+ 1
2𝑎 ¤𝑚

2)/𝑇eff . (5.38)

This distribution only differs from Eq. (5.36) in the multiplicative Gaussian distribution of ¤𝑚. The

probability distribution of 𝑚 in Eq. (5.38) is identical to that of Eq. (5.36) upon integrating out ¤𝑚.

In other words, the static properties are identical irrespective of dissipation. In contrast, the critical

dynamics is markedly different as we have seen in the previous subsections.

Before closing this section, We emphasize that the Langevin equations derived here are only

valid near the phase boundary and outside the heated region, since they are based on the dynamics

of the slow mode.

5.5 Beyond the Infinite-Range Model

The infinite-range Ising model is rather special as the dynamics of the order parameter is exactly

determined by mean field, although fluctuations at, or close to, criticality require a separate treatment

as discussed in previous sections. In this section, we utilize the diagrammatical technology

developed in this work to investigate the effects of non-mean-field perturbations, and specifically

short-range interactions, on the dynamics. Most importantly, we show that the underdamped

dynamical critical behavior in the limit Γ → 0 persists even in the presence of the short-range

interactions.
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To investigate the role of integrability at the weakly-dissipative critical point, we add a nearest-

neighbour interaction to the Hamiltonian in Eq. (3.4):

𝐻NN = 𝐻 − 𝜆
∑︁
𝑖

𝜎𝑥𝑖 𝜎
𝑥
𝑖+1. (5.39)

We shall consider the perturbative limit 𝜆 ≪ 𝐽,Δ and assume periodic boundary conditions. The

short-range interaction alters the mean-field structure of the infinite-range Ising model, breaks its

integrability [73], and could modify the phase boundary. A standard way to study such perturbations

is to view them as spin-wave fluctuations, which have been investigated in other nonequilibrium

settings such as quantum quenches [34, 73, 74]. While our model is distinct due to its driven-

dissipative dynamics, we can still resort to a similar picture in terms of spin waves

𝜎̃𝛼𝑘 =

𝑁∑︁
𝑗=1
𝑒−𝑖𝑘 𝑗𝜎𝛼𝑗 ,

where 𝑘 = 2𝜋𝑛/𝑁 with 𝑛 ∈ {0, 1, · · · , 𝑁 − 1}. We shall identify the collective spin as the 𝑘 = 0

mode; without short-range interactions, there is no coupling between this and other modes with

𝑘 ≠ 0, however, the short-range interaction couples them and thus spoils the mean-field nature

of the model. Naively, one might expect that spin waves act as an effective bath for the “large

spin” corresponding to the 𝑘 = 0 mode, which would lead to an effective dissipation (even in the

limit Γ → 0). However, we will show using the diagrammatic techniques that this is not the case,

and therefore the underdamped critical dynamics at the weakly dissipative critical point is robust

against short-range interactions.

5.5.1 Short-Range Perturbation via Field Theory

The quantum-to-classical mapping process is not altered much by the inclusion of short-range inter-

actions. The steps leading to the Hubbard-Stratonovich transformation in Eq. (3.13) are identical,

except now we must also perform a multi-dimensional Hubbard-Stratonovich transformation on the

short-range interaction terms in the vectorized Liouvillian. The short-range Ising perturbation is

diagonalized in the 𝜎𝑥 basis, same as before. The Hubbard-Stratonovich transformation reads

± 𝑖
2
𝜆𝛿𝑡 (𝝈 (𝑢/𝑙))𝑇D−1𝝈 (𝑢/𝑙) → ∓ 𝑖

2𝜆𝛿𝑡
(𝒎 (𝑢/𝑙))𝑇D 𝒎 (𝑢/𝑙) ± 𝑖 (𝒎 (𝑢/𝑙))𝑇𝝈 (𝑢/𝑙) , (5.40)
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where 𝝈 = (𝜎1, ..., 𝜎𝑁 ) represents the spins, while 𝒎 (𝑢/𝑙) = (𝑚 (𝑢/𝑙)1 , ..., 𝑚
(𝑢/𝑙)
𝑁
) denotes the scalar

fields on the upper/lower branches of the vectorized space, respectively. The kernel D−1, represent-

ing the nearest-neighbour interaction, is given by

D−1 =

0 1 1
1

1
1 1 0

ª®®®®®¬
©­­­­­«

, (5.41)

with 1 next to the diagonal (note the periodic boundary conditions) and 0 everywhere else. This

kernel is invertible for odd 𝑁 or even 𝑁 not divisible by 4; for simplicity, we take 𝑁 to be odd. After

tracing out the spins, redefining the local fields 𝒎 (𝑢/𝑙)/(2𝜆𝛿𝑡) → 𝒎 (𝑢/𝑙) , rotating to the Keldysh

basis 𝒎𝑐/𝑞 = (𝒎 (𝑢) ± 𝒎 (𝑙))/
√

2, and taking the continuum limit, we find the exact Keldysh action

including the short-range interaction:

𝑆 = −2𝐽𝑁
∫
𝑡

𝑚𝑐𝑚𝑞 − 2𝜆
∫
𝑡

𝒎𝑇 P̃ 𝒎 − 𝑖
∑︁
𝑖

ln Tr
(
T 𝑒

∫
𝑡
T+T′

𝑖

)
. (5.42)

Here, 𝒎 denotes a column vector with 𝒎𝑐 stacked on top of 𝒎𝑞. The kernel for the local fields is

given by

P̃ =

(
0 D
D 0

)
. (5.43)

Furthermore, the short-range interaction leads to an additional matrix added to the matrix T in the

exponential:

T′𝑖 = 𝑖2
√

2𝜆 diag(𝑚𝑖,𝑞, 𝑚𝑖,𝑐,−𝑚𝑖,𝑐,−𝑚𝑖,𝑞) . (5.44)

Ideally, we must integrate out the local fields to obtain an effective action in terms of only the

original collective field 𝑚. In order to switch to a picture in terms of spin waves, we introduce the

Fourier transform of the local fields as

𝑚 𝑗 =
1
𝑁

∑︁
𝑘

𝑒𝑖𝑘 𝑗𝑚𝑘 , (5.45)

where 𝑘 = 2𝜋𝑛/𝑁 with 𝑛 ∈ {0, 1, ..., 𝑁 − 1}. The action too can be recast in the Fourier space. In

this basis, the matrix D = diag{𝐷𝑘 } takes a diagonal form with the matrix elements (recalling that
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𝑁 is odd)

𝐷𝑘 =

𝑁−1∑︁
𝑗=0

𝑒−𝑖𝑘 𝑗𝐷 𝑗 =
1
2

sec 𝑘 , (5.46)

where 𝑗 = 𝑙 − 𝑚 with 𝑙 and 𝑚 the row and column labels of the matrix D, respectively; here, we

have used the translational invariance due to periodic boundary condition.

Finally, we remark that 𝑚𝑘=0 too represents the collective field 𝑚 that is originally introduced

through the Hubbard-Stratonovich transformation of the infinite-rang Ising interaction. Indeed, it

can be shown by introducing source fields that 𝑚 and 𝑚𝑘=0 are redundant. Therefore, to simplify

the subsequent treatment, we introduce the new fields 𝑚 =
√
𝑁𝑚 + 𝜆

𝐽
√
𝑁
𝑚0, 𝑚 =

√
𝑁𝑚 − 1√

𝑁
𝑚0,

where 𝑚 serves as the new order parameter, while 𝑚 is entirely decoupled from all other fields and

appears quadratically, and can be simply integrated out. Absorbing a factor of
√︁
𝜆/𝐽𝑁 into 𝑚𝑘 , we

find the total action

𝑆 =
−2𝐽2

𝐽 + 𝜆

∫
𝑡

𝑚𝑐 (𝑡)𝑚𝑞 (𝑡) − 𝑖
∑︁
𝑗

ln Tr
(
T 𝑒

∫
𝑡
T+T′

𝑗

)
− 2𝐽

∑︁
𝑘≠0

(
𝑚−𝑘,𝑐
𝑚−𝑘,𝑞

)𝑇 (
0 𝐷𝑘

𝐷𝑘 0

) (
𝑚𝑘,𝑐

𝑚𝑘,𝑞

)
, (5.47)

where the matrices in the log-trace are given by

T = T0 + 𝑖2
√

2
𝐽
√
𝑁

diag(𝑚𝑞, 𝑚𝑐,−𝑚𝑐,−𝑚𝑞) , (5.48)

with T0 defined in Eq. (3.25), and

T′𝑗 = 𝑖

√︂
8𝐽𝜆
𝑁

∑︁
𝑘≠0

𝑒𝑖𝑘 𝑗 diag(𝑚𝑞,𝑘 , 𝑚𝑐,𝑘 ,−𝑚𝑐,𝑘 ,−𝑚𝑞,𝑘 ) . (5.49)

Notice that 𝑚𝑘=0 does not appear in the action, and the collective field is completely characterized

through 𝑚𝑐/𝑞 (𝑡).

5.5.2 Quadratic Action

We now follow a similar procedure as before and expand Eq. (5.47) to quadratic order in both 𝑚

and 𝑚𝑘 :

𝑆 =
1
2

∫
𝑡,𝑡′

(
𝑚𝑐
𝑚𝑞

)𝑇
𝑡

(
0 𝑃𝐴

𝑃𝑅 𝑃𝐾

)
𝑡−𝑡′

(
𝑚𝑐
𝑚𝑞

)
𝑡′
+ 1

2

∑︁
𝑘≠0

∫
𝑡,𝑡′

(
𝑚−𝑘,𝑐
𝑚−𝑘,𝑞

)𝑇
𝑡

(
0 𝑃𝐴

𝑘

𝑃𝑅
𝑘

𝑃𝐾
𝑘

)
𝑡−𝑡′

(
𝑚𝑘,𝑐

𝑚𝑘,𝑞

)
𝑡′
. (5.50)
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The quadratic action takes the Keldysh structure with the elements (recalling that 𝑃𝑅 (𝑡) = 𝑃𝐴 (−𝑡))

𝑃𝑅 (𝑡) = −2𝐽2

𝐽 + 𝜆𝛿(𝑡) + Θ(𝑡)8𝐽
2𝑒−

Γ
2 |𝑡 | sin (2Δ𝑡),

𝑃𝐾 (𝑡) = 𝑖8𝐽2𝑒−
Γ
2 |𝑡 | cos (2Δ𝑡),

(5.51)

and

𝑃𝑅𝑘 (𝑡) = −4𝐽𝐷𝑘𝛿(𝑡) + Θ(𝑡)8𝐽𝜆𝑒−
Γ
2 |𝑡 | sin (2Δ𝑡),

𝑃𝐾𝑘 (𝑡) = 𝑖8𝐽𝜆𝑒
− Γ

2 |𝑡 | cos (2Δ𝑡).
(5.52)

One can immediately see that the collective field 𝑚 is decoupled from spin waves 𝑚𝑘 at the level of

Eq. (5.50). This is because any (bi)linear coupling between 𝑚 and 𝑚𝑘 is forbidden by momentum

conservation. To investigate the effect of spin waves, we need to go to higher-order terms that

characterize the interaction between these fields. As we shall see, the nonlinear coupling will

dramatically change the effect of spin waves on the collective mode: while linear coupling of

the two fields will mimic a thermal bath (of spin waves) at finite temperature [75], the nonlinear

coupling will have no such effect. For another setting where nonlinear coupling changes the nature

of dissipation, see Ref. [76].

Next, we take advantage of the perturbative nature of spin waves and calculate their contribution

to the self-energy whose low-frequency behavior determines how spin waves impact the dynamics

of the order parameter 𝑚. To this end, we first list the free Green’s functions describing spin waves

in the time domain:

𝐺𝑅
𝑘 (𝑡) = −

1
4𝐽𝐷𝑘

𝛿(𝑡) − 2𝜆Δ
𝐽𝐷2

𝑘
Δ𝑘

Θ(𝑡)𝑒−Γ𝑡/2 sin
(
Δ𝑘 𝑡

2

)
, (5.53)

and

𝐺𝐾
𝑘 (𝑡) =

−𝑖𝜆𝑒−Γ|𝑡 |/2

4𝐽𝐷2
𝑘
Δ𝑘 (Γ2 + Δ2

𝑘
)

[
Δ𝑘 (2Γ2 + Δ2

𝑘 + 16Δ2) cos
Δ𝑘 𝑡

2
− Γ(Δ2

𝑘 − 16Δ2) sin Δ𝑘 |𝑡 |
2

]
, (5.54)

where Δ𝑘 = 4
√︁
Δ(Δ − 𝜆/𝐷𝑘 ). It is also useful to cast the Green’s functions in frequency space:

𝐺𝑅
𝑘 (𝜔) =

1
𝑃𝑅
𝑘
(𝜔)

=
−1

4𝐽𝐷𝑘

(𝜔 + 𝜔+) (𝜔 + 𝜔−)
(𝜔 − 𝜔𝑎) (𝜔 − 𝜔𝑏)

, (5.55)
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Figure 5.12 (a) A representative diagram involving spin waves, 𝑚𝑘,𝑐/𝑞. An additional prefactor of√︁
𝜆/𝐽 arises for each appearance of spin wave compared to that of the collective field; cf. Fig. ??.

The Kronecker delta enforces momentum conservation. (b) Contracted arrowed legs represent
spin-wave Green’s functions.

and

𝐺𝐾
𝑘 (𝜔) = −𝑃

𝐾
𝑘 (𝜔) |𝐺

𝑅
𝑘,0(𝜔) |

2 =
−𝑖𝜆Γ
4𝐽𝐷2

𝑘

(𝜔 + 𝜔+) (𝜔 + 𝜔+∗) + (𝜔 + 𝜔−) (𝜔 + 𝜔−∗)
(𝜔 − 𝜔𝑎) (𝜔 − 𝜔𝑏) (𝜔 − 𝜔∗𝑎) (𝜔 − 𝜔∗𝑏)

, (5.56)

with 𝜔+/− = 𝑖Γ/2 ± 2Δ and 𝜔𝑎/𝑏 = (−𝑖Γ ± Δ𝑘 )/2.

Finally, we identify the low-frequency effective temperature of spin waves:

𝑇eff,𝑘 = lim
𝜔→0

𝜔

2
𝐺𝐾
𝑘
(𝜔)

𝐺𝑅
𝑘
(𝜔) − 𝐺𝐴

𝑘
(𝜔)

=
Γ2 + 16Δ2

32Δ
. (5.57)

Interestingly, this effective temperature is 𝑘-independent and is in fact equal to the effective tem-

perature of the collective mode; cf. Eq. (5.6). The equivalence of the effective temperature is

perhaps unsurprising given that at this quadratic level the system is not interacting, so the effective

temperature is simply that of a single-particle and would be equal for all modes.

5.5.3 Self-Energy

In this section, we compute the correction to the self-energy due to spin waves and investigate their

effect on the phase diagram and the dynamics, particularly at the weakly dissipative point. Our

starting point is the Keldysh form of the familiar Dyson equation [4],

G−1 = G−1 − 𝚺 , (5.58)
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Figure 5.13 Diagrams contributing to the Keldysh component of the self-energy, Σ𝐾 , to the order
∼ 𝜆2.

where G is the exact Green’s function for the collective field, and G−1 is given by the kernel in the

first term in Eq. (5.50). The self-energy 𝚺 has the typical Keldysh structure and takes the form

𝚺 =

(
0 Σ𝐴

Σ𝑅 Σ𝐾

)
. (5.59)

The low-frequency expansion of the retarded and Keldysh elements of the self-energy will renor-

malize the parameters describing the dynamics of the collective field as Σ𝑅 (𝜔) ∼ −𝛿𝑟 + 𝑖𝛿𝛾𝜔 and

Σ𝐾 (𝜔 = 0) = 𝛿𝐷. At any generic critical point, the spin waves will simply provide a correction

𝛿𝛾 and 𝛿𝐷 to the otherwise finite values of dissipation and fluctuations, respectively. However, the

weakly-dissipative critical point where Γ→ 0 is particularly susceptible to the coupling to the spin

waves, as they could very well generate dissipation (even when Γ→ 0).

To calculate the self-energy, we utilize the diagrammatic representation developed in Sec. 3.3.4;

we also include lines with an arrow to denote spin waves with a nonzero momentum in addition

to those without an arrow which refer to the collective field. The connected diagrams inside the

logarithm in Eq. (3.37) are modified accordingly: we include an additional prefactor of
√︁
𝜆/𝐽 for

each appearance of the 𝑚𝑘 fields, and keep track of momentum indices. The diagrams resultant

from expanding the logarithm in Eq. (3.41) should be summed over all momenta, with an overall

Kronecker delta enforcing momentum conservation. An example of the classical vertex for the spin

waves can be found in Fig. 5.12.

The lowest nontrivial correction to the self-energy arises at the orderO(𝜆2) due to a combination
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Figure 5.14 Diagrams contributing to the retarded component of the self-energy, Σ𝑅, to the order
∼ 𝜆2.

of momentum conservation and the fact that D−1 is traceless. The one-loop diagrams contributing

to Σ𝐾 to the order O(𝜆2) are depicted in Fig. 5.13, while those contributing to Σ𝑅 are given in

Fig. 5.14. All other diagrams are either higher order in 𝜆 or are suppressed as O(1/𝑁). Note

that only diagrams with two external quantum legs contribute to Σ𝐾 , while those with one external

quantum and another classical leg contribute to Σ𝑅, in harmony with the Keldysh structure of the

action at the quadratic level. As an example calculation, the self-energy contribution to Σ𝐾 due to

the 𝑢𝑞𝑐𝑐𝑞 one-loop diagram is given by

Σ𝐾(𝑞𝑐𝑐𝑞) (𝜔) =
−𝜆
𝐽𝑁

∑︁
𝑘≠0

∫
𝜔′

[
𝑢𝑞𝑐𝑐𝑞 (−𝜔, 𝜔′,−𝜔′, 𝜔) + 𝑢𝑞𝑐𝑐𝑞 (𝜔, 𝜔′,−𝜔′,−𝜔)

]
𝐺𝐾
𝑘,0(𝜔

′) . (5.60)

The overall minus sign follows from a factor of −𝑖 from the perturbative expansion of the path

integral multiplied by another factor of −𝑖 from the connected four-legged diagrams in Eq. (3.41).

The above expression must be symmetrized with respect to the external frequency due to the same

symmetry of the Keldysh component 𝑃𝐾 . The interaction coefficient in frequency space is given

by

𝑢𝑞𝑐𝑐𝑞 (𝝎) =
𝑖256Δ2𝐽4

𝜔1 + 𝜔2 − 𝑖Γ
𝑓 (𝜔1, 𝜔4) , (5.61)

where 𝑓 (𝑥, 𝑦) = 1/[(𝑥 −𝜔+) (𝑥 −𝜔−) (𝑦 −𝜔+∗) (𝑦 −𝜔−∗)]. Setting 𝜔1 = 𝜔4 = 0 and expanding to
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lowest non-zero order in 𝜆, we find the correction

Σ𝐾(𝑞𝑐𝑐𝑞) (0) =
−𝑖49152𝐽2Δ2Γ𝜆2

(Γ2 + 16Δ2)2(9Γ2 + 16Δ2)
, (5.62)

where we have used the fact that
∑
𝑘≠0 1/𝐷2

𝑘
= 2𝑁−1/2 and neglected terms ofO(1/𝑁). Repeating

this calculation for all of the diagrams in Fig. 5.13, we find that the Keldysh component of the

self-energy at low frequencies is given by

Σ𝐾 (0) = 𝛿𝐷 =
𝑖16384𝐽2Δ2Γ

(Γ2 + 16Δ2)3
𝜆2 . (5.63)

Similarly, the retarded component of the self-energy is determined by considering the diagrams in

Fig. 5.14. Performing the calculations, we find

Σ𝑅 (𝜔) ∼ +𝛿𝑟 + 𝛿𝛾𝑖𝜔 =
1536𝜆2𝐽2Δ

(Γ2 + 16Δ2)2
+ 8192𝜆2𝐽2ΔΓ

(Γ2 + 16Δ2)3
𝑖𝜔 . (5.64)

The above equations produce the first nontrivial correction to the self-energy due to the coupling

to spin waves. At a generic critical point, these corrections remain finite and simply act as shifts

to the noise and dissipation, as expected. Interestingly, we find from Eqs. (5.63) and (5.64) that 𝛿𝛾

and 𝛿𝐷 vanish in the limit Γ→ 0. In other words, while spin waves renormalize the low-frequency

parameters, they do not qualitatively change the nature of the dynamics even in the limit Γ → 0.

We thus conclude that the underdamped critical dynamics at the weakly-dissipative point is robust

against generic perturbations in Eq. (3.4) exemplified by short-range interactions, at least to the

lowest nontrivial order (∼ 𝜆2).

Finally, we can inspect the effect of spin waves on the phase boundary of the model. These

effects can be seen by setting the renormalized mass 𝑟ren ≡ 𝑟 + 𝛿𝑟 to zero, where 𝑟 is the bare mass

defined in Eq. (5.24):

[Γ2 + 16Δ(Δ − 2𝐽)] (𝐽 − 𝜆)2 + 768𝐽3
Δ

(Γ2 + 16Δ2)
𝜆2 = 0 , (5.65)

where we have defined 𝐽 = 𝐽 + 𝜆 and dropped terms of 𝑂 (𝜆3) or higher. We have redefined

𝐽 to include the contribution of the short-range interaction to the collective mode, and to solely

separate out the effect of spin waves. In Fig. 5.15, one can see that ordered region shrinks due to
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Figure 5.15 Phase boundary in the presence and absence of short-range interactions; here, 𝐽 = 1
and an exaggerated value of 𝜆 = .1 is chosen for better visualization. The feature around Δ ∼ 𝜆
could be an artifact of our perturbation scheme, which requires 𝜆 ≪ Δ.

the coupling to spin waves. This is expected as spin waves introduce more fluctuations and thus

disfavor ordering. Finally, we remark that Eq. (5.65) should not be trusted near Δ → 0 since it

was implicitly assumed that Δ ≫ 𝜆 in our perturbative calculation (to expand Δ𝑘 in powers of 𝜆);

however, it is possible that short-range interactions dramatically alter the phase boundary near the

origin, in a fashion that could be related to the predicted first-order phase transition in the DDIM

in 𝑑 dimensions [59, 66].
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APPENDIX

5.A Interaction coefficients

There are many relevant interaction coefficients necessary to compute the diagrams in Sec. 3.3.4.

They are defined by Eq. (3.38) in the time domain and in Eq. (3.40) in the frequency domain.

Here, we list the relevant interaction coefficients for the four-legged one-loop diagrams in Figs. 5.13

and 5.14 in the frequency domain:

𝑢𝑞𝑐𝑐𝑐 (𝝎) =
−128Δ𝐽4(Γ/2 − 𝑖𝜔4)

𝜔1 + 𝜔2 − 𝑖Γ
𝑓 (𝜔1, 𝜔4) , (5.66)

𝑢𝑞𝑐𝑞𝑞 (𝝎) =
𝑖128Δ𝐽4(Γ/2 − 𝑖𝜔4)

(𝜔1 + 𝜔2 − 𝑖𝜖) (𝜔1 + 𝜔2 − 𝑖Γ)
𝑓 (𝜔1, 𝜔4) , (5.67)

𝑢𝑞𝑐𝑞𝑐 (𝝎) =
256Δ2𝐽4Γ

(𝜔1 + 𝜔2 − 𝑖𝜖) (𝜔1 + 𝜔2 − 𝑖Γ)
𝑓 (𝜔1, 𝜔4) , (5.68)

𝑢𝑞𝑐𝑐𝑞 (𝝎) =
𝑖256Δ2𝜆𝐽3

𝜔1 + 𝜔2 − 𝑖Γ
𝑓 (𝜔1, 𝜔4) , (5.69)

𝑢𝑞𝑐 (𝜔1, 𝜔2)𝑢𝑞𝑐 (𝜔3, 𝜔4) = −256Δ2𝐽42𝜋𝛿(𝜔1 + 𝜔2) 𝑓 (𝜔1, 𝜔4) . (5.70)

𝑢𝑞𝑞 (𝜔1, 𝜔2)𝑢𝑞𝑐 (𝜔3, 𝜔4) = −𝑖128Δ𝐽4(𝑖𝜔1 + Γ/2)2𝜋𝛿(𝜔1 + 𝜔2) 𝑓 (𝜔1, 𝜔4) . (5.71)

Recall that in the definition of the diagrammatics, we introduce an infinitesimal regularization 𝜖

that we take to zero at the end of the calculation. This is necessary due to the pole at 𝜔 = 0 from

the steady state eigenvalue of Eq. (3.25). When calculating the interaction coefficients for terms

containing spin wave fields 𝑚𝑘 , we simply multiply by these coefficients by
√︁
𝜆/𝐽 for each power

of the spin wave field, see Fig. 5.12 for an example.

We also list here the interaction coefficient for the six-legged classical vertex used to calculate

the damping parameter in the ordered phase in Sec. 5.2,

𝑢𝑞𝑐𝑐𝑐𝑐𝑐𝑐 (𝝎) =
−256𝐽6Δ(Γ + 2𝑖(𝜔1 + 𝜔2 + 𝜔3) (Γ − 2𝑖𝜔6)
(𝜔1 + 𝜔2 + 𝜔3 − 𝜔+) (𝜔1 + 𝜔2 + 𝜔3 − 𝜔−)

× 𝑓 (𝜔1, 𝜔6)
(𝜔1 + 𝜔2 − 𝑖Γ) (𝜔5 + 𝜔6 + 𝑖Γ)

,

(5.72)
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where𝝎 = (𝜔1, ..., 𝜔𝑛) (for an 𝑛-legged diagram), 𝑓 (𝑥, 𝑦) = 1/[(𝑥−𝜔+) (𝑥−𝜔−) (𝑦−𝜔+∗) (𝑦−𝜔−∗)],

and 𝜔+/− = 𝑖Γ/2 ± 2Δ. For self-energy calculations, it is useful to recall that
∑
𝑘≠0 1/𝐷𝑘 = −1/2

and
∑
𝑘≠0 1/𝐷2

𝑘
= 2𝑁 − 1/2, where 𝐷𝑘 is defined in Eq. (5.46).

5.B Equilibrium Quantum Ising Model

In this section, we report the dynamics of the equilibrium infinite-range Ising model at finite

temperature (in the absence of dissipation). Specifically, we demonstrate via exact numerical

simulation that the thermal critical point of this model belongs to the same (static and dynamic)

universality class as the driven-dissipative Ising model in the weakly dissipative regime. We start

with the same Hamiltonian

𝐻 = − 𝐽
𝑁
𝑆2
𝑥 + Δ𝑆𝑧 . (5.73)

This Hamiltonian features a thermal phase transition to an ordered phase where the Ising 𝑍2

symmetry is broken at the critical temperature [28]

𝑇𝑐 =
2Δ

ln
(

1+Δ/2𝐽
1−Δ/2𝐽

) . (5.74)

The Hamiltonian conserves the total spin (i.e., [𝐻, ®𝑆] = 0) which thus defines a good quantum

number. In the angular-momentum basis defined by |𝑆, 𝑚⟩, the Hamiltonian becomes block diagonal

with each block corresponding to a total spin 𝑆. However, each sector is highly degenerate with a

multiplicity of 𝐷 (𝑆). The multiplicity is given by 𝐷 (𝑁/2) = 1, 𝐷 (𝑁/2−1) = 𝑁−1, 𝐷 (𝑁/2−2) =

𝑁 (𝑁 − 3)/2, and

𝐷 (𝑁/2 − 𝑝) = 𝑁 (𝑁 − 1)...(𝑁 − 𝑝 + 2)
𝑝!

(𝑁 − 2𝑝 + 1) , (5.75)

for 3 ≤ 𝑝 ≤ 𝑁/2 [28]. The thermal state is then given by

𝜌(𝛽) = 𝑒−𝛽𝐻 =

𝑁/2⊕
𝑆=0

(
𝐷 (𝑆)⊕
𝑖=1

𝑒−𝛽𝐻𝑆

)
, (5.76)

which is to be understood as the direct sum over each unique spin sector with the corresponding
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Figure 5.B.1 Finite-size scaling behavior of the infinite-range Ising model at a thermal critical
point (𝐽 = 1,Δ = 1, 𝑇 = 1.82048). At this critical point, fluctuations scale as 𝑁1/2, while the
critical dynamics is underdamped and is governed by a characteristic time scale 𝑡 ∼ 𝑁1/4. These
exponents are identical to those of the driven-dissipative Ising model in the weakly dissipative
regime (see Fig. 3 of the main text).

multiplicity 𝐷 (𝑆). We then numerically calculate the correlation function

𝐶 (𝑡) = 1
𝑁
⟨{𝑆𝑥 (𝑡), 𝑆𝑥 (0)}⟩ =

2
𝑁

Re⟨𝑆𝑥 (𝑡)𝑆𝑥 (0)⟩

=
2
𝑁

ReTr
(
𝑒−𝑖𝐻𝑡𝑆𝑥𝑒

𝑖𝐻𝑡𝑆𝑥𝜌(𝛽)
)
.

(5.77)

A plot of the correlation function and its finite-size scaling behavior can be found in Fig. 5.B.1.

There, we see that the dynamical exponent, defined via 𝑡 ∼ 𝑁 𝜁 , is given by 𝜁 = 1/4 and that the

dynamics is underdamped just like at the weakly-dissipative critical point of the driven-dissipative

Ising model discussed in Sec. 5.3.2.

5.C Classical (Stochastic) Ising Model

For completeness, here we introduce the classical stochastic Ising model [57]. The infinite-range

(classical) Ising Hamiltonian is given by

H = − 𝐽
𝑁
𝑆2 , (5.78)

where 𝑆 =
∑𝑁
𝑖 𝑠𝑖 with the Ising spin variable 𝑠𝑖 = ±1. While the Hamiltonian (being a 𝑐 number and

commuting with all observables) does not impose any intrinsic dynamics, a stochastic, Glauber-type
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dynamics can be imposed via the (classical) master equation

𝑑

𝑑𝑡
𝑃({𝑠}; 𝑡)

= −
𝑁∑︁
𝑖=1
𝑊 (𝑠𝑖 → −𝑠𝑖, 𝑡)𝑃(𝑠1, ..., 𝑠𝑖, ..., 𝑠𝑁 ; 𝑡)

+
𝑁∑︁
𝑖=1
𝑊 (−𝑠𝑖 → 𝑠𝑖, 𝑡)𝑃(𝑠1, ...,−𝑠𝑖, ..., 𝑠𝑁 ; 𝑡) .

(5.79)

Here, 𝑃({𝑠}; 𝑡) denotes the probability that the system is in a spin configuration {𝑠} at time 𝑡, and

𝑊 (𝑠𝑖 → −𝑠𝑖, 𝑡) represents the transition probability rate of a spin flip at site 𝑖 and at time 𝑡. Under

equilibrium conditions, the probability and transition rates satisfy detailed balance [50],

𝑊 (𝑠𝑖 → −𝑠𝑖)
𝑊 (−𝑠𝑖 → 𝑠𝑖)

=
𝑃(𝑠1, ...,−𝑠𝑖, ..., 𝑠𝑁 )
𝑃(𝑠1, ..., 𝑠𝑖, ..., 𝑠𝑁 )

, (5.80)

with the transition rate being of the Glauber type (characterizing a non-conserved order parameter),

𝑊 (𝑠𝑖 → −𝑠𝑖) =
1

2𝜏0
[1 − 𝑠𝑖 tanh (𝛽𝐸)] . (5.81)

Here, 𝜏0 defines the characteristic time scale of Glauber dynamics, and 𝐸 = −(2𝐽/𝑁)∑𝑁
𝑖 𝑠 𝑗 . From

here, one can simulate the relaxation of the system from a near-equilibrium state using Monte Carlo

methods combined with the transition rate given above. Monte-Carlo simulations of the this model

at criticality are consistent with a critical dynamical scaling where 𝑡 ∼ 𝑁1/2 [57].
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CHAPTER 6

MODIFIED TIME-REVERSAL SYMMETRY AT CRITICALITY

nonequilibrium systems are host to exciting physics because the general guiding principles of

equilibrium statistical mechanics are not directly applicable in this new domain. One such general

feature is the principle of detailed balance in equilibrium [77]. Extensions of this principle to the

quantum domain have been studied extensively for both closed and open systems [78–81]. In all

such settings, detailed balance is directly tied to time-reversal symmetry (TRS) under reversing the

direction of time (in two-time correlators, e.g.). A second defining characteristic of equilibrium

systems is the fluctuation-dissipation relations (FDRs) relating the dynamical response of the

system to their inherent fluctuations. Importantly, these two principles are not independent: a

proper formulation of the TRS leads to the FDRs [82].

The paradigm of driven-dissipative systems we are considering in this work constitutes a generic

nonequilibrium setting. The competition between drive and dissipation leads the system towards a

nonequilibrium steady state far from thermal equilibrium. Due to the nonequilibrium dissipative

dynamics, both TRS and FDR are generally broken in these steady states [83]; the guiding principles

of equilibrium physics are thus absent in their driven-dissipative counterparts.

Nonetheless, it has become increasingly clear that the critical properties of a large class of many-

body driven-dissipative systems (yet not all [69, 84–87]) are described by an effective equilibrium

behavior near their respective phase transitions [13, 14, 60–68, 88, 89]. We have shown in Ch. 5

that the DDIM appears to fall in this category as well.

In this chapter we will show that both FDR and TRS are broken even macroscopically at or near

criticality. This is shown by inspecting different observables that overlap with the order parameter

and crucially encompass both even and odd operators under time-reversal transformation. We show

that these observables satisfy emergent FDR-like relations but with effective temperatures that are

opposite in sign; we dub such relations FDR*. Moreover, while TRS is broken macroscopically, we

show that a modified form of the time-reversal symmetry of two-time correlators, dubbed TRS*,
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emerges at or near criticality where correlation and response functions exhibit definite, but possibly

opposite, parities under time-reversal transformation. This is in sharp contrast with equilibrium

where correlation and response functions exhibit the same parity.

We showcase our results using the DDIM, as it provides the minimal driven-dissipative model

with an Ising type phase transition. We also consider a short-range quadratic model of driven-

dissipative bosons with the Ising symmetry. These models provide an ideal testbed for the general

questions about the fate of the FDR and TRS in driven-dissipative systems, the role of the time-

reversal symmetry (breaking), and the emergence of modified fluctuation-dissipation relations.

6.1 Fluctuation-Dissipation Relations

Characteristic information about a given quantum system and a set of observables 𝑂𝑖 can be

obtained from the two-point functions

𝐶𝑂𝑖𝑂 𝑗
(𝑡) = ⟨{𝑂𝑖 (𝑡), 𝑂 𝑗 }⟩, 𝜒

𝑂𝑖𝑂 𝑗
(𝑡) = −𝑖Θ(𝑡)⟨[𝑂𝑖 (𝑡), 𝑂 𝑗 ]⟩, (6.1)

which define the correlation function and the causal response function, respectively; the former

captures fluctuations (e.g., at equal times), while the latter describes the response of the system to a

perturbation at an earlier time. While we have defined the correlation and response functions earlier

in this text, we redefine them here in a more general fashion for the purposes of this chapter. The

function Θ(𝑡) is the Heaviside step function, used to enforce causality. The fluctuation-dissipation

theorem, a pillar of statistical mechanics, relates these two quantities in equilibrium. We write the

fluctuation-dissipation relation (FDR) as [48]

FDR : 𝜒
𝑂𝑖𝑂 𝑗
(𝑡) = 1

2𝑇
Θ(𝑡)𝜕𝑡𝐶𝑂𝑖𝑂 𝑗

, (6.2)

valid for classical systems (with the respective classical definitions of 𝐶 (𝑡) and 𝜒(t) [43]), as well

as quantum systems at finite temperature and long times [48]. An alternative representation of the

FDR in the frequency domain is

𝜒′′𝑂𝑖𝑂 𝑗
(𝜔) = 𝜔

4𝑇
𝐶𝑂𝑖𝑂 𝑗

(𝜔) , (6.3)
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where 𝜒′′
𝑂𝑖𝑂 𝑗
(𝑡) ≡ 1

2 ⟨[𝑂𝑖 (𝑡), 𝑂 𝑗 ]⟩, and the Fourier transform has been defined as 𝑓 (𝜔) =
∫
𝑡
𝑒𝑖𝜔𝑡 𝑓 (𝑡)

for a function 𝑓 . Furthermore, if the system satisfies microreversiblity, or (quantum) detailed

balance, two-time correlators exhibit a time-reversal symmetry [79, 80]. Assuming that the operator

𝑂𝑖 has a definite parity 𝜖𝑖 under time-reversal (in the absence of magnetic fields), the correlation

and response functions then satisfy [90]

𝐶𝑂𝑖𝑂 𝑗
(𝑡) = 𝜖𝑖𝜖 𝑗𝐶𝑂 𝑗𝑂𝑖

(𝑡) , (6.4a)

𝜒
𝑂𝑖𝑂 𝑗
(𝑡) = 𝜖𝑖𝜖 𝑗 𝜒𝑂 𝑗𝑂𝑖

(𝑡) . (6.4b)

In this work, we shall refer to such relations as TRS of two-time correlators, or just TRS. Notice that

these set of equations are also consistent with the FDR in Eq. (6.2), and are valid in the frequency

domain as well. The above equations form the origin of the Onsager reciprocity relations [91].

FDR and TRS are both broken in driven-dissipative systems as they give rise to a nonequilibrium

steady states at long times. Extensive effort has gone into identifying the steady states of many-

body driven-dissipative systems as well as their phase transitions. A large body of work, however,

has shown that a variety of driven-dissipative many-body systems exhibit critical behavior that

is effectively equilibrium [13, 14, 60–68, 88, 89, 92]. Specifically, an effective temperature 𝑇eff

emerges that governs the critical properties (e.g., critical exponents) near their phase transitions at

long times/wavelengths. An effective TRS may be then expected to emerge as well given that TRS

and FDR are intimately tied [82].

We consider driven-dissipative systems whose Hamiltonian—in the rotating frame—is itself

time-reversal symmetric: 𝑇𝐻𝑇−1 = 𝐻 with 𝑇 the antiunitary operator associated with the time-

reversal transformation; here, 𝑇 = 𝐾 is simply complex conjugation. This is clearly satisfied by Eq.

(3.4), and is also satisfied by the bosonic lattice model we will consider here. Dissipative coupling

to the environment, however, explicitly breaks TRS and exposes the nonequilibrium nature of the

system. Additionally, for both models the dynamics under the Liouvillian L comes with an Ising

Z2 symmetry that defines the order parameter at the phase transition. nonequilibrium systems with

the Z2 symmetry are generally expected to fall under the familiar Ising universality class at their

phase transitions. Previous work on driven-dissipative Ising-type systems has reported an emergent
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FDR governing the order-parameter dynamics for some 𝑇eff [14, 44, 89, 92–94], and the DDIM is

no exception (see Ch. 5).

Notwithstanding the evidence for emergent equilibrium near criticality, here we show that

FDR and TRS are both macroscopically broken in quadratic driven-dissipative Ising-type systems.

This becomes manifest by considering other observables that overlap with the order parameter,

i.e., observables that share the same Z2 symmetry. In the Ising model, for example, beside 𝑆𝑥

typically signifying the order parameter, we will also consider 𝑆𝑦 (with the transverse field along

the 𝑧 direction). This expanded set of observables exhibits critical scaling, but they do not obey

an effective equilibrium FDR. Interestingly, however, we show that a modified form of the FDR

emerges at long times,

FDR* : 𝜒
𝑂𝑖𝑂

∗
𝑗
(𝑡) ≃ 1

2𝑇eff
Θ(𝑡)𝜕𝑡𝐶𝑂𝑖𝑂 𝑗

, (6.5)

where the ≃ sign means we have neglected noncritical corrections here and throughout the rest

of this chapter; we dub this modified relation FDR*. Here, we have assumed that the 𝑂𝑖’s are

Hermitian operators 1 which have the same Ising symmetry as the order parameter; we have also

defined 𝑂∗
𝑗
= 𝑇𝑂 𝑗𝑇

−1 (recall that 𝑇 = 𝐾). In the example of the Ising spin model, 𝑆∗𝑥 = 𝑆𝑥 while

𝑆∗𝑦 = −𝑆𝑦. We emphasize that FDR* is only applicable for this subset of observables, and not for

all observables as is the case in Eq. (6.2). In the frequency domain, FDR* takes the form

Im𝜒𝑂𝑖𝑂
∗
𝑗
(𝜔) ≃ 𝜔

4𝑇eff
𝐶𝑂𝑖𝑂 𝑗

(𝜔) , (6.6)

which does not reduce to Eq. (6.3), in particular when the two operators have opposite parities.

The FDR* is radically different from its equilibrium counterpart, and has important consequences.

To see this, let us again assume that the operator 𝑂𝑖 has a definite parity 𝜖𝑖 under time-reversal

transformation. In this case, the FDR can be written as

𝜒
𝑂𝑖𝑂 𝑗
(𝑡) ≃

𝜖 𝑗

2𝑇eff
Θ(𝑡)𝜕𝑡𝐶𝑂𝑖𝑂 𝑗

. (6.7)

This means that an emergent FDR is satisfied with 𝜒
𝑂𝑖𝑂 𝑗

= (1/2𝑇𝑖 𝑗 )𝜕𝑡𝐶𝑂𝑖𝑂 𝑗
but with different

temperatures for different observables, 𝑇𝑖 𝑗 = 𝜖 𝑗𝑇eff, same in magnitude but possibly with opposite
1Unlike the standard FDR, the FDR* is sensitive to the operators being Hermitian or not; see Section 6.6.2.
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signs depending on the observables. For example, if 𝑂1 is even under time-reversal (𝜖1 = 1) and

𝑂2 is odd (𝜖2 = −1), we find 𝑇11 = −𝑇12 = 𝑇21 = −𝑇22 = 𝑇eff.

We further show that an unusual form of TRS holds at or near criticality:

𝐶𝑂𝑖𝑂 𝑗
(𝑡) ≃ 𝐶𝑂 𝑗𝑂𝑖

(𝑡), (6.8a)

𝜒
𝑂𝑖𝑂 𝑗
(𝑡) ≃ 𝜖𝑖𝜖 𝑗 𝜒𝑂 𝑗𝑂𝑖

(𝑡). (6.8b)

In parallel with FDR*, the above relations will be referred to as TRS*. Notice that the above

equations are consistent with the FDR* in Eq. (6.7). Interestingly, the correlation and response

functions transform differently under time-reversal transformation, in sharp contrast with equi-

librium; cf. Eq. (6.4). While violating TRS, these functions still have a definite parity under

time-reversal transformation. Moreover, combining Eqs. (6.7) and (6.8), we further show that the

Onsager reciprocity relation finds a modified form with the opposite parity. This is surprising in

light of the broken TRS, but is a direct consequence of the emergent TRS*.

We will derive these results in the following sections using the Keldysh field-theory we have

developed in the previous chapters, and we connect the slow mode discussed in Sec. 5.1 to the

emergence of 𝑇𝑅𝑆∗. We show that the FDR* and TRS* are a consequence of the non-Hermitian

form of the dynamics generator, due to the TRS of the Hamiltonian, 𝑇𝐻𝑇−1 = 𝐻, combined with

the Ising Z2 symmetry of the Liouvillian L.

6.2 Time-Reversal in the DDIM

In this section, we briefly go over the implications of time-reversal symmetry in the DDIM. The

LMG Hamiltonian given by Eq. (3.4), as well as the DDIM Liouvillian, has been discussed

extensively in Ch. 3. We repeat it here for the sake of the reader

𝐻 = − 𝐽
𝑁
𝑆2
𝑥 + Δ𝑆𝑧 . (6.9)

In general, the form of the time-reversal operator depends on the form of the Hamiltonian, but

it is always anti-unitary. Here, the time-reversal operator 𝑇 = 𝐾 is simply complex conjugation.

The Hamiltonian in Eq. (3.4) is time-reversal symmetric because it is real, which can be seen by
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writing out all of the Pauli matrices in the basis of 𝜎𝑧. Time-reversal transformation (i.e., acting

with the anti-unitary operator 𝑇 together with sending 𝑡 → −𝑡) leaves the von Neumann equation

𝜕𝑡𝜌 = −𝑖[𝐻, 𝜌] invariant. In the ground state, this symmetry enforces ⟨𝑆𝑦⟩ = 0 as 𝑇𝑆𝑦𝑇−1 = −𝑆𝑦;

this is true even in the ordered phase where ⟨𝑆𝑦⟩ = 0 while ⟨𝑆𝑥⟩ ≠ 0, see Eq. (3.8). Furthermore,

correlators such as ⟨{𝑆𝑥 , 𝑆𝑦}⟩ that are odd under time-reversal must be zero.

These symmetry considerations can be extended to thermal states under unitary dynamics as

they satisfy the KMS condition and exhibit an equilibrium symmetry that involves time-reversal

[95, 96]. Two time-correlators then satisfy the symmetry relations in Eq. (6.8). However, the

driven-dissipative model in Eq. (3.5) breaks such symmetries. This is because Eq. (3.5) is derived

in the rotating frame of the drive, hence breaking detailed balance. The resulting steady state is

then not a thermal state, and TRS of two-time correlators no longer holds [97]. Specifically, this

allows for nonzero expectation values of odd observables such as ⟨𝑆𝑦⟩ (in the ordered phase) and

correlators such as ⟨{𝑆𝑥 , 𝑆𝑦}⟩. In fact, as we will see in the following sections, the fact that 𝑆𝑦 can

now spontaneously order is deeply connected to the existence of 𝑇𝑅𝑆∗.

6.3 Correlation and Response Functions For 𝑆𝑥 and 𝑆𝑦

We will now utilize the field theory that we established in Ch. 3 to calculate the necessary

observables to showcase the modified TRS and FDR. To obtain the correlation and response

functions for 𝑆𝑦 and the cross-correlations with 𝑆𝑥 , we introduce source fields 𝛼(𝑢/𝑙) and 𝛽(𝑢/𝑙) to

L, the vectorized form of Eq. (3.5), which couple to 𝑆𝑥 and 𝑆𝑦 respectively:

L′(𝑡) = L + 𝑖𝛼(𝑢) (𝑡) 𝑆𝑥√
𝑁
⊗ 𝐼 − 𝑖𝛼(𝑙) (𝑡)𝐼 ⊗ 𝑆𝑥√

𝑁
+ 𝑖𝛽(𝑢) (𝑡)

𝑆𝑦√
𝑁
⊗ 𝐼 + 𝑖𝛽(𝑙) (𝑡)𝐼 ⊗

𝑆𝑦√
𝑁
, (6.10)

and perform the nonequilibrium quantum-to-classical mapping as usual. The absence of a minus

sign on the last term stems from the vectorization transformation in the mapping. Introducing the

sources does not affect the quadratic term in 𝑚 in Eq. (3.16), but changes the T matrix to the new
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matrix T′ = T + T𝛼 + T𝛽 where

T𝛼 = 𝑖

√︂
2
𝑁

©­­­«
𝛼𝑞 0 0 0
0 𝛼𝑐 0 0
0 0 −𝛼𝑐 0
0 0 0 −𝛼𝑞

ª®®®¬ , (6.11)

and

T𝛽 =
1
√

2𝑁

©­­­«
0 −𝛽𝑐 + 𝛽𝑞 −𝛽𝑐 − 𝛽𝑞 0

𝛽𝑐 − 𝛽𝑞 0 0 −𝛽𝑐 − 𝛽𝑞
−𝛽𝑐 − 𝛽𝑞 0 0 −𝛽𝑐 + 𝛽𝑞

0 −𝛽𝑐 − 𝛽𝑞 𝛽𝑐 − 𝛽𝑞 0

ª®®®¬ . (6.12)

We have performed the Keldysh rotation 𝛼𝑐/𝑞 = (𝛼(𝑢) ± 𝛼(𝑙))/
√

2, 𝛽𝑐/𝑞 = (𝛽(𝑢) ± 𝛽(𝑙))/
√

2 for

convenience. Next, we expand the action to quadratic order in both 𝑚𝑐/𝑞 and the source fields

around 𝑚𝑐/𝑞 = 𝛼𝑐/𝑞 = 𝛽𝑐/𝑞 = 0,

𝑆 =
1
2

∫
𝑡,𝑡′

©­­­­­­­«

𝑚𝑐
𝑚𝑞
𝛼𝑐
𝛼𝑞
𝛽𝑐
𝛽𝑞

ª®®®®®®®¬

𝑇

𝑡

©­­­­­­­«
P 0 0

4𝐽P𝛼𝛼 P𝛼𝛼 0

4𝐽P𝛽𝛼 2P𝛽𝛼 P𝛽𝛽

ª®®®®®®®¬𝑡−𝑡′

©­­­­­­­«

𝑚𝑐
𝑚𝑞
𝛼𝑐
𝛼𝑞
𝛽𝑐
𝛽𝑞

ª®®®®®®®¬𝑡′
, (6.13)

where the kernel becomes a lower triangular block matrix. The block matrices take the usual

Keldysh structure

P =

(
0 𝑃𝐴

𝑃𝑅 𝑃𝐾

)
, P𝛼𝛼 =

1
4𝐽2

[
P +

(
0 2𝐽𝛿(𝑡)

2𝐽𝛿(𝑡) 0

)]
,

P𝛽𝛼 =

(
0 𝑃𝐴

𝛽𝛼

𝑃𝑅
𝛽𝛼

𝑃𝐾
𝛽𝛼

)
, P𝛽𝛽 = P𝛼𝛼,

and the matrix elements for each block matrix are

𝑃𝑅 (𝑡) = 𝑃𝐴 (−𝑡) = −2𝐽𝛿(𝑡) + Θ(𝑡)8𝐽2𝑒−
Γ
2 𝑡 sin (2Δ𝑡) , (6.14a)

𝑃𝐾 (𝑡) = 𝑖8𝐽2𝑒−
Γ
2 |𝑡 | cos (2Δ𝑡) , (6.14b)

𝑃𝑅𝛽𝛼 (𝑡) = −𝑃𝐴𝛽𝛼 (−𝑡) = −Θ(𝑡)2𝑒−
Γ
2 |𝑡 | cos(2Δ𝑡) , (6.14c)

𝑃𝐾𝛽𝛼 (𝑡) = −𝑖2𝑒−
Γ
2 |𝑡 | sin(2Δ𝑡) , (6.14d)

Equation (6.13) is exact in the thermodynamic limit, as higher-order terms in the expansion are at

least of the order O(1/𝑁) for the same reasons discussed in Ch. 3.
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After Fourier transformation, defined as 𝑚(𝑡) =
∫
𝜔
𝑒−𝑖𝜔𝑡𝑚(𝜔) with the integration measure∫

𝜔
=

∫ ∞
−∞ 𝑑𝜔/2𝜋, we integrate out the𝑚𝑐/𝑞 fields to obtain the generating functional𝑊 [𝛼𝑐/𝑞, 𝛽𝑐/𝑞] =

−𝑖 ln 𝑍 as

𝑊 = −1
2

∫
𝜔

©­­­«
𝛼𝑞
𝛽𝑞
𝛼𝑐
𝛽𝑐

ª®®®¬
†

𝜔

©­­­«
G𝐾 G𝑅

G𝐴 0

ª®®®¬𝜔
©­­­«
𝛼𝑞
𝛽𝑞
𝛼𝑐
𝛽𝑐

ª®®®¬𝜔 . (6.15)

The Green’s function block matrices are given by

G𝐾 =

(
𝐺𝐾
𝑥𝑥 𝐺𝐾

𝑥𝑦

𝐺𝐾
𝑦𝑥 𝐺𝐾

𝑦𝑦

)
, G𝑅 =

(
𝐺𝑅
𝑥𝑥 𝐺𝑅

𝑥𝑦

𝐺𝑅
𝑦𝑥 𝐺𝑅

𝑦𝑦

)
, (6.16)

and satisfy G𝐾 (𝜔) = −[G𝐾]†(𝜔) and G𝑅 (𝜔) = [G𝐴]†(𝜔). In terms of the original observ-

ables 𝑆𝑥 , 𝑆𝑦, the Green’s functions become 𝐺𝐾
𝑗 𝑗 ′ (𝜔) = −𝑖F𝜔⟨{𝑆 𝑗 (𝑡), 𝑆 𝑗 ′ (0)}⟩/𝑁 and 𝐺𝑅

𝑗 𝑗 ′ (𝜔) =

−𝑖F𝜔Θ(𝑡)⟨[𝑆 𝑗 (𝑡), 𝑆 𝑗 ′ (0)]⟩/𝑁 , with F𝜔 ( 𝑓 (𝑡)) =
∫ ∞
−∞ 𝑑𝑡𝑒

𝑖𝜔𝑡 𝑓 (𝑡). The elements of Eq. (6.16) are

given by

𝐺𝐾
𝑥𝑥 (𝜔) =

−𝑖Γ[Γ2 + 4(4Δ2 + 𝜔2)]
2(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)
, (6.17a)

𝐺𝐾
𝑥𝑦 (𝜔) =

4Γ(𝑖𝐽Γ + 2𝐽𝜔 − 2Δ𝜔)
(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)
, (6.17b)

𝐺𝐾
𝑦𝑦 (𝜔) =

−𝑖Γ[Γ2 + 16(2𝐽 − Δ)2 + 4𝜔2]
2(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)
, (6.17c)

𝐺𝑅
𝑥𝑥 (𝜔) =

4Δ
(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.17d)

𝐺𝑅
𝑥𝑦 (𝜔) =

Γ − 2𝑖𝜔
(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.17e)

𝐺𝑅
𝑦𝑥 (𝜔) =

−Γ + 2𝑖𝜔
(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.17f)

𝐺𝑅
𝑦𝑦 (𝜔) =

−4(2𝐽 − Δ)
(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.17g)

where 𝜔1/2 = − 𝑖2 (Γ ∓ Γ𝑐), Γ𝑐 = 4
√︁
Δ(2𝐽 − Δ). The quantities 𝐺𝑅

𝑥𝑥 and 𝐺𝐾
𝑥𝑥 should be familiar,

as they were calculated in Sec. 5.1, but we list them here for completeness. The correlation and

response functions contain 𝑆𝑦 are new and require the sources to be calculated as the 𝑚 field is not

directly related to 𝑆𝑦.
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6.4 Nonequilibrium Signatures

In this section, we discuss the macroscopic, critical behavior of the DDIM. It is generally believed

that such Ising models find an emergent equilibrium behavior near their phase transition. This is

often argued by considering a single observable such as the order parameter and showing that it

satisfies an effective FDR [14, 44, 89, 93, 94], or by inspecting the critical exponents and determining

that the phase transition falls under an equilibrium universality class as we have showed is the case

for the DDIM in Ch. 5. In contrast, we consider different observables and show that the associated

FDR and TRS are both violated even macroscopically. Beyond the violation of FDR and TRS,

we show that a modified form of these relations emerge, dubbed as the FDR* and TRS*, which

govern the critical behavior of this system. In the following subsections, we derive the effective

temperatures for different set of observables, discuss the breaking and emergence of (modified)

TRS, and finally discuss our results in the limit of vanishing dissipation.

6.4.1 Effective temperature

At thermal equilibrium and at low frequencies, the FDR in frequency space can be written as

𝐺𝑅
𝑖 𝑗 (𝜔) − 𝐺𝐴

𝑖 𝑗 (𝜔) =
𝜔

2𝑇
𝐺𝐾
𝑖 𝑗 (𝜔) . (6.18)

We focus on the low-frequency limit as we will investigate the system at or near criticality where

the dynamics is governed by a soft mode. To compare against the FDR in the time domain, we

identify 𝐶𝑂𝑖𝑂 𝑗
(𝑡) ≡ 𝑖𝐺𝐾

𝑖 𝑗
(𝑡) and 𝜒

𝑂𝑖𝑂 𝑗
(𝑡) ≡ 𝐺𝑅

𝑖 𝑗
(𝑡).2 The above equation follows from another

version of the FDR given by [48]

−𝑖𝜒′′𝑂𝑖𝑂 𝑗
(𝑡) = 1

4𝑇
𝜕𝑡𝐶𝑂𝑖𝑂 𝑗

(𝑡) , (6.19)

where 𝜒′′
𝑂𝑖𝑂 𝑗
(𝑡) ≡ 1

2 ⟨[𝑂𝑖 (𝑡), 𝑂 𝑗 ]⟩ = 1
2𝑖
(
𝐺𝑅
𝑖 𝑗
(𝑡)−𝐺𝐴

𝑖 𝑗
(𝑡)

)
; the retarded and advanced Green functions

are defined directly from the operators as 𝐺𝑅/𝐴
𝑖 𝑗
(𝑡) ≡ ∓𝑖Θ(±𝑡)⟨[𝑂𝑖 (𝑡), 𝑂 𝑗 ]⟩. While Eq. (6.2) is

restricted to 𝑡 > 0, the above equation is valid at all 𝑡, making it more suitable for the transition to
2We are including a normalization factor 1/𝑁 in the definition of correlation and response functions for convenience.
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Fourier space, i.e., Eq. (6.18). Of course, the two (causal and non-causal) versions of the FDR are

equivalent in equilibrium.

Equation (6.18) has been extensively used to identify an effective temperature even for nonequi-

librium systems [44, 93, 98]. In the nonequilibrium setting of our model, however, we would

immediately run into a problem for 𝑖 ≠ 𝑗 when the corresponding operators have different parities

under time-reversal transformation (e.g., 𝑇eff becomes infinite or complex valued). To see why, let

us anticipate that the TRS* relations reported in Eq. (6.8) indeed hold, a fact that we will later

justify near criticality and at long times. It is then easy to see that

𝐶𝑂𝑖𝑂 𝑗
(𝑡) = 𝐶𝑂 𝑗𝑂𝑖

(−𝑡) ≃ 𝐶𝑂𝑖𝑂 𝑗
(−𝑡) , (6.20)

while

𝜒′′
𝑂𝑖𝑂 𝑗
(𝑡) = −𝜒′′𝑂 𝑗𝑂𝑖

(−𝑡) ≃ −𝜖𝑖𝜖 𝑗 𝜒𝑂𝑖𝑂 𝑗
(−𝑡) . (6.21)

Now for two distinct operators 𝑂𝑖 and 𝑂 𝑗 where 𝜖𝑖 = −𝜖 𝑗 , we find that both 𝐶𝑂𝑖𝑂 𝑗
(𝑡) and 𝜒𝑂𝑖𝑂 𝑗

(𝑡)

are even in time (for a fixed set of operators). However, this is not compatible with Eq. (6.19) as it

requires 𝐶𝑂𝑖𝑂 𝑗
(𝑡) and 𝜒𝑂𝑖𝑂 𝑗

(𝑡) to have opposite parities. Postulating an effective FDR in this case,

valid for all 𝑡, forces us to include a sign function, sgn(𝑡). That is, we should substitute

𝜒′′
𝑂𝑖𝑂 𝑗
(𝑡) =

(
𝐺𝑅
𝑖 𝑗 (𝑡) − 𝐺𝐴

𝑖 𝑗 (𝑡)
)
/2𝑖 → sgn(𝑡)𝜒′′𝑂𝑖𝑂 𝑗

(𝑡) =
(
𝐺𝑅
𝑖 𝑗 (𝑡) + 𝐺𝐴

𝑖 𝑗 (𝑡)
)
/2𝑖 , (6.22)

on the left hand side of Eq. (6.19) when 𝜖𝑖 = −𝜖 𝑗 . Notice that the extended FDR is consistent with

the causal FDR in Eq. (6.2) when 𝑡 > 0, but is now conveniently valid at all times. This extension

is informed by the anticipated form of the TRS* which we will justify later. The fluctuation-

dissipation relation is now conveniently cast in frequency space: for arbitrary operators 𝑂𝑖 and 𝑂 𝑗

(with 𝑖 and 𝑗 being the same or distinct), the updated FDR takes the form

𝐺𝑅
𝑖 𝑗 (𝜔) − 𝜖𝑖𝜖 𝑗𝐺𝐴

𝑖 𝑗 (𝜔) =
𝜔

2𝑇𝑖 𝑗 (𝜔)
𝐺𝐾
𝑖 𝑗 (𝜔) , (6.23)

where we have now allowed for a frequency- and operator-dependent effective temperature 𝑇𝑖 𝑗 (𝜔).

It is now clear that, while for 𝜖𝑖 = 𝜖 𝑗 the above equation recovers the structure of the FDR (cf.
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Eq. (6.18)), a different combination, 𝐺𝑅
𝑖 𝑗
(𝜔) +𝐺𝐴

𝑖 𝑗
(𝜔), appears on the left hand side when 𝜖𝑖 = −𝜖 𝑗 .

The above equation can be brought into a more compact version again by anticipating the TRS* in

Eq. (6.8b) to write 𝜖𝑖𝜖 𝑗𝐺𝐴
𝑖 𝑗
(𝜔) ≃ 𝐺𝐴

𝑗𝑖
(𝜔). Utilizing the relation 𝐺𝐴

𝑗𝑖
(𝜔) = 𝐺𝑅

𝑖 𝑗
(𝜔)∗, we are finally

in a position to write an equation for the effective temperature in the low-frequency limit:

𝑇𝑖 𝑗 = lim
𝜔→0

𝜔

2
𝐺𝐾
𝑖 𝑗

𝐺𝑅
𝑖 𝑗
(𝜔) − 𝐺𝐴

𝑗𝑖
(𝜔)

= lim
𝜔→0

𝜔

4
−𝑖𝐺𝐾

𝑖 𝑗

Im𝐺𝑅
𝑖 𝑗
(𝜔)

. (6.24)

We have taken the low-frequency limit appropriate near criticality. Again we stress that the above

equation is consistent with the standard form of the effective FDR for 𝑖 = 𝑗 , and it correctly

incorporates the TRS* for 𝑖 ≠ 𝑗 with opposite parities.

A shorter, but perhaps less physically motivated, route to the above equation is to start directly

from the causal form of the FDR in Eq. (6.2). The Fourier transform of this equation is given by

[90]

𝜒
𝑂𝑖𝑂 𝑗
(𝜔) = 1

2𝑇

[
P
∫

𝑑𝜔′

2𝜋
𝜔′

𝜔 − 𝜔′𝐶𝑂𝑖𝑂 𝑗
(𝜔′) − 𝑖𝜔

2
𝐶𝑂𝑖𝑂 𝑗

(𝜔)
]
, (6.25)

where P stands for the principal part. Here too, we shall assume the TRS* in Eq. (6.8a): with

𝐶𝑂𝑖𝑂 𝑗
(𝑡) ≃ 𝐶𝑂 𝑗𝑂𝑖

(𝑡) = 𝐶𝑂𝑖𝑂 𝑗
(−𝑡) regardless of the operators’ parities, the correlation function

𝐶𝑖 𝑗 (𝑡) is even in time, hence its Fourier transform, 𝐶𝑂𝑖𝑂 𝑗
(𝜔), is purely real. Taking the imaginary

part of the above equation then yields

Im 𝜒
𝑂𝑖𝑂 𝑗
(𝜔) = − 𝜔

4𝑇
𝐶𝑂𝑖𝑂 𝑗

(𝜔) (6.26)

where 𝑇 has to be identified with the effective temperature 𝑇𝑖 𝑗 (𝜔). Therefore, we arrive at the same

definition of the effective temperature in Eq. (6.24).

Using Eq. (6.24), we can now identify the effective temperature in the driven-dissipative Ising

model (defining 𝑖, 𝑗 ∈ {𝑥, 𝑦})

𝑇𝑥𝑥 =
Γ2 + 16Δ2

32Δ
, (6.27a)

𝑇𝑦𝑦 =
Γ2 + 16(Δ − 2𝐽)2

32(Δ − 2𝐽) , (6.27b)

𝑇𝑥𝑦 = −𝑇𝑦𝑥 =
−2𝐽Γ2

Γ2 + 16Δ(2𝐽 − Δ)
. (6.27c)
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Figure 6.4.1 (a) Effective temperatures 𝑇𝑥𝑥 , 𝑇𝑥𝑦, 𝑇𝑦𝑥 and 𝑇𝑦𝑦 as a function of Δ at or away from the
phase boundary; we choose the parameters 𝐽 = 1, Γ = 4 with the point Δ = 1 representing the
critical point at the tip of the phase boundary (see the red dot in panel (b)). The effective
temperatures become equal up to a sign at the critical point. The same pattern emerges on any
point along the phase boundary and away from Γ = 0. (b) The phase diagram of the DDIM. The
shaded region is the ordered phase where ⟨𝑆𝑥,𝑦⟩ ≠ 0.

These expressions are calculated everywhere in the normal phase and generally take different

values (see also [93]), underscoring the nonequilibrium nature of the model at the microscopic

level. We note that the effective temperatures reported above have a physical significance only near

the phase transition where the slow mode governs the dynamics. This is because we have neglected

noncritical contributions in the derivation of Eq. (6.23) by invoking TRS*. Equations (6.27a)

and (6.27b) display non-analytic behaviour, though in different regions of the phase diagram. 𝑇𝑥𝑥

diverges when Δ → 0, in agreement with Ref. [47] that reports an infinite temperature in the 𝜎𝑥

basis. In contrast, 𝑇𝑦𝑦 diverges when Δ = 2𝐽 for any finite value of Γ. This divergence coincides

with the change in the dynamical behaviour from overdamped to underdamped dynamics as pointed

out in [98]. Finally, 𝑇𝑥𝑦 = −𝑇𝑦𝑥 are everywhere finite but opposite for the opposite order of the

observables; this is tied to the TRS* as we will discuss later.

The definition of the low-frequency effective temperature is particularly motivated near the

phase boundary where there exists a soft mode that characterizes the low-frequency dynamics [98].

Interestingly, at (or near) the phase transition, we find

𝑇𝑥𝑥 = −𝑇𝑥𝑦 = 𝑇𝑦𝑥 = −𝑇𝑦𝑦 = 𝐽. (6.28)

Remarkably, these effective temperatures find the same magnitude, but possibly with different signs.
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While focusing on a single observable (say 𝑆𝑥) and its dynamics, one might be led to conclude

that the system is in effective equilibrium. However, a different observable (say 𝑆𝑦) exhibits the

opposite effective temperature. Notice that all correlation functions (involving 𝑆𝑥 and/or 𝑆𝑦) are

divergent at the phase transition, i.e., they are all sensitive to the soft mode; we will make this

more precise in Section 6.5 where we develop an effective field theory. This suggests that although

the critical behavior is governed by a single (soft) mode at the transition, the system is genuinely

nonequilibrium even macroscopically.

To support these analytical results, we have numerically simulated [94] the FDR in the time

domain (cf. Eq. (6.2)) and at a representative critical point on the phase boundary for a finite, yet

large, system with 𝑁 = 100 spins. Correlation and response functions at criticality and at a finite

system size require an analysis beyond the quadratic treatment presented here and thus serves as

a nontrivial check of our results. Also, working in the time domain and restricting to 𝑡 > 0, we

circumvent the issues that arise in the frequency domain; see the discussion in the beginning of

this subsection. Indeed, we find an excellent agreement in Fig. 6.4.2 between the analytical results

(in frequency space) and the numerical results (in the time domain) with the exception of short

time differences; the discrepancy at short times is a consequence of the fact that the (observable-

dependent) effective temperature is defined in the zero-frequency limit of Eq. (6.23), therefore

characterizing the long-time dynamics. In fact, the agreement is remarkably good even at relatively

short times 𝐽𝑡 ≳ 1. Finally, we remark that the difference at short times is not due to finite-size

effects, and exists even in the limit 𝑁 →∞.

6.4.2 TRS breaking

Broken TRS allows for nonzero correlators such as ⟨{𝑆𝑥 , 𝑆𝑦}⟩ that are otherwise odd under the

time-reversal transformation. Indeed, we find that this correlator is nonzero and is even critical.
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Figure 6.4.2 Numerical plots of correlation and response functions at a representative critical
point with 𝐽 = 1,Δ = 1, Γ = 4 and the system size 𝑁 = 100. A modified fluctuation-dissipation
relation, 𝜒𝑂𝑖𝑂 𝑗

(𝑡) = Θ(𝑡)𝐶𝑂𝑖𝑂 𝑗
(𝑡)/2𝑇𝑖 𝑗 , emerges at long times. The effective temperatures take

the same value up to a sign: 𝑇𝑥𝑥 = −𝑇𝑥𝑦 = 𝑇𝑦𝑥 = −𝑇𝑦𝑦 = 𝐽.

More precisely, we find from Eq. (6.17b) that

𝐶𝑥𝑦 (𝑡) ≡ 𝑖𝐺𝐾
𝑥𝑦 (𝑡) =

4
Γ𝑐

[
−𝐽Γ + sgn(𝑡) (𝐽 − Δ) (Γ − Γ𝑐)

Γ − Γ𝑐
𝑒−

Γ−Γ𝑐
2 |𝑡 |

− −𝐽Γ + sgn(𝑡) (𝐽 − Δ) (Γ + Γ𝑐)
Γ + Γ𝑐

𝑒−
Γ+Γ𝑐

2 |𝑡 |
]
.

(6.29)

(For ease of notation, we have replaced 𝐶𝑆𝑖𝑆 𝑗
by 𝐶𝑖 𝑗 ; similarly for 𝜒𝑖 𝑗 .) Specifically, at equal

times, we have 𝐶𝑥𝑦 (𝑡 = 0) = −8𝐽Γ/(Γ2 − Γ2
𝑐 ) . Indeed, the equal-time cross correlation diverges as

∼ 1/(Γ − Γ𝑐) upon approaching the critical point Γ → Γ𝑐. This is a stark manifestation of broken

TRS at a macroscopic level. We also note that both 𝐶𝑥𝑥 , 𝐶𝑦𝑦 ∼ 1/(Γ − Γ𝑐) diverge in a similar

fashion. Again, this is because 𝑆𝑥 and 𝑆𝑦 share the same soft mode, as will be shown in Section 6.5.

The macroscopic breaking of TRS alters the Onsager symmetry relations in an exotic fashion

that is distinct for the correlation and response functions. Indeed, the analytical expression in

Eq. (6.29) shows that, near criticality and at sufficiently long times,

𝐶𝑥𝑦 (𝑡) ≃ −
4𝐽Γ

Γ𝑐 (Γ − Γ𝑐)
𝑒−

Γ−Γ𝑐
2 |𝑡 |, (6.30)
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Figure 6.4.3 Cross-correlation and -response functions at criticality
(𝐽 = 1,Δ = 1, Γ = 4, 𝑁 = 100). A modified form of TRS emerges at criticality where correlation
(panel a) and response (panel b) functions exhibit opposite parities under time-reversal
transformation.

hence, 𝐶𝑥𝑦 (𝑡) ≃ 𝐶𝑥𝑦 (−𝑡), or equivalently, 𝐶𝑥𝑦 (𝑡) ≃ 𝐶𝑦𝑥 (𝑡) up to noncritical corrections; far from

criticality, the correlation functions do not generally satisfy this symmetry relation. Further-

more, the analytical expressions for the response functions in Eqs. (6.17e) and (6.17f) show that

𝜒
𝑥𝑦 (𝑡) = −𝜒𝑦𝑥 (𝑡). Interestingly, the cross-correlation and -response functions exhibit opposite

parities. These analytical considerations are further supported by the numerical simulation shown

in Fig. 6.4.3 at criticality confirming

𝐶𝑥𝑦 (𝑡) ≃ 𝐶𝑦𝑥 (𝑡) , (6.31a)

𝜒
𝑥𝑦 (𝑡) ≃ −𝜒𝑦𝑥 (𝑡) , (6.31b)

consistent with the TRS* in Eq. (6.8). Despite the broken TRS, the correlation and response

functions retain definite, though distinct, parities under time-reversal.

6.4.3 Weakly-dissipative limit

In this section, we briefly consider the weakly-dissipative critical point at at Δ → 2𝐽 and Γ → 0;

see Fig. 6.4.1(b). It was shown in Sec. 6.4.3 that this limit leads to a different critical dynamics

than a generic critical point at finite Γ [94, 98]. Here, we are interested in the TRS breaking and its

possible emergence in the limit of vanishing dissipation. Interestingly, we find that the fate of the

TRS depends on the way that this critical point is approached, and that this distinction only exists
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in the thermodynamic limit where the system is gapless at the phase boundary. We shall consider

two different scenarios below.

In the first scenario, let us set Δ = 2𝐽 and take the limit Γ → 0. Fourier transforming Eq.

(6.17c) to the time domain gives

𝐶𝑦𝑦 (𝑡) = lim
Δ→2𝐽

𝑖𝐺𝐾
𝑦𝑦 (𝑡) = 2𝑒−

1
2Γ|𝑡 | . (6.32)

We thus see that the 𝑆𝑦 correlator is finite at the weakly-dissipative critical point, indicating that 𝑆𝑦

has become “gapped”. This appears to suggest a return to the equilibrium scenario where 𝑆𝑦 plays

no role in critical behaviour. However, the cross-correlation given by Eq. (6.29) remains nonzero

and even critical at the weakly-dissipative point: 𝐶𝑥𝑦 (𝑡 = 0) ∼ 1/Γ. Therefore, even in the limit of

vanishing dissipation, TRS is macroscopically broken.

In the second scenario, we consider Δ > 2𝐽 and first take the limit Γ→ 0. In this case, we have

Γ𝑐 = 𝑖
√︁
Δ(Δ − 2𝐽) ≡ 𝑖𝜔𝑐, which then leads to

lim
Γ→0

𝐶𝑥𝑦 (𝑡) =
−4(Δ − 𝐽)

𝜔𝑐
sin

(𝜔𝑐𝑡
2

)
. (6.33)

This expression goes to zero at 𝑡 = 0 for any value of Δ including the weakly dissipative critical

point as Δ→ 2𝐽+, recovering the equilibrium result.

The different behavior in the two scenarios lies in the fact that the system has a finite dissipative

gap when we send Γ → 0 before sending Δ → 2𝐽 but not vice versa. It has been shown that the

steady state of a system with a finite dissipative gap becomes purely a function of the Hamiltonian

in the limit of vanishing dissipation, i.e., 𝜌ss = 𝑓 (𝐻) [56]; see also [53]. In this case, the steady

state for our model can be written as a function of the Hamiltonian in Eq. (3.4), and thus respects

TRS. A system of finite size would fall under this category as well because the system will always

be gapped for 𝑁 < ∞, irrespective of the order of limits taken w.r.t. Δ and Γ. The argument

about weakly-dissipative states commuting with 𝐻 in gapped systems, however, fails in a gapless

system corresponding to the first order of limits, where we sent Δ→ 2𝐽 before taking the weakly-

dissipative limit. Indeed, we find that in this case the TRS is macroscopically broken even in the

limit of vanishing dissipation.
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One can also determine the behavior of the effective temperature at the weakly-dissipative

critical point. However, since the operator 𝑆𝑦 is gapped, the definition of the low-frequency

effective temperature doesn’t seem appropriate. In fact, one finds that the effective temperatures

involving this operator take different values (and even diverge) depending on the order of limits.

Therefore, we will avoid discussing the effective temperature in this limit

6.5 Effective Field Theory

In this section, we develop a simple, generic field-theory analysis that elucidates the origin of the

effective temperatures and their signs as well as FDR* and TRS*. We first need to construct an

action that maps the spin operators 𝑆𝑥 and 𝑆𝑦 to the fields 𝑥(𝑡) and 𝑦(𝑡), respectively. This is

achieved by starting from the generating functional 𝑊 in Eq. (6.15) and constructing a quadratic

action in terms of 𝑥 and 𝑦 fields that exactly reproduces the correlations of the corresponding

operators. This is simply done via a Hubbard-Stratonovich transformation on exp(𝑖𝑊 [𝛼𝑐/𝑞, 𝛽𝑐/𝑞])

as

𝑒𝑖𝑊 =

∫
D[𝑥𝑐/𝑞, 𝑦𝑐/𝑞]𝑒𝑖Seff [𝑥𝑐/𝑞 ,𝑦𝑐/𝑞]+𝑖

∫
𝜔
𝑗𝑇 (−𝜔)𝑣(𝜔) , (6.34)

where we have absorbed an unimportant normalization factor into the measure, and we have

defined the source field vector 𝑗 = (𝛼𝑞, 𝛽𝑞, 𝛼𝑐, 𝛽𝑐)𝑇 and the Hubbard-Stratonovich field vector

𝑣 = (𝑥𝑐, 𝑦𝑐, 𝑥𝑞, 𝑦𝑞)𝑇 . The resulting action is given by

𝑆eff =
1
2

∫
𝜔

𝑣†(𝜔)
(

0 D𝐴

D𝑅 D𝐾

)
𝜔

𝑣(𝜔) , (6.35)

where we have written the kernel in terms of 2 × 2 block matrices:

D𝑅 (𝜔) = [D𝐴]𝑇 (−𝜔) =
(

2𝐽 − Δ 1
4 (Γ − 2𝑖𝜔)

1
4 (−Γ + 2𝑖𝜔) −Δ

)
, D𝐾 (𝜔) = 𝑖Γ

2

(
1 0
0 1

)
. (6.36)

The kernel in Eq. (6.35) is simply the inverse of the Greens function, i.e. the kernel in Eq.

(6.15). By inspecting the form of D𝑅, we can identify the soft mode. At the critical point

(Γ→ Γ𝑐 ≡ 4
√︁
Δ(2𝐽 − Δ)), this matrix takes the form

D𝑅
cr(𝜔 = 0) =

(
2𝐽 − Δ

√︁
Δ(2𝐽 − Δ)

−
√︁
Δ(2𝐽 − Δ) −Δ

)
. (6.37)
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Figure 6.5.1 Schematic representation of the massless and massive fields 𝜙 and 𝜁 in terms of the 𝑥
and 𝑦 fields that represent 𝑆𝑥 and 𝑆𝑦. (a) The gapped/gapless fields are shown at a generic critical
point. The classical and quantum fields are rotated with respect to the 𝑥-𝑦 axes, but in opposite
directions, a fact that leads to the opposite signs of the effective temperatures. (b) At the
weakly-dissipative critical point, Δ = 2𝐽, Γ→ 0, the gapless and gapped fields align with the 𝑥
and 𝑦 axes, respectively, similar to thermal equilibrium.

A convenient decomposition of D𝑅
cr(𝜔 = 0) is given by D𝑅

cr(𝜔 = 0) = U𝚲U where

U =
1
√

2𝐽Δ

(
Δ −1

4Γ𝑐
1
4Γ𝑐 Δ

)
, 𝚲 =

(
0 0
0 −2𝐽

)
, (6.38)

valid for 0 < Δ < 2𝐽; the regime Δ > 2𝐽 needs to be dealt with separately. The matrix U

is orthogonal, i.e., UU𝑇 = I. Notice that this decomposition can be viewed as a singular-value

decomposition, D𝑅
cr(𝜔 = 0) = U𝚲V𝑇 , where V = U𝑇 with both U and V being orthogonal matrices.

In this sense, the left and right singular vectors (corresponding to quantum and classical field

respectively) are rotated with respect to the original vectors in Eq. (6.35) in opposite directions;

see Fig. 6.5.1(a). As we shall see, this is the reason behind the new FDR* and TRS*.

This decomposition allows us to introduce new fields 𝜙 and 𝜁 which are given by the original

fields 𝑥 and 𝑦 upon rotation by U,(
𝜙𝑐
𝜁𝑐

)
= U

(
𝑥𝑐
𝑦𝑐

)
=

1
√

2𝐽Δ

(
Δ𝑥𝑐 − 1

4Γ𝑐 𝑦𝑐
1
4Γ𝑐 𝑥𝑐 + Δ𝑦𝑐

)
, (6.39a)(

𝜙𝑞
𝜁𝑞

)
= U𝑇

(
𝑥𝑞
𝑦𝑞

)
=

1
√

2𝐽Δ

(
Δ𝑥𝑞 + 1

4Γ𝑐 𝑦𝑞
−1

4Γ𝑐 𝑥𝑞 + Δ𝑦𝑞

)
. (6.39b)

We note that the diagonal elements of 𝚲 define the masses of the fields 𝜙 and 𝜁 on the phase

boundary. Therefore, we can identify 𝜙 as the soft mode and 𝜁 as the gapped field. In addition, the

Keldysh element of the kernel remains unchanged, U𝑇D𝐾U = D𝐾 .
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6.5.1 FDR* and TRS*

The field-theory representation makes the origin of the results shown in Section 6.4 clear. The

correlation and response functions can now be expressed in terms of 𝜙 and 𝜁 . At the phase

boundary, the low-frequency effective temperature is captured purely by the soft mode 𝜙 because

𝜁 is gapped and does not affect the low-frequency behavior of the model. In other words, the

dominant contribution to the effective temperature follows from the correlation and response

functions involving 𝜙, while those involving 𝜁 as well as the cross-correlations produce noncritical

corrections which can be neglected. We have, up to these corrections,

𝑇𝑥𝑥 ≃ 𝑇𝜙, (6.40a)

𝑇𝑥𝑦 ≃
𝑈12
𝑈21

𝑇𝜙 = −𝑇𝜙, (6.40b)

𝑇𝑦𝑥 ≃ 𝑇𝜙, (6.40c)

𝑇𝑦𝑦 ≃
𝑈12
𝑈21

𝑇𝜙 = −𝑇𝜙, (6.40d)

where

𝑇𝜙 ≡ lim
𝜔→0

𝜔

2
⟨𝜙𝑐 (𝜔)𝜙𝑐 (−𝜔)⟩

⟨𝜙𝑐 (𝜔)𝜙𝑞 (−𝜔)⟩ − ⟨𝜙𝑞 (𝜔)𝜙𝑐 (−𝜔)⟩
, (6.40e)

can be viewed as the effective temperature of the soft mode. This interesting result is purely a

consequence of the non-Hermitian structure of Eq. (6.37).

Technically, one can see that the same pattern of effective temperatures emerges whenever the

inverse retarded Green’s function D0 ≡ D𝑅
cr(𝜔 = 0) obeys the relation

𝜏𝑧D0 𝜏
𝑧 = D𝑇

0 , with 𝜏𝑧 =

(
1 0
0 −1

)
, (6.41)

which simply states that the off-diagonal part of the matrix D0 is antisymmetric. Note that D0 is

real, but non-Hermitian.

The fact that the kernel D0 satisfies the above property can be argued solely on the grounds that

the Hamiltonian itself is time-reversal symmetric. To show this, let us assume the contrary, namely

that the off-diagonal part of the matrix D0 has a symmetric component. This would give rise to

a coupling ∼ 𝑥𝑐𝑦𝑞 + 𝑥𝑞𝑦𝑐 where the fields’ time dependence is implicit. Rewriting the classical
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and quantum fields in terms of the fields on the upper and lower branches of the Keldysh contour

(see Ch. 2.3), such coupling becomes ∼ 𝑥 (𝑢)𝑦 (𝑢) − 𝑥 (𝑙)𝑦 (𝑙) . This term takes the structure of a

Hamiltonian contribution to the action (𝐻 (𝑢) − 𝐻 (𝑙)); however, the Hamiltonian does not couple

𝑥 and 𝑦 since it is time-reversal invariant. We should then conclude that the off-diagonal part of

D0 is antisymmetric and cannot originate from the Hamiltonian dynamics. In equilibrium, the

off-diagonal terms are simply zero (at 𝜔 = 0); however, in a driven-dissipative system, dissipation

naturally gives rise to nonzero (though antisymmetric) off-diagonal matrix elements.

The role of the Z2 symmetry in this analysis is to guarantee that there is only one soft mode

described by a single real field, in contrast with other symmetries (such as𝑈 (1) symmetry) which

would require more (or complex) fields to describe the critical behavior. In addition, an explicit Z2

symmetry forbids a linear term in the action whose existence could alter our results.

We remark that a generalized version of the FDR,

G𝐾 (𝜔) = G𝑅 (𝜔)F(𝜔) − F(𝜔)G𝐴 (𝜔) ,

is also utilized in the literature [13, 14] to determine the distribution function matrix F(𝜔). While

in thermal equilibrium F(𝜔) = coth(𝜔/2𝑇)I is proportional to the identity, the distribution function

is allowed to become a nontrivial matrix in driven-dissipative systems, as shown in the context

of the open Dicke model (possessing the same symmetries as those considered here). For the

cavity mode, it was shown that this matrix finds two eigenvalues, ±𝜆(𝜔), whose low-frequency

behaviour is given by 𝜆(𝜔) ∼ 2𝑇eff/𝜔 [14]. The positive eigenvalue was then identified as the

effective temperature. In contrast, our analysis clarifies the interpretation of the negative effective

temperature in the form of the FDR* in Eq. (6.5) and its origin due to time-reversal symmetry

breaking.

Next, we derive the TRS* relations for the correlation and response functions in Eq. (6.8),

namely𝐶𝑥𝑦 (𝑡) ≃ 𝐶𝑦𝑥 (𝑡) while 𝜒𝑥𝑦 (𝑡) ≃ −𝜒𝑦𝑥 (𝑡) up to noncritical corrections. As with the effective

temperatures, the key is to keep only the critical contributions from 𝜙𝑐/𝑞. Recall that 𝜁𝑐/𝑞 are

gapped, hence leading to noncritical corrections at or near the phase transition. The symmetry of

103



the correlation function follows in a simple fashion as

𝐶𝑥𝑦 (𝑡) = 2⟨𝑥𝑐 (𝑡)𝑦𝑐 (0)⟩ ≃ 2𝑈11𝑈12⟨𝜙𝑐 (𝑡)𝜙𝑐 (0)⟩ ≃ 2⟨𝑦𝑐 (𝑡)𝑥𝑐 (0)⟩ = 𝐶𝑦𝑥 (𝑡). (6.42)

For the response function, we have

𝜒
𝑥𝑦 (𝑡) = ⟨𝑥𝑐 (𝑡)𝑦𝑞 (0)⟩ ≃ 𝑈11𝑈21⟨𝜙𝑐 (𝑡)𝜙𝑞 (0)⟩ ,

𝜒
𝑦𝑥 (𝑡) = ⟨𝑦𝑐 (𝑡)𝑥𝑞 (0)⟩ ≃ 𝑈12𝑈11⟨𝜙𝑐 (𝑡)𝜙𝑞 (0)⟩ .

(6.43)

Again using the fact that𝑈12 = −𝑈21, one can see that 𝜒𝑥𝑦 (𝑡) ≃ −𝜒𝑦𝑥 (𝑡).

Finally, we remark that the field 𝑦 becomes gapped at the weakly dissipative point as one can

see from Eq. (6.39) (see also Fig. 6.5.1(b)), which leads to the noncritical ⟨𝑆2
𝑦⟩ fluctuations. One

thus recovers the equilibrium behavior, although, care should be taken with the Γ→ 0 limit due to

the order of limits discussed in Section 6.4.3.

6.5.2 Onsager reciprocity relations

In this section, we derive the modified form of the Onsager reciprocity relations. As a starting

point, consider the saddle-point solution of Eq. (6.35): D𝑅 (𝑖𝜕𝑡) · x(𝑡) = 0 where we have replaced

𝜔 → 𝑖𝜕𝑡 and defined x = (𝑥, 𝑦); we have dropped the subscript 𝑐 for convenience. By rearranging

the time derivatives, we find the equation

d
d𝑡

x(𝑡) = −M · x(𝑡) , with M =

(
Γ/2 2Δ

4𝐽 − 2Δ Γ/2

)
. (6.44)

This equation describes the average dynamics of x(𝑡) (i.e., ⟨𝑆𝑥,𝑦⟩) near the steady state and governs

its decay to zero.

Adopting a slightly more general notation, the dynamics near the steady state can be written as

d
d𝑡
⟨𝑥𝑖⟩𝑡 = −

∑︁
𝑀𝑖𝑘 ⟨𝑥𝑘⟩𝑡 , (6.45)

where {𝑥𝑖} denote a set of macroscopic variables, and ⟨·⟩𝑡 represents the statistical (and, the

quantum) average at time 𝑡; we later specialize to the variable x by setting 𝑥1 ≡ 𝑥 and 𝑥2 ≡ 𝑦. Now

defining 𝐿𝑖 𝑗 =
∑
𝑘 𝑀𝑖𝑘 ⟨𝑥𝑘𝑥 𝑗 ⟩, Onsager reciprocity relations in equilibrium take the form

𝐿𝑖 𝑗 = 𝜖𝑖𝜖 𝑗𝐿 𝑗𝑖 , (6.46)
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where 𝜖𝑖 denotes the parity of the corresponding field under time-reversal transofrmation. These

relations are a direct consequence of the equilibrium FDR—in the form of Onsager’s regression

hypothesis—together with the TRS. The Onsager reciprocity relations are of great importance for

their fundamental significance as well as practical applications. We shall refer the interested reader

to Ref. [90] for the proof of the reciprocity relations in a classical setting.

In the nonequilibrium context of our model with both FDR and TRS broken, the Onsager

reciprocity relations do not generally hold; however, given the modified form of the FDR* and

TRS* in Eqs. (6.7) and (6.8), one may expect a modified form of the Onsager relations perhaps with

a different parity than the one expected in equilibrium. Here, we show that this is indeed the case.

To this end, we first note that the Onsager’s regression hypothesis is modified in a straightforward

fashion as

⟨𝑥𝑖⟩𝑡 = 𝜖 𝑗
𝜆

𝑘𝐵𝑇
⟨𝑥𝑖 (𝑡)𝑥 𝑗 (0)⟩, (6.47)

assuming that a “magnetic” field 𝜆 has been applied along the 𝑗 direction before it is turned off at

time 𝑡 = 0. The only difference from the standard Onsager regression hypothesis is the prefactor 𝜖 𝑗

appearing out in front, a factor that simply carries over from Eq. (6.7). Combining with Eq. (6.45),

we have
d
d𝑡
⟨𝑥𝑖 (𝑡)𝑥 𝑗 (0)⟩ = −

∑︁
𝑀𝑖𝑘 ⟨𝑥𝑘 (𝑡)𝑥 𝑗 (0)⟩. (6.48)

Notice that the factors of 𝜖 𝑗 cancel out on both sides. Finally, using the TRS* of the correlation

function, 𝐶𝑖 𝑗 (𝑡) = 𝐶 𝑗𝑖 (𝑡) regardless of the corresponding parities, and setting 𝑡 = 0, we find3

𝐿𝑖 𝑗 ≃ 𝐿 𝑗𝑖 . (6.49)

Notice the absence of the TRS parity factors 𝜖𝑖𝜖 𝑗 ; cf. the equilibrium Onsager reciprocity relation

in Eq. (6.46).

To verify that this relation holds in our nonequilibrium setting, it is important to distinguish

the contribution of the soft mode, responsible for the critical behavior, from the gapped mode.
3Since the modified FDR doesn’t hold at short times, setting 𝑡 = 0 might seem problematic. However, the error

incurred in the process only amounts to a noncritical correction.
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Therefore, we shall consider the dynamics at a coarse-grained level where the gapped mode is

“integrated out”. To this end, let’s write

M = 𝑚𝝓𝑅𝝓𝐿 + 𝑀𝜻𝑅𝜻 𝐿 , (6.50)

where we have used a dyadic notation. Here, 𝝓𝑅/𝐿 and 𝜻𝑅/𝐿 define the right/left eigenvectors of the

matrix M. These vectors are biorthonormall, that is, 𝝓𝐿 ·𝝓𝑅 = 𝜻 𝐿 ·𝜻𝑅 = 1 while 𝝓𝐿 ·𝜻𝑅 = 𝜻 𝐿 ·𝝓𝑅 = 0.

Furthermore, 𝑚 and 𝑀 represent the two eigenvalues of the matrix M: the eigenvalue𝑚 vanishes at

the critical point defining the soft mode, while 𝑀 remains finite (at the order of 𝐽) and defines the

gapped mode. The notation for the soft and gapped modes mirror our conventions for the effective

field theory. In fact, the above diagonalization is a similar decomposition to that of the previous

section but in a different basis (notice that M is “rotated” with respect to D𝑅). While we do not

need the explicit form of the eigenvalues and the (right and left) eigenvectors, here we provide them

for completeness:

𝝓𝑅 =

(
−
√︂

Δ

2𝐽 − Δ , 1

)
, 𝝓𝐿 =

1
2

(
−
√︂

2𝐽 − Δ
Δ

, 1

)
, 𝑚 = Γ − 4

√︁
(2𝐽 − Δ)Δ ,

𝜻𝑅 =

(√︂
Δ

2𝐽 − Δ , 1

)
, 𝜻 𝐿 =

1
2

(√︂
2𝐽 − Δ

Δ
, 1

)
, 𝑀 = Γ + 4

√︁
(2𝐽 − Δ)Δ .

(6.51)

Now, the coarse-grained dynamics at sufficiently long times is governed solely by the soft mode,

while the gapped field quickly decays to zero (𝜻 𝐿 · x = 0). Therefore, the slow dynamics is given

by
d
d𝑡

x = −M · x , (6.52)

where we have defined M = 𝑚𝝓𝑅𝝓𝐿 keeping only the critical component. We are finally in a

position to study the relation between 𝐿𝑥𝑦 and 𝐿𝑦𝑥 explicitly defined by

𝐿𝑥𝑦 = 𝑀𝑥𝑥 ⟨𝑥𝑦⟩ + 𝑀𝑥𝑦 ⟨𝑦𝑦⟩ ,

𝐿𝑦𝑥 = 𝑀 𝑦𝑥 ⟨𝑥𝑥⟩ + 𝑀 𝑦𝑦 ⟨𝑦𝑥⟩ .
(6.53)

Now notice that the fluctuations ⟨𝑥𝑖𝑥 𝑗 ⟩ ∼ 𝝓𝑅
𝑖
𝝓𝑅
𝑗
⟨𝜙2⟩ where ⟨𝜙2⟩ represents the critical fluctuations

(to be identified with ⟨𝜙2
𝑐⟩ in the previous section); this simply means that the dominant contribution
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to fluctuations is given by the overlap of dynamical variables with the critical field. Additionally,

using the biorthogonality 𝜻 𝐿 · 𝝓𝑅 = 0, we have
(
𝜁 𝐿1 , 𝜁

𝐿
2
)
∝

(
−𝜙𝑅2 , 𝜙

𝑅
1
)
. We can then write

𝐿𝑥𝑦 − 𝐿𝑦𝑥 ∝ 𝜻 𝐿 ·M · 𝝓𝑅 = 0 , (6.54)

where the last equality follows from 𝜻 𝐿 ·M ∝ 𝜻 𝐿 ·𝝓𝑅 = 0.4 We thus arrive at the relation 𝐿𝑦𝑥 ≃ 𝐿𝑥𝑦

in harmony with our modified version of the Onsager reciprocity relation. This should be contrasted

with the reciprocity relation in equilibrium: 𝐿𝑥𝑦 = −𝐿𝑦𝑥 with 𝑥 (𝑦) even (odd) under time-reversal

transformation.

6.6 Driven-Dissipative Coupled Bosons

In this section, we go beyond the infinite-range model discussed so far and consider a quadratic

model of driven-dissipative bosons. The model being quadratic can be solved exactly using any

number of techniques. For a coherent presentation, we will adopt a simple (Keldysh) field-

theoretical analysis. Our main point is however that the conclusions of this in this chapter apply to a

wider range of models. To be specific, consider a bosonic model on a cubic lattice in 𝑑 dimensions

with the Hamiltonian

𝐻 = − 𝐽
2𝑑

∑︁
⟨ij⟩
(𝑎i + 𝑎†i ) (𝑎j + 𝑎†j ) + 2Δ

∑︁
i
𝑎
†
i 𝑎i , (6.55)

and subject to the dissipation

𝐿i =
√
Γ 𝑎i . (6.56)

The coefficients in the Hamiltonian are chosen for later convenience. Notice that the Hamiltonian

is time-reversal symmetric. This follows from either writing the operator 𝑎 in terms of two

quadratures that are even and odd under time-reversal (see below), or directly by noting that

𝑇𝑎𝑇−1 = 𝑎 and similarly for 𝑎† (site index suppressed) although 𝑇 is antiunitary (𝑇𝑖𝑇−1 = −𝑖)

[99]. The above bosonic Hamiltonian is therefore real and time-reversal symmetric. In addition,

the Liouvillian governing the dynamics is Z2 symmetric under the transformation 𝑎 → −𝑎, similar

4While one might be tempted to conclude that M ∝ 𝑚 → 0 at the critical point, the product 𝑚⟨𝜙2⟩ remains finite
due to the diverging fluctuations and thus 𝐿𝑥𝑦 assumes a nonzero value at the critical point.
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to the driven-dissipative Ising model considered in Eq. (3.5). This symmetry is broken at the

phase transition where ⟨𝑎⟩ becomes nonzero in the ordered phase. As discussed in Sec. ??, the

Z2 symmetry provides a minimal setting where the time-reversal symmetry breaking or emergence

can be investigated near criticality.

The Keldysh action for this model can be constructed in a straightforward fashion using a

coherent-state representation mapping operators to c-valued fields as 𝑎i → 𝑎i(𝑡) and 𝑎†i → 𝑎∗i (𝑡).

A path integral formalism can be straightforwardly constructed in terms of these bosonic fields on

a closed contour using the techniques developed in Sec. 2.3. The mapping to the path integral

produces the Keldysh action [89]

𝑆𝐾 = 𝑆𝐻 + 𝑆𝐷 , (6.57)

where 𝑆𝐻,𝐷 represent the coherent and dissipative terms, respectively. The coherent term in the

action is given by

𝑆𝐻 =
∑︁
𝜎=+,−

𝜎

∫
𝑡

[∑︁
i
𝑎∗i𝜎𝑖𝜕𝑡𝑎i𝜎 − 𝐻 [𝑎i𝜎, 𝑎

∗
i𝜎]

]
, (6.58)

with 𝜎 = ± representing the forward (upper) and backward (lower) branches of the contour. We use

the plus and minus signs here for the Keldysh contour branches for notational compactness. The

last term represents the (normal-ordered) Hamiltonian in the coherent-state representation. The

relative sign of the forward and backward branches has its origin in the commutator [𝐻, 𝜌]. The

dissipative term in the action takes the form

𝑆𝐷 = −𝑖Γ
∑︁

i

∫
𝑡

[
𝑎i+𝑎

∗
i− −

1
2

(
𝑎∗i+𝑎i+ + 𝑎∗i−𝑎i−

) ]
. (6.59)

Upon a Keldysh rotation 𝑎𝑐𝑙/𝑞 ≡ (𝑎+ ± 𝑎−)/
√

2 (site index i being implicit), the Keldysh action is

then written in terms of classical and quantum fields. Here, it is more convenient to cast the bosonic

field in terms of its real and imaginary parts (the two quadratures) as 𝑎i(𝑡) = (Φi(𝑡) − 𝑖Πi(𝑡))/2

where the factor of 1/2 is chosen for later convenience. The corresponding operators can be viewed

as position and the conjugate momentum. These Hermitian operators obey the same symmetry

relations as 𝑆𝑥 and 𝑆𝑦 in the DDIM, where Φ is even under TRS while Π is odd. The anti-unitary
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nature of the time-reversal transformation makes the bosonic fields real and invariant under TRS.

The Lagrangian 𝐿𝐾 defined via the Keldysh action 𝑆𝐾 =
∫
𝑑𝑡𝐿𝐾 then takes the form [89]

𝐿𝐾 =
∑︁

i

1
2
Φi𝑞𝜕𝑡Πi𝑐 −

1
2
Πi𝑞𝜕𝑡Φi𝑐 − Δ(Φi𝑐Φi𝑞 + Πi𝑐Πi𝑞) +

Γ

4
(Φi𝑞Πi𝑐 −Φi𝑐Πi𝑞 + 𝑖Φ2

i𝑞 + 𝑖Π
2
i𝑞)

+
∑︁
⟨ij⟩

𝐽

2𝑑
(Φi𝑐Φj𝑞 +Φi𝑞Φj𝑐) , (6.60)

in terms of classical and quantum fields Φi𝑐/𝑞 and Πi𝑐/𝑞. In momentum space, the Keldysh action

takes almost an identical form to Eq. (6.35) with the substitution 𝑣 → (Φ𝑐,Π𝑐,Φ𝑞,Π𝑞) where the

frequency and momentum (𝜔, k) are implicit and 𝐽 → 𝐽k = 𝐽
𝑑
(cos 𝑘1 + · · · + cos 𝑘𝑑). This implies

that this model too exhibits a phase transition at the same set of parameters. While a nonlinear

term is needed to regulate things on the ordered side, we shall only consider the critical behavior.

6.6.1 Green’s functions

Since Eq. (6.60) is identical to Eq. (6.35) upon the above substitutions, we can immediately write

the correlation and response functions of Φ and Π. They are simply given by Eq. (6.17) once 𝐽 is

substituted by 𝐽k. Using the definitions of the bosonic variables in terms of the real fields, we can

easily determine the form of the bosonic Green’s functions:

G𝐾 =

©­­­­­«
𝐺𝐾

𝑎𝑎†
𝐺𝐾
𝑎𝑎

𝐺𝐾

𝑎†𝑎†
𝐺𝐾

𝑎†𝑎

ª®®®®®¬
, G𝑅 =

©­­­­­«
𝐺𝑅

𝑎𝑎†
𝐺𝑅
𝑎𝑎

𝐺𝑅

𝑎†𝑎†
𝐺𝑅

𝑎†𝑎

ª®®®®®¬
, (6.61)
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where

𝐺𝐾

𝑎𝑎†
(𝜔, k) =

[
𝐺𝐾

𝑎†𝑎
(−𝜔, k)

]
=
−𝑖Γ

(
3Γ2 + 4(32𝐽2

k + 12Δ2 + 8Δ𝜔 + 3𝜔2 − 8𝐽k(4Δ + 𝜔))
)

8(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔
∗
2)

,

(6.62a)

𝐺𝐾
𝑎𝑎 (𝜔, k) = −

[
𝐺𝐾

𝑎†𝑎†
(𝜔, k)

]∗
=
𝑖Γ

(
128𝐽2

k + Γ
2 − 16𝑖𝐽k(Γ − 8𝑖Δ) + 4(4Δ2 + 𝜔2)

)
8(𝜔 − 𝜔1) (𝜔 − 𝜔2) (𝜔 − 𝜔∗1) (𝜔 − 𝜔

∗
2)

,

(6.62b)

𝐺𝑅

𝑎𝑎†
(𝜔, k) =

[
𝐺𝑅

𝑎†𝑎
(−𝜔, k)

]∗
=
−4𝐽k + 4Δ + 2𝜔 + 𝑖Γ
2(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.62c)

𝐺𝑅
𝑎𝑎 (𝜔, k) =

[
𝐺𝑅

𝑎†𝑎†
(𝜔, k)

]∗
=

−2(𝐽k − Δ)
(𝜔 − 𝜔1) (𝜔 − 𝜔2)

, (6.62d)

and G𝑅 (𝜔, k) = [G𝐴 (𝜔, k)]†, G𝐾 (𝜔, k) = −[G𝐾 (𝜔, k)]†. In a slight abuse of notation, we have

defined the modes 𝜔1/2 = −𝑖(Γ ∓ Γ𝑐 (𝐽k))/2 (introduced earlier in Section 5.1) and defined the

function Γ𝑐 (𝐽) ≡ 4
√︁
Δ(2𝐽 − Δ).

For comparison with the FDR in the time-domain, we quote the long-wavelength (k→ 0) limit

of the correlation and response functions at criticality:

𝐺𝐾

𝑎𝑎†
(𝑡, k) = 𝐺𝐾

𝑎†𝑎
(−𝑡, k) ∼ −𝑖4𝑑𝐽

Δk2 𝑒−𝐴k2 |𝑡 | , (6.63a)

𝐺𝐾
𝑎𝑎 (𝑡, k) = −

[
𝐺𝐾

𝑎†𝑎†
(𝑡, k)

]∗ ∼ 4𝑑
k2

[
−𝑖(𝐽 + Δ)

Δ
+ 4(2𝐽 − Δ)

Γ𝑐

]
𝑒−𝐴k2 |𝑡 | , (6.63b)

𝐺𝑅

𝑎𝑎†
(𝑡, k) =

[
𝐺𝑅

𝑎†𝑎
(𝑡, k)

]∗ ∼ Θ(𝑡)
(
8(𝐽 − Δ)

Γ𝑐
− 2𝑖

)
𝑒−𝐴k2𝑡 , (6.63c)

𝐺𝑅
𝑎𝑎 (𝑡, k) =

[
𝐺𝑅

𝑎†𝑎†
(𝑡, k)

]∗ ∼ Θ(𝑡) −8𝐽
Γ𝑐

𝑒−𝐴k2𝑡 , (6.63d)

where we have defined 𝐴 = −𝐽Γ𝑐/4𝑑 (2𝐽 −Δ) and Γ𝑐 = Γ𝑐 (𝐽). The expressions above are obtained

by first setting Γ = Γ𝑐 and then taking the limit k→ 0 while keeping k2𝑡 = const. These expressions

are valid all along the phase boundary except at the weakly-dissipative critical point since we have

assumed k2 ≪ 2𝐽 − Δ in our derivation.

6.6.2 FDR* for non-Hermitian operators

The Green’s functions of Φ and Π of the short-range model considered here are identical to those

of the DDIM once we substitute 𝐽 → 𝐽k. Therefore, the low-frequency effective temperatures of
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this model in the long-wavelength limit k→ 0 are identical to those of the DDIM in Eq. (6.27). In

other words, at criticality and at long wavelengths and frequencies this short-ranged model obeys

the FDR*. The latter can be extended to the bosonic operators 𝑎k and 𝑎†k too. Taking the linear

combination of the FDR* for the two quadratures, we find

𝜒
𝑎
†
k𝑎k
≃ 1

2𝑇eff
Θ(𝑡)𝜕𝑡𝐶𝑎†−k𝑎

†
k
, 𝜒

𝑎k𝑎−k ≃
1

2𝑇eff
Θ(𝑡)𝜕𝑡𝐶𝑎k𝑎

†
k
. (6.64)

These relations can be explicitly verified by plugging in Eq. (6.63) with the effective temperature

identified as𝑇eff = 𝐽. Interestingly, the set of operators on the two sides of these FDR-like equations

are different, namely the first operator (appearing at the earlier time) transforms into its adjoint

between the two sides of these equations.

The above equation suggests a more general form of the FDR* also applicable to non-Hermitian

operators,

𝜒
𝑂𝑖𝑂

𝑇
𝑗
(𝑡) ≃ 1

2𝑇eff
Θ(𝑡)𝜕𝑡𝐶𝑂𝑖𝑂 𝑗

, (6.65)

where the 𝑂𝑖’s are not necessarily Hermitian. The transpose 𝑇 arises due to the combined action

of taking the adjoint as well as conjugation due to the time-reversal transformation. This equation

reduces to the FDR* for Hermitian operator in Eq. (6.5), while reproducing Eq. (6.64) for non-

Hermitian (but real) bosonic operators.

6.6.3 Weakly-dissipative limit

Finally, we investigate the bosonic Green’s functions at the weakly-dissipative point; this parallels

our discussion of the weakly-dissipative DDIM in Section 6.4.3. Again we must be careful in

taking the order of limits. We shall first Fourier transform Eq. (6.62) to the time domain, send

Δ→ 2𝐽, and then take the long-wavelength limit k→ 0 in which case we have 𝐽k ∼ 𝐽 (1 − k2/2𝑑)

and Γ𝑐 (𝐽k) ∼ 𝑖4
√

2𝐽 |k|/𝑑. Finally, we take the weakly-dissipative limit Γ→ 0 and report only the
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critical contribution at long wavelengths:

𝐺𝐾
𝛼𝛽 (𝑡, k) ∼ −𝑖

2𝑑2

k2 cos

(
2
√

2𝐽
𝑑
|k|𝑡

)
, (6.66a)

𝐺𝑅
𝛼𝛽 (𝑡, k) ∼ −Θ(𝑡)

2
√

2𝑑
|k| sin

(
2
√

2𝐽
𝑑
|k|𝑡

)
, (6.66b)

for 𝛼, 𝛽 ∈ {𝑎, 𝑎†}. Note that the dynamical exponent (𝑧) is now different as the scaling variable

is |k|𝑡 compared to k2𝑡 in Eq. (6.63), i.e., we find ballistic (𝑧 = 1) rather than diffusive dynamics

(𝑧 = 2). Fluctuations diverge in the same fashion, 𝐺𝐾
𝛼𝛽
∼ 1/k2, regardless of the dissipation, while

the dynamical behavior undergoes a crossover; for a similar behavior of the DDIM, see Ref. [94].

As we kept k finite while taking Γ→ 0, the system remains gapped. Therefore, the density matrix

commutes with the Hamiltonian, in parallel with our discussion in Section 6.4.3. The TRS is

then restored and the correlation and response functions satisfy the equilibrium FDR as one can

directly see from Eq. (6.66). If we instead take k → 0 before sending Γ → 0, we find that the

cross-correlation 𝐺𝐾
ΦΠ
(𝑡 = 0, k = 0) ∼ 1/Γ diverges even at the weakly-dissipative critical point,

while this quantity remains zero in equilibrium as it is odd under the time-reversal transformation.
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CHAPTER 7

INFORMATION AND ENTANGLEMENT

Quantum entanglement is a defining signature of quantum mechanics, characterized by a nontrivial

superposition of multi-particle states, and has been a subject of intense research for the past decades

[100]. Additionally, it has been shown to be useful as a resource for quantum computation [101–

103] and metrology [104, 105]. However, quantum entanglement is delicate as it will be spoiled by

any interaction with the environment, i.e. dissipation. The common solution is to further isolate

the system and to cool it down to lower temperatures in the hope of minimizing dissipation and

thermal fluctuations. An alternative avenue is, turning a foe to a friend, to use dissipation to our

advantage in order to create states that have rich entanglement behavior [106–110]. We follow the

second path and apply this framework to the DDIM.

In this chapter, we investigate the entanglement features of the DDIM using analytical and

numerical techniques. Despite the presence of spontaneous emission, we show that the nonequi-

librium steady state of this model hosts interesting entanglement features, especially near the Z2

symmetry breaking Ising phase transition. Specifically, we calculate three separate quantities

relevant to quantum information, namely the logarithmic negativity 𝐸N , and the quantum Fisher

information 𝐹, and the spin squeezing parameter 𝜉. The logarithmic negativity is an entanglement

monotone [111] that is easily computable for many-body mixed states, and the quantum Fisher

information, a quantity typically used in metrology to quantify a bound on measurement precision,

can also characterize entanglement in a many-body spin state [112–116]. The spin squeezing

parameter 𝜉 measures how squeezed the state is with respect to the spin operators and is connected

to the concurrence [117–119], meaning it is also an entanglement witness. We also calculate the

von Neumann entropy and mutual information, which capture both classical and quantum correla-

tions in a mixed state and provide a useful point of comparison for true entanglement measuring

quantities.

To obtain exact expressions of the entanglement measures, we utilize covariance matrix tech-
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niques [110, 120–125] to take advantage of the Gaussian nature of fluctuations in the nonequilibrium

steady state. These methods allow us access to the aforementioned quantities in the thermody-

namic limit. We find that the von Neumann entropy is finite in the normal phase except at the phase

boundary where it diverges logarithmically with the system size. It then transitions to volume law

behaviour in the ordered phase. This transition to volume law is distinct from the area-to-volume

law transition in measurement-induced phase transitions [126, 127], and is due to the infinite-range

interactions in the system. The logarithmic negativity is finite everywhere in the phase diagram and

peaks at the phase boundary where it takes the value 𝐸N = 1/2. For the quantum Fisher informa-

tion densities 𝑓𝛼 = 𝐹 (𝑆𝛼)/𝑁 of the collective spin operators 𝑆𝛼, with 𝛼 ∈ {𝑥, 𝑦, 𝑧} and 𝐹 (𝑆𝛼) the

corresponding quantum Fisher information, we find that they are all bounded from above by 𝑓𝛼 ≤ 2

everywhere in the normal phase. This bound is uniquely saturated at the critical point, where the

direction of the spin operator that yields the optimal density 𝑓opt is dictated by the direction of the

gapless mode that characterizes the critical properties of the phase transition [128]. In addition,

a density greater than unity indicates that the state is at least 2-particle entangled. The mode

orthogonal to the gapless mode, i.e. the gapped mode, corresponds to the direction that is most

squeezed, and this mode achieves a squeezing value of exactly 𝜉 = 1/2 at the phase boundary, with

𝜉 the squeezing parameter. In line with the other entanglement quantities, the squeezing parameter

reaches its minimum at the phase boundary.

7.1 Covariance Matrix Method

The DDIM cannot be solely characterized by the mean-field solution in Eq. (3.7), as there

are quantum and statistical fluctuations on top of the expectation values of observables that are

neglected by a mean-field analysis. However, we can completely characterize fluctuations via

two-point correlations. We have shown in Ch. 3 that the Liouvillian in Eq. (3.5) may be mapped

exactly to a classical action, consisting of a pair of real Hubbard-Stratonovich fields 𝑚𝑐, 𝑚𝑞 [94],

whose exact form is given by Eq. (3.16). This action may be expanded in powers of the fields,

and is shown to be exactly quadratic with higher order corrections of O(1/𝑁); see Eq. (3.30).
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Furthermore, the fields 𝑚𝑐 and 𝑚𝑞 are directly related to fluctuations of 𝑆𝑥 , as discussed in Sec.

3.3.1. Fluctuations of the operators 𝑆𝑦 and 𝑆𝑧 can be determined by introducing source fields to the

path integral, and this too can be shown to be quadratic in the thermodynamic limit, see Appendix

7.A. We can therefore take the DDIM to be exactly quadratic in the thermodynamic limit. This

result directly implies that the steady state of the model is a Gaussian state, as it is completely

characterized by two-point correlation functions.

A Gaussian state can be fully parameterized by a displacement vector d plus a covariance matrix

𝜎,

𝑑𝑖 = Tr(𝜌𝑟𝑖) , (7.1)

𝜎𝑖 𝑗 = Tr(𝜌{Δ𝑟𝑖,Δ𝑟 𝑗 }) , (7.2)

where 𝜌 is the steady state density matrix, r = (𝑥1, 𝑥2, ..., 𝑝1, 𝑝2, ...)𝑇 is the vector of position and

momentum operators, and Δr = r − d. The curly brackets denote the anti-commutator. We will

calculate each entanglement measure using the covariance matrix and its symplectic eigenvalues

[120–125]. The symplectic eigenvalues are defined as the eigenvalues of 𝑖Ω𝜎, where

Ω =

(
0 𝐼

−𝐼 0

)
, (7.3)

with 𝐼 the identity matrix, encodes the canonical commutation relations of the position and momenta

operators

[𝑟𝑖, 𝑟 𝑗 ] = 𝑖Ω𝑖 𝑗 . (7.4)

The eigenvalues always come in pairs ±𝜈𝑖 and are bounded from below by 1. In the following

subsections, we discuss how the covariance matrix formalism applies to the driven-dissipative

Ising model in the normal and ordered phases.

7.1.1 Normal Phase

A key observation is that in the normal phase, the total spin is polarized in the negative 𝑧-direction

with negligible fluctuations. This means that we can readily make the approximation [𝑆𝑥 , 𝑆𝑦] =
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2𝑖𝑆𝑧 → [𝑆𝑥 , 𝑆𝑦] = −2𝑖𝑁 , and then rescale the spin operators, 𝑥 = 𝑆𝑥/
√

2𝑁, 𝑝 = −𝑆𝑦/
√

2𝑁 ,

such that we retrieve the canonical commutation relations [𝑥, 𝑝] = 𝑖. This identification gives a

single pair of position and conjugate momentum operators, meaning we simply have a single mode

covariance matrix with r = (𝑥, 𝑝).

The correlation functions for the steady state of Eq. (??) in the normal phase have been computed

in a previous work [128]. They were derived using an exact mapping to a Keldysh path integral.

However, we omit the technical details as they are outside the scope of this paper; we only require

the correlation functions here. The exact analytical expressions for the correlation functions of 𝑥

and 𝑝 are

𝜎11 = 1 + 16𝐽Δ
Γ2 − Γ2

𝑐

, (7.5)

𝜎12 = 𝜎21 =
4𝐽Γ

Γ2 − Γ2
𝑐

, (7.6)

𝜎22 = 1 + 16𝐽 (2𝐽 − Δ)
Γ2 − Γ2

𝑐

. (7.7)

Desired quantities can be calculated using the covariance matrix representation of the density

matrix. On the other hand, the logarithmic negativity and mutual information require that that we

split the system in two and have correlation functions between the two halves. In this case, our

covariance matrix, now denoted as 𝜎𝐴𝐵 for two subsystems 𝐴 and 𝐵, becomes a 4 × 4 matrix as

𝜎𝐴𝐵 =

(
𝑋 𝐾

𝐾 𝑃

)
, (7.8)

with the block matrices

𝑋 = 𝐼 + 8𝐽Δ
Γ2 − Γ2

𝑐

(
1 1
1 1

)
, (7.9)

𝑃 = 𝐼 + 8𝐽 (2𝐽 − Δ)
Γ2 − Γ2

𝑐

(
1 1
1 1

)
, (7.10)

𝐾 =
2𝐽Γ

Γ2 − Γ2
𝑐

(
1 1
1 1

)
. (7.11)

For a derivation of these quantities, see Appendix A. We emphasize that these exact expressions

are only valid in the normal phase.
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7.1.2 Ordered Phase

The covariance matrix techniques discussed in the previous subsection apply only to systems that

can be described by bosonic modes. In the normal phase, the DDIM satisfies this condition as the

total spin is fully polarized in the 𝑧-direction, and excitations of the spin can be seen as excitations

of a bosonic mode (akin to a Holstein-Primakoff transformation) [14, 28]. However, this picture

no longer applies in the ordered phase. While we can always rotate our spin variables such that

the spin is pointing along the 𝑧-direction, there is a technical problem: generically, there will be

non-negligible fluctuations along all spin directions, implying that the Holstein-Primakoff picture is

no longer valid. In contrast, in the normal phase ⟨𝑆2
𝑧 ⟩/𝑁 ∼ 0, allowing us to make the replacement

𝑆𝑧 ∼ −𝑁 in the commutation relation that defines the quadratures of the bosonic mode. In light of

this discussion, we utilize quantum trajectory simulations, introduced in Sec. 4.2, to numerically

calculate the desired entanglement measures in the ordered phase.

7.2 Entropy and Information Measures

The von Neumann entropy,

𝑆vN(𝜌) = −Tr(𝜌 log 𝜌) , (7.12)

the quantum equivalent of the Shannon entropy, is a useful measure of correlations in a quantum

system. However, it is not generally a good indicator of “quantum correlation", i.e. entanglement, in

the system. It can predict nontrivial behaviour, especially at criticality, and is useful for comparison

with other quantities. In this section, we analytically calculate the von Neumann entropy 𝑆vN both

in the normal and ordered phases, and use exact numerical solutions to supplement our findings at

the critical point as well as the ordered phase. We then supplement these results by calculating the

mutual information.

The von Neumann entropy in the normal phase can be calculated purely in terms of the

symplectic eigenvalues of the covariance matrix, as the mean-field contribution to the entropy is

zero because the mean-field state is pure in the normal phase. In general, it has been previously
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shown that 𝑆vN for a Gaussian state can be expressed as [122]

𝑆vN(𝜌) =
𝜈 + 1

2
log

(
𝜈 + 1

2

)
− 𝜈 − 1

2
log

(
𝜈 − 1

2

)
, (7.13)

where 𝜈 is the symplectic eigenvalue of 𝜎. Equipped with the covariance matrix, given by Eq.

(7.5), we find

𝜈 =

√︄
1 + 16𝐽2

Γ2 − Γ2
𝑐

. (7.14)

This eigenvalue satisfies 𝜈 ≥ 1 in the normal phase Γ > Γ𝑐. In addition, setting 𝐽 = 0 we find

𝜈 = 1, which means the state is pure [122]. Indeed, if there is no interaction then the steady

state is a pure state with all spins pointing down. Plugging this into Eq. (7.13), we find the von

Neumann entropy everywhere in the normal phase. From the form of the symplectic eigenvalue,

we can see that the von Neumann entropy diverges at Γ = Γ𝑐, signifying the onset of criticality.

This is expected as fluctuations also diverge at the critical point [98]. This phase transition was

shown to be in the same university class as the finite-temperature transverse-field Ising model [98],

where the transtion is dominated by classical thermal fluctuations. Thus, we expect 𝑆vN to diverge

as it captures classical correlations as well. In addition, near the critical point, the von Neumann

entropy diverges as 𝑆vN ∼ −1
2 log 𝛾, where 𝛾 = Γ − Γ𝑐. Taking advantage of the finite-size scaling

analysis previously performed in [94, 98], we have the scaling behavior 𝛾 ∼ 1/
√
𝑁 at the critical

point, which tells us that

𝑆vN ∼
1
4

log 𝑁 . (7.15)

The coefficient of the logarithm is 1/4, distinct from the zero-temperature equilibrium value of

1/6 [129] and the volume law at finite-temperature. The mutual information, however, is the same

(∼ 1
4 log 𝑁) as that of the Ising model at finite temperature [130]. This simply follows from the

split-system covariance matrix in Eq. (7.8).

To complement the von Neumann entropy, we can also calculate the purity of the state 𝜇 =

Tr(𝜌2). In terms of the covariance matrix, the purity is given by

𝜇 =
1

√
Det𝜎

. (7.16)
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Conveniently, the symplectic eigenvalue of a single-mode covariance matrix is directly related to

the determinant of the matrix, Det𝜎 = 𝜈2 , meaning that

𝜇 =
1
𝜈
. (7.17)

From this expression, it is clear that the purity contribution from the part of the density matrix

describing Gaussian fluctuations is zero at the critical point where the classical fluctuations diverge.

However, the mean-field part of the density matrix remains pure.

We cannot perform the same procedure in the ordered phase, as discussed in Sec. 7.1.2.

However, a simple analysis shows that the entropy is dominated by the mean-field contribution

which is 𝑂 (𝑁), i.e. volume law. This is easily seen through

𝑆vN(𝜌⊗𝑁MF) = 𝑁 𝑆vN(𝜌MF) , (7.18)

which is proportional to 𝑁 . While the entropy does transition from “area law” (𝑆𝑣𝑁 ∼ 𝑂 (1))

in the normal phase to volume law in the ordered phase, this is distinct from the entanglement

phase transitions studied recently which identify this transition at the level of individual quantum

trajectories as opposed to the density matrix [126, 127, 131, 132]. We believe that, the volume

law observed here is due to the infinite-range interactions. Furthermore, the steady state becomes

increasingly mixed in the ordered phase. The mean-field prediction of the purity is 𝜇(𝜌MF) =
1
2 (1 + 𝑠

2) < 1, with 𝑠 = 𝑆/𝑁 =

√︃
⟨𝑆𝑥⟩2 + ⟨𝑆𝑦⟩2 + ⟨𝑆𝑧⟩2/𝑁 . Inserting the steady state solutions of

the mean-field equations from Eq. (3.7), we find

𝜇(𝜌MF) =
2Γ2(Γ2

𝑐 − Γ2) + 16Δ2Γ2
𝑐 + 512𝐽Δ2(2𝐽 + Δ)

2048𝐽2Δ2 . (7.19)

In the ordered phase, 𝜇(𝜌MF) < 1 such that the mean-field solution predicts a mixed steady state.

The purity reaches its minimum, 𝜇 = 1/2, when Γ,Δ→ 0.

Another interesting quantity is the mutual information [126, 130, 133],

𝐼𝐴𝐵 = 𝑆vN,𝐴 + 𝑆vN,𝐵 − 𝑆vN,𝐴𝐵 (7.20)

which captures the total correlations between two subsystems 𝐴 and 𝐵. This quantity has been

used as a signal for phase transitions at finite temperature [126, 130, 133]. We can calculate it
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analytically in the normal phase by using Eq. (7.8), in combination with Eq. (7.13). To obtain the

subsystem entropy, we construct the subsystem covariance matrices from Eq. (7.8),

𝜎𝐴 = 𝜎𝐵 =

(
𝑋11 𝐾11
𝐾11 𝑃11

)
, (7.21)

where the matrix elements are given by Eq. (7.9). The two matrices are equal due to the permutation

symmetry of the model, and the fact that we have split the system in half.

We can now determine the symplectic eigenvalues of these covariance matrices,

𝜈𝐴 = 𝜈𝐵 =

√︄
1 + 12𝐽2

Γ2 − Γ2
𝑐

. (7.22)

These eigenvalues, as expected, are rather similar to the symplectic eigenvalue of the total system

covariance matrix 𝜈 given by Eq. (7.14). Plugging these eigenvalues into Eqs. (7.13) and (7.20), we

find the mutual information for the driven-dissipative Ising model in the normal phase. Similar to

the von Neumann entropy, the mutual information diverges logarithmically at the phase boundary

as 𝐼𝐴𝐵 ∼ 1
2 log 𝛾. Therefore, it also grows logarithmically with the system size,

𝐼𝐴𝐵 ∼
1
4

log 𝑁 , (7.23)

with the same coefficient as the von Neumann entropy.

In Fig. 7.2.1, we see that the mutual information does not grow with the system size in the

normal phase, where Γ > Γ𝑐 = 4. As predicted in Eq. (7.23), it grows logarithmically at the phase

boundary (see the inset). The discrepancy in the numerically predicted coefficient ∼ 0.36 log 𝑁

from the theoretically predicted value of 1
4 log 𝑁 is due to finite-size effects, as well as the total

evolution time growing as
√
𝑁 at the critical point [94]. Specifically, it is difficult to numerically

access the late times necessary to guarantee we are in the steady state, in addition to the fact that the

memory cost of storing the density matrix over longer time-scales and larger system sizes grows

to be prohibitive. Taking these details into account, we performed these simulations with a time

step of 𝛿𝑡 = .001 over 2000 trajectories, and we averaged over the last 100 time steps, skipping

every 5, of the mutual information dynamics. At the critical point, the total evolution time was

𝑡 𝑓 = 10Γ−1√𝑁 to account for the finite-size scaling of the critical dynamics.
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Figure 7.2.1 The mutual information as a function of Γ for various system sizes, with 𝐽 = 1,Δ = 1.
At the critical point, 𝐼𝐴𝐵 gorws logarithmically with the system size as shown in the inset. In the
ordered phase, the mutual information surprisingly further grows with system size. This could be
due to the permutation symmetry of the model; see the text for further explanation.

In the ordered phase we rely on numerics to calculate the mutual information, where now

the total evolution time is 𝑡 𝑓 = 10Γ−1 log 𝑁 . Figure 7.2.1 indicates that the mutual information

grows with the system size inside the ordered phase where Γ < Γ𝑐 = 4. This is at odds with the

conventional wisdom that the mutual information peaks at the critical point. We speculate that this

follows from the contribution of different total angular momentum sectors. In general, an Ising

phase transition would contribute an additional constant of log 2 to the mutual information at any

finite system size. However, the permutation of the symmetry of the model leads to a mixture

of different total angular momentum sectors in the density matrix [41, 42], and each sector may

contribute to the ordering, hence the nontrivial behavior of the mutual information.

7.3 Entanglement Measures

In this section, we investigate three prominent measures of quantum entanglement: logarithmic

negativity, quantum Fisher information, and spin squeezing. Each of these quantities characterizes

a particular aspect of the entanglement features of the system. Using numerical simulation, and

theoretical techniques established in [98, 128] and supplemented in Appendices A and B, we
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Figure 7.3.1 (a) Logarithmic negativity as a function of Γ with 𝐽 = 1,Δ = 1. We see that 𝐸N
peaks near the phase boundary at Γ𝑐 = 4, close to the predicted value of 𝐸N = 1/2. The
logarithmic negativity appears to increase with system size at small Γ, as quantum trajectories
require long evolution times (∼ 1/Γ) that are not accessible in this regime. (b) A plot of 𝐸N vs. Δ
at 𝐽 = 1, Γ = 1. The peak occurs near Δ𝑐 = 1.97, and is near the predicted value of 𝐸N = 1/2. The
growing negativity at small Δ could be an artifact of quantum trajectories; see the text.

calculate each of these quantities throughout the phase diagram.

7.3.1 Logarithmic Negativity

To better understand the nature of quantum correlations, or entanglement, in the nonequilibrium

steady state, we may consider the logarithmic negativity [111, 134]

𝐸N = log Tr( |𝜌𝑇𝐵 |1) , (7.24)

where 𝑇𝐵 denotes the partial transpose of a subsystem 𝐵, and | • |1 signifies the trace norm. The

partial transpose only affects the coherences of the density matrix, which could violate its positivity

and lead to negative eigenvalues. The logarithmic negativity then captures the degree to which

positivity is violated due to the entanglement of A and B subsystems. This quantity can also be

used to detect phase transitions and critical phenomena in many-body systems [135, 136] when

they are driven by quantum fluctuations.

Equation (7.24) is useful when one has access to the full density matrix and can compute its

singular values; however, we can also calculate this quantity for Guassian states using the covariance
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matrix formalism. This requires that the system be split into subsystems, meaning we will use Eq.

(7.8) where we have split the system in half. In terms of the symplectic eigenvalues of the covariance

matrix, the logarithmic negativity can be computed as [122, 135]

𝐸N = −
∑︁
𝑖

log2 (min(𝜈̃𝑖, 1)) , (7.25)

where 𝜈̃𝑖s are the symplectic eigenvalues upon partial transposition of the density matrix, which is

equivalent to sending 𝑝𝐵 → −𝑝𝐵 in the covariance matrix [122, 135]. The violation of positivity

in the density matrix is equivalent to the violation of the bound 𝜈 ≥ 1. Computing these new

symplectic eigenvalues, we find only one that satisfies 𝜈̃ < 1,

𝜈̃ =

√︄
1 + 4𝐽 (4𝐽 −

√︁
Γ2 + 16(𝐽 − Δ)2)

Γ2 − 16Δ(2𝐽 − Δ)
. (7.26)

Plugging this into Eq. (7.25), we find that 𝐸N is indeed finite throughout the normal phase.

Taking the limit Γ → Γ𝑐, the symplectic eigenvalue approaches 𝜈̃ → 1/
√

2 which leads to

𝐸N = log2
√

2 = 1/2. Therefore, the logarithmic negativity does not diverge. This indicates that

while quantum correlations do not govern the phase transition, they are still present; this should

be contrasted with divergent quantum fluctuations of the Hamiltonian system at zero temperature

[135]. Our results show that, despite being a mean-field model, the DDIM nonequilibrium steady

state is an entangled many-body state.

In the ordered phase we rely numerics to calculate the logarithmic negativity. In Fig. 7.3.1, we

first see that the peak in the negativity is slightly shifted from the critical point at Γ = 4, due to

finite-size effects. Furthermore, the numerics show that the peak at the phase boundary is close to

the theoretically predicted value in the thermodynamic limit of 𝐸N = 1/2. Despite the fact that

the steady state becomes increasingly mixed, we still have a finite logarithmic negativity and the

system appears to be entangled at finite system sizes. From Fig. 7.3.1(a) it might appear that the

logarithmic negativity grows with system size when Γ ≪ 𝐽, however, this is merely an effect of

the quantum trajectories simulation. Small Γ necessitates longer evolution times and storage of

a longer density matrix history, which become inaccessible in this regime. Similar to the mutual

information simulations, we evolved 2000 trajectories for a total time of 𝑡 𝑓 = 10Γ−1 log 𝑁 in the
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ordered phase, with time step size 𝛿𝑡 = .001. To calculate the logarithmic negativity, we averaged

over the last 100 time steps of the dynamics while skipping every 5 time steps. Furthermore, the

logarithmic negativity in Fig. 7.3.1(b) grows as we approach the other side of the phase boundary

near Δ = 0. While a peak near the boundary is expected, the large growth with the system size is

not, and is likely an artifact of quantum trajectories for Δ ≪ 𝐽. Indeed, the model at Δ = 0 does not

support correlations spreading in the system [47], while the non-Hermitian Hamiltonian employed

in quantum trajectories becomes a complex-valued transverse-field Ising model and leads to the

propagation of correlations; this is an artifact of quantum trajectories where the jump terms and

the non-Hermitian Hamiltonian are treated on different footings. Convergence may require a very

large number of quantum trajectories that is not accessible in our numerics.

7.3.2 Quantum Fisher Information

The quantum Fisher information 𝐹, although typically used in quantum metrology, is a useful

measure of entanglement in spin systems [112–116]. This quantity bounds the precision one

can attain when performing a phase estimation measurement corresponding to the transformation

𝑈 = exp(𝑖𝜃𝑂) with the phase 𝜃 and operator 𝑂. To saturate this bound the system needs to be

entangled [105, 112–116]. For a spin system, it has been shown that the quantum Fisher information

density of a total spin operator 𝑆n = 1
2
∑
𝑖 n · 𝝈𝑖 (where 𝝈𝑖 = (𝜎𝑥𝑖 , 𝜎

𝑦

𝑖
, 𝜎𝑧

𝑖
)𝑇 ) pointed along the unit

vector n = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧), can indicate whether or not a state is 𝑘-partical entangled [112–116].

Specifically, a state of 𝑁 spin-1
2 particles is at least (𝑚 + 1)-partite entangled if

𝐹

𝑁
= 𝑓 > 𝑚 , (7.27)

for 𝑚 a divisor of 𝑁 . This bound provides a direct way to determine the presence of entanglement

from the quantum Fisher information density.

The quantum Fisher information of a density matrix 𝜌 with respect to the transformation

generator 𝑂 is defined as

𝐹 (𝜌, 𝑂) = 2
∑︁
𝑖, 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2

𝜆𝑖 + 𝜆 𝑗
| ⟨𝑖 |𝑂 | 𝑗⟩ |2 , (7.28)
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Figure 7.3.2 Numerical density plots of the quantum Fisher information density measured with
respect to 𝑆𝑥/2 and 𝑆𝑦/2; we have set 𝐽 = 1. (a) The quantity 𝑓𝑥 is maximal in the Δ→ 2, Γ→ 0
limit, where the theoretically predicted value is 𝑓𝑥 = 2. (b) We see that 𝑓𝑦 approaches its
theoretically predicted maximum value of 𝑓𝑦 = 2 when Δ→ 0, Γ→ 0. In both cases, the quantum
Fisher information is vanishing in a corner of the ordered phase as Δ, Γ→ 0 .

which is useful for numerical computations where the eigenvalues 𝜆𝑖 and eigenvectors |𝑖⟩ of

the density matrix are accesible. However, these quantities are difficult to obtain analytically.

Conveniently, for Gaussian states there exists an analytical form of the quantum Fisher information

in terms of the covariance matrix and the displacement vector [125]. For a generator of the

transformation that is a collective spin operator in the x-y plane, we can write the unitary in the

form

𝑈 (𝜃) = 𝑒𝑖r𝑇Ω𝜸(𝜃) , (7.29)

where 𝜸(𝜃) =
√︃
𝑁
2 𝜃 (𝑛𝑦, 𝑛𝑥); we recall that 1

2𝑆𝑥 =
√︁
𝑁/2𝑥, 1

2𝑆𝑦 = −
√︁
𝑁/2𝑝, and r = (𝑥, 𝑝). The

factor of 1/2 in front of the collective operators is introduced so that the spin operators have a

spectrum of unit width. The above unitary transformation merely shifts the displacement vector,

d(𝜃) = d + 𝜸(𝜃) . (7.30)

For a transformation of this type, linear in the canonical operators, 𝐹 was shown to be given by

[125]

𝐹 = ¤𝜸𝑇 (𝜃)𝜎−1 ¤𝜸(𝜃) , (7.31)
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Figure 7.3.3 Numerical density plots of the quantum Fisher information measured with respect to
𝑆𝑧/2 and the optimal quantum Fisher information, with 𝐽 = 1. (a) 𝑓𝑧 is only finite in the ordered
phase where the collective spin is no longer fully polarized along the 𝑧 direction, allowing for
nontrivial fluctuations in 𝑆𝑧. (b) The optimal Fisher information density finds a maximal value of
𝑓opt = 2 along the phase boundary. Deviations from this exact value along the phase boundary are
due to finite-size effects and the uncertainties involving quantum trajectories. The optical Fisher
information too is vanishing in the ordered phase near Δ, Γ→ 0.

where the dot denotes a derivative with respect to 𝜃. For the transformation operators 1
2𝑆𝑥 and 1

2𝑆𝑦,

we have 𝑛𝑥 = 0 and 𝑛𝑦 = 0 respectively. Plugging Eq. (7.5) into Eq. (7.31), we find for these two

limits the quantum Fisher information densities

𝑓𝑥 =
Γ2 − 16Δ(𝐽 − Δ)
Γ2 + 16(𝐽 − Δ)2

, (7.32)

𝑓𝑦 = 1 + 16𝐽 (𝐽 − Δ)
Γ2 + 16(𝐽 − Δ)2

, (7.33)

which are valid throughout the normal phase. Interestingly, each of these quantities is bounded

from above by 𝑓𝑥 , 𝑓𝑦 ≤ 2. In fact, 𝑓𝑥 + 𝑓𝑦 = 2 is an exact relation, even at the phase boundary.

Furthermore, through the bound given by Eq. (7.27), we can conclude that the system is at least

bipartite entangled, hence our mean-field type model hosts a nontrivial many-body entanglement.

The quantum Fisher information density along the 𝑧-direction is zero in the thermodynamic limit in

the normal phase, as the collective spin is fully polarized in this direction so there are no fluctuations

along 𝑧.

These results suggest that there is an optimal direction n with which to calculate 𝐹. This optimal
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direction can be determined by solving for the 𝑛𝑥 , 𝑛𝑦 that maximizes 𝐹, which are found to be

𝑛∗𝑥 =

√︄
1
2
− 2(𝐽 − Δ)√︁

Γ2 + 16(𝐽 − Δ)2
, (7.34)

𝑛∗𝑦 = −
Γ√︁

4(Γ2 + 16(𝐽 − Δ)2)𝑛∗2𝑥
. (7.35)

These coefficients are properly normalized, and there is also a solution with the unit vector pointing

in the opposite direction. Plugging this into Eq. (7.31), we find the optimal quantum Fisher

information density one can achieve in the normal phase,

𝑓 ∗ = 1 + 4𝐽√︁
Γ2 + 16(𝐽 − Δ)2

. (7.36)

From the above equation we see that 1 ≤ 𝑓 ∗ ≤ 2 throughout the normal phase. In fact, it only

saturates the upper bound at the phase transition. These bounds show that the steady state is at

least 2-partite entangled throughout most of the normal phase [112–116]. At criticality the optimal

direction coincides exactly with the “gapless mode" of the system (i.e. the critical mode), which are

given by n𝜙 = (
√
Δ,−
√

2𝐽 − Δ)/
√

2𝐽, as shown in a previous work by some of the authors [128].

The quantum Fisher information density in this case is 𝑓𝜙 = 2 along the entire phase boundary.

Along the “gapped" direction, n𝜁 = (
√

2𝐽 − Δ,
√
Δ)/
√

2𝐽, we instead have 𝑓𝜁 = 0. These results are

intuitive as the quantum Fisher information is sensitive to fluctuations, a useful feature for quantum

metrology [104, 105]; it is precisely the gapless mode that exhibits the largest (in fact, divergent)

fluctuations criticality. On the other hand, the gapped mode has negligible fluctuations, which

leads to its zero quantum Fisher information density. An alternative interpretation is that the steady

state density matrix is a squeezed state, where the gapped mode is completely squeezed as we shall

discuss in the next section.

Interestingly, previous work [113] has shown that a saturation of the bound in Eq. (7.27) implies

that the state is a 𝑚-particle GHZ state. In the steady state discussed here, the optimal quantum

Fisher information saturates this bound at the phase boundary with 𝑚 = 2, implying that the steady

state at criticality is a 2-particle GHZ state. However, we know that this cannot be the case as

a product of 2-particle GHZ states is not permutation symmetric. Instead, it is possible that the
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state is a mixture of all permutations of 2-particle GHZ states such that the steady state respects

the permutation symmetry of the model, but this requires further investigation. Our results are

particularly interesting for metrological or entanglement studies of critical systems in the future,

where the role of gapless and gapped modes can be further elucidated.

To investigate the ordered phase, we once again employ numerics. The quantum trajectory

simulations were evolved for a total time 𝑡 𝑓 = 10Γ−1 with time step 𝛿𝑡 = .1 and 1000 trajectories.

For each data point, the quantum Fisher information density was averaged over the last ten time steps

of the dynamics. As shown in Fig. 7.3.3(a) we have that 𝑓𝑧 becomes finite in the ordered phase, as

the spin is no longer fully polarized in the 𝑧-direction which introduces fluctuations in 𝑆𝑧. However,

all four begin to deplete as Γ,Δ→ 0 where the state becomes increasingly mixed. This mixture is

easily seen by the fact that 𝜇(𝜌MF) = 1
2 (1 + 𝑠

2) < 1, with 𝑠 = 𝑆/𝑁 =

√︃
⟨𝑆𝑥⟩2 + ⟨𝑆𝑦⟩2 + ⟨𝑆𝑧⟩2/𝑁 .

From Eq. (7.28), it is clear that the quantum Fisher information density vanishes for completely

mixed states, so it is reasonable to expect that states sufficiently close to being completely mixed

would have small quantum Fisher information density.

7.3.3 Spin Squeezing

Squeezed states are extensively studied in the field of metrology as they are useful for surpassing the

quantum limit in high-precision measurements [117–119]. They are states in which the variance of

one or more quadratures is less than that of states with symmetric quadrature variances. An example

of such symmetric states are the coherent states. Squeezing of spin operators is characterized by

the squeezing parameter

𝜉 =
min(Δ𝑆2

s⊥)
𝑁

, (7.37)

where Δ𝑂2 = ⟨𝑂2⟩ − ⟨𝑂⟩2 is the variance of operator𝑂, and s⊥ defines an axis perpendicular to the

direction s of the mean total spin. The minimization is performed over all directions perpendicular

to s. We take this definition such that 𝜉 < 1 for a squeezed state and 𝜉 = 1 for a coherent spin state.

The squeezing parameter, 𝜉, is related to the quantum Fisher information as they both depend on the

fluctuations in the system and can indicate the presence of entanglement [117, 119]. Furthermore,
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Figure 7.3.4 (a) A schematic diagram depicting the direction of the gapless (n𝜙) and gapped (n𝜁 )
modes with respect to those defined by 𝑆𝑥 and 𝑆𝑦. The vectors are shown pointing in both
directions as they can be defined up to an overall sign. (b) The depiction of the gapless mode
along the phase boundary. The corresponding vector n𝜙 rotates from vertical to horizontal as the
phase boundary is traversed from left to right.

the squeezing parameter is directly related to the concurrence, and if 𝜉 < 1 then the state is not

only squeezed, but it also entangled [119].

Using the formalism described in Appendix 7.B, we are able to calculate the correlations for

all of the quadratures throughout the entire phase diagram analytically. We always take s to be

pointing along the 𝑧-direction, hence, we can write the perpendicular spin as 𝑆s⊥ = S̃ · s⊥ =

cos(𝜙)𝑆𝑥 + sin(𝜙)𝑆𝑦 and minimize Eq. (7.37) with respect to 𝜙. The tilde indicates that they are in

the rotated frame such that 𝑆𝑧 = 𝑆, with 𝑆 the mean total spin.

In the normal phase the covariance matrix in Eq. (7.5) already provides us with the necessary

ingredients to write Eq. (7.37) as

𝜉 = min𝜙 (𝜎11 sin2 𝜙 + 𝜎22 cos2 𝜙 − 2𝜎12 cos 𝜙 sin 𝜙) . (7.38)

We have used the fact that 𝑆𝑥,𝑦 = −𝑆𝑦,𝑥 in the normal phase, and identified 𝑥 = 𝑆𝑥/
√

2𝑁 and

𝑝 = −𝑆𝑦/
√

2𝑁 . Recall that the covariance matrix elements are defined as 𝜎11 = ⟨{𝑥, 𝑥}⟩ = ⟨𝑆2
𝑥/𝑁⟩

and similarly for 𝜎22. The cross correlation takes the form 𝜎12 = ⟨{𝑥, 𝑝}⟩ = −⟨{𝑆𝑥 , 𝑆𝑦}⟩/2𝑁 ,

hence, the multiplicative factor of −2 in the last term of Eq. (7.38). At the phase boundary, we

solve for 𝜙 that minimizes the above expression and find the unit vector s∗⊥ = (
√
Δ,
√

2𝐽 − Δ)/
√

2𝐽,

which exactly coincides with the direction of the gapped mode n𝜁 = (
√

2𝐽 − Δ,
√
Δ)/
√

2𝐽 in the
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Figure 7.3.5 Squeezing parameter 𝜉 over the phase space in the phase diagram; we have set 𝐽 = 1.
The steady state is most squeezed along the phase boundary, where the fluctuations of the gapless
mode diverge while the gapped mode is squeezed. In the corner region within the ordered phase,
the steady state is not squeezed as it becomes increasingly mixed.

original frame. Interestingly, we find that all along the phase boundary 𝜉 = 1/2 exactly.

In the ordered phase, we cannot find analytical expressions for the correlation functions, but

we can numerically evaluate the formal expressions we obtained in Appendix 7.B. With this, we

produce a density plot throughout the phase diagram in Fig. 7.3.5. From this figure, it is clear that

the nonequilibrium steady state is most squeezed at the phase boundary. Furthermore, the steady

state transitions to being not squeezed (𝜉 ≥ 1) deep inside the ordered phase where Δ, Γ ≪ 𝐽 = 1.

As discussed in Sec. 7.3.2, this is the region where the state becomes increasingly mixed. These

results enforce the conclusions in the previous sections that fluctuations are particularly suppressed

in this region of the ordered phase.
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APPENDIX

7.A Split system covariance matrix

In this appendix we show how to obtain Eq. (7.8), starting from the exact field theoretical

description of Eq. (3.5) as derived in Sec. 3.4. Using an exact quantum-to-classical mapping, the

non-equilibrium partition function of the steady state 𝑍 = lim𝑡→∞ Tr(exp(𝑡L)[𝜌0]) can be mapped

to a path integral over a pair of real fields 𝑚𝑐, 𝑚𝑞,

𝑍 =

∫
D[𝑚𝑐, 𝑚𝑞]𝑒𝑖𝑆[𝑚𝑐 ,𝑚𝑞] . (7.39)

The action 𝑆 is given by

𝑆 = −2𝐽𝑁
∫
𝑡

𝑚𝑐 (𝑡)𝑚𝑞 (𝑡) − 𝑖𝑁 ln Tr
[
T 𝑒

∫
𝑡
T(𝑚𝑐/𝑞 (𝑡))

]
, (7.40)

where𝑚𝑐, the “classical" field, captures the order parameter, and𝑚𝑞, the “quantum" field, is related

to quantum fluctuations and noise.

Connected correlation functions can be obtained by introducing source fields ℎ𝑖 coupled to the

desired observables to Eq. (3.5) [4, 13, 98]. After integration of the fields 𝑚𝑐, 𝑚𝑞, one obtains the

generating functional 𝑊 [{ℎ𝑖}] = 𝑖 ln 𝑍 which is given in terms of the desired Green’s functions.

We wish to obtain correlation functions for 𝑆𝑥 and 𝑆𝑦 within the same subsystem and between two

different subsystems. Therefore, we define 𝑆𝛼,𝐴 =
∑𝑁/2
𝑖=1 𝜎

𝛼
𝑖

to be the collective spin operator for one

half of the system, while 𝑆𝛼,𝐵 =
∑𝑁
𝑖=𝑁/2+1 𝜎

𝛼
𝑖

for the other half. We introduce source fields h(𝑢/𝑙) =

(𝛼(𝑢/𝑙)
𝐴

, 𝛼
(𝑢/𝑙)
𝐵

, 𝛽
(𝑢/𝑙)
𝐴

, 𝛽
(𝑢/𝑙)
𝐵
) coupled to the operators S(𝑢/𝑙) = (𝑆(𝑢/𝑙)

𝑥,𝐴
, 𝑆
(𝑢/𝑙)
𝑥,𝐵

,∓𝑆(𝑢/𝑙)
𝑦,𝐴

,∓𝑆(𝑢/𝑙)
𝑦,𝐵
)/
√
𝑁 ,

where 𝑢/𝑙 denote if the operator is acting to the left or the right of the density matrix in Eq. (3.5). This

modifies the vectorized LouvillianL (found through the transformation 𝐴•𝐵→ 𝐴⊗𝐵𝑇 = 𝐴(𝑢)𝐵(𝑙)𝑇

for operators 𝐴, 𝐵) by

L′ = L + 𝑖h(𝑢) · S(𝑢) − 𝑖h(𝑙) · S(𝑙) . (7.41)

Following the mapping to the path integral, this modifies the action in the following way,

𝑆 = −2𝐽𝑁
∫
𝑡

𝑚𝑐 (𝑡)𝑚𝑞 (𝑡) − 𝑖
𝑁

2
ln Tr

[
T 𝑒

∫
𝑡
T𝐴(𝑚𝑐/𝑞 (𝑡))

]
− 𝑖 𝑁

2
ln Tr

[
T 𝑒

∫
𝑡
T𝐵 (𝑚𝑐/𝑞 (𝑡))

]
, (7.42)
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where

T𝐴 = T + 𝑖h(𝑢)
𝐴
· s(𝑢)
𝐴
− 𝑖h(𝑙)

𝐴
· s(𝑙)
𝐴
, (7.43)

and similarly for T𝐵. The vectors with subsystem subscripts only contain fields/operators from that

subsytem, and we have also defined the single spin vectors s(𝑢/𝑙)
𝐴/𝐵 = (𝜎𝑥(𝑢/𝑙)

𝐴/𝐵 ,∓𝜎𝑦(𝑢/𝑙)
𝐴/𝐵 )/

√
𝑁 .

We can now expand Eq. (7.42) to second order in fluctuations around𝑚𝑐/𝑞 = 0, h𝑐/𝑞 = 0, where

we have performed the Keldysh rotation on the source fields h𝑐/𝑞 = (h(𝑢) ± h(𝑙))/
√

2. This yields

an action of the form

S (2) = 1
2

∫
𝑡,𝑡′

v𝑇 (𝑡)𝑃̂(𝑡 − 𝑡′)v(𝑡′) , (7.44)

where

v = (𝑚𝑐, 𝑚𝑞, 𝛼𝑐,𝐴, 𝛼𝑞,𝐴, 𝛼𝑐,𝐵, 𝛼𝑞,𝐵, 𝛽𝑐,𝐴, 𝛽𝑞,𝐴, 𝛽𝑐,𝐵, 𝛽𝑞,𝐵) ,

(in an abuse of notation we denote the fluctuations with the original field labels), and the kernel 𝑃

is a block matrix:

𝑃̂ =

©­­­­­«
𝑃̂𝑚 𝑃̂𝑚,𝛼 𝑃̂𝑚,𝛼 𝑃̂𝑚,𝛽 𝑃̂𝑚,𝛽

𝑃̂𝛼,𝑚 𝑃̂𝛼 0 1
2𝐽 𝑃̂𝑚,𝛽 0

𝑃̂𝛼,𝑚 0 𝑃̂𝛼 0 1
2𝐽 𝑃̂𝑚,𝛽

𝑃̂𝛽,𝑚
1
2𝐽 𝑃̂𝛽,𝑚 0 𝑃̂𝛼 0

𝑃̂𝛽,𝑚 0 1
2𝐽 𝑃̂𝛽,𝑚 0 𝑃̂𝛼

ª®®®®®¬
. (7.45)

Each of the submatrices has the typical Keldysh structure,

𝑃̂𝑚 =

(
0 𝑃𝐴𝑚
𝑃𝑅𝑚 𝑃𝐾𝑚

)
. (7.46)

The list of elements in the time domain are

𝑃
𝐴/𝑅
𝑚 (𝑡) = −2𝐽𝛿(𝑡) + Θ(∓𝑡)

(
8𝐽2𝑒−

Γ
2 |𝑡 | sin (2Δ|𝑡 |)

)
, (7.47)

𝑃𝐾𝑚 (𝑡) = 𝑖8𝐽2𝑒−
Γ
2 |𝑡 | cos (2Δ|𝑡 |) , (7.48)

𝑃
𝐴/𝑅
𝛼 (𝑡) = 1

8𝐽2

(
𝑃
𝐴/𝑅
𝑚 (𝑡) + 2𝐽𝛿(𝑡)

)
, (7.49)

𝑃𝐾𝛼 (𝑡) =
1

8𝐽2𝑃
𝐾
𝑚 (𝑡) , (7.50)

𝑃
𝐴/𝑅
𝛽,𝑚
(𝑡) = ∓Θ(∓𝑡)

(
2𝐽𝑒−

Γ
2 |𝑡 | cos (2Δ|𝑡 |)

)
, (7.51)

𝑃𝐾𝛽,𝑚 (𝛿𝑡) = sgn(𝑡)
(
−𝑖2𝐽𝑒− Γ

2 |𝛿𝑡 | sin (2Δ|𝛿𝑡 |)
)
, (7.52)
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and the submatrices obey the following relations,

[𝑃̂𝑚]𝑇 (−𝑡) = 𝑃̂𝑚 (𝑡) , [𝑃̂𝛼]𝑇 (−𝑡) = 𝑃̂𝛼 (𝑡) , (7.53)

𝑃̂𝑚,𝛼 (𝑡) = 2𝐽𝑃̂𝛼 , 𝑃̂𝑚,𝛼 (𝑡) = 𝑃̂𝛼,𝑚 (𝑡) , (7.54)

[𝑃̂𝛽,𝑚]𝑇 (−𝑡) = 𝑃̂𝑚,𝛽 (𝑡) . (7.55)

The final step is to integrate out the fields 𝑚𝑐/𝑞 such that we are left with the generating

functional. This integration is easily done in the frequency domain using functional Gaussian

integration rules [13], which leads to a generating functional of the form

𝑊 [h] =1
2

∫
𝜔

(
h𝑇𝛼𝐴

𝐺̂𝑥𝑥 (𝜔)h𝛼𝐴
+ h𝑇𝛽𝐴𝐺̂ 𝑝𝑝 (𝜔)h𝛽𝐴 + 2h𝑇𝛼𝐴

𝐺̂𝑥𝑝 (𝜔)h𝛽𝐴
)

+ 2
∫
𝜔

(
h𝑇𝛼𝐴

𝐺̂𝐴𝐵
𝑥𝑥 (𝜔)h𝛼𝐵 + h𝑇𝛽𝐴𝐺̂

𝐴𝐵
𝑝𝑝 (𝜔)h𝛽𝐵 + h𝑇𝛼𝐴

𝐺̂𝐴𝐵
𝑥𝑝 (𝜔)h𝛽𝐵

)
+ . . .

(7.56)

where we have suppressed the frequency dependence of the fields for compactness, h𝛼𝐴
=

(𝛼𝑐,𝐴, 𝛼𝑞,𝐴) (similarly for the other fields), and the . . . signify the rest of the terms which can

be found by swapping 𝐴→ 𝐵. The Green’s functions have a Keldysh structure,

𝐺̂𝑖 𝑗 =

(
0 𝐺𝐴

𝑖 𝑗

𝐺𝑅
𝑖 𝑗

𝐺𝐾
𝑖 𝑗

)
, (7.57)

where 𝐺𝑅
𝑖 𝑗

is the retarded response function, and the Keldysh Green’s function 𝐺𝐾
𝑖 𝑗
(𝑡) = 𝐶𝑖 𝑗 (𝑡) =

⟨{𝛿𝑂𝑖 (𝑡), 𝛿𝑂 𝑗 (0)}⟩ is the connected correlation function for operators 𝑂𝑖/ 𝑗 , i.e. the quantity of

interest. In terms of the submatrices given in Eq. (7.45), we have

𝐺̂𝑥𝑥 = 𝑃̂𝛼,𝑚 (𝜔)𝑃̂−1
𝑚 (𝜔)𝑃̂𝑚,𝛼 (𝜔) − 𝑃̂𝛼 (𝜔) (7.58)

𝐺̂ 𝑝𝑝 = 𝑃̂𝛽,𝑚 (𝜔)𝑃̂−1
𝑚 (𝜔)𝑃̂𝑚,𝛽 (𝜔) − 𝑃̂𝛼 (𝜔) (7.59)

𝐺̂𝑥𝑝 = 𝑃̂𝛽,𝑚 (𝜔)𝑃̂−1
𝑚 (𝜔)𝑃̂𝑚,𝛽 (𝜔) − 2𝑃̂𝛽,𝛼 (𝜔) (7.60)

𝐺̂𝐴𝐵
𝑥𝑥 = 𝑃̂𝛼,𝑚 (𝜔)𝑃̂−1

𝑚 (𝜔)𝑃̂𝑚,𝛼 (𝜔) (7.61)

𝐺̂𝐴𝐵
𝑝𝑝 = 𝑃̂𝛽,𝑚 (𝜔)𝑃̂−1

𝑚 (𝜔)𝑃̂𝑚,𝛽 (𝜔) (7.62)

𝐺̂𝐴𝐵
𝑥𝑝 = 𝑃̂𝛼,𝑚 (𝜔)𝑃̂−1

𝑚 (𝜔)𝑃̂𝑚,𝛽 (𝜔) . (7.63)

Taking only the Keldysh Green’s function from each of these matrices, and integrating them over

the frequency domain to obtain the correlation function at equal times, we retrieve the expressions
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for the split-system covariance matrix as shown in Eq. (7.8). The identification between these

results and the covariance matrix elements are

𝑋 =

(
𝐶𝑥𝑥 𝐶𝐴𝐵

𝑥𝑥

𝐶𝐴𝐵
𝑥𝑥 𝐶𝑥𝑥

)
, 𝐾 =

(
𝐶𝑥𝑝 𝐶𝐴𝐵

𝑥𝑝

𝐶𝐴𝐵
𝑥𝑝 𝐶𝑥𝑝

)
, 𝑃 =

(
𝐶𝑝𝑝 𝐶𝐴𝐵

𝑝𝑝

𝐶𝐴𝐵
𝑝𝑝 𝐶𝑝𝑝

)
. (7.64)

We have used the fact that these correlation functions are symmetric under swap of 𝑥 and 𝑝.

7.B Ordered phase calculations

Calculating the covariance matrix in the ordered phase, entire or split system, is mostly identical to

how it was done in Appendix A. The main differences are how the matrix elements in Eq. (7.47)

are calculated, and the introduction of a source for 𝑆𝑧 as there are now relevant fluctuations in the

𝑧-direction. In addition, we will rotate the total spin operator such that it points along the 𝑧-direction

in the new reference frame. This is to ensure that the 𝑆𝑥/
√

2𝑆 and 𝑆𝑦/
√

2𝑆 (in an abuse of notation

we set 𝑆 = |S|) in the new frame satisfy the canonical commutation relations, as discussed in Sec.

7.1.2. Here we will show how to perform the calculation without splitting the system in half.

We begin by inserting the source field h(𝑢/𝑙) = (𝛼(𝑢/𝑙) , 𝛽(𝑢/𝑙) , 𝛾 (𝑢/𝑙)) which couples to the spin

vector S(𝑢/𝑙) = (𝑆(𝑢/𝑙)𝑥 ,±𝑆(𝑢/𝑙)𝑦 , 𝑆
(𝑢/𝑙)
𝑧 )/

√
𝑁 . This modifies the matrix T in Eq. (7.40),

T′ = T + 𝑖h(𝑢) · 𝝈 (𝑢) − 𝑖h(𝑙) · 𝝈 (𝑙) , (7.65)

where the individual spin vector is 𝝈 (𝑢/𝑙) = (𝜎𝑥(𝑢/𝑙) ,±𝜎𝑦(𝑢/𝑙) , 𝜎𝑧(𝑢/𝑙))/
√
𝑁 . The expansion of the

exact action is now performed around the saddle-point solution,𝑚𝑐 = 𝑚 =
√

32𝐽Δ − 16Δ2 − Γ2/4𝐽,

𝑚𝑞 = 0, h𝑐/𝑞 = 0, where we have performed the Keldysh rotation on the source fields h𝑐/𝑞 =

(h(𝑢) ± h(𝑙))/
√

2. Defining the matrices 𝑇𝜇𝑖 = 𝜕𝜇𝑖T, with 𝜇 ∈ {𝑚, 𝛼, 𝛽, 𝛾}, 𝑖 ∈ {𝑐, 𝑞}, we have that

𝛿2 log Tr(T 𝑒
∫
𝑡
T)

𝛿𝜇𝑖 (𝑡)𝛿𝜈 𝑗 (𝑡′)
|s.p.= Θ(𝑡 − 𝑡′) ⟨⟨𝐼 | 𝑇𝜇𝑖𝑒𝑡T𝑚𝑇𝜈 𝑗 |𝜌ss⟩⟩ +Θ(𝑡′ − 𝑡) ⟨⟨𝐼 | 𝑇𝜈 𝑗 𝑒𝑡T𝑚𝑇𝜇𝑖 |𝜌ss⟩⟩

− ⟨⟨𝐼 | 𝑇𝜇𝑖 |𝜌ss⟩⟩ ⟨⟨𝐼 | 𝑇𝜈𝑖 |𝜌ss⟩⟩ ,
(7.66)

where we have evaluated the left-hand side at the saddle-point solution. We have used the fact

that T is a vectorized single-spin Liouvillian and has a steady state given by the vectors ⟨⟨𝐼 | and

|𝜌ss⟩⟩. These are the left and right eigenvectors of T𝑚 = T|s.p respectively and satisfy T𝑚 |𝜌ss⟩⟩ = 0
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(and similarly for ⟨⟨𝐼 |). We have also used the fact that Tr(𝑒∞T𝑚) = 1. The retarded elements

of the expansion correspond to when 𝑖 = 𝑞, 𝑗 = 𝑐 and the Keldysh elements correspond to when

𝑖 = 𝑞, 𝑗 = 𝑞. Therefore we have generally

𝑃𝑅𝜇𝜈 (𝑡) = −2𝐽𝛿(𝑡)𝛿𝜇,𝑚𝛿𝜈,𝑚 − 𝑖𝑁Θ(𝑡) ⟨⟨𝐼 | 𝑇𝜇𝑞𝑒𝑡T𝑚𝑇𝜈𝑐 |𝜌ss⟩⟩ (7.67)

𝑃𝐾𝜇𝜈 (𝑡) = −𝑖𝑁Θ(𝑡) ⟨⟨𝐼 | 𝑇𝜇𝑞𝑒𝑡T𝑚𝑇𝜈𝑞 |𝜌ss⟩⟩ − 𝑖𝑁Θ(−𝑡) ⟨⟨𝐼 | 𝑇𝜈𝑞𝑒𝑡T𝑚𝑇𝜇𝑞 |𝜌ss⟩⟩ . (7.68)

The fact that 𝑚 is finite makes further expansion of the trace-log in Eq. (??) difficult analytically

[98]. To simplify this expression, we can rewrite the generator as

𝑒𝑡T𝑚 = |𝜌ss⟩⟩ ⟨⟨𝐼 | +
3∑︁
𝑘=1

𝑒𝑡𝜆𝑘 |𝜆𝑅𝑘 ⟩⟩ ⟨⟨𝜆
𝐿
𝑘 | , (7.69)

where each of the eigenvalues𝜆𝑘 are either real or come in complex conjugate pairs with Re(𝜆𝑘 ) < 0.

We then Fourier transform the result, using the definition 𝜙(𝑡) = 1
2𝜋

∫
𝑑𝜔𝑒−𝑖𝜔𝑡𝜙(𝜔) for any field

𝜙(𝑡). We find

𝑃𝑅𝜇𝜈 (𝜔) = −2𝐽𝛿𝜇,𝑚𝛿𝜈,𝑚 + 𝑖𝑁
3∑︁
𝑘=1

𝐷𝜇𝜈 (𝑘)
1

𝜆𝑘 + 𝑖𝜔
(7.70)

𝑃𝐾𝜇𝜈 (𝜔) = 𝑖𝑁
3∑︁
𝑘=1

𝐷̃𝜇𝜈 (𝑘)
1

𝜆𝑘 + 𝑖𝜔
+ 𝐷̃𝜈𝜇 (𝑘)

1
𝜆𝑘 − 𝑖𝜔

, (7.71)

where we have defined the coefficients

𝐷𝜇𝜈 (𝑘) = ⟨⟨𝐼 | 𝑇𝜇𝑞 |𝜆𝑅𝑘 ⟩⟩ ⟨⟨𝜆
𝐿
𝑘 | 𝑇𝜈𝑐 |𝜌ss⟩⟩ (7.72)

𝐷̃𝜇𝜈 (𝑘) = ⟨⟨𝐼 | 𝑇𝜇𝑞 |𝜆𝑅𝑘 ⟩⟩ ⟨⟨𝜆
𝐿
𝑘 | 𝑇𝜈𝑞 |𝜌ss⟩⟩ , (7.73)

for compactness. These are the matrix elements of the submatrices in a block matrix similar to that

of Eq. (7.45), except now there are no subsystems and we have new blocks from the 𝛾 source field.

Following that procedure, we arrive at the Green’s functions in the ordered phase,

𝐺̂𝜇𝜈 = 𝑃̂𝜇𝜈 (𝜔)𝑃̂−1
𝑚𝑚 (𝜔) [𝑃̂𝜈𝜇]𝑇 (−𝜔) − 2𝑃̂𝜇𝜈 (𝜔) + 𝛿𝜇,𝜈 𝑃̂𝜇𝜇 , (7.74)

where 𝜇, 𝜈 ∈ {𝛼, 𝛽, 𝛾} as we have eliminated the 𝑚 fields. The correlation functions for 𝑆𝑥,𝑦,𝑧/
√
𝑁

are then all given by

𝐶𝜇𝜈 =

∫
𝜔

𝐺𝐾
𝜇𝜈 (𝜔) , (7.75)
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where the Keldysh component is as defined in Eq. (7.57). The labels 𝜇, 𝜈 can now be identified

with 𝑥, 𝑦, 𝑧 instead of 𝛼, 𝛽, 𝛾 respectively. As mentioned before, it is difficult to obtain an analytical

expression for the correlation functions. However, one can numerically evaluate the coefficients

𝐷𝜇𝜈, 𝐷̃𝜇𝜈 and then integrate 𝐺𝐾
𝜇𝜈 over its 𝜔 dependence to obtain a numerical value for the

correlation functions.

To obtain a representation in terms of canonical variables as we did in the normal phase, we

rotate the spin observables such that 𝑆𝑧, the rotated spin operator, points along n = S/|S|. This is

done using the transformation matrix [34]

𝑅(𝜃, 𝜙) = ©­«
cos 𝜃 cos 𝜙 cos 𝜃 sin 𝜙 − sin 𝜃
− sin 𝜙 cos 𝜙 0

sin 𝜃 cos 𝜙 sin 𝜃 sin 𝜙 cos 𝜃

ª®¬ , (7.76)

which defines the new spin variables

S̃ = 𝑅(𝜃, 𝜙)S . (7.77)

The angles 𝜃, 𝜙 that achieve the desired rotation are given by

𝜃 = cos−1
(
𝑍

𝑠

)
, 𝜙 = cot−1

(
𝑋

𝑌

)
, (7.78)

where 𝑋,𝑌, 𝑍 are the mean-field solutions defined in Eq. (3.7), and 𝑠 =
√
𝑋2 + 𝑌2 + 𝑍2. This

rotation gives the new spin operators in terms of the old ones, which means we also know what the

correlation functions of the new variables are in terms of the old ones.
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