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Chapter 1

Introduction

High-energy physics is the study of fundamental particles and their interactions. The success
of modern high-energy physics is owed to the hard work of many experimental and theoretical
physicists, including their development and application of quantum field theories. A quantum
field theory (QFT) models each fundamental particle as an excitation of a field corresponding
to that particle’s species. Relativistic QFTs in particular combine the universal speed of light
from special relativity (which provides well-defined meanings of particle mass and spin) with
the probabilistic nature of reality that is intrinsic to quantum mechanics. With the help of a
few additional features (the cluster decomposition principle, the LSZ reduction formula, etc.),
high-energy physicists can calculate the probability that certain combinations of particles
become other combinations of particles via scattering processes; knowing these probabilities
allows the calculation of experimentally-relevant cross-sections and decay rates. However,
before these probabilities can be calculated, the interested physicist must first calculate the
Lorentz-invariant matrix element corresponding to the relevant scattering process, and to do
that a physicist requires a Lagrangian.1

Modern quantum field theory has streamlined the construction of model Lagrangians. In
essence, a physicist decides on what matter particles and forces they would like included,
chooses some interesting processes to investigate, and then puts together a Lagrangian that
sums all terms consistent with that content which are relevant to those processes. Forces are
typically included by declaring that the Lagrangian should have certain local symmetries,
which then generate gauge bosons and their couplings to the matter particles. This is the
way in which the champion of modern high-energy physics–the Standard Model (SM)–is
constructed. The SM is presently our most accurate description of reality at subatomic
scales, with high-energy experiments repeatedly confirming its predictions to increasingly
high precision.

Prior to electroweak symmetry breaking (more on that in a moment), the Standard Model
is an SU(3)C × SU(2)W ×U(1)Y gauge theory where

• SU(3)C generates the strong interaction and is gauged by eight gluons Gaµ,

• SU(2)W generates the weak isospin interaction and is gauged by the triplet of vector
bosons {W 1

µ ,W
2
µ ,W

3
µ}, and

• U(1)Y generates the weak hypercharge interaction and is gauged by the vector boson
Bµ.

1We follow the standard high-energy convention of calling what is actually a “Lagrangian density” (the
integrand of an integral over spacetime) simply a “Lagrangian” (which would otherwise be the integrand of
an integral over time).
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The Matter Content of the Pre-EWSB Standard Model

Field Symbol Mass Spin U(1)Y SU(2)W SU(3)C

Left-Handed
Quarks qmL

umL
0 1

2 +1
3

+1
2 triplet

dmL −1
2

Left-Handed
Leptons `mL

νmL
0 1

2 -1
+1

2 singlet
emL −1

2

Right-Handed
Quarks

umR 0 1
2 +4

3 0 triplet

dmR 0 1
2 −2

3 0 triplet

Right-Handed
Leptons

νmR 0 1
2 0 0 singlet

emR 0 1
2 −2 0 singlet

Higgs Φ
φ+

0 0∗ +1
+1

2 singlet
Doublet φ0 −1

2

Table 1.1: The matter content of the Standard Model prior to electroweak symmetry breaking
(EWSB) including their masses, internal spins, and gauge transformation properties. Rows
are organized as to indicate matter fields that are related by the weak gauge group SU(2)W,
i.e. qmL labels a weak gauge doublet with +1/2 component umL and −1/2 component dmL.
The index m ∈ {1, 2, 3} labels the generation of a given quark (q, u, d) or lepton (`, e, ν) field,
while a subscript “L” or “R” indicates whether it has left or right-handed chirality. The pre-
EWSB Standard Model also contains gauge bosons Bµ, {W 1

µ ,W
2
µ ,W

3
µ}, and {G1

µ, . . . , G
8
µ}

corresponding to the weak hypercharge U(1)Y, weak isospin SU(2)W, and strong SU(3)C
gauge groups respectively. The left- and right-handed neutrinos νmL and νmR are called
active and inert neutrinos respectively based on their SU(2)W transformation properties (or
lack thereof). Whether or not the inert neutrinos νmR exist is an open question.

The matter content of the theory (including each particle’s mass, spin, and transforma-
tion behavior under the aforementioned local symmetry groups) is listed in Table 1.1. The
spin-1

2 quarks and leptons exhibit a generational structure (as emphasized by the subscript
m ∈ {1, 2, 3} on each field), the spin-0 Higgs doublet Φ does not, and all particles are mass-
less. Everything changes when the electroweak gauge group SU(2)W × U(1)Y becomes
spontaneously broken [1, 2, 3].

The electroweak gauge group breaks because the Higgs doublet spontaneously acquires
a vacuum expectation value (vev), vEW = 0.246 TeV, thereby isolating the Higgs boson
H from the rest of the doublet at low energies. This causes the electroweak gauge groups
SU(2)W×U(1)Y to spontaneously break down to the electromagnetic gauge group U(1)Q.

When this happens, a superposition of the W 3
µ and Bµ bosons become the massless spin-1

photon Aµ that gauges U(1)Q, while (in unitary gauge) an orthogonal mixture absorbs a



fraction of the remaining Higgs doublet and becomes the massive Z-boson Zµ. The other

SU(2)W gauge bosons W 1
µ and W 2

µ absorb the rest of the Higgs doublet to become the

massive W -bosons W±µ . Simultaneously, interactions between the Higgs doublet and the
(massless) fermionic matter fields are turned into mass and mixing terms, ultimately resulting
in newly massive fermionic matter. Overall, electroweak symmetry breaking causes the low-
energy SM to become an SU(3)C ×U(1)Q gauge theory, wherein

• SU(3)C still generates the strong interaction and is gauged by the gluons Gaµ, and

• U(1)Q generates the electromagnetic interaction and is gauged by the photon Aµ.

and the matter content is as listed in Table 1.2. In this way, electroweak symmetry breaking
simultaneously explains the masses of the electroweak gauge bosons, expresses the weak force
in terms of a local symmetry group, and generates masses for the Standard Model matter
particles. The possibility that a single mechanism (“the Higgs mechanism”) could explain
all of these features motivated physicists in the 1960’s to hypothesize the existence of the
Higgs boson [4, 5, 6]. Its eventual experimental confirmation in 2012 by the ATLAS and
CMS collaborations at CERN is among the most celebrated achievements of physics in the
21st century thus far [7, 8].

The SM is so successful in its predictions of subatomic phenomena that nearly every
physically-descriptive QFT investigated in the high-energy literature hypothesizes new par-
ticles simply as add-ons to the SM. Of course, despite all that the Standard Model can predict,
many physical phenomena lie outside its reach. For example, the SM does not predict the
natures of neutrinos or dark matter or dark energy, nor does it incorporate gravity.

A limited version of gravity can be added to the SM by considering four-dimensional
general relativity in the weak field limit. Doing so generates a particle description of gravity,
wherein the gravitational force is mediated by a massless spin-2 particle called the graviton.
However, this modification breaks down at the Planck scale (or mass) MPl = 2.435 × 1015

TeV, reflecting its inability to describe strong or intrinsically quantum gravitational phe-
nomenon that occur at higher energies. Furthermore, this SM + gravity theory possesses a
vast range of energy scales between the electroweak’s vEW and gravity’s MPl across which
there is no new physics. Although nothing prevents such a hierarchy of scales in principle,
the large ratio between the energy scales MPl/vEW ∼ 5× 1016 is technically unnatural.2

For many decades, physicists have attempted to solve this“hierarchy problem”by hypoth-
esizing a physical mechanism that would naturally generate a large ratio of scales MPl/vEW.
For example, in 1999, Randall and Sundrum proposed a five-dimensional gravity theory
that could reparameterize the hierarchy problem via the warping of a non-factorizable extra-
dimensional spacetime geometry [10, 11]. This theory is the Randall-Sundrum 1 (RS1)
model, and the focus of this dissertation.

2Naturalness has several technical definitions in high-energy physics, but a theory tends to be natural if
all of its parameters are set to values with similar magnitudes. Because the Higgs boson is a scalar particle,

its mass-squared m2
H receives quantum corrections proportional to the square of the largest scales in the

theory. By including gravity, that largest scale is the Planck mass MPl, and 162 = 256 decimal places of
cancellations are required to obtain the experimentally-measured mass mH = 125 GeV ∼ vEV instead of a
Planck scale mass mH ∼MPl. Thus, the theory parameters must be fine-tuned to ensure this cancellation,
and the ratio MPl/vEH is technically unnatural in the Standard Model.



The Matter Content of the Post-EWSB Standard Model

Name Symbol Mass (GeV/c2) Spin SU(3)C U(1)Q

Up-Type
Quarks

up quark u 2.3× 10−3

1
2 ⊗

1
2 triplet +2

3charm quark c 1.28

top t 173

Down-Type
Quarks

down quark d 4.7× 10−3

1
2 ⊗

1
2 triplet −1

3strange quark s 9.5× 10−2

bottom quark b 4.18

Neutral
Leptons

neutrino 1 ν1 ?

? singlet 0neutrino 2 ν2 ?

neutrino 3 ν3 ?

Charged
Leptons

electron e 5.11× 10−4

1
2 ⊗

1
2 singlet −1muon µ 0.106

tauon τ 1.78

Higgs boson H 125 0 singlet 0

Z boson Z 91.2 1 singlet 0

W boson(s) W+ 80.3 1∗ singlet +1

Table 1.2: The matter content of the Standard Model after electroweak symmetry breaking
(EWSB) including their masses, internal spins, and gauge transformation properties [9].
Rows group together matter fields that are related by generational structure. The Standard
Model also contains the photon Aµ and the gluons {G1

µ, . . . , G
8
µ} which are the gauge bosons

corresponding to the electromagnetic U(1)Q and strong SU(3)C gauge groups respectively.
The precise nature of the masses and spin structure of the neutrinos is an open question.
The neutrino mass eigenstates ν1, ν2, ν3 are often reorganized via superposition into weak
isospin eigenstates νe, νµ, ντ called the electron, muon, and tauon neutrinos respectively,
which reconstruct the pre-EWSB active neutrinos at the cost of no longer having definite
mass.



Relative to the usual four-dimensional (4D) spacetime, the RS1 model adds a finite extra
dimension of space with length πrcwhich is parameterized by a coordinate y ∈ {0, πrc}, where
rc is called the compactification radius. At either end of the dimension is a four-dimensional
hypersurface called a brane, with the five-dimensional spacetime between the branes being
called the bulk. Typically, the four-dimensional world as we know it (e.g. the matter content)
is placed on one brane (the “visible brane”) and only gravity is allowed to freely propagate
through the bulk. Extra-dimensional warping is achieved by the presence of a warp factor
ε ≡ e−krc|ϕ| in the RS1 spacetime metric, where k is called the warping parameter and
ϕ ≡ y/rc ∈ {0, π} is a unitless version of the extra-dimensional coordinate. This warp factor
enters into other aspects of RS1 calculations. For example, a fundamental energy scale Λ in
the bulk can be warped down to Λ e−krcπ for an observer on the visible brane. In particular,
we can set Λ ≈ MPl and its warped value Λ e−krcπ ≈ vEW by choosing krc ≈ 12, such that
the hierarchy problem has gone from trying to explain the large ratio MPl/vEW ∼ 5× 1016

to trying to explain the order-10 number krc ∼ 12. Unfortunately, this warp factor is not
universally beneficial: whereas strong & quantum gravitational effects force 4D gravity to
break down at MPl, the RS1 model breaks down at the scale Λπ ≡ MPl e

−krcπ instead.
Thus, if krc ∼ 12 as motivated by the hierarchy problem, then Λπ ∼ vEW, and the theory
becomes strongly coupled at LHC-relevant energy scales. As collider constraints confirm the
Standard Model to increasingly high energies, krc is driven necessarily lower, and the RS1
models creeps further away from a solution to the hierarchy problem. Nowadays, the RS1
model is utilized in relation to theoretical problems such as the AdS/CFT correspondence
[12, 13] and as a model that generates phenomenologically-interesting massive spin-2 particles
[14].

Regardless of the specific value of krc used, the size πrc of the extra-dimension is assumed
small so that the five-dimensional (5D) nature of spacetime remains hidden at low energies
(thereby explaining why we do not experience an extra spatial dimension in everyday life). In
a sense, the relationship between the 5D RS1 spacetime and the usual 4D spacetime is similar
to the relationship between a realistic sheet of paper (which has small but finite thickness)
and its approximation as a two-dimensional plane. Because particles with sufficient energy
can propagate throughout the full five-dimensional RS1 spacetime, the symmetry group
relevant to high-energy particles is the 5D RS1 diffeomorphism group, which is gauged by
the 5D RS1 graviton described by a 5D field Ĥ(x, y). At low energies, particles can no
longer meaningfully probe the extra dimension, and the 5D RS1 diffeomorphism group is
spontaneously broken down to a subgroup containing the usual 4D diffeomorphism group,
which is gauged by the 4D graviton described by a 4D field ĥ(0)(x). In total, spontaneous
symmetry breaking in the RS1 model results in the following 4D particle content:

• the 4D graviton, h(0), a massless spin-2 particle

• the radion, r(0), a massless spin-0 particle

• KK modes, h(n) for n ∈ {1, 2, . . . }, infinitely many massive spin-2 particles

in a process called Kaluza-Klein (KK) decomposition. The value n for a particular KK

mode h(n) is called its KK number. The KK modes gain masses by absorbing degrees
of freedom from the 5D RS1 graviton, which is reflected in the fact that a massive spin-
2 particle in four dimensions and a massless 5D graviton both have five states. Because



of its qualitative similarities to electroweak symmetry breaking and its use of a nontrivial
background geometry to achieve spontaneous symmetry breaking, this has been referred to as
a “geometric Higgs mechanism” [15]. The radion r(0) is a massless spin-0 particle generated
by disturbing the separation distance between the branes.

Due to their common origin in the RS1 model, the scattering of 4D gravitons and the
scattering of massive KK modes are closely related. In particular, (as demonstrated in this
dissertation) the high-energy growth of the matrix elements describing 4D graviton and KK
mode scatterings are identical. Before describing how this is possible in the RS1 model,
let us first describe an analogous calculation in a model with finitely many particles: the
Standard Model. In this case, the intermediate vector bosons (W±, Z) are special with
respect to electroweak symmetry breaking (EWSB) because they are massive superpositions
of the original SU(2)W × U(1)Y gauge bosons (W 1,W 2,W 3,B); this contrasts with the
situation of the fermions and even the Higgs boson, although they also gain masses as a
result of EWSB. The only superposition of SU(2)W × U(1)Y gauge bosons that remains
massless is the photon (γ), which gauges the electromagnetic U(1)Q.

Because the photon has no cubic or quartic self-interactions, its center-of-momentum
frame 2-to-2 tree-level scattering matrix element (hereafter referred to simply as “matrix
element” for brevity) vanishes identically: M = 0. Let E denote the incoming center-of-
momentum energy of this process, so that the Mandelstam variable s equals E2. In terms
of high-energy growth, the photon scattering matrix element (trivially) scales like O(s0).
Another way in which we could have arrived at this same scaling is by combining the following
facts:

• A 4D matrix element must be unitless.

• There is no energy scale available to this process.

The latter point means that there are no quantities with which to cancel any powers of energy
introduced by factors of s, and thus the only way for the matrix element to be consistent
with the first point is to scale like O(s0) at high energies (which M = 0 does trivially, as
previously mentioned). Diagrammatically, we write

Mγγ→γγ =
n1

n2

n3

n4

∼ O(s0) (1.1)

In contrast, the 2-to-2 scattering of massive spin-1 particles such as the W-bosons does
have access to another energy scale: the particle’s mass. For example, an external massive
spin-1 particle with mass m, 4-momentum p, and helicity λ will enter a matrix element
calculation with any one of three possible polarization vectors:

[ε
µ
±1(p)] = ±e

±iφ
√

2


0

−cθcφ ± isφ
−cθsφ ∓ icφ

sθ

 [ε
µ
0 (p)] =

1

m


|~p|

E cφsθ
E sφsθ
E cθ

 =
1

m

(
|~p|
E p̂

)
(1.2)

corresponding to helicities λ = ±1 and λ = 0 respectively, where (φ, θ) determines the 3-
direction of ~p in spherical coordinates and (cx, sx) ≡ (cosx, sinx). The components of the



helicity-zero polarization vector ε
µ
0 (p) diverge like O(E/m) = O(

√
s/m) at high energies,

which is only made possible by the existence of the mass m. A massless spin-1 particle such
as the photon only has access to the helicity λ = ±1 states, which are independent of mass
and energy.

Because each massive spin-1 state has three helicity options, the external states in a
2-to-2 massive spin-1 scattering process can be in any one of 34 = 81 helicity combinations
(although many of these are related to one another through crossing symmetry). Because the
helicity-zero polarization vector diverges most quickly in energy, it is perhaps unsurprising
that the fastest growing matrix element is typically attained by setting all external helicities
to zero. We will refer to such a process as a “helicity-zero process.” It is not unusual for a
helicity-zero matrix element describing massive spin-1 scattering to grow as fast as O(s2) at
high energies.

However, this is not what happens in the SM. Instead, the helicity-zero matrix grows like
O(s0):

MWW→WW =
W+

W−

W+

W−

helicity∼
zero

O(s0) (1.3)

Table 1.3 summarizes the various diagrams that sum to form this matrix element, including
their individual high-energy behaviors. Several channels exhibit O(s2) growth, but cancella-
tions occur when all diagrams are summed together which ultimately result in a net O(s0)
growth just like the photon scattering matrix element.

The cancellations which reduce O(s2) growth to O(s0) growth are not a coincidence:
even though the electroweak gauge group SU(2)W×U(1)Y has been spontaneously broken
down to the electromagnetic gauge group U(1)Q, this fundamental symmetry still protects
the scattering behavior of the related gauge bosons. Thus, the overall high-energy growth of
the matrix element describing 2-to-2 scattering of the W-bosons (which are superpositions
of the SU(2)W gauge bosons) matches that of the 2-to-2 scattering of photons (which gauge
the remaining U(1)Q).

The main result of this dissertation is the demonstration that similar cancellations occur
in the Randall-Sundrum 1 model. In this case, a nontrivial background geometry at low
energies causes the 5D RS1 diffeomorphism group to be spontaneously broken down to a
subgroup containing the 4D diffeomorphism group. This latter group is gauged by the usual
massless graviton.

Unlike the case of photon scattering that we previously considered, 4D gravity has an
implicit energy scale: the Planck mass MPl. This scale enters the graviton scattering matrix
element via the 4D gravitational coupling κ4D ≡ 2/MPl, of which two instances are present
in any given tree-level diagram. In order to be unitless overall, the matrix element must
contribute a factor of s = E2 to compensate, and thus it grows like

M00→00 =
0

0

0

0
∼ O(s) (1.4)

at high energies. The label “0” indicates the 4D graviton, h(0), each instance of which can
have helicity λ = ±2.



MWW→WW = Mc +MH +Mγ +MZ

Mediator: - Higgs photon Z-boson

W+

W−

W+

W−

W+

W−

W+

W−
H W+

W−

W+

W−

γ W+

W−

W+

W−
Z

Diagrams: + + +

W+

W− W+

W−
H

W+

W− W+

W−
γ

W+

W− W+

W−
Z

Helicity-Zero
∼ O(s2) ∼ O(s) ∼ O(s2) ∼ O(s2)High-Energy

Scaling:

Table 1.3: The various diagrams that contribute to the tree-level matrix element for the 2-to-
2 Standard Model scattering process W+W− → W+W− and their high-energy behaviors.
The tree-level matrix element MWW→WW from Eq. (1.3) is the sum of these diagrams.
Because of cancellations between diagrams, MWW→WW scales like O(s0), just like the
2-to-2 photon scattering matrix element Mγγ→γγ .

If we instead consider tree-level 2-to-2 scattering of massive spin-2 particles (such as the
RS1 KK modes), then each external state will be associated with any one of five possible
polarization tensors, ε

µν
λ (p):

ε
µν
±2(p) = ε

µ
±1(p) εν±1(p) , (1.5)

ε
µν
±1(p) =

1√
2

[
ε
µ
±1(p) εν0(p) + ε

µ
0 (p) εν±1(p)

]
(1.6)

ε
µν
0 (p) =

1√
6

[
ε
µ
+1(p) εν−1(p) + ε

µ
−1(p) εν+1(p) + 2ε

µ
0 (p) εν0(p)

]
, (1.7)

where ε
µ
λ(p) are the previously-defined spin-1 polarization vectors. As in the massive spin-1

case, the most divergent of these is the helicity-zero option, which grows like O(s/m2) at
large energies. Massive spin-2 scattering matrix elements have 54 = 625 possible helicity
combinations (many related to one another via crossing symmetry), but the helicity-zero
combination is typically the most divergent, usually growing as fast as O(s5).

Keeping this in mind, consider the matrix element Mn1n2→n3n4 corresponding to the

helicity-zero KK mode scattering process h(n1)h(n2) → h(n3)h(n4) where the KK numbers
n1, n2, n3, and n4 are all nonzero. Table 1.4 summarizes the diagrams which sum to form
Mn1n2→n3n4 and their high-energy behaviors. As anticipated in the previous paragraph,

nearly every diagram that contributes to this matrix element diverges like O(s5). However,
this dissertation demonstrates explicitly that nontrivial cancellations occur between these



Mn1n2→n3n4 = Mc +Mr +M0 +
∑
j>0

Mj

Mediator: - radion graviton
massive spin-2

KK mode

Diagrams:

n1

n2

n3

n4

r
n1

n2

n3

n4

0
n1

n2

n3

n4

j

+ + +
n1

n2

n3

n4

n1

n2

n3

n4

r
n1

n2

n3

n4

0
n1

n2

n3

n4

j

+ + +
n1

n2 n4

n3

r
n1

n2 n4

n3

0
n1

n2 n4

n3

j

Helicity-Zero
∼ O(s5) ∼ O(s3) ∼ O(s5) ∼ O(s5)High-Energy

Scaling:

Table 1.4: The various diagrams that contribute to the tree-level matrix element for the 2-
to-2 RS1 model scattering process h(n1)h(n2) → h(n3)h(n4) and their high-energy behaviors.
The tree-level matrix element Mn1n2→n3n4 from Eq. (1.8) is the sum of these diagrams.
Because of cancellations between diagrams, the overall matrix element Mn1n2→n3n4 scales
like O(s), just like the 2-to-2 graviton scattering matrix elementM00→00. The confirmation
and detailed demonstration of these cancellations is a major result of this dissertation.

infinitely-many diagrams such that the full matrix element diverges like O(s):

Mn1n2→n3n4 =
n1

n2

n3

n4

helicity∼
zero

O(s) (1.8)

which is precisely the energy growth found in the 4D graviton scattering channel. The
conceptual similarities between the Standard Model and RS1 model are summarized in Table
1.5, with our original results indicated in red. We also demonstrate in this dissertation that
the RS1 strong-coupling scale Λπ = MPl e

−krcπ can be calculated directly from the 4D
effective RS1 model.

Additionally, in practice if we intend to perform a numerical calculation (as might be
relevant to experimental applications of the RS1 model) then we must truncate the number
of KK modes we include as intermediate states (e.g. replacing the sum

∑+∞
j=0Mj in the



Standard Model Randall-Sundrum 1

The fundamental symmetry group... SU(2)W ×U(1)Y 5D diffeomorphisms

... w/ unitarity-violation scale... N/A Λπ = MPl e
−krcπ

... and gauged by the... electroweak bosons 5D RS1 graviton

... is spontaneously broken by... the Higgs vev background geometry

... to a new symmetry group... U(1)Q 4D diffeomorphisms*

... gauged by the... photon, γ 4D graviton, h(0)

... resulting in a spin-0 state... Higgs boson, H radion, r(0)

... as well as massive states W -bosons, W± spin-2 KK modes, h(n)

built from fund. gauge bosons... and Z-boson, Z for n ∈ {1, 2, . . . }

The 2-to-2 gauge boson process... γγ → γγ h(0)h(0) → h(0)h(0)

... has M w/ high-energy growth ∼ O(s0) O(s)

... or, if naively given mass, ... O(s2) O(s5)

... yet 2-to-2 massive state process
W+W− → W+W− h(n1)h(n2) → h(n3)h(n4)

where mass arises via sym. break...

... has M w/ high-energy growth ∼ O(s0) O(s)

Breaking the fund. symmetry by... elim. Z KK tower truncation

... makes massive states scatter like O(s2) O(s5)
naively-massive gauge bosons, M∼

Breaking the fund. symmetry by... elim. the Higgs elim. the radion

... makes massive states scatter ∼ O(s) O(s3)

Table 1.5: The Standard Model (SM) and the Randall-Sundrum 1 (RS1) model share a
chain of conceptual similarities with respect to the scattering of particles made massive
by spontaneous symmetry breaking. The Mandelstam variable s ≡ E2, where E is the
incoming center-of-momentum energy. Original results presented in this dissertation are
indicated in bold. (* - Technically, the new symmetry group is the Cartan subgroup of the
5D diffeomorphisms that contains the 4D diffeomorphisms.)



matrix element with
∑N
j=0Mj for some integer N). Because the entire tower is required

in order to cancel the leading O(s5) growth, truncating the KK tower too low can cause
the matrix element to violate partial wave unitarity well below the strong-coupling scale Λπ.
Furthermore, because the radion contributes matrix elements with O(s3) growth, proper
inclusion of the radion is also vital to avoiding partial wave unitarity constraints. The effect
of KK tower truncation and inclusion of the radion on the accuracy of KK mode scattering
matrix elements is also investigated in this dissertation.

The remainder of the dissertation details the original results published in [16, 17, 18], as
well as generalizing and elaborating on aspects of those calculations in ways that have not
yet been submitted for publication. It is organized as follows:

• Chapter 2 establishes definitions and conventions from 4D quantum field theory rele-
vant to the dissertation. In the interest of acting as a useful resource, it also provides a
detailed derivation of 2-to-2 partial wave unitarity constraints and helicity eigenstates
from first principles.

• Chapter 3 calculates the 5D weak field expanded RS1 Lagrangian L5D to quartic order
in the 5D fields or (equivalently) second order in the 5D coupling κ5D. We demonstrate
that all terms containing factors of (∂ϕ|ϕ|) or (∂ϕ|ϕ|) are cancelled to all orders in κ5D.

• Chapter 4 presents an original parameterization of the 4D effective RS1 Lagrangian
which manifests as a “5D-to-4D formula” and categorizes all RS1 couplings as either
“A-type” or “B-type” depending on the associated derivative content of the interaction.
Many relationships between RS1 couplings and masses are derived; these significantly
generalize our existing published work and will be submitted for publication in a future
paper.

• Chapter 5 demonstrates that the matrix element describing massive spin-2 KK mode
scattering in the 5D orbifolded torus and RS1 models exhibits O(s) growth after can-
cellations of more divergent behavior. From cancellations in the helicity-zero elastic
case (h(n)h(n) → h(n)h(n)) we derive sum rules relating KK mode masses and cou-
plings, all but one of which we prove analytically. The final sum rule is demonstrated
numerically. The RS1 strong-coupling scale Λπ = MPl e

−krcπ is calculated numerically
in the 4D effective RS1 model and the effect of KK tower truncation on matrix element
accuracy is investigated. These important original results have been published across
several papers [16, 17, 18].

• Chapter 6 concludes by summarizing the original results presented in the dissertation
as well as future projects we will be pursuing based on this work.



Chapter 2

2-to-2 Scattering and Helicity
Eigenstates

2.1 Chapter Summary

This chapter establishes various definitions and conventions from four-dimensional (4D)
quantum field theory which are relevant to this dissertation, e.g. that we use the ‘mostly-
minus’ Minkowski metric and all indices are raised/lowered with the Minkowski metric. It is
written with the aim of providing a self-consistent collection of standard derivations which all
use the same conventions. This is done under the belief that such a collection could be useful
to other physicists. As such, many details and observations are intentionally included which
are often skipped in standard resources. For physicists who are already familiar with 2-to-2
scattering calculations involving helicity eigenstates, much of this chapter can be skimmed
without missing details vital to the remainder of this dissertation.

This chapter is organized as follows:

• Section 2.2 derives the Lorentz and Poincaré groups from the assumption that the speed
of light is globally invariant between reference frames. Active forms for the Poincaré
transformations (rotations, boosts, spacetime translations) and their generators ( ~J , ~K,
Pµ) are provided in the 4-vector representation, and the commutation structure of the
generators is derived. The section closes by deriving the Lorentz-invariant phase space.

• Section 2.3 promotes the Poincaré generators to Hermitian operators and thus pro-
motes the corresponding transformations to unitary operators. The helicity operators
is introduced.

• Section 2.4 defines single-particle 4-momentum external states, which are then com-
bined to form multiparticle 4-momentum external states. Special care is taken to
consider multiparticle states involving identical particles. The S-matrix element is
introduced and its relation to the matrix element M is mentioned.

• Section 2.5 describes 2-to-2 particle processes in detail, with emphasis on scattering
in the center-of-momentum (COM) frame and parameterization via the Mandelstam
variables. An equation for simplifying integrals over the 4-momenta of two particles
is derived and then applied to unitarity of the S-matrix in order to derive the optical
theorem.
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• Section 2.6 summarizes the usual treatment of angular momentum in quantum me-
chanics, including how angular momentum representations are combined, and defines
the Wigner-D matrix.

• Section 2.7 considers single-particle helicity eigenstates, which are combined to form
multiparticle helicity eigenstates. Using the relationship between helicity eigenstates
and angular momentum eigenstates, the matrix element is decomposed in an angular
momentum basis in order to define partial wave amplitudes. The elastic and inelastic
partial wave unitarity constraints are derived.

• Section 2.8 derives the spin-1 and spin-2 polarization structures. Various canonical
quadratic Lagrangians are considered, and their corresponding propagators are listed.

2.2 Poincaré Group: 4-Vector Representation

2.2.1 Preserving the Speed of Light

At the heart of modern relativity theory lies an axiom with far-reaching consequences: no
matter how different the reference frames of two observers, they will agree that a wavepacket
of light travels at a speed c. This defines the aptly-named speed of light.

Every reference frame is characterized by a choice of coordinates, which presently means
a unique continuous association of every point of reality with a time coordinate ct = x0

and some spatial coordinates ~x = (x1, x2, x3). In such a reference frame, a wavepacket of
light will travel along some curve ~x(t) through three-dimensional space and, according to
the aforementioned axiom of relativity, do so at the speed of light, such that c = |d~x/dt|;
however, it is worthwhile to recast this universal property as an equation relating differentials
along the motion of the wavepacket:

c =

∣∣∣∣d~xdt
∣∣∣∣ =⇒ c|dt| = |d~x| =⇒ c2|dt|2 − |d~x|2 = 0 (2.1)

This latter form is useful because it treats the space and time coordinates equivalently,
with the speed of light amounting to a conversion from time duration units to length units.
According to relativity theory, although an observer in a different inertial reference frame
with different coordinates (ct′, ~x ′) will measure that same wavepacket as traveling along a
different trajectory ~x ′(t′), they will still find that its speed |d~x ′/dt| equals c at every point
along its path, or equivalently

c2|dt′|2 − |d~x ′|2 = 0 (2.2)

This invariance greatly restricts the structure of reality. Imagine flooding reality with
wavepackets of light that propagate in all directions and at every point of time and space. By
the axiom of relativity, an observer in any other reference frame must also agree that every
wavepacket in this vast network travels at the speed of light, even if their own perception
of spacetime is wildly different. This puts a tight constraint on the local structure of reality
itself, and requires that space and time must be woven together into a unified manifold of
spacetime.



Consider the possible 4-velocities vµ ≡ (v0, ~v) = (v0, v1, v2, v3) of a trajectory passing
through a certain spacetime point. If the trajectory describes the motion of a wavepacket of
light according to Eq. (2.2), then the 4-velocity is light-like: v2 ≡ v · v = 0, where

(v · v) ≡ ηµνv
µvν ≡

3∑
µ,ν=0

ηµνv
µvν (2.3)

and ηµν is the Minkowski metric

[ηµν ] = Diag(+1,−1,−1,−1) ≡


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.4)

when expressed as a matrix with those components; this square bracket notation will be
used throughout this dissertation. The metric is symmetric by construction (ηµν = ηνµ)
and we define it in the “mostly-minus” convention, i.e. it has one +1 eigenvalue and three
−1 eigenvalues corresponding to temporal and spatial information respectively. We adopt
the Einstein summation convention throughout the remainder of this dissertation, so that
repeated indices indicate sums over the corresponding index ranges. Whenever we raise or
lower a four-dimensional index, it is done with the Minkowski metric. In the next chapter
where five-dimensional spacetimes are relevant, we raise and lower each five-dimensional
index with the flat five-dimensional metric [ηMN ] ≡ Diag(+1,−1,−1,−1,−1).

For the sake of performing calculations, it is vital to generalize the above language to
include generic 4-vectors, e.g. objects of the form a = (a0, a1, a2, a3) for which (a · a) does
not necessarily vanish. Through the Minkowski metric η, a generic 4-vector aµ implies a
related 4-covector aµ

aµ = (a0, a1, a2, a3) ≡ ηµνa
ν = (a0,−a1,−a2,−a3) (2.5)

and for generic 4-vectors a and b the previous inner product generalizes to

(a · b) = ηµνa
µbν = aµb

µ = a0b0 − a1b1 − a2b2 − a3b3 (2.6)

where (a · a) is called the magnitude of a. Sometimes we will break a 4-vector a into
its temporal a0 and spatial ai components, the latter of which comprise a 3-vector ~a =
(a1, a2, a3). 3-vectors are defined with the usual 3-vector inner product, i.e.

~a ·~b = aibi = a1b1 + a2b2 + a3b3 (2.7)

such that the 4-vector inner product equals

a · b = a0b0 − ~a ·~b (2.8)

To avoid confusion, four-dimensional (4D) spacetime indices are labeled via lowercase Greek
letters (µ, ν, ρ, ...) with µ ∈ {0, 1, 2, 3}, whereas three-dimensional (3D) spatial indices
are labeled via lowercase Latin letters (i, j, k, ...) with i ∈ {1, 2, 3}. In the next chapter,



we consider five-dimensional (5D) spacetime indices, which are labeled via uppercase Latin
letters (M , N , R, ...) with M ∈ {0, 1, 2, 3, 5}. The 3-vector components will sometimes be
relabeled to make contact with the usual (x, y, z)-rectilinear 3-space coordinates, in which
case ax ≡ a1, ay ≡ a2, and az ≡ a3.

Returning to the invariance of the speed of light, consider the classification of all invertible
linear transformations λ that preserve light-like magnitudes:

v · v = ηµνv
µvν = 0 =⇒ (λv) · (λv) = ηµν(λv)µ(λv)ν = 0 (2.9)

As previously mentioned, demanding invariance of this inner product for all light-like 4-
vectors is a significant constraint. By expressing a generic 4-vector as a sum of light-like
4-vectors, it can be demonstrated that preserving light-like inner products necessarily implies
the preservation of all inner products between 4-vectors up to a net rescaling. That is,

(λa) · (λb) = Ω (a · b) (2.10)

for a positive real number Ω. Therefore, the linear transformation λ decomposes into the
composition of a dilation by an amount

√
Ω and a Lorentz transformation Λ like so:

λ =
√

ΩΛ (2.11)

where | det(Λ)| = 1 characterizes the Lorentz transformation. The dilation simply scales
our time duration and length units by an equal amount

√
Ω. Because we are interested in

comparing reference frames that differ beyond a choice of units, we set Ω = 1 so that λ = Λ,
and we from here on restrict our attention to Lorentz transformations.

Lorentz transformations preserve 4-vector magnitude, and therefore magnitudes can be
classified in a frame-independent way: given a 4-vector a, it is said to be space-like, light-like,
or time-like if its magnitude is less than, equal to, or greater than 0 respectively. These names
are inspired by considering a spacetime displacement `µ from the origin. If its magnitude
vanishes (` · `) = 0, then it is a displacement that could be traversed by a wavepacket

of light. Meanwhile, a pure spatial displacement ` = (0, ~̀) yields a negative magnitude

(` · `) = −~̀ · ~̀ < 0, and a pure temporal displacement ` = (`0,~0) yields a positive magnitude
(` · `) = (`0)2 > 0, and thus they are space-like and time-like respectively. A time-like
(space-like) particle velocity corresponds to motion slower (faster) than the speed-of-light,
and a trajectory is labeled space-, light-, or time-like if every 4-velocity along that trajectory
is also space-, light-, or time-like respectively. Similarly, a 3-dimensional hypersurface in
4D spacetime (or, more generally, a (X − 1)-dimensional hypersurface in X-dimensional
spacetime) is labeled space-, light-, or time-like if every normal to that hypersurface is time-,
light-, or space-like respectively (be careful to note that this latter ordering of descriptors is
reversed relative to the others).

A Lorentz 4-vector is any 4-vector (4-velocity or otherwise) that transforms under a
Lorentz transformation in the way previously described: that is, the Lorentz 4-vector vµ

goes to another Lorentz 4-vector vµ after a Lorentz transformation Λ, where

vµ ≡ Λµνv
ν (2.12)



An index such as ν in vν which is transformed by contraction with Λµν under a Lorentz
transformation Λ is called a contravariant index. Because (Λa) ·(Λb) = (a ·b) for all 4-vectors
a and b, Lorentz transformations preserve the metric in the following sense,

ΛρµΛσνηρσ = ηµν (2.13)

Furthermore, the Lorentz transformations define a group under composition (i.e. (Λ1)µν(Λ2)νρ =

(Λ3)µρ), with a transformation Λ related to its inverse Λ−1 according to

(Λ−1)µν = Λν
µ (2.14)

because

Λν
µΛνρ = [ηµτησνΛστ ] Λνρ = ηµτ

[
ΛστΛνρησν

]
= ηµτητρ = η

µ
ρ (2.15)

and [η
µ
ρ ] = Diag(+1,+1,+1,+1) = 1. Thus, we refer to the collection of all Lorentz trans-

formations as the Lorentz group.
The Lorentz group can be further divided into four distinct connected components based

on the determinant and temporal-temporal component of each transformation Λ:

• If det Λ = +1 then Λ is proper. Otherwise, det Λ = −1 and Λ is improper.

• If Λ00 ≥ 1, then Λ is orthochronous. Otherwise, Λ00 ≤ −1, and Λ is antichronous.

These different connected components can be mapped onto one-another via the discrete
Lorentz transformations P and T ,

[Pµν ] =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 [Tµν ] =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 (2.16)

and their combined action PT = TP , where P and T are called the parity-inversion and time-
reversal transformations respectively. We are most concerned with proper orthochronous
Lorentz transformations, which are continuously connected to the identity transformation
and form a subgroup of the wider Lorentz group. In fact, we will use this group so often
that we drop the “proper orthochronous” descriptor from hereon: unless otherwise indicated,
these are the transformations to which we refer when discussing the Lorentz group.

The transformation behavior of a Lorentz 4-vector can be used to derive the transfor-
mation behaviors of other Lorentz tensors. For example, a Lorentz 4-covector vµ becomes
another Lorentz 4-covector vµ under the Lorentz transformation Λ according to

vµ = ηµνv
ν 7→ vµ = ηµνv

ν = ηµνΛνρv
ρ = Λµ

ρvρ = (Λ−1)ρµvρ (2.17)

As illustrated by the above result, symbols that require both the inversion label “-1” and
Lorentz indices are cumbersome. This is not the only time the inversion label clutters
otherwise convenient notations that are useful to this dissertation, so we will instead write
inverses with a tilde, e.g. Λ̃µν ≡ (Λ−1)µν . In this notation, the transformed 4-covector is



more succinctly written as vµ = Λ̃ρµvρ. A Lorentz index ν that transforms via contraction

with Λ̃µν is called a covariant index.
More generally, a Lorentz tensor Xα1···αaβ1···βb is an object with a contravariant indices

α1, ..., αa and b covariant indices β1, ..., βb that transforms under a Lorentz transformation
Λ according to

Xα1···αaβ1···βb 7→ Λα1γ1 · · ·Λ
αa
γaΛ̃δ1β1

· · · Λ̃δbβbX
γ1···γaδ1···δb (2.18)

A tensor that transforms according to this rule is said to transform covariantly under Lorentz
transformations or, in fewer words, to be Lorentz covariant. By contracting Lorentz indices
between Lorentz tensors, a new Lorentz tensor can be formed. In particular, if all Lorentz
indices are contracted within a product of Lorentz tensors (and the collection possesses no
other transformation properties with regards to Lorentz transformations) then a Lorentz
scalar is formed. For example, the inner product (v · v) = vµvµ is a Lorentz scalar, and is
thereby invariant under Lorentz transformations. Our field theory Lagrangian densities will
also be Lorentz scalars. In particular, the Lagrangians we consider will be constructed from

multiple rank-2 tensors ĥ
(n)
µν corresponding to spin-2 fields. These nicely contract like links in

a chain, and their contractions are so common that it is worthwhile to grant them a special
notation. We define the ‘twice-squared bracket’ notation as follows:

Jĥ(n1)Kµν ≡ ĥ
(n1)
µν (2.19)

Jĥ(n1)ĥ(n2)Kµσ ≡ ĥ
(n1)
µν ηνρĥ

(n2)
ρσ (2.20)

Jĥ(n1)ĥ(n2)ĥ(n3)Kµυ ≡ ĥ
(n1)
µν ηνρĥ

(n2)
ρσ ηστ ĥ

(n2)
τυ (2.21)

and so on. When the field indices are entirely contracted to form a trace (such that the chain
is closed into a loop), the external indices are omitted:

Jĥ(n1) · · · ĥ(nH )K ≡ Jĥ(n1) · · · ĥ(nH )Kαβη
αβ (2.22)

The operation of connecting two such chains via contraction is called concatenation, and the
identity chain with respect to concatenation is

J1Kµν ≡ ηµν (2.23)

from which J1K = 4. (If we were instead working in X-dimensions, then J1KMN ≡ ηMN and
J1K = X).

Regarding its group structure, the Lorentz group possesses two Casimir invariants, which
are used to define particle content in quantum field theory. The first is the mass, which is
defined from the (assumedly not space-like) 4-momentum pµ = (E/c, ~p) where E ≥ 0 and
~p are the energy and 3-momentum of a particle excitation respectively. The mass m ≥ 0 is
defined from the Einstein equation,

E2 = m2c4 + ~p 2c2 (2.24)

which we typically express instead as the on-shell condition p2 ≡ pµpµ = m2c2. The col-
lection of light-like 4-momenta related by Lorentz transformations form the light cone, a



right cone in pµ-space oriented along the energy axis. In contrast, if a 4-momentum is time-
like, then the mass is nonzero, and the collection of 4-momenta with equal mass form a
hyperboloid in pµ-space called a mass hyperboloid. Every mass hyperboloid contains a rest
frame 4-momentum (m,~0) wherein |~p| = 0. Any two 4-momenta on the light-cone or on the
same mass hyperboloid can be related via a Lorentz transformation. The mass additionally
dictates the kind of trajectories along which a given particle can travel: massless particles
travel along light-like trajectories at the speed of light, whereas massive particles travel along
time-like trajectories at speeds slower than the speed of light.

Regarding the second Casimir (the Pauli-Lubanski pseudovector), we will not dwell on
it beyond asserting that it allows a massive (massless) particle to be assigned a Lorentz-
invariant total spin (helicity). For instance, the second Casimir invariant is why an electron
can be assigned a definite internal spin of 1

2 . We adopt the standard convention of referring
to a massless particle with total helicity s as being a spin-s particle. When a massive particle
is in its rest frame, its total angular momentum equals its total internal spin.

The above considerations for 4-momentum apply more generally to other Lorentz 4-
vectors as well: any two (nonzero) light-like or time-like 4-vectors v and w having equal
magnitude (v · v) = (w ·w) ≥ 0 and same temporal component sign sign(w0) = sign(v0) can
be related by a Lorentz transformation. Meanwhile, any two space-like 4-vectors v and w with
equal magnitude (v · v) = (w ·w) < 0 can be related by a Lorentz transformation, regardless
if they disagree on the signs of their temporal components. The collection of all 4-vectors
related to a 4-vector v by (proper orthochronous) Lorentz transformations is called the
Lorentz-invariant hypersurface generated by v. In this language, a mass hyperboloid (light
cone) is the Lorentz-invariant hypersurface generated by a time-like (light-like) 4-momentum
p. Note that the Lorentz-invariant hypersurface generated by a nonzero 4-vector is a three-
dimensional manifold because the four components of the 4-vectors on that hypersurface
have only one continuous constraint (i.e. maintaining the same overall 4-vector magnitude).
The “nonzero” descriptor in the previous statement is important because the 4-vector origin
0µ is individually invariant under Lorentz transformations, such that the hypersurface it
generates is the zero-dimensional set {0µ}.This is one way to understand the lack of a rest
frame 4-momentum on the light cone: if we could somehow map the light-like 4-momentum of
a massless particle to 0µ, then we could (using the inverse transformation) map 0µ back to a
different light-like 4-momentum, but this would contradict the invariance of {0µ}. Therefore,
massless particles cannot be at rest in any reference frame (this is, of course, a restatement
of the invariance of the speed of light).

In addition to its group structure, the Lorentz group forms a six-dimensional manifold:
consider the magnitude

a · a = (a0)2 − (a1)2 − (a2)2 − (a3)2 (2.25)

of a 4-vector aµ for which all components are nonzero. A generic Lorentz transformation can
alter any of these components but must ultimately preserve this magnitude. In particular,
suppose a transformation alters one component slightly. Because all components of aµ are
assumedly nonzero, we can preserve the overall magnitude of a by slightly increasing or
decreasing a different component of a by however much is necessary to accommodate the
change of the first component. There are as many independent ways of performing this



balancing trick as there are distinct pairs of components. Because a has four components as
a 4-vector, there are six independent choices of component pairs. Furthermore, by chaining
together the shifts of magnitude described by these six independent component pairs, we
can form any (proper orthochronous) Lorentz transformation. Therefore, the Lorentz group
is six-dimensional.

It is conventional to distinguish certain convenient Lorentz transformations:

• Rotations are Lorentz transformations that leave the temporal coordinate unchanged,
and correspond to the usual collection of rotations in 3-space. Their operation solely
affects the 3-vector part ~a of a 4-vector a, and they form a closed subgroup of the
Lorentz group. In the context of the aforementioned balancing trick, these transfor-
mations correspond to the “space-space” mixing.

• Boosts are Lorentz transformations that leave a spatial 2-plane unchanged, e.g. a boost
along the z-axis will mix the a0 and a3 components of a 4-vector, but leave the a1 and
a2 components unchanged. Boosts do not form a closed subgroup of the Lorentz group.
In the context of the aforementioned balancing trick, these transformations correspond
to the “time-space” mixing.

Any two 4-vectors on the same Lorentz-invariant hypersurface can be related by a Lorentz
transformation that combines rotations and boosts.

We arrived at the Minkowski metric by demanding that the speed of light be locally
preserved between frames. If we now suppose the Minkowski metric describes spacetime
globally as well (thereby ensuring we work in the realm of special relativity as opposed
to general relativity), the trajectories ~x(t) of light-like wavepackets must be straight lines
through 3-space. That is, the wavepacket propagates such that at any time t it is centered
at ~x(t) = ~vt+~x(0) for some initial position ~x(0) and velocity |~v| = c. If the 4-velocity (v0, ~v)
transforms according to a Lorentz transformation

vµ → Λµνv
ν (2.26)

then the corresponding trajectory in 4-space xµ = (ct, ~x(t)) must transform according to the
same Lorentz transformation plus a potential spacetime translation

xµ → Λµνx
ν + εµ (2.27)

where εµ is a generic 4-vector. By once again considering a network of light-like wavepackets
throughout spacetime, we can generalized this transformation behavior beyond a single tra-
jectory and conclude that the coordinates of spacetime must generally transform according
to Eq. (2.27). The wider collection of transformations available to spacetime coordinates
comprise the Poincaré group. Because εµ has four real components and the Lorentz group
is a six-dimensional manifold, the Poincaré group forms a ten-dimensional manifold.

The following subsections delve into more detail about specific transformations within the
Poincaré group. To facilitate succinct expressions, we introduce unit 4-vector basis elements,

v = v0t̂+ v1x̂+ v2ŷ + v3ẑ (2.28)



where

[t̂µ] =


1
0
0
0

 [x̂µ] =


0
1
0
0

 [ŷµ] =


0
0
1
0

 [ẑµ] =


0
0
0
1

 (2.29)

For the same purpose, we also define abbreviations for the trigonometric and hyperbolic
functions

cα ≡ cosα sα ≡ sinα chβ ≡ cosh β shβ ≡ sinh β (2.30)

and utilize natural units for the remainder of this dissertation: c = ~ = 1.

2.2.2 Active vs. Passive Transformations

In order to quantify Lorentz and Poincaré transformations, we must decide whether to con-
sider them as active or passive transformations. In order to clarify the nuances of these
perspectives, let us briefly restrict our attention to spacetime translations.

Consider a continuous function φ(x) of real numbers over spacetime that is sharply peaked
at some spacetime point x = X relative to an observer at the spacetime origin. Further
suppose we want to describe this same distribution as instead having a peak at X + a for
some 4-vector a relative to that observer. We might use an active or passive transformation to
achieve this: the active transformation shifts the entire distribution by an amount a relative
to the coordinate system, whereas the passive transformation instead keeps the distribution
as-is and moves the observer (and the spacetime origin with them) by an amount−a. Because
they ultimately describe the same physical reality—namely, that the peak is now at X + a
relative to the observer—these different transformations must be physically equivalent. More
generally, an active Poincaré transformation P(Λ, a) on the distribution corresponds to a
passive Poincaré transformation P(Λ, a)−1 on the coordinates.

When switching between reference frames via a transformation, the passive interpreta-
tion is the more popular choice: in this interpretation, reality is fixed, and we are merely
swapping between observers who have their own coordinate systems for observing that re-
ality. However, the preceding discussion points out that we could equally well use active
transformations as long as we are careful to invert the intended operation. Consequently,
because we intend to eventually apply active transformations to quantum mechanical states,
our discussion of the Lorentz group in the upcoming subsections is written in the active in-
terpretation, even when those transformations are used to switch between reference frames.
For example, our rotation operator Rz(α) corresponds to rotating the physical system by an
angle +α about the z-axis, which is equivalent to rotating the observer (and their coordinate
system) by an angle −α about the z-axis. These are an active and passive transformation
respectively.

That being said, there is an important transformation that we should be cautious to
ensure is always interpreted correctly: the time evolution transformation. An active time
translation by an amount ∆t shifts our distribution φ(x) = φ(t, ~x) to φ(t−∆t, ~x) and thereby

ensures that a peak formerly at X = (T, ~X) will subsequently occur at X ′ = (T + ∆t, ~X).



However, if we want to evolve the system in time by an amount ∆t, we actually desire that
φ(x, ~x) be mapped to φ(t + ∆t, ~x). This can be achieved by either performing an active
time translation by an amount −∆t or (as it is usually expressed) performing a passive time
translation by an amount ∆t.

From here onward, the“rotation”,“boost”,“translation”,“Lorentz”,“Poincaré”, etc. trans-
formations will be written as active transformations unless otherwise indicated, in contrast
to the time evolution transformation, which (in the way just described) is always understood
as a passive transformation.

2.2.3 Rotations

For spatial coordinates, we utilize a standard right-handed 3-space coordinate system (labeled
such that x̂× ŷ = ẑ) and define our rotations using the right-hand rule. This means that, for
example, an active rotation about the z-axis by an angle α on a generic 4-vector xµ yields
Rz(α)µνx

ν , where

[Rz(α)µν ] =


1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1

 (2.31)

within which cα ≡ cosα and sα ≡ sinα. When α = 0, Rz(α) becomes the identity trans-
formation. That this is a Lorentz transformation can be checked directly from the defining
property of a Lorentz transformation, Eq. (2.13):

ηµν [Rz(α)x]µ [Rz(α)x]µ = dt2 − (cα dx− sα dy)2 − (sα dx+ cα dy)2 − dz2 (2.32)

= dt2 − (c2α + s2
α)dx2 − (c2α + s2

α)dy2 − dz2 (2.33)

= dt2 − d~x 2 (2.34)

= ηµνx
µxν (2.35)

In principle, Rz(α) is an instantaneous mapping from one coordinate system to another.
However, by taking α → 0, Rz(α) continuously goes to the identity ([Rz(α)µν ] → [η

µ
ν ] =

[δµ,ν ]), and thus (by reversing the direction of the limit) we can interpret a rotation Rz(α) as
a continuous transformation that smoothly rotates xµ to Rz(α)µν x

ν . In addition to being
a nice conceptual feature, this continuity near the identity allows us to rewrite the rotation
operator Rz(α) as the exponential of a generator Jz:

[Rz(α)µν ] = Exp

[
α[(Jz)

µ
ν ]

]
≡

+∞∑
n=0

1

n!

(
α[(Jz)

µ
ν ]

)n
where Jz ≡

∂Rz(α)

∂α

∣∣∣∣
α=0

(2.36)

from which we calculate

[(Jz)
µ
ν ] =


0 0 0 0
0 0 −1 0
0 +1 0 0
0 0 0 0

 (2.37)



By having one index raised and another index lowered, we ensure that powers of [(Jz)
µ
ν ]

correctly reproduce a series of index contractions, e.g. [(Jz)
µ
ν ] [(Jz)

ν
ρ] = [(Jz)

µ
ρ]. For the

rest of this chapter we will drop the index references on [(Jz)
µ
ν ] and refer to it simply as Jz.

Note that Jz only leaves 4-vectors proportional to (t, ẑ) unchanged, which is consistent with
ẑ being the axis of the rotation generated by Jz. This same procedure can also be applied
to rotations about the x- and y-axes, which have the rotation matrices,

[Rx(α)µν ] =


1 0 0 0
0 1 0 0
0 0 cα −sα
0 0 sα cα

 [Ry(α)µν ] =


1 0 0 0
0 cα 0 sα
0 0 1 0
0 −sα 0 cα

 (2.38)

which can be expressed as Rx(α) = Exp[αJx] and Ry(α) = Exp[αJy], where

Jx =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 +1 0

 Jy =


0 0 0 0
0 0 0 +1
0 0 0 0
0 −1 0 0

 (2.39)

(When we promote these to the quantum description, these antisymmetric matrices will be
replaced by Hermitian operators.) The generators Ji have several convenient properties. For
instance, they possess a closed commutator structure:

[Ji, Jj ] = εijkJk =⇒ ~J × ~J = ~J (2.40)

where i, j, k ∈ {x, y, z}, ~J ≡ (Jx, Jy, Jz), and [A,B] ≡ AB −BA. They can also be put into
the combination

~J 2 ≡ ~J · ~J =


0 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

 ≡ −2(δµ,ν − δµ,0δν,0) (2.41)

which commutes with every generator

[ ~J, ~J 2] = 0 (2.42)

If a collection of three tensors {Xx, Xy, Xz} happen to satisfy

[Ji, Xj ] = εijkXk (2.43)

where i, j, k ∈ {x, y, z}, then the collection transforms like a 3-vector ~X ≡ (Xx, Xy, Xz) ≡
(X1, X2, X3) under rotations. In particular, via Eq. (2.40), ~J transforms as a proper 3-

vector under rotations, and so we can give the components of ~J legitimate 3-vector indices:
{Jx, Jy, Jz} = {J1, J2, J3}. Because we use the mostly-minus metric convention, this means

that, for example, Jx = J1 = −J1. Exponentiating the generators together allows us to
write a generic rotation matrix: a rotation [R(~α)

µ
ν ] around an axis α̂ by an angle |~α| equals

R(~α) ≡ Exp[~α · ~J ] (2.44)



This is, of course, equivalent to a rotation by an angle −|~α| about −α̂ instead, if one so
prefers.

Note that the rotation generator set {Jx, Jy, Jz} is closed under the commutation bracket.
In fact, the generators {Jx, Jy, Jz} form the Lie algebra so(3) and the rotation group in

three dimensions forms the Lie group SO(3). The operator ~J 2 (which we recall commutes
with every generator) is the single Casimir operator belonging to this Lie algebra. Like

other Casimir operators, ~J 2 is a geometric invariant that describes the dimensionalities of
any invariant subgroups within a given representation of the rotation group. For example,
although the 4-vector representation above transforms under the rotation group in a well-
defined way, it actually contains two distinct rotational behaviors which never mix under
any rotation, as hinted by the two distinct eigenvalues along the diagonal of ~J 2 in Eq.
(2.41). This can also be identified directly from the transformation behavior of 4-vectors if
one knows what to search for: while the 3-vector part ~x of a 4-vector xµ is changed under
the rotation in the usual way, its temporal component x0 is left invariant, and so xµ cleanly
separates into x0 and ~x as far as rotations are concerned. Regardless of how these invariant
subspaces are derived, they correspond to spin-0 and spin-1 representations of the rotation
group. We use the spin-1 portion of the 4-vector representation to derive the canonical spin-1
and spin-2 polarizations in Subsection 2.8.1, after we have promoted the Poincaré generators
to quantum operators.

Eq. (2.44) is only one of many ways of writing a generic rotation. Another (which is
particularly useful for the purposes of this chapter) is the Euler angle parameterization. The
Euler angles detail a sequence of rotations with which one can produce any orientation of a
rigid body in 3-space. They also happen to be a natural coordinate system for a symmetric
top. Explicitly, we may write a generic rotation in terms of the Euler angles {φ, θ, ψ} as

R(φ, θ, ψ) ≡ Rz(φ)Ry(θ)Rz(ψ) (2.45)

where φ ∈ [0, 2π), θ ∈ [0, π], and ψ ∈ (−2π, 0]. When applied to a symmetric top which
has been set to balance with its tip at the origin and with gravity pulling in the negative
ẑ-direction, these angles correspond to the following motions:

• ψ describes the intrinsic rotation of the top about its own axis.

• θ describes nutation of the top, i.e. rotation of the top axis towards and away from
the z-axis.

• φ describes precision of the top, i.e. rotation of the top axis about the z-axis.

In quantum mechanical problems where the relevant states are eigenkets of z-axis rotations
but (necessarily) not of x- and y-axis rotations, the fact that Eq. (2.45) begins and ends
with z-axis rotations enables certain simplifications.

If the object we intend to rotate has no spatial extent beyond its axis of rotation (e.g.
a symmetric top in the limit that it becomes a needle), then the intrinsic rotation angle ψ
has no physical effect and can be set to some conventional value. This will be relevant when
we consider rotations of 3-momenta, which can be rotated about their 3-direction without
affecting their value. Popular conventions include setting ψ = −φ and ψ = 0, of which



we choose the former when such a choice is relevant. Setting the value of ψ ensures that
only two degrees of freedom remain, which is consistent with the spherical coordinate angles
(θ, φ). For these cases, we define

R(p̂) ≡ R(φ, θ) ≡ R(φ, θ,−φ) (2.46)

where p̂ is the 3-direction corresponding to (θ, φ).
To phrase the previous point in a different way: any two 3-vectors ~v and ~w which share the

same magnitude |~v| = |~w| are on the same rotation invariant hypersurface, and can be related
via some choice of rotation. Because these hypersurfaces are 2-spheres in 3-space, we require
only two degrees of freedom to parameterize the different 3-vectors and, thus, the rotations
relating them too. This is the language we use when discussing Lorentz transformations in
the next subsection, after we derive the boost generators.

2.2.4 Boosts

An active boost along the z-axis with rapidity β on a generic 4-vector xµ yields Bz(β)µνx
ν ,

where

[Bz(β)µν ] =


chβ 0 0 shβ
0 1 0 0
0 0 1 0
shβ 0 0 chβ

 (2.47)

within which chβ ≡ cosh β and shβ ≡ sinh β. When β = 0, Bz(β) becomes the identity
transformation. Like the rotations in the last subsection, the fact that Bz(β) is a Lorentz
transformation can be checked directly from their defining property Eq. (2.13):

ηµν [Bz(β)x]µ [Bz(β)x]µ = (chβ dt+ shβ dz)2 − dx2 − dy2 − (shβ dt+ chβ dz)2 (2.48)

= (ch2
β − sh

2
β)dt2 − dx2 − dy2 − (ch2

β − sh
2
β)dz2 (2.49)

= dt2 − d~x 2 (2.50)

= ηµνx
µxν (2.51)

Furthermore, because Bz(β) is continuously connected to the identity, it can be interpreted
as a smooth transformation (by evolving the rapidity from zero to β) and be expressed as
an exponential of a generator:

[Bz(β)µν ] = Exp

[
β[(Kz)

µ
ν ]

]
≡

+∞∑
n=0

1

n!

(
β[(Kz)

µ
ν

)n
where Kz ≡

∂Bz(β)

∂β

∣∣∣∣
β=0

(2.52)

from which we calculate

[(Kz)
µ
ν ] =


0 0 0 +1
0 0 0 0
0 0 0 0

+1 0 0 0

 (2.53)



Again, we drop the index indicators and simply write [(Kz)
µ
ν ] as Kz. Boosts along the x-

and y-axes are defined similarly

[Bx(β)µν ] =


chβ shβ 0 0
shβ chβ 0 0

0 0 1 0
0 0 0 1

 [By(β)µν ] =


chβ 0 shβ 0
0 1 0 0
shβ 0 chβ 0

0 0 0 1

 (2.54)

and can be expressed as exponentials of generators Bx(β) = Exp[βKx] and By(β) =
Exp[βKy], where

Kx =


0 +1 0 0

+1 0 0 0
0 0 0 0
0 0 0 0

 Ky =


0 0 +1 0
0 0 0 0

+1 0 0 0
0 0 0 0

 (2.55)

are the corresponding generators. Unlike the rotation generators, the boost generators are
not closed with respect to the commutator bracket:

[Ki, Kj ] = −εijkJk (2.56)

[Ji, Kj ] = +εijkKk (2.57)

where i, j, k ∈ {x, y, z}. By comparing Eq. (2.57) to Eq. (2.43), we note {Kx, Ky, Kz} do

rotate like a proper 3-vector under rotations, and label them as such: ~K ≡ {Kx, Ky, Kz} =

{K1, K2, K3}.
A generic boost B(~β) along an axis β̂ by an amount β can be constructed from exponen-

tiation of the generators:

B(~β) = Exp[~β · ~K] (2.58)

which leaves the 2-plane perpendicular to ~β in 3-space unchanged.
The rotation and boost generators together form the set of Lorentz generators {~L, ~K},

which enumerate six independent degrees of freedom and can generate any (proper or-
thochronous) Lorentz transformation via exponentiation. Like in the case of a generic rota-
tion, there are many ways to parameterize a generic Lorentz transformation. One example
(and the parameterization we choose) is as a boost followed by a rotation:

Λ(~α, ~β)µρ ≡ R(~α )µν B(~β )νρ (2.59)

which has six degrees of freedom (~α, ~β). This number can be reduced if we only consider
the Lorentz transformations that relate any two 4-vectors on the same Lorentz-invariant
hypersurface. In particular, if the 3-vector part ~v of a 4-vector v points in a direction v̂, then
we can obtain any other 4-vector on the same Lorentz-invariant hypersurface by applying

Λ(~α, β)µρ ≡ R(φ, θ,−φ)µν B(βv̂ )νρ (2.60)

for some choice of φ, θ, and β. Note that this specific collection of Lorentz transformations
only has three degrees of freedom, consistent with the dimensionality of the light cone and
mass hyperboloids.

In the next subsection, the translation generators are derived, which together with the
Lorentz generators form the Poincaré generators.



2.2.5 Translations

Although it is unnecessary to do so in more general contexts, it is advantageous for our current
purposes to cast the translation operation as a matrix. To do so, we extend 4-vectors for the
duration of this subsection to include a new auxiliary slot, e.g.

xµ ∼ [xµ] =

(
xµ

1

)
=


x0

x1

x2

x3

1

 (2.61)

and define a translation operator T (ε)νµ as a 5× 5 matrix,

[T (ε)νµ] =

(
1
ν
µ εν

0 1

)
(2.62)

where ε is a 4-vector, such that,

[T (ε)νµx
µ] = [T (ε)νµ] [xµ] =

(
xν + εν

1

)
= [xν + εν ] (2.63)

Like the previous transformations, the translation operator can be generated through ex-
ponentiation of certain translation generators Pµ. However, let us be more careful about
the signs in this exponentiation than we were in the rotation or boost cases. Specifically,
to encourage Lorentz invariance, we would like to write the generators Pµ as a 4-vector
contracted with a generating parameter εµ, so that the exponentiation is of the form

Exp

[
±
(
ε0[(P 0)µν ]− ε1[(P 1)µν ]− ε2[(P 2)µν ]− ε3[(P 3)µν ]

)]
(2.64)

where the sign of the exponent remains to be determined. The sign we choose is based on
precedent: as written in Eqs. (2.44) and (2.58), the exponents of the equivalent expressions

for general rotations and boosts equal +~α · ~J and +~β · ~K respectively. It would be nice if the
3-vector part of the translation exponent equaled +~ε · ~P as well. Thus, we choose the lower
sign.

Using this convention, the time-translation operator H ≡ P 0 is defined according to

[T (ε0t̂)νµ] = Exp

[
− ε0[Hµ

ν ]

]
where H ≡ P 0 =

∂T (ε0t̂)

∂ε0

∣∣∣∣
ε0=0

(2.65)

from which we calculate

[Hµ
ν ] =

(
0νµ −t̂ν
0 0

)
=


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (2.66)



As before, we drop the index indicators on the generators as we proceed. Like the above
temporal translation, a pure spatial translation

[T (~ε)νµ] = Exp[~ε · ~P ] where P i =
∂T (~ε)

∂εi

∣∣∣∣
εi=0

(2.67)

is accomplished via the space-translation generators {Px, Py, Pz}, which explicitly equal

Px ≡ P 1 =

(
0νµ x̂ν

0 0

)
Py ≡ P 2 =

(
0νµ ŷν

0 0

)
Pz ≡ P 3 =

(
0νµ ẑν

0 0

)
(2.68)

Combining these yields a generic spacetime translation by an amount εµ:

[T (εµ)] = Exp [−(ε · P )] (2.69)

where x̂µ, ŷµ, and ẑµ were defined in Eq. (2.29). Every Poincaré transformation can be
expressed as a combination of Lorentz transformations and spacetime translations, so we
can now express all Poincaré transformations as products of exponentiations of generators.

Combining the spacetime translation generators with the Lorentz generators yields the
ten canonical Poincaré generators {Pµ, ~J, ~K}, where the Lorentz generators have implicitly
been extended to accommodate the 5 × 5 forms of the translations, e.g. given a Lorentz
generator G, a Poincaré generator G will have the same effect if defined as follows

G =

(
G 0
0 1

)
(2.70)

We only distinguish the Poincaré generator G from the Lorentz generator G in the above
definition. Otherwise, we just write G.

Via explicit evaluation, the commutator structure of the canonical Poincaré generators
is found to be, in total,

[J i, Jj ] = +εijkJ
k [J i, Kj ] = +εijkK

k [Ki, Kj ] = −εijkJk (2.71)

[H, J i] = 0 [H,Ki] = +P i [J i, P j ] = +εijkP
k [P i, Kj ] = +Hδij (2.72)

[Pµ, P ν ] = 0 (2.73)

where i, j, k ∈ {1, 2, 3}. The commutators of the form [J i, •] indicate that ~P , ~J , and ~K
behave like 3-vectors under rotations, such that their 3-vector indices are meaningful.

2.2.6 Lorentz-Invariant Phase Space

Before promoting the generators to quantum operators in the next section, it is useful to
derive a Lorentz-invariant integral measure with which we can eventually normalize our
quantum states. Recall that a mass hyperboloid is a Lorentz-invariant hypersurface defined



as the collection of 4-momentum p for which E ≡ p0 > 0 and (p · p) > 0. An integral over a
given mass hyperboloid is easily expressed as a 4-momentum integral using these constraints∫

d4p

(2π)4
(2π)δ(p2 −m2) θ(E) f(p) (2.74)

where f is some function of the 4-momentum, the Dirac delta function δ(p2 −m2) enforces
p2 = m2, and the Heaviside step function θ(E) enforces E > 0. Because the mass hyperboloid
is a three-dimensional hypersurface, the goal of this subsection is to rewrite the 4-momentum
integral Eq. (2.74) as a 3-momentum integral instead. First, we note that this 4-momentum
integral is manifestly invariant under a Lorentz transformation Λ because

d4p 7→ d4(Λp) = | det Λ| d4p = d4p (2.75)

δ(p2 −m2) 7→ δ

(
(Λp)2 −m2

)
= δ(p2 −m2) (2.76)

so long as f(p) is a Lorentz scalar. We will first use the Dirac delta in order to eliminate
the energy integral (dE in the decomposition d4p = dE d3~p). However, the Dirac delta as
written is not quite right for eliminating that integral, because it is of the form

δ(p2 −m2) = δ(E2 − ~p 2 −m2) (2.77)

instead of δ(E−E∗) for some value E∗. To get it into this form, we reparameterize the Dirac
delta using the following property:

δ(f(x)) =
∑

x∗ s.t. f(x∗)=0

δ(x− x∗)
|f ′(x∗)|

(2.78)

where f ′(x) denotes the derivative of f with respect to its argument. Because

∂

∂E

[
E2 − |~p|2 −m2

]
= 2E (2.79)

and E2 − ~p 2 −m2 = 0 when E = ±E~p ≡ ±
√
m2 + ~p 2,

δ(p2 −m2) =
1

2
√
m2 + |~p|2

[
δ(E − E~p) + δ(E + E~p)

]
(2.80)

When we substitute this result into Eq. (2.74), the Heaviside step function θ(E) causes the
negative energy term ∝ δ(E + E~p) to vanish, such that∫

d3p

(2π)3

1

2E~p
f(E~p, ~p) (2.81)



which is a 3-momentum integral as desired. Because the original integral is Lorentz invariant,
this expression must be as well. The integration weight factor d3p/[(2π)32E~p] will occur
frequently in definitions and calculations due to its Lorentz invariance.

When calculating quantities involving n particles (labeled 1, 2, ..., n) with individual 4-
momenta pi = (Ei, ~pi) that are constrained to have some total 4-momentum P (but otherwise
unconstrained), integrals of the form∫ [ n∏

i=1

d3pi
(2π)3

1

2E~pi

] [
(2π)4δ4

(
P −

n∑
i=1

pi

)]
f(E~p1

, ~p1, · · · , E~pn , ~pn) (2.82)

regularly occur, where the first bracketed factor is called the n-particle Lorentz-invariant
phase space element,

dΠn =
n∏
i=1

[
d3pi
(2π)3

1

2E~pi

]
(2.83)

In the following section, the Poincaré generators are promoted to their quantum equivalents
in preparation of defining external particle states with well-defined 4-momentum and helicity.

2.3 Poincaré Group: Quantum Promotion

2.3.1 Quantum Mechanics

In the previous section, demanding a universal speed of light motivated us to investigate the
group of linear transformations that left the inner products p · q = ηµνp

µqµ unchanged. This
led us to the Lorentz group, which combines rotations and boosts, and its generalization the
Poincaré group, which additionally incorporates spacetime translations. The different trans-
formations in the Poincaré group map between reference frames while globally preserving
the speed of light.

In the present section, we extend these ideas to quantum mechanics. However, whereas
our investigation of 4-vector transformations was motivated by the frame independence of the
speed of light, the promotion to quantum mechanics is motivated by the frame independence
of experimental outcomes. To be concrete: while observers in different reference frames
will disagree about their spacetime coordinates by a Poincaré transformation, once those
differences are accounted for they should agree on—for example—how many heads or tails
are measured in a sequence of coin flips. Consequently, so long as our experimental questions
are phrased in frame-independent ways, the related experimental probabilities should be
frame-independent as well.

Quantum mechanical states are described via kets |ψ〉. Two kets describe identical re-
alities if they differ at most by a phase, e.g. |ψ〉 and eiα|ψ〉 correspond to physically-
indistinguishable systems for any real choice of α. A complete set of kets is defined for a
system by choosing a maximally-commuting set of observables for that system, whether the
observables are described by self-adjoint operators (A such that A† = A). From here, we
will use the descriptors “self-adjoint” and “Hermitian” interchangeably. A complete set of
kets defines a Hilbert space. Defining an orthonormality condition on a complete set of kets



implies a complete set of bras 〈ψ| as well as a resolution of identity on the space. This defines
an inner product between bras and kets which satisfies 〈ψ1|ψ2〉∗ = 〈ψ2|ψ1〉 for any two kets
|ψ1〉 and ψ2. The probability (or probability density) associated with measuring a state ψ
as another state ψ′ is

Prob(ψ → ψ′) ≡ |〈ψ|ψ′〉|2 (2.84)

where it is assumed the kets are normalized.
A symmetry transformations A on a Hilbert space is any transformation which preserves

probabilities, i.e. if |ψ1〉 and |ψ2〉 are arbitrary kets in the Hilbert space and are transformed
such that |ψ1〉 → |Aψ1〉 = A|ψ〉 and |ψ2〉 → A|ψ2〉, then A is a symmetry transformation if

|〈ψ1|ψ2〉|2 7→ |〈Aψ1|Aφ2〉|2 = |〈ψ1|A†A|φ2〉|2 = |〈ψ1|φ2〉|2 (2.85)

Wigner’s Theorem establishes that a symmetry transformation A must either be unitary and
linear,

〈Aψ1|Aψ2〉 = 〈ψ1|ψ2〉 and A

[
c1|ψ1〉+ c2|ψ2〉

]
= c1|Aψ1〉+ c2|Aψ2〉 (2.86)

or antiunitary and antilinear,

〈Aψ1|Aψ2〉 = 〈ψ1|ψ2〉∗ and A

[
c1|ψ1〉+ c2|ψ2〉

]
= c∗1|Aψ1〉+ c∗2|Aψ2〉 (2.87)

where c1 and c2 are complex numbers. If A is unitary, then Ã = A†.
Suppose there exists a group of real transformations {A} (like the 4-vector representation

of the Poincaré group) where each transformation is continuously connected to the identity
such that each transformation A can be expressed as exponentiations of real generators Ga

A(ξ) = Exp

[∑
a

ξaGa

]
(2.88)

via real parameters ξa, where the generators satisfy some commutation relations

[Ga, Gb] =
∑
c

TabcGc (2.89)

for some real numbers Tabc. In the quantum theory, we can recreate the action of the set
{A} on our kets by mapping each transformation A to a unitarity operator U [A] of the
exponentiated form

U [A(ξ)] = Exp

[
− i
∑
a

ξaH[Ga]

]
(2.90)

where the Hermitian operators H[Ga] satisfy the commutation relations[
H[Ga],H[Gb]

]
=
∑
c

i TabcH[Gc] (2.91)



for those same real numbers Tabc. Heuristically, Eq. (2.89) goes to (2.91) by replacing the
generators Ga with −iH[Ga]. The operators H[Ga] are also called generators, although in
this case they are generators of the unitary operators U [A]. When context is sufficient (and to
minimize clutter), we will simply write Ga in place of H[Ga]. If the original transformation
is active (passive), then the resulting quantum operator will encode an active (passive)
transformation as well. Recall that our generators from the previous section were derived
for the active transformations.

2.3.2 Promoting the Poincaré Generators

The symmetry group of spacetime is the Poincaré group, the generators of which were pre-
viously found to satisfy various commutation relations, Eqs. (2.71)-(2.73). We now promote
each of those generators to Hermitian operators as to create unitary representations of the
corresponding Poincaré transformations, i.e. the matrices {Pµ, J i, Ki} will be mapped to
operators {H[Pµ],H[J i],H[Ki]}. Note that this mapping is not unique: different particles
even within the same scenario often require different choices of Hermitian generators. How-
ever, whatever Hermitian generators we choose for a particular representation, they must
satisfy the promoted version of the previously-derived commutation structure:

[J i, Jj ] = +iεijkJ
k [J i, Kj ] = +iεijkK

k [Ki, Kj ] = −iεijkJk (2.92)

[H, J i] = 0 [H,Ki] = +iP i [J i, P j ] = +iεijkP
k [P i, Kj ] = +iHδij (2.93)

[Pµ, P ν ] = 0 (2.94)

where we have dropped the H label and have been cautious of the minus sign present in the
exponentiation of the time-translation generator H (as in Eq. (2.65)). The operator H is
the Hamiltonian, and an eigenket of H with eigenvalue E is said to have energy E.

Utilizing these generators, we obtain unitary operators that apply the effect of a generic
rotation, boost, or translation to a ket:

U [R(~α)] = Exp

[
− i~α · ~J

]
U [B(~β)] = Exp

[
− i~β · ~K

]
U [T (ε)] = Exp

[
+ i(ε · P )

]
(2.95)

The operators ~J and ~P are the angular momentum and (linear) momentum operators re-

spectively, and the rotation Casimir operator ~J 2 is the total angular momentum operator.
In going over to the quantum equivalent, we inadvertently expand the group structure of
our spacetime symmetries. For example, the Lie algebras so(3) (associated with the rotation
group SO(3)) and su(2) (associated with SU(2), the universal covering group of SO(3))
actually have identical commutation relations as far as quantum generators are concerned.
Because the quantum operators are only restricted by the commutation relations in Eq.
(2.91), we are able to represent 4-vector rotations (a representation of SO(3)) as unitarty
representations of SU(2). Irreducible unitary representations of SU(2) are reviewed in Sec-
tion 2.6.



As mentioned above, the time translation operator H ≡ P 0 is identified as the Hamilto-
nian, and yields a time evolution operator U(∆t),

U(∆t) = Exp

[
− i (∆t)H

]
(2.96)

Note the minus sign in the exponent relative to the time translation operator in Eq. (2.95).
This is consistent with the discussion in Subsection 2.2.2.

2.3.3 The Square of the 4-Momentum Operator

There are several important combinations of the generators relevant to our calculation. The
first is square of the 4-momentum operator P 2 ≡ H2 + ~P 2, which is important because of its
ties to particle mass. In particular, a state |ψ〉 has mass M ≥ 0 if P 2|ψ〉 = M2|ψ〉. Because
P 2 is a Casimir operator of the Poincaré group, all of the generators automatically commute
with it. If a single-particle state is simultaneously an eigenstate of P 2 and H, then it is
automatically also an eigenstate of the total 3-momentum operator ~P 2, and we can choose
to label (and normalize) those states with either their energy or 3-momentum magnitude.

2.3.4 The Helicity Operator

Another important operator formed by combining Poincaré generators is the helicity operator
Λ. However, before we define the helicity operator, let us instead consider a related operator:
the inner product ~J · ~P = J1P 1 + J2P 2 + J3P 3.

The operator ~J · ~P commutes with many of the Poincaré generators. For example, because
[AB,C] = [A,C]B + A[B,C] and [P i, P j ] = 0 (and recalling Pz = P 3),

[Pz, ~J · ~P ] =
3∑
i=1

[P 3, J i]P i + J i[P 3, P i] (2.97)

= [P 3, J1]P 1 + [P 3, J2]P 2 (2.98)

= iP 2P 1 − iP 1P 2 (2.99)

= 0 (2.100)

such that [P i, ~J · ~P ] = 0 for all i via cyclic symmetry and thereby [~P 2, ~J · ~P ] = 0 as well.
Similarly,

[Jz, ~J · ~P ] =
3∑
i=1

[J3, J i]P i + J i[J3, P i] (2.101)

= [J3, J1]P 1 + J1[J3, P 1] + [J3, J2]P 2 + J2[J3, P 2] (2.102)

= iJ2P 1 + iJ1P 2 − iJ1P 2 − iJ2P 1 (2.103)

= 0 (2.104)



such that [J i, ~J · ~P ] = 0 via cyclic symmetry, and [ ~J 2, ~J · ~P ] = 0 as well. Finally, note that

[H, ~J · ~P ] =
3∑
i=1

[H, J i]P i + J i[H,P i] = 0 (2.105)

vanishes too, because [H,P i] = [H, J i] = 0. Hence, in all, ~J · ~P commutes with H, P i, ~P 2,

J i, and ~J 2.
Suppose we restrict our attention to eigenkets |EM〉 of the Hamiltonian H and total

4-momentum operator P 2, e.g.

H|Em〉 = E|EM〉 P 2|Em〉 = m2|Em〉 (2.106)

where E > 0 and M ≥ 0 are the associated state energy and mass respectively. All of the
single-particle states that we consider have well-defined energy and mass in this way. For
these states, we define the helicity operator Λ as

Λ ≡
~J · ~P√

E2 −M2
(2.107)

which is pivotal to defining the external states relevant to this dissertation. Like the operator
~J · ~P to which it is proportional, Λ commutes with P i, ~P 2, J i, and ~J 2.

When describing external single-particle states, we will consider the relation of two
maximally-commuting sets of observable operators, both of which involve the helicity op-
erator:

• Option 1: Pµ, Λ

• Option 2: H, ~J 2, Jz, Λ

The single-particle states will also have definite masses and spins, and thus be eigenkets of
the corresponding operators; however, because they are associated with Casimir operators
of the Poincaré group, we can (and will) always include them in our maximally-commuting
set. As such, we will not label our single-particle states with mass or spin after this point.
Helicity eigenstates will be considered in more detail in Section 2.7.

2.3.5 Aside: Lorentz Group as SU(2)× SU(2)

Although the boost generators mix with the rotation generators under commutation accord-
ing to Eqs. (2.56) and (2.57), there is a trick for disentangling the two sets. To do so, we
must go over to the complexification of the Lorentz group, wherein we will treat the following
combinations of the rotation and boost generators as Hermitian:

~A ≡ 1

2
( ~J + i ~K) ~B ≡ 1

2
( ~J − i ~K) (2.108)

However, this assumption necessarily implies that (contrary to our previous construction)
our boost generators must be anti-Hermitian:

~J = ~A+ ~B ~K = −i( ~A− ~B) (2.109)



This is a nontrivial price to pay, but it comes at a great benefit: as promised, the commutators
of the Lorentz generators decouple

[Ai, Aj ] = +εijkAk [Ai, Bj ] = 0 [Bi, Bj ] = +εijkBk (2.110)

In fact, the operators described by {Ai} and {Bi} follow the same Lie algebra structure as
the angular momentum operators {J i}. In this sense, the complexified Lorentz group is two
independent copies of SU(2). Because each SU(2) admits finite-dimensional unitary repre-
sentations, complexification allows us to construct finite-dimensional unitary representations
of the Lorentz group too (which is not possible prior to complexification). Furthermore, be-
cause combining SU(2) representations yields another SU(2) representation, the equation
~J = ~A + ~B ensures that the end product behaves in a well-defined way under the rotation
group.

2.4 External States and Matrix Elements

2.4.1 Single-Particle States: Definite 4-Momentum

In quantum mechanics, the kets describing physical states are chosen to span the eigenvalues
of certain Hermitian operators corresponding to observable quantities. Specifically, given a
commuting set of observables {A1, · · ·AN} (so that [Ai, Aj ] = 0 for any pair Ai, Aj), we can
form a complete set of kets {|a1 · · · an〉} where

Ai|a1 · · · an〉 = ai|a1 · · · an〉 (2.111)

for each i ∈ {1, · · · , n}. Because each operator Ai is Hermitian, each eigenvalue ai is real.
The resulting collection of kets form a complete basis and are equipped with a convention-
dependent orthonormalization condition.

For the duration of this chapter, we use (interaction picture) kets to describe the initial
and final multi-particle states of scattering processes, each of which is built from direct
products of single-particle states. Thus, we turn our focus to the construction of single-
particle states. Following Wigner’s classification [19], our single-particle states are chosen to
be unitary irreducible representations of the Poincaré group, and will have definitive mass
and total spin (or helicity, if massless). We will choose choose these states so that they have
well-defined 4-momentum (and eventually helicity, as detailed in Section 2.7). We can choose
4-momentum as quantum numbers because the 4-momentum operators of Subsection 2.3.2
form a commuting set ([Pµ, P ν ] = 0 for all µ, ν ∈ {0, 1, 2, 3}) and the 4-momentum operators
encode an observable. Because the energy eigenvalue E associated with the Hamiltonian H
is constrained by the particle’s mass m to satisfy E2 = m2 + ~p 2, we only label the kets with
the 3-momentum eigenvalues, i.e. as |~p〉 ≡ |px py pz〉. By definition, these satisfy

H|~p〉 =
√
m2 + |~p|2 |~p〉 ~P |~p〉 = ~p |~p〉 (2.112)

where we recall that H ≡ P 0. Because 3-momentum is a continuous degree of freedom, these
kets are normalized by a Dirac delta, such that

〈~p|~p ′〉 ∝ δ3(~p− ~p ′) (2.113)



up to some proportionality factor. The exact choice of this proportionality factor varies
throughout the literature. We motivate our particular choice via the Lorentz-invariant phase
space element derived in Subsection 2.2.6. Namely, we would like to normalize our kets
such that we can resolve the identity on this space via an integral weighted by the Lorentz-
invariant factor d3~p/[(2π)32E~p]:

1 =

∫
d3~p

(2π)3

1

2E~p
|~p〉〈~p| (2.114)

This implies

|~k〉 =

∫
d3~p

(2π)3

1

2E~p
|~p〉〈~p|~k〉 (2.115)

which achieved as long as we choose our normalization such that

〈~p|~p ′〉 = (2π)3 (2E~p) δ
3(~p− ~p ′) (2.116)

and so we do. A simultaneous eigenstate of P 2 and H is also an eigenstate of ~P 2, so we
could use |~p| instead of E as a quantum number. On the occasion we would like to do so, we
define an alternate collection of 3-momentum kets ||~p|θφ〉, which are expressed in spherical
coordinates and normalized via

〈|~p|θφ||~p ′|θ′φ′〉 =
1

|~p|2
δ(|~p| − |~p ′|) δ2(Ω− Ω′) (2.117)

where

δ2(Ω− Ω′) ≡ δ(φ− φ′) δ(cos θ − cos θ′) (2.118)

and θ, θ′ ∈ [0, π] and φ, φ′ ∈ [0, 2π), such that

1 =

∫
|~p|2 d|~p| dΩ ||~p|θφ〉〈|~p|θφ| (2.119)

on this space.
Eq. (2.116) expresses a lot of information about the space of 3-momentum kets, but we

can add further structure to this space using our knowledge of spacetime transformations: we
know from our considerations of the Lorentz group in Section 2.2.1 that any two 4-momenta
on the same mass hyperboloid can be related via a Lorentz transformation. Consequently,
given a Lorentz transformation Λ that maps a 4-momentum p to a 4-momentum p′, there
exists a unitary operator U [Λ] that maps |~p〉 to |~p ′〉 up to a phase:

|~p ′〉 ∝ U [Λ] |~p〉 (2.120)

While it may be tempting to set this to an equality, such an equality would not be well-
defined because there are many distinct Lorentz transformations that take p to p′. There-
fore, to uniquely identify individual kets we follow Wigner’s lead [19] and choose a stan-
dard 4-momentum k on each Lorentz invariant 4-momentum hypersurface. Then, for every



other 4-momentum p on a given hypersurface, we choose a standard Lorentz transformation
that maps the corresponding standard 4-momentum k to ~p. By choosing these standard
4-momentum and transformations, we eliminate the ambiguity of the above proportionality
and can establish a well-defined equality.

The details of these standards depend on the mass of the single-particle state in question:

• Massive: For a single-particle state with mass m > 0, we choose the rest frame 4-
momentum kµ = (m,~0). To obtain any other 4-momentum p having equal mass, we
first boost along z until it has 3-momentum |~p|ẑ and then rotate via R(θ, φ) to attain
a 3-momentum ~p. This allows us to define, unambiguously,

|~p〉 = U [R(φ, θ)]U [Bz(βk→p)] |~0〉 (2.121)

where βk→p = arccosh(E~p/m).

• Massless: For a single-particle state with vanishing mass m = 0, there is no rest
frame, so instead we choose a standard light-like 4-momentum (E~k, E~kẑ) for some
choice of energy E~k. From here the procedure mimics the massive case: to obtain any
other 4-momentum p on the light cone, we first boost along z until it has 3-momentum
|~p|ẑ and then rotate via R(θ, φ) to attain a 3-momentum ~p. This allows us to define,
unambiguously,

|~p〉 = U [R(φ, θ)]U [Bz(βk→p)] |~k〉 (2.122)

where now βk→p = ln(E~p/E~k).

We will revisit these procedures when constructing helicity eigenstates in Section 2.7.
The above discussion glosses over an important (but ultimately inconsequential) tech-

nicality. The only physical states are those which have finite normalizations. Because the
3-momentum kets are normalized to a Dirac delta, they are unphysical, and thus in prin-
ciple cannot serve as external states in physical scattering processes. This reflects the fact
that we cannot in practice construct a system with definite 3-momentum. Even in the most
ideal of experimental conditions, the existence of such a state is forbidden by the Heisenberg
uncertainty principle. Therefore, we should actually perform calculations in quantum field
theory using wavepacket superpositions of states. For example, rather than using a ket |~p 〉,
we might instead use the wavepacket

|ψ~p〉 =

∫
d3~q

(2π)3

1

2E~q
ψ~p(~q ) |~q 〉 (2.123)

where ψ~p(~q) is a three-dimensional Gaussian sharply peaked as ~q = ~p. The smoothing this
wavepacket provides is sufficient to yield a finite normalization:

〈ψ~p|ψ~p〉 =

∫
d3~k

(2π)3

d3~q

(2π)3

1

2E~k

1

2E~q
ψ∗~p(~k )ψ~p(~q ) 〈~k|~q 〉 (2.124)

=

∫
d3~q

(2π)3

1

2E~q
|ψ~p(~q )|2 (2.125)



This is important when deriving results like the LSZ reduction formula (which relates external
states to quantum fields), but as far as matrix elements are concerned we can always take
the limit as the wavepacket becomes a Dirac delta and thereby use the 3-momentum kets as
external states (even if technically we should not). Because this dissertation only calculates
matrix elements and does not derive results sensitive to this technicality, it will be ignored.

2.4.2 Multi-Particle States: Definite 4-Momentum

A multi-particle state composed of single-particle states will have well-defined mass, total
spin, and 4-momentum for each particle included in the state. As such, we can construct a
space of n-particle kets labeled |~p1 ~p2 · · · ~pn〉 where each 3-momentum ~pi labels a particle
with definite mass mi. In the absence of identical particles (more on that soon), the n-
particle states can be constructed (up to a conventional phase, per usual) by taking the
direct product of n single-particle states:

|~p1 ~p2 · · · ~pn〉 ∝ |~p1〉 ⊗ |~p2〉 ⊗ · · · ⊗ |~pn〉 (2.126)

These states are assumedly arranged in some canonical ordering based on their distinguisha-
bility, e.g. electrons are listed left of muons and so-on, and electron kets vanish when
contracted with muon bras. We choose the free phase in Eq. (2.126) to be +1 so that
equality replaces the proportionality. However, regardless of the particular phase selected,
the multi-particle normalization is implied by the single-particle normalization Eq. (2.116).
By complex squaring both sides of Eq. 2.126, the multi-particle normalization is found to
equal

〈~p1 ~p2 · · · ~pn|~k1
~k2 · · · ~kn〉 =

n∏
i=1

(2π)3 (2E~pi
) δ3(~pi − ~ki) (2.127)

from which the n-particle resolution of identity (without identical particles) equals

1 =

∫ n∏
i=1

[
d3pi
(2π)3

1

2Epi

]
|~p1~p2 · · · ~pn〉〈~p1~p2 · · · ~pn| (2.128)

Note the presence of the n-particle Lorentz-invariant phase space measure. The above con-
struction is sufficient if all particles are distinguishable. In that case, we can imagine an
additional indicator being added to each 3-momentum label in the ket that gives a unique
name to each particle beyond its 3-momentum content. Then, when we perform the inner
product described in Eq. (2.127), we could pair up particles in the bra and ket based on
matching their names to obtain the correct Dirac deltas (and if we cannot find such a col-
lection of pairs then we know the inner product vanishes). If any number of the particles
involved are instead identical, then we must be more careful in our construction of the ket
space.

Two particles are identical if they share all of the same intrinsic quantum numbers—
such as mass, total spin, and gauge transformation properties—and a particular set of such
properties defines a particle species. For example, as listed in Figure 1.2, the particle species



known as“top quark” is characterized by a mass of 173 GeV, total spin 1
2 , electric charge +2

3 ,
and triplet transformation behavior under the color gauge group SU(3)C. Because they are
spin-1

2 particles, each top quark can be measured as either spin up (m = +1
2) or spin down

(m = −1
2) with respect to a given projection axis; however, the need for a projection axis

indicates that although projected spin is an internal quantum number, it is not an intrinsic
quantum number. Thus, spin up and spin down top quarks are still regarded as identical in
the technical sense. This applies to color charge as well: the status of a top quark as red,
green, or blue (or a specific superposition of those colors) is a gauge-dependent quality, and
so color charge is not an intrinsic quantum number. (This contrasts with electric charge,
which does possess a gauge-independent value.) Meanwhile, despite a charm quark possessing
nearly all of the same intrinsic quantum numbers as the top quark, the two quarks differ in
mass and thus are distinguishable regardless of further details.

To demonstrate that the existing machinery is insufficient for the construction of multi-
particle states involving identical particles, suppose we try to use the previous construction
to describe a 2-particle state consisting of identical particles with distinct 3-momenta ~p1 and
~p2. If the previous construction truly is sufficient, then (because the particles are identical)
the kets |~p1~p2〉 or |~p1~p2〉 describe indistinguishable physical realities and thus must be equal
up to a phase χ:

|~p1~p2〉
?
= χ|~p2~p1〉 (2.129)

If we swap the order of the labels in the RHS ket once more (and assume χ is agnostic to
the details of the 3-momenta encoded by the ket1), then we return to the original ordering
and gain another factor of χ

|~p1~p2〉
?
= χ2|~p1~p2〉 (2.130)

where equality only holds true if χ2 = 1. Note that χ2 is a regular square (i.e. not a complex
square), so this restricts χ to equaling +1 or −1. The exact choice of one sign over the other
is an intrinsic property of the particle being considered and is ultimately tied to the spin of
the given particle. Unfortunately, Eq. (2.129) is inconsistent with the normalization defined
in Eq. (2.127): specifically,

0 = 〈~p1 ~p2|~p2 ~p1〉
?
= χ〈~p1 ~p2|~p1 ~p2〉 = χ

2∏
i=1

(2π)3 (2E~pi
) δ3(0) (2.131)

which is zero on the LHS, but infinite on the RHS. The origin of this obstruction lies in Eq.
(2.126), where we expressed an n-particle ket as a direct product of single particle kets. The
ordering in the direct product |~p1〉 ⊗ |~p2〉 is absolute and lacks the exchange symmetry we
desire, e.g.

|~p1〉 ⊗ |~p2〉 6= χ|~p2〉 ⊗ |~p1〉 (2.132)

1This is a nontrivial assumption. Thankfully, even when this assumption is dropped one can still recover
the same end result, although doing so requires a good amount of homotopy theory to demonstrate that the
3-momentum-dependent phase is always removable via ket redefinitions.



To remedy this, we define the following symmetric and antisymmetric kets:

|~p1 ~p2 · · · ~pn) =
1√
n!

[
N∏
i=1

1√
ni!

] ∑
π∈πn

|π(~p1, ~p2, · · · , ~pn)〉 (2.133)

|~p1 ~p2 · · · ~pn] =
1√
n!

∑
π∈πn

sign(π) |π(~p1, ~p2, · · · , ~pn)〉 (2.134)

where πn denotes the set of all n-element permutations and sign(π) refers to the parity of a
permutation π (+1 for even permutations, −1 for odd permutations). The exact prefactors
in front of each permutation sum are chosen to guarantee upcoming normalization formulae
(Eqs. (2.144) and (2.145)). Within the symmetrized case in particular, care must be taken
to account for potential repeats of particle information, e.g. (because we continue to neglect
other quantum numbers) when two identical particles have identical 3-momentum ~p1 = ~p2.
To be explicit, suppose among the n particle labels there is only N unique labels present.
The ni present in Eq. (2.133) takes into account possible label repeats and equals how many
times a given unique label occurs in the list (~p1 , ~p2 , · · · , ~pn). Thus, n = n1 + · · ·+nN . For
future use, it is useful to define a symbol S(~p1, ~p2, · · · , ~pn) for this repeated label information:

S(~p1, ~p2, · · · , ~pn) ≡
N∏
i=1

ni! (2.135)

where ni and N are defined for the list (~p1, ~p2, · · · , ~pn) in the same way as they are defined
in the preceding paragraph. The identical particle kets defined in Eqs. (2.133) and (2.134)
are fully symmetric and antisymmetric in their particle labeling respectively: that is, given
a permutation π, they satisfy

|π(~p1 ~p2 · · · ~pn)) = |~p1 ~p2 · · · ~pn) (2.136)

|π(~p1 ~p2 · · · ~pn)] = sign(π) |~p1 ~p2 · · · ~pn] (2.137)

Particles described by the multi-particle symmetrized kets (χ = +1) are bosons and par-
ticles described by the multi-particle antisymmetrized kets (χ = −1) are fermions [20, 21].
The antisymmetry of the latter kets is why we need not worry about repeated labels when
normalizing that case; if any labels are repeated (e.g. two particles have identical quan-
tum numbers, which at present means identical 3-momenta), then the ket will automatically
vanish:

|~p ~p ~p3 · · · ~pn] = −|~p ~p ~p3 · · · ~pn] =⇒ |~p ~p ~p3 · · · ~pn] = 0 (2.138)

This is an expression of the Pauli exclusion principle [21], which states that identical fermions
are forbidden from having fully identical quantum numbers.

We now address the normalizations of these identical particle states. For multi-particle



states composed of a bosonic species,

(~p1 ~p2 · · · ~pn|~p ′1 ~p
′
2 · · · ~p

′
n) =

1

n!

[
N∏
i=1

1√
ni!

][
N ′∏
j=1

1√
n′j !

]

×
∑
π∈πn

∑
π′∈πn

〈π(~p1, ~p2, · · · , ~pn)|π′(~p ′1, ~p
′
2, · · · , ~p

′
n)〉

(2.139)

=
1

n!

[
N∏
i=1

1√
ni!

][
N ′∏
j=1

1√
n′j !

]
n!
∑
π∈πn

〈π(~p1, ~p2, · · · , ~pn)|~p ′1 ~p
′
2 · · · ~p

′
n〉 (2.140)

=
1

n!

[
N∏
i=1

1√
ni!

][
N ′∏
j=1

1√
n′j !

]
n!

[
N∏
i=1

ni!

] ∑
unique π∈πn

〈π(~p1, ~p2, · · · , ~pn)|~p ′1 ~p
′
2 · · · ~p

′
n〉

(2.141)

=

[
N∏
i=1

√
ni!

][
N ′∏
j=1

1√
n′j !

] ∑
unique π∈πn

〈π(~p1, ~p2, · · · , ~pn)|~p ′1 ~p
′
2 · · · ~p

′
n〉 (2.142)

where“unique π ∈ πn”means only summing over a subset of permutations π that yield unique
lists π(~p1, ~p2, · · · , ~pn). Consequently, if there is no permutation π such that π(~p1, ~p2, · · · , ~pn) =
(~p ′1, ~p

′
2, · · · , ~p

′
n), then the RHS vanishes. However, if such a permutation π does exist, then

N = N ′, {ni} = {n′j}, and

(~p1 ~p2 · · · ~pn|~p ′1 ~p
′
2 · · · ~p

′
n) =

n∏
i=1

(2π)3 (2E~pi
) δ3(0) (2.143)

Therefore, returning to the general case,

(~p1 ~p2 · · · ~pn|~p ′1 ~p
′
2 · · · ~p

′
n) =

∑
unique π∈πn

〈π(~p1, ~p2, · · · , ~pn)|~p ′1 ~p
′
2 · · · ~p

′
n〉 (2.144)

which is the normalization we would have obtained from distinguishable particles. For multi-
particle states composed of a fermionic species, the procedure is similar, except that no labels
in the bra nor ket may be repeated (or else the inner product automatically vanishes) such
that all permutations yield a unique ordering of labels. We must also be cautious of the
parity of the permutations involved. After taking these facets into account, we ultimately
find

[~p1 ~p2 · · · ~pn|~p ′1 ~p
′
2 · · · ~p

′
n] =

∑
π∈πn

sign(π) 〈π(~p1, ~p2, · · · , ~pn)|~p ′1 ~p
′
2 · · · ~p

′
n〉 (2.145)

which is again consistent with the normalization we would have obtained from an analo-
gous assortment of distinguishable particles, aside from an overall phase factor (a potential
multiplicative −1).



These normalizations imply corresponding resolutions of identity. Let us first consider
the bosonic case. To avoid over-counting states, we use the symmetrization of the bosonic
kets to arrange the 3-momentum labels in some canonical ordering. The specific canonical
ordering is unimportant at present, but one such choice is to rewrite all kets |~p1 · · · ~pn)
so that the 3-momentum are organized from smallest-to-largest in magnitude (with some
additional criteria for breaking ties). Whatever the specific choice of canonical ordering, the
resulting resolution of identity equals

1 =

∫
unique

n∏
i=1

[
d3pi
(2π)3

1

2Epi

]
|~p1~p2 · · · ~pn)(~p1~p2 · · · ~pn| (2.146)

where the “unique” label on the integral indicates that, for instance, if (~p1, ~p2, · · · , ~pn) =
(~p ′1, ~p

′
2, · · · , ~p

′
n) is included in the integral, then no distinct permutation of (~p ′1, ~p

′
2, · · · , ~p

′
n)

is also included in the integral. Although in principle this uniquely identifies the bosonic
resolution of identity, we would like to rewrite it in a way that does not depend on a specific
canonical ordering. To do so, suppose we lift the “unique” label from the RHS of the previous
equation so that we integrate over all 3-momentum combinations (regardless if any are related

via permutation) and act the resulting operator on a ket |~k1
~k2 · · ·~kn) where all 3-momentum

~ki are unique. Because |~k1
~k2 · · ·~kn) is symmetric in its labels, it will yield a nonzero result

when projected onto any of the bras (~p1~p2 · · · ~pn| wherein π(~p1, ~p2, · · · , ~pn) = (~k1, ~k2, · · · , ~kn)
for some permutation π. Because there are n! such permutations,[∫ n∏

i=1

[
d3pi
(2π)3

1

2Epi

]
|~p1~p2 · · · ~pn)(~p1~p2 · · · ~pn|

]
|~k1
~k2 · · ·~kn) = n!|~k1

~k2 · · ·~kn) (2.147)

Therefore, when acting on a ket wherein no set of quantum numbers is repeated,

1 =
1

n!

∫ n∏
i=1

[
d3pi
(2π)3

1

2Epi

]
|~p1~p2 · · · ~pn)(~p1~p2 · · · ~pn| (2.148)

Of course, the above resolution of identity will not work on a state where there are repeated
sets of quantum numbers, because the coincidence of those sets is not as over-counted in
the integral. For instance, if ~p1 6= ~p2 then the integral over all momentum would catch
both (~p1, ~p2) and (~p2, ~p1) despite their equivalence as far as the corresponding symmetrized
ket is concerned, whereas if ~p1 = ~p2 = ~p then only the single phase space point (~p, ~p) will
contribute. Thus, repeated labels yield fewer than n! contributing instances in the integral.
When these considerations are generally applied, we obtain a resolution of identity on the
whole space of symmetrized kets that does not rely on a specific canonical ordering:

1 =

∫ n∏
i=1

[
d3pi
(2π)3

1

2Epi

] [
1

n!
S(~p1, ~p2, · · · , ~pn)

]
|~p1~p2 · · · ~pn)(~p1~p2 · · · ~pn| (2.149)

where S is defined as in Eq. (2.135). Furthermore, because we will always be acting the
bosonic n-particle identity on bosonic n-particle states and

(~p1~p2 · · · ~pn|~k1
~k2 · · ·~kn) = 〈~p1~p2 · · · ~pn|~k1

~k2 · · ·~kn) (2.150)



(note the bra on the RHS is not symmetrized) we can replace the symmetrized states in Eq.
2.149 with distinguishable states. In doing so, we obtain our final result:

1 =

∫ n∏
i=1

[
d3pi
(2π)3

1

2Epi

] [
1

n!
S(~p1, ~p2, · · · , ~pn)

]
|~p1~p2 · · · ~pn〉〈~p1~p2 · · · ~pn| (2.151)

When expressed in this form, the bosonic resolution of identity only differs from the distin-
guishable resolution of identity Eq. (2.128) in its multiplicative S/n! factor. As a result,
it is common practice to perform derivations in quantum field theory as if all the particles
involved are distinguishable (e.g. without the factor of S/n!) and then reintroduce the S/n!
factor as necessary in closing. This occurs frequently when considering 2-to-2 scattering
in the center-of-momentum frame. Because the particles in such a process have equal-and-
opposite 3-momentum (which must be nonzero in order to describe nontrivial scattering:
~p1 6= ~p2), each identical incoming or outgoing pair contributes a factor of S(~p1, ~p2)/2! = 1/2
relative to the equivalent integral involving distinguishable particles. Formulas throughout
textbooks and the literature will often come with a caveat that an additional 1/2 must be
tacked on for each initial or final pair of identical bosons. This will be the case when we
derive the elastic/inelastic unitarity constraints in Subsection 2.7.3.

Although we will not need it in this dissertation, for completeness let us next consider
the fermionic resolution of identity. Because a coincidence of particle labels causes antisym-
metrized kets to vanish, the concerns regarding the repetition factor S do not carry over to
the fermionic case. Thus, the fermionic resolution of identity expressed in terms of canonical
momentum ordering is

1 =

∫
unique

n∏
i=1

[
d3pi
(2π)3

1

2Epi

]
|~p1~p2 · · · ~pn][~p1~p2 · · · ~pn| (2.152)

and generalizes to

1 =

∫ n∏
i=1

[
d3pi
(2π)3

1

2Epi

]
1

n!
|~p1~p2 · · · ~pn〉〈~p1~p2 · · · ~pn| (2.153)

As mentioned following the derivation of the bosonic resolution of identity, derivations in
quantum field theory are often performed while assuming all particles are distinguishable
and any necessary factors due to identical particles are appended after the fact. In the
fermionic case, that factor is 1/n!, which again simplifies to 1/2 for each identical fermion
pair in 2-to-2 scattering processes.

2.4.3 External States: General Quantum Numbers

While the previous results were derived and motivated by considering 4-momentum eigen-
states, they readily generalize to kets labeled by other sets of quantum numbers. Suppose
we have a complete set of single-particle kets |α〉 that resolve the single-particle identity
according to

1 =

∫
dΠ(α) |α〉〈α| (2.154)



where
∫
dΠ(α) is in principle some combination of sums (for discrete quantum numbers),

integrals (for continuous quantum numbers), and multiplicative weights, and with normal-
ization

〈α|α′〉 = w(α) δα,α′ (2.155)

where δα,α′ is a product of Kronecker deltas (for discrete quantum numbers) and Dirac deltas

(for continuous quantum numbers). Together, these imply

|α′〉 =

∫
dΠ(α) w(α) δα,α′ |α

′〉 =⇒ dΠ(α) =
1

w(α)
dα (2.156)

where dα is the differential integration element of the continuous quantum numbers specified
by |α〉. For example, in the previous subsection, α = ~p, such that w(~p) = (2π)3(2E~p)

and dα = d3~p. Because kets labeled by continuous quantum numbers have Dirac delta
normalizations, wavepackets corresponding to those continuous quantum numbers must be
utilized in practice (refer to the discussion at the end of Subsection 2.4.1 for more details
on this use of wavepackets). The construction of multi-particle states goes through without
significant modification (e.g. two labels α and α′ are now considered repeated if all of the
quantum numbers between them are equal), such that we define the distinguishable n-particle
state as

|α1 · · ·αn〉 = |α1〉 ⊗ · · · ⊗ |αn〉 (2.157)

and the identical n-particle states as

|α1 · · ·αn) =
1√

n!S(α1, · · · , αn)

∑
π∈πn

|π(α1, α2, · · · , αn)〉 (2.158)

|α1 · · ·αn] =
1√
n!

∑
π∈πn

sign(π) |π(α1, α2, · · · , αn)〉 (2.159)

for bosons and fermions respectively. In that same order, the resolutions of identity for each
of these spaces equal

1 =

∫ n∏
i=1

dΠ(αi) |α1 · · ·αn〉〈α1 · · ·αn| (2.160)

1 =

∫ n∏
i=1

dΠ(αi)
1

n!
S(α1, · · · , αn) |α1 · · ·αn〉〈α1 · · ·αn| (2.161)

1 =

∫ n∏
i=1

dΠ(αi)
1

n!
|α1 · · ·αn〉〈α1 · · ·αn| (2.162)



and the kets have normalizations

〈α1 · · · αn|α′1 · · · α
′
n〉 =

n∏
i=1

w(αi) δαi,α
′
i

(2.163)

(α1 · · · αn|α′1 · · · α
′
n) =

∑
unique π∈πn

〈π(α1, · · · , αn)|α′1 · · ·α
′
n〉 (2.164)

[α1 · · · αn|α′1 · · · α
′
n] =

∑
π∈πn

sign(π) 〈π(α1, · · · , αn)|α′1 · · ·α
′
n〉 (2.165)

where S is defined as in Eq. (2.135). These general results will become relevant as we
consider maximally-commuting sets of observables and thereby introduce more quantum
numbers to our state labels. Note the fermionic states still obey the Pauli exclusion principle
([αα · · ·| = 0). Also note the rule of thumb that an extra factor of 1/2 should be included per
identical particle pair in a 2-to-2 COM scattering calculation that was otherwise performed
with distinguishable particles carries over to these more general descriptions as well.

2.4.4 S-Matrix, Matrix Element

We can use the multiparticle states defined in the previous subsection as our initial and
final states in scattering processes. The collection of all states regardless of differing particle
numbers and particle species content yields a Fock space, which equals the direct product of
the zero-particle, single-particle, two-particle, etc. Hilbert spaces. Scattering processes are
modeled as beginning in the infinite past (at time t = −) and ending in the infinite future
(at time t = +) with the interesting dynamics occurring near t = 0. A Fock space state set
up in the infinite past is called an “in state”, whereas a Fock space state set up in the infinite
future is an called an “out state.” We can evolve an in state to out state via a generalization
of the time-evolution operator Ŝ called the S-matrix:

Ŝ|i〉in = |i〉out (2.166)

The S-matrix Ŝ by construction (because of its relation to a time-evolution operator) com-

mutes with Pµ and ~J . Because our in and out states will always have definite total 4-
momentum, they will also generate a 4-momentum conserving delta function, which we can
preemptively factor out:

out〈f |i〉out = out〈f |Ŝ|i〉in = 1f,i + i(2π)4δ4(pf − pi) out〈f |T̂ |i〉in (2.167)

where |i〉in is some initial particle scattering state and |f〉out is some final particle scattering
state. Eq. (2.167) defines the T -matrix relative to the S-matrix element, as well as the
(Lorentz-invariant) matrix element

Mi→f ≡ out〈f |T̂ |i〉in (2.168)

The square of the matrix element is related to the probability that a given scattering process
i→ f will occur, and is a central topic of this dissertation.



2.5 2-to-2 Scattering

This dissertation is largely concerned with 2-to-2 scattering processes, so it is important that
we establish a consistent choice of conventions relating to those processes. Subsection 2.5.1
describes our parameterization of 2-to-2 scattering processes in terms of the Mandelstam
variables s, t, and u. Subsection 2.5.2 defines the center-of-momentum (COM) frame and (in
this frame) rewrites the aforementioned t and u Mandelstam variables in terms of s and the
outgoing scattering angles θ, φ. Subsection 2.5.3 describes how to reduce a generic Lorentz-
invariant integral over the final state particle pair degrees of freedom into a standard angular
integral in the COM frame.

2.5.1 Mandelstam Variables

A 2-to-2 scattering process refers to the evolution of a two particle state in the infinite past
into a two particle state in the infinite future. For the time being, we will label the particles
in the incoming pair as 1 and 2, and the particles in the outgoing pair as 3 and 4. The initial
and final two-particle states can be expressed with various quantum numbers in principle.
For the duration of this dissertation, we will choose each external single-particle state to have
definite 4-momentum pi and helicity λi. The discussion of helicity is delayed until Section

2.7. By definition, an external particle with 4-momentum pi has mass mi =
√
p2
i .

Diagrammatically, we express the aforementioned generic 2-to-2 scattering process by:

1

2

3

4

p1

p2

p3

p4

which is intended to be read from left to right, and where 4-momentum conservation guar-
antees

p1 + p2 = p3 + p4 (2.169)

A 2-to-2 scattering process can often occur in a variety of ways via a variety of interactions.
For example, depending on the details of the field theory describing this scattering process,
the (1, 2) particles might be able to directly become a (3, 4) pair through a local quartic
interaction. We call a diagram corresponding to this specific subprocess a contact diagram:

1

2

3

4

p1

p2

p3

p4

contact



Furthermore, if the appropriate cubic interactions are present, then this 2-to-2 scattering
process is also facilitated by various channels of virtual particle exchange, i.e.

1

2

3

4

5

p1

p2

p3

p4

ps

1

2

3

4

5

p1

p2

p3

p4

pt

1

2

3

4

5

p1

p2

p3

p4

pu

s-channel t-channel u-channel

where 5 denotes the virtual particle being exchanged in each diagram. 4-momentum is
conserved at each vertex, such that ps = p1 + p2, and p1 = pt + p3, and so-on. These
diagrams are the motivation for the Mandelstam variables [22], which are defined as follows:

s ≡ p2
s = (p1 + p2)2 = (p3 + p4)2 (2.170)

t ≡ p2
t = (p1 − p3)2 = (p4 − p2)2 (2.171)

u ≡ p2
u = (p1 − p4)2 = (p3 − p2)2 (2.172)

Note that s (t; u) is the invariant momentum-squared that flows through the virtual par-
ticle in an s-channel (t-channel; u-channel) exchange diagram. Although the Mandelstam
variables are motivated by these exchange diagrams, we may express any 2-to-2 scattering
process in terms of s, t, and u. Indeed, we will be using s as a convenient variable to track
energy growth for all kinds of diagrams.

Mandelstam s, t, and u are not independent variables. For example, their sum is con-
strained: through direct evaluation, we find

s+ t+ u = (p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2 (2.173)

= p2
1 + p2

2 + p2
3 + p2

4 + 2p1 · (p1 + p2 − p3 − p4)︸ ︷︷ ︸
=0 by 4-momentum conservation

(2.174)

such that

s+ t+ u =
4∑
i=1

m2
i (2.175)

Furthermore, the Mandelstam variables are real-valued with restricted range when describing
experimentally-allowed processes. Mandelstam s, for example, is never smaller than

smin ≡ max
[
(m1 +m2)2, (m3 +m4)2

]
(2.176)

which corresponds to both particles of either the initial or final particle pair being at rest,
based on which pair is more massive overall (because of 4-momentum conservation, heavier
particles at rest can become lighter particles in motion, but not vice-versa). Consequently,



Mandelstam s only vanishes when all external particles are massless and the 3-momenta
between the particles in each pair are collinear. Because collinear massless wavepackets will
never collide, s will never vanish for nontrivial scattering processes.

Until now, our discussion has been frame independent. Let us now consider a spe-
cial frame that is particularly useful for simplifying scattering calculations: the center-of-
momentum frame.

2.5.2 Center-Of-Momentum Frame

As remarked in the previous subsection, s = (p1 + p2)2 is nonzero for any nontrivial
2-to-2 scattering process. Like a massive single-particle state with positive squared 4-
momentum, such a process possesses a (2-particle) rest frame, wherein the particle pair’s
total 3-momentum vanishes: ~p1 + ~p2 = ~0. This property (in addition to some coordinate
decisions we detail shortly) defines the center-of-momentum (COM) frame. So long as s > 0,
we may always use some combinations of boosts and rotations to enter the COM frame. For
example, we only need an appropriately-chosen boost to ensure the total 3-momentum of
the system vanishes, or in other words that the incoming particles have equal-and-opposite
3-momenta:

~p1 + ~p2 = ~0 (2.177)

which (via 4-momentum conservation) implies the outgoing particles have equal-and-opposite
3-momenta as well:

~p3 + ~p4 = ~0 (2.178)

Geometrically, this means that in the COM frame the 3-momentum of the incoming particle
pair lie on one common line and the 3-momentum of the final particle pair lie on another.
Furthermore, this boost uniquely determines the 3-momentum magnitudes of the external
particles: namely,

|~p1| = |~p2| = P(1, 2) |~p3| = |~p4| = P(3, 4) (2.179)

where

P(i, j) =

√
1

4s

[
s− (mi −mj)2

] [
s− (mi +mj)2

]
(2.180)

Next, we can use a rotation to orient the 3-momentum of particle 1 in the ẑ direction (or,
equivalently, we can define the ẑ direction of our coordinate system such that it follows ~p1
so long as |~p1| is nonzero), such that

p1 = E1t̂+ |~p|1 ẑ (2.181)

p2 = E2t̂− |~p|1 ẑ (2.182)

and

p3 = E3t̂+ |~p|3 p̂3 (2.183)

p4 = E4t̂− |~p|3 p̂3 (2.184)



where the basis 4-vectors were defined at the end of Section (2.2.1). This completes our
definition of the COM frame. We choose to express p̂3 in spherical coordinates with respect
to ẑ in the usual way, such that p̂

µ
3 = (0, cθsφ, sθsφ, cφ). We remind the reader that all of

the external energies are restricted by the on-shell condition m2
i = p2

i = E2
i −|~pi|

2, such that
(via Eq. (2.179)) all external 4-momenta can be expressed in terms of the s, θ, φ, and the
particle masses.

Because the 3-momenta of the incoming particles 1 and 2 are equal-and-opposite in the
COM frame, Mandelstam s reduces to the square of the total incoming energy, which we
denote ECOM:

s = (p1 + p2)2 = (E1 + E2)2 ≡ E2
COM (2.185)

When context makes ambiguity unlikely (i.e. it is apparent that we are not referring to a
single-particle energy), we will drop the label from ECOM and simply write s = E2.

Like the external 4-momenta, we can express the Mandelstam variables t and u in terms
of s, θ, and φ. To do so with succinctness, it is useful to define

P(i, j, k, l) =

√
1

4s

[
s2 − (m2

k +m2
l +m2

m +m2
n)s+ (m2

k −m
2
l )(m

2
m −m2

n)

]
(2.186)

where the previously-defined P(i, j) equals P(i, j, i, j). Then the Mandelstam variables equal

t(s, θ) = 2

[
−P(1, 2, 3, 4)2 + cos(θ)P(1, 2) ·P(3, 4)

]
(2.187)

u(s, θ) = 2

[
−P(1, 2, 4, 3)2 − cos(θ)P(1, 2) ·P(3, 4)

]
(2.188)

Note these are all independent of φ, which cancels out despite its presence in p3 and p4.
For future use in elastic processes, it is useful to define one last simplification ofP(i, j, k, l):

P(i) = P(i, i, i, i) =
1

2

√
s− 4m2

i (2.189)

For example, in elastic scattering (where all external particles are of identical particle species,
say, 1),

t(s, θ)|elastic = 2P(1)2
[
− 1 + cos(θ)

]
= −1

2
(s− 4m2

1)[1− cos(θ)] (2.190)

u(s, θ)|elastic = 2P(1)2
[
− 1− cos(θ)

]
= −1

2
(s− 4m2

1)[1 + cos(θ)] (2.191)

Before discussing the quantum theory of 2-to-2 scattering, there is one more result we require.
This subsection demonstrated that once an incoming energy ECOM =

√
s is set, the only

remaining degrees of freedom (ignoring internal degrees of freedom like helicity) correspond
to the outgoing angles θ and φ. To derive the optical theorem (in Subsection 2.5.4) in a
form that then allows us to derive the partial wave elastic/inelastic unitarity constraints (in
Subsection 2.7.3), we would like to rewrite a 2-particle Lorentz invariant integral in terms of
the remaining variables θ and φ. This is the subject of the next subsection.



2.5.3 2-Particle Lorentz Invariant Integrals in the COM Frame

There are several occasions when an integral over a final state particle pair is necessary. For
example, such an integral is required when we calculate the total cross-section for a given
2-to-2 scattering process and are uninterested in the specific outgoing angle of the final pair.
This kind of integral also occurs when deriving the partial wave elastic/inelastic unitarity
constraints, which are important for this dissertation.

For the 2-to-2 scattering process 1 2→ 3 4, an outgoing particle pair integral is typically
written as

F ≡
∫ [

d3p3

(2π)3

1

2E3

] [
d3p4

(2π)3

1

2E4

]
︸ ︷︷ ︸

2-Particle Lorentz-Invariant Phase Space

[
(2π)4δ4(p1 + p2 − p3 − p4)

]
︸ ︷︷ ︸

4-Momentum Conservation

F (p3, p4) (2.192)

independent of frame, where F is a generic function of the final particle 4-momenta. We aim
to use the four Dirac deltas present to eliminate four of the six integration parameters and
thereby rewrite F as a two-dimensional integral. In particular, we perform this integral in
the COM frame, and so the goal is to have those final two integration parameters be θ and
φ, which describe the direction of p̂3 relative to p̂1 = ẑ.

In the COM frame, p1 = (E1, ~p1) and p2 = (E2,−~p1), and the Dirac delta becomes

δ4(p1 + p2 − p3 − p4) = δ(ECOM − E3 − E4) δ3(~p3 + ~p4) (2.193)

where ECOM = E1 + E2. The 3-vector Dirac delta δ3(~p3 + ~p4) allows us to immediately
eliminate the d3p4 integral by constraining ~p4 = −~p3, such that we may write

F =
1

16π2

∫
d3p3

E3E4
δ(ECOM − E3 − E4)F (p3, p4)

∣∣∣∣
~p4=−~p3

(2.194)

Meanwhile, the integration measure d3p3 is expressible in spherical coordinates like so

d3p3 = |~p3|2 d|~p3| dΩ =
1

2
|~p3| d|~p3|2 dΩ (2.195)

where dΩ = d cos θ dφ contains the integration variables we wish to retain. Therefore, we
want to use the final Dirac delta δ(ECOM−E3−E4) remaining in F to eliminate the d|~p3|2
integral. To do so, we must reparameterize the Dirac delta using the following property:

δ(f(x)) =
∑

x∗ s.t. f(x∗)=0

δ(x− x∗)
|f ′(x∗)|

(2.196)

As mentioned in the previous section, 4-momentum conservation is satisfied (and thus
ECOM = E3 +E4) precisely when |~p3| = P(3, 4). Furthermore, using the existing ~p4 = −~p3



constraint,

∂

∂|~p3|2

[
ECOM − E3 − E4

]
=

∂

∂|~p3|2

[
ECOM −

√
m2

3 + |~p3|2 −
√
m2

4 + |~p3|2
]

(2.197)

= −1

2

 1√
m2

3 + |~p3|2
+

1√
m2

4 + |~p3|2

 (2.198)

= −1

2

E3 + E4

E3E4
(2.199)

Hence, utilizing the fact that the Dirac delta vanishes whenever ECOM 6= E3 + E4,

δ(ECOM − E3 − E4) =
2E3E4

ECOM
δ

(
|~p3|2 −P(3, 4)2

)
(2.200)

and, thus,

F =
P(3, 4)

16π2ECOM

∫
dΩ F (p3, p4)

∣∣∣∣
~p3=P(3,4)p̂3=−~p4

(2.201)

where P(3, 4) is defined in Eq. 2.180. This is the desired result.

2.5.4 The Optical Theorem

The S-matrix (defined in Subsection 2.4.4) is a unitary operator on Fock space that encodes
how initial particle configurations evolve into final state particle configurations. Because it
is unitary, S-matrix elements must satisfy

1i,i = in〈i|Ŝ†Ŝ|i〉in =
∑
f

∫
dΠ(f) in〈i|Ŝ†|f〉out out〈f |Ŝ|i〉in (2.202)

=
∑
f

∫
dΠ(f) out〈f |Ŝ|i〉∗in out〈f |Ŝ|i〉in (2.203)

where we have inserted the Fock space resolution of identity and embedded the necessary
state normalization weights into dΠ(f). We would like to recast this constraint in terms of
the corresponding matrix elements Mi→f . To do so, suppose pi = pi, and note

out〈f |Ŝ|i〉∗in out〈f |Ŝ|i〉in =

[
1i,f − i(2π)4δ4(pi − pf )M∗

i→f

]
(2.204)[

1f,i + i(2π)4δ4(pf − pi)Mi→f

]
(2.205)

= 1i,f1f,i + i(2π)4δ4(pf − pi)
[
Mi→f1i,f −M

∗
i→f1i,f

]
(2.206)

+

[
(2π)4δ4(pi − pf )

]2

M∗
i→fMi→f (2.207)



The squared Dirac delta in the final term can be understood by considering a finite volume
universe wherein the Dirac delta is replaced with a Kronecker delta; however, we simply use
this expression as written in the RHS of Eq. (2.203), and eliminate one Dirac delta from the
pair via

∑
f

∫
dΠ(f). (If we had not assumed pi = pi before now, the Dirac delta pair would

have enforced their equality for this term.) In entirety, this substitution yields

−i
[
Mi→i −M

∗
i→i

]
=
∑
f

∫
dΠ(f) (2π)4δ4(pi − pf )M∗

i→fMi→f (2.208)

In particular, if i = i (and not just pi = pi as previously assumed), then

2I[Mi→i] =
∑
f

∫
dΠ(f) (2π)4δ4(pi − pf )|Mi→f |2 (2.209)

where I denotes the imaginary part of its argument (R similarly denotes a real part). Eq.
(2.209) is the optical theorem.

We are interested in applying the optical theorem to 2-to-2 scattering processes in the
COM frame. To facilitate this application, first divide the sum over processes on the RHS
of Eq. (2.209) into two groups: n-to-two scattering (f = f2) processes, and the rest. This
yields two sums∑

f2

∫
dΠ(f2) (2π)4δ4(pf2 − pi)|Mi→f2 |

2 +
∑
f 6=f2

∫
dΠ(f) (2π)4δ4(pi − pf )|Mi→f |2︸ ︷︷ ︸

≡Cf 6=f2≥0

(2.210)

If we assume our external states have well-defined 4-momentum quantum numbers, then
(aside from potential sums and integrals over additional quantum numbers) the first term
contains an integral precisely of the form we simplified in the previous subsection. Therefore,
we can rewrite it as∫

Π(f2) (2π)4δ4(pi − p3 − p4)f(θ, φ) =
P(3, 4)

16π2Ei

∫
dΠ(f∗2 )

∫
dΩ f(θ, φ) (2.211)

where dΠ(f∗2 ) includes sums or integrals over any other relevant quantum numbers beyond
4-momenta. Substituting this into Eq. (2.209), the optical theorem now yields

2I[Mi→i] =
∑
f2

P(3, 4)

16π2Ei

∫
dΩ |Mi→f2|

2 + Cf 6=f2 (2.212)

We will further reduce this in Section 2.7 with the help of the partial wave amplitude de-
composition. However, before we define the partial wave decomposition of a matrix element,
we first recount the rotational machinery, notation, and conventions of quantum mechanics
which the decomposition relies on.



2.6 Angular Momentum

As remarked in Subsection 2.3.2, angular momentum operators ~J generate representations
of the Lie group SU(2) despite being associated with representations of SO(3) prior to
quantum promotion. This section reviews the derivation of all irreducible finite-dimensional
unitary representations of SU(2), the combination of SU(2) representations via the Clebsh-
Gordan machinery, and the Wigner D matrix. Because this topic is standard in quantum
mechanics texts, we outline results for the sake of reference (and establishing convention)
rather than pedagogy.

2.6.1 Finite-Dimensional Angular Momentum Representations

The angular momentum operators satisfy the SU(2) commutation relations

[Ji, Jj ] = iεijkJk =⇒ ~J × ~J = i ~J (2.213)

which we obtain from the 4-vector equivalent Eq. (2.40) by replacing Ji 7→ −iJi according to
the procedure described in Subsection 2.3.1. As before, every angular momentum operator
commute with the total angular momentum operator ~J 2, which is the only Casimir operator
of SU(2): for example,

[Jz, ~J
2] =

3∑
j=1

[Jz, Jj ]Jj + Jj [Jz, Jj ] (2.214)

= [Jz, Jx]Jx + [Jz, Jy]Jy + Jx[Jz, Jx] + Jy[Jz, Jy] (2.215)

= iJyJx − iJxJy + iJxJy − iJyJx (2.216)

= 0 (2.217)

which, by cyclic symmetry, means

[ ~J, ~J 2] = ~0 (2.218)

As is standard, we choose our maximally-commuting set of observables in SU(2) to be

{J 2, ~Jz}, such that our kets satisfy

~J 2|j,m〉 = cj |j,m〉 Jz|j,m〉 = m|j,m〉 (2.219)

for a soon-to-be-determined real number cj . We also choose to normalize these states such
that

〈j,m|j′,m′〉 = δjj′δmm′ (2.220)

It is in this basis that we begin the process of deriving all irreducible finite-dimensional
representations. Just as we were able to relate kets with different 4-momentum on the same
mass hyperboloid using Lorentz transformations, we can relate different eigenstates of Jz
having the same eigenvalue of ~J 2 via the ladder operators

J± = Jx ± iJy (2.221)



The ladder operators cannot change the eigenvalue of ~J 2 because ~J 2 commutes with every

angular momentum operator and thus J± as well. Note that J
†
± = J∓. Also note that

J±J∓ = (Jx ± iJy)(Jx ∓ iJy) = J2
x + J2

y ∓ i[Jx, Jy] = ~J 2 − J2
z ∓ Jz (2.222)

such that

~J 2 = J±J∓ + J2
z ± Jz (2.223)

and

[Jz, J±] = ±J± [J+, J−] = 2Jz (2.224)

These allow us to confirms that the ladder operators do in fact change the eigenvalue of Jz
in a well-defined way:

JzJ±|jm〉 =

[
J±Jz + [Jz, J±]

]
|j,m〉 (2.225)

=

[
J±Jz ± J±

]
|j,m〉 (2.226)

= (m± 1)J±|j,m〉 (2.227)

or, in other words,

J±|j,m〉 ∝ |j,m± 1〉 (2.228)

up to some overall phase and normalization. Therefore, by repeatedly applying instances of
J+ and J− to a ket |m〉, we can seemingly construct a ket |m+ n〉 with Jz eigenvalue m+n
for any integer n. However, we desire a finite-dimensional representation, so there must exist
some real number mmax ≡ j ≡ m+ n such that its eigenvalue cannot be raised any further,
e.g. J+|j, j〉 = 0. For this state,

~J 2|j, j〉 =

[
J−J+ + J2

z + Jz

]
|j, j〉 = j(j + 1)|j, j〉 (2.229)

Thus, for this maximal Jz state with Jz eigenvalue j, it has definite ~J 2 eigenvalue j(j + 1).

Because [Jz, ~J
2] = 0, all Jz eigenkets that are related to each other by ladder operators have

the same ~J 2 eigenvalue. Hence, the earlier cj equals j(j + 1), such that

Jz|j,m〉 = m|j,m〉 ~J 2|j,m〉 = j(j + 1)|j,m〉 (2.230)

By combining JzJ±|j,m〉 = (m± 1)J±|j,m〉 from Eq. (2.227) and

〈jm|J†±J±|j,m〉 = 〈jm|J∓J±|j,m〉 (2.231)

= 〈jm|
[
~J 2 − J2

z ± Jz
]
|j,m〉 (2.232)

=
[
j(j + 1)−m2 ±m

]
δjj′δmm′ (2.233)



we find, noting j(j+ 1)−m2±m = (j∓m)(j±m+ 1) as to rewrite the denominator factor
into a standard form,

|j,m± 1〉 =
J±√

(j ∓m)(j ±m+ 1)
|j,m〉 (2.234)

where an undetermined phase has been set to 1 via the Condon-Shortley phase convention.
Note that the demand for a finite dimensional representation works on both extremes

of the Jz eigenvalue spectrum: instead of demanding J+|j,m〉 vanish for some value of
m = j ≡ mmax (i.e. the Jz eigenvalue can be raised no further), we can seek the value
m = mmin such that J−|j,m〉 vanishes (i.e. the Jz eigenvalue can be lowered no further).
This for this value, we find

j(j + 1)|j,mmin〉 = ~J 2|j,mmin〉 =

[
J+J− + J2

z − Jz
]
|j,mmin〉 = mmin(mmin − 1)|j,mmin〉

(2.235)

which implies mmin must equal either −j or j+ 1. By definition mmin cannot exceed mmax,
so it must be the case that mmin = −j. Finally, because the ladder operators only change Jz
eigenvalues by integer amounts, the range of the spectrum j− (−j) = 2j must be an integer
as well, and thus j must be a half-integer. With this, our construction of the representation
is complete.

To summarize: there exists a (2j + 1)-dimensional representation of SU(2) for every

nonnegative half-integer j composed of kets |jm〉 that satisfy ~J 2|jm〉 = j(j + 1)|jm〉 and
Jz|jm〉 = m|jm〉, where the integer m ranges from −j to j. We choose our normalizations
and phases for these states as follows:

〈jm|j′m′〉 = δjj′ δmm′ (2.236)

such that

1 =
+∞∑
j=0

+j∑
m=−j

|j,m〉〈j,m| (2.237)

and

|j,m± 1〉 =
J±√

(j ∓m)(j ±m+ 1)
|j,m〉 (2.238)

where J± = Jx ± iJy.
For a spin-j massless particle, a similar construction will be useful for describing their

helicity eigenstates, which have two possible values: λ = ±j. However, because massless
particles lack longitudinal helicity modes, we generally cannot relate the λ = +j and λ = −j
helicity states via the ladder operators. Instead, we relate them via the reflection operator

Y ≡ U [Ry(π)]U [P ] (2.239)



where U [P ] is the quantum equivalent of the parity operator P [23]. Because the angular mo-
mentum generators commute with the parity operator ([J i, P ] = 0), the angular momentum
eigenstates are at most changed by a phase

U [P ]|j,m〉 ∝ |j,m〉 (2.240)

whereas, from the angular momentum commutation relations and exisiting definitions,

U [Ry(π)]|j,m〉 = e−iπJy |j,m〉 = (−1)j−m|j,−m〉 (2.241)

We choose these phases such that

Y |j,m〉 = η |j,−m〉 (2.242)

for an undetermined phase η called the parity factor of the corresponding particle species.
Note that when acted on a 4-momentum p, the equivalent 4-vector representation of Y yields
Y µνp

ν = Ry(π)µν (E,−~p)ν = (E, px,−py, pz), such that Y leaves (for example) pz invariant.

2.6.2 Adding Angular Momentum Representations

Angular momentum eigenstates can be combined via direct product in the usual way to form
a state |j1,m1, j2,m2〉 defined as

|j1,m1, j2,m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉 (2.243)

with eigenvalue content

~J 2
1 |j1,m1, j2,m2〉 = j1(j1 + 1) |j1,m1, j2,m2〉 (2.244)

(J1)z |j1,m1, j2,m2〉 = m1 |j1,m1, j2,m2〉 (2.245)

~J 2
2 |j1,m1, j2,m2〉 = j2(j2 + 1) |j1,m1, j2,m2〉 (2.246)

(J2)z |j1,m1, j2,m2〉 = m2 |j1,m1, j2,m2〉 (2.247)

However, there is another basis for these two-particle states which is sometimes more useful.
Define the 2-particle total angular momentum operator as

~J = ~J1 ⊗ 12 + 11 ⊗ ~J2 (2.248)

wherein 11 and 12 are the identity operators on the first and second particle Hilbert spaces
respectively. Usually the identity operators are understood from context, and we simply
write ~J = ~J1 + ~J2. Because [( ~J1)i, ( ~J2)j ] = 0,

[J i, Jj ] = [(J1)i, (J1)j ] + [(J2)i, (J2)j ] = εijk

[
(J1)k + (J2)k

]
= εijkJ

k (2.249)

such that ~J acts like the usual total angular momentum operator. Furthermore, [ ~J 2, ~J 2
1 ] =

[ ~J 2, ~J 2
2 ] = 0, and so we can choose { ~J 2

1 ,
~J 2
2 ,

~J 2, Jz} as a maximally-commuting set of



observables for a basis of states |j1, j2, J,M〉 with eigenvalue content

~J 2
1 |j1, j2, J,M〉 = j1(j1 + 1) |j1, j2, J,M〉 (2.250)

~J 2
2 |j1, j2, J,M〉 = j2(j2 + 1) |j1, j2, J,M〉 (2.251)

~J 2 |j1, j2, J,M〉 = J(J + 1) |j1, j2, J,M〉 (2.252)

~J 2
z |j1, j2, J,M〉 = M |j1, j2, J,M〉 (2.253)

Given eigenvalues j1 and j2, the ~J 2 eigenvalue only exists for J ∈ {|j1 − j2|, . . . , j1 + j2}.
We can convert between the representations using

|j1, j2, J,M〉 =

+j1∑
m1=−j1

+j2∑
m2=−j2

|j1,m1, j2,m2〉〈j1,m1, j2,m2|j1, j2, J,M〉 (2.254)

where 〈j1,m1, j2,m2|j1, j2, J,M〉 is called a Clebsch-Gordan (CG) coefficient. People do not
typically calculate Clebsch-Gordan coefficients themselves, instead using existing resources
[9]. The particular CG coefficients we require at present are used to combine two j1 = j2 = 1
representations into a J = 2 representation. Explicitly, we obtain

|2,±2〉 = |1,±1〉 ⊗ |1,±1〉

|2,±1〉 =
1√
2

[
|1,±1〉 ⊗ |1, 0〉+ |1, 0〉 ⊗ |1,±1〉 (2.255)

|2, 0〉 =
1√
6

[
|1,±1〉 ⊗ |1,∓1〉+ |1,∓1〉 ⊗ |1,±1〉+ 2 |1, 0〉 ⊗ |1, 0〉

where we suppress the j1 = j2 = 1 labels of the |j1, j2, J,M〉 kets on the LHS.

2.6.3 Wigner D-Matrix

The quantum equivalent of rotations are unitary operators. In particular, the generic rotation
expressed in terms of Euler angles becomes

U [R(φ, θ, ψ)] ≡ U [Rz(φ)]U [Ry(θ)]U [Rz(ψ)] (2.256)

where

U [Ri(α)] = Exp[−iαJi] (2.257)

for i ∈ {x, y, z}, and ~J are the angular momentum operators. We previously defined a
restricted version of the Euler angle decomposition U [R(p̂)] = U [R(φ, θ)] = U [R(φ, θ,−φ)]
which is sufficient for mapping a 3-momentum |~p|ẑ to a 3-momentum ~p. The inverse of
U [R(φ, θ, ψ)] is Ũ [R(φ, θ, ψ)] = U [R(−ψ,−θ,−φ)].

Keeping in mind that the rotation operator (being a function of the angular momentum

operators alone) cannot influence the eigenvalue of ~J 2, the Wigner D-matrix Djmf ,mi is

defined as follows:

Djimf ,mi(φ, θ, ψ) δjf ,ji ≡ 〈jf ,mf |U [R(φ, θ, ψ)]|ji,mi〉 (2.258)



Note the Kronecker delta δjf ,ji on the LHS. Because the Euler angles provide a natural

coordinate system for a symmetric top, the Wigner D-matrix is sometimes referred to as the
wavefunction of a symmetric top. The z-axis rotations in the Euler angle rotation operator
Eq. (2.256) can be simplified because Jz|j,m〉 = m|j,m〉, and doing so allows us to define

the Wigner (small) d-matrix d
j
mf ,mi

in terms of the Wigner D-matrix:

Djimf ,mi(φ, θ, ψ) δjf ,ji = e
−i(mfφ+miψ)〈jf ,mf |U [Ry(θ)]|ji,mi〉 (2.259)

≡ e
−i(mfφ+miψ)

d
ji
mf ,mi

(θ) (2.260)

In particular, in terms of the restricted Euler angle decomposition (for which ψ = −φ in our
convention),

Djmf ,mi(φ, θ) = 〈j,mf |U [R(φ, θ, ψ)]|j,mi〉 = e
i(mf−mi)φdjmf ,mi(θ) (2.261)

where we have set j = ji = jf . The Wigner D-matrix satisfies several convenient properties.
For example, if θ = 0, then U [R(φ, θ)] = 1, and

Djmfmi(φ, 0) = δmf ,mi (2.262)

Furthermore, the restricted form has a convenient orthogonality relation:∫
dΩ Dj1∗m1λ

(p̂)Dj2∗m2λ
(p̂) =

4π

2j + 1
δj1,j2 δm1,m2 (2.263)

The Wigner D-matrix is an important element of relativistic scattering calculations involving
helicity eigenstates, which we are now prepared to address.

2.7 Helicity

2.7.1 Single-Particle States

In Subsection 2.3.4, we refined our focus to eigenstates of the Hamiltonian H with definite
mass M and spin s, and thereby defined the helicity operator Λ as

Λ ≡
~J · ~P√

E2 −M2
(2.264)

on those states. As demonstrated then, Λ commutes with P i, ~P 2, J i, ~J 2, and P 2. This
yields (among others) two maximally-commuting sets of observable operators, both of which
involve the helicity operator:

• Option 1: Pµ, Λ

• Option 2: H, ~J 2, Jz, Λ



in addition to the P 2 and the internal spin/helicity, the Poincaré Casimir operators. The first
option will describe our external one-particle states. However, the second option allows us
utilize symmetries of the S-matrix in order to derive the partial wave unitarity constraints.
This section investigates the relationship between these two options.

Suppose we utilize Option 1, so that our one-particle states |p, λ〉 satisfy

H |p, λ〉 = E |p, λ〉 ~P |p, λ〉 = ~p |p, λ〉 Λ |p, λ〉 = λ |p, λ〉 (2.265)

and are normalized according to

〈p, λ|p′, λ′〉 = (2π)3 (2E~p) δ
3(~p− ~p ′) δλ,λ′ (2.266)

The collection of helicity eigenstates having 3-momentum ~p in the +ẑ direction, i.e. 4-
momentum pµ = (E, 0, 0,

√
E2 −M2), are automatically also Jz eigenstates:

Jz|p′, λ〉 = Λ|p′, λ〉 = λ|p′, λ〉 (2.267)

This feature allows us to derive helicity eigenstates from Jz eigenstates (and is a large part
of why Section 2.6 is included in this dissertation). In doing so, we also require several other
features of the helicity operator:

• Rotations Preserve Helicity: Because [Λ, ~J ] = 0, the helicity eigenvalue of a 4-
momentum eigenstate is unchanged by rotations.

Explicitly, given a generic rotation R(α), the 4-momentum eigenvalue will transform
in the usual way, but we might expect mixing of helicity eigenvalues:

U [R(α)]|p, λ〉 = e−i~α·
~J |p, λ〉 =

∑
λ

cλ|R(α)p, λ〉 (2.268)

where cλ are complex coefficients. However,

ΛU [R(α)]|p, λ〉 = Λe−i~α·
~J |p, λ〉 = e−i~α·

~JΛ|p, λ〉 = U [R(α)]Λ|p, λ〉 = λU [R(α)]|p, λ〉
(2.269)

Therefore,

U [R(α)] |p, λ〉 ∝ |R(α)p, λ〉 (2.270)

up to a phase, as desired.

• Certain Boosts Preserve Helicity: Because [J i, Ki] = 0, the helicity eigenvalue
of a 4-momentum eigenstate is unchanged by any boost along the direction of motion
that preserves the 3-momentum direction.

Consider a ket |p, λ〉 for which p = (E, 0, 0,
√
E2 −M2). Under a generic boost Bz(β)

along the z-axis, the 4-momentum eigenvalue will be changed in the usual way, but the
helicity eigenvalue might be changed:

U [Bz(β)]|p, λ〉 = e−iβKz |p, λ〉 =
∑
λ

cλ|Bz(β)p, λ〉 (2.271)



where cλ are complex coefficients. Additionally suppose the boost Bz(β) preserves the

3-momentum direction of p (so if p′ = Bz(β), then p̂′ = ~p = ẑ), such that

Jz|p, λ〉 = Λ|p, λ〉 = λ|p, λ〉 and Jz|p′, λ〉 = Λ|p′, λ〉 = λ|p′, λ〉 (2.272)

Consequently, for this restricted set of kets and boosts,

λU [Bz(β)] |p, λ〉 = U [Bz(β)] Λ |p, λ〉 = U [Bz(β)] Jz |p, λ〉 = Jz U [Bz(β)] |p, λ〉 (2.273)

and

Jz U [Bz(β)] |p, λ〉 =
∑
λ

cλ Jz |Bz(β)p, λ〉 =
∑
λ

cλ Λ |Bz(β)p, λ〉 = ΛU [Bz(β)] |p, λ〉

(2.274)

such that

ΛU [Bz(β)] |p, λ〉 = λU [Bz(β)] |p, λ〉 (2.275)

Therefore, so long as Bz(β) preserves the 3-direction of p,

U [Bz(β)] |p, λ〉 ∝ |Bz(β)p, λ〉 (2.276)

up to a phase, as desired. Note that if |p, λ〉 describes a massless state, then all boosts
along the direction of motion preserve helicity.

The process of using phase conventions to eliminate proportionalities like the ones in Eqs.
(2.270) and (2.276) has been handled on several occasions throughout this chapter. Specif-
ically, Subsection 2.4.1 described the process of relating single-particle 4-momentum eigen-
states on the same Lorentz-invariant hypersurface (i.e. the same mass hyperboloid or light
cone). There we chose a standard 4-momentum kµ per hypersurface with 3-momentum
~k pointing along the +ẑ direction (or ~k = ~0, in the massive case). To obtain any an-
other 4-momentum pµ on the same Lorentz-invariant hypersurface, we boosted kµ along
the z-direction to obtain the desired 3-momentum magnitude |~p| (without flipping the 3-
momentum direction) and then rotated the resultant 4-momentum until its 3-momentum
aimed in the desired direction as well. We now modify the massive and massless versions of
this procedure to include the helicity eigenvalue.

For the massive case, the standard 4-momentum is kµ = (M, 0, 0, 0) = M t̂µ. To obtain
a 4-momentum pµ = E t̂µ +

√
E2 −M2 p̂µ where p̂µ = (0, cφsθ, sφsθ, cθ), we can apply a

boost and then a rotation like so:

p = R(φ, θ)Bz(βk→p)k where βk→p = arccosh(E~p/m) (2.277)

There are other Lorentz transformations that map kµ to pµ (the Lorentz group is six-
dimensional whereas the mass hyperboloid is only three-dimensional), but Eq. (2.277) will
be our canonical Lorentz transformation for taking kµ to pµ. In the quantum equivalent,
we will use |k, λ〉 as our standard eigenket. However, we encounter an obstacle. Because
~k = ~0, the application of the helicity operator Λ to |k, λ〉 is not automatically well-defined:



Λ|k, λ〉 = ( ~J · ~k)|k, λ〉/
√
M2 −M2 = (0/0)|k, λ〉. To patch this, we modify our definition of

|k, λ〉 and assert that kµ should be interpreted as having an infinitesimal 3-momentum in the
+ẑ direction, such that Λ|k, λ〉 = Jz|k, λ〉, thereby avoiding any reference to 3-momentum

at ~k = ~0. With this solved, the quantum equivalent of the RHS of Eq. (2.277) is

U [R(φ, θ)]U [Bz(βk→p)] |k, λ〉 (2.278)

We would like to use this to define single-particle states having definite 4-momentum and
helicity, and thankfully we can: as previously established, the choices of U [Bz(βk→p)] and
U [R(φ, θ)] above preserve the helicity eigenvalue, and thus we can choose our phases such
that

|p, λ〉 ≡ U [R(φ, θ)]U [Bz(βk→p)] |k, λ〉 (2.279)

for any massive single-particle state |p, λ〉. For later convenience, we define the symbol

|pz, λ〉 ≡ U [Bz(βk→p)] |k, λ〉 (2.280)

such that, for example, |p, λ〉 = U [R(φ, θ)]|pz, λ〉. There remains one ambiguity in this
definition, which occurs when applying Eq. (2.279) to a state with 4-momentum −pz ≡
(E~p,−|~p|ẑ). In this case, φ is not uniquely defined and typically does not cancel from the
final result, leading to an ambiguous phase Cπ that we will parameterize like so:

|−pz, λ〉 ≡ Cπ U [R(0, π)] |pz, λ〉 (2.281)

As per usual, setting this phase is a matter of convention. We will use the Jacob-Wick (2nd
particle) convention [24, 23], which is motivated as follows: In the limit that the particle’s
3-momentum vanishes, −pz and +pz both go to the rest frame 4-momentum (m,~0). In this
same limit, the helicity operator acting on a state with 4-momentum ±pz will go to ±Jz.
Therefore, up to a phase, lim|~p|→0 |±pz, λ〉 ∝ |(m,~0),±λ〉. Eq. (2.279) already establishes
an equality in the +pz case; the Jacob-Wick convention chooses Cπ so that equality will also
hold in the −pz case. Because total angular momentum and helicity equal total spin and Jz
in the rest frame, we can use Eq. (2.241) to find

lim
|~p|→0

|−pz, λ〉 = Cπ lim
|~p|→0

U [R(0, π)] |pz, λ〉 (2.282)

= Cπ U [R(0, π)] |(m,~0), λ〉 (2.283)

= Cπ (−1)s−λ |(m,~0),−λ〉 (2.284)

and therefore Cπ = (−1)s−λ, such that

|−pz, λ〉 = (−1)s−λ U [R(0, π)] |pz, λ〉 (2.285)

and this completes the construction of massive single-particle helicity eigenstates. Before
moving to the massless case, we note that it is useful to define a conversion factor ξλ(φ) from
the convention established in Eq. (2.279) to the Jacob-Wick convention in Eq. (2.285):

ξλ(φ)U [R(φ, π)] |pz, λ〉 = |−pz, λ〉 (2.286)



or, equivalently,

(−1)s−λ U [R(φ,−π)]U [R(0, π)] |pz, λ〉 = ξλ(φ) |pz, λ〉 (2.287)

which will depend on the specific representation of the helicity eigenstates.
For the massless case, the same procedure applies in essence, but we no longer have

access to a rest frame, so ~k cannot be made to vanish. Instead, we choose kµ = Ek(t̂µ + ẑµ)
for some value of energy Ek (the specific choice will not matter). Any other light-like 4-
momentum pµ = E(t̂µ + p̂µ) on the same lightcone can then be attained via a boost and
rotation just like in Eq. (2.277), although now βk→p = ln(E~p/E~k). Finally, by going over

to the quantum equivalent, we can choose our phases such that Eq. (2.279) also holds for
any massless eigenstate |p, λ〉. Recall that for non-scalar massless particles the two available
helicity states are related via the reflection operator (Eq. 2.239).

Next consider Option 2, wherein our single-particle states |E, j,m, λ〉 satisfy

H |E, j,m, λ〉 = E |E, j,m, λ〉 ~J 2 |E, j,m, λ〉 = j(j + 1) |E, j,m, λ〉

Jz |E, j,m, λ〉 = m |E, j,m, λ〉 Λ |E, j,m, λ〉 = λ |E, j,m, λ〉 (2.288)

Because P 2 = H2 − ~P 2, each state |E, j,m, λ〉 is also an eigenstate of ~P 2 with eigenvalue
E2 −M2. As a result, these states are sometimes labeled by |~p| =

√
E2 −M2 in place of E

in the literature.
Using properties of the above definitions and properties of the Wigner D matrix, we may

write:

|p, λ〉 =
∑
j,m

√
2j + 1

4π
Djm,λ(φ, θ)|E, j,m, λ〉 (2.289)

This defines the single-particle state |p, λ〉 in terms of the angular momentum eigenstates
|E, j,m, λ〉 [24, 23]. Inverting this yields,

|E, j,m, λ〉 =

√
2j + 1

4π

∫
dΩ D

j∗
mλ(φ, θ)|p, λ〉 (2.290)

As in Subsections 2.4.2 and 2.4.3, we can combine single-particle states to form multi-
particle states. If we follow that procedure, we would define a (distinguishable) two-particle
state as

|p1, λ1〉 ⊗ |p2, λ2〉 (2.291)

where each single-particle state is defined according to Eqs. (2.279) and (when ~p = −|~p|ẑ)
(2.285). However when considering two-particle states in the center-of-momentum frame,
this is not the convention typically adopted.

Instead, it conventional to define the two-particle COM states as

|~p, λ1, λ2〉 ≡
(
U [R(φ, θ)]|(E1,+|~p |ẑ), λ1〉

)
⊗
(
U [R(φ, θ)]|(E2,−|~p |ẑ), λ2〉

)
(2.292)



This is why the phase convention for |−pz, λ〉 chosen in Eq. (2.285) for single-particle states
is typically called the Jacob-Wick 2nd particle convention. We also define the two-particle
total and relative helicity operators as Λtotal = Λ1 +Λ2 and Λ = Λ1−Λ2 respectively, where

Λ1 ± Λ2 =
~J1 · ~P1√
E2

1 −m
2
1

±
~J2 · ~P2√
E2

2 −m
2
2

COM
=

frame
( ~J1 ∓ ~J2) · p̂ (2.293)

and the last equality in each line assumes it acts on a state with definite 3-momentum ~p.
Note that the relative helicity is related to the two-particle angular momentum operator
~J = ~J1 + ~J2.

The single-particle argument that allowed |p, λ〉 to be rewritten as a superposition of
|E, j,m, λ〉 carries through essentially unchanged for |~p, λ1, λ2〉 in terms of the relative helicity
λ = λ1 − λ2, such that we may write the state |~p, λ1, λ2〉 in terms of two-particle angular
momentum eigenstates as

|~p, λ1, λ2〉 =
∑
J,M

√
2j + 1

4π
DJM,λ1−λ2

(φ, θ) |
√
s, J,M, λ1, λ2〉 (2.294)

Because they occur regularly in 2-to-2 scattering calculations, the relative helicities of the
initial and final particle pairs are given special symbols: λi ≡ λ1 − λ2 and λf ≡ λ3 − λ4.

2.7.2 Partial Wave Amplitudes

Because the S-matrix commutes with the total angular momentum operator ~J 2, it can be
put into block-diagonal form wherein each block has a definite total angular momentum.
This implies a similar decomposition of the T -matrix,

〈
√
s, J,M, λ3, λ4|T̂ |

√
s
′
, J ′,M ′, λ1, λ2〉 ≡ δJ ′,J δM ′,M 〈λ3, λ4| T̂J (s) |λ1, λ2〉 (2.295)

such that, via Eq. (2.294) and because Djm1,m2
(φ, 0) = δm1,m2 ,

Mi→f = 〈~p, λ3, λ4|T̂ |λ1, λ2〉 (2.296)

=
∑

J,M,J ′,M ′

√
2J + 1

4π

√
2J ′ + 1

4π
DJ∗M,λf

(φ, θ)DJ
′

M ′,λi
(0, 0)

× 〈
√
s, J,M, λ3, λ4| T̂ (s) |

√
s
′
, J ′,M ′, λ1, λ2〉 (2.297)

=
∑
J

(
2J + 1

4π

)
DJ∗λi,λf (φ, θ) 〈λ3, λ4| T̂J (s) |λ1, λ2〉 (2.298)

where λi = λ1 − λ2 and λf = λ3 − λ4. The partial wave amplitude is defined as

aJ (s) ≡ 1

32π2
〈λ3, λ4| T̂J (s) |λ1, λ2〉 (2.299)



In terms of the partial wave amplitudes, Eq. (2.298) becomes

M(s, θ, φ) =
∑
J

8π(2J + 1) aJ (s)DJ∗
λiλf

(θ, φ) (2.300)

In the next subsection, we utilize this decomposition of the 2-to-2 scattering matrix element
into partial wave amplitudes in order to derive the elastic and inelastic partial wave unitarity
constraints from the optical theorem.

2.7.3 Elastic, Inelastic Unitarity Constraints

Recall Eq. (2.212), wherein we reduced the optical theorem to

2I[Mi→i] =
∑
f2

P(3, 4)

16π2Ei

∫
dΩ |Mi→f2|

2 + Cf 6=f2 (2.301)

Using Eq. (2.300), decompose the matrix element on the RHS of Eq. (2.301), such that∫
dΩ |Mi→f2 |

2 =M∗i→f2Mi→f2 (2.302)

=

∫
dΩ

[∑
J ′

8π(2J ′ + 1) aJ
′∗
i→f2

(s)DJ ′
λiλf

(θ, φ)

]

·
[∑

J

8π(2J + 1) aJi→f2
(s)DJ∗

λiλf
(θ, φ)

]
(2.303)

=
∑
J

256π3(2J + 1)|aJi→f2(s)|2 (2.304)

and overall the RHS of Eq. (2.301) becomes∑
f2

∑
J

16π(2J + 1)
P(3, 4)

Ei
|aJi→f2(s)|2 + Ci 6=f (2.305)

In the same frame, matrix element on the LHS of Eq. (2.301) equals

Mi→i =
∑
J

8π(2J + 1) aJi→i(s)D
J∗
λiλi

(0, 0) =
∑
J

8π(2J + 1) aJi→i(s) (2.306)

such that the LHS equals, overall,

2I[Mi→i] =
∑
J

16π(2J + 1)I[aJi→i(s)] (2.307)

and all together Eq. (2.301) implies∑
J

16π(2J + 1)I[aJi→i(s)] =
∑
f2

∑
J

16π(2J + 1)
P(3, 4)

Ei
|aJi→f2(s)|2 + Ci 6=f (2.308)



or, focusing on the 2-to-2 scattering and dropping the nonnegative constant Ci6=f ,

∑
J

(2J + 1)I[aJi→i(s)] >
∑
f2

∑
J

(2J + 1)
P(3, 4)

Ei
|aJi→f2(s)|2 (2.309)

We can isolate individual angular momentum components by employing superpositions of
helicity eigenstates that reconstruct the angular momentum eigenstates, such that

I[aJi→i(s)] >
∑
f2

P(3, 4)

Ei
|aJi→f2(s)|2 (2.310)

The RHS of this inequality can be further reduced by dividing the expression into elastic
(i = f2, aside from the values of (θ, φ) describing the pair) and inelastic (i 6= f2) pieces,

I[aJi→i(s)] >
P(1, 2)

Ei
|aJi→i(s)|

2 +
∑
f2 6=i

P(3, 4)

Ei
|aJi→f2(s)|2 (2.311)

By definition, |aJi→i(s)|
2 = R[aJi→i(s)]

2 + I[aJi→i(s)]
2, so the previous inequality can also be

expressed as, after multiplying both sides by P(1, 2)/Ei and rearranging,

1−
∑
f2 6=i

β12 β34 |aJi→f2(s)|2 >
[
β12 R[aJi→i(s)]

]2

+

[
β12 I[aJi→i(s)]− 1

]2

(2.312)

where

βjk ≡ 2
P(j, k)

Ei
=

1

s

√[
s− (mj −mk)2

] [
s− (mj +mk)2

]
(2.313)

because Ei = E1 + E2 =
√
s. Thus, the values of β12a

J
i→i(s) are bounded by a circle in

the complex plane centered at i and with radius at most equal to 1. Therefore, the real and
imaginary parts of the elastic amplitudes must satisfy∣∣∣∣β12 R[aJi→i]

∣∣∣∣ ≤ 1 0 ≤ β12 I[aJi→i] ≤ 2 (2.314)

Meanwhile, the RHS of Eq. (2.312) must be nonnegative, so the net sum of squares of
inelastic amplitudes are bounded from above∑

f2 6=i
β12β34|aJi→f2(s)|2 < 1 (2.315)

These are the inequalities we sought to derive [25]. For most of the processes in which
we’re interested, M grows like O(sk) at large s for k ≥ 1, such that (via Eq. (2.300))
aJ (s) ∼ O(sk) as well. If these inequalities are satisfied for such a partial wave amplitude at
some value of s, then there necessarily exists an energy scale Λstrong for which all s ≥ Λstrong



contradict these inequalities, and thus contradict the optical theorem, and thus contradict
unitarity of the S-matrix.

An additional factor of 1/2 should be included in βjk if the particles associated with it
are identical, per the discussion at the end of Subsection 2.4.3. For an elastic process (i = f)
wherein the initial (and thus final) particles are identical,

β11 =
1

2

√
1− 4m2

1
s (2.316)

such that the relevant partial wave unitarity constraints are√
1− smin

s

∣∣∣R[aJi→i]
∣∣∣ ≤ 2 0 ≤

√
1− smin

s

∣∣∣R[aJi→i]
∣∣∣ ≤ 4 (2.317)

where smin = 4m2
1.

2.8 Polarization Tensors and Lagrangians

2.8.1 Derivation of the Spin-1 and Spin-2 Polarizations

We mentioned in Subsection 2.2.3 that the 4-vector representation of the Lorentz group
embeds spin-0 and spin-1 representations. This subsection now derives the spin-1 represen-
tation, and then uses Clebsch-Gordan coefficients (refer to Subsection 2.6.2) to combine two
copies of the spin-1 representation to form a spin-2 representation. The end product of this
procedure are the spin-1 and spin-2 polarization structures, which accompany external states
when calculating matrix elements.

To obtain these structures, we must generalize the 4-vector representation described in
Section 2.2: we promote the 4-vector generators to quantum generators J i = i(J i)4-vector

and Ki = i(Ki)4-vector so that a generic rotation and boost equal R(~α) = Exp[−i~α · ~J ] with
generators

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 +i 0

 J2 =


0 0 0 0
0 0 0 +i
0 0 0 0
0 −i 0 0

 J3 =


0 0 0 0
0 0 −i 0
0 +i 0 0
0 0 0 0


(2.318)

and

K1 =


0 +i 0 0

+i 0 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 +i 0
0 0 0 0

+i 0 0 0
0 0 0 0

 K3 =


0 0 0 +i
0 0 0 0
0 0 0 0

+i 0 0 0


(2.319)

with commutators [J i, Jj ] = +iεijkJ
k, [J i, Kj ] = +iεijkK

k, and [Ki, Kj ] = −iεijkJk. We
do not include a U label on the rotation and boost transformations in this representation



because componentwise they are exactly the same as before the quantum promotion, and
will act on quantum states having 4-vector indices. As such, our kets may be written as εµ

and transform under a Lorentz transformation Λ according to Λµνε
ν . That being said, by

going over to the quantum equivalent we now work in the space of complex 4-vectors.
Suppose the complex 4-vectors εµ encode single-particle states with definite 4-momentum

p and helicity λ, i.e. there exists a 4-vector basis ε
µ
s,λ(p) (analogous to the kets |pλ〉 defined in

Section 2.4 with the internal spin s explicitly indicated). We can construct these states explic-
itly by using the techniques explained in Subsection 2.7.1, wherein a standard 4-momentum
kµ per Lorentz-invariant hypersurface is used to define any other state having 4-momentum
pµ on that same hypersurface.

For a single-particle state with nonzero mass m, consider ε
µ
s,λ(p) in the rest frame (cor-

responding to the standard 4-momentum kµ = (m,~0)). In this frame, the helicity operator

Λ = ( ~J · ~P )/
√
E2 −m2 reduces to Jz = J3, so we can find the helicity eigenstates ε

µ
λ(k) by

finding Jz eigenstates. Note that the total angular momentum operator in this representation
equals

~J 2 ≡ ~J · ~J =


0 0 0 0
0 +2 0 0
0 0 +2 0
0 0 0 +2

 (2.320)

Because ~J 2 has eigenvalues of the form j(j + 1) in general, we recognize a j = 0 (with

m = 0) and a j = 1 representation encoded in ~J 2. Thankfully, ~J 2 is block-diagonal as-is,
so we can directly construct projection operators P0(k) and P1(k) that (when acted on a
generic complex 4-vector in the rest frame) will isolate the j = 0 and j = 1 representations
therein:

[P0(k)µν ] =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 [P1(k)µν ] =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.321)

or, in terms of the 4-momentum kµ and the Minkowski metric ηµν ,

[P0(k)µν ] =
kµkν
m2

[P1(k)µν ] = ηµν −
kµkν
m2

(2.322)

We will use these to obtain the rest frame helicity eigenstates.
For example, to find the j = 0 helicity eigenstate in the rest frame, we act the spin-

0 projection operator P0(k) on a generic complex 4-vector εµ(k) in the rest frame and
then solve for eigenstates of Λ = Jz, e.g. we solve Jz [P0(k) ε(k)] = λ [P0(k) ε(k)] for the
available helicities. When j = 0, the only helicity available is λ = 0. This yields ε

µ
0,0 ∝ kµ/m

up to a phase. However, this representation has little use in actual quantum field theory
calculations because there exist a more succinct Lorentz covariant spin-0 representation: the
Lorentz scalar ε0(k) = 1. Thus, we consider the j = 0 part of this representation no further,
and simply write ε

µ
λ(p) instead of ε

µ
1,λ(p) as is conventional.



The process for finding the j = 1 helicity eigenstates in the rest frame is essentially
identical to the j = 0 case: we aim to solve Jz [P1(k) ε(k)] = λ [P1(k) ε(k)] for helicities
λ ∈ {−1, 0,+1}. For example, when λ = 0,

0
0
0
0

 = λ


0

ε1(k)

ε2(k)

ε3(k)

 = λ [(P1(k) ε(k))µ] = [(JzP1(k) ε(k))µ] =


0

−iε2(k)

iε1(k)
0

 (2.323)

such that ε1(k) = ε2(k) = 0, and

[ε
µ
0 (k)] = [(P1(k) ε(k))µ] with helicity λ = 0 ∝


0
0
0

ε3(k)

 (2.324)

up to a to-be-determined normalization and phase. Note:

ε0(k) · ε0(k) = −ε3(k)2 (2.325)

It is conventional to set this magnitude to −1 by choosing the aforementioned phase such
that ε

µ
0 (k) = (0, 0, 0, 1).

The λ = ±1 solutions can subsequently be obtained via the ladder operators

J± = Jx ± iJy =


0 0 0 0
0 0 0 ∓1
0 0 0 −i
0 ±1 +i 0

 (2.326)

and Eq. (2.234), such that (noting
√

(j ∓m)(j ±m+ 1)→
√
j(j + 1) =

√
2 in this case)

[ε±1(k)µ] =
1√
2


0 0 0 0
0 0 0 ∓1
0 0 0 −i
0 ±1 +i 0




0
0
0
1

 =
1√
2


0
∓1
−i
0

 (2.327)

The polarization vectors {εµ−1(k), ε
µ
0 (k), ε

µ
+1(k)} form the desired j = 1 representation in the

rest frame. Explicit calculation reveals they are orthonormal and transverse,

ελ(k)∗ · ελ′(k) = −δλ,λ′ k · ελ(k) = 0 (2.328)

and as a basis for the j = 1 representation they naturally resolve the projection operator
P1(k), which is the identity on the j = 1 subspace:

[P1(k)µν ] = −
+1∑

λ=−1

ε
µ
λ(k)∗ενλ(k) (2.329)



This completes the derivation of the j = 1 representation in the rest frame.
To obtain this representation in all other frames, we apply the standard Lorentz transfor-

mation Λk→p = R(φ, θ)Bz(βk→p) defined in Eq. (2.277) of Section 2.7 to each polarization

vector ε
µ
λ(k), where we define

ε
µ
λ(k) ≡ (Λk→p)

µ
ν
ε
µ
λ(p) (2.330)

Note that the internal spin of a particle corresponds to a Casimir operator of the Lorentz
group, so it is invariant under Λk→p, and the j = 0 and j = 1 representations do not mix.
In the 4-vector representation,

[(Λk→p)
µ
ν
] =


1 0 0 0

0 c2φcθ + s2
φ cφsφ(cθ − 1) cφsθ

0 cφsφ(cθ − 1) c2φ + cθs
2
φ sφsθ

0 −cφsθ −sφsθ cθ

 1

m


E 0 0 ~p
0 1 0 0
0 0 1 0
~p 0 0 E

 (2.331)

such that

[ε
µ
±1(p)] = ±e

±iφ
√

2


0

−cθcφ ± isφ
−cθsφ ∓ icφ

sθ

 [ε
µ
0 (p)] =

1

m


|~p|

E~p cφsθ
E~p sφsθ
E~p cθ

 =
1

m

(
|~p|
E~p p̂

)
(2.332)

where p̂ = ẑ when ~p = ~0, per the helicity eigenstate convention established in Subsection
2.7.1. Note that the helicity-zero polarization tensor grows like O(E), whereas the others do
not depend on energy at all. Because of Lorentz covariance, the spin-1 polarization vectors
ε
µ
λ(p) retain their rest frame properties (orthogonal, transverse),

ελ(p)∗ · ελ′(p) = −δλ,λ′ p · ελ(p) = 0 (2.333)

and the j = 1 projection operator becomes

[P1(k)µν ] = −
+1∑

λ=−1

ε
µ
λ(k)∗ενλ(k) = ηµν − pµpν

m2
(2.334)

In this representation, the reflection operator equals Y = Diag(1, 1,−1, 1), such that{
Y µν ε

ν
0(pz) = ε

µ
0 (pz)

Y µν ε
ν
±1(pz) = −εµ∓1(pz)

=⇒ Y µν ε
ν
λ(pz) = −(−1)1−λεµ−λ(pz) (2.335)

This completes the derivation of the massive spin-1 polarization vectors.
The Jacob-Wick 2nd particle conversion factor ξλ(φ) from Eq. (2.286) can be calculated

directly. First note that,

[R(φ,−π)µνR(0, π)νρ] =


1 0 0 ~p
0 +c2φ −s2φ 0
0 +s2φ +c2φ 0
~p 0 0 1

 (2.336)



such that [
(−1)1−λR(φ,−π)µν R(0, π)νρ

]
ε
ρ
λ(pz) = (−1)1−λ e−2λiφ ε

ρ
λ(pz) (2.337)

and finally ξλ(φ) = (−1)1−λe−2λiφ.
The derivation of the massless spin-1 polarization vectors follows the same trajectory,

but now there is no rest frame and their helicities are restricted to λ = ±1. However, we
already have helicity eigenstates corresponding to λ = ±1 which work in any frame, and
sure enough the polarization vectors ε

µ
±1(p) are admissible helicity eigenstates for massless

spin-1 particles.
Onward to the spin-2 helicity eigenstates. As described in Subsection 2.6.2, any two

angular momentum representations can be combined to form a new angular momentum
representation via the Clebsch-Gordan coefficients. Thus, we can combine two copies of
our (massive or massless) spin-1 polarization vectors ε

µ
λ(p) and thereby obtain a Lorentz-

covariant representation of spin-2 particles via polarization tensors ε
µν
λ (p). Explicitly, the

spin-2 polarization tensors equal, using Eq. (2.255),

ε
µν
±2(p) = ε

µ
±1(p) εν±1(p) , (2.338)

ε
µν
±1(p) =

1√
2

[
ε
µ
±1(p) εν0(p) + ε

µ
0 (p) εν±1(p)

]
(2.339)

ε
µν
0 =

1√
6

[
ε
µ
+1(p) εν−1(p) + ε

µ
−1(p) εν+1(p) + 2ε

µ
0 (p) εν0(p)

]
, (2.340)

where the massive case has access to all five helicity states (λ = ±2,±1, 0) and the massless
case only has access to two (λ = ±2). Via the properties of the polarization vectors that
compose them, each polarization tensor is traceless, symmetric, and transverse:

ηµνε
µν
λ (p) = 0 ε

µν
λ (p) = ε

νµ
λ (p) pµε

µν
λ (p) = 0 (2.341)

By applying the appropriate generalization of the helicity reflection operator Y µνρσ =
Y µρY

ν
σ, we find

Y µνρσ ε
ρσ
λ (pz) = (−1)2−λεµν−λ(pz) (2.342)

Finally, the spin-2 Jacob-Wick 2nd particle conversion factor can be determined by applying
the spin-1 conversion factor to each spin-1 polarization vector in the definitions of the spin-2
polarization tensor, thereby yielding ξλ(φ) = (−1)2−λe−2λiφ.

2.8.2 Quadratic Lagrangians and Propagators

This chapter has largely focused on the construction of external particle states as 4-momentum
and helicity eigenstates. In order to calculate matrix elements describing scattering processes
between these external states, we must encode those external states into quantum fields and
use those quantum fields to construct Lagrangians. The quadratic terms of a Lagrangian de-
termine the masses and spins of the particles encoded within the fields, whereas higher-order
terms of a Lagrangian determine interactions between various particles.



Perhaps the simplest field and Lagrangian corresponds to a spin-0 massless particle. A
field r̂(x) will encode (real) massless spin-0 particles if our overall Lagrangian possesses the
quadratic terms

L(s=0)
massless ≡

1

2
(∂µr̂)

2 (2.343)

To derive the propagator associated with this Lagrangian, we

• Fourier transform to 4-momentum space, effectively replacing ∂µ with −iPµ, where Pµ
is the 4-momentum carried through the propagator,

• Take the functional derivative with respect to the field twice, and

• Invert the resulting expression, and multiply by −i

Applying this procedure to Eq. (2.345) yields

L(s=0)
massless → −1

2
P 2r̂ 2 → −P 2 → i

P 2
(2.344)

and, thus, we find the (momentum space) massless spin-0 propagator equals

P

=
i

P 2

If we instead desire a (real) massive spin-0 field r̂(x), we can add a mass term−(1/2)M2r̂ 2

to the massless spin-0 Lagrangian:

L(s=0)
massless ≡

1

2
(∂µr̂)

2 − 1

2
M2r̂2 (2.345)

in which case the same procedure instead yields

P

=
i

P 2 −M2

As derived by Fierz and Pauli [20, 26], the canonical massless spin-2 quadratic Lagrangian
is

L(s=2)
massless ≡ (∂ĥ)µ(∂µĥ)− (∂ĥ)2

µ +
1

2
(∂µĥνρ)

2 − 1

2
(∂µĥ)2 (2.346)

Unfortunately, we cannot directly apply the previous procedure to obtain the massless spin-2
propagator because in the course of embedding a massless spin-2 particle (with two degrees of
freedom) into a rank-2 symmetric traceless Lorentz tensor ĥµν (with five degrees of freedom)
so that we could rely on Lorentz covariance, we introduced gauge redundancies. This gauge
freedom makes the differential operator defined in Eq. (2.346) non-invertible. In particular,
the massless spin-2 Lagrangian is unchanged by the following gauge transformation:

ĥµν −→ ĥµν + (∂µεν) + (∂νεµ) (2.347)



for a generic 4-vector field εµ(x). In fact, Eq. (2.346) is the only combination of quadratic-

level kinetic terms for ĥµν that is invariant under this gauge transformation, such that we
could have started by demanding invariance under transformations of the form Eq. (2.347)

and thereby derived L(s=2)
massless. In order to invert Eq. (2.346) and obtain a massless spin-2

propagator, we must somehow break this gauge invariance. This can be done in a multitude
of ways, whether it be by employing a specific gauge condition or adding a gauge-fixing term
to the Lagrangian. A popular gauge choice is the harmonic gauge, which is defined by setting

∂µĥ
(0)
µν = 1

2∂νJĥ
(0)K (2.348)

This isolates a specific gauge orbit, thereby breaking the gauge invariance of the quadratic
Lagrangian Eq. (2.346) and allowing it to be inverted into a propagator. However, this
dissertation does not use harmonic gauge (or any other gauge condition), instead opting to
add a gauge-fixing term Lgf to the massless spin-2 Lagrangian. Specifically, we employ the
de Donder gauge, which has a gauge-fixing term

Lgf ≡ −
(
∂µĥµν −

1

2
∂ν ĥ

)2

(2.349)

Rather than isolate any single gauge orbit, de Donder gauge averages over a continuum of
gauge orbits. This averaging is weighted in favor of the harmonic gauge condition, the bias
of which successfully breaks the troublesome gauge invariance of Eq. (2.346). The resulting
de Donder gauge massless spin-2 propagator equals

µν ρσ

P

=
iB

µν,ρσ
0

P 2

where

B
µν,ρσ
0 ≡ 1

2

[
ηµρηνσ + ηµσηνρ − ηµνηρσ

]
(2.350)

In the same way that we went from massless to massive spin-0 Lagrangian, the massive
spin-2 Lagrangian is obtained from the massless spin-2 Lagrangian (without the gauge-fixing
term) by adding a mass term. As it turns out, there is only one non-kinetic quadratic
combination of the field ĥµν which yields a propagator pole at P 2 = M2 and does not
introduce ghosts [20]. This combination defines the Fierz-Pauli mass terms,

LFP(m, ĥ) ≡ m2
[

1

2
ĥ2 − 1

2
JĥĥK

]
(2.351)

which when added to the massless spin-2 Lagrangian yields the canonical massive spin-2
quadratic Lagrangian:

L(s=2)
massive ≡ L

(s=2)
massless +m2

[
1

2
ĥ2 − 1

2
JĥĥK

]
(2.352)



Because the Fierz-Pauli mass term breaks the gauge invariance of the massless Lagrangian,
all five degrees of freedom in the symmetric traceless field ĥµν can propagate, which is in
agreement with the five helicity states we expect from a massive spin-2 particle. This also

allows us to invert L(s=2)
massive and obtain the massive spin-2 propagator:

µν ρσ

P

=
iBµν,ρσ

P 2 −M2

where

Bµν,ρσ =
1

2

[
B
µρ
B
νσ

+B
µσ
B
νρ − 2

3
B
µν
B
ρσ
]

(2.353)

This is the last piece of four-dimensional quantum field theory information that we require
for calculating the desired scattering amplitudes. In the next chapter, we introduce the nec-
essary information about five-dimensional field theories, including the machinery of general
relativity machinery and the definition of the Randall Sundrum 1 model.



Chapter 3

The 5D RS1 Model

3.1 Chapter Summary

The previous chapter introduced the important definitions and conventions from 4D quan-
tum field theory, including discussions of 2-to-2 scattering, helicity eigenstates, and par-
tial wave unitarity constraints. It also defined the twice-squared bracket notation which is
used often throughout the remainder of this dissertation: given a collection of spin-2 fields
{ĥ(1), ĥ(2), . . . , ĥ(n)}, we define the J· · ·Kαβ and J· · ·K symbols according to

Jĥ(1)ĥ(2) · · · ĥ(n)Kαβ ≡ ĥ
(1)
αµ1

ηµ1µ2 ĥ
(2)
µ1µ2

ηµ2µ3 · · · ĥ(n)
µnβ

(3.1)

Jĥ(1)ĥ(2) · · · ĥ(n)K ≡ Jηαβ ĥ(1)ĥ(2) · · · ĥ(n)Kαβ (3.2)

such that, for example, J1Kαβ = ηαβ and J1K = 4.
This chapter introduces important definitions and conventions from general relativity, as

well as introducing the Randall-Sundrum 1 (RS1) model which is the primary topic of this
dissertation. It also introduces several original results related to the RS1 Lagrangian. This
includes an updated 5D weak field expanded (WFE) RS1 Lagrangian, which we originally
published in Appendix A of [18] using a different form of the Einstein-Hilbert Lagrangian.
We also demonstrate for the first time that all terms in the 5D WFE RS1 Lagrangian which
are proportional to (∂2

ϕ|ϕ|) and (∂ϕ|ϕ|) can be repackaged into a physically-irrelevant total
derivative.

• Section 3.2 establishes our tensor conventions, including the covariant derivative, Rie-
mann curvature, Ricci scalar, and Einstein-Hilbert Lagrangian; rewrites the Einstein-
Hilbert Lagrangian into a more convenient form; and derives the extra-dimensional
graviton resulting from the Einstein-Hilbert Lagrangian.

• Section 3.3 motivates the construction of the Randall-Sundrum 1 background metric
by considering what modifications are required in order to accommodate the nonzero
extrinsic curvature it necessarily implies at its branes. The background metric is then
perturbed to generate the full 5D RS1 model, with a metric that depends on 5D fields
ĥµν(x, y) and r̂(x). The final subsection demonstrates that terms proportional to

(∂2
ϕ|ϕ|) and (∂ϕ|ϕ|) combine to form physically-irrelevant total derivatives, and then

introduces a new term to the 5D RS1 model Lagrangian to automate the removal of
such terms.

• Section 3.4 weak field expands the 5D RS1 model Lagrangian as a series in the 5D
fields ĥµν(x, y) and r̂(x) to second order in the coupling, O(κ2

5D). This 5D weak field
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expanded (WFE) RS1 Lagrangian is the principle result of this chapter, and updates
the expressions we originally published in Appendix A of [18].

• Section 3.5 is an appendix which details certain formula used in the weak field expansion
procedure.

3.2 Motivations, Definitions, and Conventions

3.2.1 Revisiting the Metric

In the previous chapter, we explored the consequences of demanding that the speed of light
be globally conserved between inertial reference frames in flat 4D spacetime, i.e. that every
finite spacetime interval that is light-like according to one observer is also light-like to all
other observers. This led us to the Poincaré group and eventually the characterization of
external particles on that spacetime. This chapter generalizes those assumptions: we con-
sider a metric G on X-dimensional spacetime that is a function of X-dimensional spacetime
coordinates x, where X ≥ 4. We label the first four coordinates in the usual way, e.g. when
X = 4 indices label coordinates according to xµ ≡ (x0, x1, x2, x3), with x0 denoting a time
coordinate. Subsequent coordinate indices will start from 5, e.g. when X = 5 we have
xM ≡ (x0, x1, x2, x3, x5).

As before, each observer is associated with a specific choice of coordinates, and via those
coordinates the observer can write the metric G in terms of components GMN . By as-
sumption, the tensor GMN is symmetric and nondegenerate. We use the “mostly-minus”
convention, which establishes that in any particular coordinate patch GMN has a single
positive eigenvalue among otherwise negative eigenvalues. A vector vM is time-like (space-
like) if it possesses a positive (negative) inner product with itself with respect to the metric:
GMNv

MvN > 0 (GMNv
MvN < 0). If instead this inner product vanishes, GMNv

MvN = 0,
then vM is declared light-like.

The metric G defines the invariant spacetime interval ds2 across any infinitesimal dis-
placement dxM :

ds2 = GMNdx
MdxN (3.3)

where the matrix [GMN ] is invertible. We write the inverse matrix as [G̃MN ], the components
of which by definition satisfy G̃MNGNP = 1

M
P . By using a tilde to denote matrix inverses,

we save space, reduce notational clutter, and prevent potential confusion later.
In the last chapter, the metric GMN was assumed to equal ηµν and we only considered

linear transformations that mapped ηµν to itself. We now relax those requirements: GMN

can be a nontrivial function of the coordinates xM , and we consider (possibly nonlinear)

coordinate transformations that map xM to new coordinates xM which thereby map GMN
to a new form GMN . This is the topic of the next subsection.

3.2.2 Diffeomorphisms, Tensors

A diffeomorphism is a transformation that maps the coordinates of one reference frame to
the coordinates of another reference frame. In order to locally preserve the speed of light



between any two reference frames, we demand ds2 be invariant under diffeomorphisms. This
implies how G must transform. Specifically, if GMN describes spacetime in coordinates xM

and GMN describes spacetime in coordinates xM , then the infinitesimal displacements at
an equivalent point in either description are related according to

dxM = DM
MdxM where DM

M ≡

(
∂xM

∂xM

)
dxM (3.4)

We can similarly convert the dxM on the RHS of this expression to dxM , and thereby we
obtain

dxM = DM
NDM

Ndx
N where DM

M ≡

(
∂xM

∂xM

)
(3.5)

which implies, recalling that we use tildes to denote inverses,

DM
MDM

N = 1
M
N

such that D̃M
M = DM

M (3.6)

The requirement that a coordinate transformation leaves the invariant spacetime interval
unchanged, i.e.

GMN dxMdxN = ds2 = GMN dxMdxN (3.7)

implies that the metric transforms according to

GMN = DM
M DN

N GMN (3.8)

From this, we can derive the transformation properties of other spacetime tensors.
By definition, any object that transforms like dxM under a diffeomorphism is called a

vector, i.e. v is a vector if

vM = DM
MvM (3.9)

and is said to have a contravariant index. The vector transformation rule in combination
with Eq. (3.8) implies that the covector (Gv)M ≡ (GMNv

N ) corresponding to the vector
vM must transform under diffeomorphisms according to

(Gv)M = (GMNv
N ) = DM

M DN
N GMN DM

N vN = DM
M (Gv)M (3.10)

and is said to have a covariant index. More generally, any index that transforms via D (D)
is termed contravariant (covariant), and an object having m contravariant and n covariant
indices is called a rank-(m,n) tensor. A tensor is said to transform covariantly under diffeo-
morphisms. By contracting all contravariant indices with covariant indices and evaluating
all fields at equivalent spacetime points, we guarantee the construction of a diffeomorphism
invariant quantity. For example, the inner product GMNv

MwN of any tangent space vector
fields v and w at a spacetime point x is diffeomorphism invariant.



In the gravity literature, the covector (Gv)M is commonly defined via the symbol vM .
This is a specific instance of a more general rule wherein indices are lowered via the metric G
and raised via its inverse G̃. This rule is quite convenient because allows us to immediately
know how an index transforms based on whether it is written as a superscript or a subscript.
Unfortunately, this convention is not particularly useful for the goals of this dissertation.
As demonstrated in this chapter and the next, the metric (when perturbed relative to a
background solution) contains particle content, and allowing the metric to be buried in
raising and lowering indices will obscure where instances of various fields occur. Therefore,
we avoid absorbing the metric into tensors by instead raising or lowering indices via a flat
metric [ηMN ] ≡ Diag(+1,−1, · · · ,−1), which is a popular convention in the weak field
expansion literature (more on weak field expansions later in this chapter). Therefore, given
a vector v, we define vM ≡ (ηv)M = ηMNv

N . Although the index M in (Gv)M is covariant,
the index M in vM = (ηv)M is still contravariant:

(Gv)M = DM
M (Gv)M versus vM = ηMN vN = DMNv

N (3.11)

where we assume η is coordinate-independent: [ηMN ] = [ηMN ].
When constructing a Lagrangian theory of gravity, a diffeomorphism-invariant integration

element is vital for defining spacetime integrals. To begin, consider the typical volume
element dXx. This is not invariant under the coordinate transformation x → x = Dx, and
instead

dXx =
∣∣detD

∣∣ dXx (3.12)

where detD ≡ det[DM
M ]. Our goal is to combine this with other objects as to create

a diffeomorphism-invariant measure. Thankfully, we immediately have access to another
object that transforms proportional to factors of | detD|: by taking the determinant of the
transformation rule of the metric Eq. (3.8), we find that | detG| and | detG| are related
according to

| detG| = |detD|2 | detG| = | detG|∣∣detD
∣∣2 (3.13)

where we have used that D = D̃, such that√
| detG| =

√
| detG|∣∣detD

∣∣ (3.14)

Combining Eqs. (3.12) and (3.14), we find that
√
| detG| dXx is diffeomorphism invariant:√

| detG| dXx =

√
| detG|∣∣detD

∣∣ ∣∣detD
∣∣ dXx =

√
| detG| dXx (3.15)

This is the invariant (spacetime) volume element we desired. Because we use the mostly-
minus convention, sign(detG) = (−1)X−1, such that

√
| detG| =

√
∓ detG if X is even or



odd respectively. For succinctness, we define
√
G ≡

√
| detG|. If φ(x) is a diffeomorphism

invariant scalar field, then
∫
dXx

√
Gφ(x) is diffeomorphism invariant as well, such that we

can construct a coordinate-independent action.
On occasion, it will be useful to purposefully symmetrize (antisymmetrize) some collection

of indices, which we denote with parentheses (brackets). For example,

T(a1···a`)
≡ 1

`!

∑
π

Taπ(1)·aπ(`)
T[a1···a`]

≡ 1

`!

∑
π

sign(π)Taπ(1)·aπ(`)
(3.16)

where sign(π) = ±1 if the permutation π is even (odd). Sometimes symmetrization (antisym-
metrization) will occur for indices across multiple tensors; in any case, the indices contained
between the parentheses (brackets) are included in the procedure.

3.2.3 Covariant Derivative, Christoffel Symbol, Lie Derivative

Beyond any specific coordinate-dependent effects, the metric encodes curvature inherent to
spacetime. This curvature implies that the usual coordinate derivative ∂M ≡ (∂/∂xM ) is
not necessarily a natural derivative on spacetime, e.g. although ∂M dictates translations in
the coordinate xM , information about vectors or covectors is not necessarily translated in a
coordinate-covariant way. Furthermore, although the index M of ∂Mφ (where φ is a generic
spacetime scalar field) is covariant under diffeomorphisms,

∂Mφ ≡ ∂φ

∂xM
7→ ∂Mφ ≡ ∂φ

∂xM
= DM

M (∂Mφ) (3.17)

the equivalent index on the derivative of a more complicated tensor such as ∂MvN (where v
is a generic spacetime vector field) is not diffeomorphism covariant,

∂MvN ≡ ∂vN

∂xM
7→ ∂MvN = DM

M ∂M [DN
Nv

N ] 6= DM
M DN

N ∂MvN (3.18)

which presents an obstacle when constructing a diffeomorphism-invariant action. To address
these problems, we require a derivative that incorporates the structure of spacetime.

Two derivatives of this sort commonly occur in general relativity calculations: the co-
variant derivative and the Lie derivative. Both are derivatives in the traditional sense—i.e.
they are linear maps which obey the Leibniz rule—although they differ in their details and
applications. The covariant derivative is particularly useful when constructing Lagrangians
on curved spacetime, depends on the metric G, and transforms a rank-(m,n) tensor into a
rank-(m,n + 1) tensor. In contrast, the Lie derivative generalizes the directional derivative
of flat spacetime, is independent of the metric G, and transforms a rank-(m,n) tensor into
another rank-(m,n) tensor.

For the covariant derivative, we utilize what is called the Levi-Civita connection ∇A,
which is the unique affine connection that is simultaneously compatible with the metric
(∇AGMN = 0) and torsion-free. Its action on a given tensor depends on the rank of that
tensor, e.g. for a scalar field φ(x) the covariant derivative reduces to the usual derivative,

∇Aφ = ∂Aφ (3.19)



whereas for a vector vM (X),

∇AvM = ∂Av
M + ΓMANv

N (3.20)

where ΓPMN is the Christoffel symbol,

ΓPMN ≡
1

2
G̃PQ(∂MGNQ + ∂NGMQ − ∂QGMN ) (3.21)

Note that the Christoffel symbol is symmetric in its lower indices, i.e. ΓPMN = ΓPNM . Despite
its suggestive index structure, the Christoffel symbol does not transform like a spacetime
tensor (indeed, it cannot because (∂Av

M ) is not a spacetime tensor but∇AvM is). Taking the
covariant derivative of a tensor possessing multiple contravariant indices proceeds similarly,
with the addition of the appropriate number of terms each containing a Christoffel symbol
contracted with a different index. When covariant indices are present, the Chistoffel symbol
terms are instead subtracted, e.g.

∇AvM = ∂AvM − ΓNAMvN (3.22)

Multiple covariant indices generalize accordingly via the additional subtraction of a Christof-
fel symbol-containing term per covariant index. Combining the contravariant and covariant
behaviours yields the formula for a generic rank-(m,n) tensor. Because of its compatibility
with the metric, the covariant derivative of any function of the metric alone vanishes.

The Lie derivative is a coordinate-invariant measure of the change in a spacetime tensor
with respect to a vector field. It is the generalization of the standard directional derivative
in flat spacetimes. Like the covariant derivative, its exact operation depends on the rank of
the tensor it operates on. For example, given a vector field vM and scalar φ, the appropriate
relation is

£vφ ≡ (v · ∂)φ (3.23)

whereas given a vector field wM it is

£vw
M ≡ (v · ∂)wM − (∂Nv

M )wN (3.24)

and given a covector field wM it is

£vwM ≡ (v · ∂)wM + (∂MvN )wN (3.25)

where v · ∂ ≡ vM∂M . These equations also hold true if the derivatives ∂A are replaced
with covariant derivatives ∇A. We will utilize the Lie derivative when we calculate extrinsic
curvature in the RS1 model.

3.2.4 Curvature

The metric expressed in a given coordinate system enables a quantitative measure of the
curvature of spacetime. For example, the Riemann curvature tensor measures spacetime



curvature via the failure of covariant derivatives to commute when acting on a generic cov-
ector:

RABC
DwD ≡ (∇A∇B −∇B∇A)wC (3.26)

By replacing the covariant derivatives with their expression in terms of Christoffel symbols,
we attain a formula for the Riemann curvature that will prove more useful for our computa-
tions:

RABC
D ≡ (∂BΓDAC)− (∂AΓDBC) + ΓEACΓDBE − ΓEBCΓDAE (3.27)

= (∂[BΓDA]C) + ΓEC[AΓDB]E (3.28)

Whether or not an additional minus sign is included in the above definition amounts to
a convention; across the literature, both choices are used with nearly equal frequency and
without much consistency across in any given subfield. Consequently, ambiguity in this
convention can be a source of many headaches. The Riemann curvature tensor is frequently
self-contracted to form the Ricci tensor,

RAC ≡ RABC
B (3.29)

or subsequently contracted with the inverse metric to form the Ricci scalar (scalar curvature)

R ≡ G̃ACRAC (3.30)

The Ricci scalar is an important constituent of the Einstein-Hilbert Lagrangian, which in
turn is a foundational contribution to the gravity Lagrangians discussed in the next section.

3.2.5 Einstein-Hilbert Lagrangian, Cosmological Constant, Ein-
stein Field Equations

The Einstein-Hilbert action SEH and the Einstein-Hilbert Lagrangian LEH are defined ac-
cording to

SEH ≡ −
2

κ2
XD

∫
dXx

√
GR ≡ − 2

κ2
XD

∫
dXx LEH (3.31)

where
√
G ≡

√
| detG|. The negative prefactor (−2/κ2

XD) is directly tied to the sign of the
Riemann curvature which we chose in the previous section, and ensures properly normalized
(positive energy) graviton modes. To derive the equations of motion for the metric, consider
varying the Einstein-Hilbert action with respect to the inverse metric G̃AB . Because

δ

δG̃AB

[√
G
]

= −1

2

√
GGAB

δ

δG̃AB
[R] = RAB (3.32)

the first variation of SEH yields, assuming vanishing surface terms,

δSEH = − 2

κ2
XD

∫
dXx

√
G

[
RAB −

1

2
GABR

]
δG̃AB (3.33)



such that, without additional modifications, the equations of motion equal

GAB ≡ RAB −
1

2
GABR = 0 (3.34)

where GAB is the Einstein tensor.
There are two other Lagrangians commonly added to LEH. The first we consider is the

cosmological constant Lagrangian,

LCC ≡ −
4

κ2
XD

√
GΛ (3.35)

where Λ is a real number. The variation of LCC yields

δ

δG̃AB
[LCC] = − 2

κ2
XD

√
G (−ΛGAB) (3.36)

The second we consider is the matter Lagrangian, the form of which is left mostly ambiguous
unless applied to a specific choice of matter fields. Its contribution is typically written
with a factor of the invariant volume element already accounted for but (in contrast to the
previous two Lagrangian contributions considered) without any factors of κXD, as

√
GLM.

Its variation with respect to the inverse metric equals

δ

δG̃AB

[√
GLM

]
=

1

2

√
G TAB (3.37)

where TAB is the stress-energy tensor

TAB ≡ 2
δLM

δG̃AB
−GABLM (3.38)

which expresses the stress-energy content generated by the matter fields.
Therefore, for the Lagrangian,

LEH + LCC +
√
GLM (3.39)

the equations of motion equal

GAB − ΛGAB =
κ2

XD

4
TAB (3.40)

These gravitational equations of motion (and extensions thereof) are the Einstein field equa-
tions, and imply that a cosmological constant permeating all of spacetime and/or the presence
of matter causes the curving of spacetime through the Einstein tensor GAB . The curvature
of spacetime is closely tied to the presence of fields on that spacetime, not unlike the close
ties between electric fields and electric charges.

The aforementioned Lagrangians describe bulk gravitational physics; when it becomes
necessary, we will extend these to incorporate spacetime matter and/or energy localized to
submanifolds, such as branes.



To conclude this section, we note that the Einstein-Hilbert Lagrangian can be rewritten
using integration-by-parts into a form wherein any given instance of the metric is never
differentiated more than once:

LEH
∼= −

2

κ2
XD

√
GG̃MN

[
Γ
Q
NPΓPMQ − ΓPQPΓ

Q
MN

]
(3.41)

The symbol ∼= denotes equality as an integrand of the action via integration by parts. This
alternate form is derived in next subsection.

3.2.6 Rewriting the Einstein-Hilbert Lagrangian

The Einstein-Hilbert Lagrangian is defined, traditionally, in terms of the scalar curvature as

LEH = − 2

κ2
XD

∫
dXx

√
GR (3.42)

= − 2

κ2
XD

∫
dXx

√
GG̃MN

[
(∂PΓPMN )− (∂MΓPPN ) + Γ

Q
MNΓPPQ − Γ

Q
MPΓPNQ

]
(3.43)

However, we find it more useful to work with an alternate form of LEH which is attained
through integration by parts. Integration by parts will move the derivatives acting on
Christoffel symbols in the first two terms of Eq. (3.43) onto

√
GG̃MN , such that all Christof-

fel symbols are no longer differentiated. This will also eliminate all twice-differentiated quan-
tities from the Einstein-Hilbert Lagrangian.

In order to eventually simplify the expressions we obtain from this integration by parts
procedure, recall that any function which only depends on the metric has vanishing covariant
derivative. Therefore,

0 = ∇CG̃MN = (∂CG̃
MN ) + ΓMACG̃

AN + ΓNACG̃
MA (3.44)

such that

(∂CG̃
MN ) = −G̃ANΓMAC − G̃

MAΓNAC (3.45)

and1

0 = ∇C
√
G = (∂C

√
G)−

√
GΓAAC (3.46)

such that

(∂C
√
G) =

√
GΓAAC (3.47)

1That
√
G =

√
detG requires a nontrivial covariant derivative arises from the fact that detG transforms

nontrivially under diffeomorphisms, as originally mentioned in Eq. (3.14). In particular,
√
G is a scalar

density with unit weight, where weight refers to the constant multiplying −
√
GΓAAC in Eq. (3.46). For

example, detG has weight +2, and thus its covariant derivative contains instead the term −2
√
GΓAAC .



Together these results imply that

∂C

(√
GG̃MN

)
= (∂C

√
G) G̃MN +

√
G (∂CG̃

MN ) (3.48)

=
√
G

[
G̃MN ΓAAC − G̃

ANΓMAC − G̃
MAΓNAC

]
(3.49)

and we are now ready to begin rewriting the Einstein-Hilbert Lagrangian.
Consider the first term of Eq. (3.43). It is proportional to

+
√
GG̃MN (∂PΓPMN ) ∼= −∂P

[√
GG̃MN

]
ΓPMN (3.50)

=
√
G

[
− G̃MN ΓAAPΓPMN + G̃ANΓMAPΓPMN + G̃MAΓNAPΓPMN

]
(3.51)

=
√
GG̃MN

[
− Γ

Q
MN ΓPPQ + 2 Γ

Q
MPΓPNQ

]
(3.52)

where integration by parts was used in the first line, and the last line utilizes both index
relabeling and the index symmetries of G̃MN and ΓPMN . Similarly, the second term of Eq.
(3.43) is proportional to

−
√
GG̃MN (∂MΓPPN ) ∼= +∂M

[√
GG̃MN

]
ΓPPN (3.53)

=
√
G

[
+ G̃MN ΓAAMΓPPN − G̃

ANΓMAMΓPPN − G̃
MAΓNAMΓPPN

]
(3.54)

=
√
GG̃MN

[
− Γ

Q
MNΓPPQ

]
(3.55)

Substituting these results into Eq. (3.43) yields the desired alternate form of the Einstein-
Hilbert Lagrangian:

LEH = − 2

κ2
XD

∫
dXx

√
GG̃MN

[
Γ
Q
MPΓPNQ − Γ

Q
MNΓPPQ

]
(3.56)

Because each Christoffel symbol contains exactly one derivative per term by definition, LEH
contains exactly two derivatives per term. One advantage of this alternate form (which lacks
the ∂Γ ⊃ ∂∂G terms of the traditional form) is that it ensures those two derivatives are
never applied to the same object in any given term.

3.2.7 Deriving the Graviton

Consider the aforementioned D-dimensional gravitational Lagrangian in the absence of a cos-
mological constant and matter, so that the relevant Lagrangian is exclusively the Einstein-
Hilbert Lagrangian Eq. (3.56). Furthermore, suppose we interpret the given metric GMN as
only slightly perturbed away from the (flat) background metric ηMN ≡ Diag(+1,−1, . . . ,−1),



e.g. GMN ≡ ηMN +κXDĤMN for some spacetime-dependent perturbation ĤMN . This en-
ables us to calculate LEH as a perturbative series in Ĥ. In general, the process of expanding a
metric about a background metric that solves the Einstein field equations is called weak field
expansion (WFE). At present, we will weak field expand the Einstein-Hilbert Lagrangian
through O(Ĥ2).

First, note that weak field expansion of the Christoffel symbol corresponding to the GMN
described above yields

ΓPMN ≡
1

2
G̃PQ(∂MGNQ + ∂NGMQ − ∂QGMN ) (3.57)

=
κXD

2

[ +∞∑
n=0

(−1)nJ(κXDĤ)nKPQ
] [

(∂M ĤNQ) + (∂N ĤMQ)− (∂QĤMN )

]
(3.58)

=
κXD

2

[
(∂M ĤP

N ) + (∂N Ĥ
P
M )− (∂P ĤMN )

]
+O(Ĥ2) (3.59)

where we utilize the twice-squared bracket notation introduced in Chapter 2.2.1. We need
only expand the Christoffel symbols to first order in the field Ĥ to obtain an overall O(Ĥ2)
result because they begin at that order and LEH is composed of products of pairs of Christof-
fel symbols.

When these expansions are substituted into the Einstein-Hilbert Lagrangian, we find

LEH
∼= −

2

κ2
XD

ηMN
[
Γ
Q
NPΓPMQ − ΓPQPΓ

Q
MN

]
+O(H3) (3.60)

= (∂AĤAB)(∂BĤ)− (∂AĤBC)(∂CĤAB) +
1

2
(∂AĤBC)2 − 1

2
(∂BĤ)2 +O(Ĥ3)

(3.61)

where the
√
GG̃MN prefactor has already been expanded in the first line (more information

about the weak field expansion of
√
G and G̃MN can be found in Section 3.5). When X = 4,

Eq. (3.61) is precisely the massless spin-2 Lagrangian from Section 2.8. When X 6= 4, the
equations of motion still go through as-is and constrain the propagation of ĤMN such that
the field must be transverse and traceless: (∂M ĤMN ) = ĤM

M = 0. In general, after applying
the equations of motion, an X-dimensional graviton has (X + 1)X/2 − 2X = (X − 3)X/2
degrees of freedom. Therefore, a 4D graviton has 2 degrees of freedom, whereas a 5D graviton
has 5 degrees of freedom.

Consider the effect of a coordinate transformation x → x = Dx on the field ĤMN , as
transmitted through the known transformation properties of GMN . In particular, suppose
the diffeomorphism is of the form of a coordinate-dependent spacetime translation xM =
xM + εM (x) for some vector field εM , and that the vector components εM are at most
comparable in magnitude to the field components ĤMN so that we may simultaneously
expand in ε, e.g. O(ε) ∼ O(Ĥ). We now demonstrate that this spacetime translation
exactly reproduces the gauge freedom of the massless spin-2 Lagrangian when X = 4.

The aforementioned diffeomorphism implies DM
M = (∂xM/∂xM ) = 1

M
M + (∂M εM ), so



that general coordinate invariance demands

GMN = DM
M DN

N GMN (3.62)

=

[
1
M
M + (∂M εM )

] [
1
N
N + (∂N ε

N )

]
GMN (3.63)

= GMN + (∂M εM )GMN + (∂N ε
N )GMN + (∂M εM )(∂N ε

N )GMN (3.64)

which is an exact result. To proceed further, series expand the quantity G(x) = G(x+ ε) in
ε through O(ε):

GMN (x) = GMN (x) + εM∂MGMN (x) +O(ε2) (3.65)

such that,

GMN = GMN + (ε · ∂)GMN + (∂M εP )GPN + (∂N ε
P )GMP +O(ε2) (3.66)

where all fields are expressed as functions of the coordinates x. This completes the expansion
in ε. Note that this can be succinctly expressed in terms of the Lie derivative

£εGMN = (GMN −GMN ) +O(ε2) (3.67)

which—given that we performed an infinitesimal coordinate translation—confirms its role as
a direction derivative. Next, expand each term in powers of Ĥ, and remember that Ĥ and ε
are componentwise comparable in magnitude: per term of Eq. (3.66), we find

GMN = ηMN + κXDĤMN (3.68)

GMN = ηMN + κXDĤMN (3.69)

(ε · ∂)GMN = (ε · ∂)ĤMN = O(ε2, εĤ, Ĥ2) (3.70)

(∂M εP )GPN = (∂M εP )(ηPN + ĤPN ) = (∂M εN ) +O(ε2, εĤ, Ĥ2) (3.71)

(∂N ε
P )GMP = (∂N ε

P )(ηMP + ĤMP ) = (∂N εM ) +O(ε2, εĤ, Ĥ2) (3.72)

such that

κXDĤMN = κXDĤMN + (∂M εN ) + (∂N εM ) + £εĤMN +O(ε2) (3.73)

= κXDĤMN + (∂M εN ) + (∂N εM ) +O(ε2, εĤ, Ĥ2) (3.74)

This mean that (dropping the distinction between the new and old field labels from here),
as far as the field ĤMN is concerned, an infinitesimal coordinate translation corresponds to
the field transformation

κXDĤMN → κXDĤMN + (∂M εN ) + (∂N εM ) +O(ε2) (3.75)

which is precisely the gauge invariance exhibited by the massless spin-2 Lagrangian when
X = 4.



3.3 The Randall-Sundrum 1 Model

3.3.1 Deriving The Background Metric

In this subsection, the Randall-Sundrum 1 (RS1) model background metric is motivated and
derived. In the next subsection, we perturb this background metric and thereby obtain the
full RS1 theory.

As mentioned in the introduction, the RS1 model is a five-dimensional model of gravity
with nonfactorizable geometry that was introduced in 1999 in order to solve the hierarchy
problem. Relative to the usual four-dimensional spacetime, the RS1 model adds a finite
extra dimension of space parameterized by a coordinate y ranging from y = 0 to y = πrc,
where rc is called the compactification radius. The size πrc of the extra-dimension is assumed
small so that the five-dimensional nature of spacetime remains hidden at low energies. The
four-dimensional hypersurfaces defined by y = 0 and y = πrc are called branes, and the
five-dimensional region between those branes is called the bulk.

The RS1 construction possesses two additional features not mentioned in the previous
paragraph: warping of the 4D spacetime relative to the extra dimension and orbifold invari-
ance. Because we will discuss the former property at length later in this section, let us first
focus on orbifold invariance. In order that spacetime truly be truncated at the branes, any
physically-relevant 5D fields cannot be allowed to oscillate beyond the branes, and thereby
their derivatives with respect to y must vanish. This can be ensured by extending the extra
dimension so that y covers [−πrc,+πrc] and then demanding that the so-called orbifold re-
flection y → −y is a symmetry of the invariant spacetime interval ds2. Having done this, we
can extend y to the entire real line by also declaring the discrete translation y → y+ 2πrc as
another symmetry of ds2. This discrete translational symmetry suggests we can just as well
think of the extra dimension as a circle of radius rc parameterized by an angle ϕ ≡ y/rc,
with the discrete translation corresponding to rotating the entire circle about its center by
2π radians. (Despite this extension, we will limit any integrals over the extra dimension to
the finite domain y ∈ [−πrc,+πrc], or equivalently ϕ ∈ [−π,+π].) If we imagine this circle
to be drawn on a piece of paper, then the identification of points via the orbifold reflection
corresponds to folding the paper in half along the line between the points at φ = 0 and
φ = ±π and declaring any points which overlap afterwards to be equivalent. From this per-
spective, if we once again unfold the paper, then the orbifold reflection transformation swaps
points across the folding line, such that the only points unchanged by the transformation are
the branes at φ = 0 and φ = π. In other words, the two branes are uniquely determined as
the orbifold fixed points of the RS1 spacetime.

With descriptions of the RS1 coordinates and spacetime symmetries out of the way, we
now aim to find a Lagrangian description of the RS1 background metric, although to do
so we must include types of terms we have not yet discussed in this chapter. We begin by
searching for a background metric of the form

GMN =

(
a(y) ηµν 0

0 −1

)
(3.76)

where a(y) is a non-trivial positive real function of the extra-dimensional coordinate y that is
consistent with the Einstein field equations. The function a(y) provides the aforementioned



warping of 4D spacetime relative to the extra dimension. Eq. (3.76) is intentionally written
so that the xµ coordinates are all treated on equal footing, as would be expected from a 4D
Poincaré invariant geometry. If a(y) = 1, we recover the flat 5D metric ηMN ; otherwise,
this metric (combined with the orbifold condition) necessarily implies a discontinuity in the
curvature at the interval endpoints. As will be detailed in a moment, this introduces Dirac
delta terms to the Einstein tensor which provide an obstacle to solving the Einstein field
equations. Overcoming this obstacle requires extending the techniques utilized thus far to
include brane-localized phenomena.

First, note that GMN as written above only depends on y, so ∂αGMN = 0, whereas
∂yGMN = (∂ya) δ

µ
M δνN ηµν . Consequently, the only independent non-zero Christoffel sym-

bols equal

Γ5
µν = −1

2
G̃55(∂yGµν) =

1

2
(∂ya) ηµν (3.77)

Γ
ρ
µ5 = +

1

2
G̃ρσ(∂yGµσ) =

1

2
a−1(∂ya) η

ρ
µ (3.78)

which once again only depend on y. Thus, we may calculate

∂PΓPMN =
1

2
(∂2
ya) δ

µ
M δνN ηµν (3.79)

∂NΓPMP =
[
2 a−1(∂2

ya)− 2 a−2(∂ya)2
]
δ5
M δ5

N (3.80)

ΓPPQΓ
Q
MN = a−1(∂ya)2 δ

µ
M δνN ηµν (3.81)

ΓPNQΓ
Q
MP =

1

2
a−1(∂ya)2 δ

µ
M δνN ηµν + a−2(∂ya)2 δ5

M δ5
N (3.82)

which collectively yield the Ricci tensor

RMN =

( 1
2

[
(∂2
ya) + a−1(∂ya)2

]
ηµν 0

0 −a−1
[
2(∂2

ya)− a−1(∂ya)2
]) (3.83)

and the scalar curvature

R = 4a−1(∂2
ya) + a−2(∂ya)2 (3.84)

This allows us to calculate the Einstein tensor, which equals

GAB = RAB −
1

2
GABR =

(
−3

2(∂2
ya)ηαβ 0

0 3
2a
−2(∂ya)2

)
(3.85)

Without an additional cosmological constant or matter content, the Einstein field equations
demand that the Einstein tensor vanish (GAB = 0). This implies (∂2

ya) = (∂ya) = 0, which
is only achievable by setting a to a constant; however, a constant a just describes the flat
5D metric up to a coordinate rescaling. We desire a more interesting geometry.

By adding a cosmological constant throughout 5D spacetime (a “bulk” cosmological con-
stant), we instead obtain GAB − ΛGAB = 0 as our Einstein field equations, wherein the



precise value of Λ can be tuned as necessary. Now our constraints read

−3

2
(∂2
ya)− Λa = 0 (3.86)

3

2
(∂ya)2 + Λa2 = 0 (3.87)

We focus on this second equation first. Immediately, we note a solution cannot exist if Λ > 0
because (∂ya)2/a2 is necessarily nonnegative. This plus the fact that we already ruled out
the Λ = 0 case as being uninteresting leaves us to consider Λ < 0, which allows us to solve for

(∂ya) up a sign: (∂ya) = ±(
√
−2Λ/3)a, corresponding to a(y) ∝ e±(

√
−2Λ/3)y. Define the

so-called warping parameter k ≡
√
−Λ/6 for ease of writing, and remove the proportionality

so that a(y) = e±2ky via coordinate rescaling.2 Because this solution also satisfies the first
constraint, all may seem well. However, this solution does not respect the orbifold reflection
symmetry: neither solution is individually invariant under the replacement y → −y. To fix
this, we can patch together separate solutions in the regions y < 0 and y > 0 to form the
continuous & orbifold-even solution a(y) = e±2k|y|. Differentiating this new solution yields,
keeping in mind the orbifold symmetry and periodic nature of the extra dimension,

(∂ya)2 = [±2k sign(y) a]2 = 4k2 a2 (3.88)

(∂2
ya) =

[
4k2 ± 4k (δ0 − δπrc)

]
a (3.89)

where we used

(∂y|y|) = sign(y) (∂2
y |y|) = 2 (δ0 − δπrc) (3.90)

and δy ≡ δ(y − y). Although this orbifold-even solution solves Eq. (3.87), it does not
solve Eq. (3.86). In fact, any attempt to modify the action (and therein the Einstein field
equations) that treats all of 5D spacetime on equal footing is doomed to fail. We will need to
further extend the types of terms we include in the action in order to overcome this difficulty

To better understand why we are running into trouble, let us divide the 5D RS1 spacetime
having coordinates (x, y) into a collection of constant y slices, e.g. hypersurfaces consisting
of points (x, y) for some y ∈ [0, πrc]. This defines what is called a “foliation” of 5D RS1
spacetime into time-like 4D hypersurfaces, where the hypersurfaces at y = 0 and y = πrc are
the RS1 branes. Choose one such hypersurface in this foliation. Because this hypersurface
is itself a submanifold of spacetime, we can calculate its curvature. Furthermore, because it
exists within a larger spacetime, it has two kinds of curvature: intrinsic (curvature tangent
to the hypersurface) and extrinsic (curvature normal to the hypersurface). The extrinsic
curvature of a hypersurface is

KMN = −1

2
GMP GNQ G̃

PR G̃QS £nGRS (3.91)

2The metric corresponding to a(y) = e−2ky describes 5D anti-de Sitter space (AdS5). More specifically,
because the RS1 model has branes at y = 0 and y = πrc, the RS1 model is a finite interval of AdS5, wherein
the brane at y = πrc explicitly breaks the conformal invariance of the infinite AdS5.



where nM is a vector field of unit 5-vectors normal to our hypersurface, £n denotes the Lie
derivative along nM , and G is the projection of the metric G onto the hypersurface at y = y.
By choosing nM ≡ (0, 0, 0, 0, 1) as our hypersurface normals, the projected metric equals

GMN (y) = GMN (y) + nMnN =

(
a(y) ηµν 0

0 0

)
(3.92)

Thus GMN G̃
NR = (δ

µ
M δRρ )δ

ρ
µ and the extrinsic curvature simplifies to

KMN = −1

2
£nGMN (3.93)

When acting on a rank-2 covariant tensor such as GMN , the Lie derivative £n equals

£nGMN = nA(∂AGMN ) + (∂MnA)GAN + (∂Nn
A)GAM (3.94)

As parameterized above, nA does not depend on the coordinates, so

£nGMN = nA(∂AGMN ) = (∂yGMN ) =

(
(∂ya)ηµν 0

0 0

)
(3.95)

such that the extrinsic curvature of a constant y hypersurface in a spacetime with metric
Eq. (3.76) equals

KMN (y) = −1

2
(∂ya) δ

µ
M δνN ηµν (3.96)

This extrinsic curvature poses a problem when trying to solve the Einstein field equations in
the presence of an orbifold-even function like a(y) = e±2k|y|. In this case, KMN is nonzero,
and thus necessarily implies additional warping in the spacetime geometry not accounted
for solely by the standard Einstein-Hilbert Lagrangian nor an additional bulk cosmological
constant. In particular, the orbifold symmetry demands that KMN (0+) = −KMN (0−)
across the orbifold fixed point at y = 0 and KMN (r−c ) = −KMN ((−rc)+) across the orbifold
fixed point at y = rc, which subsequently imply jumps in the extrinsic curvature at the
branes, i.e.

[KMN ]|y=y ≡ KMN (y+)−KMN (y−) (3.97)

= 2KMN (y+) (3.98)

= − (∂ya)
∣∣
y+→y δ

µ
M δνNηµν (3.99)

To accomplish a jump in the extrinsic curvature like this, we need a surface source of stress-
energy (not unlike using a surface charge density to cause a jump in the electric field in
classical E&M). In analogy with our previous (bulk-based) situation, we have two immediate
options for trying to achieve this: either embedding matter into the branes, or introducing
a surface cosmological constant on each brane. We opt for the latter to keep things purely
gravitational, and call each of these new surface cosmological constants a brane tension.

As far as the Einstein field equations are concerned, this means introducing new terms
into the action. For terms evaluated on the brane, we use the appropriate brane-projected



metric G, but otherwise the new brane tension terms closely resemble our bulk cosmological
constant term: we include them in our existing cosmological constant Lagrangian like so,

SCC = − 4

κ2
5D

∫
d5x

[
Λ
√
G+ λ0

√
G(0) δ(y) + λπrc

√
G(πrc) δ(y − πrc)

]
(3.100)

The constants Λ, λ0, and λπrc will be determined soon using the Einstein field equations. The
variation of the new terms with respect to G̃MN proceeds similarly to the bulk cosmological
constant term so long as we are careful to continue projecting onto each respective brane:
using the Lagrangian implied by Eq. (3.100), we find

δ

δG̃AB
[LCC] = − 2

κ2
5D

[
− Λ
√
GGAB −

∑
y∈{0,πrc}

λy

√
G(y)GAB(y) δy

]
(3.101)

where δy ≡ δ(y − y). Therefore, the Einstein fields equations derived from combining Eq.
(3.100) and the usual Einstein-Hilbert Lagrangian (in the absence of matter) are

√
G [GAB − ΛGAB ]−

∑
y∈{0,πrc}

λy

√
G(y)GAB(y) δy = 0 (3.102)

After substituting explicit values into the Einstein field equations Eq. (3.102), including

√
G = a(y)2

√
G(y) = a(y)2 (3.103)

we obtain

−3
2a

2(∂2
ya)− Λ a3 −

∑
y∈{0,πrc}

λy a(y)3δy = 0 (3.104)

3

2
(∂ya)2 + Λa2 = 0 (3.105)

The second equation was solved previously and led us (after a coordinate rescaling) to the

orbifold-even function a(y) = e±2k|y| and bulk cosmological constant Λ = −6k2. When this
solution is substituted into the first equation, all terms lacking Dirac deltas are automatically
cancelled, and the residual Dirac deltas only cancel if

∓6k − λ0 = 0 ± 6k − λπrc = 0 (3.106)

Hence, each brane requires a different-signed tension, where the sign of the exponential in
a(y) determines which brane gets which sign. It is conventional to choose the sign such that
the y = 0 brane (sometimes called the hidden or Planck brane) has positive tension and the
y = πrc brane (sometimes called the visible or TeV brane) has negative tension. Thus, we
choose the lower sign option and find the Einstein field equations are solved by taking

a(y) = e−2k|y| Λ = −kλ0 = kλπrc = −6k2 (3.107)

This completes the construction of the RS1 background metric.



We now summarize the results of the above derivation, but add the label “(bkgd)” while
doing so as to emphasize that these results are specific to the RS1 background metric. The
background metric 5D RS1 Lagrangian equals

L(bkgd)
5D = L(bkgd)

EH + L(bkgd)
CC = − 2

κ2
5D

[√
G(bkgd)R− 12k2

√
G(bkgd) + 6k

√
G(bkgd) (∂2

y |y|)
]

(3.108)

wherein the Einstein-Hilbert and cosmological constant Lagrangians equal

L(bkgd)
EH = − 2

κ2
5D

√
G(bkgd)R(bkgd) (3.109)

L(bkgd)
CC =

12k

κ2
5D

[
6k
√
G(bkgd) +

√
G(bkgd)(∂2

y |y|)
]

(3.110)

with corresponding background metric and 4D projection

G(bkgd) =

(
e−2k|y|ηµν 0

0 −1

)
and G(bkgd) =

(
e−2k|y|ηµν 0

0 0

)
(3.111)

In order to obtain a particle theory of RS1 gravity, we must perturb the background solution
summarized in Eqs. (3.108)-(3.111) by field-dependent amounts. This is the topic of the
next subsection.

3.3.2 Perturbing The Background Metric

The last subsection constructed the RS1 background metric, which is ultimately described
by Eqs. (3.108)-(3.111). The particle theory is then obtained by perturbing this background
metric, but we must take care to correctly distinguish physical and unphysical degrees of
freedom when doing so. For example, one way to parameterize a generic perturbed metric
G relative to the background metric G(bkgd) is

G =

e−2k
[
|y|+û(x,y)

] (
ηµν + κ5Dĥµν(x, y)

)
ρ̂µ(x, y)

ρ̂ν(x, y) −
[
1 + 2û(x, y)

]2
 (3.112)

in coordinates xM = (xµ, y), where xµ are the usual 4D coordinates and y ∈ [0, πrc] is the
extra-dimensional spatial coordinate (which is extended to y ∈ [−πrc,+πrc] by imposing

orbifold invariance). Note that Eq. (3.112) recovers G(bkgd) when ĥ = ρ̂ = û = 0. Via
coordinate transformations, Eq. (3.112) can always be brought into the form

G =

e−2k
[
|y|+û(x,y)

] (
ηµν + κ5Dĥµν(x, y)

)
0

0 −
[
1 + 2û(x, y)

]2
 (3.113)

where ρµ is made to vanish via orbifold symmetry, and û(x, y) equals

û(x, y) ≡ κ5Dr̂(x)

2
√

6
e+k(2|y|−πrc) (3.114)



in terms of the y-independent field r̂(x) [27]. The 5D fields ĥ(x, y) and r̂(x) contain all
dynamical degrees of freedom of the RS1 model [27], and will be the source of our 4D
particle content in the next chapter. By demanding that ds2 be invariant under the orbifold
symmetry, ĥµν(x, y) and r̂(x) are necessarily even functions of y; in other words, these fields

are “orbifold even.” Furthermore, because GMN is symmetric in its indices, ĥµν(x, y) is
symmetric as well.

For convenience, we will often parameterize the perturbed metric G (and its projection
onto a constant y hypersurface, G) as

GMN =

(
w(x, y) gµν 0

0 −v(x, y)2

)
GMN =

(
w(x, y) gµν 0

0 0

)
(3.115)

where

gµν(x, y) ≡ ηµν + κ5Dhµν(x, y) (3.116)

w(x, y) ≡ ε−2e−2û(x) (3.117)

v(x, y) ≡ 1 + 2û(x) (3.118)

and ε ≡ e−k|y|. Replacing G(bkgd) with G (and G
(bkgd)

with G) in Eqs. (3.108)-(3.111)
yields the 5D RS1 theory:

L5D = LEH + LCC (3.119)

where

LEH ≡ −
2

κ2

√
GR ∼= −

2

κ2
5D

√
GG̃MN

[
Γ
Q
MPΓPNQ − Γ

Q
MNΓPPQ

]
(3.120)

LCC = − 2

κ2

[
− 12k2

√
G+ 6k

√
G (∂2

y |y|)
]

(3.121)

The alternate form of LEH included on the RHS of Eq. (3.120) was derived in Subsection
3.2.6.

In this parameterization, the invariant interval equals

ds2 = (GMN ) dxM dxN = (w gµν) dxµ dxν − (v2) dy2 (3.122)

where g̃µνgνρ = 1
µ
ρ . Furthermore, the inverse metric G̃MN equals

[G̃MN ] =

(
w(x, y)−1 g̃µν 0

0 −v(x, y)−2

)
(3.123)

where g̃µν is the inverse of gµν = ηµν + κ5Dĥµν , and the invariant volume element nicely
decomposes into a four-dimensional and extra-dimensional weights:

√
detGd4x dy =

[
w2
√
− det g d4x

]
· (v dy) (3.124)



For use in the next subsection, note that (∂yu) = +2k(∂y|y|)u, such that

(∂yw) = −2k(∂y|y|)w + 2(∂yu)w (3.125)

= −2k(∂y|y|) (1 + 2u)w (3.126)

= −2k(∂y|y|) v w (3.127)

and, thus,

∂yGµν = ∂y(w gµν) (3.128)

= (∂yw)gµν + w(∂ygµν) (3.129)

= 2k(∂y|y|) v w + w(∂ygµν) (3.130)

In order to eventually obtain the 4D effective RS1 model, its particle content, and its
interactions (which are necessary to analyze the processes in which we are interested), we
must weak field expand (WFE) the 5D RS1 Lagrangian. That is, we must series expand the
5D RS1 Lagrangian in powers of the 5D fields ĥµν and r̂. In principle, we could begin the
weak field expansion now, but it is worthwhile to first modify L5D by the addition of a total
derivative ∆L which will eliminate any terms proportional to (∂y|y|) and (∂2

y |y|) from the
Lagrangian. This is achieved in the next subsection.

3.3.3 Eliminating “Cosmological Constant”-Like Terms

The cosmological constant Lagrangian Eq. (3.121) contains terms that potentially complicate
our analysis. For example, the terms proportional to (∂2

y |y|) introduce Dirac deltas. When
going from the 5D theory to the 4D effective theory in the next chapter, we will integrate
the Lagrangian over the extra dimension, such that the presence of Dirac deltas will re-
place what would otherwise become coupling integrals with evaluations of extra-dimensional
wavefunctions at the branes. Thankfully, such terms in the cosmological constant Lagrangian
combine with similar terms in the Einstein-Hilbert Lagrangian Eq. (3.120) to form physically-
irrelevant total derivatives, and in doing so all terms proportional to (∂y|y|) or (∂2

y |y|) are
eliminated. The present subsection will explicitly demonstrate the elimination of these terms
to all orders in the 5D fields as well as introducing a new term ∆L to the RS1 Lagrangian
which automates this elimination.

The terms in LEH which cancel LCC arise when an extra-dimensional derivative ∂y acts

on a y-dependent multiplicative factor such as ε or (∂y|y|) instead of the 5D field ĥµν (recall
that r̂ is y-independent by construction). Hence, for the purposes of this subsection, we seek
to isolate all such terms in LEH. To begin, we recalculate the Christoffel symbols (originally
calculated in Eqs. (3.77)-(3.78) for the RS1 background solution) for the perturbed theory:
recall

ΓPMN ≡
1

2
G̃PQ(∂MGNQ + ∂NGMQ − ∂QGMN ) (3.131)



such that, using the fact that GMN and its inverse G̃MN are block-diagonal,

Γ5
µν = −1

2
G̃55(∂5Gµν) (3.132)

Γ
ρ
5ν = +

1

2
G̃ρσ(∂5Gνσ) =⇒ Γ

ρ
5ρ = +

1

2
JG̃G′K (3.133)

Γ5
5ν = +

1

2
G̃55(∂νG55) (3.134)

Γ
ρ
55 = −1

2
G̃ρσ(∂σG55) (3.135)

Γ5
55 = +

1

2
G̃55(∂5G55) (3.136)

where ∂5 ≡ ∂y. Because G̃MN is block-diagonal, the index summations on the RHS of Eq.
(3.120) only yield nonzero contributions when (M,N) = (µ, ν) and (M,N) = (5, 5). Consider
when (M,N) = (µ, ν). The first product of Christoffel symbols in the (M,N) = (µ, ν) case
equals

Γ
Q
µPΓPνQ = ΓσµρΓ

ρ
νσ + Γ5

µρΓ
ρ
ν5 + Γσµ5Γ5

νσ + Γ5
µ5Γ5

ν5 (3.137)

of which the second and third terms contain y-derivatives. Their contributions are identical
and yield, when combined,

Γ
Q
µPΓPνQ

∂y not on
⊃

a field
−1

2
G̃55JG′G̃G′Kµν (3.138)

The second product of Christoffel symbols in the (M,N) = (µ, ν) case equals

Γ
Q
µνΓPPQ = ΓσµνΓ

ρ
ρσ + Γ5

µνΓ
ρ
ρ5 + ΓσµνΓ5

5σ + Γ5
µνΓ5

55 (3.139)

of which the second and fourth terms contain y-derivatives, such that

Γ
Q
µνΓPPQ

∂y not on
⊃

a field
−1

4
G̃55JG̃G′K(∂5Gµν)− 1

4
G̃55G̃55(∂5G55)(∂5Gµν) (3.140)

Hence, when contracted with G̃µν , the net contributions coming from the (M,N) = (µ, ν)
case equal

G̃µν
[
Γ
Q
µPΓPνQ − Γ

Q
µνΓPPQ

]
∂y not on
⊃

a field
−1

2
G̃55JG̃G′G̃G′K +

1

4
G̃55JG̃G′K2

+
1

4
G̃55G̃55(∂5G55)JG̃G′K (3.141)

Meanwhile, the equivalent expression in the (5, 5) case equals, thanks to cancellations,

G̃55
[
Γ
Q
5PΓP5Q − Γ

Q
55ΓPPQ

]
= G̃55

[
Γσ5ρΓ

ρ
5σ + Γ5

5ρΓ
ρ
55 − Γσ55Γ

ρ
ρσ − Γ5

55Γ
ρ
ρ5

]
(3.142)



of which the first and third terms contain y-derivatives, contributing overall

G̃55
[
Γ
Q
5PΓP5Q − Γ

Q
55ΓPPQ

]
∂y not on
⊃

a field
+

1

4
G̃55JG̃G′G̃G′K− 1

4
G̃55G̃55(∂5G55)JG̃G′K (3.143)

Combining Eqs. (3.141) and (3.143) yields, at the level of the Einstein-Hilbert Lagrangian,

LEH

∂y not on
⊃

a field
− 2

κ2
5D

√
GG̃55

[
1

4
JG̃G′K2 − 1

4
JG̃G′G̃G′K

]
(3.144)

However, this expression contains more than just the terms we desire: some of the y-
derivatives in this expression will end up acting on fields and, thus, not help eliminate
LCC. To refine this expression further, we utilize the explicit form of G, Eq. (3.115). For
example, with this parameterization the prefactor

√
GG̃55 becomes (v w2√−g)(−1/v2) =

−(w2/v)
√
−g. This decomposition also allows JG̃G′K to be rewritten as

JG̃G′K = 4(∂y lnw) + Jg̃g′K (3.145)

where we utilized Eq. (3.129) and the fact that JG̃GK = JηK = 4. Squaring this, we then
obtain

JG̃G′K2 = 16(∂y lnw)2 + 8(∂y lnw)Jg̃g′K + Jg̃g′K2 (3.146)

The final term in Eq. (3.146) only contains y-derivatives acting on fields and thus can be
ignored from here on. Similarly, the second term in Eq. (3.144) is proportional to

JG̃G′G̃G′K = 4(∂y lnw)2 + 2(∂y lnw)Jg̃g′K + Jg̃g′g̃g′K (3.147)

wherein the first two terms involve (∂yw) ∝ (∂y|y|) and the final term can be ignored. By
keeping these distinctions in mind, the only terms in LEH where y-derivatives do not act on
fields are

LEH

∂y not on
⊃

a field
− 2

κ2
5D

(
−w

2

v

√
−g
)[

3(∂y lnw)2 − 3

2
(∂y lnw)Jg̃g′K

]
(3.148)

But (∂y lnw) = (∂yw)/w = 2k(∂y|y|) v via Eq. (3.127), such that

LEH

∂y not on
⊃

a field
− 2

κ2
5D

w2√−g
[
− 12k2v + 3k(∂y|y|)Jg̃g′K

]
(3.149)

This completes our manipulations of the Einstein-Hilbert Lagrangian. We can apply a similar
decomposition to LCC in Eq. (3.121):

LCC = − 2

κ2
5D

w2√−g
[
− 12k2v + 6k(∂2

y |y|)
]

(3.150)



where
√
G = w2√−g because G only includes the 4-by-4 part of the metric G. Combining

Eq. (3.150) in its entirety with the terms we isolated from LEH in Eq. (3.149) yields, in
total,

L5D = LEH + LCC

∂y not on
⊃

a field
− 6k

κ2
5D

w2√−g
[
− 8kv + (∂y|y|)Jg̃g′K + 2(∂2

y |y|)
]

(3.151)

Thankfully, this collection of terms actually forms the total derivative ∂y[w2√−g (∂y|y|)] up
to multiplicative constants:

∂y

[
w2√−g (∂y|y|)

]
=
√
−g
[
2w(∂yw)(∂y|y|) +

1

2
w2Jg̃g′K(∂y|y|) + w2 (∂2

y |y|)
]

(3.152)

=
1

2
w2√−g

[
4(∂y lnw)(∂y|y|) + (∂y|y|)Jg̃g′K + 2(∂2

y |y|)
]

(3.153)

=
1

2
w2√−g

[
− 8kv + (∂y|y|)Jg̃g′K + 2(∂2

y |y|)
]

(3.154)

Therefore, as desired all terms in L5D that resemble contributions from the cosmological
constant Lagrangian combine to form a total derivative,

L5D = LEH + LCC

∂y not on
⊃

a field
− 12k

κ2
5D

∂y

[
w2√−g (∂y|y|)

]
∼= 0 (3.155)

and only terms where derivatives are applied to fields contribute to the physics.3 Further-
more, because of the structure of LEH in Eq. (3.120), there are two derivatives in every term
and those derivatives never act on the same field instance. This fact is useful in the next
chapter, when we analyze the coupling structures present in the 4D effective RS1 theory.

To avoid performing the integration by parts implied by Eq. (3.155) in the future, we
can manually subtract the total derivative we eliminated from the 5D Lagrangian and use,
in practice,

L5D = LEH + LCC + ∆L (3.156)

where4

∆L ≡ 12k

κ2
5D

∂y

[
w2√−g (∂y|y|)

]
(3.157)

With this result, we now weak field expand the 5D RS1 Lagrangian.

3That the total derivative does not contribute a nonzero surface term to the action is guaranteed by the
discrete translation invariance of the integral, such that whatever contribution we obtain from a boundary
term at y = +πrc is exactly cancelled by an identical term at y = −πrc.

4This ∆L is different than the ∆L used in [18] because the present dissertation uses the alternate form
for LEH derived in Subsection 3.2.6 as opposed to its more traditional form.



3.4 5D Weak Field Expanded RS1 Lagrangian5

3.4.1 Notation

This section details the weak field expansion of the RS1 model Lagrangian, Eq. (3.156),
including explicit expressions for all terms in the Lagrangian having four or fewer instances

of the 5D fields ĥµν(x, y) and r̂(x). The matter-free RS1 model Lagrangian L(RS)
5D is defined

by Eq. (3.156) and series expanded in terms of the 5D fields via Eqs. (3.114)-(3.118). The
resulting terms are then sorted according to 5D field content:

L(RS)
5D = L(RS)

hh + L(RS)
rr + L(RS)

hhh + · · ·+ L(RS)
rrr (3.158)

+ L(RS)
hhhh + · · ·+ L(RS)

rrrr + · · · .

Primes on ĥµν indicate derivatives with respect to y. A product of ĥµν fields with Lorentz
indices contracted to form a chain is indicated via twice-squared bracket notation, e.g.

Jĥ′K ≡ (∂yĥ
α
α) JĥĥKαβ = ĥαγ ĥ

γ
β JĥĥĥK = ĥαβ ĥ

β
γ ĥ

γ
α (3.159)

We also utilize the following abbreviations

ĥ ≡ ĥαα (∂αĥ) ≡ (∂αĥ
β
β) (∂ĥ)α ≡ (∂β ĥβα) (3.160)

when writing the Lagrangians.
The 4D metric g exactly satisfies

gαβ = ηαβ + κĥαβ . (3.161)

From this, the 4D inverse metric g̃ may be solved for order-by-order by imposing its defining
condition, gαβ g̃

βγ = η
γ
α, which implies

g̃αβ = ηαβ +
+∞∑
n=1

(−κ)nJĥnKαβ . (3.162)

Meanwhile, the 4D determinant equals

√
− det g̃ =

+∞∏
n=1

exp

[
(−1)n−1

2n
κn JĥnK

]
. (3.163)

which yields, for example,√
− det g̃ = 1 +

κ

2
ĥ+

κ2

8

(
ĥ2 − 2JĥĥK

)
+
κ3

48

(
ĥ3 − 6ĥJĥĥK + 8JĥĥĥK

)
+

1

384

(
ĥ4 − 12ĥ2JĥĥK + 12JĥĥK2 + 32ĥJĥĥĥK− 48JĥĥĥĥK

)
+O(κ5) .

5This section was originally published as Appendix A of [18]. The content has been updated to reflect
the new form of the Einstein-Hilbert Lagrangian, and material has been added to connect this section to the
rest of this dissertation.



Finally, separating the interactions that involve y derivatives from the interactions that
do not, which we call B-type and A-type interactions respectively, we define LA and LB
according to the following decomposition:

L(RS)

hHrR
= κH+R−2

[
e−πkrcε+2

]R [
ε−2L

A:hHrR
+ ε−4L

B:hHrR

]
, (3.164)

where ε ≡ e−krc|ϕ|. There is then the question: to what order in what fields should the 5D
RS1 Lagrangian be expanded? For the processes relevant to this dissertation (tree-level 2-to-
2 scattering), we require the quartic ĥĥĥĥ interaction, which occurs at O(κ2). Because we
have already calculated them anyway, we provide all terms in the weak field expansion of the
RS1 Lagrangian that occur at O(κ2) and lower. These interaction Lagrangians in principle
enable the calculation of all 2-to-2 tree-level scattering matrix elements in the matter-free
RS1 model.

The next several subsections summarize these interaction Lagrangians, which are the
principle results of this chapter. Afterwards, appendices detail variational derivatives and
weak field expansion formulas that wee used in the process of getting these results.

3.4.2 Quadratic-Level Results

LA:hh = (∂ĥ)µ(∂µĥ)− (∂ĥ)2
µ +

1

2
(∂µĥνρ)

2 − 1

2
(∂µĥ)2 (3.165)

LB:hh =
1

2
Jĥ′K2 − 1

2
Jĥ′ĥ′K (3.166)

LA:rr =
1

2
(∂µr̂)

2 (3.167)

LB:rr = 0 (3.168)



3.4.3 Cubic-Level Results

LA:hhh =
1

2
ĥ(∂ĥ)µ(∂µĥ)− ĥµν(∂ĥ)µ(∂ν ĥ)− 1

4
ĥ(∂µĥ)2 − ĥνρ(∂ĥ)µ(∂µĥνρ)

+ ĥνρ(∂µĥ)(∂µĥνρ) +
1

4
ĥ(∂µĥνρ)

2 − ĥρσ(∂µĥνρ)(∂
µĥνσ)

+
1

2
ĥµν(∂µĥ)(∂ν ĥ)− ĥµρ(∂µĥνρ)(∂ν ĥ)− 1

2
ĥ(∂µĥνρ)(∂

ν ĥµρ)

+ ĥσρ (∂µĥνσ)(∂ν ĥµρ) + 2ĥσρ (∂µĥνσ)(∂ρĥµν)− 1

2
ĥσρ (∂σĥµν)(∂ρĥµν) (3.169)

LB:hhh =
1

4
ĥJĥ′K2 − Jĥ′KJĥĥ′K− 1

4
ĥJĥ′ĥ′K + Jĥĥ′ĥ′K (3.170)

LA:hhr = 0 (3.171)

LB:hhr =
1

2

√
3

2

[
Jĥ′ĥ′K− Jĥ′K2

]
r̂ (3.172)

LA:hrr = −1

3
(∂ĥ)µr̂(∂

µr̂) +
1

3
(∂µĥ)r̂(∂µr̂) +

1

4
ĥ(∂µr̂)

2 − 1

2
ĥµν(∂µr̂)(∂ν r̂) (3.173)

LB:hrr = 0 (3.174)

LA:rrr = − 1√
6
r̂(∂µr̂)

2 (3.175)

LB:rrr = 0 (3.176)



3.4.4 Quartic-Level Results

LA:hhhh =
1

8
ĥ2(∂ĥ)µ(∂µĥ)− 1

4
JĥĥK(∂ĥ)µ(∂µĥ)− 1

2
ĥĥµν(∂ĥ)µ(∂ν ĥ) + JĥĥKµν(∂ĥ)µ(∂ν ĥ)

− 1

16
ĥ2(∂µĥ)2 +

1

8
JĥĥK(∂µĥ)2 − 1

2
ĥĥµν(∂ĥ)ρ(∂

ρĥµν) + JĥĥKµν(∂ĥ)ρ(∂
ρĥµν)

+ ĥµν ĥρσ(∂ĥ)µ(∂ν ĥρσ) +
1

2
ĥĥµν(∂ρĥ)(∂ρĥµν)− JĥĥKµν(∂ρĥ)(∂ρĥµν)

+
1

16
ĥ2(∂ρĥµν)2 − 1

8
JĥĥK(∂ρĥµν)2 − 1

2
ĥĥσρ (∂µĥνσ)(∂µĥνρ)

+ JĥĥKσρ (∂µĥνσ)(∂µĥνρ)− 1

2
ĥµν ĥρσ(∂τ ĥ

µν)(∂τ ĥρσ) +
1

2
ĥµσĥρν(∂τ ĥ

µν)(∂τ ĥρσ)

+
1

4
ĥĥµν(∂µĥ)(∂ν ĥ)− 1

2
JĥĥKµν(∂µĥ)(∂ν ĥ)− 1

2
ĥĥµν(∂ρĥ)(∂µĥνρ)

+ JĥĥKµν(∂ρĥ)(∂µĥνρ) + ĥµρĥνσ(∂µĥ)(∂ν ĥρσ)− ĥµν ĥρσ(∂µĥ)(∂ν ĥρσ)

− 1

8
ĥ2(∂µĥνρ)(∂

ν ĥµρ) +
1

4
JĥĥK(∂µĥνρ)(∂ν ĥµρ) +

1

2
ĥĥσρ (∂µĥνσ)(∂ν ĥµρ)

− JĥĥKσρ (∂µĥνσ)(∂ν ĥµρ) + ĥĥσρ (∂µĥνσ)(∂ρĥµν)− 2JĥĥKσρ (∂µĥνσ)(∂ρĥµν)

− 2ĥµν ĥρσ(∂τ ĥ
νρ)(∂σĥτµ) + ĥµσĥνρ(∂τ ĥ

νρ)(∂σĥτµ)− 1

4
ĥĥσρ (∂σĥµν)(∂ρĥµν)

+
1

2
JĥĥKσρ (∂σĥµν)(∂ρĥµν)− ĥµν ĥρσ(∂µĥ

στ )(∂ρĥντ ) + ĥ
µ
ρ ĥ

ν
σ(∂µĥ

στ )(∂ρĥντ )

(3.177)

LB:hhhh =
1

16
ĥ2Jĥ′K2 − 1

8
JĥĥKJĥ′K2 − 1

2
ĥJĥ′KJĥĥ′K + Jĥ′KJĥĥĥ′K− 1

16
ĥ2Jĥ′ĥ′K

+
1

8
JĥĥKJĥ′ĥ′K +

1

2
ĥJĥĥ′ĥ′K− Jĥĥĥ′ĥ′K +

1

2
Jĥĥ′K2 − 1

2
Jĥĥ′ĥĥ′K (3.178)

LA:hhhr = 0 (3.179)

LB:hhhr =
1

4

√
3

2

[
− ĥJĥ′K2 + 4Jĥ′KJĥĥ′K + ĥJĥ′ĥ′K− 4Jĥĥ′ĥ′K

]
r̂ (3.180)

LA:hhrr = − 1

12
(∂ĥ)µ(∂µĥ)r̂2 +

1

24
(∂µĥ)2r̂2 − 1

24
(∂µĥνρ)

2r̂2 +
1

12
(∂µĥνρ)(∂

ν ĥµρ)r̂2

− 1

6
ĥ(∂ĥ)µr̂(∂

µr̂) +
1

3
ĥµν(∂ĥ)µr̂(∂ν r̂) +

1

6
ĥ(∂µĥ)r̂(∂µr̂)− 1

3
ĥµν(∂ρĥ

µν)(∂ρĥ)

− 1

3
ĥµν(∂µĥ)r̂(∂ν r̂) +

1

3
ĥνρ(∂

ρĥµν)r̂(∂µr̂) +
1

16
ĥ2(∂µr̂)

2 − 1

8
JĥĥK(∂µr̂)2

− 1

4
ĥĥµν(∂µr̂)(∂ν r̂) +

1

2
JĥĥKµν(∂µr̂)(∂ν r̂) (3.181)

LB:hhrr =
5

12

[
Jĥ′K2 − Jĥ′ĥ′K

]
r̂2 (3.182)



LA:hrrr =
1

6
√

6

[
2(∂ĥ)µr̂

2(∂µr̂)− 2(∂µĥ)r̂2(∂µr̂)− 3ĥr̂(∂µr̂)
2 + 6ĥµν r̂(∂

µr̂)(∂ν r̂)

]
(3.183)

LB:hrrr = 0 (3.184)

LA:rrrr =
1

8
r̂2(∂µr̂)

2 (3.185)

LB:rrrr = 0 (3.186)

3.5 Appendix: WFE Expressions

This appendix derives formulas for weak field expanding the inverse metric G̃MN and the
invariant volume element

√
| detG|.

3.5.1 Inverse Metric

Consider a metric G on X-dimensional spacetime of the form

GMN ≡ c0ηMN +HMN (3.187)

where the real number c0 is positive. If HMN is small relative to c0ηMN , we may weak field
expand G̃MN in the field HMN . Because GMN only depends on HMN , the form of this
expansion must be, using the twice-squared bracket notation defined in Section 2.2.1,

G̃MN ≡
+∞∑
n=0

c̃n JHnKMN (3.188)

We can solve for the unknown coefficients c̃ in Eq. (3.188) by imposing the inversion condition
GMN G̃

NP = ηPM like so:

ηPM ≡
[
c0ηMN +HMN

] [ +∞∑
n=0

c̃n JHnKNP
]

(3.189)

= c0

+∞∑
n=0

c̃nJHnKPM +
+∞∑
n=0

c̃nJHn+1KPM (3.190)

= c0c̃0 η
P
M +

+∞∑
n=1

(c0c̃n + c̃n−1)JHnKPM (3.191)

which forces the recursive relations

c̃0 = c−1
0 c̃n = −c−1

0 c̃n−1 = (−1)nc
−(n+1)
0 (3.192)

such that, when GMN = c0ηM +HMN ,

G̃MN =
+∞∑
n=0

(−1)nc
−(n+1)
0 JHnKMN (3.193)



3.5.2 Covariant Volume Factor

Next, let us weak field expand the covariant spacetime volume factor
√
| detG| for various

choices of the metric GMN . As before, detG here refers to the determinant of the matrix of
components GMN . We will increase the complexity of G in stages until it is of the form of
the RS1 metric.

3.5.2.1 Flat Minkowski Spacetime

Define ηMN ≡ Diag(+1,−1, . . . ,−1) = ηMN as the flat X-dimensional spacetime metric.
Then, immediately, √

| det η| =
√
|(+1) · (−1)X−1| = 1 (3.194)

To prepare for more complicated cases, let us also calculate this another way. Namely, we
may use the formula,

detA = exp {tr [Log (A)]} (3.195)

to write

√
± detA =


∣∣∣exp

[
1
2tr[Log (A)]

]∣∣∣∣∣∣i exp
{

1
2tr[Log (A)]

}∣∣∣ (3.196)

To ensure the LHS equals
√
| detA| when applied to A = η (and, later, A = G), we will take

the + case when X is odd and − case when X is even. This allows us to write,√
| detA| =

∣∣∣∣iX+1 exp
{

1
2tr[Log (A)]

} ∣∣∣∣ (3.197)

The matrix logarithm present on the RHS of Eq. (3.197) is defined via power series,

Log (1+ A) ≡
+∞∑
n=1

(−1)n−1

n
An = A− 1

2
A2 +

1

3
A3 − . . . (3.198)

For a diagonal matrix (and using principal values),

Log [Diag (A1, . . . , AN )] = Diag [log(A1), . . . , log(AN )] (3.199)

Hence,

Log η = Diag [log(+1), log(−1), . . . , log(−1)] (3.200)

= Diag (0, iπ, iπ, · · · , iπ) (3.201)

and so

exp
[

1
2tr (Log η)

]
= exp

[
1
2(X − 1)iπ

]
= i(X−1) (3.202)



such that, √
| det η| =

∣∣∣i2X ∣∣∣ =
∣∣∣(−1)X

∣∣∣ = 1 (3.203)

which is consistent with our first calculation. This second method is excessive for the flat
metric. However, it is useful for more complicated metrics whose determinants cannot be
calculated directly.

3.5.2.2 Perturbing Minkowski Spacetime

Next, we consider the perturbed metric GMN ≡ c0ηMN +HMN (note this is the metric we
used in the previous subsection). Our goal is to weak field expand

√
| detG|, i.e. calculate√

| detG| as perturbative expansion in H near the background metric η. Because η = η̃ and
η2 = ηη̃ = 1 when considered as matrices, we can write G as the following product:

G = c0η +H = η(c01+ ηH) (3.204)

If [A,B] = 0 for matrices A and B, then we can apply Log(AB) = Log(A) + Log(B).
However, this is not the case for the product in the above expression: ηηH = H = [HMN ]
whereas ηHη = [HMN ] such that [η, c01 + ηH] = [η, ηH] is nonzero. Thankfully, there’s a
simplification afforded to us by the Baker-Campbell-Hausdorff (BCH) formula. The BCH
formula is of the form,

Exp(A) Exp(B) = Exp
(
A+B + 1

2 [A,B] + . . .
)

(3.205)

This is useful to us after making the replacements (A,B) → (LogA,LogB) and taking the
matrix logarithm of both sides. Then the BCH becomes

Log(AB) = Log(A) + Log(B) + 1
2

[
Log(A),Log(B)

]
+ . . . (3.206)

We intend to take the trace of both sides to apply the determinant formula Eq. (3.195), and
(thankfully) the trace distributes over addition:

tr Log(AB) = tr Log(A) + tr Log(B) + 1
2tr
[
Log(A),Log(B)

]
+ . . . (3.207)

where higher-order terms contain traces of increasingly-many commutators. But the trace
of any commutator vanishes because tr(XY ) = tr(Y X), such that

tr[X, Y ] = tr(XY )− tr(Y X) = tr(XY )− tr(XY ) = 0 (3.208)

Therefore, the traces of all commutators in our modified BCH formula vanish, such that

tr Log(AB) = tr Log(A) + tr Log(B) (3.209)

which implies √
| detAB| =

∣∣∣∣iX+1 exp
{

1
2tr[Log (A)]

}
exp

{
1
2tr[Log (B)]

} ∣∣∣∣ (3.210)



and, setting A = η and B = c01+ ηH,√
| detG| =

∣∣∣∣iX+1 exp
{

1
2tr[Log (c0η)]

}
exp

{
1
2tr[Log (1+ ηH)]

} ∣∣∣∣ (3.211)

The first exponential can be evaluated exactly. Because

tr[Log(c0η)] = log[det(c0η)] (3.212)

= log
[
cX0 (−1)X−1

]
(3.213)

= log(cX0 ) + (X − 1)iπ (3.214)

it is the case that

exp
{

1
2tr [Log (c0η))]

}
= c

X/2
0 exp

[
1
2(X − 1)iπ

]
= iX−1cX0 (3.215)

Substituting this into Eq. (3.211), we obtain the exact expression√
| detG| = c

X/2
0 exp

{
1
2tr [Log (1+ ηH)]

}
(3.216)

Finally, using the perturbative expression for the matrix logarithm Eq. (3.198), we obtain

√
| det(c0η +H)| = c

X/2
0

+∞∏
n=1

exp

(
(−1)n−1

2n
JHnK

)
(3.217)

where JHK = ηMN HNM , JH2K = ηMN HNP η
PQ ηQM , and so-on. To obtain the O(Hn)

terms in
√
| detG|, we should expand each exponential in the product to O(Hn). For

example, to obtain O(H4) results, the relevant exponentials and their expansions are

exp
(

+1
2JHK

)
= 1 + 1

2JHK + 1
8JHK2 + 1

48JHK3 + 1
384JHK4 +O(H5) (3.218)

exp
(
−1

4JH2K
)

= 1− 1
4JH2K + 1

32JH2K2 +O(H6) (3.219)

exp
(

+1
8JH3K

)
= 1 + 1

8JH3K +O(H6) (3.220)

exp
(
− 1

16JH4K
)

= 1− 1
16JH4K +O(H8) (3.221)

which yields√
| detG| = c

X/2
0

[
1 +

1

2
JHK +

1

8

(
JHK2 − 2JH2K

)
+

1

48

(
JHK3 − 6JHK JH2K + 6JH3K

)
+

1

384

(
JHK4 − 12JHK2 JH2K + 12JH2K2 + 24JHK JH3K− 24JH4K

)
+O(H5)

]
(3.222)



3.5.2.3 Block Diagonal Extension

Suppose we expand the metric G even further into an (X + 1)-dimensional object G, so that

G =

(
w0(c0η +H) ~0T

~0 −v2
0

)
(3.223)

where w0 and v0 are real and positive. To find
√
| detG|, we employ a fact about block diago-

nal matrices. Let M be a block diagonal matrix M ≡ Diag(A,B) where A and B are square
matrices. We may define additional matrices A′ ≡ Diag(A,1B) and B′ ≡ Diag(1A, B),
where 1A and 1B are identity matrices of the same dimensionality as A and B respectively.
A and B commute ([A′, B′] = 0) their products recovers M (M = A′B′). Thus, the BCH
formula implies Log(M) = Log(A′) + Log(B′), and

det(M) = exp [tr(LogM)] (3.224)

= exp
[
tr
(
LogA′ + LogB′

)]
(3.225)

= exp
[
tr(LogA′) + tr(LogB′)

]
(3.226)

= exp
[
tr(LogA′)

]
exp

[
tr(LogB′)

]
(3.227)

= det(A′) det(B′) (3.228)

Because det(1A) = det(1B) = 1, this result implies det(A′) = det(A) det(1A) = det(A) and
det(B′) = det(B) det(1B) = det(B), such that

det

(
A 0
0 B

)
= det(A) det(B) (3.229)

This generalizes to multiple blocks via recursion, i.e. the determinant of a block diagonal
matrix det[Diag(M1,M2, . . . ,Mn)] is the product of the determinant of the individual blocks
det(M1) det(M2) . . . det(Mn). Using this on our extended metric, we find√

| detG| =
√∣∣det[w0(c0η +H)] det(−v2

0)
∣∣ = v0w

X/2
0

√
| det(c0η +H)| (3.230)

from which we can use the previous perturbative result, Eq. (3.217). This is the form
relevant to the 5D RS1 model.



Chapter 4

The 4D Effective RS1 Model and its
Sum Rules

4.1 Chapter Summary

The principle result of the last chapter was the weak field expansion (WFE) of the 5D RS1
Lagrangian, as summarized in Eqs. (3.164)-(3.186). Up to quartic order in the fields, we

derived each term L(RS)

hHrR
containing H instances of the field ĥµν(x, y) and R instances of

the field r̂(x), and partitioned them into A-type and B-type terms according to Eq. (3.164):

L(RS)

hHrR
= κH+R−2

[
e−πkrcε+2

]R [
ε−2L

A:hHrR
+ ε−4L

B:hHrR

]
(4.1)

This chapter demonstrates how the 5D fields ĥµν(x, y) and r̂(x) in the 5D WFE RS1 La-
grangian encode information about 4D spin-2 and spin-0 fields respectively. For example,
consider the quadratic terms obtained via this process, as recorded in Eqs. (3.165)-(3.168),

L(RS)
hh = ε−2

[
(∂ĥ)µ(∂µĥ)− (∂ĥ)2

µ +
1

2
(∂µĥνρ)

2 − 1

2
(∂µĥ)2

]
+ ε−4

[
1

2
Jĥ′K2 − 1

2
Jĥ′ĥ′K

]
(4.2)

L(RS)
rr =

[
e−πkrcε+2

]2
·
[

1

2
(∂µr̂)

2
]

(4.3)

These are structurally similar to the 4D Lagrangians from Eqs. (2.345), (2.346), and (2.352):

L(s=2)
massless ≡ (∂ĥ)µ(∂µĥ)− (∂ĥ)2

µ +
1

2
(∂µĥνρ)

2 − 1

2
(∂µĥ)2 (4.4)

L(s=2)
massive ≡ L

(s=2)
massless +m2

[
1

2
ĥ2 − 1

2
JĥĥK

]
(4.5)

L(s=0)
massless ≡

1

2
(∂µr̂)

2 (4.6)

which are the canonical massless spin-2, massive spin-2, and massless spin-0 Lagrangians
respectively. Specifically, if ĥµν(x, y) is momentarily assumed y-independent, then the terms

proportional to ε−4 in L(RS)
hh from Eq. (4.2) vanish. The remaining terms are proportional to

ε−2 and exactly mimic the Lorentz structures of the massless spin-2 Lagrangian (Eq. (4.4)).
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Furthermore, if we restore the y-dependence of ĥµν(x, y), the Lorentz structures of the newly-

revived ε−4 terms mimic the Fierz-Pauli mass terms of the massive spin-2 Lagrangian (Eq.
(4.5)). This hints (correctly) that the 5D field ĥµν(x, y) contains information about 4D
spin-2 particle excitations, with its y-dependence specifically encoding information about 4D

particle masses. Meanwhile, the Lorentz structure of L(RS)
rr in Eq. (4.3) directly mimics

the massless spin-0 Lagrangian (Eq. (4.6)). The absence of a massive spin-0 structure for
the y-independent r̂(x) field synergizes well with our existing observation that massive spin-
2 structures arose from the y-dependence of hµν(x, y). In all, the y-independent field r̂
seemingly contains information about a massless spin-0 particle excitation.

This chapter formalizes how the 5D fields ĥµν(x, y) and r̂(x) generate 4D fields and thus
4D particle content. The key technique is Kaluza-Klein (KK) decomposition, which allows
the 5D fields to be written as sums of 4D fields weighted by extra-dimensional wavefunctions,
e.g.

ĥµν(x, y) =
1
√
πrc

+∞∑
n=0

ĥ
(n)
µν (x)ψn(ϕ) r̂(x) =

1
√
πrc

r̂(0)(x)ψ0 (4.7)

where {ψn(ϕ)} are the aforementioned wavefunctions and ϕ = y/rc ∈ [−π,+π] parameterizes
the extra dimension. The zero mode wavefunction ψ0 present in both decompositions is
independent of ϕ and thus constant across the extra dimension. The wavefunctions ψn
solve a Sturm-Liouville (SL) equation, and thereby form a complete basis for orbifolded-even
continuous functions f(ϕ):

f(ϕ) =
1
√
πrc

fn ψn(ϕ) =⇒ fn =

√
rc
π

∫ +π

−π
dϕ ε−2f(ϕ)ψn(ϕ) (4.8)

where ε ≡ exp(krc|ϕ|). Although this decomposition appears more symmetric when ex-
pressed in terms of y = ϕrc,

f(y) =
1
√
πrc

fn ψn

(
y
rc

)
=⇒ fn =

1
√
πrc

∫ +πrc

−πrc
dy ε−2f(y)ψn

(
y
rc

)
(4.9)

working in terms of ϕ makes manifest the fact that the wavefunctions and mass spectrum
{µn} = {mnrc} depend only on the parameter combination krc (as opposed to k and rc
independently). Thus, we favor the use of ϕ during KK decomposition and the subsequent
investigation of important integrals. Such integrals are generated when the KK decomposi-
tion ansatz is utilized while determining the 4D effective Lagrangian,

L(eff)
4D (x) ≡

∫ +πrc

−πrc
dy L5D(x, y) (4.10)

In this way, the 4D effective theory bundles all extra-dimensional dependence into various
integrals of products of wavefunctions.

The rest of this chapter proceeds as follows. Footnotes detail how results in this chapter
relate to our published works.



• Section 4.2 introduces KK decomposition and derives the wavefunctions necessary for
KK decomposition to yield canonical 4D particle content. Because of its importance
for future work, the derivation is performed under slightly more general circumstances
than is required for this dissertation.

• Section 4.3 then applies KK decomposition to the quadratic 5D Lagrangians, thereby

demonstrating that ĥµν(x, y) embeds a massless spin-2 field ĥ
(0)
µν (x) (the graviton) and

a tower of massive spin-2 fields ĥ
(n)
µν (x) (massive KK modes) whereas r̂(x) only embeds

a massless spin-0 field r̂(0)(x) (the radion). KK decomposition is then applied to
the more general weak field expanded 5D Lagrangian. This requires integrating over
the extra dimension, which results in interactions weighted by integrals of products
of KK wavefunctions. These integrals define A-type and B-type couplings. The krc
dependence of these coupling integrals in the large krc limit is briefly considered.1

• Section 4.4 derives relations (sum rules) between those coupling integrals and the spin-2
KK mode masses.2

The results of Sections 4.3 and 4.4 are essential building blocks for the main outcomes of this
dissertation. In the next and final chapter of this dissertation, the 4D effective Lagrangian
derived in Section 4.3 will be used to calculate scattering amplitudes. The sum rules derived
in Section 4.4 will prove vital for ensuring cancellations in the most divergent high-energy
growth of those amplitudes.

4.2 Wavefunction Derivation3

Let us now elaborate on the connection between 5D and 4D fields that was established in
the chapter summary, and in doing so derive explicit expressions for the wavefunctions that
will be utilized in the KK decomposition procedure. To demonstrate the KK decomposi-
tion is generically possible, we assume a quadratic 5D Lagrangian L5D can be decomposed
into a sum of quadratic 4D Lagrangians, derive constraints that are necessary for that as-
sumption to hold true, demonstrate all constraints can be satisfied by solving a certain
Sturm-Liouville problem, and then reveal we could have used that problem’s solution set to
begin with. However, rather than work with Eq. (4.2) directly, let us generalize somewhat.
This generalization is excessive for our present goals, but is important when considering (for
example) natural extensions of this work, including the addition of 5D bulk scalar matter or
when constructing models of radion stabilization.

1A-type and B-type couplings were originally defined in [17]. The decomposition and derivation of the

4D effective RS1 Lagrangian was originally published in [18]. The generalized coupling structure x(p) is new
to this dissertation, as are the generalizations of the A-type and B-type couplings that it implies.

2Most of the elastic sum rules derived in this chapter were originally published in [17] and later proved
in [18]; this section significantly generalizes the proofs in [18], and the inelastic results are entirely new to
this dissertation.

3This section was originally published as Appendix B of [18]. In addition to some changes in wording,
certain points have been elaborated on.



Thus, instead of the massless 5D field ĥµν(x, y), we consider a massive 5D field Φ~α(x, y)
defined over the 5D bulk by a Lagrangian

L5D = Q
µ~αν~β
A e−2k|y|(∂µΦ~α)(∂νΦ~β

) +Q
~α~β
B

{
e−4k|y|(∂yΦ~α)(∂yΦ~β

) +m2
Φe
−4k|y|Φ~αΦ~β

}
(4.11)

where the index ~α is a list of Lorentz indices and mΦ is the 5D mass of the field. The Lorentz

tensors Q
µ~αν~β
A and Q

~α~β
B will eventually be chosen to ensure this procedure yields KK modes

with canonical kinetic terms. Note that this Lagrangian can be written equivalently as

L5D
∼= Q

µ~αν~β
A e−2k|y|(∂µΦ~α)(∂νΦ~β

) +Q
~α~β
B

{
−Φ~α · ∂y

[
e−4k|y|(∂yΦ~β

)
]

+m2
Φe
−4k|y|Φ~αΦ~β

}
(4.12)

via integration by parts. By performing a mode expansion (KK decomposition) on Eq. (4.12)
according to the ansatz

Φ~α(x, y) =
1
√
πrc

+∞∑
n=0

Φ
(n)
~α (x)ψn(y) , (4.13)

we obtain

L5D
∼=

1

πrc

+∞∑
m,n=0

Q
µ~αν~β
A (∂µΦ

(m)
~α )(∂νΦ

(n)
~β

) e−2k|y|ψ(m)ψ(n)

+Q
~α~β
B Φ

(m)
~α Φ

(n)
~β

ψ(m)
{
− ∂y

[
e−4k|y|(∂yψn)

]
+m2

Φe
−4k|y|ψn

}
. (4.14)

Integrating over the extra dimension as in Eq. (4.10) then yields the following effective 4D
Lagrangian:

L(eff)
4D =

+∞∑
m,n=0

Q
µ~αν~β
A (∂µΦ

(m)
~α )(∂νΦ

(n)
~β

) ·N (m,n)
A +Q

~α~β
B Φ

(m)
~α Φ

(n)
~β
·N (m,n)

B , (4.15)

where N
(m,n)
A and N

(m,n)
B equal

N
(m,n)
A =

1

πrc

∫ +πrc

−πrc
dy e−2k|y|ψmψn , (4.16)

N
(m,n)
B =

1

πrc

∫ +πrc

−πrc
dy ψm

{
−∂y

[
e−4k|y|(∂yψn)

]
+m2

Φe
−4k|y|ψn

}
. (4.17)

We desire that this process yields a particle spectrum described by canonical 4D Lagrangians
for particles of definite spins and masses. Specifically, we desire that a (bosonic) mode field
φ~α(x) in the KK spectrum is described by a Lagrangian

q
µ~αν~β
A (∂µφ~α)(∂νφ~β) +m2q

~α~β
B φ~αφ~β , (4.18)



where m is the mass of the KK mode, and the quantities qA and qB are Lorentz tensor
structures that reproduce the canonical quadratic Lagrangian appropriate for the internal
spin of φ~α. For example, a massive spin-2 field ĥµν has the canonical quadratic Lagrangian

Eq. (4.5), such that φ~α(x) = ĥα1α2(x) and we may choose

q
µα1α2νβ1β2
A = ηµα1ηα2νηβ1β2 − ηµνηα1α2ηβ1β2 +

1

2
ηµνηα1β1ηα2β2 − 1

2
ηµνηα1α2ηβ1β2

(4.19)

q
α1α2β1β2
B =

1

2
ηα1α2ηβ1β2 − 1

2
ηα1β1ηα2β2 (4.20)

For a full KK tower, the corresponding canonical quadratic Lagrangian equals (indexing KK
number by n),4

L(eff)
4D =

+∞∑
n=0

q
µ~αν~β
A (∂µφ

(n)
~α )(∂νφ

(n)
~β

) +m2
nq
~α~β
B φ

(n)
~α φ

(n)
~β

. (4.21)

Comparing to Eq. (4.15), one recovers this form for the choices Q = q (i.e. if the 5D

quadratic tensor structures mimic the 4D canonical quadratic tensor structures), Φ(n) = φ(n),

N
(m,n)
A = δm,n, and N

(m,n)
B = m2

nδm,n. Consider this condition on N
(m,n)
B in more detail.

Via the defining equation Eq. (4.17), N
(m,n)
B = m2

nδm,n implies

1

πrc

∫ +πrc

−πrc
dy ψ(m)

{
− ∂y

[
e−4k|y|(∂yψn)

]
+m2

Φe
−4k|y|ψn

}
= m2

nδm,n . (4.22)

which then becomes, using the condition N
(m,n)
A = δm,n and Eq. (4.16),∫ +πrc

−πrc
dy ψm

{
∂y

[
e−4k|y|(∂yψn)

]
+

(
m2
ne
−2k|y| −m2

Φe
−4k|y|

)
ψn

}
= 0 . (4.23)

If the collection of wavefunctions {ψm} form a complete set, then Eq. (4.23) implies that
they are solutions of the following differential equation

∂y

[
e−4k|y|(∂yψn)

]
+

(
m2
ne
−2k|y| −m2

Φe
−4k|y|

)
ψn = 0 , (4.24)

or, when expressed in unitless combinations,

0 = ∂ϕ

[
e−4krc|ϕ|(∂ϕψn)

]
+

(
(mnrc)

2e−2krc|ϕ| − (mΦrc)
2e−4krc|ϕ|

)
ψn . (4.25)

4Restricting the KK decomposition sum to positive KK indices n is inspired by the RS1 model’s orbifold
symmetry. For example, if we instead considered a (non-orbifolded) torus, we would sum over all integer n,
with the sign of n describing the rotational direction of the particle’s momentum around the circular extra
dimension. From this perspective, imposing an orbifold symmetry causes the +n and −n non-orbifolded
states to be combined into an even superposition which we then call the nth KK mode of the orbifolded
theory.



In addition to this differential equation, orbifold symmetry requires that the derivatives
of the wavefunctions vanish at the orbifold fixed points, i.e. (∂ϕψn) = 0 for ϕ ∈ {0, π},
which provides the problem with boundary conditions. Finding the solution set {ψn} (and
corresponding values of {mnrc}) of Eq. (4.25) under these boundary conditions is precisely
a Sturm-Liouville (SL) problem, for which there is guaranteed a discrete (complete) basis of
real wavefunctions satisfying

1

π

∫ +π

−π
dϕ e−2krc|ϕ|ψmψn = N

(m,n)
A ≡ δm,n , (4.26)

as required. Hence, by finding wavefunctions ψn that solve Eqs. (4.25) and (4.26), we can
KK decompose the fields in Eq. (4.11) according to the ansatz and (so long as Q = q) obtain
a tower of canonical quadratic Lagrangians (4.18) as desired.

Eq. (4.2) is of the form Eq. (4.11) with mΦ = 0. In general, when the bulk mass
mΦ vanishes, Eq. (4.25) admits a massless solution (mn = 0) which is flat in the extra

dimension (∂yψ0 = 0). Therefore, the 5D field ĥµν gives rise to a massless 4D field ĥ
(0)
µν ,

which we identify with the usual (4D) graviton. The 5D field r̂ yields a massless 4D field r̂(0)

which we identify as the radion; however, note that Eq. (4.3) is not of the form Eq. (4.11)
because of the additional warp factors introduced alongside r̂, and thus its KK decomposition
is derived solely from the y-independence of r̂.5 Normalization fixes ψ0 to equal

ψ0 =

√
krcπ

1− e−2krcπ
. (4.27)

When mΦ 6= 0, this solution does not exist.
By construction, the SL equation combined with Eq. (4.26) implies an additional quadratic

integral condition:

1

π

∫ +π

−π
dϕ e−4krc|ϕ|

[
(∂ϕψm)(∂ϕψn) + (mΦrc)

2ψmψn

]
= (mnrc)

2δm,n . (4.28)

When mΦ = 0, this becomes an orthonormality condition on the set {∂ϕψn}.
The existence of a discrete solution set of wavefunctions is guaranteed by the SL problem.

Following the notation and arguments from [28], we now summarize how to find explicit
equations for the non-flat wavefunctions in that solution set. Note that

∂ϕ|ϕ| = sign(ϕ) , (4.29)

∂2
ϕ|ϕ| = 2

[
δ(ϕ)− δ(ϕ− π)

]
, (4.30)

such that (∂ϕ|ϕ|)2 = 1 and ∂2
ϕ|ϕ| = 0 when ϕ 6= 0, π. Thus, away from the orbifold

fixed points, Eq. (4.25) may be rewritten by defining quantities zn = (mn/k)e+krc|ϕ| and
fn = (m2

n/k
2)ψn/z

2
n, such that

z2
n
d2fn
dz2
n

+ zn
dfn
dzn

+

[
z2
n −

(
4 +

m2
Φ

k2

)]
fn = 0 . (4.31)

5To prevent the radion from contributing to long-range gravitational forces and to ensure the extra-
dimensional is stable against quantum fluctuations, we must include interactions which make the physical
4D spin-0 field become massive, as occurs during radion stabilization [28].



When mΦ = 0, this differential equation is solved by fn equal to Bessel functions J2(zn) or
Y2(zn). When mΦ 6= 0, it is instead solved by Bessel functions Jν(zn) and Yν(zn) where
ν2 ≡ 4 +m2

Φ/k
2. Taking a superposition of the appropriate Bessel functions yields a generic

solution fn, which may then be converted back to ψn. By imposing the SL boundary
conditions at the orbifold fixed points (∂ϕψn = 0 for ϕ ∈ {0, π}), the wavefunctions are
found to equal

ψn =
ε2

Nn

[
Jν

(
µnε

krc

)
+ bnν Yν

(
µnε

krc

)]
, (4.32)

where ε ≡ e+krc|ϕ| and µn ≡ mnrc, the normalization Nn is determined by Eq. (4.26) (up
to a sign that we fix by setting Nn > 0 and which yields ψn(0) < 0 for nonzero n), and the
relative weight bnν equals

bnν = −
2Jν

∣∣∣
µn/krc

+
µn
krc

(∂Jν)
∣∣∣
µn/krc

2Yν

∣∣∣
µn/krc

+
µn
krc

(∂Yν)
∣∣∣
µn/krc

, (4.33)

where ∂Jν ≡ ∂Jν(z)/∂z and ∂Yν ≡ ∂Yν(z)/∂z. These wavefunctions satisfy Eq. (4.28)
where each µn solves[

2Jν +
µnε

krc
(∂Jν)

] ∣∣∣∣
ϕ=π

[
2Yν +

µnε

krc
(∂Yν)

] ∣∣∣∣
ϕ=0

−
[
2Yν +

µnε

krc
(∂Yν)

] ∣∣∣∣
ϕ=π

[
2Jν +

µnε

krc
(∂Jν)

] ∣∣∣∣
ϕ=0

= 0 . (4.34)

Although these wavefunctions were derived by solving Eq. (4.25) away from the orbifold
fixed points, they solve the equation across the full extra dimension. In particular, they
ensure ∂2

ϕψn = [(mΦrc)
2 − ε2µ2

n]ψn at ϕ = 0, π.
Finally, note that given a 5D Lagrangian consistent with Eq. (4.11), the wavefunctions

ψn and spectrum {µn} are entirely determined by the unitless quantities krc and mΦrc. In
the RS1 model, the 5D field ĥµν lacks a bulk mass (mΦ = 0 such that ν = 2), so its KK
decomposition is dictated by krc alone.

4.3 4D Effective RS1 Model6

In this section, we carry out the KK mode expansions of ĥµν(x, y) and r̂(x), thereby obtaining
the 4D particle content of the RS1 model, and discuss the form of the interactions among
the 4D fields.

6Subsection 4.3.1 was originally published as Subsection III.A of [18]. Subsection 4.3.2 combines content
that was originally published as Subsections III.B and C.2 of [18]. Subsection 4.3.3 was originally published as
Appendix C of [18]. Notations and terminology have been updated, and paragraphs that describe convenient

wavefunction properties and the generalized coupling structure x(p) have been added.



4.3.1 4D Particle Content

The 4D particle content is determined by employing the KK decomposition ansatz [29, 30,
28]:

ĥµν(x, y) =
1
√
πrc

+∞∑
n=0

ĥ
(n)
µν (x)ψn(ϕ) r̂(x) =

1
√
πrc

r̂(0)(x)ψ0 , (4.35)

where we recall that ϕ = y/rc. The operators ĥ
(n)
µν and r̂(0) are 4D spin-2 and spin-0 fields

respectively, while each ψn is a wavefunction which solves the following Sturm-Liouville
equation

∂ϕ

[
ε−4(∂ϕψn)

]
= −µ2

nε
−2ψn (4.36)

subject to the boundary condition (∂ϕψn) = 0 at ϕ = 0 and π, where ε ≡ ek|y| = ekrc|ϕ| [28].
As described in the previous section, there exists a unique solution ψn (up to normalization)
per eigenvalue µn, each of which we index with a discrete KK number n ∈ {0, 1, 2, · · · } such
that µ0 = 0 < µ1 < µ2 < · · · . Given a KK number n, the quantity µn and wavefunction
ψn(ϕ) are entirely determined by the value of the unitless nonnegative combination krc. We
note that with proper normalization the ψn satisfy two convenient orthonormality conditions:

1

π

∫ +π

−π
dϕ ε−2ψmψn = δm,n , (4.37)

1

π

∫ +π

−π
dϕ ε−4(∂ϕψm)(∂ϕψn) = µ2

nδm,n . (4.38)

Furthermore, the {ψn} form a complete set, such that the following completeness relation
holds:

δ(ϕ2 − ϕ1) =
+∞∑
j=0

1

π
ε−2ψj(ϕ1)ψj(ϕ2) . (4.39)

Because of the assumptions behind its derivation, the completeness relation can only be used
to combine or separate orbifold-even integrands. For example, if f(ϕ) 6= 0 is an orbifold-odd
function (such as (∂ϕψn)), then splitting f(ϕ)2 into a product f(ϕ)2 · 1 is fine,

0 <
1

π

∫ +π

−π
dϕ ε+2f(ϕ)f(ϕ) =

∑
j

[
1

π

∫
dϕ f(ϕ)f(ϕ)ψj(ϕ)

] [
1

π

∫
dϕ ψj(ϕ)

]
(4.40)

whereas trying to apply completeness to split f(ϕ)2 as the product f(ϕ) · f(ϕ) yields a
contradiction

0 <
1

π

∫ +π

−π
dϕ ε+2f(ϕ)f(ϕ) 6=

∑
j

[
1

π

∫
dϕ f(ϕ)ψj(ϕ)

]2

= 0 (4.41)



The completeness relation will be vital to relating different coupling structures present in
the 4D effective WFE RS1 Lagrangian.

The KK number n = 0 corresponds to µn = 0, for which Eq. (4.36) admits a flat
wavefunction solution ψ0 corresponding to the massless 4D graviton. Upon normalization
via Eq. (4.37), this wavefunction equals

1 =
1

π
ψ2

0

∫ +π

−π
ε−2 =

1

πkrc

[
1− e−2πkrc

]
=⇒ ψ0 =

√
πkrc

1− e−2πkrc
(4.42)

up to a phase that we set to +1 by convention. This is the wavefunction that Eq. (4.35)

associates with the fields ĥ(0) and r̂(0). The lack of higher modes in the KK decomposition of
r̂ reflects its y-independence. In this sense, choosing to associate ψ0 with r̂(0) in Eq. (4.35)
is merely done for convenience.

Before we compute the interactions between 4D states, let us first apply the ansatz to the
simpler quadratic terms. This will illustrate how the KK decomposition procedure typically
works, as well as why the interaction terms are more complicated. The 5D quadratic ĥµν(x, y)
Lagrangian equals (from Section 3.4)

L(RS)
hh = ε−2 LA:hh + ε−4 LB:hh , (4.43)

where

LA:hh =− ĥµν(∂µ∂ν ĥ) + ĥµν(∂µ∂ρĥ
ρν)− 1

2
ĥµν(�ĥµν) +

1

2
ĥ(�ĥ) , (4.44)

LB:hh =− 1

2
Jĥ′ĥ′K +

1

2
Jĥ′K2 , (4.45)

A prime indicates differentiation with respect to y and a twice-squared bracket indicates a
cyclic contraction of Lorentz indices. Similarly, the quadratic 5D r̂(x) Lagrangian equals,

L(RS)
rr = e−2πkrc ε+2 LA:rr , (4.46)

where

LA:rr =
1

2
(∂µr̂)(∂

µr̂) . (4.47)

To obtain the 4D effective equivalents of the above 5D expressions, we must integrate over
the extra dimension and employ the KK decomposition ansatz.

First, the quadratic ĥµν Lagrangian: the first term in Eq. (4.43) becomes

L(eff)
A:hh ≡

∫ +πrc

−πrc
dy ε−2 LA:hh

=

∫ +πrc

−πrc
dy ε−2

[
−ĥµν(∂µ∂ν ĥ) + ĥµν(∂µ∂ρĥ

ρν)− 1

2
ĥµν(�ĥµν) +

1

2
ĥ(�ĥ)

]
=

+∞∑
m,n=0

[
−ĥ(m)

µν (∂µ∂ν ĥ(n)) + ĥ
(m)
µν (∂µ∂ρĥ

(n)ρν)− 1

2
ĥ

(m)
µν (�ĥ(n)µν) +

1

2
ĥ(m)(�ĥ(n))

]

× 1

π

∫ +π

−π
dϕ ε−2ψmψn , (4.48)



whereas its second term becomes

L(eff)
B:hh ≡

∫ +πrc

−πrc
dy ε−4 LB:hh

=

∫ +πrc

−πrc
dy ε−4

[
−1

2
Jĥ′ĥ′K +

1

2
Jĥ′K2

]
=

+∞∑
m,n=0

[
−1

2
Jĥ(m)ĥ(n)K +

1

2
Jĥ(m)KJĥ(n)K

]
1

πr2
c

∫ +π

−π
dϕ ε−4(∂ϕψm)(∂ϕψn) . (4.49)

These are simplified via the orthonormality relations Eqs. (4.37) and (4.38), such that the

4D effective Lagrangian resulting from L(RS)
hh equals, using Eqs. (4.4) and (4.5),

L(RS,eff)
hh = L(eff)

A:hh + L(eff)
B:hh

= L(s=2)
massless(ĥ

(0)) +
+∞∑
n=1

L(s=2)
massive(mn, ĥ

(n)) , (4.50)

wherein mn ≡ µn/rc. Therefore, KK decomposition of the 5D field ĥµν results in the

following 4D particle content: a single massless spin-2 mode ĥ(0), and countably many
massive spin-2 modes ĥ(n) with n ∈ {1, 2, · · · } (each having a corresponding Fierz-Pauli mass

term). The zero mode ĥ(0) is consistent with the usual 4D graviton, and will be identified
as such. The 4D graviton has dimensionful coupling constant κ4D = 2/MPl = ψ0κ/

√
πrc

where MPl is the reduced 4D Planck mass. In terms of the reduced 4D Planck mass, the full
4D Planck mass equals

√
8πMPl.

Meanwhile, the 4D effective equivalent of L(RS)
rr from Eq. (4.46) equals, using Eq. (4.6),

L(RS,eff)
rr =

∫ +πrc

−πrc
dy L(RS)

rr

=

∫ +πrc

−πrc
dy e−2πkrc ε+2

[
1

2
(∂µr̂)(∂

µr̂)

]
=

1

2
(∂µr̂

(0))(∂µr̂(0)) · ψ0
2

πrc

∫ +πrc

−πrc
dy e+2k(|y|−πrc)

= LS=0
massless(r̂

(0)) . (4.51)

Therefore, KK decomposing the 5D r̂ field yields only a single massless spin-0 mode r̂(0),
which is called the radion. Note the exponential factor in Eq. (4.46) is inconsistent with the
orthonormality equation (4.37), so we had to calculate the integral explicitly. Thankfully,
the y-independent radion must possess a flat extra-dimensional wavefunction and so the
exponential factor can at most affect its normalization. This would not be the case if the
radion’s y-dependence could not be gauged away in Subsection 3.3.2.

The RS1 model has three independent parameters according to the above construction:
the extra-dimensional radius rc, the warping parameter k, and the 5D coupling strength κ.



However, we use a more convenient set of independent parameters in practice: the unitless
extra-dimensional combination krc, the mass m1 of the first massive KK mode ĥ(1), and the
reduced 4D Planck mass MPl. These sets are related according to the following relations:

m1 ≡
1

rc
µ1(krc) via Eq. (4.36) , (4.52)

MPl ≡
2

κ
√
k

√
1− e−2krcπ . (4.53)

In our numerical analysis, we will choose krc ∈ [0, 10], m1 = 1 TeV, and MPl = 2.435 ×
1015 TeV.

Deriving the quadratic terms proceeded so cleanly in part because all wavefunctions
with a nonzero KK number occur in pairs and are thus subject to orthonormality relations.
Such simplifications are seldom possible when dealing with a product of three or more 5D
ĥµν fields, and instead the integrals must be dealt with explicitly. Consequently, the RS1
model possesses many nonzero triple couplings and calculating a matrix element for 2-to-2
scattering of massive KK modes typically requires a sum over infinitely many diagrams, each
of which is mediated by a different massive KK mode and contains various products of these
overlap integrals. The next section details the 4D effective Lagrangian and the origin of those
integrals. The final section details relations between KK mode masses and the integrals.

4.3.2 General Procedure

The WFE RS1 Lagrangian equals a sum of terms, wherein each term contains some number
of 5D fields and exactly two derivatives. Each derivative in the pair is either a 4D spatial
derivative ∂µ or an extra-dimension derivative ∂y, and each field is either an r̂ or an ĥµν
field. Because the Lagrangian requires an even number of Lorentz indices in order to form a
Lorentz scalar, each derivative pair must consist of two copies of the same kind of derivative,

i.e. each term in L(RS)
5D can be classified into one of two categories:

• A-Type: The term has two spatial derivatives ∂µ · ∂ν ; or

• B-Type: The term has two extra-dimensional derivatives ∂y · ∂y .

In addition to fields and derivatives, every term in L(RS)
5D has an exponential prefactor. That

exponential’s specific form is entirely determined by its type (whether A- or B-type) and
the number of instances of r̂ in the term. Each A-type term is associated with a factor
ε−2 = e−2krc|ϕ| whereas each B-type term is associated with a factor ε−4 = e−4krc|ϕ|, and
every instance of a radion field provides an additional e−πkrcε+2 factor. These assignments
correctly reproduce the prefactors of Section 3.4.

Consider a generic A-type term with H instances of ĥ and R instances of r̂. Schematically,
it will be of the form,

XA ≡ κ(H+R−2)
[
ε−2
] [

e−πkrcε+2
]R

(∂2
µ, ĥ

H , r̂R)

= κ(H+R−2) e−Rπkrc ε2(R−1)XA , (4.54)



where the combination XA ≡ (∂2
µ, ĥ

H , r̂R) refers to a fully contracted product of two 4D

derivatives, H gravitons, and R radions. The µ label on ∂2
µ above is only schematic and not

literal. Similarly, an equivalent B-type term would be of the form,

XB ≡ κ(H+R−2)
[
ε−4
] [

e−πkrc ε+2
]R

(∂2
y , ĥ

H , r̂R)

= κ(H+R−2) e−Rπkrc ε2(R−2)XB , (4.55)

where the combination XB ≡ (∂2
y , ĥ

H , r̂R) refers to a fully contracted product of two extra-

dimensional derivatives, H instances of ĥµν , and R instances of r̂. By construction, each
B-type term we consider never has both of its ∂y derivatives acting on the same field (i.e.

any instances of ∂2
y ĥ in our 5D Lagrangian have been removed via integration by parts), and

so we assume XB also satisfies this property.
We form a 4D effective Lagrangian by first KK decomposing our 5D fields into states of

definite mass (Eq. (4.35)) and then integrating over the extra dimension (Eq. (4.10)). For
the schematic A-type term, this procedure yields,

X
(eff)
A =

rc

(πrc)(H+R)/2
κ(H+R−2)

+∞∑
n1,··· ,nH=0

(
∂2
µ, ĥ

(n1) · · · ĥ(nH ),
[
r̂(0)
]R)

× e−Rπkrc
∫ +π

−π
dϕ ε2(R−1)ψn1 · · ·ψnH [ψ0]R .

Define a unitless combination a that contains the extra-dimensional overlap integral:

a(R|~n) ≡ ar···rn1···nH ≡
1

π
e−Rπkrc

∫ +π

−π
dϕ ε2(R−1)ψn1 · · ·ψnH [ψ0]R , (4.56)

where ~n ≡ (n1, · · · , nH), there are R instances of the label r are present in ar···rn1···nH
(e.g. a(2|n1n2) = arrn1n2), and ar···rn1···nH is fully symmetric in the subscript (e.g. annr =

anrn = arnn). Using this, we may now write

X
(eff)
A =

[
κ
√
πrc

]H+R−2 +∞∑
n1,··· ,nH=0

a(R|n1···nH )

(
∂2
µ, ĥ

(n1) · · · ĥ(nH ),
[
r̂(0)
]R)

. (4.57)

To simplify this expression further, we define a KK decomposition operator X(~n)[•]. The

KK decomposition operator maps a product of ĥµν and r̂ fields to an analogous product of

4D spin-2 fields ĥ
(ni)
µν labeled by KK numbers ~n = (n1, · · · , nH) and 4D radion fields r̂(0).

More specifically, X maps all r̂ in its argument to r̂(0) and applies the specified KK labels

to the ĥµν fields (ĥµν 7→ ĥ
(ni)
µν ) per term according to the following prescription: the labels

are applied left to right in the order that they occur in ~n, and are applied to ĥµν fields of

the form (∂yĥ) before being applied to all other ĥµν fields. (This prescription ensures we
correctly keep track of KK number relative to the soon-to-be-defined quantity b.) After KK



number assignment, any 4D derivatives ∂µ in the argument of X are kept as is, while each
extra-dimensional derivative ∂y is replaced by 1/rc.

Using X , we rewrite the A-type expression:

X
(eff)
A =

[
κ
√
πrc

]H+R−2 +∞∑
n1,··· ,nH=0

a(R|n1···nH ) · X(n1···nH )

[
XA
]
. (4.58)

This completes the schematic A-type procedure. B-type terms admit a similar reorganization.
First, we KK decompose and integrate XB to obtain

X
(eff)
B =

rc

(πrc)(H+R)/2
κ(H+R−2)

+∞∑
n1,··· ,nH=0

(
1, ĥ(n1) · · · ĥ(nH ),

[
r̂(0)
]R)

× e−Rπkrc
∫
dϕ ε2(R−2)(∂ϕψn1)(∂ϕψn2)ψn3 · · ·ψnH [ψ0]R . (4.59)

We summarize the extra-dimensional overlap integral as a unitless quantity b:

b(R|~n) ≡ br···rn′1n
′
2n3···nH

,

≡ 1

π
e−Rπkrc

∫ +π

−π
dϕ ε2(R−2)(∂ϕψn1)(∂ϕψn2)ψn3 · · ·ψnH [ψ0]R , (4.60)

where primes on a KK index in the subscript of br···rn′1n
′
2n3···nH

indicates differentiation

of the corresponding wavefunction and br···rn′1n
′
2n3···nH

is symmetric in its subscript (e.g.

brn′n′n = bnn′rn′ and so-on). When expressed in b(R|~n) form, the first two indices listed in
~n will be primed in br···rn′1n

′
2n3···nH

form. With this definition,

X
(eff)
B =

[
κ
√
πrc

]H+R−2 +∞∑
n1,··· ,nH=0

b(R|n1n2n3···nH )
1

r2
c

(
1, ĥ(n1) · · · ĥ(nH ),

[
r̂(0)
]R)

,

(4.61)

and, via the KK decomposition operator X ,

X
(eff)
B =

[
κ
√
πrc

]H+R−2 +∞∑
n1,··· ,nH=0

b(R|n1n2n3···nH ) · X(n1···nH )

[
XB

]
, (4.62)

where we recall that X maps ∂y to 1/rc after KK number assignment. This completes the
schematic B-type procedure.

We now connect these procedures to the 4D effective RS1 Lagrangian L(RS,eff)
4D , following

the arrangement of the 5D Lagrangian described in Sec. 3.4. Suppose we collect all terms

from the WFE RS1 Lagrangian L(RS)
5D that contain H ĥµν fields and R r̂ fields. Label this



collection L(RS)

hHrR
. In general, we can subdivide those terms into two sets based on their

derivative content, i.e. whether they are A-type or B-type.

L(RS)

hHrR
= L(RS)

A:hHrR
+ L(RS)

B:hHrR
. (4.63)

We may go a step further by using our existing knowledge to preemptively extract powers
of the expansion parameter κ and any exponential coefficients:

L(RS)

hHrR
= κ(H+R−2)

[
e−Rπkrcε2(R−1) L

A:hHrR
+ e−Rπkrcε2(R−2) L

B:hHrR

]
. (4.64)

Finally, we can apply the schematic procedures described above to obtain a succinct expres-
sion for the effective Lagrangian with H ĥµν fields and R r̂ fields:

L(RS,eff)

hHrR
=

[
κ
√
πrc

](H+R−2) +∞∑
~n=~0

{
a(R|~n) · X(~n)

[
L
A:hHrR

]
+ b(R|~n) · X(~n)

[
L
B:hHrR

]}
.

(4.65)

Computationally, a key feature of this Lagrangian is how the dependence on the physical
variables arrange themselves. Consider the set {MPl, krc,m1}. The parameter krc deter-
mines the wavefunctions {ψn} and spectrum {µn} ≡ {mnrc}, and thus {a(R|~n), b(R|~n)} as

well. Additionally fixing the value of m1 determines rc = µ1/m1 and k = (krc)m1/µ1.
Finally, fixing MPl determines the prefactor κ/

√
πrc = κ4D/ψ0 = 2/(MPlψ0). Therefore,

referring back to the specific form of Eq. (4.65), once krc is fixed, changing m1 only affects
the relative importance of A-type vs. B-type terms via factors of rc introduced by X(~n)[•]
and changing MPl only affects the interaction’s overall strength via [κ/

√
πrc]

(H+R−2). Al-
ternatively, by fixing κ and rc instead, the couplings {a(R|~n), b(R|~n)} encapsulate the effect
of varying k.

While the a(R|~n) and b(R|~n) forms are useful when deriving Eq. (4.65), the alternate

notations introduced in Eqs. (4.56) and (4.60) are more useful in practice. They are special
instances of a more general structure x, which we define as:

x
(p)

r···m′···n ≡
1

π

∫ +π

−π
dϕ εp(∂ϕψm) · · ·ψn

[
e−πkrcε+2ψ0

]R
(4.66)

to which we add an additional factor of (∂ϕ|ϕ|) if there is an odd number of primed labels
(without this factor, the quantity would automatically vanish). In terms of x, the A-type
and B-type couplings are special cases equal to

a
rR m′···n ≡ x

(−2)

rRm′···n
b
rR m′···n ≡ x

(−4)

rRm′···n
(4.67)

where this generalization now allows A-type and B-type couplings to contain various numbers
of differentiated wavefunctions in principle. This dissertation concerns tree-level massive



spin-2 scattering, which is calculated from diagrams of the forms described in Section 2.5.
Consequently, the relevant couplings are cubic and quartic couplings of the forms

almn bl′m′n bm′n′r aklmn bk′l′mn (4.68)

Note that an analogous cubic A-type radion coupling does not occur in the RS1 model.
Pictorially, we indicate the vertices associated with these couplings as small filled cir-

cles attached to the appropriate number of particle lines, e.g. the relevant spin-2 exclusive
couplings arise from

n1

n2

n3 ⊃ an1n2n3 bn′P[1]
n′P[2]

nP[3]
(4.69)

n1

n2

n3

n4

⊃ an1n2n3n4 bn′P[1]
n′P[2]

nP[3]nP[4]
(4.70)

where overlapping straight and wavy lines indicate a spin-2 particle, and P is a generic
permutation of the indices. If we set n3 = 0 in the triple spin-2 coupling, the corresponding
wavefunction ψ0 is flat; either ψ0 is differentiated (in which case the integral vanishes)
or it can be factored out of the y-integral thereby allowing us to invoke the wavefunction
orthogonality relations on the remaining wavefunction pair. In this way, the triple spin-2
couplings imply that the massless 4D graviton couples diagonally to the other spin-2 states,
as required by 4D general covariance:

an1n20 = ψ0 δn1,n2 , (4.71)

bn′1n
′
20 = µ2

n1
ψ0 δn1,n2 ,

b0′n′1n2
= 0 .

The Sturm-Liouville problem Eq. (4.36) that defines the wavefunctions {ψn} also relates
various A-type and B-type couplings to each other, which we be explored further in the next
section.

When calculating matrix elements of massive KK mode scattering, we must also consider
radion-mediated diagrams. As mentioned previously, the RS1 model lacks a cubic A-type
(KK mode)-(KK mode)-radion coupling. Furthermore, note that the additional ε+2 expo-
nential factor in the integrand of bn′1n

′
2r

due to the radion field (as in Eq. (4.66)) prevents

the use of the orthonormality relations Eqs. (4.37) and (4.38); therefore, the radion typically
couples non-diagonally to massive spin-2 modes. Pictorially,

n1

n2
r ⊃ bn′1n

′
2r

(4.72)

where unadorned straight lines indicate a radion.



4.3.3 Summary of Results

Section 3.4 summarized all terms in the WFE RS1 Lagrangian L(RS)
5D that contain four

or fewer fields. In particular, it listed explicit expressions for all relevant LA and LB .
Application of Eq. (4.65) to all of these combinations yields a WFE 4D effective Lagrangian
of the following form:

L(RS,eff)
4D =L(eff)

hh + L(eff)
rr + L(eff)

hhh + · · ·+ L(eff)
rrr + L(eff)

hhhh + · · ·+ L(eff)
rrrr +O(κ3) . (4.73)

Explicitly, we find, at quadratic order,

L(eff)
hh =

+∞∑
n=0

[
−ĥ(n)

µν (∂µ∂ν ĥ(n)) + ĥ
(n)
µν (∂µ∂ρĥ

(n)ρν)− 1

2
ĥ

(n)
µν (�ĥ(n)µν) +

1

2
ĥ(n)(�ĥ(n))

]
+m2

n

[
−1

2
Jĥ(n)ĥ(n)K +

1

2
Jĥ(n)KJĥ(n)K

]
, (4.74)

L(eff)
rr =

1

2
(∂µr̂

(0))(∂µr̂(0)) , (4.75)

and, at cubic order,

L(eff)
hhh =

κ
√
πrc

+∞∑
l,m,n=0

{
a(0|lmn) · X(lmn)

[
LA:hhh

]
+ b(0|lmn) · X(lmn)

[
LB:hhh

]}
, (4.76)

L(eff)
hhr =

κ
√
πrc

+∞∑
m,n=0

{
b(1|mn) · X(mn)

[
LB:hhr

]}
, (4.77)

L(eff)
hrr =

κ
√
πrc

+∞∑
n=0

{
a(2|n) · X(n)

[
LA:hrr

]}
, (4.78)

L(eff)
rrr =

κ
√
πrc

{
a(3) · X

[
LA:rrr

]}
, (4.79)



and, at quartic order,

L(eff)
hhhh =

[
κ
√
πrc

]2 +∞∑
k,l,m,n=0

{
a(klmn) · X(klmn)

[
LA:hhhh

]
+ b(klmn) · X(klmn)

[
LB:hhhh

]}
,

(4.80)

L(eff)
hhhr =

[
κ
√
πrc

]2 +∞∑
l,m,n=0

{
b(1|lmn) · X(lmn)

[
LB:hhhr

]}
, (4.81)

L(eff)
hhrr =

[
κ
√
πrc

]2 +∞∑
m,n=0

{
a(2|mn) · X(mn)

[
LA:hhrr

]
+ b(2|mn) · X(mn)

[
LB:hhrr

]}
, (4.82)

L(eff)
hrrr =

[
κ
√
πrc

]2 +∞∑
n=0

{
a(3|n) · X(n)

[
LA:hrrr

]}
, (4.83)

L(eff)
rrrr =

[
κ
√
πrc

]2{
a(4) · X

[
LA:rrrr

]}
. (4.84)

The quantity a(R|~n) is defined in Eq. (4.56), b(R|~n) is defined in Eq. (4.60), and the KK

decomposition operator X is introduced below Eq. (4.57).

4.3.4 Interaction Vertices

The 4D effective interaction Lagrangians L(eff)

hHrR
of the previous subsection imply interac-

tion vertices v
hHrR

. When deriving those vertices, we apply functional derivatives to the
interaction Lagrangians, which should in principle be performed according to the definitions

δ

δr̂(0)

[
r̂(0)
]

= 1
δ

δĥ
(n1)
α1β1

[
ĥ

(n)
αβ

]
=

1

2

(
η
α1
α η

β1
β + η

α1
β η

β1
α

)
δn,n1 (4.85)

However, in practice each pair of spin-2 Lorentz indices in these vertices will end up projected
onto either a polarization tensor or a propagator, all of which have already had their Lorentz
indices symmetrized. Therefore, we need not additionally symmetrize the indices in Eq.
(4.85) and in doing so can avoid introducing terms that will otherwise complicate algebraic
manipulations. That is, effectively,

δ

δĥ
(n1)
α1β1

[
ĥ

(n)
αβ

]
in practice

= η
α1
α η

β1
β δn,n1 (4.86)

Furthermore, each 4D derivative ∂µ acting on the field being differentiated is replaced by
−iαpµ, where α = ±1 if the corresponding 4-momentum is entering (leaving) the vertex.
In order to keep track of which 4-momenta are associated with which fields, we introduce

labels on the functional derivative fields. For the spin-2 fields ĥ
(n)
µν , this can be accomplished

via the subscripts we already utilized in Eq. (4.85). For the radion fields r̂(0), we add an



additional subscript, e.g. r̂
(0)
1 . As long as the subscripts are chosen so that they uniquely

label fields connected to a given vertex, all is well.
The conversion of a typical term of the 4D effective Lagrangian into the corresponding

interaction vertex proceeds like so:

vhrr ⊃ i
δ

δr̂
(0)
2

δ

δr̂
(0)
1

δ

δĥ
(n3)
α3β3

[
κ
√
πrc

+∞∑
n=0

anrr ĥ
(n)
µν (∂µr̂(0))(∂ν r̂(0))

]
(4.87)

= i
κ
√
πrc

an3rr
δ

δr̂
(0)
2

δ

δr̂
(0)
1

[
η
α3
µ η

β3
ν (∂µr̂(0))(∂ν r̂(0))

]
(4.88)

= i
κ
√
πrc

an3rr
δ

δr̂
(0)
2

[
η
α3
µ η

β3
ν (−iα2p

µ
2 )(∂ν r̂(0)) + η

α3
µ η

β3
ν (∂µr̂(0))(−iα2p

ν
2)

]
(4.89)

= i
κ
√
πrc

an3rr

[
η
α3
µ η

β3
ν (−iα2p

µ
2 )(−iα1p

ν
1) + η

α3
µ η

β3
ν (−iα1p

µ
1 )(−iα2p

ν
2)

]
(4.90)

= −i κ
√
πrc

an3rr α1α2(p
α3
1 p

β3
2 + p

β3
1 p

α3
2 ) (4.91)

where 1 and 2 label attached radion lines and 3 labels an attached n3th spin-2 KK mode.

4.3.5 The Large krc Limit7

Consider how the aforementioned wavefunctions and couplings behave in the limit that krc
is large. In this limit, the behavior of the irregular Bessel functions Yν causes the coefficients
bnν in Eq. (4.33) to be small, such that the wavefunctions of Eq. (4.32) (having nonzero KK
mode number n) can be approximated as

ψn(ϕ) ≈ 1

Nn
e+2krc|φ|J2

[
xne

krc(|φ|−π)
]
, (4.92)

where xn is the nth root of J1 and

Nn ≈
eπkrc√
πkrc

J0(xn) , (4.93)

corresponding to a state with mass

mn ≈ xnk e
−πkrc . (4.94)

This limit—called the “large krc limit”—is a good approximation when krc & 3 and is
popular in the literature. The above expressions can be further simplified by replacing ϕ
with the quantity un ≡ xne

krc(ϕ−π). In terms of un, the n 6= 0 wavefunction factorizes into
separate un and krc-dependent pieces,

ψn(un) ≈
√
π

x2
n |J0(xn)|

[
u2
n J2(un)

]
·
√
krc e

πkrc . (4.95)

7This subsection was originally published as Appendices F.1-2 of [18].



This factorization is not unique to ψn: for generic j 6= 0,

ψj(un) ≈
√
π

x2
n |J0(xj)|

[
u2
n J2

( xj
xn
un

)]
·
√
krc e

πkrc , (4.96)

and,

(∂ϕψj)(un) ≈
√
π xj

x3
n |J0(xj)|

[
u3 J1

( xj
xn
un

)]
(krc)

3/2 eπkrc . (4.97)

Meanwhile, the large krc approximation of the zero mode wavefunction is

ψ0 ∼
√
πkrc . (4.98)

We can also rewrite the coupling integrals as integrals over un instead of ϕ and (in doing so)
factor any krc-dependence from the integral. Specifically, we convert ϕ integrals of the form∫ +π

−π
dϕ e−Akrc|ϕ| f(|ϕ|) = 2

∫ +π

0
dϕ e−Akrc|ϕ| f(ϕ) , (4.99)

to un ≡ xne
krc(ϕ−π) integrals, noting that dϕ = dun/(krcun),∫ +π

−π
dϕ e−Akrc|ϕ| f(|ϕ|) =

2xAn e
−Akrcπ

krc
·

[∫ un(π)

un(0)

dun

uA+1
n

f (ϕ(un))

]
, (4.100)

for any n. In the large krc limit, the integration limits become independent of krc,

un(0) = e−krcπxn → 0 un(π) = xn . (4.101)

and thus the integral over un does not depend on krc. By combining all of the preceding
elements, we can factor all krc-dependence out of the coupling integrals in the large krc limit,
and we find

annnn ≈ Cnnnn (krc) e
2πkrc , (4.102)

ann0 ≈ Cnn0

√
krc , (4.103)

bn′n′r ≈ Cnnr (krc)
5/2 e−πkrc , (4.104)

annj ≈ Cnnj
√
krc e

πkrc , (4.105)

where the coefficients C are given by the following krc-independent integrals:

Cnnnn ≡
[

2π

x6
n J0(xn)4

∫ xn

0
dun u5

n J2(un)4
]
, (4.106)

Cnn0 ≡
[

2
√
π

x2
n J0(xn)2

∫ xn

0
dun un J2(un)2

]
, (4.107)

Cnnr ≡
[

2
√
π

x2
n J0(xn)2

∫ xn

0
dun u3

n J1(un)2
]
, (4.108)

Cnnj ≡

[
2
√
π

x4
n |J0(xj)| J0(xn)2

∫ xn

0
dun u3

n J2(un)2 J2

( xj
xn
un

)]
(4.109)

Although we utilize exact expressions when investigating the high-energy behavior of matrix
elements, the approximate expressions derived in this subsection will be useful when we
calculate the strong-coupling scale of the RS1 model in the next chapter.



4.4 Sum Rules Between Couplings and Masses8

This section derives relationships between the spin-2 exclusive couplings and spin-2 KK
spectrum {µn} that are relevant to tree-level 2-to-2 massive KK mode scattering. We briefly
consider the implications of completeness before deriving a means of expressing all cubic
and quartic (spin-2 exclusive) B-type couplings in terms of A-type couplings. These B-to-
A formulas reduce the problem of finding amplitude-relevant formulas to the problem of
simplifying sums of the form

∑
j µ

2i
j akljamnj . The relevant sum rules are derived and then

summarized in the final two subsections for the inelastic and elastic cases.

4.4.1 Applications of Completeness

The completeness relation Eq. (4.39) allows us to collapse certain sums of cubic coupling
products into a single quartic coupling. For example, a pair of cubic A-type couplings can
be combined into a quartic A-type coupling:∑

j

ajklajmn =
∑
j

[
1

π

∫
dϕ1 ε(ϕ1)−2 ψj(ϕ1)ψk(ϕ1)ψl(ϕ1)

]

×
[

1

π

∫
dϕ2 ε(ϕ2)−2 ψj(ϕ2)ψk(ϕ2)ψl(ϕ2)

]
(4.110)

=
1

π2

∫
dϕ1 dϕ2 ε(ϕ1)−2 ε(ϕ2)−2 ψk(ϕ1)ψl(ϕ1)ψm(ϕ2)ψn(ϕ2)

[∑
j

ψj(ϕ1)ψj(ϕ2)

]
(4.111)

=
1

π2

∫
dϕ1 dϕ2 ε(ϕ1)−2 ε(ϕ2)−2 ψk(ϕ1)ψl(ϕ1)ψm(ϕ2)ψn(ϕ2)

[
πε(ϕ2)+2 δ(ϕ2 − ϕ1)

]
(4.112)

=
1

π

∫
dϕ1 ε(ϕ1)−2 ψk(ϕ1)ψl(ϕ1)ψm(ϕ1)ψn(ϕ1) = aklmn (4.113)

By applying this same procedure to other A-type and B-type couplings, we find

aklmn =
∑
j

ajklajmn =
∑
j

ajkmajln =
∑
j

ajknajlm (4.114)

bk′l′mn =
∑
j

bk′l′jajmn (4.115)

Furthermore, by combining cubic B-type couplings in this same way, we define an important
new integral that will be present in many of our derivations:

cklmn ≡ x
(−6)

k′l′m′n′ =
1

π

∫
dϕ ε−6(∂ϕψk)(∂ϕψl)(∂ϕψm)(∂ϕψn) (4.116)

=
∑
j

bk′l′jbjm′n′ =
∑
j

bk′m′jbjl′n′ =
∑
j

bk′n′jbjl′m′

8The material of this section is entirely new to this dissertation. It generalizes results first published in
[17] and later generalized (but not to the same extent) in [18].



where the generic coupling integral x is defined in Eq. 4.66. Another object that will be
useful throughout the rest of the chapter is the symbol D ≡ ε−4∂ϕ, which is a combination
of quantities that is often present as a result of the Sturm-Liouville equation.

4.4.2 B-to-A Formulas

This subsection details how to eliminate all B-type couplings in favor of A-type couplings.
To begin, we note we can absorb a factor of µ2 into A-type couplings with help from the
Sturm-Liouville equation. A standard application of this technique proceeds as follows:

µ2
nalmn =

1

π

∫
dϕ ε−2ψlψm

[
µ2
nψn

]
(4.117)

=
1

π

∫
dϕ ε−2ψlψm

[
− ε+2∂ϕ(Dψn)

]
(4.118)

=
1

π

∫
dϕ ∂ϕ [ψlψm] (Dψn) (4.119)

=
1

π

∫
dϕ ε−4(∂ϕψl)ψm(∂ϕψn) +

1

π

∫
dϕ ε−4ψl(∂ϕψm)(∂ϕψn) (4.120)

= bl′mn′ + blm′n′ (4.121)

where integration by parts was utilized between Eqs. (4.118) and (4.119). This and the
equivalent calculation with the quartic A-type coupling yield

µ2
nalmn = bl′mn′ + blm′n′ (4.122)

µ2
naklmn = bk′lmn′ + bkl′mn′ + bklm′n′ (4.123)

By considering different permutations of KK indices, each of these equations corresponds to
three and four unique constraints respectively. Because there are only three unique cubic
B-type couplings with KK indices l, m, and n (specifically, bl′m′n, bl′mn′ , and blm′n′), Eq.
(4.122) can be inverted to yield

bl′m′n =
1

2

[
µ2
l + µ2

m − µ2
n

]
almn (4.124)

with which we can eliminate all cubic B-type couplings in favor of the cubic A-type coupling.
Because there are six unique B-type couplings with KK indices k, l, m, and n, we require

additional constraints before we can rewrite all quartic B-type couplings in terms of the
quartic A-type coupling. Using the cubic coupling equation Eq. (4.122) with completeness
yields,

bk′l′mn =
∑
j

bk′l′jajmn (4.125)

=
1

2

∑
j

[
µ2
k + µ2

l − µ
2
j

]
ajklajmn (4.126)

=
1

2

[
µ2
k + µ2

l

]
aklmn −

1

2

∑
j

µ2
jajklajmn (4.127)



Similar expressions hold for bk′lmn′ , bkl′mn′ , and bklm′n′ , which when summed as in the RHS
of the quartic coupling equation Eq. (4.123) then imply

µ2
naklmn =

1

2

[
µ2
k + µ2

l + µ2
m + 3µ2

n

]
aklmn −

3

2

∑
j

µ2
jajklajmn (4.128)

such that, by solving for the undetermined sum,∑
j

µ2
jajklajmn =

1

3

[
µ2
k + µ2

l + µ2
m + µ2

n

]
aklmn ≡

1

3
~µ 2aklmn (4.129)

where ~µ 2 ≡ µ2
k + µ2

l + µ2
m + µ2

n. Note that the RHS is symmetric in all indices despite the
LHS not obviously exibiting such a symmetry. Utilizing Eq. (4.129) in Eq. (4.127) then
allows us to finally rewrite all quartic B-type couplings in terms of A-type couplings:

bk′l′mn =
1

6

[
2µ2
k + 2µ2

l − µ
2
m − µ2

n

]
aklmn (4.130)

This and Eq. (4.124) comprise the desired B-to-A formulas.
The B-to-A formulas greatly reduce the number of relations we must consider. For

example, when calculating a tree-level 2-to-2 KK mode scattering amplitude, we encounter
quantities such as∑

j

bk′l′jajmn
∑
j

bk′l′jbm′n′j
∑
j

µ2
jbk′l′jbm′n′j (4.131)

where the indices {k, l,m, n} are associated with external KK modes and the index j labels
an intermediate KK mode that must be summed over in the course of summing over all
diagrams. However, by converting all B-type couplings to A-type couplings, the quantities
can be evaluated so long as we know instead how to evaluate∑

j

ajklajmn
∑
j

µ2
jajklajmn

∑
j

µ4
jajklajmn

∑
j

µ6
jajklajmn (4.132)

Indeed, these are precisely the sums that are relevant to cancelling the high-energy growth of
the KK mode scattering amplitudes, which is the goal of this dissertation. The remainder of
this chapter is dedicated to rewriting these quantities in terms of the quartic A-type coupling
and the integral cklmn of Eq. (4.116). The first two of these rewrites were achieved in Eqs.
(4.114) and (4.129) respectively. Therefore, we turn our focus to

∑
j µ

4
jajklajmn and then∑

j µ
6
jajklajmn.

4.4.3 The µ4
j Sum Rule

The
∑
j µ

4
jajklajmn relation is relatively straightforward. As defined in Eq. (4.116), we can

rewrite cklmn in terms of B-type cubic couplings, to which we can then apply the B-to-A



formulas:

cklmn =
∑
j

bk′l′jbm′n′j (4.133)

=
1

4

∑
j

[
µ2
k + µ2

l − µ
2
j

] [
µ2
m + µ2

n − µ2
j

]
ajklajmn (4.134)

=
1

4
(µ2
k + µ2

l )(µ
2
m + µ2

n)aklmn −
1

4
(~µ 2)

∑
j

µ2
jajklajmn +

1

4

∑
j

µ4
jajklajmn (4.135)

=
1

4

[
(µ2
k + µ2

l )(µ
2
m + µ2

n)− 1

3
(~µ 2)2

]
aklmn +

1

4

∑
j

µ4
jajklajmn (4.136)

such that∑
j

µ4
jajklajmn = 4cklmn +

[
1

3
(~µ 2)2 − (µ2

k + µ2
l )(µ

2
m + µ2

n)

]
aklmn (4.137)

as desired. Deriving the
∑
j µ

6
jajklajmn relation requires significantly more work.

4.4.4 The µ6
j Sum Rule

As in the previous subsection, we begin our derivation by applying the B-to-A formulas to a
sum of cubic B-type couplings:∑

j

µ2
jbjk′l′bjm′n′ =

1

4

∑
j

[
µ2
k + µ2

l − µ
2
j

] [
µ2
m + µ2

n − µ2
j

]
µ2
jajklajmn (4.138)

=
1

4

∑
j

µ6
jakljajmn − ~µ

2cklmn −
1

12

[
(~µ 2)3 − 16

∑
x=k,l,m,n

µ2
kµ

2
l µ

2
mµ

2
n

µ2
x

− 4

(
(µ2
k − µ

2
l )

2(µ2
m + µ2

n) + (µ2
m − µ2

n)2(µ2
k + µ2

l )

)]
aklmn (4.139)

Unlike the previous subsection, we do not yet have a simplification of the LHS of this ex-
pression. To obtain such a simplification, we would like to absorb the µ2

j factor into bjm′n′ ,



and thus we next consider:

µ2
l blm′n′ =

1

π

∫
dϕ ε−2

[
µ2
l ε
−2ψl

]
(∂ϕψm)(∂ϕψn) (4.140)

=
1

π

∫
dϕ ε−4(∂ϕψl) ∂ϕ

[
ε−2(∂ϕψm)(∂ϕψn)

]
(4.141)

=
1

π

∫
dϕ ε−4(∂ϕψl) ∂ϕ

[
ε+6(Dψm)(Dψn)

]
(4.142)

=
1

π

∫
dϕ ε+2(∂ϕψl)

[
+6(krc)(∂ϕ|ϕ|)(Dψm)(Dψn)

−µ2
mε
−2ψm(Dψn)− µ2

nε
−2(Dψm)ψn

]
(4.143)

=
6krc
π

∫
dϕ (∂ϕ|ϕ|)ε+6(Dψl)(Dψm)(Dψn)− µ2

mbl′mn′ − µ
2
nbl′m′n (4.144)

from which

µ2
l blm′n′ + µ2

mbl′mn′ + µ2
nbl′m′n = 6(krc)x

(−6)

l′m′n′ (4.145)

After applying the B-to-A formulas, we can solve for the integral x
(−6)

l′m′n′ which we have not
encountered previously:

6(krc)x
(−6)

l′m′n′ =
1

2

[
(µ2
l + µ2

m + µ2
n)2 − 2

∑
x=l,m,n

µ4
x

]
almn (4.146)

where the generalized coupling x is defined in Eq. 4.66. This equation still does not allow
us to evaluate the LHS of Eq. (4.139) because it was derived only using the B-to-A relations
and, thus, if applied to the LHS will merely reproduce the RHS of Eq. (4.139). We must
find another route. Ideally, we will find a way of using completeness to perform the sum
over the index j on the LHS of Eq. (4.139), which cannot be accomplished so long as all

wavefunctions are differentiated as in x
(−6)

l′m′n′ . Therefore, we can continue making progress

by using integration by parts to remove the derivative from ψl in the integral x
(−6)

l′m′n′ :

x
(−6)

l′m′n′ =
1

π

∫
dϕ ε+2(∂ϕ|ϕ|)(∂ϕψl)(Dψm)(Dψn) (4.147)

= − 1

π

∫
dϕ ψl∂ϕ

[
ε+2(∂ϕ|ϕ|)(Dψm)(Dψn)

]
(4.148)

The distribution of ∂ϕ on the quantity in square brackets will yield, among other terms,

1

π

∫
dϕ ε+2(∂2

ϕ|ϕ|)ψl(Dψm)(Dψn) (4.149)

which vanishes because (∂2
ϕ|ϕ|) = 2(δ0 − δπrc) and (∂ϕψn) = 0 at the branes. Keeping in

this mind, the remaining terms are

x
(−6)

l′m′n′ = (−2krc)x
(−6)

lm′n′ + µ2
mx

(−4)

lmn′ + µ2
nx

(−4)

lm′n (4.150)



such that

µ2
l blm′n′ = −12(krc)

2x
(−6)

lm′n′ + 6(krc)

[
µ2
mx

(−4)

lmn′ + µ2
nx

(−4)

lm′n

]
− µ2

mbl′mn′ − µ
2
nbl′m′n (4.151)

All terms on the RHS of this equation either lack derivatives on ψl or have fewer than four
powers of µl after applying the B-to-A formulas and hence will be able to be handled via
existing sum rules. Therefore, we proceed:∑

j

µ2
jbk′l′jbjm′n′ =

∑
j

bk′l′j

[
− 12(krc)

2x
(−6)

jm′n′ + 6(krc)

[
µ2
mx

(−4)

jmn′ + µ2
nx

(−4)

jm′n

]

− µ2
mbj′mn′ − µ

2
nbj′m′n

]
(4.152)

= −12(krc)
2dklmn + 6(krc)

[
µ2
mx

(−6)

k′l′mn′ + µ2
nx

(−6)

k′l′m′n

]
− µ2

m

∑
j

bk′l′jbj′mn′ − µ
2
n

∑
j

bk′l′jbj′m′n (4.153)

where

dklmn ≡ x
(−8)

k′l′m′n′ =
1

π

∫
dϕ (Dψk)(Dψl)(Dψm)(Dψn)ε+8 (4.154)

Next, we must determine how to rewrite dklmn, x
(−6)

k′l′m′n, and x
(−6)

k′l′mn′ in terms of aklmn and
cklmn. The necessary equation for the latter two quantities can be derived by absorbing a
factor of µ2 into the quartic B-type coupling:

µ2
nbk′l′mn =

1

π

∫
dϕ ε−2(∂ϕψk)(∂ϕψl)ψm

[
µ2
nε
−2ψn

]
(4.155)

=
1

π

∫
dϕ ε−4(∂ϕψn) ∂ϕ

[
ε−2(∂ϕψk)(∂ϕψl)ψm

]
(4.156)

=
1

π

∫
dϕ ε−4(∂ϕψn) ∂ϕ

[
ε+6(Dψk)(Dψl)ψm

]
(4.157)

=
1

π

∫
dϕ ε+2(∂ϕψn)

[
+6(krc)(∂ϕ|ϕ|)(Dψk)(Dψl)ψm

−µ2
kε
−2ψk(Dψl)ψm − µ2

l ε
−2(Dψk)ψlψm + ε+4(Dψk)(Dψl)(Dψm)

]
(4.158)

=
6krc
π

∫
dϕ (∂ϕ|ϕ|)ε+6(Dψk)(Dψl)ψm(Dψn)− µ2

kbkl′mn′ − µ
2
l bk′lmn′

+
1

π

∫
dϕ ε+10(Dψk)(Dψl)(Dψm)(Dψn) (4.159)

which implies

µ2
kbkl′mn′ + µ2

l bk′lmn′ + µ2
nbk′l′mn = 6(krc)x

(−6)

k′l′mn′ + cklmn (4.160)



Note the special role of the label m on both sides of this equation. The B-to-A formulas
then yield, after some relabeling (i.e. m↔ n),

6(krc)x
(−6)

k′l′m′n =
1

6

[
− 2(µ2

k + µ2
l + µ2

m)2 +
∑

x=k,l,m

µ2
x(3µ2

x + µ2
n)

]
aklmn + cklmn (4.161)

which expresses x
(−6)

k′l′m′n in terms of aklmn and cklmn as desired. Now to do the same for

dklmn. Consider absorbing µ2
n into x

(−6)

k′l′m′n:

µ2
nx

(−6)

k′l′m′n =
1

π

∫
dϕ (∂ϕ|ϕ|)ε+8(Dψk)(Dψl)(Dψm)

[
µ2
nε
−2ψn

]
(4.162)

=
1

π

∫
dϕ (Dψn)∂ϕ

[
(∂ϕ|ϕ|)ε+8(Dψk)(Dψl)(Dψm)

]
(4.163)

Because (∂2
ϕ|ϕ|) = 2(δ0 − δπrc) and (∂ϕψn) = 0 at the branes,

1

π

∫
dϕ (∂2

ϕ|ϕ|)ε+8(Dψk)(Dψl)(Dψm)(Dψn) = 0 (4.164)

such that Eq. (4.163) implies, after multiplying both sides by krc,

(krc)

[
µ2
kx

(−6)

kl′m′n′ + µ2
l x

(−6)

k′lm′n′ + µ2
mx

(−6)

k′l′mn′ + µ2
nx

(−6)

k′l′m′n

]
= 8(krc)

2dklmn (4.165)

We multiply by krc to enable the use of Eq. (4.161) on every term of the LHS, with which
we obtain

(krc)
2dklmn = − 1

432

[
(~µ 2)3 −

∑
x=k,l,m,n

(
µ6
x + 24

µ2
kµ

2
l µ

2
mµ

2
n

µ2
x

)]
aklmn −

1

48
~µ 2cklmn

(4.166)

which expresses dklmn in terms of aklmn and cklmn as desired. Now every term on the RHS
of Eq. (4.153) can be expressed in terms of cklmn or aklmn.

Despite the symmetry of the LHS of Eq. (4.153), the expression that results from this
process is not symmetric under (k, l)↔ (m,n): we can get a different expression by instead
absorbing µ2

j into bk′l′j . Because the end product of these different procedures must be

equivalent, their difference must vanish. This yields a means of writing cklmn entirely in
terms of aklmn whenever µ2

k + µ2
l − µ

2
m − µ2

n is nonzero:

(µ2
k + µ2

l − µ
2
m − µ2

n)cklmn

=
2

3

[
µ2
mµ

2
n

(
µ2
m + µ2

n − 2(µ2
k + µ2

l )

)
− µ2

kµ
2
l

(
µ2
k + µ2

l − 2(µ2
m + µ2

n)

)]
aklmn (4.167)

In the elastic case, all external masses are equal (µ2
k = µ2

l = µ2
m = µ2

n) and both sides vanish,
such that this equation provides no information on cklmn. This does not affect the present



derivation, for which we instead create a balanced version of the sum,∑
j

µ2
jbk′l′jbjm′n′ =

1

2

[∑
j

(
µ2
jbk′l′j

)
bjm′n′ +

∑
j

bk′l′j

(
µ2
jbjm′n′

)]

= −12(krc)
2dklmn + 3(krc)

[
µ2
kx

(−6)

kl′m′n′ + · · ·+ µ2
nx

(−6)

k′l′m′n

]
(4.168)

− 1

2

[
µ2
k

∑
j

bkl′j′bjm′n′ + µ2
l

∑
j

bk′lj′bjm′n′

+ µ2
m

∑
j

bk′l′jbj′mn′ + µ2
n

∑
j

bk′l′jbj′m′n

]
(4.169)

Finally, we apply the B-to-A formulas and Eqs. (4.161) and (4.166) to Eq. (4.169), set the
result equal to Eq. (4.139), and solve for the unknown sum to derive the last desired sum
rule:∑

j

µ6
jajklajmn = 5~µ 2cklmn −

1

9

[
6(µ4

k + µ4
l )(µ

2
m + µ2

n) + 6(µ2
k + µ2

l )(µ
4
m + µ4

n)

− 4(µ2
k + µ2

l )
3 − 4(µ2

m + µ2
n)3 + (µ6

k + µ6
l + µ6

m + µ6
n)

]
aklmn (4.170)

In the next subsection, we summarize the principal results of this section.

4.4.5 Summary of Sum Rules (Inleastic)

All B-type couplings can be eliminated in favor of A-type couplings via B-to-A formulas

bl′m′n =
1

2

[
µ2
l + µ2

m − µ2
n

]
almn bk′l′mn =

1

6

[
2µ2
k + 2µ2

l − µ
2
m − µ2

n

]
aklmn (4.171)

Applying the B-to-A formulas reduces the number of sums relevant to the cancellations we
examine in the next chapter. These sums are∑

j

ajklajmn = aklmn (4.172)

∑
j

µ2
jajklajmn =

1

3
~µ 2aklmn (4.173)

∑
j

µ4
jajklajmn = 4cklmn +

[
1

3
(~µ 2)2 − (µ2

k + µ2
l )(µ

2
m + µ2

n)

]
aklmn (4.174)

∑
j

µ6
jajklajmn = 5~µ 2cklmn −

1

9

[
6(µ4

k + µ4
l )(µ

2
m + µ2

n) + 6(µ2
k + µ2

l )(µ
4
m + µ4

n)

− 4(µ2
k + µ2

l )
3 − 4(µ2

m + µ2
n)3 + (µ6

k + µ6
l + µ6

m + µ6
n)

]
aklmn (4.175)



where ~µ 2 ≡ µ2
k + µ2

l + µ2
m + µ2

n, and

cklmn ≡
1

π

∫
dϕ ε−6(∂ϕψk)(∂ϕψl)(∂ϕψm)(∂ϕψn) (4.176)

The last two sum rules can be combined as to cancel all factors of cklmn, and thereby yield∑
j

[
µ2
j −

5

4
~µ 2
]
µ2
jajklajmn = − 1

36

[
24(µ4

k + µ4
l )(µ

2
m + µ2

n) + 24(µ2
k + µ2

l )(µ
4
m + µ4

n)

− (µ2
k + µ2

l )
3 − (µ2

m + µ2
n)3 + 4(µ6

k + µ6
l + µ6

m + µ6
n)

]
aklmn

(4.177)

These equations extend and generalize the sum rules derived in [18].

4.4.6 Summary of Sum Rules (Elastic)

We are particularly interested in the elastic massive KK mode scattering process, wherein
k = l = m = n 6= 0 and relations of the the previous subsection simplify. The relevant
B-to-A formulas are

bn′n′j =
1

2

[
µ2
n − µ2

j

]
annj bj′n′n =

1

2
µ2
jannj bn′n′nn =

1

3
µ2
nannnn (4.178)

whereas the sum rules become∑
j

a2
jnn = annnn (4.179)

∑
j

µ2
ja

2
jnn =

4

3
µ2
mannnn (4.180)

∑
j

µ4
ja

2
jnn = 4cnnnn +

4

3
µ4
nannnn (4.181)

∑
j

µ6
ja

2
jnn = 20cnnnn +

4

3
µ6
nannnn (4.182)

with the last two expressions combining to yield∑
j

[
µ2
j −

5

4
~µ 2
]
µ2
jajklajmn = −16

3
µ6
nannnn (4.183)

We now have all the elements necessary to begin calculating and analyzing amplitudes, which
is the focus on the next chapter.



Chapter 5

Massive Spin-2 KK Mode Scattering
in the RS1 Model

5.1 Chapter Summary

We will now apply the original material from chapters 3 and 4 to achieve the main theoretical
results of this dissertation. In the last chapter, we used weak field expansion (WFE) and
Kaluza-Klein (KK) decomposition to rewrite the 5D fields of the 5D RS1 model in terms of

the following 4D field content: a massless spin-2 graviton ĥ
(0)
µν , a tower of massive spin-2 states

ĥ
(n)
µν with KK numbers n ∈ {1, 2, . . . }, and a massless spin-0 radion r̂(0). We also derived

the interactions between these 4D states by integrating the 5D WFE RS1 Lagrangian (which
we derived in Chapter 3 and summarized in Eqs. (3.164)-(3.186)) over the extra dimension,

thereby obtaining the 4D effective RS1 Lagrangian L(eff)
4D up to quartic order in the fields.

The 5D and 4D effective theories were found to be related via the 5D-to-4D formula, Eq.
(4.65):

L(RS,eff)

hHrR
=

[
κ
√
πrc

](H+R−2) +∞∑
~n=~0

{
a(R|~n) · X(~n)

[
L
A:hHrR

]
+ b(R|~n) · X(~n)

[
L
B:hHrR

]}
.

(5.1)

where a(R|~n) and b(R|~n) are integrals of products of KK wavefunctions which depend on the

number of radions R and the KK numbers ~n = (n1, · · · , nH) of the H spin-2 modes in a
given term. Specifically, these integrals were defined in Eqs. (4.56) and (4.60) (and later
generalized in Eq. (4.66)):

a(R|~n) ≡ ar···rn1···nH ≡
1

π
e−Rπkrc

∫ +π

−π
dϕ ε2(R−1)ψn1 · · ·ψnH [ψ0]R , (5.2)

b(R|~n) ≡ br···rn′1n
′
2n3···nH

,

≡ 1

π
e−Rπkrc

∫ +π

−π
dϕ ε2(R−2)(∂ϕψn1)(∂ϕψn2)ψn3 · · ·ψnH [ψ0]R , (5.3)

which define the A-type and B-type couplings respectively. Using the fact that the wave-
functions ψn satisfy a Sturm-Liouville problem, Eq. (4.36),

∂ϕ

[
ε−4(∂ϕψn)

]
= −µ2

nε
−2ψn (5.4)
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with (∂ϕψn) = 0 at branes (ϕ ∈ {0, π}), various relations between the couplings and mass
spectrum {µn} = {mnrc} were derived (Eqs. (4.171)-(4.183)). Chief among these were the
ability to rewrite all B-type couplings in terms of A-type couplings, Eq. (4.171),

bl′m′n =
1

2

[
µ2
l + µ2

m − µ2
n

]
almn bk′l′mn =

1

6

[
2µ2
k + 2µ2

l − µ
2
m − µ2

n

]
aklmn (5.5)

and certain elastic sum rules ∑
j

a2
jnn = annnn (5.6)

∑
j

µ2
ja

2
jnn =

4

3
µ2
mannnn (5.7)

∑
j

µ4
ja

2
jnn = 4cnnnn +

4

3
µ4
nannnn (5.8)

∑
j

µ6
ja

2
jnn = 20cnnnn +

4

3
µ6
nannnn (5.9)

where cklmn ≡ 1
π

∫
dϕ ε−6(∂ϕψk)(∂ϕψl)(∂ϕψm)(∂ϕψn), with the last two expressions com-

bining to yield ∑
j

[
µ2
j −

5

4
~µ 2
]
µ2
jajklajmn = −16

3
µ6
nannnn (5.10)

This chapter uses all of these results to calculate and then analyze matrix elements.
Recall our analogy between the Standard Model and the RS1 model from Chapter 1,

which we originally laid out in Table 1.5 and have repeated in Table 5.1 for convenience. In
this chapter, we finally confirm several elements of this table and draw the major conclusions
of this dissertation:1

• Scattering of massive spin-2 KK modes in the RS1 model has a matrix element that
grows like O(s) at large energies, regardless of helicity combination. Thus, scattering
of the massive spin-2 KK modes behaves just like the scattering of 4D gravitons at
high energies.

• Truncating the tower of massive spin-2 states (i.e. ignoring KK modes with KK num-
bers greater than some value N) generates a matrix element that grows like O(s5),
which replicates the bad high-energy behavior of, for example, massive spin-2 scatter-
ing in Fierz-Pauli gravity.

1These conclusions have been published across several papers: the high-energy scaling behaviors of the
helicity-zero spin-2 KK mode scattering matrix element and each of its channels were published in [16]; the
four sum rules which make those scaling behaviors possible for the elastic process were published in [17],
which also included proofs for two of the sum rules; and all of these results were then elaborated on and
generalized in [18]. This most recent paper also provides explicit versions of the 5D WFE and 4D effective
RS1 Lagrangians (which we recounted and updated in Chapters 3 and 4), proves another sum rule (which
we generalized in Chapter 4), analyzes how truncation of the KK tower affects the total matrix element, and
calculates the strong-coupling scale from the 4D effective theory.



• Eliminating the radion from the matrix element calculation causes the matrix element
to grow like O(s3), which still reflects the explicit breaking of the underlying symmetry
group but is more mild energy growth than the growth we attained by eliminating
massive KK modes.

The rest of the chapter proceeds as follows:

• Section 5.2 establishes the definitions and conventions necessary to calculate the tree-
level 2-to-2 scattering matrix element for massive spin-2 KK modes in the center-of-
momentum frame. The section ends with some considerations regarding numerical
analysis of the RS1 model.

• Section 5.3 considers the scattering of helicity-zero massive spin-2 states in the 5D
orbifolded torus (5DOT) model, the limit of the RS1 model in which krc vanishes. The
5DOT model exhibits discrete KK momentum conservation: this allows all coupling
integrals to be evaluated analytically and ensures only a finite number of diagrams
contribute to the matrix element. The helicity-zero matrix element is found to grow
like O(s) for any combination of external KK numbers that conserves discrete KK
momentum (and vanishes otherwise). The helicity-zero process (1, 4) → (2, 3) lacks
any massless intermediate states because of KK momentum conservation and thus the
partial wave amplitudes of its matrix element can be calculated without running into
massless poles. We calculate its leading partial wave amplitude a0 and find via the

partial wave amplitude constraints that the 5DOT strong-coupling scale is Λ
(5DOT)
strong =√

4πMPl.

• Section 5.4 considers the elastic scattering of massive spin-2 states in the RS1 model
in which all external KK modes have equal KK number n, beginning with helicity-zero
elastic scattering. The O(sσ) contributions to the helicity-zero matrix element are
demonstrated to cancel via certain sum rules for σ = 5, 4, 3, and finally 2. Of the sum
rules obtained, only one linear combination was not proved in the previous chapter:
this combination involves the radion coupling, and its validity is instead demonstrated
numerically. An analytic expression for the residualO(s) amplitude is provided. Lastly,
it is noted that the aforementioned helicity-zero sum rules are sufficient to ensure all
elastic massive spin-2 KK mode scattering matrix elements grow at most like O(s),
regardless of helicity combination.

• Section 5.5 is devoted to several numerical investigations. Subsection 5.5.1 demon-
strates cancellations down to O(s) in helicity-zero inelastic scattering matrix elements.
Subsection 5.5.1 investigates how truncation affects the accuracy of the matrix element
and its leading O(sσ) contributions (σ ∈ {1, 2, 3, 4, 5}) relative to the full matrix el-
ement without truncation. Subsection 5.5.3 calculates the RS1 strong-coupling scale

Λ
(RS1)
strong using the 4D effective RS1 theory. Massless poles in RS1 matrix elements are

avoided by comparing the leading O(s) matrix element growth in the RS1 model to

the exactly calculable equivalent in the 5DOT model. This yields Λ
(RS1)
strong ∼ Λπ as

expected based on the 5D RS1 theory.



This completes the major results this dissertation intended to present. The next chapter
provides a brief conclusion that summarizes our original results as well as directions for
future work.

5.2 Motivation and Definitions

5.2.1 Restating the Problem

From the perspective of the 5D Lagrangian, the only excitation in the RS1 model is a
massless 5D graviton H, which (when using the appropriate five-dimensional generalization
of the helicity operator) has five helicity eigenstates. Because each term of L5D contains two
derivatives, each interaction vertex contains at most two powers of 4D momentum per term.
Consequently, the cubic and quartic couplings grow like O(s) at high energies

H

H
H ∼ κ5Ds

H

H

H

H

∼ κ2
5Ds (5.11)

whereas the propagator falls like O(s−1)

MN RS
H

∼ 1

s
(5.12)

and the external polarizations are independent of s. The total tree-level matrix element for
2-to-2 scattering of 5D gravitons is the sum of four diagrams:

H

H

H

H

+
H

H

H

H

H
+
H

H

H

H
H +

H

H H

H
H (5.13)

By combining the existing scaling arguments for each piece of each diagram, we find the
overall matrix element must grow at most like O(s). We can arrive at this same conclusion
by considering each graviton at energies so large that it can be localized with a width
significantly less than the compactification radius rc and inverse warping parameter 1/k.
At these energies, the only dimensionful parameter remaining is the coupling strength κ5D.
Therefore, because a 5D 2-to-2 scattering matrix element has units of inverse-energy and
[κ5D] = [Energy]−3/2, the 5D matrix element must scale at high energies like

MHH→HH ∼ κ2
5Ds (5.14)

up to dimensionless multiplicative constants. This scaling provides a strict constraint on the
high-energy behavior of the 4D matrix elements, which we now consider.

Consider the same argument from the 4D perspective. Instead of perturbing the metric
G to yield a 5D graviton field HMN (x, y), it is perturbed by 5D fields hµν(x, y) and r(x)
which transform covariantly under the 4D Lorentz group. As detailed in Section 4.3, hµν



Standard Model Randall-Sundrum 1

The fundamental symmetry group... SU(2)W ×U(1)Y 5D diffeomorphisms

... w/ unitarity-violation scale... N/A Λπ = MPl e
−krcπ

... and gauged by the... electroweak bosons 5D RS1 graviton

... is spontaneously broken by... the Higgs vev background geometry

... to a new symmetry group... U(1)Q 4D diffeomorphisms*

... gauged by the... photon, γ 4D graviton, h(0)

... resulting in a spin-0 state... Higgs boson, H radion, r(0)

... as well as massive states W -bosons, W± spin-2 KK modes, h(n)

built from fund. gauge bosons... and Z-boson, Z for n ∈ {1, 2, . . . }

The 2-to-2 gauge boson process... γγ → γγ h(0)h(0) → h(0)h(0)

... has M w/ high-energy growth ∼ O(s0) O(s)

... or, if naively given mass, ... O(s2) O(s5)

... yet 2-to-2 massive state process
W+W− → W+W− h(n1)h(n2) → h(n3)h(n4)

where mass arises via sym. break...

... has M w/ high-energy growth ∼ O(s0) O(s)

Breaking the fund. symmetry by... elim. Z KK tower truncation

... makes massive states scatter like O(s2) O(s5)
naively-massive gauge bosons, M∼

Breaking the fund. symmetry by... elim. the Higgs elim. the radion

... makes massive states scatter ∼ O(s) O(s3)

Table 5.1: The Standard Model (SM) and the Randall-Sundrum 1 (RS1) model share a
chain of conceptual similarities with respect to the scattering of particles made massive
by spontaneous symmetry breaking. The Mandelstam variable s ≡ E2, where E is the
incoming center-of-momentum energy. Original results presented in this dissertation are
indicated in bold. (* - Technically, the new symmetry group is the Cartan subgroup of the
5D diffeomorphisms that contains the 4D diffeomorphisms.)



embeds a Kaluza-Klein (KK) tower of 4D spin-2 fields h
(n)
µν (x), where n = 0 corresponds

to the massless 4D graviton, and r(x) embeds a massless 4D spin-0 state r(0)(x) called the
radion. This dissertation focuses on tree-level 2-to-2 scattering of massive KK modes with
(nonzero) KK indices n1, n2, n3, and n4. The matrix elementMn1n2→n3n4 for this process
is calculated from infinitely-many diagrams, which we categorize into subsets for ease of
writing and discussion. All together, for any combination of external helicities,

Mn1n2→n3n4 ≡Mc +Mr +
+∞∑
j=0

Mj , (5.15)

within which

Mc ≡
n1

n2

n3

n4

Mr ≡
n1

n2

n3

n4

r
+
n1

n2

n3

n4
r +

n1

n2 n4

n3
r (5.16)

Mj ≡
n1

n2

n3

n4

j
+
n1

n2

n3

n4
j +

n1

n2 n4

n3
j

where subscript “c” denotes the contact diagram, “r” denotes the sum of diagrams mediated
by the radion r̂(0), and “j” denotes sum of diagrams mediated by the jth spin-2 KK mode
ĥ(j). The relevant vertices scale like

n1

n2

r ∼
κ5D√
πrc

n1

n2

n3 ∼
κ5D√
πrc

s

n1

n2

n3

n4

∼
[
κ5D√
πrc

]2

s

(5.17)

where the hhr interaction does not grow in energy because the corresponding interaction
Lagrangian (Eq. (4.78)) contains no 4D derivatives, and the relevant propagators scale like

r ∼ 1

s
µν ρσ0 ∼ 1

s µν ρσ
n 6= 0 ∼ s

according to Eqs. (2.344)-(2.353). The external massive spin-2 states can take on any one
of five possible helicities λ ∈ {−2,−1, 0, 1, 2}, and are described by polarization tensors ε

µν
λ

which have leading O(s2−|λ|) high-energy behavior (Eqs. (2.332) and (2.340)). In order to
maximize energy growth, we focus on the helicity-zero process wherein λ1 = λ2 = λ3 = λ4 =
0. Under this assumption, if we combine these elements we find the diagrams seemingly scale
like

Mj>0 ∼ O(s7) (5.18)

M0 and Mc ∼ O(s5) (5.19)

Mr ∼ O(s3) (5.20)



such that naively we expect the matrix element Mn1n2→n3n4 to grow like O(s7) when all
external massive spin-2 states have vanishing helicity. Explicit evaluation reveals that the
scaling is slightly more mild in practice: per diagram,

Mj and Mc ∼ O(s5) (5.21)

Mr ∼ O(s3) (5.22)

where cancellations occur such that each diagram inMj>0 only grows like O(s5). This sug-

gests that Mn1n2→n3n4 might grow as fast as O(s5). However, such rapid energy growth
would starkly contrast the high-energy growth of the 4D graviton, whose own 2-to-2 scatter-
ing matrix element only grows as fast as O(s). Inspired by the analogy with the Standard
Model in Table 5.1, wherein the massive W -bosons scatter with the same high-energy behav-
ior as photons due to the underlying electroweak symmetry SU(2)W ×U(1)Y, we expect
that the matrix elements for scattering massive KK modes (which are generated by the
5D RS1 graviton just like the 4D graviton) should exhibit the same high-energy growth as
graviton scattering, and indeed: this chapter demonstrates that cancellations occur between
the diagrams in (5.15) which reduce the naive O(s5) growth down to O(s) growth. These
cancellations require precise relationships between the KK mode mass spectra and coupling
integrals.

This chapter isolates those relationships and demonstrates they hold true in the 4D
effective field theory. After this, the strong coupling scale Λπ is calculated directly from the
4D effective theory, and the effects of KK mode truncation are investigated.

5.2.2 Definitions2

The preceding chapters detailed how to determine the vertices relevant to tree-level 2-to-
2 scattering of massive spin-2 helicity eigenstates in the center-of-momentum frame. This
subsection recounts the other diagrammatic pieces which go into calculating the diagrams
relevant to those matrix elements. For scattering of nonzero KK modes (n1, n2)→ (n3, n4)
with helicities (λ1, λ2) → (λ3, λ4), we choose coordinates such that the initial particle pair
have 4-momenta satisfying

p
µ
1 = (E1,+|~pi|ẑ) p2

1 = m2
n1

(5.23)

p
µ
2 = (E2,−|~pi|ẑ) p2

2 = m2
n2

(5.24)

and the final particle pair have 4-momenta satisfying

p
µ
3 = (E3,+~pf ) p2

3 = m2
n3

(5.25)

p
µ
4 = (E4,−~pf ) p2

4 = m2
n4

(5.26)

where ~pf ≡ |~pf |(sin θ cosφ, sin θ sinφ, cos θ). That is, the initial pair approach along the
z-axis and the final pair separate along the line described by the angles (θ, φ). The helicity-λ

2This subsection was originally published as Subsection IV.A of [18], up to minor changes in wording.



spin-2 polarization tensor ε
µν
λ (p) for a particle with 4-momentum p is defined according to

ε
µν
±2 = ε

µ
±1ε

ν
±1 , (5.27)

ε
µν
±1 =

1√
2

[
ε
µ
±1ε

ν
0 + ε

µ
0 ε
ν
±1

]
(5.28)

ε
µν
0 =

1√
6

[
ε
µ
+1ε

ν
−1 + ε

µ
−1ε

ν
+1 + 2ε

µ
0 ε
ν
0

]
, (5.29)

where ε
µ
s are the (particle-direction dependent) spin-1 polarization vectors

ε
µ
±1 = ±e

±iφ
√

2

(
0,−cθcφ ± isφ,−cθsφ ∓ icφ, sθ

)
, (5.30)

ε
µ
0 =

E

m

(√
1− m2

E2
, p̂

)
, (5.31)

(cx, sx) ≡ (cosx, sinx), and p̂ is a unit vector in the direction of the momentum [31]. We
use the Jacob-Wick second particle convention, which adds a phase (−1)λ to ε

µν
λ when the

polarization tensor describes h(n2) or h(n4) [24]. Due to rotational invariance, we may set
the azimuthal angle φ to 0 without loss of generality. Meanwhile, the propagators for virtual
spin-0 and spin-2 particles of mass M and 4-momentum P are, respectively,

=
i

P 2 −M2
(5.32)

µν ρσ =
iBµν,ρσ

P 2 −M2
(5.33)

where we use the spin-2 propagator convention [31]

Bµν,ρσ ≡ 1

2

[
B
µρ
B
νσ

+B
νρ
B
µσ − 1

3
(2 + δ0,M )B

µν
B
ρσ
]

B
αβ
∣∣∣
M=0

= ηαβ B
αβ
∣∣∣
M 6=0

≡ ηαβ − PαPβ

M2
(5.34)

and ηµν = Diag(+1,−1,−1,−1) is the flat 4D metric. The massless spin-2 propagator is
derived in the de Donder gauge by adding a gauge-fixing term

Lgf = −(∂µĥ
(0)
µν − 1

2∂νJĥ
(0)K)2 (5.35)

to the Lagrangian. The Mandelstam variable s ≡ (p1 + p2)2 = (E1 + E2)2 provides a
convenient frame-invariant measure of collision energy. The minimum value of s that is
kinematically allowed equals smin ≡ max[(mn1 +mn2)2, (mn3 +mn4)2]. When dealing with
explicit full matrix elements, we will replace s ∈ [smin,+∞) with the unitless s ∈ [0,+∞)
which is defined according to s ≡ smin(1 + s).

As discussed in Subsection 5.2.1, any tree-level massive spin-2 scattering amplitude can
be written as

Mn1n2→n3n4 ≡Mc +Mr +
+∞∑
j=0

Mj , (5.36)



whereMn1n2→n3n4 will be abbreviated toM when the process can be understood from con-
text, and we separate the contributions arising from contact interactions, radion exchange,
and a sum over the exchanged intermediate KK states j (and where “0” labels the mass-
less graviton). In practice, this sum cannot be completed in entirety and must instead be
truncated. Therefore, we also define the truncated matrix element

M[N ] ≡Mc +Mr +
N∑
j=0

Mj , (5.37)

which includes the contact diagram, the radion-mediated diagrams, and all KK mode-
mediated diagrams with intermediate KK number less than or equal to N .

We are concerned with the high-energy behavior of these matrix elements, and will there-
fore examine the high-energy behavior of each of the contributions discussed. Because the
polarization tensors ε

µν
±1 introduce odd powers of energy,

√
s is a more appropriate expansion

parameter for generic helicity combinations. Thus, we series expand the diagrams and total
matrix element in

√
s and label the coefficients like so:

M(s, θ) ≡
∑
σ∈1

2Z

M(σ)
(θ) · sσ (5.38)

and define M(σ) ≡ M(σ) · sσ. In what follows, we demonstrate that M(σ) vanishes for
σ > 1 regardless of helicity combination and we present the residual linear term in s for
helicity-zero elastic scattering.

5.2.3 Comments on Numerical Evaluation

The previous chapter detailed how to manipulate integrals of products of wavefunctions from
a purely analytic perspective, so let us take a moment to consider the numerical perspec-
tive. In those cases where it is desirable to numerically evaluate matrix elements, it can be
difficult to achieve a desired numerical accuracy for a variety of reasons. For example, the
determination of the massive spin-2 KK mode spectrum via[

2J2 +
µnε

krc
(∂J2)

] ∣∣∣∣
ϕ=π

[
2Y2 +

µnε

krc
(∂Y2)

] ∣∣∣∣
ϕ=0

−
[
2Y2 +

µnε

krc
(∂Y2)

] ∣∣∣∣
ϕ=π

[
2J2 +

µnε

krc
(∂J2)

] ∣∣∣∣
ϕ=0

= 0 (5.39)

(which is Eq. (4.34) when ν = 2) amounts to solving for the roots of the RHS to some desired
accuracy. However, the spacing of those roots can vary dramatically depending on the value
of krc, which means (depending on your root-solving method) there is the possibility to
inadvertently skip roots. To avoid this, we can use our exact knowledge of the eigenvalue
spectrum when krc = 0 (considered in the next section) and when krc is large (Subsection
4.3.5) to reparameterize Eq. (5.39) in terms of a variable wherein the roots are more evenly



spaced. For this purpose, we use

µn ≡
cn
n

[
(krc)xn e

−krcπ + n e−krcπ
]

(5.40)

and solve for cn. Having obtained a sufficiently-accurate eigenvalue spectrum, it is then
useful to rewrite ψn into the form

ψn =
ε2

Nn

[
b
(den)
n2 J2

(
µnε

krc

)
− b(num)

n2 Y2

(
µnε

krc

)]
(5.41)

rather than Eq. (4.32), where b
(num)
n2 and b

(den)
n2 indicate the numerator and denominator of

Eq. (4.33) respectively. (The value of Nn must change to accommodate this new form but
is still determined by Eq. (4.26).) This new form helps avoid numerical instability during

the occasions when b
(den)
n2 is close to zero. Furthermore, it is worthwhile to directly utilize

the analytic form of derivatives wherever possible. Specifically, this means using

∂Jν ≡
1

2
[Jν−1 − Jν+1] ∂Yν ≡

1

2
[Yν−1 − Yν+1] (5.42)

and

(∂ϕψn) =
ε3

Nn
µn

[
b
(den)
n2 J1

(
µnε

krc

)
− b(num)

n2 Y1

(
µnε

krc

)]
(∂ϕ|ϕ|) (5.43)

which uses the same Nn derived when normalizing ψn in Eq. (5.41). These changes all
help in gaining as much numerical accuracy as possible before calculating coupling integrals.
As detailed in Section 4.3, interaction vertices in the effective theory are proportional to
integrals of products of wavefunctions and their derivatives. Each wavefunction ψn oscillates
through zero n times over the (half) domain ϕ ∈ [0, π] and is exponentially distorted towards
ϕ = ±π by an amount determined by the specific value of krc selected. Consequently, inter-
action vertices involving even relatively modest mode numbers (n ∼ 10) generate integrands
that are highly oscillatory. Those dramatic oscillations in the integrand lead to cancella-
tions between large positive and large negative values in the integral, which can eliminate
many significant digits worth of numerical confidence. The number of significant digits are
retained following these cancellations depends on just how accurately the different maxima
and minima cancel one-another, which varies dramatically from integral to integral. In this
sense, the integrals required for investigations of the 4D effective RS1 model are numerically
unstable. This results in a time-consuming feedback loop: the numerical accuracy of the
spectrum and wavefunctions must be increased until the coupling integrals are sufficiently
accurate, which can not be known until those integrals are attempted. Furthermore, because
we are interesting in demonstrating cancellations between diagrams in the matrix element,
we are often evaluating perturbative expressions in an attempt to “measure zero”: because
higher-order terms in those expansions contribute less than lower-order terms, their effects
are only evident if the lower-order terms are evaluated to sufficient accuracy, further in-
creasing the need for highly-accurate results. We can only be confident we have calculated
all elements of the calculation to sufficient accuracy once all evidence of numerical noise is
absent from certain cross-checks (such as the sum rules analytically proved in Section 4.4).
Unfortunately, there seems to be no means of avoiding this time-consuming complication.



5.3 Elastic Scattering in the 5D Orbifolded Torus Model3

In this section, we begin our analysis of the scattering amplitudes of the massive spin-2 KK
modes. As described above, the full tree-level scattering amplitudes will require summing
over the exchange of all intermediate states, and we will find that the cancellations needed
to reduce the growth of RS1 scattering amplitudes from O(s5) to O(s) will only completely
occur once all states are included. In the present section, we analyze KK mode scattering in
a limit that only has finitely many nonzero diagrams per matrix element: the 5D Orbifolded
Torus model.

The 5D Orbifolded Torus (5DOT) model is obtained by taking the limit of the RS1
metric Eq. (3.115) as krc vanishes, while simultaneously maintaining a nonzero finite first
mass m1 (or, equivalently, a nonzero finite rc). Consequently, the 5DOT metric lacks explicit
dependence on y,

G
(5DOT)
MN =

e−κr̂√6 (ηµν + κĥµν) 0

0 −
(

1 + κr̂√
6

)2

 , (5.44)

and as krc → 0 the massive wavefunctions go from exponentially-distorted Bessel functions
to simple cosines:

ψn =

{
ψ0 = 1√

2

ψn = − cos(n|ϕ|) 0 < n ∈ Z
(5.45)

with masses given by µn = mnrc = n and 5D gravitational coupling κ =
√

2πrcκ4D =√
8πrc/MPl. In the absence of warp factors, the radion now couples diagonally and spin-

2 interactions display discrete KK momentum conservation. Explicitly, an H-point vertex

ĥ(n1) · · · ĥ(nH ) in the 4D effective 5DOT model has vanishing coupling if there exists no
choice of ci ∈ {−1,+1} such that c1n1 + · · · + cHnH = 0. For example, the three-point
couplings an1n2n3 and bn′1n

′
2n3

are nonzero only when n1 = |n2 ± n3|. Therefore, unlike

when krc is nonzero, the 5DOT matrix element M(5DOT) for a process (n1, n2)→ (n3, n4)
consists of only finitely many nonzero diagrams.

For (n, n)→ (n, n), the 5DOT matrix element arises from four types of diagrams:

M(5DOT)
(n,n)→(n,n)

=Mc +Mr +M0 +M2n . (5.46)

Using Eq. (4.67) and the 5DOT wavefunctions, we find:

n2annnn = 3bn′n′nn =
3

4
n2 ,

n2ann0 = bn′n′0 = bn′n′r =
1√
2
n2 , (5.47)

n2ann(2n) = −bn′n′(2n) =
1

2
b(2n)′n′n = −1

2
n2 ,

3The first paragraph of this section originates from Section IV of [18]. The rest of this section’s content
was original published as Subsection IV.B of [18] up to minor changes.



s5 s4 s3 s2

1
κ2Mc −

r7c [7+c2θ]s2θ
3072n8π

r5c [63−196c2θ+5cθ]

9216n6π

r3c [−185+692c2θ+5cθ]

4608n4π
−rc[5+47c2θ]

72n2π

1
κ2M2n

r7c [7+c2θ]s2θ
9216n8π

r5c [−13+c2θ]s2θ
1152n6π

r3c [97+3c2θ]s2θ
1152n4π

rc[−179+116c2θ−cθ]

1152n2π

1
κ2M0

r7c [7+c2θ]s2θ
4608n8π

r5c [−9+140c2θ−3cθ]

9216n6π

r3c [15−270c2θ−cθ]

2304n4π

rc[175+624c2θ+cθ]

1152n2π

1
κ2Mr 0 0 −

r3c s
2
θ

64n4π

rc[7+c2θ]

96n2π

Sum 0 0 0 0

Table 5.2: Cancellations in the (n, n) → (n, n) 5DOT amplitude, where (cθ, sθ) =
(cos θ, sin θ). Originally published in [16]

where here again the subscript “0” refers to the massless 4D graviton. We focus first on the
scattering of helicity-zero states, which have the most divergent high-energy behavior (we

return to consider other helicity combinations in Sec. 5.4.6). Figure 5.2 lists M(σ)
c , M(σ)

r ,

M(σ)
0 , and M(σ)

2n for σ ≥ 1, and demonstrates how cancellations occur among them such

that M(σ)
= 0 for σ > 1. The leading contribution in incoming energy is

M(1)
=

3κ2

256πrc
[7 + cos(2θ)]2 csc2 θ . (5.48)

We report here the results of the full calculation, including subleading terms.
The complete (tree-level) matrix element for the elastic helicity-zero 5DOT process equals

M(5DOT) =
κ2n2 [P0 + P2c2θ + P4c4θ + P6c6θ] csc2 θ

256πr3
cs(s + 1)(s2 + 8s + 8− s2c2θ)

, (5.49)

where

P0 = 510 s5 + 3962 s4 + 8256 s3 + 7344 s2 + 3216 s + 704 , (5.50)

P2 = −429 s5 + 393 s4 + 3936 s3 + 5584 s2 + 3272 s + 768 , (5.51)

P4 = −78 s5 − 234 s4 + 192 s3 + 1552 s2 + 1776 s + 576 , (5.52)

P6 = −3 s5 − 25 s4 − 96 s3 − 144 s2 − 72 s , (5.53)

and s is defined such that s ≡ smin(1 + s) where in this case smin = 4m2
n = 4n2/r2

c .
For a generic helicity-zero 5DOT process (n1, n2) → (n3, n4), the leading high-energy

contribution to the matrix element equals

M(1)
=

κ2

256πrc
xn1n2n3n4 [7 + cos(2θ)]2 csc2 θ , (5.54)



where x is fully symmetric in its indices, and satisfies

xaaaa = 3, xaabb = 2, otherwise xabcd = 1 ,

when discrete KK momentum is conserved (and, of course, vanishes when the process does
not conserve KK momentum).

The multiplicative csc2 θ factor in Eq. (5.49) is indicative of t- and u-channel divergences
from the exchange of the massless graviton and radion, which introduces divergences at θ =
0, π. Such IR divergences prevent us from directly using a partial wave analysis to determine
the strong coupling scale of this theory. In order to characterize the strong-coupling scale
of this theory, we must instead investigate a nonelastic scattering channel for which KK
momentum conservation implies that no massless states can contribute,M0 =Mr = 0. (In
this case, the csc2 θ factor present in Eq. (5.54) is an artifact of the high-energy expansion
and is absent from the full matrix element.)

Consider for example the helicity-zero 5DOT process (1, 4) → (2, 3). The total matrix
element is computed from four diagrams

1

4

2

3
+

1

4

2

3

5
+

1

4

2

3
1 +

1

4 2

3
2 (5.55)

which together yield, after explicit computation,

M =
κ2s

12800πr3
c (s + 1)2Q+Q−

4∑
i=0

Qiciθ , (5.56)

where

Q± = 25(s + 1)±
[
3 +

√
(25 s + 16)(25 s + 24) cos θ

]
, (5.57)

Q0 = 15
(

2578125 s4 + 9437500 s3 + 12990000 s2 + 7971000 s + 1840564
)
, (5.58)

Q1 = 72
√

(25 s + 16)(25 s + 24)(50 s + 43)(50 s + 47) , (5.59)

Q2 = 4
(

2734375 s4 + 11562500 s3 + 18047500 s2 + 12340500 s + 3121692
)
, (5.60)

Q3 = 24
√

(25 s + 16)(25 s + 24)(50 s + 51)(50s + 59) , (5.61)

Q4 = 390625 s4 + 2187500 s3 + 4360000 s2 + 3729000 s + 1165956 , (5.62)

and smin = 25/r2
c . As expected, unlike the elastic 5DOT matrix element (5.49), the (1, 4)→

(2, 3) 5DOT matrix element is finite at θ = 0, π.
Given a 2-to-2 scattering process with helicities (λ1, λ2) → (λ3, λ4), the corresponding

partial wave amplitudes aJ are defined as [24]

aJ =
1

32π2

∫
dΩ DJ

λiλf
(θ, φ)M(s, θ, φ) , (5.63)



where λi = λ1− λ2 and λf = λ3− λ4, dΩ = d(cos θ) dφ, and the Wigner D functions DJ
λaλb

are normalized according to∫
dΩ DJ

λaλb
(θ, φ) ·DJ ′∗

λ′aλb
(θ, φ) =

4π

2J + 1
· δJJ ′ · δλaλ′a . (5.64)

Each partial wave amplitude is constrained by unitarity to satisfy√
1− smin

s
R[aJ ] ≤ 1

2
, (5.65)

where R[aJ ] denotes the real part of aJ . The leading partial wave amplitude of the (1, 4)→
(2, 3) helicity-zero 5DOT matrix element corresponds to J = 0, and has leading term

a0 ' s

8πM2
Pl

ln

(
s

smin

)
. (5.66)

Hence, this matrix element violates unitarity when Re a0 ' 1/2, or equivalently when the

value of E ≡
√
s is near or greater than Λ

(5DOT)
strong ≡

√
4πMPl. Because MPl labels the

reduced Planck mass, Λ
(5DOT)
strong is roughly the conventional Planck mass. We will use this

inelastic calculation as a benchmark for estimating the strong-coupling scale associated with
other processes.

We now consider the behavior of scattering amplitudes in the RS1 model.

5.4 Elastic Scattering in the Randall-Sundrum Model4

This section discusses the computation of the elastic scattering amplitudes of massive spin-2
KK modes in the RS1 model, for arbitrary values of the curvature of the internal space. For
any nonzero curvature, every KK mode in the infinite tower contributes to each scattering
process and the cancellation from O(s5) to O(s) energy growth only occurs when all of these
states are included. In the subsequent subsections, we apply the sum rules to determine
the leading high-energy behavior of the amplitudes for two-body scattering of helicity-zero
modes. Finally, Sec. 5.4.6 analyses the (milder) high-energy behavior of the scattering of
nonzero-helicity modes of the massive spin-2 KK states.

5.4.1 Cancellations at O(s5) in RS1

We will now go through the contributions to the elastic helicity-zero (n, n)→ (n, n) scattering
process in the RS1 model order by order in powers of s, and apply the sum rules derived in
the previous chapter.

4The section description comes from Section V of [18]. The section content comprises Subsections V.B
through V.G of [18] with some modification to update notation and utilize the new expressions of the sum
rules from the previous chapter.



As described in Subsection 5.2.1, the contact diagram and spin-2-mediated diagrams
individually diverge like O(s5). After converting all b~n couplings into a~n couplings, their
contributions to the elastic helicity-zero RS1 matrix element equal

M(5)
c = − κ2 annnn

2304πrcm8
n

[7 + cos(2θ)] sin2 θ , (5.67)

M(5)
j =

κ2 a2
nnj

2304πrcm8
n

[7 + cos(2θ)] sin2 θ , (5.68)

such that they sum to

M(5)
=
κ2 [7 + cos(2θ)] sin2 θ

2304πrcm8
n


+∞∑
j=0

a2
nnj − annnn

 . (5.69)

This vanishes via Eq. (4.179), which we will, henceforth, refer to as the O(s5) sum rule.

5.4.2 Cancellations at O(s4) in RS1

The O(s4) contributions to the elastic helicity-zero RS1 matrix element equal

M(4)
c =

κ2 annnn
6912πrcm6

n
[63− 196 cos(2θ) + 5 cos(4θ)] , (5.70)

M(4)
j = −

κ2 a2
nnj

9216πrcm6
n

{
[7 + cos(2θ)]2

m2
j

m2
n

+ 2 [9− 140 cos(2θ) + 3 cos(4θ)]

}
. (5.71)

Using the O(s5) sum rule, M(4)
equals

M(4)
=
κ2 [7 + cos(2θ)]2

9216πrcm6
n

4

3
annnn −

∑
j

m2
j

m2
n
a2
nnj

 . (5.72)

This vanishes via Eq. (4.180), which we shall refer to as the O(s4) sum rule.

5.4.3 Cancellations at O(s3) in RS1

Once the O(s5) and O(s4) contributions are cancelled, the radion-mediated diagrams, which
diverge like O(s3), become relevant to the leading behavior of the elastic helicity-zero RS1
matrix element. Furthermore, because of differences between the massless and massive spin-
2 propagators, M0 and Mj>0 differ from one another at this order (and lower). The full



set of relevant contributions is therefore

M(3)
c =

κ2 annnn
3456πrcm4

n
[−185 + 692 cos(2θ) + 5 cos(4θ)] , (5.73)

M(3)
r = − κ2

32 πrcm4
n

[
b2
n′n′r

(mnrc)4

]
sin2 θ , (5.74)

M(3)
0 =

κ2 a2
nn0

1152πrcm4
n

[15− 270 cos(2θ)− cos(4θ)] , (5.75)

M(3)
j>0 =

κ2 a2
nnj

2304πrcm4
n

{
5 [1− cos(2θ)]

m4
j

m4
n

+ [69 + 60 cos(2θ)− cos(4θ)]
m2
j

m2
n

+ 2 [13− 268 cos(2θ)− cos(4θ)]

}
, (5.76)

After applying the O(s5) and O(s4) sum rules, M(3)
equals

M(3)
=

5κ2 sin2 θ

1152πrcm4
n

{∑
j

m4
j

m4
n
a2
nnj −

16

15
annnn −

4

5

[
9 b2
n′n′r

(mnrc)4
− a2

nn0

]}
. (5.77)

These contributions cancel if the following O(s3) sum rule holds true:

+∞∑
j=0

µ4
ja

2
nnj =

16

15
µ4
nannnn +

4

5

[
9b2
n′n′r − µ

4
na

2
nn0

]
(5.78)

We do not yet have an analytic proof of this sum rule; however we have verified that the
right-hand side numerically approaches the left-hand side as the maximum intermediate
KK number Nmax is increased to 100 for a wide range of values of krc, including krc ∈
{10−3, 10−2, 10−1, 1, 2, . . . , 10}.5

The O(s3) may also be written as

3

[
9b2
n′n′r − µ

4
na

2
nn0

]
= 15cnnnn + µ4

nannnn (5.79)

by applying Eq. (4.181) to Eq. (5.78).

5The cancellations implied by this sum rule can be seen in the vanishing of R[N ](3) Fig. 5.2 as N
increases.



5.4.4 Cancellations at O(s2) in RS1

The contributions to the elastic helicity-zero matrix element at O(s2) equal

M(2)
c = − κ2 annnn

54 πrcm2
n

[5 + 47 cos(2θ)] , (5.80)

M(2)
r =

κ2

48πrcm2
n

[
b2
n′n′r

(mnrc)4

]
[7 + cos(2θ)] , (5.81)

M(2)
0 =

κ2 a2
nn0

576πrcm2
n

[175 + 624 cos(2θ) + cos(4θ)] , (5.82)

M(2)
j>0 =

κ2 a2
nnj

6912πrcm2
n

{
4 [7 + cos(2θ)]

[
5− 2

m2
j

m2
n

]
m4
j

m4
n

− [1291 + 1132 cos(2θ) + 9 cos(4θ)]
m2
j

m2
n

+ 4 [553 + 1876 cos(2θ) + 3 cos(4θ)]

}
. (5.83)

By applying the O(s5) and O(s4) sum rules (but not the O(s3) sum rule), the total O(s2)
contribution equals

M(2)
=
κ2 [7 + cos(2θ)]

864 πrcm2
n

{∑
j

[
m2
j

m2
n
− 5

2

]
m4
j

m4
n
a2
nnj +

8

3
annnn − 2

[
9 b2
n′n′r

(mnrc)4
− a2

nn0

]}
,

(5.84)

which vanishes if the following O(s2) sum rule holds:

+∞∑
j=0

[
µ2
j −

5

2
µ2
n

]
µ4
ja

2
nnj = −8

3
µ6
nannnn + 2µ2

n

[
9b2
n′n′r − µ

4
na

2
nn0

]
. (5.85)

Again, we do not yet have a proof for this sum rule, despite strong numerical evidence that
it is correct (see Sec. 5.5). However, combining the O(s3) and O(s2) sum rules (Eqs. (5.78)
and (5.85)), yields an equivalent set

+∞∑
j=0

[
µ2
j − 5µ2

n

]
µ4
ja

2
nnj = −16

3
µ6
nannnn , (5.86)

3

[
9b2
n′n′r − µ

4
na

2
nn0

]
= 15cnnnn + µ4

nannnn . (5.87)

where Eq. (5.86) is precisely Eq. (4.183) (which we proved in Section 4.4) and Eq. (5.87)
is Eq.(5.79) again. Therefore, if the O(s3) sum rule holds true, then the O(s2) must also
hold true, and vice versa. Of the relations necessary to ensure cancellations, only Eq. (5.87)
remains unproven.



Finally, we note that the sum rules we have derived in RS1 in Eqs. (4.179), (4.180),
(5.78), and (5.85), are consistent with those inferred by the authors of [32] who assumed
that cancellations in the spin-0 scattering amplitude of massive spin-2 modes in KK theories
must occur to result in amplitudes which grow like O(s). A description of the correspondence
of our results with theirs is given in Appendix E of [18].

5.4.5 The Residual O(s) Amplitude in RS1

After applying all the sum rules above6 (including Eq. (5.87), which lacks an analytic proof),
the leading contribution to the elastic helicity-zero matrix element is found to be O(s). The
relevant contributions, sorted by diagram type, equal

M(1)
c =

κ2 annnn
1728πrc

[1505 + 3108 cos(2θ)− 5 cos(4θ)] , (5.88)

M(1)
r = − κ2

24 πrc

[
b2
n′n′r

(mnrc)4

]
[9 + 7 cos(2θ)] , (5.89)

M(1)
0 =

κ2 a2
nn0 csc2 θ

2304πrc
[748 + 427 cos(2θ) + 1132 cos(4θ)− 3 cos(6θ)] , (5.90)

M(1)
j>0 =

κ2 a2
nnj csc2 θ

6912πrc

{
3 [7 + cos(2θ)]2

m8
j

m8
n
− 4 [241 + 148 cos(2θ)− 5 cos(4θ)]

m6
j

m6
n

+ 4 [787 + 604 cos(2θ)− 47 cos(4θ)]
m4
j

m4
n

− [3854 + 5267 cos(2θ) + 98 cos(4θ)− 3 cos(6θ)]
m2
j

m2
n

+ [2156 + 1313 cos(2θ) + 3452 cos(4θ)− 9 cos(6θ)]

}
. (5.91)

Combining them, according to Eq. (5.36), yields

M(1)
=
κ2 [7 + cos(2θ)]2 csc2 θ

2304πrc

{∑
j

m8
j

m8
n
a2
nnj +

28

15
annnn −

48

5

[
9 b2
n′n′r

(mnrc)4
− a2

nn0

]}
.

(5.92)

This is generically nonzero, and thus represents the true leading high-energy behavior of the
elastic helicity-zero RS1 matrix element.

5.4.6 Other Helicity Combinations

The sum rules of the previous subsections were derived by considering what cancellations
were necessary to ensure the elastic helicity-zero RS1 matrix element grew no faster than

6The elastic 5D Orbifolded Torus couplings (5.47) directly satisfy all of these sum rules.



Figure 5.1: This table gives the leading order (in energy) growth of elastic (n, n) → (n, n)
scattering for different incoming (λ1,2) and outgoing (λ3,4) helicity combinations in RS1. In
the cases listed in grey, the leading order behavior is softer in the orbifolded torus limit (by
two powers of center-of-mass energy).

O(s), a constraint which in turn comes from considering the extra-dimensional physics. This
bound on high-energy growth must hold for scattering of all helicities.

Indeed, upon studying the nonzero-helicity scattering amplitudes, we find that the sum
rules derived in the helicity-zero case are sufficient to ensure all elastic RS1 matrix elements
grow at most like O(s).

Figure 5.1 lists the leading high-energy behavior of the elastic RS1 matrix element for
each helicity combination after the sum rules have been applied. These results are expressed
in terms of the leading exponent of incoming energy E ≡

√
s. For example, the elastic

helicity-zero matrix element diverges like O(s) = O(E2) and so its growth is recorded as “2”
in the table. As expected, no elastic RS1 matrix element grows faster than O(E2).

Some matrix elements grow more slowly with energy in the 5DOT model than they do
in the more general RS1 model; they are indicated by the gray boxes in Fig. 5.1. For



Figure 5.2: These plots show the ratio R[N ](σ)(krc, θ) = M[N ](σ)/M[0](σ) (defined in Eq.

(5.97)), where M[N ](σ) is the O(sσ) contribution to the matrix element describing helicity-
zero scattering of KK modes (1, 1)→ (1, 1) (left) and (1, 4)→ (2, 3) (right) as a function of
the number of KK intermediate states included in the calculation (N). The curves are shown
for krc = 0.1, 1, 10 at fixed θ = 4π/5. In all cases, the remaining matrix element falls rapidly
with the addition of more intermediate states, thereby demonstrating the cancellation of all
high-energy growth faster than O(s). To visually separate the different curves, the value of
the ratio at N = 0 has been artificially normalized to (1, 106, 1012, 1018) for σ = 5, 4, 3, 2
respectively.

these instances, the leading M(σ) contribution in RS1 is always proportional to the same
combination of couplings [

3a2
nn0 + 16annnn

]
µ4
n − 27 b2nnr , (5.93)

which vanishes exactly when krc vanishes. Regardless of the specific helicity combination
considered, no full matrix element vanishes.

5.5 Numerical Study of Scattering Amplitudes in the

Randall-Sundrum Model 7

This section presents a detailed numerical analysis of the scattering in the RS1 model. In
Sec. 5.5.1 we demonstrate that the cancellations demonstrated for elastic scattering occur for

7The content of this section was originally published as Section VI and Appendix F.3 of [18], up to minor
changes in wording and notation.



inelastic scattering channels as well, with the cancellations becoming exact as the number
of included intermediate KK modes increases. In Sec. 5.5.2 we examine the truncation
error arising from keeping only a finite number of intermediate KK mode states. We then
return, in Sec. 5.5.3 to the question of the validity of the KK mode EFT. In particular, we
demonstrate directly from the scattering amplitudes that the cutoff scale is proportional to
the RS1 emergent scale [12, 13]

Λπ = MPl e
−kπrc , (5.94)

which is related to the location of the IR (TeV) brane [10, 11].

5.5.1 Numerical Analysis of Cancellations in Inelastic Scattering
Amplitudes

We have demonstrated that the elastic scattering amplitudes in the Randall-Sundrum model
grow only as O(s) at high energies, and have analytically derived the sum rules which
enforce these cancellations. Physically, we expect similar cancellations and sum rules apply
for arbitrary inelastic scattering amplitudes as well. However, we have found no analytic
derivation of this property.8

Instead, we demonstrate here numerical checks with which we observe behavior consistent
with the expected cancellations. To do so, we must first rewrite our expressions so we may
vary krc while keeping MPl and m1 fixed. We do so by noting that we may rewrite the
common matrix element prefactor as

κ2

πrc
=
κ2

4D

ψ0
2

=
1

πkrc

[
1− e−2krcπ

] 4

M2
Pl

, (5.95)

and that rc = µ1/m1, such that M(σ) can be factorized for any process (and any helicity
combination) into three unitless pieces, each of which depends on a different independent
parameter:

M(σ) ≡
[
K(σ)(krc, θ)

]
·

[
s

M2
Pl

]
·
[√

s

m1

]2(σ−1)

. (5.96)

This defines the dimensionless quantity K(σ) characterizing the residual growth of order
(
√
s)2σ in any scattering amplitude . We can apply this decomposition to the truncated

matrix element contribution M[N ](σ), as defined in Eq. (5.37) as well. By comparing

M[N ](σ) to M[0](σ) and increasing N when σ > 1, we can measure how cancellations are
improved by including more KK states in the calculation and do so in a way that depends
only on krc and θ. Therefore, we define

R[N ](σ)(krc, θ) ≡
M[N ](σ)

M[0](σ)
=
K[N ](σ)

K[0](σ)
, (5.97)

8This is to be contrasted with the situation for KK compactifications on Ricci-flat manifolds, where an
analytic demonstration of the needed cancellations has been found [32].



which vanishes as N → +∞ if and only if M[N ](σ) vanishes as N → +∞. Because
R[N ](σ) depends continuously on θ, we expect that so long as we choose a θ-value such
that K[N ](σ) 6= 0, its exact value is unimportant to confirming cancellations. Figure 5.2
plots 106(5−σ)R[Nmax](σ) for the helicity-zero processes (1, 1) → (1, 1) and (1, 4) → (2, 3)

as functions of Nmax → 100 for krc ∈ {10−1, 1, 10} and θ = 4π/5. The factor of 106(5−σ)

only serves to vertically separate the curves for the reader’s visual convenience; without this
factor, the curves would all begin at R[0](σ) = 1 and thus would substantially overlap.

We find that, both for the case of elastic scattering (1, 1) → (1, 1) where we have an
analytic demonstration of the cancellations and for the inelastic case (1, 4) → (2, 3) where

we do not, M[N ](σ) → 0 as N → ∞. Furthermore, we find that the rate of convergence is
similar in the two cases. In addition, and perhaps more surprisingly, the rate of convergence
is relatively independent of the value of krc for values between 1/10 and 10.

5.5.2 Truncation Error

In the RS1 model, the exact tree-level matrix element for any scattering amplitude requires
summing over the entire tower of KK states. In practice, of course, any specific calculation
will only include a finite number of intermediate states N . In this subsection we investigate
the size of the “truncation error” of such a calculation. For simplicity, in this section we will
focus on the helicity-zero elastic scattering amplitude (1, 1)→ (1, 1) and investigate the size
of the truncation error for different values of krc and center-of-mass scattering energy.

For σ > 1, consider the ratio

F [N ](σ)(krc, s) ≡ max
θ∈[0,π]

∣∣∣∣∣M[N ](σ)(krc, s, θ)

M(krc, s, θ)

∣∣∣∣∣ , (5.98)

which measures the size of each truncated matrix element contribution relative to the full
amplitude.9 For sufficiently large N and σ > 1 we have confirmed numerically that the ratio
|M[N ](σ)/M[N | reaches a global maximum at θ = π/2 for σ > 1. Therefore

F [N ](σ)(krc, s) =

∣∣∣∣∣M[N ](σ)(krc, s, θ)

M(krc, s, θ)

∣∣∣∣∣
θ=π/2

. (5.99)

Unlike M(σ) for σ > 1, M(1) diverges at θ ∈ {0, π} because of a csc2 θ factor, as
indicated in Eq. (5.92), which arises from the t- and u-channel exchange of light states.10

The total elastic RS1 amplitude M, on the other hand, only has such IR divergences due
to the exchange of the massless graviton and radion. For this reason, and as confirmed by
the numerical evaluation of M[N ](1)/M[N ], the divergences at θ ∈ {0, π} of M[N ](1) are

actually slightly more severe than the corresponding divergences of M[N ], and so the ratio
M[N ](1)/M[N ] grows large in the vicinity of θ ∈ {0, π}. However, this unphysical divergence

9In practice, we approximate the“full”amplitude byM[N=100](krc, s, θ), which we have checked provides
ample sufficient numerical accuracy for the quantities reported here.

10Formally, the sum over intermediate KK modes in Eq. (5.92) extends over all masses, but the couplings
a11n vanish as n grows and suppress the contributions from heavy states.



is confined to nearly forward or backward scattering; otherwise the ratio is approximately
flat. Thus for σ = 1 we study the analogous quantity

F [N ](1)(krc, s) =

∣∣∣∣∣M[N ](σ)(krc, s, θ)

M(krc, s, θ)

∣∣∣∣∣
θ=π/2

. (5.100)

We also define the overall accuracy of the partial sum over intermediate states using a
version of this quantity for which no expansion in powers of energy has been made:

F [N ](krc, s) ≡

∣∣∣∣∣M[N ](krc, s,
π
2 )

M(krc, s,
π
2 )

∣∣∣∣∣ . (5.101)

Because F [N ](σ) (F [N ]) measures the discrepancy between any given contributionM[N ](σ)

(M[N ]) and the full matrix element M, we study these quantities to understand the trun-
cation error. In the upper two panes of Fig. 5.3 we plot the plot these quantities as a
function of maximal KK number N for krc = 1/10 and krc = 10 at the representative en-
ergy s = (10m1)2, for m1 = 1 TeV. The lower two panes of Fig. 5.3 plot similar information
but at the energy s = (100m1)2. The krc = 10 panes contain the more phenomenologi-
cally relevant information. In all cases, we find that including sufficiently many modes in
the KK tower yields an accurate result for angles away from the forward or backward scat-
tering regime. When including only a small number of modes N , the contribution from
M[N ](5) (the residual contribution arising from the noncancellation of the O(s5) contribu-
tions) dominates and the truncation yields an inaccurate result. As one increases the number
of included modes, this unphysical O(s5) contribution to the amplitude falls in size until the

full amplitude is dominated by M[N ](1), which is itself a good approximation to the com-
plete tree-level amplitude. For krc = 1/10, the number of states N required to reach this
“crossover”, however, increases from 3 to 15 as

√
s increases from 10m1 to 100m1. Consistent

with our analysis in the previous subsection, however, the truncation error is less dependent
on krc; the number of states required to reach crossover increases by less than a factor of 2
when moving from krc = 1/10 to krc = 10 at fixed

√
s.

Lastly, we note that the vanishing of F [N ](3) as N increases is a numerical test of the
O(s3) sum rule in Eq. (5.78).

5.5.3 The Strong-Coupling Scale at Large krc

In Section 5.3 we analyzed the tree-level scattering amplitude (1, 4)→ (2, 3) and discovered
that the 5D gravity compactified on a (flat) orbifolded torus becomes strongly coupled at

roughly the Planck scale, Λ
(5DOT)
strong ≡

√
4πMPl. In the large krc limit of the RS1 model,

however, we expect that all low-energy mass scales are determined by the emergent scale
[12, 13]

Λπ = MPl e
−πkrc , (5.102)

which is related to the location ϕ = π of the IR brane [10, 11]. In this section we describe
how this emergent scale arises from an analysis of the elastic KK scattering amplitude in the
large-krc limit.



Consider the helicity-zero polarized (n, n) → (n, n) scattering amplitude. As plotted
explicitly for n = 1 in the previous subsection, at energies s� m2

n the scattering amplitude is

dominated by the leading termM(1)(krc, s, θ) given in Eq. (5.92). The analogous expression
in the 5D Orbifold Torus is given by Eq. (5.48). We note that the angular dependence of
these two expressions is precisely the same, and therefore we can compare their amplitudes
by taking their ratio. This gives the purely krc-dependent result11

M(1)(krc)

M(1)(0)
=

[
1− e−2πkrc

2πkrc

]
· Knnnn(krc) , (5.103)

where

Knnnn =
1

405

{
15
∑
j

m8
j

m8
n
a2
nnj + 28annnn − 144

[
9 b2nnr

(mnrc)4
− a2

nn0

]}
. (5.104)

From this ratio, we can estimate the strong-coupling scale at nonzero krc:

Λ
(RS1)
strong(krc) ≡ Λ

(RS1)
strong(0)

√
M(1)(0)

M(1)(krc)
,

=
Λ

(5DOT)
strong√
Knnnn

√
2πkrc

1− e−2πkrc
. (5.105)

where we can use our earlier Λ
(5DOT)
strong =

√
4πMPl result.

Now let us consider the krc dependence of this expression in the large krc limit. At large
krc, Eq. (5.105) becomes

Λ
(RS1)
strong(krc) ≈

√
4πMPl

√
2πkrc

Knnnn
. (5.106)

whereas, using Eqs. (4.102)-(4.109),

m8
j

m8
n
a2
nnj ≈

x8
j

x8
n
C2
nnj (krc) e

2πkrc , (5.107)

annnn ≈ Cnnnn (krc) e
2πkrc , (5.108)

b2
n′n′r

(mnrc)4
≈ 1

x4
n
C2
nnr (krc) e

2πkrc , (5.109)

a2
nn0 ≈ Cnn0 (krc) . (5.110)

11Formally, as in the case of toroidal compactification, this amplitude has an IR divergence due to the
exchange of the massless graviton and radion modes. By taking the ratio of the amplitudes in RS1 to that
in the 5D Orbifolded Torus, the IR divergences cancel and we can relate the strong-coupling scale in RS to
that in the case of toroidal compactification.
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In this expression, the xj,n are the jth and nth zeros of the Bessel function J1, respectively;
the constants Cnnj , Cnnnn, and Cnnr (defined explicitly in Subsection 4.3.5) are integrals
depending only on the Bessel functions themselves. Therefore, focusing on the overall krc
dependence, we find that

Λ
(RS1)
strong ∝

√
4πMPle

−πkrc =
√

4πΛπ (5.112)

at large krc, as anticipated. The precise value of the proportionality constant depends weakly
on the process considered, and in the large-krc limit for the processes (n, n)→ (n, n) we find

n 1 2 3 4 5

Λ
(RS1)
strong/

√
4πΛπ 2.701 2.793 2.812 2.819 2.822

. (5.113)

Since these results for the elastic scattering amplitudes follow from the form of the wave-
functions in Eq. (4.92), similar results will follow for the inelastic amplitudes as well - and
they will also be controlled by Λπ.

We have also examined the dependence for lower values of krc via Eq. (5.105). We

display the dependence of Λ
(RS1)
strong as a function of krc for the processes (1, 1) → (1, 1) and

(1, 4)→ (2, 3) in Fig. 5.4. In all cases, we find that the strong-coupling scale is roughly Λπ.
Therefore, in the RS1 model, as conjectured under the AdS/CFT correspondence, all

low-energy mass scales are controlled by the single emergent scale Λπ.



Figure 5.3: These plots show an upper bound on the size of the residual truncation error
relative to the size of the full matrix element for the process (1, 1)→ (1, 1) as a function of
the number of included KK modes N , for E = 10m1 (upper pair) and E = 100m1 (lower

pair), and krc = 0.1 (left pair) and krc = 10 (right pair). F [N ](σ)(krc, s) from Eq. (5.99)

is shown in color, for σ = 1 - 5, and F [N ](krc, s) from Eq. (5.101) is shown in black. We
see that the size of the truncation error falls rapidly as the number of included intermediate
states N increases. We also see that, for E � m1, with a sufficient number of intermediate
statesM[N ](1) is a good approximation of the full matrix element. Note that if an insufficient
number of intermediate KK modes is included, and the truncation error is large, M[N ](5)

dominates.



Figure 5.4: The strong-coupling scale Λ
(RS1)
strong(krc), Eq. (5.106), as a function of krc for the

processes (1, 1)→ (1, 1) and (1, 4)→ (2, 3). We see that this scale is comparable to
√

4πΛπ.



Chapter 6

Conclusion

Between what we published in [16, 17, 18] and additional original work discussed in this dis-
sertation, we have obtained many substantial original results regarding the Randall-Sundrum
1 model:

• Summary of the 5D weak field expanded RS1 Lagrangian L5D and its 4D effective

equivalent L(eff)
4D through O(κ2

5D). (Section 3.4 and Subsection 4.3.3.)

• Confirmation that all terms containing factors of (∂ϕ|ϕ|) or (∂2
ϕ|ϕ|) in L5D are cancelled

to all orders in the 5D coupling κ5D in the full interacting theory. (Section 3.3.3)

• A new parameterization of the 4D effective RS1 Lagrangian as summarized in the
5D-to-4D formula, Eq. (4.65), which categorizes all couplings in the RS1 model as
“A-type” or “B-type.” (Section 4.3)

• The demonstration that the matrix element describing massive spin-2 KK mode scat-
tering in the 5D orbifolded torus model yields O(s) growth for all helicity combinations.
(Section 5.3)

• The demonstration that the matrix element describing massive spin-2 KK mode scat-
tering in the RS1 model yields O(s) growth for all helicity combinations, including the
derivation of sum rules that are sufficient for maintaining the cancellations from O(s5)
down to O(s). (Sections 5.4 and 5.5)

• Analytic proofs for many of the sum rules, as well as numerical evidence supporting
the one rule lacking an analytic proof. (Section 4.4 and Figure 5.2)

• Numerical measurements of how KK tower truncation impacts the accuracy of the
full matrix element and its O(sσ) contributions (σ ∈ {1, 2, 3, 4, 5}) relative to the full
matrix element without truncation. (Subsections 5.5.1 and 5.5.2)

• Calculation of the 5D strong-coupling scale Λπ = MPl e
−krcπ directly from the 4D

effective RS1 theory via partial wave unitarity constraints. (Subsection 5.5.3)

These results point toward several interesting open questions as well as providing a foundation
for future work. There are several projects we will be pursuing (including some for which
substantial progress has already been made):
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• The Role of the Radion: The single sum rule which lacks an analytical proof is the
combined O(s3)-O(s2) rule, Eq. (5.79),

3

[
9b2
n′n′r − µ

4
na

2
nn0

]
= 15cnnnn + µ4

nannnn (6.1)

and this owes to the curious coupling behavior of the radion. For example, the radion is
introduced to the metric in the combination û ≡ (κ5D r̂/2

√
6) ε+2 e−krcπ, which means

every instance of the 5D field r̂(x) carries with it a warp factor ε+2, which throws a
wrench in the otherwise powerful sum rules machinery developed in Section (4.4). Is
an analytic proof of this sum rule possible? And if so, does it shed light on the role of
the radion in the RS1 model?

• Radion Stabilization: The massless radion poses a problem for the RS1 model: if
left as is, it generates an attractive Casimir force which pulls the branes at either end
of the extra dimension together, thereby driving the extra dimension to smaller and
smaller distance scales until the separation enters the quantum gravity regime and
the RS1 model is no longer predictive [33, 34]. Furthermore, a massless radion would
necessarily generate a scalar-tensor theory of long-distance gravitation at low energies
contrary to the the usual pure tensor theory of 4D gravity. Therefore, phenomenologi-
cal applications of the RS1 model require that the radion become massive in a process
called radion stabilization. Radion stabilization typically involves adding a massive
bulk scalar field to the RS1 Lagrangian that generates a radion potential which sta-
bilizes the positions of the branes. However, we have found that adding a mass to
the radion by hand causes the matrix elements describing massive spin-2 KK mode
scattering to scale like O(s2) instead of O(s). In a full model of radion stabilization,
are cancellations down to O(s) maintained? If so, how does the introduction of radion
stabilization influence the sum rules?

• Bulk and Brane Matter: Phenomenological applications of the RS1 model are
not usually restricted to the pure gravity theory that we consider in this dissertation.
Instead, physicists typically add either bulk or brane matter to the RS1 model, and
investigate scattering of that matter in different circumstances. When adding (scalar,
fermionic, vector) matter to the bulk or a brane, how do the new 2-to-2 scattering
matrix elements scale at large energies? What new sum rules (if any) are implied?

We have actually already completed the analyses of bulk and brane scalar matter,
wherein we find that the process φφ → h(n)h(n) for a bulk or brane scalar φ exhibits
cancellations down to O(s)—and derive several new sum rules.

• Machinery: Because of the complexity of diagrams involving multiple massive spin-2
particles, the analytic calculations required for the analyses in this dissertation were
non-trivial. They required the development of a program that uses specialized tech-
niques in order to complete the calculation in a timely fashion. It is our goal to
generalize and clean up this code as to make it available for use to the wider physics
community.



Thus, this dissertation presents original results about massive spin-2 KK mode scattering
in the 4D effective Randall-Sundrum 1 model, and these results are of existing and future
relevance in theoretical and phenomenological contexts.
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