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ABSTRACT

INTERPRETING GRAVITATIONAL WAVES AND DEVELOPING RELATIVISTIC
MULTIPHYSICS SOLVERS FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

By

Michael Anton Pajkos

Core-collapse supernovae (CCSNe) mark the endpoint for millions of years of massive stellar

evolution. After a successful explosion, supernovae increase the metallicity of the interstellar

medium, generate intense electromagnetic radiation ionizing their surroundings, generate compact

objects such as black holes or neutron stars, and create ripples in spacetime—gravitational waves

(GWs). Advances in supernova theory over the past few decades have furthered our understanding

of CCSNe. However, constraints on the physics enshrouded in the supernova center would further

illuminate their explosion mechanisms. Advances in high performance computing (HPC) resources

and the ever-increasing sensitivities of GW observatories have positioned the field of astrophysics

between two recent technological advances. The work presented here leverages HPC to perform

CCSN simulations, allowing astronomers to translate between GW signals and internal physics.

Using this insight, astronomers are better positioned to constrain the physics driving these explosive

events that have such a widespread influence throughout astronomy.

Investigating the evolution of 12-, 20-, 40-, and 60 "� progenitors, I perform axisymmetric

neutrino radiation-hydrodynamic CCSN simulations, to relate the convective activity behind the

supernova shock to the expected GW strength. I quantify how the rotational content of the

supernova lowers GW frequencies. I present a novel method that combines two features of a

single GW event to constrain the mass distribution within the stellar progenitor. By only requiring

the two most detectable parts of the GW signal, astronomers can also potentially predict the

explosion properties ∼days before shock breakout. I present work with my undergraduate research

assistant, that considers the impact of viewing angle on detecting GWs from CCSNe. Presented is

a novel analysis method to identify the distribution of GW emission over all angles, accompanied

with results showing that the preferred direction of GW emission for CCSNe migrates over time.



Lastly, I present new numerical solvers targeted at exascale computing platforms that account for

magnetized fluid evolution with velocities near the speed of light and in extreme spacetimes. These

solvers are accompanied with stringent baseline tests, paired with 1D and 2D supernova simulations

making use of these features.
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CHAPTER 1

INTRODUCTION

1.1 Summary

The evolution ofmassive stars and their explosive endings—core-collapse supernovae (CCSNe)—

are vital to understanding multiple astronomy subdisciplines, from acting as catalysts for the chem-

ical enrichment of the universe, to creating compact objects like black holes or neutron stars.

CCSNe are rich sources of observables: electromagnetic (EM) waves, neutrinos, and gravitational

waves (GWs). These observables make CCSNe valuable laboratories to explore matter in extreme

environments, with conditions currently unattainable from Earth-based experiments. With such

potential astrophysical insights enshrouded in the center of the explosion, paired with the relative

rarity of CCSNe in the Galaxy, astronomers have employed numerical models to connect physical

observables to internal explosion physics. However, with the recent introduction of GW detectors,

drawing these connections, while respecting detector sensitivities, is still a relatively new field.

Likewise, with supercomputing technology constantly evolving, new numerical tools that actualize

the potential of next generation computing platforms is requisite to ensure the longevity of CCSN

science.

This Dissertation addresses the need to interpret GWs in unique ways and utilize so called next

generation ‘exascale’ supercomputers. I present insights regarding the previously poorly understood

effect of rotation onCCSNevolution andGWgeneration. I then introduce observationallymotivated

methods to determine the structure of the progenitor star from multiple components of a single GW

event. I present work that considers the impact of viewing angle on the observability for CCSNe.

Lastly, I present novel numeric solvers that incorporate general relativistic effects into a future-

focused, multiphysics code. In short, this work has added to the field of gravitational astrophysics,

resting at the juncture between numerical implementations, observational considerations, and

theoretical advances to unveil information encoded in the brilliant endings of massive stars.
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1.2 Physical Insights from Core-collapse Supernovae

Stars with zero age main sequence (ZAMS) masses & 8"� have sufficient overlying material

to synthesize elements more massive than carbon after core hydrogen and helium fusion ceases.

As these stars become supergiants, and eventually ascend the asymptotic giant branch, they contin-

uously synthesize heavier elements in their cores, with concentric overlying elemental layers. With

an inert iron core, the overlying silicon shell burning remains in a quasi-equilibrium (QSE) with

U particle neighbors such as Ar and Ca: a network of reactions of these elements with protons,

neutrons, U particles, and photons gradually deposits Fe group elements onto the core (Hix &

Thielemann, 1996). As the Fe core is primarily supported by electron (e−) degeneracy pressure,

the additional mass causes the core to contract, and the central temperature rises. Once core

temperatures reach ∼ 5 GK, gamma rays have sufficient energy to photodissociate the Fe nuclei,

in a net endothermic process; the core collapses. With increasing central temperatures gamma

rays continue to photodissociate Fe nuclei. Simultaneously, electron captures onto nuclei and free

protons create copious amounts of electron type neutrinos: ? + 4− ⇐⇒ = + a4.

The once stellar core contracts from a radius ∼ 1000s of km, down to a radius ∼ 10s of km. The

core reaches nuclear densities & 2 × 1014 g cm−3, and the strong nuclear force between baryons in

the neutron-rich core becomes repulsive, rapidly halting the material infall in a process known as

core bounce. The neutron rich central object is referred to as a protoneutron star (PNS). A shock

then propagates outward, but is robbed of energy as it moves out of the supernova gravitational

potential well, photodissociates overlying material, and cools via neutrino production—eventually

stalling. An additional source of energy is required to revive the shock and cause a successful

explosion.

After the shock is launched, the neutrinos created during the collapse decouple from the

overlying stellar material 10s of km above the PNS surface (i.e., ‘the neutrinosphere’) and stream

towards the outer parts of the stellar envelope. While the neutrino interactions occur relatively

sparsely with the stellar plasma, because roughly 1053 ergs of energy is released through the

2



creation of these particles, some energy is deposited in the shocked material and strengthens

turbulence behind the shock. According to the neutrino driven paradigm, this delayed neutrino

heating is sufficient to launch a successful explosion (Bethe &Wilson, 1985) and is considered one

of the most promising explosion mechanisms.

According to the magnetorotational mechanism of explosion, during collapse magnetic field

lines are compressed and, in sufficiently rotating models, can be wound and amplify due to the mag-

netorotational instability (MRI) (e.g., Akiyama et al., 2003; Burrows et al., 2007). A columnated

magnetic jet drives bipolar outflows with sufficient energy to drive a successful explosion as well

(Bisnovatyi-Kogan, 1970; LeBlanc &Wilson, 1970). Although theory is still attempting to explain

the exact formation channel for rapidly rotating, highly magnetized massive stars, this explosion

mechanism is a promising candidate to explain the high luminosities in superluminous supernovae,

luminosities the neutrino heating mechanism alone cannot explain (Greiner et al., 2015). Fur-

thermore, investigating the connections between energetic CCSNe and gamma ray bursts (GRBs)

has been a growing field, with one of the first clear observational connections from GRB030329

(Greiner et al., 2003) with associated supernova SN2003dh (Matheson, 2004; Woosley & Bloom,

2006).

For the case of successful explosions, there are two possibilities for the ultimate fate of the PNS.

For a sufficiently energetic explosion, mass accretion onto the central compact object halts and the

PNS cools to form a neutron star (NS). By contrast, if adequate material falls back onto the PNS,

even if a shock breaks out of the stellar envelope, it will collapse to form a black hole (BH). It is

estimated roughly a quarter of all CCSNe fail to explode, yielding material that falls back onto the

PNS, forming a BH; these events are known as ‘failed supernovae’ (Kochanek et al., 2008).

1.2.1 The Influence of CCSNe on Astronomy

CCSNe impact a variety of areas of study within astrophysics. Although massive stars are rarer

than low mass stars, the relatively short lifespans of massive stars allows multiple generations of

CCSNe to leave a distinct imprint on the chemical evolution of the universe. Principally, CCSNe
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Figure 1.1: Elemental abundances produced for the magnetized CCSN models from Halevi &
Mosta (2018) with varying levels of alignment between the rotation and magnetic field axes. For
nearly aligned cases, magnetically driven CCSN produce elements with atomic numbers beyond
200.

are responsible for distributing the vast majority of the oxygen created. CCSNe also deposit heavier

elements up to iron that are made during massive stellar evolution. Elements beyond Fe can be

created due to proton and neutron captures onto these massive nuclei during the explosion phase.

In particular, CCSNe are thought to be potential sites of the weak rapid neutron capture process (r-

process) for neutrino driven explosions, creating elements with atomic numbers A < 130 (Arcones

& Montes, 2011). For magnetically driven explosions, numeric models show creation of heavier r-

process elements, with � > 200 (Winteler et al., 2012; Halevi &Mosta, 2018). Figure 1.1 quantifies

the yields of different elements frommagnetized CCSNmodels. With each successive generation of

massive stars, explosion outflows chemically enrich the interstellar medium, protoplanetary disks,

and future generations of stars.

Serving as furnaces that forge compact objects, CCSNe provide the initial conditions for the

formation of NSs and BHs that can leave an imprint on their observables. Isolated objects such

as pulsars (Antoniadis et al., 2013), rare magnetic NSs like magnetars (Olausen & Kaspi, 2014),

binary interactions causing X-ray bursts (Steiner et al., 2010), or merging compact objects (Abbott
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et al., 2016b) represent major events explored by various subfields within astronomy. The masses,

spins, and magnetic fields of these compact objects are set by the conditions within the respective

supernovae. By further constraining the formation channel by which these objects form, theorists

can more precisely predict the range of physical conditions observers can expect to detect.

With densities 1014 − 1015 g cm−3 and temperatures on the order of 109 K, CCSNe act as sites

well-described by the hot nuclear equation of state (EOS). The hot nuclear EOS is an active area

of research in the nuclear astrophysics community, as supported by the creation of international

collaborative efforts, such as the Facility for Rare Isotope Beams (Gade & Sherrill, 2016) and the

National Science Foundation-supported Nuclear Physics from Multi-Messenger Mergers (NP3M)1

collaboration. The hot nuclear EOS is a pivotal input to simulations of CCSNe and NS mergers,

impacting the dynamics of the systems, resulting multimessenger signals, and composition of

resulting ejecta—factors vital in identifying sites for the origin of the elements and quantifying

their abundances (Winteler et al., 2012; Kasen et al., 2017).

1.2.2 Conventional Observations of Supernovae

This subsection reviews what can be learned from EM and neutrino observations of CCSNe, as

they relate to predictions provided by numerical models. Likewise, it outlines the strengths and

limitations of each method to extract new physics from supernovae.

1.2.2.1 Insights from Electromagnetic Observations

Using stellar spectra observed from supernovae dates back to original classification of CCSNe with

RudolphMinkowski classifying supernovae based on the presence of hydrogen (Minkowski, 1941).

Further sub-classifications have emerged based on spectral features such as the presence of heliumor

silicon, and the width of spectral lines. Beyond classifications, spectra from supernova—elements

like Ni, Ti, and Co—serve as valuable probes to the internal structure of the explosion.

1https://np3m.org/
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Figure 1.2: Measure of compactness b versus ZAMSmass at different mass cuts from the Sukhbold
et al. (2016b) progenitor series. This figure displays the non-monotonicity of mass distribution
within massive stars just before collapse, due to the nonlinearities present throughout stellar evolu-
tion. Figure taken from (Couch et al., 2020a).

To explain the connection between spectral signatures and core structure, consider the quantity

referred to as compactness b (O’Connor&Ott, 2010). Compactness is ameasure of howmuchmass

is contained within a given radius of the supernova core at collapse. Physically, the more compact a

core, the more gravitationally bound. Stars with high compactness have shallow density gradients

near their core and will accrete more material during the supernova evolution. With more material

closer to the highly energetic supernova core, greater quantities of material with higher atomic

numbers—Ti, Fe, Ni, Co—will be synthesized and launched in the supernova ejecta (Sukhbold

et al., 2016b). Observationally, as these unstable isotopes radioactively decay, they produce EM

radiation that will leave spectral signatures of these elements. It is important to emphasize there is

a non-monotonic relationship between ZAMS mass and stellar core compactness at collapse, due

to the inherent nonlinearities involved in stellar evolution (Sukhbold et al., 2016b), as displayed in

Figure 1.2.
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As stars with higher core compactness also produce higher mass accretion rates, more thermal

energy will be deposited on their cores. Due to pair production of neutrinos and anti neutrinos,

this thermal energy will be liberated with higher neutrino luminosities (Müller, 2019). In turn,

increased neutrino heating drives more active convection in the post shock region and, in the case

of successful explosions, will drive a more energetic explosion. This dense wall of material will

ionize more hydrogen in the stellar atmosphere as the shock breaks out. As the photons emitted

from recombination of electrons with ionized H are the principal driver for the ‘plateau luminosity’

for Type IIP supernovae, there is a connection between higher plateau luminosity and increased

core compactness (Barker et al., 2021).

Another observable of value is the velocity of the photosphere after shock breakout. As

established, for successful explosions, progenitors with higher core compactness will produce

more energetic explosions. These more violent shock breakouts will in turn launch the ejecta

with higher velocity away from the core of the star. The velocity of this outgoing material can be

observed via Doppler shifts of spectral lines. In practice, FeII lines have been used and typical

photospheric velocities are of the order of 1000s of km s−1 (Gutiérrez et al., 2017).

The advantage of measuring supernova spectra, plateau luminosities, and photospheric veloci-

ties is the plethora of telescopes available that collect EM radiation. From smaller survey telescopes

such as ASAS-SN (Kochanek et al., 2017), to 4 meter class telescopes such as the Southern Astro-

physical Research (SOAR) telescope, to 10 meter class telescopes such as the KECK Observatory,

networks of telescopes in all time zones allow for virtually continuous observation of the night

sky (e.g., Las Cumbres (Brown et al., 2013)). Likewise, the high efficiency of optical mirrors,

has allowed astronomers to view supernovae at distances over 9 billion light years (Ly) (Strolger

& Riess, 2006). Nevertheless, photons are prone to extinction due to interstellar dust, making

observing sources from the densest regions of the Milky Way—the Galactic disk and Galactic

center—difficult. Furthermore, due to stellar opacities, the photons emitted from CCSNe are lim-

ited to those from the outermost layers of an explosion. While previously mentioned work (Barker

et al., 2021) attempts to circumvent this issue with important correlations with core compactness,
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observers must wait ∼months for sufficiently small optical depths, before receiving any direct

photons from the supernova core.

1.2.2.2 Insights from Neutrino Observations

The first detection of supernova neutrinos came from the Super-Kamiokande, or Super-K, detector

from supernova 1987A (Hirata et al., 1987). As research in CCSNe evolved, neutrino observations

developed from simply making detections of CCSNe to constraining the properties of the explosion

based on neutrino properties, such as the the energies of different flavors and total number of

neutrino counts.

The first significant source of neutrinos arises from the burst of electron type neutrinos that

escape from the supernova neutrinosphere with energies ∼ 10 MeV (Müller & Janka, 2014). The

characteristic rise in neutrino counts can be useful for timing the occurrence of the core bounce,

a quantity of particular use for improving detectability of GWs. As the supernova ensues, the

increased production of electron, muon, and tau type (anti)neutrinos encodes information about

the mass accretion history of the PNS. As the mass accretion rate is related to the compactness of

the progenitor, the number of counts and energies of the neutrinos—in both failed and successful

explosions—has been show to correlate with b (Warren et al., 2020).

During the accretion phase, as the PNS approaches a critical mass, it may collapse to a BH.

During the final collapse of a PNS to a BH, neutrino energies are expected to moderately rise,

as the core increases in temperature before BH formation (Müller, 2019). Following the creation

of a BH, the neutrino signal would abruptly cease, providing astronomers with an estimation of

BH formation time (C��). This observable feature is valuable for calibrating stellar evolution

calculations and supernova models, as stellar structure is intimately related to C�� (O’Connor &

Ott, 2010).

For CCSNe that retain NSs in their core, following the accretion phase, the NS enters the Kelvin-

Helmholtz cooling phase. During this phase, the diffusion of neutrinos out of the NS gradually

cools the compact object. While the duration of the cooling phase is expected to depend on the
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nuclear EOS, there exists no simple mapping between cooling phase duration and EOS properties.

Rather, bulk properties of the PNS like the mass and binding energy are simpler to extract (Lattimer

& Prakash, 2001).

The benefit of neutrino observations for extracting supernova characteristics lies in the ability

of the neutrinos to pass through lower density matter unobstructed. This feature allows neutrino

observatories to detect direct signals emitted from the supernova core mere seconds after core

bounce. Furthermore, for supernovae that may occur in the Galactic disk, they will not suffer from

extinction like EM waves. Examples of observatories that can (will) detect supernova neutrinos

are Super-K (Hyper-K) (Abe et al., 2021) which are water Cherenkov detectors sensitive to ā4.

Although Ice-cube (Köpke & IceCube Collaboration, 2011) is designed for neutrinos with energies

> 100 GeV, the large detector volume will be able to identify signatures of MeV neutrinos via

increases in its dark current. Likewise, with 2 ms timing resolution, Ice-Cube would provide fine

resolution timing information. The Deep Underground Neutrino Detector (DUNE) (Abi et al.,

2021) is a liquid argon detector that would provide finely sampled a4 light curves. The Jiangmen

Underground Neutrino Observatory (JUNO) is a liquid scintillator detector sensitive to ā4, and

offers fine energy resolution to help determine the energy spectrum of incoming neutrino events

(An et al., 2016).

The difficulty posed by neutrino observations is the lack of understanding regarding neutrino os-

cillations between different flavors: in particular, interpreting neutrino observations and connecting

them to supernova physics (Mirizzi et al., 2016). In supernova modeling, accounting for neutrino

interactions in vacuum, in matter, and between other neutrinos is prohibitive due to computational

cost. Thus, interpreting observables can be less reliable until the effect of neutrino oscillations can

be properly accounted for. Additionally, the imprint of stellar rotation on neutrino signals, although

briefly explored (Ott et al., 2012), is still not fully understood.

Given the limitations of observations of EM waves and neutrinos, there is motivation to rely on

other observables that can constrain stellar rotation, provide direct information from the supernova

core, and can readily connect signal features to source physics. To meet this scientific demand

9



and make use of timely instrumentation—the Laser Interferometer Gravitational-wave Observatory

(LIGO) (LIGO Scientific Collaboration et al., 2015), Virgo (Acernese et al., 2015), and KAGRA

(Kagra Collaboration et al., 2019)—GWs offer a natural remedy to expand the CCSN scientific

horizon.

1.3 Characteristics of Gravitational Waves

Einstein’s theory of general relativity (GR) quantifies the distance between events based on

a spacetime metric commonly denoted 6`a. This metric is a symmetric tensor, acting as a lin-

ear function that accepts vectors which represent events—one time component and three spatial

components—as inputs and returns the distance between the events. Fundamentally, 6`a represents

a general curved spacetime, that depends on the mass and energy distribution surrounding a region

of interest:

�`a = 8c)`a, (1.1)

where�`a is the Einstein tensor and )`a is the stress energy tensor. In this work Newton’s constant

�, the speed of light 2, and solarmasses"� are set to unity, unless otherwise noted. This condensed

form represents Einstein’s field equations of GR. Here�`a depends on derivatives of the spacetime

metric 6`a, and in general, quantifies the curvature of spacetime. )`a describes distributions of

stress-energy for various sources: fluids, EM radiation, particles, general scalar fields. Equations

(1.1) yield powerful insight that matter curves spacetime and spacetime determines how matter

moves. With this connection, one realizes dynamic matter distributions must create dynamic

spacetimes. Far away from matter sources, spacetime is considered flat and described by the

Minkowski metric which can be described in Cartesian coordinates as

[`a =

©­­­­­­­­«

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®®¬
. (1.2)
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As a note, this work follows Einstein’s summation convention; that is whenever indices are repeated,

a sum over all possible values is performed. Greek letters can be 0, 1, 2, or 3 and Latin letters can

be 1, 2, 3. When observing slowly moving matter or extreme sources (e.g., coalescing compact

objects or CCSNe) from a large distance, 6`a can be described by perturbations to the Minkowski

metric:

6`a = [`a + ℎ`a, (1.3)

where elements of ℎ`a are taken to bemuch less than one. Substituting Equation (1.3) into Equation

(1.1) and retaining first order terms in ℎ`a yields

(−m2
C + m8m8) ℎ̄`a = −16c)`a (1.4)

where ℎ̄ = ℎ`a − [`aℎ``/2 and m` represent partial derivatives with respect to `. Regarding

notation, m8 = m/mG8. Thus, the implied summation of partial derivatives recovers the familiar

Laplacian operator m8m8 = m2/mG2 + m2/mH2 + m2/mI2. Equation (1.4) represents a set of wave

equations for these perturbations to the spacetime metric. The solutions to these equations are

given by the Green function for the wave operator yielding

ℎ))8 9 ∼
2
�
¥I))8 9 (C − �), (1.5)

where )) indicates a tensor whose trace is 0 and transverse components are 0—also known as

transverse-traceless (Baumgarte & Shapiro, 2021), ¥I8 9 is the acceleration of the reduced mass

quadrupole moment of a matter distribution, and � is the distance to the source. This definition

describes that, for slow moving weak field sources, perturbations to the spacetime metric, or GWs,

depend on ¥I))
8 9

to leading order.

GWs are transverse waves, with the valuable characteristic that they pass through matter unob-

structed. Thus, GWs act as valuable signals that can be emitted directly from sources previously

unobservable via EM radiation. Thus far GWs have been detected from binary BH (Abbott et al.,

2016c), binary NS (Abbott et al., 2017), and BH-NS systems (Abbott et al., 2021). However, as
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Figure 1.3: Sensitivity curves selected current—LIGO, Virgo, and KAGRA—and future—LISA
andDECIGO—GWobservatories. While CCSN processes produce GWs across many frequencies,
current observatories are sensitive to Galactic events with GW frequencies 10s - 100s of Hz. Figure
taken from Moore et al. (2014).

long as Equation (1.5) is satisfied, ripples in spacetime will be generated. Thus, other proposed

sources of detectable GWs involve accreting pulsars (Abbott et al., 2020), phase transitions from

the early universe (Ellis et al., 2019), and CCSNe (Kotake, 2013).

1.3.1 Connecting GW Signals to CCSN Physics

The generation of GWs from CCSNe has been expected for decades (Wheeler, 1966; Finn & Evans,

1990). As modern computing resources allow for wider explorations of parameter space, the need

for templates of possible waveforms is slowly being met 2. Although modern GW observatories

would require a Galactic CCSN for adequate signal strength, the potential physics insight from

these signals could provide one of the most valuable measurements of hot nuclear matter to date.

2https://stellarcollapse.org/gwcatalog.html
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With larger collections of GW templates, and instrument sensitivities improving, there is a current

need by the observational community to connect observable GW features to source physics.

During collapse, centrifugal support within rotating supernovae will cause the PNS to deform,

becoming oblate. During core bounce, due to ram pressure imparted by the infalling collapsing

material, the PNS will rapidly become more spherical. This deformation of material at nuclear

densities produces a signal that scales roughly with the angular momentum of the PNS squared and

produces broadband emission. This signal is well templated in the time domain, leaving it as one

of the more promising candidates for observation, by using its well defined structure to improve

detectability from LIGO background noise (Edwards et al., 2014).

During the accretion phase, as accreted matter overshoots the surface of the PNS, vibrational

modes of the compact object can cause oscillations, producing another robust source of GWs.

Multiple modes may simultaneously emit gravitational radiation from 100s of Hz to the order of

kHz, as the PNS contracts and its dynamical frequency increases (Torres-Forné et al., 2019b).

For vibrational modes that are restored by gravity (g-modes), they produce GW amplitudes of

comparable order to the previously mentioned bounce signal, with frequencies near the upper end

of the LIGO sensitivity curve at a few hundred Hz. Figure 1.3 displays the sensitivity curves

for multiple GW observatories, with current ground-based GW observatories detecting the upper

end of the frequency spectrum. These oscillatory modes encode information about the mass and

radii of the PNS just after bounce and can be used to track the cooling rate of the compact object

(Torres-Forné et al., 2019a).

Although of smaller amplitude, direct mass motions behind the supernova shock can also

directly generate GWs. Convective overturn (Pajkos et al., 2019), hydrodynamic instabilities like

the Standing Accretion Shock Instability (SASI) (Andresen et al., 2017), or the low T/W instability

(Takiwaki et al., 2021) have been shown to create GWs ∼ 200 Hz. However, while the GWs directly

produced from turbulence may be of lower amplitude, instabilities such as the SASI or low T/W

may produce bulk asymmetries in the motion of the PNS, which can in turn create stronger GWs

(Andresen et al., 2019). Near the end of a successful explosion, asymmetric neutrino production
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(Mukhopadhyay et al., 2021) or direct ejection of the compact object (Burrows & Hayes, 1996) due

to bipolar outflows can produce unique GWs. The bulk asymmetries in the CCSN system would

yield modest amplitudes 10 - 100 times weaker than the GWs generated from PNS oscillations,

with frequencies of the order 1 Hz, and can produce direct offset signals that permanently distort

spacetime, also know as ‘GW memory’ (Vartanyan & Burrows, 2020). These low frequencies are

outside of current detector sensitivity ranges and would need to be observed by future space based

observatories like the Laser Interferometer Space Antenna (LISA) (Amaro-Seoane et al., 2017) or

Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) (Kawamura et al., 2021).

While these connections between GW features and specific physical properties are insightful,

it is important to take these predictions in the context of observation. As meaningful detections of

GWs have only been occurring for less than a decade, the subfield of connecting GWs detectable

by current instruments to CCSN features is still in its infancy. As supernova modeling becomes

increasingly sophisticated and GW observatories increase sensitivity, framing theoretical predic-

tions beyond detector sensitivity curves will help align CCSN models with experimental efforts by

considering factors in unique data extraction pipelines [e.g., coherent WaveBurst (Klimenko et al.,

2021) or BayesWave (Gill et al., 2018)]. Furthermore, the potential to motivate and inform the

construction of future GW observatories exists to make use of more unique features of GW signals,

such as polarization and viewing angle dependence (Hayama et al., 2016).

Having discussed the connection between GW observables and internal supernova processes,

I now consider the relevant physics influencing the supernova evolution that must be numerically

implemented to perform proper numerical models of these stellar explosions.

1.4 The Multiphysics Nature of CCSNe

While supernova modeling is an evolving field due to technological advances in computing

and detectors, there are core principles that motivate ongoing research: exploring various initial

conditions that respect massive star observations, solving systems of coupled partial differential

equations (PDEs) that robustly model the underlying physics with reasonable simulation times,

and interpreting simulation output to provide meaningful predictions that can be validated with
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observations. Numericalmodels of CCSNe are one of themost challenging computational problems

to solve because of themultitude of physics treatments incorporated for a given set of coupled PDEs.

As 99% of the energy released from CCSNe is in the form of neutrinos, accounting for radiation

transport is paramount to properly capturing supernova evolution. Evolving neutrinos in numerical

models requires solving the relativistic collisional Boltzmann transport equation (Lindquist, 1966)

?U

[
m 5a8

mGU
− ΓVUW ?W

m 5a

m?V

]
=

[
35a

mg

]
collision

, (1.6)

where 5a8 is the neutrino distribution function, GU is the position vector, ?U is the momentum

vector, ΓVUW are Christoffel symbols (describing spacetime curvature), and neutrino interactions

(e.g., scattering, absorption, with surround matter and other neutrinos) are captured in the collision

term [35a/mg]collision.

Fully solving for the 7-dimensional neutrino distribution function—three spatial degrees of

freedom, three momentum degrees of freedom, and time evolution—incurs an immense computa-

tional cost. Various approximations exist to mitigate this expense. The first approximation relevant

to this work are so called ‘leakage schemes’. Leakage schemes do not formally evolve the neutrino

distribution function, rather, interpolate between free emission rates and emission rates resulting

from the diffusion approximation (O’Connor, 2015). While computationally inexpensive, leak-

age schemes have difficulty reproducing neutrino heating in problems that deviate from spherical

symmetry. The so called ‘M1 scheme’ is considered to be state of the art for CCSN simulations.

M1 reduces the angular dependence of the Boltzmann transport equation by taking moments

of the neutrino distribution function 5 = 5 (G`, nneut,Ω) and providing an analytic closure (Cardall

et al., 2013). When using units of ℏ = 2 = 1, the first three moments of the distribution function,

in the frame comoving with the fluid, retain physical meanings as

J = nneut

∫
5 3Ω, (1.7)
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representing the energy density,

H ` = nneut

∫
ℓ` 5 3Ω, (1.8)

representing the energy flux, and

K`a = nneut

∫
ℓ`ℓa 5 3Ω, (1.9)

representing the radiation stress. Here 3Ω = sin \3\3q represents a differential element of solid

angle of the unit sphere, for a polar angle \ and azimuthal angle q, nneut the neutrino energy, and

(ℓ0, ℓ1, ℓ2, ℓ3) = (0, cos \, sin \ cos q, sin \ sin q). These moments are related to the evolution

equations
m�),=

mC
+
m�8

),=

mG8
+ 1
n2

neut

m

mnneut
[n2

neut('),= +$),=)] = �),= + �),=, (1.10)

for the conserved energy density �),= and flux of conserved energy �8),= and

m (�),W) 9
mC

+
m (�),W)89
mG8

+ 1
n2

neut

m

mnneut
[n2

neut(('),W) 9 + ($),W) 9 )] = (�),W) 9 + (�),W) 9 , (1.11)

for the conserved momentum densities (�),W) 9 and flux of conserved momenta (�),W)89 . Here

'),(=,W) and$),(=,W) represent gravitational shifts and observer corrections, respectively. �),(=,W)

and �),(=,W) represent gravitational source terms and collision source terms, respectively. Terms

with = subscripts correspond quantities evolving the neutrino energy density and terms with W

subscripts influence the evolution of the neutrino momentum density. Lastly, this system of

moments is closed by choosing an appropriate closure condition

K`a = 1
3
J ℎ`a

%
+ 0(J ,H)

(
H `H a − 1

3
H`H `ℎ

`a

%

)
, (1.12)

where ℎ`a
%

is the orthogonal projector relative to the comoving frame (Cardall et al., 2013),

0(J ,H) = J
H `H`

(3j − 1)
2

, (1.13)
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and j = j(J ,H) is a constant chosen according to the Minerbo closure (Minerbo, 1978; Pons

et al., 2000). While more expensive than leakage schemes, M1 provides results much closer to full

Boltzmann transport calculations. In Chapter 2 and Chapter 3, the software architecture FLASH

(Dubey et al., 2009; Fryxell et al., 2010) uses the M1 neutrino treatment. The CCSN models in

Chapter 5 use a leakage scheme.

Another vital component impacting a successful explosion is turbulence of the stellar plasma

behind the shock. Modeling magnetized fluid flow involves incorporating magnetohydrodynamics

(MHD). In general, MHD requires conservation of mass, momentum, energy, species number,

and maintain that the divergence of the magnetic field remains zero. In a condensed form, these

equations can be described as a coupled system of hyperbolic PDEs

mU
mC
+ mF8
mG8

= S, (1.14)

where U is a vector of conserved quantities, F8 are spatial fluxes in the 8Cℎ direction, and S accounts

for sources and sinks (Toro, 2009). While Equation 1.14 is a condensed form describing the

evolution of a general hyperbolic system, the specific MHD components developed in this work—

in terms of quantities like density, velocity, and magnetic field—are described in detail in Chapter

5. Unless otherwise noted, the simulations used throughout this Dissertation make use of Spark:

a directionally unsplit ideal MHD solver, with a strong stability preserving (SSP) second order

Runge-Kutta time integrator (Couch et al., 2021). Likewise, they make use of fifth order weighted

essentially non-oscillatory (WENO5) spatial reconstruction and the HLLC approximate Riemann

solver (Toro et al., 1994). The MHD scheme accounts for fundamental characteristics of the fluid,

also called primitive variables, which other solvers depend on, such as density, pressure, internal

energy, and velocity. Furthermore, the source terms in Equation (1.14) account for the influence

of radiation transport, gravity, and nuclear reactions as well—emphasizing the coupled nature of

these systems of equations.

The gravitational treatment contributes to the success or failure of an explosion, the features of

multimessenger signals, and the final compact object remnant. Fully solving the set of Einstein’s
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field equations using standard methods—the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-

mulation (Shibata & Nakamura, 1995; Baumgarte & Shapiro, 1998)—involves solving a system

of 40 coupled hyperbolic PDEs. When used with previous advanced physics treatments, such as

neutrino transport, calculations become increasingly expensive, especially for 3D simulations. In

FLASH, a commonly used, less expensive approximation is known as the GR ‘effective potential’,

or GREP (Marek et al., 2006). The GREP involves contributions such as the pressure and internal

energy of the matter to the gravitational potential, as opposed to merely integrating over a density

distribution. Thus, in one dimension, the equation for this Tolman-Oppenheimer-Volkhoff (TOV)

mass, which contributes to the gravitational potential, is described by

3<TOV
3A

= 4cA2
(
d + dn + �a +

E8�
8
a

Γ

)
Γ (1.15)

where d is the rest mass density, n is the specific internal energy, �a is the energy density of the

neutrinos, �8a is the neutrino momentum density, E8 is the average radial velocity, and Γ as a function

of distance A represents an empirical factor that more closely resembles full GR calculations

Γ =

(
1 + E2 − 2<TOV

A

)1/2
. (1.16)

Equation 1.15 and Equation 1.16 contribute to the GR ‘effective potential’ qeff by

mqeff
mA

=
<TOV(A) + 4cA3(% + %a)

A2Γ2

(
1 + n + %

d

)
, (1.17)

where %a is the pressure exerted by neutrinos.

While computationally efficient, in practice, the GREP tends to overestimate GW frequencies

produced by the PNS in numerical simulations (Müller et al., 2013). This discrepancy motivates

the work outlined in Chapter 5, to implement a more robust treatment of gravity within FLASH,

without the computational burden of a BSSN-like scheme.

TheEOSenforces that thermodynamic variables—for example, d, n , pressure, and temperature—

follow a consistent relationship. One of the most common is the ideal gas EOS, which relates
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pressure to other thermodynamic quantities with an adiabatic index W: % = (W − 1)dn , which has

been used to describe CCSN material not in nuclear statistical equilibrium (Steiner et al., 2013a).

The advantage of the ideal gas EOS is that it follows a simple analytic relationship. However, it

poorly describes material near the center of the supernova engine, compared to more sophisticated

methods. The Helmholtz EOS describes the stellar material in terms of photons, an ideal gas of

ions, and a fully ionized electron-positron gas (Timmes & Swesty, 2000). It provides a more proper

description of low density stellar material, by accounting for different species of ions, however does

not completely describe the dense nuclear material at the supernova core. State of the art EOS

treatments include tabulated nuclear EOSs often used in CCSN and NS merger simulations. Some

notable examples include SFH(o/x) (Steiner et al., 2013a,b), LS220 (Lattimer & Swesty, 1991),

and FSUGold (Todd-Rutel & Piekarewicz, 2005). Likewise, ‘customized’ EOSs perform a Taylor

series expansion about the nuclear saturation density to characterize empirical parameters of the

nuclear material, such as the effective mass of the nucleon or nuclear symmetry energy (Schnei-

der et al., 2019). Such tabulated nuclear EOSs use a relativistic mean theory model to attempt

matching nuclear experimental data, as well as mass/radius NS measurements; these EOSs provide

a sophisticated treatment of the matter allowing for contributions from protons, anti-protons, neu-

trons, anti-neutrons, electrons, positrons, photons, and nuclei (Hempel et al., 2012). While more

properly describing the hot, dense nuclear matter, in practice they require a more expensive iterative

interpolation procedure, compared to analytic EOS counterparts. The CCSN models in this work

use the SFH(o/x) and LS220 EOSs and are specified in the respective chapters.

Accounting for nuclear reactions requires evolving reaction networks of related nuclear species.

Updating these networks modifies the nuclear species as well as the thermodynamic properties

of the surrounding environment, through source terms S. In principle, each species .8 evolves

according to a total reaction rate ¤'8

3.8

3C
+ ∇ · (.8V8) = ¤'8 (1.18)

whereV8 represents the mass diffusion velocity for a given species. Calculating ¤'8 involves solving
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for individual forward and reverse nuclear reaction rates, which couple species together; mathemati-

cally this process reduces to solving sparse linear systems and then solving the ordinary differential

equations (ODEs) represented by Equation (1.18). FLASH includes a 7 isotope alpha chain, 13

isotope alpha chain and heavy ion network, a 19 isotope reaction network that additionally contains

proton-proton chain, Carbon-Nitrogen-Oxygen cycle and 54Fe photodisintegration contributions

(Weaver et al., 1978), and a 21 isotope network that also accounts for 56Fe and 56Cr (Paxton

et al., 2010). Other networks used in CCSN models include Xnet3 (Hix & Thielemann, 1999)

and SkyNet (Lippuner & Roberts, 2017). The CCSN models in this work do not include nuclear

reactions because of the relatively short simulation times (< 0.5 sec). Within this time span, the

supernova material is in nuclear statistical equilibrium (NSE), leaving the use of an extended net-

work unecessary. The additional cost of evolving nuclear species is typically completed in works

that continue later in the supernova evolution to infer spectral characteristics of the optical light

curves (Utrobin et al., 2017) or explicitly quantify r-process abundances (Mösta et al., 2018). While

interesting applications for future projects, they remain beyond the scope of this work.

1.4.1 The Influence of Relativity

To save computational cost, Newtonian treatments (or post Newtonian approximations) of the

aforementioned physics are involved, as many calculations reduce to a simple analytic form.

However, for systems that involve high densities, extreme pressures, and velocities of a significant

fraction of 2, general relativistic effects must be taken into account in order to capture proper

behavior. CCSNe are one such setting because of the rapid matter motions near the core and

highly curved spacetimes present as compact objects form. It is important to emphasize relativistic

effects impact multiple aspects of CCSN physics, beyond gravity. For clarity, consider an intuitive

explanation.

Equation (1.1) relates the curvature of spacetime�`a to amatter distribution)`a. For simplicity,

3https://github.com/starkiller-astro/XNet
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consider the stress energy tensor for an ideal fluid

)`a = d(1 + n + %/d)D`Da (1.19)

where D` = , (1/U, E8) is the four-velocity one-form described by the Lorentz factor , , lapse

function U (proxy for time dilation), and the velocity E8. As �`a is related to )`a, d, n , and fluid

velocities all contribute to spacetime curvature. Consider, by contrast, the Newtonian case, where

Poisson’s equation describes the gravitational potential q as

∇2q = 4c�d. (1.20)

This equivalence only depends on d. Because the GR case accounts for additional contributions

beyond rest mass density, GR systems tend to be more gravitational bound than Newtonian systems.

For turbulence in a deeper gravitational well, the fluid has less kinetic energy for a given energy

budget. This difference produces less pronounced convective overturn that occurs on longer

timescales. For the GWs generated directly from matter motions in the post shock region of the

supernova, this will decrease the GW frequencies emitted (Müller et al., 2013).

With the strong field effects of GR, the PNSwill also becomemoremassive and form at a smaller

radius. With a compact object that is more gravitationally bound, the neutrinosphere will exist at

a smaller radius, compared to a Newtonian case. As the region where neutrinos decouple from

the matter is closer to the center of the supernova, neutrinos will free stream in a region at higher

temperatures. The increased temperature in this regionwill create a harder neutrino spectrum,which

will contribute to increased neutrino heating (Kotake et al., 2012). Additionally, as the PNS will be

more compact—consequently a higher dynamical frequency—the GW frequency emitted from the

oscillating PNS will increase for models that include general relativistic magnetohydrodynamics

(GRMHD).
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1.5 The Need for High Performance Computing

It is important to address the computational resources available for numerical simulations

of CCSNe, as well as the impact of CCSN algorithm development on the HPC ecosystem. In

practice, relating the systems of PDEs and ODEs from Section 1.4 results in a system with a high

degree of nonlinearity. To meet the resulting computational demand, CCSN simulations have

consistently driven hardware advances that have had broader societal benefits. Some examples

include improved aerospace design for commercial flights, increased energy efficiency in urban

settings, advances in material science through the construction of new alloys, andmachine learning-

driven pharmaceutical development 4.

However, as leadership class computing platforms become increasingly advanced, only the

potential to complete computationally challenging problems increases. The responsibility of code

developers increases as well; ‘codes should not just be fast’. HPC moves beyond a need for

advanced machines, to a need for balanced algorithms. The first of four considerations for a

balanced algorithm is maintanability. ‘Maintainability’ is the ease with which a code sustain

consistent updates. A maintainable code includes sufficient documentation, insightful comment

lines, clear variable names, and effective use of white space that makes working with a code base

streamlined for developers. ‘Extensibility’ is closely tied to modularity and refers to the ability

of a code to apply to more general use cases, without having to change the core functionality.

Modular code has independent elements that can be easily interchanged, for example, a different

time integrator, EOS, or data reduction pipeline. ‘Portability’ is the proficiency with which a code

can translate to differentmachines. From local laptops to supercomputing clusters, every computing

platform has a unique architecture. Moreover, every computing architecture may contain unique

compilers that translate developer-written software to machine executables. Differing amounts of

memory, the interconnectedness of different elements, the presence of accelerators (e.g., a graphics

processing unit (GPU)), and the pipeline through which data is written all impact how software will

4Other HPC projects through the Innovative and Novel Computational Impact on Theory and
Experiment (INCITE) program: https://www.doeleadershipcomputing.org/awardees/

22

https://www.doeleadershipcomputing.org/awardees/


Figure 1.4: Cycle of scientific output for computational research projects. Adapting code to
evolving computational platforms is a vital component to ensuring the longevity of computational
research projects, without which limits the scale of the scientific questions that can be answered.
Figure adapted from Anshu Dubey, Argonne National Lab.

perform. Portable code aims to use more abstract elements that can ‘adapt’ to specific hardware

specifications. Lastly, ‘performance’ quantifies how much a code actualizes the potential of a

machine. One metric of performance may refer to wall clock time, or how long it takes a simulation

to complete. Another refers to scalability. For example, if there is a proportional reduction in

runtime when using more computing resources for a fixed problem size (strong scaling), or how

much the amount of computational work per computing resource remains constant if both problem

size and computing resources increase (weak scaling).

Developing balanced algorithms is not a stylistic choice, but actively eliminates bottlenecks to

scientific discovery in computational science. When using computation in the scientific process,

software is used to test a hypothesis. A certain algorithm, or set of instructions, is applied in the code

base. The algorithm is then executed on the computer and a result is produced. This result provides

some data to be interpreted by the domain expert that supports or refutes the hypothesis. In the event

researchers do not actively maintain their software to anticipate changes in hardware, their code

base could eventually become obsolete. If software and hardware fail to advance at a similar rate,
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results from numerical experiments are limited, or in extreme cases are unable to be completed. By

contrast, balanced code, designed to advancewith supercomputing technology, accelerates scientific

productivity by matching performance gains from hardware advances with increases in research

output. This interrelatedness between scientific output and software development is illustrated in

Figure 1.4. In practice, scientific research and algorithm development must be balanced, in order to

address immediate scientific needs, while ensuring the longevity, and therefore value, of a scientific

project.

In pursuit of increasingly challenging scientific problems to bolster scientific research and

produce broader societal benefits, international interest has grown to advance HPC—both its

infrastructure and numerical algorithms. Such examples of leading supercomputing platforms are

Aurora (Argonne National Laboratory), Frontier (Oak Ridge National Laboratory), Frontera (Texas

Advanced Computing Center), Fugaku (RIKEN Centre for Computational Science), and Summit

(Oak Ridge National Laboratory). Furthermore the Department of Energy is actively supporting

the Exascale Computing Project (ECP) which aims to develop a set of balanced algorithms to

utilize exascale computing platforms—supercomputers capable of completing 1018 floating point

operations per second (FLOPs). The work presented in Chapter 5 represents my contributions to

the Exastar 5 arm of the ECP, whose goal is to determine the origin of elements, ultra-dense matter

behavior, and different sources of GWs. Having explored the value for hardware construction and

responsible algorithm development, the next section explores the history of CCSN modeling, to

place this work in the context of the field.

1.5.1 Leveraging High Performance Computing for Supernova Research

In the mid 1900s, state of the art CCSNmodels involved 1D, or spherically symmetric, calculations

with simplified treatments of physics, such as the EOS and gravity (Burbidge et al., 1957; Colgate

& White, 1966). In the late 1900s, 2D, or axisymmetric, calculations emerged to investigate

multidimensional hydrodynamic effects and the impact of rotation (Mueller, 1982; Herant et al.,

5https://www.exascaleproject.org/research-project/exastar/
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1992). In the new millennium, suites of early time 2D simulations became possible (Dimmelmeier

et al., 2008; Abdikamalov et al., 2014). In the past decade, on the order of a few 3D simulations

per year has become possible with access to millions of node hours on modern CPU architectures

(Müller et al., 2017; Summa et al., 2018; O’Connor & Couch, 2018a). Beyond FLASH, other

multiphysics codes used to perform intensive multiphysics calculations involve Fornax (Skinner

et al., 2019), Chimera (Bruenn et al., 2020), GRHydro (Mösta et al., 2014), Prometheus-Vertex

(Müller et al., 2010), Phoebus6, SpECTRE (Deppe et al., 2022), WhiskyTHC (Radice et al., 2014) ,

and the code introduced in Kuroda et al. (2016).

There are three popular techniques for supernova modeling in modern computing, depending on

the amount of compute resources available. The first involves large ensembles of 1D simulations

evolved for ∼ 1 sec after core bounce. Works of this type attempt to cover a wide breadth of

parameter space and build up statistics regarding explosion behavior (Warren et al., 2020). A

single robust 1D CCSN simulation can requires hundreds of core hours to complete. While

some approximations exist to capture multidimensional turbulent behavior (Couch et al., 2020a),

in general, spherically symmetric calculations fail to self consistently capture multidimensional

physical and observational effects. Evolving 10s-100s of axisymmetric simulations 10s of ms ∼ 1

sec after core bounce has emerged for constructing templates of GW signals (Richers et al., 2017;

Pajkos et al., 2021). An axisymmetric CCSN simulation for ∼ 1 sec of evolution can requires

tens of thousands of core hours. Such works are less expensive than 3D cases and are able to

capture certain rotational elements. However, they lack azimuthal instabilities that may arise (e.g.,

SASI or low T/W) that can contribute to a successful explosion. Lastly, evolving of order a few

3D simulations, with comprehensive physics—GR gravity, M1 neutrino transport, and GRMHD—

beyond core bounce for ∼ 1 sec allows for all spatial degrees of freedom to be explored. These

studies allow for investigation of viewing angle effects, distributions of elemental abundances, and

the morphology of the shock evolution (Mösta et al., 2018). Nevertheless, 3D simulations require

extensive computational resources: with a robust physics treatment and ∼ 0.5 sec of evolution

6https://github.com/lanl/phoebus
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needing upwards of tens of millions of core hours.

It is important to emphasize, these areas should not be in competition, but work in conjunction.

As computing time allocations required to complete fully 3D models are increasingly competitive,

lower dimension simulations should act as exploratory laboratories to inform which areas of

parameter space to conduct 3D simulations. The majority of this Thesis work involves 2D CCSN

simulations because they make efficient use the Michigan State University, Institute for Cyber-

Enabled Research; likewise, as further outlined in Chapter 2 and Chapter 3, the assumption of

axisymmetry does not compromise the fidelity of the results.

1.6 Outline

To address the need to better interpret GW observables, and fulfill the topical breadth for

this PhD, Chapter 2, Chapter 3, and Chapter 4 detail three astrophysics investigations. Chapter

2 investigates the role of rotation on supernova evolution and resulting GW emission. Chapter

3 presents novel methods to quantify the influence of rotation on the GW signal and an original

framework that connects GW observables to potential explosion properties. Chapter 4 discusses

work by my undergraduate research assistant and I to identify the influence of viewing angle on the

observability of GWs. Chapter 5 addresses the computational-focused requirement for this work. It

outlines GR updates to the FLASH code, verifies code behavior with baseline tests, presents results

from 1D and 2D CCSN simulations, and discusses advances in preparing this code for the next

generation of HPC platforms.
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CHAPTER 2

FEATURES OF ACCRETION-PHASE GRAVITATIONAL-WAVE EMISSION FROM
TWO-DIMENSIONAL ROTATING CORE-COLLAPSE SUPERNOVAE

This section reviews published work: M.A. Pajkos, S. Couch, K.C. Pan, E. O’Connor, 2019, ApJ,

878, 13.

2.1 Abstract

We explore the influence of progenitor mass and rotation on the gravitational-wave (GW)

emission from core-collapse supernovae, during the postbounce, preexplosion, accretion-phase.

We present the results from 15 two-dimensional (2D) neutrino radiation-hydrodynamic simulations

from initial stellar collapse to ∼300 ms after core bounce. We examine the features of the GW

signals for four zero-age main sequence (ZAMS) progenitor masses ranging from 12 "� to 60

"� and four core rotation rates from 0 to 3 rad s−1. We find that GW strain immediately around

core bounce is fairly independent of ZAMSmass and—consistent with previous findings—that it is

more heavily dependent on the core angular momentum. At later times, all nonrotating progenitors

exhibit loud GW emission, which we attribute to vibrational g-modes of the protoneutron (PNS)

star excited by convection in the postshock layer and the standing accretion shock instability (SASI).

We find that increasing rotation rates results in muting of the accretion-phase GW signal due to

centrifugal effects that inhibit convection in the postshock region, quench the SASI, and slow the

rate at which the PNS peak vibrational frequency increases. Additionally, we verify the efficacy of

our approximate general relativistic (GR) effective potential treatment of gravity by comparing our

core bounce GW strains with the recent 2D GR results of other groups.

2.2 Introduction

Core-collapse supernovae (CCSNe) became the first extra-solar multimessenger objects when

SN 1987A was detected by the Kamiokande II experiment and Irvine-Michigan-Brookhaven water

Cerenkov detector in 1987 (Bionta et al., 1987; Hirata et al., 1987) along with concurrent elec-
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tromagnetic (EM) observations (see Arnett et al., 1989). With the recent detection of a neutron

star merger–GW170817–in both photons and gravitational waves (GWs) by the LIGO and Virgo

collaborations (Abbott et al., 2016b), we have entered the era of GW multimessenger astronomy.

So far, only the mergers of black hole binaries and a neutron star binary have been detected in

GWs, but CCSNe are also predicted to be prodigious GW sources, although not quite as “loud” as

compact object binary mergers. Accurate predictions of the expected GW signal from CCSNe is

key to increasing the likelihood of detection by GWobservatories such as Advanced LIGO (aLIGO)

and Advanced Virgo (AdV) and will be crucial in our ability to extract physical meaning from a

future CCSN GW detection (Abdikamalov et al., 2014; Gossan et al., 2016).

CCSNe are routinely observed in the EM window, and the data-collecting power of synoptic

surveys such as the Large Synoptic Survey Telescope and Zwicky Transient Facility may increase

the volume of such data for CCSNe by orders of magnitude (Ivezić et al., 2019; Bellm et al.,

2019). Still, until the late nebular phase, which is often too dim to be easily observed for distant

CCSNe, the EM emission arises from the very outermost layers of the progenitor star and the central

core regions, where the explosion is driven, are obscured. This makes it challenging to connect

EM emission from CCSNe directly to the mechanism that powers them. Due to their relatively

small interaction probabilities with matter, both neutrinos and GWs offer windows through which

to peer directly into the heart of a CCSN explosion. Moreover, these observations have broader

astrophysical applications: restricting nuclear equations of state, verifying angular momentum

transport in plasmas, and better understanding stellar rotation.

An observation of either GWs or neutrino emission from a nearby CCSN combined with

multiband observations would allow us to place unique constraints on the physics of the explosion

mechanism and key nuclear physics, such as the nuclear equation of state (EOS). There has yet to

be a single astrophysical object detected via all three of these messengers. Albeit a rare event, a

Galactic CCSN offers the perfect opportunity to observe such a multimessenger “trifecta.” In order

to increase our chances of “hearing” such an event in GWs, and in order to be able to extract the

greatest scientific meaning from them, we need accurate predictions for CCSN GW signals from
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the wide range of initial conditions that give rise to these stellar explosions.

Modeling GWs from CCSNe incurs all of the challenges of simulating the CCSN mechanism

itself, along with a heightened emphasis on the importance of the general relativistic (GR) treatment

of gravity. The increased expense of including a fully dynamical spacetime evolution coupled to

GR dynamics (see Ott, 2009; Ott et al., 2012) can further reduce the size of the parameter space

that it is feasible to explore. Approximations that maintain sufficient numerical accuracy become

necessary in order to reduce computational cost. A common approach for CCSNe, particularly in

2D, is the conformal flatness condition (CFC) approximation wherein the spatial three-metric is

obtained approximately from the flat spacetime three-metric. CFC has been shown to accurately

reproduce prebounce and early postbounce signals from CCSNe to within a few percent when

compared with direct solutions to Einstein’s field equations (Ott et al., 2007). Likewise, while

some differences appear, Shibata & Sekiguchi (2004) find good qualitative agreement between

the effective GR potential and CFC. This conformal flatness approach has also been extended to

an “augmented CFC" scheme as introduced by Saĳo (2004), refined by Cordero-Carrión et al.

(2009), and utilized by Müller (2019). A further approximation, also common in simulations of

the CCSN mechanism, is to couple an effective GR gravitational potential to otherwise Newtonian

dynamics (Rampp & Janka, 2002; Marek et al., 2006; Bruenn et al., 2016; Morozova et al., 2018;

O’Connor & Couch, 2018b). This relativistic effective potential empirically satisfies the solution

to hydrostatic equilibrium according to a modified Tolman-Oppenheimer-Volkoff equation (Rampp

& Janka, 2002; Marek et al., 2006). This approach further reduces the computational expense of

CCSN simulations relative to the CFC approach and reproduces fairly accurately gross features of

CCSN simulations (Marek et al., 2006; Müller et al., 2012; O’Connor & Couch, 2018b).

After the infalling matter from collapse reaches nuclear densities, the core nuclei dissolve

into nucleons and, eventually, the strong force becomes repulsive, halting the material infall. On

the time scale of tens of microseconds, the subsonic inner core encounters the supersonic outer

core, forming a shock front. As this shock front photodissociates overlying material and releases an

enormous neutrino flux, it leaves behind a negative entropy gradient (Mazurek, 1982; Bruenn, 1985,
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1989). This scenario is unstable according to the Ledoux criterion, causing prompt convection

in the postshock region (Burrows & Fryxell, 1992), therefore creating an associated emission of

gravitational radiation (Marek et al., 2009; Ott, 2009). This prompt convection is an important

feature that occurs in simulations that incorporate either GR or Newtonian treatments of gravity

during the early postbounce phase (Müller, 2017; Richers et al., 2017; Nagakura et al., 2018).

Early research into GW emission from CCSNe focused on the bounce and early postbounce

phase of the explosion in rotating progenitors. These investigations found that increasing the angular

momentum of the core leads to a larger strain peak at bounce (Mueller, 1982; Moenchmeyer et al.,

1991; Yamada & Sato, 1995; Zwerger & Mueller, 1997; Dimmelmeier et al., 2002; Kotake et al.,

2003b; Shibata & Sekiguchi, 2004). More recent investigations of rotating core collapse examine

the role of the angular momentum distribution within the supernova progenitor and find it is only

important in the rapid rotation regime, where the ratio of kinetic to gravitational potential energy

()/|, |) & 8% at bounce (Abdikamalov et al., 2014). In order to examine GW emission at later

times, different groups have considered other factors for nonrotating cases—for example, convection

in the postshock region (Burrows&Hayes, 1996;Mueller & Janka, 1997;Müller et al., 2004;Marek

et al., 2009; Murphy et al., 2009), the standing accretion shock instability (SASI) (Blondin et al.,

2003; Blondin & Mezzacappa, 2006; Ohnishi et al., 2006; Foglizzo et al., 2007; Scheck et al.,

2008; Iwakami et al., 2009; Fernández, 2010), and protoneutron star (PNS) vibrational modes

(Cerdá-Durán et al., 2013; Torres-Forné et al., 2018, 2019a). Morozova et al. (2018) investigate

GW emission for moderate rotational speeds (Ωcore = 0.2 rad s−1) for a single progenitor mass

(13"�) over 1 second postbounce. Pan et al. (2018), Kuroda et al. (2018), Cerdá-Durán et al.

(2013), and Ott et al. (2011) investigate the relationship between black hole formation and GW

emission, for a nonrotating 40 "�, a nonrotating 70 "�, a rotating 35 "�, and a rotating 75 "�

progenitor, respectively. These studies also find stronger GW emission at bounce with increased

progenitor angular momentum and loud GW emission at later times for nonrotating CCSNe.

In this work, we present 15 axisymmetric (2D) neutrino radiation-hydrodynamic CCSN simula-

tions. Our parameter space spans four progenitor masses ranging from 12"� to 60"� (Sukhbold
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et al., 2016a) and four peak core rotation speeds: 0 − 3 rad s−1. We examine the variation in

key features of the GW emission from CCSNe at these different masses and rotation rates. Rapid

rotation rates up to 2 and 3 rad s−1 are likely rare in typical massive stars at solar metallicity due

to efficient transport and loss of angular momentum (Heger et al., 2005). While Woosley & Heger

(2006) observe that only 1% of massive stars may reach the rapid rotation regime, there are high

uncertainties in the stellar mass loss and magnetic braking calculations (Smith, 2014). Moreover,

albeit a small percentage, de Mink et al. (2013) show the distinct possibility of rapidly rotating

stars formed from binary interactions. Thus, there is some likelihood of rapidly rotating supernova

progenitors in the mass range we explore.

In addition to the breadth of parameter space we cover, we also explore the role of rotation up

to 300 ms postbounce. We find that rotation restricts the growth of SASI by centrifugally flattening

the shock, leaving it slightly oblate. Likewise, the positive angular momentum gradient created by

the rotation stabilizes the postshock convection according to the Solberg-Høiland stability criterion

(Endal & Sofia, 1978; Fryer & Heger, 2000). Not only are the SASI and postshock convection

contributions to the gravitational radiation diminished, but the PNS vibrational signals are damped

because of less turbulent downflows of matter onto the PNS surface. This results in a “muting” of

the GW signal with increasing rotation speeds. While the origins of this muting are physical, such

behavior may not be seen in full 3D simulations of CCSNe due to the appearance of spiral modes

of the SASI and magnetorotational instabilities (MRI) (Cerdá-Durán et al., 2007; Andresen et al.,

2019) .

Compared with previous works, the strength of this project is its ability analyze GWs from

multiple progenitors hundreds of milliseconds postbounce while accurately accounting for rotation

and neutrinos. The wide breadth of parameter space we examine allows us to reveal certain

rotational effects on the GW signal in the context of a controlled study.

In the present simulations we use an approximate, effective GR potential (Marek et al., 2006;

O’Connor & Couch, 2018b). In order to validate this approximate approach for studying GWs from

CCSNe, we compare our results to those of Richers et al. (2017), who use a CFC GR approach.
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We find that our simulations produce nearly identical GW bounce signals to those of Richers et al.

(2017).

This paper is organized as follows: in Section 5.4 we present our methods and treatment

of microphysics within our FLASH simulations. We present a new method for applying initial

rotation to the progenitor. Because each progenitor evolves at a different rate and we terminate our

simulations at 300 ms postbounce, we refrain from asserting which explode. Rather, in Section

3.4, we begin by addressing the shock front evolution for each of the progenitor masses and initial

rotation velocities. We then verify our gravitational treatment by comparing our bounce signal

to GR simulations. We explore the effect of rotation on GWs emitted hundreds of milliseconds

after core bounce and discuss implications on their detectability. In Section 5.7.2 we conclude and

summarize the influence of rotation on GWs from initial collapse to 300 ms postbounce.

2.3 Methods and Simulation Setup

We utilize the FLASH (version 4) multiscale, multiphysics adaptive mesh refinement simulation

framework for our simulations (Fryxell et al., 2000; Dubey et al., 2009).7 We employ a modified,

GR, effective potential (Marek et al., 2006; O’Connor & Couch, 2018b) incorporated into the

multipole Poisson solver of Couch et al. (2013), where we retain spherical harmonic orders up

through 16. We utilize the SFHo EOS in all of our 15 simulations (Steiner et al., 2013a). Our

grid setup is a 2D cylindrical geometry with the PARAMESH (v.4-dev) library for adaptive mesh

refinement (MacNeice et al., 2000). The outer boundary is 104 km in all directions, with nine

levels of refinement, yielding a finest grid spacing of about 0.65 km. The maximum allowed level

of refinement is decreased as a function of spherical radius, A, in order to maintain a resolution

aspect ratio, ΔG8/A , of about 0.01, corresponding approximately to an “angular” resolution of 0.5◦.

Neutrinos play a vital role in CCSNe. Directly after collapse, they provide an avenue through

which the PNS can cool. As the shock propagates outward, they also provide heating in the gain

region that is crucial in reviving the explosion, according to the neutrino heating mechanism. The

opacity of the material to these outflowing neutrinos must be carefully accounted for in an energy-

7https://flash.rochester.edu/site/
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dependent way. We incorporate a multidimensional, multispecies, energy-dependent, two-moment

scheme with an analytic closure, or the so-called M1 scheme. Our implementation is based on

O’Connor (2015), Shibata et al. (2011), and Cardall et al. (2013). A detailed outline of the M1

implementation in FLASH is in O’Connor & Couch (2018b). This combination of rotation and the

M1 neutrino treatment is similar to the work of Obergaulinger & Aloy (2017) and Obergaulinger

et al. (2018). In order to reduce computational costs to explore the wide parameter space for our

study, we neglect velocity-dependent neutrino transport and do not account for inelastic neutrino-

electron scattering. We use 12 energy bins spaced logarithmically up to 250 MeV, and the full

set of rates and opacities we use is described in O’Connor et al. (2017). Specifically, we use the

effective, many-body, corrected rates for neutrino-nucleon, neutral current scattering of Horowitz

et al. (2017).

We use the 12, 20, 40, and 60 M� nonrotating, solar-metallicity progenitors models from

Sukhbold et al. (2016a) for the present work.

2.3.1 Treatment of Rotation

The progenitor models we use are evolved without rotation. At the start of core collapse, when we

map the 1D models into our 2D grid, we apply an artificial rotation profile

Ω(A) = Ω0

[
1 +

(
A

�

)2]−1
, (2.1)

where A =
√
'2 + I2 is the spherical radius for a given cylindrical radius ' and altitude I,

Ω0 is the central angular speed of the star, and � is the differential rotation parameter (Eriguchi

& Mueller, 1985). For large values of �, the stellar rotation is nearly solid body, whereas small

values of � lead to a more differential profile. The linear rotational velocity is then calculated by

multiplying the angular speed with the distance from the rotation axis, Eq (', I) = 'Ω(A).

The precise rotation rates and profiles ofmassive stellar cores at collapse are uncertain. Previous

work (e.g., Abdikamalov et al., 2014) treated the differential rotation parameter � as a free parameter

and explored the impact of its variation. Examining the stellar evolution models of Heger et al.
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Figure 2.1: The rotation profiles for five of the Heger et al. (2005) progenitors. Each solid line
represents Heger et al.’s (2005) model, and the dashed lines are Equation (3.1) applied to the
respective progenitor, with the appropriate differential rotation parameter.

(2005), which include angular momentum transport due to the Tayler-Spruit dynamo (Spruit, 2002),

we find that � is strongly determined by the compactness (O’Connor & Ott, 2011) of the stellar

core. In order to demonstrate this, we fit the rotation profiles of the 20 progenitor models from

Heger et al. (2005) to Equation (3.1) in order to determine the best-fit �. The models of Heger

et al. (2005) include stars of zero-age main sequence (ZAMS) masses 12, 15, 20, 25, and 35 "�,

with various angular momentum transport parameters and initial ZAMS rotation rates. Using the

curve_fit function (in the scipy.optimize library) available in Python, we obtain � values

that correspond to the most accurate fits of Equation (3.1) to the rotation profiles of these models.

Figure 2.1 displays the radial, rotation profile for five of the aforementioned progenitors, compared

with our implementation of Equation (3.1), with the best-fit � value.

The core compactness as introduced by O’Connor & Ott (2011) is defined as

b" =
"/"�

'("bary = ")/1000km

�����
collapse

, (2.2)
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Figure 2.2: Linear relation between differential rotation parameter, �, and compactness parameter
of the inner 2.5 "�, b2.5. The linear trend is constructed from the Heger et al. (2005) rotation
profiles. We then apply the relation to the compactness values from Sukhbold et al. (2016a) to
yield the differential rotation parameters. The progenitor ZAMS masses are labeled in units of "�
for each respective point.

Progenitor Mass ("�) Compactness A(1000 km)
12 0.0738 0.8123
20 0.2785 1.021
40 0.5341 1.282
60 0.1708 0.9112

Table 2.1: Listed values for ZAMS Mass, Compactness Calculated from Sukhbold et al. (2016a),
and Differential Rotation Parameter A.

where we choose" = 2.5"�, and '("bary = ") as the radius at which the internal baryonic mass

is 2.5"�, at collapse. Figure 2.2 shows the compactness parameters from the Heger et al. (2005)

models (blue stars) plotted against their best-fit � values. A clear linear relation exists between �

and b2.5.

Using this relationship, we calculate optimal � values for the four Sukhbold et al. (2016a)

progenitors we use in this work (orange circles in Figure 2.2). The full list of progenitor masses,
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compactness values, and A values we use is given in Table 2.1.

As a note, we choose to omit the 40 "� progenitor at Ω0 = 3 rad s−1 from our following

analysis with a numerically motivated rationale. The b2.5 value of this progenitor is nearly double

that of the 20"� progenitor (the next closest compactness value). This fact displays that the 40"�

has a much larger differential rotation parameter compared with the other progenitors, resulting in

a nearly solid-body rotation of the core. This endows the core in the 40 M� model with drastically

more angular momentum than the other models. The vast amount of angular momentum ultimately

led to numerical instabilities in our calculations; thus, we omit the 40 "�, with Ω0 = 3 rad s−1

from our analysis.

2.4 Results

To extract the GW signal from our simulations, we adopt the dominant, quadrupole moment

formula for the gravitational strain, through the slow motion, weak-field formalism (eg. Blanchet

et al., 1990; Finn & Evans, 1990)

ℎ+ ≈
2�
�24

32�II
3C2

, (2.3)

where �II is the reduced-mass quadrupole moment,� is the gravitational constant, 2 is the speed of

light, and � is the distance to the source (our fiducial value is � = 10 kpc) and we assume optimal

source orientation—GWs emitted from the equator of the CCSN.

When plotting the amplitude spectral density (ASD) of the GW signal we compute the discrete

Fourier transform consistent with Anderson et al. (2004) and LIGO’s implementation

ℎ̃+: =
#−1∑
9=0

ℎ+ 9 4−82c 9 :/# (2.4)

where 8 =
√
−1.

To quantify the strength of convection within our simulations, we characterize the anisotropic
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velocity of the fluid motion within the postshock region according to Takiwaki et al. (2012):

Eaniso =

√〈
d

(
(EA − 〈EA〉)2 + E2

\
+ E2

q

)〉
/〈d〉 (2.5)

where 〈〉 represents an angle average, EA is the radial velocity, E\ is the velocity component in the

polar direction, Eq is the velocity component in the azimuthal direction, and d is the density.

With the introduction of rotation, a positive angular momentum gradient can be established,

leading to inhibited convection, according to the Solberg-Høiland stability criterion. To quantify

this criterion we calculate the condition at the equator for stability in the vertical direction, 'SH,

consistent with Heger et al. (2000):

'SH :=
6

d

[(
3d

3A

)
ad
− 3d
3A

]
+ 1
A3

3

3A
(A2l)2 ≥ 0 (2.6)

where 6 is the local gravitational acceleration, d is the density, (3d/3A)ad is the radial density

gradient at constant entropy and composition, A is the distance from the axis of rotation, and l is

the rotational velocity.

To examine the shape of the shock front, '( (\, q), we represent it as a linear combination of

spherical harmonics, .<
;
(\, q):

'( (\, q) =
∞∑
;=0

;∑
<=−;

0<
;
.<
;
(\, q) (2.7)

.<
;
=

√
2; + 1

4c
(; − <)!
(; + <)!%

<
;
(cos(\))48<q (2.8)

where %<
;
are the associated Legendre polynomials (Burrows et al., 2012; Takiwaki et al., 2012).

However, because of the 2D nature of our simulations q = 0 and all < = 0 as well; thus the

coefficients 00
;
are

00
;
=

∫ c

0
3\ sin(\)'( (\).0

;
(\). (2.9)

It follows that 00
0 corresponds to the average shock radius.
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2.4.1 Rotation’s Influence on Shock Front Evolution

While our focus in the present work is on the GW signals up to 300 ms postbounce, we briefly

discuss the impact of rotation on the evolution of the shock front as it propagates outward. In

certain cases, independent of the mechanism, the shock front may require over 300 ms to revive and

complete a successful explosion. Because our simulations are only run until 300 ms postbounce,

we refrain from asserting which progenitors successfully explode. Rather, we remark on how the

average shock radii develop with time.

Of our 15 simulations, only the nonrotating 20 M� and 60 M� progenitors show substantial

shock expansion. The effect rotation has on reviving the shock is not a simple one. In one respect,

one expects greater centrifugal support to lead to a larger shock front. However, there are two

factors that inhibit the shock from propagating outward. The first is the inhibited convection due to

the positive angular momentum gradient within the progenitor. Weaker convection results in less

efficient neutrino heating (Dolence et al., 2013; Murphy et al., 2013) and less positive support from

turbulence in the gain region (Couch&Ott, 2015;Mabanta&Murphy, 2018). The second rotational

element that inhibits explosions is the lack of neutrino production. Rotation centrifugally supports

matter that is infalling during the initial collapse of a star. As such, the collapsing material does not

settle as deeply into the gravitational potential of the stellar core, thereby releasing less gravitational

binding energy. This process results in a lower neutrino luminosity and slower contraction of the

PNS (Summa et al., 2018). These two dominant effects, weaker convection and reduced neutrino

luminosity, can create an unfavorable scenario for a supernova explosion that is revived by neutrino

heating.

Despite rotation inhibiting certain aspects of a successful explosion, some of our rotating

models (Ω0 = 3 rad s−1, 20 M�, and 60 M�) have advancing shock radii. With longer simulation

times, these could lead to explosion. In these cases, it seems that rotation could be sufficiently

rapid to overcome the deleterious effects on convection and reduced neutrino luminosity. Similar

nonmonotonic behavior is reported by Summa et al. (2018) in their 2D simulations. Hence, the

introduction of rotation involves competing forces that can enhance or diminish the shock. Figure
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Figure 2.3: Shock radius evolution of the four progenitor models versus time (postbounce). As
different progenitors evolve at different rates, they may not have enough time to revive their shock
front within the 300 ms interim. As such, only the nonrotating 20 M� and 60 M� progenitors show
substantial shock expansion.

3.1 shows the average shock radius evolution versus time (postbounce) over our entire parameter

space.

2.4.2 Comparison with CFC GR

In multidimensional simulations of CCSNe, the treatment of gravity must offer a balance between

numerical accuracy and computational cost. TheCFCoffers a nearly identical GWsignal, compared

with full GR, while reducing simulation time (Ott et al., 2007). Figure 2.4 offers a qualitative check

of our effective GR potential compared with CFC (Richers et al., 2017). We incorporate an identical

deleptonization profile (Liebendörfer, 2005) and SFHo EOS (Steiner et al., 2013a) for a 12 M�

progenitor (Woosley & Heger, 2007). Moreover, we match the differential rotation parameter and

rotation profile by selecting an � = 634 km andΩ0 = 3 rad s−1. For this comparison, we match the

neutrino physics of Richers et al. (2017)’s simulation by using a ray-by-ray, three-species, neutrino

leakage scheme (O’Connor & Ott, 2010; Couch & O’Connor, 2014). We capture a nearly identical
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treatment by obtaining a nearly exact bounce signal.
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Figure 2.5: (Left) GW bounce signal from all 10 progenitor masses with Ω0 = 3 rad s−1. By
applying Equation (3.1), we assign a radially dependent, angular velocity to our progenitors.
Because the central density profiles of each progenitor are different—namely, a less compact
12"� and more compact 40"�—the progenitor cores are endowed with different amounts of
angular momenta. (Right) Modified bounce signals after adjusting rotation rates to yield similar
angular momenta (∼ 2.4×1049erg s) of the inner 1.75"� of matter. As predicted by Dimmelmeier
et al. (2008) and Abdikamalov et al. (2010, 2014), the GW bounce signals depend on the inner core
angular momentum at bounce, not the original ZAMS mass.

bounce signal and similar strain up to 5 ms postbounce.

However, after the initial bounce signal ring-down, it is clear that the different computational

treatments of hydrodynamics and grid geometry result in differences in the GW strains. Although

not exact, the efficiency of the effective GR potential offers a reasonable method to accurately
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model the GW signal from CCSNe to within 10% and allows for larger sweeps of parameter space

(Müller et al., 2013).

2.4.3 ZAMS Influence on Gravitational Bounce Signal

While different progenitors &8"� will experience widely varied evolution, once their iron cores

reach the effective Chandrasekhar mass (Baron & Cooperstein, 1990) and collapse commences, the

physics of the collapse becomes somewhat universal. In particular, the mass of the homologously

collapsing inner core is fixed more by microphysics than by the macrophysics of varied stellar

evolution. This nearly identical inner core mass across the ZAMS parameter space yields similar

core angular momenta, for identical rotation rates. Hence, the core bounce signal is nearly indis-

tinguishable between progenitor masses. For further verification of our gravitational treatment,

we perform 12 additional simulations using neutrino leakage—from collapse—until 8 ms after

core bounce, in order to replicate this bounce signal degeneracy, using the Sukhbold et al. (2016a)

progenitors. Outlined by Ott et al. (2012), neutrino leakage has a small effect on the GW bounce

and early postbounce signal. Moreover, our results are consistent with 3D, fully GR predictions

given by Ott et al. (2012) that similar core angular momenta yield similar GW bounce signals.

Figure 2.5 displays the bounce signals for all 10 progenitor masses, ranging from 12 M� to 120

M�. The left panel is for uniform rotational velocity prescriptions atΩ0 = 3 rad s−1. As previously

highlighted, the angular momentum of the inner core is the main contributor to the gravitational

bounce signal. While many of the waveforms have similar amplitudes, there are two clear outliers:

the 12"� and 40"� progenitors. The 12"� and 40"� progenitors, respectively, have lower and

higher compactness values at collapse, by nearly a factor of 2. Because we endow each progenitor

with angular velocity, and not specific angular momentum, themore compact 40"� progenitor will

receive more angular momentum, compared with the remaining progenitors, thereby affecting the

resulting GW bounce signal. As outlined by Dimmelmeier et al. (2008), once a star is sufficiently

rotating, the centrifugal support slows the bounce, diminishing the GW bounce amplitude and

widening out the bounce peak of the waveform.
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The inverse is true for the 12"� case. Because it has a less compact inner core at collapse,

using Equation (3.1) leads to less initial angular momentum, thereby producing a lower amplitude

bounce signal. After modifying the initial rotation rates of both progenitors, to match the progenitor

core angular momenta (right panel of Figure 2.5), the change produces nearly identical GW bounce

signals.

Hence, our results from exploring the bounce signal over a wide range of progenitor masses

support the results of previous studies of the angular momentum dependence of the GW signal

(Dimmelmeier et al., 2008; Abdikamalov et al., 2010, 2014) but also serve as a cautionary note for

future groups who perform rotating CCSN simulations with a wide variety of progenitor models.

It is worth noting that other rotational treatments exist beyond the simple angular velocity law, such

as specifying a radial, specific angular momentum profile (eg., O’Connor & Ott, 2011) or using

the rotational profile from the rotating stellar evolution models directly (Summa et al., 2018). The

profiles used by O’Connor & Ott (2011) lead to a roughly uniform rotation rate within a mass

coordinate of 1 "� andΩ(A) decreasing with A2 outside this mass coordinate. Summa et al. (2018)

utilize two different rotation schemes: one that matches the Heger et al. (2005) models seen in

Figure 2.1 and one that is solid body out to ∼ 1500 km and then falls as A−3/2.

2.4.4 Rotational Influence on Accretion-phase GW Emission

Our results in the previous section support the efficacy of our effective GR potential for accurately

modeling the GW signals from CCSNe. While the effective GR potential has been shown to

overestimate peak frequency from GWs compared with GR, it produces similar GW amplitudes

and accurately captures PNS compactness during the accretion-phase (Müller et al., 2013). Thus

we now turn to exploring the rotational effects on the GW signal during the accretion-phase, up to

300 ms after bounce.

While the consistency of the inner core mass for a collapsing iron core creates a setting where

envelope mass has little effect on the bounce signal, the postbounce dynamics of the explosion

largely depend on the mass surrounding the PNS. For nonrotating CCSNe, the shock front prop-
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agates outward and loses energy due to dissociation of iron nuclei and neutrino cooling. In the

case of rotation, the initial progenitor and resulting shock front become more oblate. Rotation can

affect the GW emission in three respects: the postshock convection is damped, the SASI becomes

restricted, and it slows the rate at which the PNS peak vibrational frequency increases.

As the Ω0 value increases in our models, a positive angular momentum gradient is established

within the postshock region, partially stabilizing it to convection via the Solberg-Høiland instability

criterion (Endal & Sofia, 1978; Fryer & Heger, 2000). We quantify the reduced convection in

Figure 2.6. Brighter colors correspond to higher values of the anisotropic velocity as outlined in

Equation (2.5). As expected, the convection in the gain region is reduced with increasing rotational

velocity. To tie this inhibited convection to the Solberg-Høiland instability criterion, we follow

the prescription of Section 2.3.2 of Heger et al. (2000). We quantify this instability criterion as

outlined in Equation (2.6) by taking slices along the equator and tracking its evolution. Figure 2.7

displays the 'SH value along the equator of the 12 M� progenitor for all four rotational velocities.

As theΩ0 increases, the propensity for convection (colored red) within the postshock region clearly

decreases. This inhibited convection results in weakened turbulent mass motion within the gain

region, thereby reducing the GW amplitude at later times.

Furthermore, we recast our analysis by focusing on regions within the CCSN that emit GWs.

The lower panel of Figure 2.8 displays the inhibited convective signal with increasing rotation, as

the GW signal in the gain region becomes increasingly muted. The typical convective signals in

the early postbounce regime are then quickly washed out by the postbounce ring-down of the PNS,

as rotation increases.

Under nonrotating conditions, the shock can grow unstable due to nonradial deformations

exciting a vortical-acoustic cycle that leads to the growth of large-scale shock asymmetries, that

is, the SASI (Blondin et al., 2003; Blondin & Mezzacappa, 2006; Scheck et al., 2008; Marek

& Janka, 2009). In 2D simulations, the SASI excites large, oscillatory flows along both poles

that drive changes in entropy capable of causing postshock convection. It is worth noting in 3D

simulations that the SASI can excite ‘spiral’ modes that correspond to nonzero < values (Blondin
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inhibited convective signal ∼ 50–100 ms postbounce that is characteristic of this quiescent phase.

& Shaw, 2007; Kuroda et al., 2016). The high degree of nonlinearity among the hydrodynamic

flows, neutrino interactions, and gravitational effects can yield matter flow that is quadrupolar,

thereby resulting in GW emission. However, when the shock becomes restricted in the polar

direction, due to centrifugal effects, SASI development is inhibited. To quantify the role of SASI,

we decompose the shock front into coefficients based on the spherical harmonics, .<
;
, according

to Equation (2.9). Figure 2.9 illustrates the evolution of the 00
1 and 00

2 coefficients over time. Both

coefficients quantify the deviation of the shock from spherical symmetry. Specifically, the 00
1 term

describes the overall dipole nature of the shock, and the 00
2 term describes its quadrupole nature.

Both coefficients are normalized by the mean shock radius, 00
0. Clearly, both approach zero with

increasing rotational velocity. Physically, this effect corresponds to a shock that is becoming less
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of the shock front, respectively. As the SASI is one of the main contributors to the creation of
asymmetries in the shock front, the lower 0 values correspond to a less prolate shock, or one with
diminished SASI.

prolate. To further illustrate this transition, we direct the reader to Figures 2.6 and 2.7. Figure

2.6 takes an angular average to calculate Eaniso, whereas Figure 2.7, by contrast, uses equatorial

slices to calculate the Solberg-Høiland stability criterion. The boundary between the white and

colored region in both panels then acts as a proxy for average shock radius and equatorial shock

radius, respectively. Thus, as rotational velocity increases, average shock radius decreases, while

increasing the equatorial shock radius. Put more simply, the rotation in our 2D simulations acts

to create less prolate shock fronts. Hence, because SASI plays a significant role in creating a

shock that is extended along the axis of rotation, we conclude that the effect of SASI is reduced as

rotational velocity increases in our 2D simulations. While we expect the SASI activity to contribute

uniquely to the GW spectrum, depending on progenitor mass, the rotational muting of the GWs is

universal across ZAMS mass parameter space, as illustrated in Figure 2.10. Both Burrows et al.
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Figure 2.10: Time domain waveforms over our entire parameter space. For all four progenitor
masses, the rotational muting of the accretion-phase GW signal is clear. While there is some weak
dependence in the character of the accretion-phase GW signals with progenitor ZAMS mass, the
rotational muting occurs for all progenitors.

(2007) and Morozova et al. (2018) point out the partial suppression of SASI, but the former does

not focus on the gravitational radiation emitted and the latter only examines a single, slow rotating,

progenitor. Our work provides strong support for the rotational muting of accretion-phase GWs,

over such a wide region of parameter space of 2D CCSN simulations.

With respect to PNSs, a variety of oscillatory modes exist that could be of interest to current and

future GW astronomers: fundamental f-modes, pressure based p-modes, and gravity g-modes—due

to chemical composition and temperature gradients (Unno et al., 1989). The typical frequency of

the PNS f-mode is around 1 kHz, and p-modes have frequencies greater than f-modes, which are of

little use to GW astronomers, with the current detector capabilities (Ho, 2018). The frequencies of

g-modes, however, are on the order of hundreds of hertz, falling squarely within the detectability

range of current GW detectors (Martynov et al., 2016). The top panel of Figure 2.8 displays the

contribution of the vibrating PNS to the majority of the GW signal during the accretion-phase,

with ℎ+� normalized strain amplitudes around 50 cm. These g-modes are thought to be excited

by downflows from postshock convection or internal PNS convection (Marek et al., 2009; Murphy
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et al., 2009; Müller et al., 2013). Figure 2.11 shows a spectrogram for the 12"� progenitor over all

rotational speeds, where lighter colors represent greater strain amplitudes, ℎ+. The dominant yellow

band that extends from100 to 1000Hz represents this contribution. Overlaid in gray is the dynamical

frequency that is characterized by the average density of the PNS, d, and gravitational constant, �,

5dyn =
√
�d, that evolves synchronouslywith the g-mode contribution. The synchronized evolution

of 5dyn and the frequency at which the PNS emits gravitational radiation are no coincidence. As

both are fundamentally related to the mass and radius of the PNS, we expect that both are affected

similarly when introducing rotation. The initial progenitor rotation will centrifugally support the

PNS, thereby leaving it with a larger average radius. Similar to two tuning forks of different lengths,

the PNS with a larger radius will emit at a lower frequency, compared with a smaller PNS. This

“flattening” of the emitted frequency is displayed in Figure 2.11. Furthermore, Figure 2.11 provides

a different lens through which the rotational muting is displayed, via the progressively darker panels
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Figure 2.12: ASD plot of all progenitors for all rotation rates from C14 + 6 ms→ C14 + 300 ms, with
an assumed distance of 10 kpc. The rotational muting of the fundamental PNS g-mode is displayed
as the peak frequency (∼ 800 Hz) becomes less prevalent, with increasing rotation rate. Likewise,
the low-frequency signals (∼ 40 Hz) from the gain region become more audible, with increasing
rotational velocity. The damping of the vibrational modes of the PNS allows the slower postshock
convection to contribute more to the overall GW signal. Plotted in the black dashed line is the
design sensitivity curve for aLIGO in the zero-detuning, high-sensitivity configuration (Barsotti
et al., 2018). The cyan dashed line is the predicted KAGRA detuned, sensitivity curve (Komori
et al., 2017). The purple dashed line is the design sensitivity curve for AdV (Abbott et al., 2018).

with increasing rotational velocity. We note that more robust peak GW frequency calculations exist

(e.g., Müller et al., 2013; Morozova et al., 2018), but we find that the simple 5dyn relation gives a

good estimate of the PNS peak frequency.

We also Fourier transform the accretion-phase GW signal, as displayed in Figure 2.12 and

scale the magnitude of the Fourier coefficients by
√
5 in order to produce ASD plots. These

plots commonly display the sensitivity curves of current and next-generation GW detectors. We

define Cbe similar to Richers et al. (2017) as the third zero crossing of the gravitational strain. We

focus on the signal later than Cbe + 6 ms in order to remove the bounce signal and early postbounce

oscillation contribution to the signal. The dominant contributions are the prompt convection, SASI,
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and surface g-modes of the PNS—as displayed by a peak frequency ranging from 700 to 1000 Hz.

Universally, the prevalence of the peak frequency decreases with increasing rotational velocity. It

is worth noting this peak could shift to higher frequencies with longer simulation times.

When incorporating magnetic fields into CCSN simulations, other instabilities may arise that

can compromise stability in the postshock region and possibly affect the behavior of the PNS. The

U–Ω dynamo and MRI are two such mechanisms that can reexcite postshock convection; however,

work from Bonanno et al. (2005) suggests that the U–Ω dynamo is unimportant on dynamical

timescales. MRI has the potential to drive convection in the postshock region, yet as the strength

and geometry of magnetic fields in 3D simulations are largely still unknown, we exclude them from

our simulations (Cerdá-Durán et al., 2007).

2.4.5 Observability of the Accretion-phase Signal

Overlaid on our ASD plots is the expected sensitivity of future GW observatories. In the black,

cyan, and purple dashed lines we have plotted the sensitivity curves of design sensitivity for aLIGO

in the zero-detuning, high-sensitivity configuration, the predicted KAGRA detuned sensitivity

curve, and design sensitivity for AdV, respectively (Komori et al., 2017; Abbott et al., 2018;

Barsotti et al., 2018). These curves represent the incoherent sum of the principal noise sources to

the best understanding of the respective collaborations. While these curves do not guarantee the

performance of the detectors, they act as good guides for their anticipated sensitivities nonetheless.

Beyond the decreased prevalence of the peak frequency, an interesting trend emerges in Figure

2.12 as rotation increases. We separate the GW signals by region within the star. The top row

of Figure 2.12 corresponds to GWs originating from the inner 50 km of the supernova, and the

GW signal in the bottom row originates from radial distances between 50 and 150 km from the

supernova center. In the top row, we note the first peak of emission, around 80 Hz, is independent of

rotation. We point to the bright, higher Eaniso region in Figure 2.6 within the first 25 ms postbounce

that is present for all rotational velocities. Focusing on the bottom row, we highlight a noticeable

difference in the amplitude of the low-frequency contributions, particularly around 40 Hz. The
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nonrotating progenitors have undetectable low-frequency signals for all three detectors, whereas

rotating progenitors create measurable signals at low frequencies. This enhanced low-frequency

signal may provide an observable feature that can help determine progenitor angular momentum

information.

The amplitude of low-frequency GWs in the 50–150 km region of the supernova increases with

rotational velocity, but this trend does not occur within the inner 50 km. As such, we restrict the

low-frequency GW contribution to the gain region. We note the two main physical mechanisms

in this region correspond to postshock convection and the SASI. While both mechanisms are

reduced in strength due to rotational effects, they do not completely cease. This fact is displayed

in Figure 2.6, as the region between 50 and 150 km is nonzero. For the nonrotating case, the high

convective velocities (bright yellow) create higher frequency GWs within the 100 km region of

interest. As rotation velocity increases, convective velocities decrease enough to cease exciting the

vibrational modes of the PNS. These slower convective flows thereby reduce the total amount of

power produced by the GWs and push the peak GW frequency—from the gain region—to lower

frequencies. Performing an order-of-magnitude estimate on the source of the low-frequency signal,

from Figure 2.6, we find Eaniso ∼ 1 × 109 cm s−1 for Ω0 = 0 rad s−1 and Eaniso ∼ 5 × 108 cm

s−1 for Ω0 = 3 rad s−1. As the region of interest is ∼ 107 cm, we yield an estimated frequency of

emission 5low around ∼ 100 Hz and ∼ 50 Hz, respectively. These quantitative frequency estimates

are reflected in the ASD as the contribution from peak frequency (∼ 100 Hz) from the gain region

decreases, while the contribution ∼ 40 Hz increases.

2.5 Summary and Conclusion

The strength of this project is its ability analyze GWs hundreds of milliseconds postbounce

frommultiple progenitors while accurately accounting for rotation and neutrinos. The wide breadth

of parameter space we examine allows us to reveal certain rotational effects on the GW signal in

the context of a controlled study. We have explored the influence of rotation on the GW emission

from CCSNe for four different progenitors and four different core rotational speeds. We point

out that there exists a roughly linear relation between compactness, b, and the differential rotation
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parameter, �, as defined in Equation (3.1). Using this relation, we calculate appropriate � values

for each progenitor mass, based on their individual compactness parameters of the Sukhbold et al.

(2016a) progenitors. Of our 15 simulations, only two nonrotating progenitors have average shock

radii that show substantial shock expansion, while the remaining rotating progenitors do not because

of rotationally inhibited convection in the gain region and less neutrino production. In agreement

with other recent work (e.g., Summa et al., 2018), we find a complex interplay between centrifugal

support and neutrino heating as successful explosions do not display a monotonic relationship with

rotation.

While there are more accurate treatments of gravity, we utilize the effective GR potential in

order to streamline calculations, granting us the ability to explore larger sections of parameter

space. We find that our results utilizing this approximation match very closely the CCSN bounce

signal of CFC gravity with GR hydrodynamics (Richers et al., 2017).

The main contributors to the GW signal (10–300 ms postbounce) are postbounce convection,

the SASI, and the surface g-modes of the PNS (Morozova et al., 2018). By establishing a positive

angular momentum gradient, the convection is suppressed according to the Solberg-Høiland sta-

bility criterion (Endal & Sofia, 1978; Fryer & Heger, 2000). The more oblate shock front inhibits

the bipolar sloshing of the SASI. Since the SASI and convection are the principal drivers exciting

the g-modes of the PNS, vibrational emission from the PNS is also inhibited by rotation. We,

therefore, find that rotation in 2D CCSN simulations results in the muting of GW emission. This

result is consistent across progenitors with different ZAMS masses.

Before the PNS g-mode signal is completely muted, as rotation gradually increases, this signal

is pushed to lower peak frequencies and can be characterized by its dynamical frequency. This

observation is no coincidence as both fundamentally depend on the radius and mass of the PNS.

With more centrifugal support, the PNS has a larger radius. This larger radius causes the surface

of the PNS to emit at lower frequencies, thereby producing a “flatter,” lower frequency signal.

We reveal a novel rotational effect on the GW signal during the accretion-phase. We notice

that the nonrotating progenitors all produce low-frequency signals (∼ 40 Hz) that are below the
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plausible detection threshold of the aLIGO and KAGRA detectors, whereas the progenitors with

larger angular velocities produce measurable GW signals in this frequency range. We attribute

this increase of low-frequency emission to the SASI and postshock convection. For nonrotating

progenitors, the convective velocity within the postshock region is high, emitting GWs ∼ 100 Hz.

As rotational velocity increases, the PNS GW contribution is reduced. Likewise, as the convection

slows, the mass within the gain region emits at lower GW frequencies. The slower convective flows

reduce the total amount of GW power and push the peak GW frequency from the gain region to

lower values. Whereas previous rotating core-collapse GW studies have focused on the bounce

signal as a means to determine rotational features, or have focused on late time signals without

rotation, our study unifies both facets and opens the door to measuring GW signals beyond the

bounce phase that encode progenitor, angular momentum information. We postpone asserting

quantitative relations between low-frequency emission and progenitor angular momentum until we

incorporate more detailed microphysics.

While our approximations have allowed us to make large sweeps of parameter space, they leave

room for us to include more robust microphysics. In an ideal situation, we would compute 3D

simulations, including full GR, magnetohydrodynamics, and GR Boltzmann neutrino transport

that incorporates velocity dependence and inelastic scattering on electrons and nucleons. These

additions would allow for more accurate gravitational waveforms and allow other phenomena to

occur, for example the< ≠ 0 (spiral) modes of the SASI. Andresen et al. (2019) recently highlighted

the rotational effects on GWs in 3D. Inherent to its 3D nature, their study finds the strongest GW

amplitudes at high rotation velocities due to these spiral modes. The 2D geometry of our study,

however, allows us to observe the relative strength of the convective signal, without interference

from < ≠ 0 modes, as we extend beyond the case of a single rotational velocity. While the physical

origin of this muting that damps the convection and the SASI is not constrained only to 2D, in

3D, as Andresen et al. (2019) point out, other nonaxisymmetric instabilities can contribute to

significant GW emission at late times, negating this rotational muting effect. Thus, once again, we

are reminded of the key role of 3D simulations in the study of the CCSN mechanism.
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CHAPTER 3

DETERMINING MASSIVE STELLAR PROGENITORS FROM SUPERNOVA
GRAVITATIONALWAVES

This section reviews published work: M.A. Pajkos, M. Warren, S. Couch, E. O’Connor, K.C. Pan,

2021, ApJ, 914, 80.

3.1 Abstract

The gravitational wave (GW) signal resulting from stellar core collapse encodes a wealth of

information about the physical parameters of the progenitor star and the resulting core-collapse

supernova (CCSN). We present a novel approach to constrain CCSN progenitor properties at

collapse using two of the most detectable parts of the GW signal: the core-bounce signal and

evolution of the dominant frequency mode from the protoneutron star. We focus on the period

after core bounce but before explosion and investigate the predictive power of GWs from rotating

CCSNe to constrain properties of the progenitor star. We analyze 34 2D and four 3D neutrino-

radiation-hydrodynamic simulations of stellar core collapse in progenitors of varied initial mass and

rotation rate. Extending previous work, we verify the compactness of the progenitor at collapse to

correlate with the early ramp-up slope, and in rotating cases, also with the core angular momentum.

Combining this information with the bounce signal, we present a new analysis method to constrain

the pre-collapse core compactness of the progenitor. Because these GW features occur less than

a second after core bounce, this analysis could allow astronomers to predict electromagnetic

properties of a resulting CCSN even before shock breakout.

3.2 Introduction

Gravitational waves (GWs) provide astronomers with an entirely new spectrum of signals to de-

tect, coming from a variety of astrophysical processes. As current GW observatories—Advanced

Laser Interferometer Gravitational-wave Observatory (aLIGO), Advanced Virgo, and Kamioka

Gravitational Wave Detector (KAGRA)—continue observing runs and with future GW obser-
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vatories on the horizon—Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO),

Einstein Telescope, LIGO-India, and the Laser Interferometer Space Antenna (LISA)—the num-

ber of GW detections will only increase (Gossan et al., 2016). One site of particular interest for

some of these observatories is the explosive endings of massive stars: core-collapse supernovae

(CCSNe). CCSNe are important in a broader astrophysical context because they contain matter

with densities over many orders of magnitude. Acting as unique laboratories, better understanding

these stellar explosions has a broad impact on many areas of astronomy: predicting compact object

birth, restricting the nuclear equation of state (EOS), and constraining stellar rotation, to name a

few.

After being produced in the center of a CCSN, GWs pass through the outer stellar envelope

unobstructed. For decades, astronomers have attempted to leverage this unique characteristic to

prepare for the next CCSN event by connecting the features of a GW signal with the internal physics

of the supernova or protoneutron star (PNS) inside. Currently, the detection range for GWs from

CCSNe is Galactic in scale, leaving the expected rate to be ∼ 2 events per century (Diehl et al.,

2006). Given the rarity of potential observations, GW predictions from numerical models have

been important to prepare GW astronomers for the next CCSN event.

While the CCSN problem involves a variety of physics, a proper treatment of gravity is one

of the most important aspects when predicting GWs. While a numerical scheme that simulates a

dynamically evolving space-time (e.g. Shibata & Nakamura, 1995; Baumgarte & Shapiro, 1999)

may be ideal for accuracy, the immense computational cost can prevent incorporating other robust

physics features, such as magnetic fields or neutrinos. Approximations have been made to capture

some of the general relativistic (GR) features for a given mass distribution within a supernova.

Previous works have paired Newtonian hydrodynamics with an effective GR gravitational potential

(GREP) (Rampp & Janka, 2002; Marek et al., 2006; Bruenn et al., 2016; Morozova et al., 2018;

O’Connor & Couch, 2018b). Consistent with a modified Tolman-Oppenheimer-Volkhoff equation,

GREP empirically satisfies the solution to hydrostatic equilibrium and has been shown to fairly

accurately reproduce overall features of CCSN numerical models (Rampp & Janka, 2002; Marek
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et al., 2006; Müller et al., 2012; O’Connor & Couch, 2018b; da Silva Schneider et al., 2020).

Another, more advanced, approximation is the so-called conformal flatness condition (CFC), in

which the spatial three metric is approximated by the flat space-time three metric. This scheme

qualitatively agrees with CCSN results using GREP (Shibata & Sekiguchi, 2004) and reproduces

early CCSN GW signals within a few percent of similar simulations that directly solve Einstein’s

field equations (Ott et al., 2007). As a variant, CFC has also been reformulated as an augmented

CFC scheme to address uniqueness issues of the elliptic constraints present in CFC (Saĳo, 2004;

Cordero-Carrión et al., 2009; Müller, 2019).

Once the core temperature for a massive star (& 8"�) becomes sufficiently high () ∼ 5

GK), iron nuclei begin to photodissociate and undergo electron capture. These processes result

in a net loss of pressure, triggering the core to collapse inward. At sufficiently high densities

(∼ 2× 1014 g cm−3), the nuclear force halts the matter infall on the timescale of microseconds and,

in the case of rotating CCSNe, a burst of GWs is produced: the GW bounce signal. The bounce

signal has been studied extensively and it is found that—except in extreme scenarios—more angular

momentum in the supernova center will produce a bounce signal with higher amplitude (Mueller,

1982; Moenchmeyer et al., 1991; Yamada & Sato, 1995; Zwerger & Mueller, 1997; Dimmelmeier

et al., 2002; Kotake et al., 2003b; Shibata & Sekiguchi, 2004; Abdikamalov et al., 2014).

As the subsonic inner core meets the supersonic outer core, a shock front ensues, photodis-

sociating material at larger radii as it propagates outward. This process forms a negative lepton

gradient via neutrino production, causing prompt convection in the post-shock region (Mazurek,

1982; Bruenn, 1985, 1989; Burrows & Fryxell, 1992). This prompt convection is an important

feature in CCSN evolution and has been shown to directly contribute to the GW signal (Marek

et al., 2009; Müller, 2017; Richers et al., 2017; Nagakura et al., 2018).

As the shock front continues to propagate outward, thematter motion behind the shock is subject

to a variety of instabilities that can emit GW signals: post-shock convection (Burrows & Hayes,

1996; Mueller & Janka, 1997; Müller et al., 2004; Murphy et al., 2009; Müller et al., 2013), the

standing accretion shock instability (SASI) (Blondin et al., 2003; Blondin & Mezzacappa, 2006;
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Ohnishi et al., 2006; Foglizzo et al., 2007; Scheck et al., 2008; Iwakami et al., 2009; Fernández,

2010; Kuroda et al., 2016; Andresen et al., 2017), and the PNS vibrational modes (Mueller & Janka,

1997; Cerdá-Durán et al., 2013; Torres-Forné et al., 2018, 2019a).

Perturbation theory has been used historically to provide analytic estimates of PNS properties

by identifying the resonant frequencies (GW astroseismology), or vibrational modes—for example,

g-, f-, p-, r-, and w-modes (Unno et al., 1989). As outlined by Gautschy & Saio (1995), the

restoring force for p-modes comes from the pressure of the gas. The restoring force for g-modes

is the buoyancy force. Andersson (1998) and Kokkotas & Stergioulas (1999) describe r-modes

arising in rotating stars and grow unstable due to the emission of GWs from the stellar interior.

Kokkotas & Schutz (1992) identify the presence of so-called w-modes that are closely related to

the oscillations in the space-time metric. Andersson & Kokkotas (1996) built on this work by

suggesting the f-mode evolves with the average density of the star and the damping rate of the

w-mode depends linearly on compactness.

More recently, Sotani & Takiwaki (2016) used multiple 1D simulations to show that PNS

oscillation frequencies are almost independent of PNS electron fraction (.4) and entropy per baryon

profiles. Sotani et al. (2017) use 3D models to relate the w1-mode to the PNS mass and radius.

Sotani & Sumiyoshi (2019) use 1D simulations to examine PNS structure during the accretion

phase, en route to black hole (BH) formation; moreover, various groups have even used GWs to

probe BH formation itself for a variety of progenitor masses (Ott et al., 2011; Cerdá-Durán et al.,

2013; Kuroda et al., 2018; Pan et al., 2018). Other works investigate the influence of rotation and

magnetic fields in the core-collapse scenario (Obergaulinger & Aloy, 2017; Obergaulinger et al.,

2018). Warren et al. (2020) recently explored the GW signal a few seconds after bounce, displaying

correlations between initial progenitor compactness and the slope of the GW frequency emitted

from the dominant PNS mode, in frequency versus time space (hereafter referred to as “ramp-up

slope”). Sotani & Takiwaki (2020b) explore the dimensional dependence of GW generation from

the PNS. They point out correlations between the relative strengths of different modes compared

to PNS characteristics: average density and compactness. Likewise, research continues into how
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these different modes interact via avoided crossing (Sotani & Takiwaki, 2020a). Morozova et al.

(2018) examine GW emission for a moderately rotating CCSN (Ωcentral ∼ 0.2 rad s−1). Radice

et al. (2019) and O’Connor & Couch (2018a) use a suite of 3D simulations to show how turbulent

kinetic energy accreted by the PNS relates to the GW energy radiated. Mezzacappa et al. (2020)

recently explored the GW production, by region, from a 15"� star. Vartanyan et al. (2019) relate

multimessenger signals from CCSNe to physical properties at the center of the supernova. Like

previous works, Vartanyan & Burrows (2020) investigate GW production from neutrino emission

asymmetries in CCSNe (Mueller & Janka, 1997; Kotake et al., 2009). Pan et al. (2020) and

Shibagaki et al. (2021) study GW emission from rotating 3D progenitors. And in even more exotic

scenarios, Zha et al. (2020) identify the GW signals expected from a quantum chromodynamic

phase transition of a protocompact star, originating from a CCSN.

As discussed, many studies that use multidimensional simulations have either explored only the

bounce signal, in the case of rotation, or the accretion phase signal from nonrotating supernovae.

As all stars rotate to some degree, an opportunity arises to investigate the effect of rotation on GWs

emitted from CCSNe during the accretion phase. Furthermore, there exists a growing need in the

supernova community to not only predict gravitational waveforms but extract information from

them in new ways, in order to constrain physical properties of the progenitor star. In this work, we

show the GW signal from the dominant PNS mode encodes angular momentum information of the

CCSN at bounce in a quantifiable way. We also present a novel analysis that combines multiple

features of the GW signal from a single rotating CCSN to help constrain the properties of the

progenitor star.

The strength of this technique stems from its observational considerations. Previous works

depend on tracking multiple, relatively weaker modes of a PNS to constrain mass and radius. This

work only depends on the loudest components of the GW signal and are thus most likely to be

reconstructed by current GW detectors (McIver, 2015). Furthermore, this analysis is valuable

because it uses multimessenger signals that are emitted less than a second after core bounce

to constrain core compactness. Applying previous works that draw correlations between core
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compactness and electromagnetic (EM) observables days after a supernova explosion (Sukhbold

et al., 2016b), our work provides a predictive framework that would allow astronomers to anticipate

EM properties of the supernova, even before shock breakout occurs.

This paper is organized as follows: in Section 5.4 we present our methods and treatment

of microphysics within our FLASH simulations. Section 3.4 contains our analysis and outlines

observational considerations. Finally, in Section 5.7.2 we discuss and conclude.
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Label M("�) Ω0(rad s−1) A(103 km) EOS 2D/3D a Treatment 4− rates "B
core("�) .c

4 VB
core C

pb
end (s)

s12o0 12 0 0.8123 SFHo 2D M1 SNA 0.578 0.278 0.000 0.3

s12o0.5 12 0.5 0.8123 SFHo 2D M1 SNA 0.580 0.279 0.001 0.3

s12o1 12 1 0.8123 SFHo 2D M1 SNA 0.581 0.279 0.006 0.3

s12o2 12 2 0.8123 SFHo 2D M1 SNA 0.584 0.279 0.021 0.3

s12o3 12 3 0.8123 SFHo 2D M1 SNA 0.576 0.280 0.042 0.3

s20o0 20 0 1.021 SFHo 2D M1 SNA 0.564 0.273 0.000 0.3

s20o.5 20 0.5 1.021 SFHo 2D M1 SNA 0.567 0.273 0.006 0.3

s20o1 20 1 1.021 SFHo 2D M1 SNA 0.572 0.274 0.021 0.3

s20o2 20 2 1.021 SFHo 2D M1 SNA 0.568 0.274 0.066 0.3

s20o3 20 3 1.021 SFHo 2D M1 SNA 0.534 0.274 0.106 0.3

s40o0 40 0 1.282 SFHo 2D M1 SNA 0.556 0.267 0.000 0.3

s40o0.5 40 0.5 1.282 SFHo 2D M1 SNA 0.560 0.268 0.011 0.3

s40o1 40 1 1.282 SFHo 2D M1 SNA 0.562 0.268 0.037 0.3

s40o2 40 2 1.282 SFHo 2D M1 SNA 0.554 0.268 0.101 0.3

s60o0 60 0 0.9112 SFHo 2D M1 SNA 0.571 0.276 0.000 0.3

s60o0.5 60 0.5 0.9112 SFHo 2D M1 SNA 0.574 0.276 0.003 0.3

s60o1 60 1 0.9112 SFHo 2D M1 SNA 0.576 0.277 0.013 0.3

s60o2 60 2 0.9112 SFHo 2D M1 SNA 0.571 0.277 0.043 0.3
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s60o3 60 3 0.9112 SFHo 2D M1 SNA 0.557 0.278 0.076 0.3

s12o0x‡ 12 0 0.8123 SFHx 2D M1 SNA 0.563 0.273 0.000 0.3

s12o0.5x 12 0.5 0.8123 SFHx 2D M1 SNA 0.564 0.273 0.001 0.005

s12o2x‡ 12 2 0.8123 SFHx 2D M1 SNA 0.580 0.273 0.022 0.3

s12o3x‡ 12 3 0.8123 SFHx 2D M1 SNA 0.578 0.272 0.042 0.3

s20o0.5x 20 0.5 1.021 SFHx 2D M1 SNA 0.550 0.267 0.006 0.005

s20o1x 20 1 1.021 SFHx 2D M1 SNA 0.568 0.268 0.022 0.005

s20o2x 20 2 1.021 SFHx 2D M1 SNA 0.570 0.267 0.068 0.005

s20o3x 20 3 1.021 SFHx 2D M1 SNA 0.507 0.270 0.103 0.005

s40o0.5x 40 0.5 1.282 SFHx 2D M1 SNA 0.562 0.262 0.011 0.005

s60o0.5x 60 0.5 0.9112 SFHx 2D M1 SNA 0.557 0.271 0.003 0.005

s60o1x 60 1 0.9112 SFHx 2D M1 SNA 0.558 0.271 0.012 0.005

s60o2x 60 2 0.9112 SFHx 2D M1 SNA 0.572 0.271 0.044 0.005

s60o3x 60 3 0.9112 SFHx 2D M1 SNA 0.562 0.271 0.078 0.005

s12o2a 12 2 0.8123 SFHo 2D M1 LMP+N50 0.520 0.259 0.020 0.005

s60o2a 60 2 0.9112 SFHo 2D M1 LMP+N50 0.535 0.259 0.044 0.005

s27o23� 27 2 0.7700 LS220 3D M1∗ SNA N/A N/A N/A 0.005

s40o03� 40 0 1 LS220 3D Ye(d)+IDSA SNA 0.576 0.272 0.000 0.3

s40o0.53� 40 0.5 1 LS220 3D Ye(d)+IDSA SNA 0.509 0.272 0.008 0.3
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s40o13� 40 1 1 LS220 3D Ye(d)+IDSA SNA 0.562 0.272 0.028 0.3

Table 3.1: Information regarding setup information for all 38 models in this study. Column labels represent the following: M–zero

age main sequence mass, Ω0–central rotation rate at collapse, � differential rotation parameter, EOS, 2D/3D–dimensionality of the

simulation, neutrino (a) treatment, 4− rates–electron capture rates used to construct neutrino opacity tables, "�
core–mass of core at

bounce, .c
4 –central .4 at bounce, VB

core is the ratio of rotational kinetic energy to gravitational binding energy at bounce, C
pb
end–simulation

end time (post bounce). For 4− rates, SNA represents the single nucleus approximation used by Bruenn (1985). LMP+N50 represents

the Laganke-Martinez Pinedo rates (Langanke & Martinez-Pinedo, 2001) supplemented by the calculations of Titus et al. (2018). ‡

denote the three models saved as test data for our multidimensional fit in Figure 3.10 and Equation (3.12). For s27o23� M1∗ indicates

M1 neutrino transport, without inelastic scattering or velocity dependent terms.
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3.3 Methods

In this work, we simulate the core collapse of the 12.0, 20.0, 40, and 60 "� nonrotating,

solar-metallicity progenitors models from Sukhbold et al. (2016b). We use the FLASH (version

4) multiscale, multiphysics adaptive mesh refinement simulation framework (Fryxell et al., 2000;

Dubey et al., 2009).7 Our grid setup is a 2D cylindrical geometry with the PARAMESH (v.4-dev)

library for adaptive mesh refinement (MacNeice et al., 2000). The outer boundary is 104 km in all

directions, with nine levels of refinement—a finest grid spacing of about 0.65 km. The maximum

allowed level of refinement is decreased as a function of spherical radius, A, in order to maintain a

resolution aspect ratio, ΔG8/A, of about 0.01, corresponding approximately to an angular resolution

of 0.5◦. We use the GREP for our gravitational treatment (Marek et al., 2006; O’Connor & Couch,

2018b) used alongside themultipole Poisson solver of Couch et al. (2013), where we retain spherical

harmonic orders up through 16.

To model the transport of neutrinos, we incorporate an M1 scheme: a multidimensional,

multispecies, energy-dependent, two-moment schemewith an analytic closure. Our implementation

is based on O’Connor (2015), Shibata et al. (2011), and Cardall et al. (2013). For a detailed outline

of the M1 implementation in FLASH, we direct the reader to O’Connor & Couch (2018b). We use

12 energy bins spaced logarithmically up to 250 MeV. The full set of rates and opacities we use is

described in O’Connor et al. (2017). As outlined by Horowitz et al. (2017), we use the effective,

many-body, corrected rates for neutrino-nucleon, neutral current scattering. In this study—unlike

our previous work (Pajkos et al., 2019)—we incorporate velocity-dependent neutrino transport and

account for inelastic neutrino-electron scattering.

In total, we simulate 34 CCSNe; we use the SFHo EOS for 19 and the SFHx EOS for three of

our simulations that run to 300 ms pb (Steiner et al., 2013a,b). We run additional simulations that

run through core bounce, 10 of which use the SFHx EOS and two of which use the SFHo EOS

with modified electron capture rates (Langanke & Martínez-Pinedo, 2003; Steiner et al., 2013a,b;

7https://flash.rochester.edu/site/
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Sullivan et al., 2016; Titus et al., 2018). Additionally, we incorporate four 3D simulations into our

analysis. We extract the GW bounce signal from the collapse of one rotating 27 "� progenitor

(Woosley et al., 2002) that uses the LS220 EOS (Lattimer & Swesty, 1991), M1 neutrino transport,

and has a central rotation rate of 2 rad s−1. We examine the bounce signal and accretion phase signal

of three simulations that model a 40 "� (Woosley & Heger, 2007) collapse using the LS220 EOS

and use the Isotropic Diffusion Source Approximation (IDSA) neutrino treatment (Liebendörfer

et al., 2009; Pan et al., 2016, 2018, 2020). The three central rotational velocities are 0, 0.5, and 1

rad s−1. For a detailed outline of all simulation parameters, see Table 3.1.

3.3.1 Rotational Profiles

To begin, the nonrotating 1D progenitor models are mapped onto our 2D Eulerian grid. We then

apply an artificial rotation profile

Ω(A) = Ω0

[
1 +

(
A

�

)2]−1
, (3.1)

where A =
√
'2 + I2 is the spherical radius for a given cylindrical radius ' and altitude I, Ω0 is the

central angular speed of the star, and � is the differential rotation parameter (Eriguchi & Mueller,

1985). Small � values imply a greater degree of differential rotation, while larger � values push

the rotation profile closer to solid body. By multiplying the angular speed with the distance from

the rotation axis, the linear rotational velocity is calculated: Eq (', I) = 'Ω(A).

The internal rotation rates and profiles of massive stellar cores at collapse are still poorly

constrained. Other work (e.g., Abdikamalov et al., 2014) explore varying the differential rotation

parameter � and investigate its impact on the GW bounce signal. We assign � values based on

compactness (O’Connor & Ott, 2011) of the core at collapse. The core compactness as introduced

by O’Connor & Ott (2011) is defined as

b" =
"/"�

'("bary = ")/1000 km

�����
collapse

, (3.2)

where " is the baryonic mass, and '(") is the radius at the corresponding mass coordinate.

How � relates to b" is based on an empirical fit determined in our previous work (Pajkos et al.,
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2019). In short, this relationship quantifies how the rotational velocity assigned at collapse tracks

the progenitor core structure based on the models of Heger et al. (2005).

For our 2D simulations, we select Ω0 = 0, 0.5, 1, 2, and 3 rad s−1 for central rotation rates.

Pajkos et al. (2019) showed that the ramp-up slope decreases as the PNS becomesmore centrifugally

supported for these integer valued rotation rates. In aims to quantify this relationship we select

identical rates. Due to magnetic breaking, the presence of rapidly rotating stars—similar to stars

with Ω0 ≥ 1 rad s−1—is quite rare (Woosley & Heger, 2006). In an attempt to more finely sample

the lower rotation rate parameter space, we extend this previous study by including simulations

with Ω0 = 0.5 rad s−1 as well.

To maintain the fidelity of our simulation suite, we choose to omit the 40 "� progenitor at

Ω0 = 3 rad s−1 from our following analysis. The b2.5 value of this progenitor is nearly double

that of the 20 "� progenitor (the next closest compactness value), resulting in nearly solid-body

core rotation. This rotation profile for the 40 "� results in vast amounts of angular momentum,

ultimately leading to likely unphysical rotation dominated dynamics, and in particular, a highly

suppressed core-bounce GW signal.

3.3.2 GW Signal Extraction

To extract the GW signal from our simulations, we adopt the dominant, quadrupolemoment formula

for the gravitational strain, through the slow motion, weak-field formalism (eg., Blanchet et al.,

1990; Finn & Evans, 1990)

ℎ+ ≈
3
2
�

�24
32�II
3C2

sin2 \, (3.3)

where �II is the reduced-mass quadrupole moment,� is the gravitational constant, 2 is the speed of

light, � is the distance to the source (our fiducial value is � = 10 kpc), and \ is the latitudinal angle

between the supernova axis of rotation and the observer. For extracting the GW signal from our 3D

simulations we follow the method outlined in Oohara et al. (1997). For our analysis, we assume

optimal source orientation—GWs emitted from the equator of the CCSN (\ = c/2). Later, as we

outline our method to constrain progenitor b" , we will discuss the impact of source orientation.
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When analyzing the frequency structure of the GW signal, the peak GW frequency is often a

quantity of interest. In this work, for our axisymmetric simulations, we use a similar form of the

semianalytic formula proposed by Müller et al. (2013)

5peak ∼
1

2c
�"

'22

√
2.1

<=

〈�ā4 〉

(
1 − �"

'22

)2

, (3.4)

where " is the mass of the PNS, ' is the PNS radius, 〈�ā4 〉 is the mean electron antineutrino

energy, � is Newton’s gravitational constant, 2 is the speed of light, and <= is the mass of a

neutron. (Note the factor of 2.1, instead of 1.1 in the original work). While this may correspond

to a physically higher adiabatic index approximating the pressure of the baryons near the PNS

layer, we find this new factor reproduces the peak GW frequencies better for our axisymmetric

simulations. For the 3D models s40o[0-0.5]3� we use a similar form (Eqn. (5) of Pan et al. (2018))

that does not have the last quadratic term (1 − �"/'22)2 because the IDSA neutrino treatment

does not account for gravitational redshift.

3.3.3 Quality of Fit

As we analyze over 30 multidimensional simulations over a wide range of parameter space, we

perform functional fits to our data. To quantify how well our models fit the data we use curve_fit

in the scipy.optimize library to return best-fit parameters as well as the standard deviation errors

for each parameter. Furthermore, we calculate the coefficient of determination as

A2
det = 1 − Σ8 (H8 − Ĥ8)

2

Σ8 (H − H̄8)2
, (3.5)

where (H8 − Ĥ8)2 represents the squared residual between the simulation output data and model fit

(Hughes & Grawoig, 1971). The quantity (H− H̄8)2 represents the variance of the simulation output

data. Here, A2
det = 0 indicates no correlation with the regression line and A2

det = 1 indicates a perfect

correlation. We use A2
det to quantify the regression of our fit coefficients seen in the polynomial fits

of Figures 3.4, 3.6, 3.8, and 3.10.
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3.4 Results

Our analysis synthesizes multiple components of the GW signal to constrain supernova pro-

genitor compactness at collapse. This project builds upon previous works that show the ramp-up

slope of a nonrotating CCSN correlates with progenitor compactness (Warren et al., 2020) and that

the core-bounce signal encodes core angular momentum information (Abdikamalov et al., 2014).

By ramp-up slope, we mean the slope of the peak GW frequency emitted in frequency versus time

space. The novel approach we take quantifies the rotational flattening—or the decreasing slope

of the ramp-up with increasing rotation rate—mentioned in Pajkos et al. (2019). Specifically, we

find that the flattening correlates with angular momentum of the inner 1.75"� of the supernova.

We then combine these two distinct features of the GW signal—loud bounce signal and dominant

ramp-up slope—to constrain the core compactness of the progenitor star at collapse. We first

discuss the general evolution of each simulation, outline in detail each step of the analysis, and

consider observability as well.

3.4.1 Evolution of Shock Radius

One of the main parameters we vary in this study is the central rotation rate, Ω0, so it is important

to discuss the potential impact it can have on shock radius evolution. On one hand, rotation can

stabilize turbulence in the post-shock region, weakening one themain sources that drive a successful

supernova explosion (Couch & Ott, 2015; Janka et al., 2016). Likewise, a centrifugally supported

PNS that forms at larger radii would result in a softer neutrino spectrum. These less energetic

neutrinos could result in reduced heating behind the shock.

On the other hand, rotation can also provide centrifugal support to a collapsing star. This

support would allow core bounce to occur at lower central densities, forming a shock at larger radii.

This initially, less gravitationally bound shock could be more conducive to a successful explosion.

Once again, we are reminded of the strong nonlinearities present when simulating CCSNe and the

persistence of Mazurek’s law: while changing one piece of physics may increase the likelihood
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Figure 3.1: Evolution of the average shock radii for 2D all simulations using the SFHo EOS: models
s12o[0-3], s20o[0-3], s40o[0-2], and s60o[0-3]. Similar to Pajkos et al. (2019), we notice non-
monotonic behavior of the shock expansion when considering progenitor mass and initial rotation
rate.
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of explosion, another factor is likely to change equally as much to counter that effect (Lattimer &

Prakash, 2000).

Here, we report the tendency of our 2D suite of models to explode. Figure 3.1 displays how

the average shock radii of the supernovae evolve with time, with each panel dedicated to a specific

progenitor mass. The specific models plotted are s12o[0-3], s20o[0-3], s40o[0-2], and s60o[0-3].

Here, we define a simulation to successfully explode if its averaged shock radius passes and remains

400 km away from the supernova center. All models that do so also obtain a substantially positive

diagnostic explosion energy (Bruenn et al., 2016).

The 12"� progenitor at all rotational velocities does not undergo any successful explosions

within the 300 ms simulation window. It seems neither the supportive nor inhibitive nature of

rotation drastically modifies the shock evolution. This is in agreement with previous results using

FLASH-M1 for simulations of a nonrotating 12 "� progenitor that also failed to find explosions

(O’Connor & Couch, 2018b) and the 2D results using the FORNAX code (Vartanyan et al., 2018).

Burrows et al. (2019), however, find a successful explosion for a nonrotating 12"� progenitor in

3D, as do Summa et al. (2016) in 2D using the PROMETHEUS-VERTEX code.

The 20"� explodes for the nonrotating case with one of the most aggressively advancing shock

radii of the simulation set. ForΩ0 = 3 rad s−1, while it does not reach 400 kmwithin the simulation

time, it does display steady growth to larger radii. The simulations with the remaining rotational

velocities show no further shock expansion.

The four simulations of the 40"� progenitor also do not successfully explode. Indeed, it

seems the high amounts of angular momentum endowed to this highly compact progenitor have a

negative effect on the advancing shock front. While all rotating cases show no significant shock

displacement, it is worth noting that by the end of the simulation, the nonrotating case shows

significant increase in its rate of shock expansion. Perhaps, with longer simulation times, the

nonrotating 40"� could show signs of exploding.

The 60"� shows the most diverse behavior of the simulation set. While the Ω0 = 1, 2 rad

s−1 simulations remain roughly stagnant at 300 ms pb, the remaining simulations advance toward
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or beyond 400 km. Interestingly—similar to the 20"� case—the nonrotating and fastest rotating

models have the least bound shock radii. Clearly, for the density profile within the 60"� progenitor,

the nonlinear effects of rotation become apparent.

While analyzing the explodability of different models in detail is a key component to CCSN

research, it lies beyond the scope of this paper, which focuses on the GW signals emitted. Seconds

after the core bounce, when the asymptotic explosion energy approaches a final value, the matter

distribution and net neutrino production can be asymmetric. In certain cases, these asymmetries

can produce a direct, non-oscillatory, GW signal (sometimes referred to as a memory component)

(Vartanyan & Burrows, 2020). While some of our models have significantly expanding shock radii,

our simulations do not evolve to late enough times to develop the asymmetries necessary to produce

this direct GW offset.

3.4.2 General Features of Rotating GW Signals

Here, we review the general features of the GW signal seen in our rotating and nonrotating 2D

simulations using the SFHo EOS. Figure 3.2 shows the bounce signals from all rotation rates,

separated by progenitor mass, while Figure 3.3 displays the waveforms over the entire simulation

duration. Specifically, the models included in these figures are s12o[0-3], s20o[0-3], s40o[0-2],

and s60o[0-3].

The firstmain feature is the loud bounce signal. As rotation rate increases, the increasing angular

momentum of the once-stellar iron core forces it to deviate from spherical symmetry to become an

oblate spheroid. At bounce, the nuclear force suddenly halts the infalling matter causing the (once

iron core, now) PNS to deform on the time scale of a fraction of a millisecond. More specifically,

to leading order, the mass quadrupole moment of the PNS drastically accelerates, resulting in the

emission of GWs. In extreme scenarios, for sufficient angular momentum within the inner core, the

infalling matter can become centrifugally supported. This slowed infall, in turn, deforms the PNS

less at bounce, creating a GW bounce signal with a lower amplitude (Dimmelmeier et al., 2008).

In Figure 3.2, the GW strain the first few milliseconds after bounce corroborates previous
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findings that describe, except in these extreme cases, that increasing the angular momentum of

the core will yield a larger bounce signal (Dimmelmeier et al., 2008). As this bounce signal is

largely governed by the microphysics within the core, the GW bounce signal is predictable and well

templated (Scheidegger et al., 2010b), provided a set of assumptions about the microphysics. As

the PNS rings down from the energetic bounce, matter motions due to prompt convection contribute

to the GW signal 10s of ms after bounce as well.

The accretion phase of the supernova—the hundreds of milliseconds when the PNS is accreting

matter—marks the next time during the supernova when significant GWs are produced. During

accretion, infalling stellar material and convection in the gain layer can excite oscillatory modes in

the PNS. As a result, material at nuclear densities moves on time scales the order of milliseconds

and can result in sustained GW emission. For all of our rotating progenitors, we observe this GW

signal occurring between ∼ 100 − 300 ms pb in Figure 3.3. In contrast to the bounce signal, these

oscillatory modes are largely stochastic in nature and nearly impossible to template when viewed

in the time domain.

Another interesting feature during the accretion phase, across all progenitors, is the decrease

in amplitude of the GW signal with increasing rotation rate. As pointed out in previous work, this

rotational muting is a direct consequence of the Solberg-Hoiland stability criterion, i.e., the stabiliz-

ing effect rotation can have in a convective fluid (Endal & Sofia, 1978; Pajkos et al., 2019). Simply

put, in these 2D simulations, as rotation rate increases, convective activity slows in the post-shock

region of the supernova. This slowed convection will interact less with the PNS—causing less

pronounced oscillations—resulting in lower amplitude GWs. Of course, 3D rotational instabilities

like the spiral mode of the SASI (Andresen et al., 2019), the low )/|, | instability (Pan et al., 2020;

Shibagaki et al., 2021) or magnetorotational instability (MRI) (Akiyama et al., 2003; Cerdá-Durán

et al., 2007; Mösta et al., 2015) can create turbulent motion as well, re-exciting the motion of the

PNS. Nevertheless, it is promising that rotational muting is still observed in our simulations with an

increased fidelity in microphysics—namely, inelastic electron scattering and velocity dependence

in the neutrino transport—compared to our previous works.
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3.4.3 Connecting Angular Momentum and the Bounce Signal

We now move on to laying out a novel analysis method that will help constrain the rotational

information of the supernova at the time of core bounce and mass distribution within the progenitor

star at collapse. The first vital piece of information needed is the amplitude of the core-bounce GW

signal from observations of a nearby CCSN.

It is well established that the source of the GW bounce signal is the dense supernova core,

the region where the previous stellar iron core is forming into a PNS. For rotating CCSNe, the

amplitude of this bounce signal is well studied and has been shown to correlate with the ratio

of rotational kinetic energy to gravitational potential energy–commonly displayed as V ≡ )/|, |

(Dimmelmeier et al., 2008). While V can be used to measure the degree of rotation in a supernova,

we choose the angular momentum instead, in aims to establish it as another key quantity, when

quantifying rotation within a CCSN. Nevertheless, these quantities are related, as they are both

metrics that encode information about the supernova rotation profile and mass distribution. For

scale, the corresponding upper value in our simulation suite is �bounce
1.75"�

∼ 2.8 × 1049 erg s. The

upper limit for the core of the CCSN is Vbounce
core ∼ 0.10. Our definition of supernova core is outlined

at the end of this subsection.

In Figure 3.4, we relate the amplitude of the bounce signal (Δℎbounce) to the angular momentum

of the inner 1.75"� at bounce, by performing a third order polynomial fit to the 33 simulations

using theM1 neutrino treatment and single nucleus approximation (SNA) 4− capture rates (Bruenn,

1985), or all models except B12>2a, s60>2a, and s40o[0-1]3� . In this work, we define the Δℎbounce

as the difference between the maximum and minimum of the strain within a 3 ms window of

the bounce time—the time when the central entropy reaches 3 :B baryon−1 and central density

exceeds 2 × 1014 g cm−3. Our mass cut of 1.75"�—instead of typical values ∼ 0.6"� for inner

cores—is chosen in anticipation of our analysis that will contain information about the accreted
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matter, beyond the canonical PNS. A more detailed justification of this mass cut is discussed in

Section 3.4.5.

We now move to outlining the two main features of Figure 3.4: the quadratic � regime and the

extreme asymptotic � regime. To explain the quadratic � regime, when �1.75"� . 2 × 1049 erg s,

we appeal to order of magnitude estimates of the bounce signal. As established in (Richers et al.,

2017), the bounce signal can be approximated as Δℎ ∼ �"'2Ω2/24� for a given PNS mass " ,

radius ', and rotation rate Ω. The angular momentum at the center of the supernova just after core

bounce can be approximated as � ∼ "'2Ω. This yields an expression for how Δℎ depends on �,

Δℎ ∼ �

24�"'2 �
2. (3.6)

Thus, for typical " and ' values of the supernova center (∼ 0.55"� and ∼ 15 km in our

simulations), one notes the quadratic behavior seen in Figure 3.4 for �1.75"� . 2 × 1049 erg s.

Of course this scaling relation is constructed for the main source of GWs, the PNS, or inner ∼ 0.6

"� of matter. Nevertheless, we find this quadratic behavior maps quite well to larger mass cuts, as

seen in Figure 3.4.

For �1.75"� & 2 × 1049 erg s, the supernova center enters the extreme asymptotic � regime.

The supernova center now contains sufficient � to centrifugally support the collapse and causes the

bounce signal to occur at lower densities. This effect in turn widens the bounce signal and prevents

further growth of Δℎbounce (Fryer & Warren, 2004; Dimmelmeier et al., 2008).

Another interesting feature of Figure 3.4 is the independence of Δℎbounce with EOS, which

corroborates previous works (Dimmelmeier et al., 2008; Richers et al., 2017). Denoted circles are

simulations that use the SFHo EOS: s12o[0-3], s20o[0.5-3], s40o[0.5-2], and s60o[0.5-3]. Inverted

triangles use the SFHx EOS: s12o[0.5,2,3]x, s20o[0.5-3]x, s40o0.5x, and s60o[0.5-3]x. Over this

parameter space, both EOSs produce similar bounce amplitudes. While we have not exhausted the

possible list of available EOSs, the fact that two distinctly different EOSs produce similar bounce

signals is promising to apply an analysis of this type to future GW observations and highlights the

supernova mass distribution as a contributing factor to determining the bounce amplitude.
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Figure 3.4: Bounce signal amplitude versus angular momentum of inner 1.75"� for all models
in our simulation suite. Overlaid is a third order polynomial fit to the 33 models using the M1
neutrino treatment and the SNA approximation (Bruenn, 1985) when calculating neutrino opacity
tables. Colors represent different progenitor masses, whereas the different shapes correspond to
the specified EOS listed by each black legend marker. This correlation is nearly EOS independent.
Every shape uses the SNA approximation (Bruenn, 1985) when calculating neutrino opacity tables,
with the exception of the stars (F). Stars (labeled SFHo4−) use LMP+N50 4− capture rates which
affect the deleptonization of the core during collapse, resulting in a lower amplitude bounce signal
(Langanke & Martinez-Pinedo, 2001; Titus et al., 2018). Specifically, the two models that use the
LMP+N50 4− capture rates correspond to s12o2a and s60o2a. Likewise, the difference in neutrino
treatment used in the 40"3� (a)

� models (s40o0.53� and s40o13�) causes deviation from the fit.
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For the 3D simulations, which all use the LS220 EOS, we notice good agreement with the 3D

27 "� case, s27o23� . However, for the rotating 40 "� simulations (s40o0.53� and s40o13�)

we notice systematically higher bounce signals that deviate from the polynomial fit in Figure 3.4.

This difference can be attributed to the neutrino treatments in each simulation suite. For all 2D and

the 27 "� 3D cases, M1 neutrino transport is used beginning at collapse. This treatment gives

accurate deleptonization behavior within the supernova center by the time of core bounce. Models

s40o0.53� and s40o13� , by contrast, use parameterized deleptonization (Liebendörfer, 2005) up

until the point of bounce. At densities above 109 g cm−3 these two schemes yield different electron

fraction versus density, or .4 (d), profiles at the time of bounce. As explained in Richers et al.

(2017), this effect in turn modifies the amplitude of the bounce signal.

Another piece of physics that impacts the bounce signal significantly are the electron capture

rates. We perform two additional simulations with identical initial conditions to the 12 and 60

"� progenitors with Ω0 = 2 rad s−1 (s12o2a and s60o2a), except for different neutrino opacity

tables. The control case used for our 2D simulation suite creates the neutrino interaction library for

the SFHo EOS using NuLib (O’Connor, 2015) and uses the SNA approximation (Bruenn, 1985).

To test the effect of modified electron capture rates, we use the weak rate library of Laganke and

Martinez-Pinedo (Langanke & Martinez-Pinedo, 2001) supplemented by the calculations of Titus

et al. (2018). Between the two cases, we notice bounce signal amplitudes that differ by ∼ 40%.

Similar to before, this difference in bounce signal is expected. As core collapse commences,

electron captures onto nuclei play a significant role in removing pressure support from the iron

core. Eventually, at the time of bounce, this will modify the.4 (d) profile, thereby affecting the core

mass and resulting GW bounce signal (Richers et al., 2017). Because of this clear dependence of

the GW bounce signal on electron capture rates, this work serves as valuable scientific motivation

to reduce experimental error on these rates in high density nuclear matter, as they have an impact

on our ability to constrain supernova progenitor information from GWs alone.

In many of the primary works that examine GWs from rotating CCSNe, correlations between

inner core mass at bounce ("�
core) and central electron fraction (.c

4 ) are treated as diagnostics for
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the expected Vbounce
core (and consequently Δℎbounce). (Dimmelmeier et al., 2008; Scheidegger et al.,

2010a; Abdikamalov et al., 2014; Richers et al., 2017). One dominant common factor between

these works is the inclusion of parameterized deleptonization on collapse (Liebendörfer, 2005). In

our work, over the range in values for 0 < Vbounce
core . 0.10, we do not see significant changes in

values of "�
core— changes less than a 0.1 "�. Likewise, the common correlations of increasing

.c
4 with increasing Δℎbounce are not completely upheld with our data. As an example, refer to

Figure 3.5. When comparing models s40o1 and s40o13� , the principle difference during collapse

is the neutrino treatment: s40o1 uses velocity-dependent M1 neutrino transport, whereas s40o13�

uses parameterized deleptonization. While both have extremely similar .c
4 values, the Δℎbounce of

s40o1 is only ∼ 60% that of s40o13� . To explain this difference, we examine the .4 (d) profile at

bounce. We observe that at densities greater than 1012 g cm−3 the difference in profiles can vary

by as much as Δ.4 ∼ 0.02 (around 6%), while still maintaining similar .c
4 . While we acknowledge

the value in the 1D Boltzmann neutrino transport calculations involved in Liebendörfer (2005), we

present evidence using our multidimensional velocity-dependent neutrino-radiation hydrodynamic

simulations that the inclusion of rotation and multidimensional effects can cause this approximation

to break down, and recommend caution for use in future rapidly rotating GW studies.

To define"�
core in our work, we look at the magnitude of the velocity along the pole and equator.

Where each radial profile has the steepest velocity gradient, we select corresponding points, as this

marks the point where sonic contact breaks down. Lastly, we construct an ellipse using these

corresponding radial points as the semimajor and semiminor axes. All mass within this ellipse we

define as in sonic contact with the supernova center.

As a caveat, it is important to note that these bounce signals were calculated with an assumed

distance of 10 kpc. In the event of an actual rotating CCSN event, we would rely on other means

to constrain the distance. Of course, EM observations remain the gold standard. For a purely

multimessenger approach, distance estimates using supernova neutrino measurements still lie on

the horizon.
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3.4.4 ¤5 versus Compactness

The next piece of information needed for this analysis requires us to connect a GW observable to the

density profile of the supernova. Through a variety of 1D simulations, Warren et al. (2020) recently

explored the GW signal a few seconds after bounce, displaying correlations between progenitor

compactness at collapse and the slope of the GW frequency ramp-up ( ¤5 ), in frequency versus time

space. To calculate ¤5 , we perform a linear regression to Equation (3.4) between 50 and 300 ms

pb. We choose to begin tracking 5peak at 50 ms because this approximately marks the end of the

post-bounce ring-down GW signal seen in Figure 3.3. Because we are using multidimensional

simulations and use a different mass cut for b" at collapse, we do not use the parametric fit
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provided inWarren et al. (2020). Instead, we opt to create a unique linear fit for our 2D simulations.

Nevertheless, we corroborate a linear relationship between ¤5 and b" in 2D simulations. Figure 3.6

displays ¤5 versus b1.75 at collapse, for the nonrotating simulations in our suite: specifically, models

s12o0, s20o0, s40o0, s60o0, and s12o0x. When comparing the EOS dependence of ramp-up slopes

for nonrotating progenitors, we note only a difference of ∼ 2% between SFHo and SFHx.

Physically, this ¤5 and b" relationship should be expected. At the onset of collapse, a higher

compactness value corresponds to more mass closer to the stellar core. As the inner part of the

resulting supernova will be more gravitationally bound, the mass accretion rate onto the PNS should

be higher, compared to a lower b" progenitor. With a higher mass accretion rate, the PNS should

contract on shorter time scales. Thus, because the GW ramp-up is related to the PNS dynamical

frequency (Camp & Cornish, 2004), faster PNS contraction will lead to a higher ¤5 value.

As a note, we acknowledge that empirically measuring ¤5 from the GW signal simulation

outputs would be ideal. However, the frequency components for the Ω0 = 2, 3 rad s−1 simulations

have extremely faint GW signals during the accretion phase, which would leave an unreliable

fit. Physically, this weaker signal is a product of the rotational muting seen in rotating CCSN

simulations (Pajkos et al., 2019). Because these simulations are axisymmetric, 3D effects such as

the spiral mode of the SASI or low )/|, | instabilities do not arise to re-excite the PNS oscillations

(Andresen et al., 2019). In the 3D context, as in nature, these instabilities can arise in rotating

cases, creating a detectable GW signal in conjunction with a flatter ¤5 . The use of Equation (3.4)

has been shown in previous works (eg., Müller et al., 2013; Pan et al., 2018) to reproduce the peak

GW frequency quite well for nonrotating CCSNe. To test its effectiveness for rotating models, we

show how it tracks the GW frequency output from our 2D simulations, in the next subsection.

The only model that does not use a semianalytic model, similar to Equation (3.4), to calculate

¤5 is model s40o13� . As noted in Pan et al. (2020), 40o13� displays the low T/W instability during

the accretion phase. Accompanying the instability is a bar-mode-like configuration of the rotating

PNS (Ott et al., 2005). Compared to the slight oblateness seen in our 2D rotating models, this bar

mode deviates from spherical symmetry enough to create a lower fidelity prediction of the peak

83



GW frequency. Instead, we opt to empirically extract the peak GW frequencies to construct ¤5 for

s40o13� . While other GW signals have been associated with non-axisymmetric instabilities—the

emission of quasiperiodic GWs ∼ 100 Hz from the spiral SASI (Kuroda et al., 2014; Andresen

et al., 2017) or transient approximate kilohertz signal from the low )/|, | instability (Ott et al.,

2005)—we note these signals do not interfere with the empirical calculation of ¤5 from the dominant

oscillation mode produced by s40o13� . While we acknowledge ¤5 values between models s40o1

and s40o13� differ by ∼ 10%, we cannot conclude this difference in non-normalized ramp-up slope

is due to the presence of the low T/W instability because of the difference in respective neutrino

treatments (M1 and IDSA) and progenitor structure ((Woosley & Heger, 2007) and Sukhbold et al.

(2016b)). For the reader interested in the exact details of the spectrogram for s40o13� , we direct

them to Figure 9 of Pan et al. (2020).

3.4.5 Quantifying Rotational Flattening

While the correlation between ¤5 and b" is indeed valuable, this relationship has only been shown for

nonrotating cases thus far. As all stars rotate to some degree, we now generalize this relationship

beyond simple nonrotating cases, granting the final piece needed for our new analysis method:

extracting rotational information from the accretion phase signal.

During the accretion phase of a CCSN, the PNS is accreting mass while cooling via neutrino

emission. These two factors cause the PNS to contract as the supernova evolves. Observationally,

this cooling manifests itself in the ramp-up slope of the GW signal. Intuitively, a PNS with a

smaller radius (or higher dynamical frequency) will oscillate at higher frequencies. Thus, as the

PNS radius gradually decreases, its frequency of emission should gradually increase. However, if

the PNS is rotating, it will receive centrifugal support during that cooling process. Not only is the

PNS accreting matter, but angular momentum from the overlying stellar material. This accretion

will spin up the PNS, allowing it to end with a larger radius, compared to the nonrotating case.

With a larger radius (or smaller dynamical frequency), one expects the GW frequency to be lower.

If one were to observe the GW evolution in the time-frequency domain, the rotating PNS would
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Figure 3.7: Spectrograms for the 12"� progenitor at different rotational velocities: models
s12o[0-3]. Overplotted in gray is the peak GW frequency of the PNS (Equation (3.4)), displaying
the rotational flattening of the PNS, as the rotation rate increases. The colors correspond to values
of ℎ̃+, the Fourier transform of the GW strain ℎ+.
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Figure 3.8: Linear correlation between how much the ramp-up slope is flattened vs. �1.75"� . We
perform three additional simulations for the 12 "� progenitor using the SFHx EOS and see almost
no EOS impact on the flattening effect. This fact indicates the pre-accretion angular momentum
distribution is more important when quantifying flattening. In total, the models included in this
figure are s12o[0-3], s20o[0-3], s40o[0-2], s60o[0-3], s12o[0,2,3]x, and s40o[0-1]3� .

appear to have an ¤5 that is flatter (closer to 0) than the nonrotating case. Now we quantify this

rotational flattening by examining the ramp-up slopes of different progenitors.

In Figure 3.7, we display spectrograms for the five 12"� simulations for various rotation rates:

models s12o[0-3]. Brighter hues correspond to greater contributions to the GW signal at a given

frequency. Overlaid in gray is the 5peak produced by Equation (3.4). Indeed, with increasing

rotation rate, 5peak evolves with a flatter slope. Figure 3.7 shows how tightly 5peak tracks the

frequency evolution of the emitted GWs.

After calculating ¤5 for each simulation, we normalize by the respective nonrotating ramp-up

slope. Interestingly, we find a tight correlation between how much the slopes are flattened over
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Figure 3.9: (Left) Enclosed angular momentum (�enclosed) binned by mass coordinate (20 total
bins) for the 60"� progenitor at different rotation rates: models s60o0.5, s60o1, s60o2, and s60o3.
As rotation rate increases, the �enclosed profile becomes steeper. (Right) �enclosed binned by mass
coordinate (20 total bins) for all progenitor masses for Ω0 = 1 rad s−1: models s12o1, s20o1,
s40o1, and s60o1. In this case, the �enclosed profile becomes steeper with increasing compactness.
This is expected as the differential rotation parameter A used in Equation (3.1) depends linearly
on compactness. Thus, the more compact models begin with larger angular momentum values at
collapse. (Both) In both cases, a steeper �enclosed profile provides more angular momentum for the
PNS to accrete after bounce—in turn, this provides more centrifugal support and a flatter ¤5� .

time and the angular momentum of the inner 1.75"� at bounce. Figure 3.8 displays this linear fit

to the 19 2D SFHo runs. For comparison, we overlay the three 2D SFHx runs and three 3D LS220

runs. Specifically, the models included in this figure are s12o[0-3], s20o[0-3], s40o[0-2], s60o[0-3],

s12o[0,2,3]x, and s40o[0-1]3� . For the rapidly rotating 12 "� 2D SFHx runs, we notice very little

EOS dependence on the normalized ramp-up slopes, as they nearly overlap with the corresponding

SFHo runs. While in general these slopes are driven by the cooling of the PNS—a process heavily

dependent on the EOS—we notice differences in non-normalized slopes of only ∼ 3% between

SFHo and SFHx.

To explain the relationship seen in Figure 3.8 and justify our mass cut of 1.75 "�, we appeal to

Figure 3.9. Displayed in the left panel of Figure 3.9 is the enclosed angular momentum (�enclosed)

for the 60 "� progenitor, binned by a mass coordinate over 20 bins: specifically, models s60o0.5,
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s60o1, s60o2, and s60o3. For increasing Ω0 we note a steeper �enclosed profile. In the right panel,

we identically bin our data, but display �enclosed for the four progenitor masses with Ω0 = 1 rad

s−1: specifically, models s12o1, s20o1, s40o1, and s60o1. In this case, the higher the progenitor

compactness, the steeper �enclosed profile. This behavior is expected because at collapse, the

differential rotation parameter (� in Equation (3.1)) is assigned based on initial compactness

(Pajkos et al., 2019). In general, with a larger differential rotation parameter (more solid body) we

expect a steeper �enclosed profile. In both panels of Figure 3.9, a significant amount of � is deposited

in the outer layers of the rotating supernova at the time of core bounce. As mass is accreted, so

too is �; this accretion will centrifugally support the contracting PNS. The effect on the physical

observable is a flatter ¤5 . With mass cuts less than 1.75"�, the tight linear relationship seen in

Figure 3.8 breaks down because less information about the accreted � would be accounted for.

While a slightly higher mass cut could have been chosen, our computational domain only contains

∼ 1.85"� of material, and this slight difference does not produce a noticeable change in Figure

3.8. Moreover, depending on the progenitor, stellar material at that mass cut may not get accreted

even hundreds of milliseconds after bounce. Hence, we justify a mass cut of 1.75"�. Of course,

for future work, optimizing this mass cut on computational domains that contain more mass could

refine this analysis.

One large uncertainty that can affect ¤5 is the influence of angular momentum transport within

stellar interiors (Aerts et al., 2019), so it is important to highlight how it maymodify the relationship

seen in Figure 3.8. In our current simulation suite, � is advected along with the fluid. However,

other influences that are not included in this work (such as magnetic fields) may change how � is

displaced throughout the supernova evolution. In the event of stronger � transport, less � would be

accreted onto the PNS. As such, the PNS would receive less centrifugal support, allowing it to cool

to smaller radii. This effect would result in larger values of ¤5 , even in the rapidly rotating cases.

Physically, this would diminish the flattening effect seen in rotating simulations. Systematically,

the points at large values of �bounce
1.75"�

seen in Figure 3.8 would shift upwards.
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Coefficient Value Standard Deviation Units
U −1.17 ±0.11 10−168(erg s)−3

V 4.74 ±0.27 10−119(erg s)−2

W −0.315 ±0.015 10−49(erg s)−1

X 925 ±87 Hz s−1

n 1760 ±50 Hz s−1

Table 3.2: Coefficients used to constrain progenitor core compactness.

3.4.6 Constraining the Stellar Core Mass Distribution

For clarity, we now outline the established three pieces of information from GWs emitted in a

rotating CCSN. We have shown that the amplitude of the bounce signal (Δℎ) correlates with

�1.75"� at bounce. The ramp-up slope ( ¤5 ) of the GW signal for nonrotating CCSNe relates to

b1.75. And using our new findings, we quantify how much this slope is flattened, depending on

�1.75"� . We now synthesize these three points to place constraints on the mass distribution of the

supernova progenitor. Note in this section, unadorned V refers to a polynomial fitting coefficient,

whereas in previous sections, Vbounce
core refers to the ratio of rotational kinetic energy to gravitational

binding energy ()/|, |).

From examining the bounce signal, we have shown the relationship between core bounce and

inner angular momentum as

Δℎ = U�3
1.75"� + V�

2
1.75"� . (3.7)

From the accretion phase, we know the angular momentum quantifies how much the GW signal

is flattened

¤5�/ ¤5�=0 = W�1.75"� + 1. (3.8)

Lastly, we link core structure and nonrotating ramp-up slope

¤5�=0 = Xb1.75 + n . (3.9)

To begin, substitute Eqn. (3.9) into Eqn. (3.8) and solve for �1.75"� to yield

�1.75"� =
1
W

(
¤5�

Xb1.75 + n
− 1

)
. (3.10)
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Next, substitute Eqn. (3.10) into Eqn. (3.7) resulting in

Δℎ = UJ3 + VJ2, (3.11)

where J is represented by

J =
1
W

(
¤5�

Xb1.75 + n
− 1

)
and the coefficients of interest are located in Table 3.2. Equation (3.11) results in a cubic

polynomial that has three unknowns: Δℎ, ¤5� , and b1.75. In the event of a rotating CCSN detection,

the two most distinct parts of the signal—Δℎ and ¤5�—can be directly obtained. Thus, b1.75 can be

solved for using a numerical root finder.

It is important to note that Equation (3.8), and the resulting analysis, solves for b1.75 of a

nonrotating progenitor. To apply this solution to a hypothetical rotating CCSN, one needs to

assume the core mass distributions are the same between a rotating and nonrotating case.

In principle, this analysis solidifies how the fundamental rotational quantities Δℎ and ¤5 relate to

b1.75. In practice, however, we find the numerical inversion of Equation (3.11) poses convergence

challenges with numerical root finders in certain regions of parameter space because of its highly

nonlinear nature. In the next subsection, we describe how to streamline the analysis and remedy

these convergence challenges.

3.4.7 Estimating Stellar Properties Based on Compactness

We begin inspecting the parameter space covered by Δℎ, ¤5 , and b1.75—visually represented in

Figure 3.10. In an attempt to prevent overfitting, while appropriately modeling the data, we

construct a planar fit between these three variables (red plane in Figure 3.10)

b
collapse
1.75 = 0.146Δℎ + 0.794 ¤5 − 0.134, (3.12)

where Δℎ is scaled by 1021 and ¤5 is in units of (kilohertz per seconds). We treat our 19 2D SFHo

models as the fit data used to calculate the planar coefficients in Equation (3.12): models s12o[0-3],

s12o[0-3], s40o[0-2], and s60o[0-3]. In an attempt to reduce bias from verifying our planar fit, we

90



1021×∆h
024681012

ḟ [kHz s−
1 ]

0.51.01.52.02.5
ξc

o
ll
a
p
se

1
.7

5

0.10
0.23
0.37
0.50
0.63
0.77
0.90
1.03
1.17
1.30

ξcollapse
1.75 = 0.146∆h + 0.794ḟ − 1.34
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included in the fit data are s12o[0-3], s12o[0-3], s40o[0-2], and s60o[0-3]. Models included in the
test data are s12o[0,2,3]x.

withhold 3 2D SFHx simulations (models s12o[0,2,3]x) from the fitting process, and reserve them

as our test data to test the reliability of Equation (3.12) for different EOSs.

Armed with Equation (3.12), we apply the previously used Δℎ and ¤5 values to yield estimated

b1.75 values. Figure 3.11 compares actual (blue dots) versus estimated (squares) b1.75. Included

with the estimated values are the error bars assuming a standard deviation of 10% (30%) of both

the Δℎ and ¤5 measurements. Convolved with the error of each planar coefficient yields error bars

displayed in orange (green) that correspond to the standard deviation of the estimated b1.75. We

note while the majority our test data and fit data are captured by the 10% error case, there are still

outliers. Returning to Figure 3.10, one can observe the presence of data points that deviate from

the planar fit. While a more complex fit could mitigate the error, this raises the risk of overfitting.

Ideally, a larger number of simulations, spanning a finer resolution in parameter space would help

estimate more accurate and statistically significant values for b1.75. Acknowledging areas for future

improvement, we note the exciting implications this relationship has.
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The mass distribution within a supernova progenitor is still highly uncertain and extremely

difficult to constrain with EM observations alone. The strength of this work is that it provides a

framework to make the critical b" measurement solely using GWs. This new analysis method

now allows scientists to leverage various previous studies that have shown that b" has a significant

impact on properties of the explosion (O’Connor&Ott, 2011; Sukhbold et al., 2016b). For example,

Sukhbold et al. (2016b) use a suite of simulations to connect b2.5 to two physical observables:

explosion energy and 56Ni yield. Thus, as the needed GW signals for this analysis happen less

then 0.5 s after core bounce, astronomers potentially can predict future explosion properties of the

supernova—helping provide valuable input for EM follow-up. Furthermore, after the explosion has

succeeded, making EM measurements of the explosion energy and 56Ni mass provide a testable

case that can either validate or refine the accuracy of this GW prediction.

3.4.8 Observability of GW Signal

When discussing possible GW signals from rotating CCSNe, it is important to anticipate the

likelihood of observation. Current GW detectors are limited to Galactic core-collapse events–an

estimated rate of ∼ 2 per century (Diehl et al., 2006). Convolved with the estimate that only 1% of

massive stars can reach the rapid rotation regime, this estimate drops to a rapidly rotating, Galactic

CCSN rate of 2 every 10,000 yr. Nevertheless, due to the poorly understood influence of binarity

and magnetic braking, this estimate could be higher (Woosley & Heger, 2006; de Mink et al.,

2013). Likewise, the possible GW signals from so-called failed supernovae also potentially can act

as sources of detectable GWs (Fryer & New, 2003). Another key consideration are the effects of

viewing angle. As outlined in Oohara et al. (1997), the relative orientation between the CCSN and

observer impacts the amplitude of the GW signal measured. As such, the ¤5 measurement should be

unaffected. By contrast, the measured Δℎ for this analysis is completely degenerate with detector

orientation. In all likelihood, the equator of an arbitrarily oriented CCSN will be off axis with GW

detectors. This viewing angle effect would yield a smaller amplitude detected for Δℎ. Hence, in

the conservative case where no orientation information can be gathered, a given Δℎ would serve as

93



a lower limit for the b1.75 estimate.

An alternative to help constrain CCSN orientation is the use of neutrinos. For a rotating CCSN,

depending on the degree of differential rotation, the shape of the neutrinosphere can become

deformed, namely, oblate (Kotake et al., 2003a). The resulting nonspherical emission of neutrinos

in principle contains information about the supernova orientation. More recently, Nagakura et al.

(2021) more concretely noted the angular variations in the event rate and—more modestly—in the

time-integrated signal. While research into the dependence of neutrino emission based on viewing

angle is still ongoing, its continued progress and recent advances stand as a promising sign to one

day help constrain CCSN properties purely using multimessenger methods.

In the rotating core-collapse scenario, there are two main sources of detectable GWs that occur

at different times. The first is the core-bounce signal, which occurs immediately after core bounce.

The second is during the accretion phase of the supernova. As seen in Figure 3.7, these fundamental

modes of the PNS can last hundreds of milliseconds and display an increase in frequency as the

PNS cools. Likewise, in some cases, rotational instabilities can induce GW production with similar

amplitudes to the bounce signal, when viewed along the axis of rotation (Scheidegger et al., 2010a;

Kuroda et al., 2014).

In order for aGWobservatory to successfully detect aGWevent, two factorsmust be considered:

detector sensitivity and signal reconstruction (Abbott et al., 2016a). Detector sensitivity limits the

frequency range of potential GW signals as well as GW strengths, due to signal-to-noise (S/N)

constraints. Signal reconstruction is the act of separating the GW signal from the detector noise

and is highly sensitive to S/N constraints as well (McIver, 2015). Thus, even though a given CCSN

may emit multiple GW modes at a variety of frequencies, it is likely only the dominant features of

the GW signal will be reconstructed.

These observational considerations lie at the heart of this project. Whereas other works are

limited to progenitors of a certain compactness or depend on observing multiple oscillatory modes

of the PNS, ours depends only on the dominant bounce signal as well as the main ramp-up of the

PNS. In extreme cases, although rare, the amplitude of the bounce signal from rotating CCSNe can
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be nearly an order of magnitude larger than the GWs from PNS oscillations, as seen in Figure 3.3.

This effect can push the detection volume out by a corresponding order of magnitude because the

GW amplitude scales as the inverse of the distance to the source.

3.5 Summary and Conclusion

We present a new method to constrain supernova progenitor compactness at collapse by using

information from two parts of the GW signal: the core bounce and slope of the early ramp-up. Our

findings are summarized as follows.

• We highlight the importance of robust treatments of deleptonization (eg., M1) on collapse,

as it impacts the magnitude and directional dependence of the .4 (d) profile of the CCSN

core and consequently Δℎbounce, seen in Figure 3.5.

• We build upon the findings of Warren et al. (2020) by corroborating that the slope of the

early ramp-up of nonrotating CCSNe correlates with compactness of the inner 1.75"� in

2D simulations, seen in Figure 3.6.

• We relate the amplitude of the bounce signal to the angular momentum of the inner 1.75"�,

seen in Figure 3.4.

• We quantify the dependence of PNS ramp-up slope on the angular momentum of the inner

1.75"� at bounce, seen in Figure 3.8.

• We combine the two parts of a given rotating CCSN GW signal—bounce and main ramp-up

slope—to constrain progenitor core structure by estimating b1.75, seen in Figure 3.10.

• For a rotating CCSN, these two parts of the GW signal are the most likely to be detected and

reconstructed by current GW detectors.

• Because the GW signal used is emitted . 0.5 s after core bounce, we provide astronomers

predictive power for EM emission, leveraging other works making EM correlations with b" .
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While we have introduced a new method that uses GWs to constrain supernova properties

and potentially predict their behavior, it is important to outline the limitations of this work. The

majority of this work was completed using axisymmetric simulations. While previous works have

used axisymmetry to predict bounce signals for a variety of rotational configurations (Abdikamalov

et al., 2014), 3D simulations remain the gold standard. Later in the supernova, for the GW

signal during the accretion phase, certain instabilities may arise—low )/|, | or spiral SASI—that

are inherently three dimensional. Nevertheless, including four 3D models does corroborate the

relationships between �, ¤5 , and Δℎ noted in this work. We also do not include magnetic fields. Two

instabilities that may arise when includingmagnetic fields are the U−Ω dynamo (Mösta et al., 2015)

andMRI (Akiyama et al., 2003). While the impact of the U−Ω dynamo and theMRI on dynamically

relevant timescales is uncertain, these instabilities may drive convection in the post-shock region

shortly after core bounce (Bonanno et al., 2005; Cerdá-Durán et al., 2007). Our simulations also

use the GREP, neglecting full GR. While the GREP could affect ¤5 by overestimating the peak GW

frequency when compared to GR, it has been shown to produce GW amplitudes of similar scale

and similar PNS compactness (Müller et al., 2013). In principle, this could affect the correlations

presented in this work. Likewise, exploring a wider range of EOSs could help isolate the slight

EOS dependence of ¤5 .

This work also provides scientific motivation to continue research into electron capture rates

onto heavy nuclei. As noted in Section 3.4.3, we observed differences inΔℎ at bounce up to 40% for

identical rotation profiles with differing electron capture rates. As Δℎ at bounce is a fundamental

parameter in determining b1.75, more accurate rate measurements will allow astronomers to better

constrain progenitor core compactness for a future Galactic CCSN.

We emphasize that this paper takes an empirical approach to finding these correlations. We do

not rely on assuming functional forms for quantities such as the moment of inertia at the center of

the supernova. This feature is advantageous for future GW observations of rotating CCSNe because

it allows us to probe the mass distribution within a progenitor without deciding a priori how the

mass may be distributed.
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We acknowledge the robustness of these fits can be increased by including more 3D simulations

with higher fidelity treatments of gravity and magnetic fields. Nevertheless, the focus of this work

is to show that the accretion phase signal indeed contains information about the structure of CCSN

progenitors. By quantifying this information and combining it with rotational information encoded

in the bounce signal, astronomers take one step closer toward determining the physical conditions

that set the stage for the onset of stellar explosions.
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CHAPTER 4

TECHNIQUES TO IDENTIFY THE DIRECTIONAL DEPENDENCE OF
GRAVITATIONALWAVE EMISSION FROM ASTROPHYSICAL EVENTS

This section reviews unpublished work conducted by undergraduate research assistant Steven

VanCamp: M.A. Pajkos, S. VanCamp, S. Couch, in prep.

4.1 Abstract

We analyze the directional dependence of the gravitational wave (GW) emission from eight

3D neutrino radiation hydrodynamic simulations of core-collapse supernovae. We develop a new

analytic technique to characterize the distribution of GW emission over all angles. By applying

this new technique throughout the supernova duration, a distribution of preferred directions of GW

emission is constructed. Our findings indicate CCSNe do not have a single ‘optimal’ viewing angle

along which the strongest GWs can be detected. For nonrotating cases, this dominant viewing

angle drifts isotropically throughout the supernova. For rotating cases, the strongest early time GW

signal is observed along the equator. During the accretion phase, comparable—if not stronger—GW

amplitudes are generated along the axis of rotation. Moreover, rotating CCSNe have a preferred

direction of GW generation that precesses around the axis of rotation for both polarization modes.

We do not notice any impact of instabilities such as the standing accretion shock instability or the

lepton-number emission self-sustained asymmetry on the direction of emission for GWs, but note

a possible influence from the low T/W instability.

4.2 Introduction

The end of massive stellar evolution is marked by a core-collapse supernova (CCSN). These

stellar explosions, and in some cases implosions, are dynamic events influenced from a variety of

physical processes, from neutrino emission, to hydrodynamic turbulence, to magnetically driven

jet structures. Moments after the supernova is launched, the birth of a compact object called the

protoneutron star (PNS) occurs, which will ultimately cool to a neutron star or—with sufficient
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mass accretion—will collapse to a black hole. The PNS contains the neutron rich remnants of the

once-stellar iron core and is characterized by nuclear matter at densities ∼ 2 × 1014 g cm−3. As

turbulent downflows interact with the PNS surface and convection within the PNS develops, the

PNS can oscillate, generating gravitational waves (GWs) (Sotani & Takiwaki, 2016).

These oscillations can exhibit different ‘modes’ which correspond to unique frequencies of

emission, based on the restoring force driving the PNS. Some examples include g-modes driven by

gravity, p-modes driven by pressure, r-modes driven by rotation, andw-modes driven by oscillations

in spacetime. As each mode has a unique restoring force, encoded in the GW observables are

different characteristics, such as the average density of the PNS (g-modes) or degree of rotation

(r-modes) (Unno et al., 1989).

Beyond PNS oscillations, other sources of GWs within CCSNe include the ‘bounce signal’

from a deformed rotating PNS (Dimmelmeier et al., 2008), hydrodynamic turbulence (Pajkos et al.,

2019), asymmetric emission of neutrinos (Vartanyan & Burrows, 2020), compact object ejection

(Burrows & Hayes, 1996), and GWs from fluid instabilities like the standing accretion shock

instability (SASI) (Andresen et al., 2019), or the low T/W instability (Shibagaki et al., 2020).

While generating predicted waveforms for CCSNe can be valuable for improving detectability

of the next Galactic event, connecting characteristics of the signals to internal source physics is

vital. Each of these sources also encodes physical characteristics of the supernova center, a region

previously unobservable from electromagnetic (EM) radiation. GWs fromfluid instabilities provide

information regarding the strength of convection and the timescale on which it occurs (Andresen

et al., 2017; Takiwaki et al., 2016; Radice et al., 2019). Neutrino sources provide the degree of

asymmetric neutrino production (and to some extent mass accretion) (Vartanyan &Burrows, 2020).

The bounce signal is directly related to the rotational content of the PNS just after core bounce

(Dimmelmeier et al., 2008). Furthermore, GWs from CCSNe depend on the hot nuclear EOS (Pan

et al., 2018).

With various physical insights from CCSN gravitational radiation, considering these signals in

the context of observability is important to distinguish between signal features that are interesting
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and signal features that are detectable, therefore more valuable. One often considered factor is the

GW amplitude, or the GW strain, commonly denoted ℎ. Depending on the specifications of the

GW observatory, detectors have certain sensitivities, or a minimum threshold below which GW

amplitudes fall below the noise floor. Supernova models often produce time domain waveforms

(TDWFs) to observe the predicted GW amplitudes over time for a supernova event.

The frequency content of the signal is equally as valuable. GW detectors have limiting factors

that constrain the frequency range of observable signals. For example, for the Laser Interferometer

Gravitational-wave Observatory (LIGO), shot noise imparted by the individual laser photons on

the test mass limit the upper limit of the frequency range ∼ 1 kHz. By contrast, seismic noise

establishes the lower limit of the frequency range ∼ 1 Hz (Aasi et al., 2013). One common tool

for determining the frequency content of the CCSN GW signal includes spectrograms, that display

the frequency contributions to the signal as time evolves. Characteristic strain plots are another

method that displays the frequency distribution of the signal summed over a given time interval.

Characteristic strain plots are often used to compare cumulative GW frequency content to GW

detector sensitivity curves (Moore et al., 2015).

Directly measuring the polarization of the GW signal is an ongoing area of research. According

to Einstein’s theory of general relativity (GR), GWs exhibit two polarization states: plus (ℎ+) and

cross (ℎ×) modes. These states can serve as a set of bases, a linear combination of which can

describe any GW signal; as a parallel with EM radiation, GWs too can be circularly or elliptically

polarized. In principle, arrays of GW detectors at different orientations can be used to detect

GW polarization, however, current detector sensitivities have difficulty discerning GW polarization

from sources such as black hole mergers (Gair et al., 2013). One tool that has emerged to predict

polarization from numerical models includes ‘polograms’, which describe the relative strength

between the ℎ+ and ℎ× modes.

With the first direct detection of GWs only occurring within the last decade, observational

considerations of GW predictions fromCCSNmodels remain a growing field. Hayama et al. (2016)

connect the circular polarization of GWs with rotation near the center of the supernova. Hayama
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et al. (2018) conclude the circular polarization from nonrotating CCSNe can encode information

regarding the SASI and PNS g-mode oscillations. Chan & Hayama (2021) quantify the degree of

circular polarization through quantities such as Stoke’s Parameter, within existing GW detection

pipelines, such as Coherent WaveBurst (cWB) (Klimenko et al., 2021). Beyond polarization,

Vartanyan & Burrows (2020) investigate the directional dependence of GW emission generated

directly from asymmetric neutrino emission. With increased access to computing resource capable

of performing fully 3D CCSN simulations, pursuing additional investigations that explore the

angular dependence of GW emission from CCSNe has become a timely area of research. These

studies provide important implications for the future of GW observations; identifying viewing

angles, if present, of dominant GW emission would help inform future population studies of GW

sources to the GW background. Likewise, understanding the emergence of a preferred direction

of GW emission—if any—during the presence of certain instabilities within CCSNe could refine

predictions regarding their likelihood of detection.

To fill the need to address observational considerations, we present a newmethod to understand-

ing the directionality of GW emission from CCSNe, which can be extended to any arbitrary GW

source as well. We determine a preferred direction of GW emission during CCSNe particularly for

rotating cases. We do not observe any preferred directions with the SASI or LESA instabilities, but

possible correlations with the presence of the low T/W instability.

This paper is organized as follows: in Section 4.3 we review the methods used to setup our

simulations and perform our analysis. In Section 4.4.1 we review current techniques used to analyze

GW signals. Section 4.4.2 introduces a novel visualization method to investigate the directional

dependence of the GW emission at a given instance in time. Section 4.4.3 uses this method to track

the time evolution of the directionality of GWs. Section 4.5.1 discusses the physical implications

generating the directional dependence. Section 4.5.2 discusses future benefits for observability.

Finally, in Section 5.7.2 we summarize.

102



4.3 Methods

4.3.1 Numerical Models

This work examines eight 3D neutrino radiation hydrodynamic simulations of CCSNe. The first

set of five models are referred to as the ‘mesa’ set, which are nonrotating 20"� progenitors used

in O’Connor & Couch (2018a). They make use of the SFHo EOS (Hempel et al., 2012; Steiner

et al., 2013a), M1 neutrino transport (O’Connor & Couch, 2018b), and are evolved for ∼ 0.5 sec

post bounce (pb). Three additional simulations, one nonrotating and two rotating, are analyzed

of a 40"� model from Pan et al. (2021). These use the LS220 EOS (Lattimer & Swesty, 1991),

and the isotropic diffusion source approximation (IDSA) for neutrino transport (Liebendörfer et al.,

2009). All eight models are completed with the FLASH multiphysics code (Dubey et al., 2009;

Fryxell et al., 2010). Likewise they use the Newtonian multipole solver from Couch et al. (2013),

supplemented by the general relativistic effective potential (GREP) proposed byMarek et al. (2006).

4.3.2 Gravitational Wave Analysis

As the gravitational treatments used in these models do not formally evolve a spacetime metric,

the GW generation must be calculated during a post processing step. We make use of the generic

quadrupole formulae presented in Oohara et al. (1997)

ℎ+ =
�

24�

(
¥Q\\ − ¥Qqq

)
, (4.1)

and

ℎ× =
2�
24�

¥Q\q, (4.2)

where ¥Q8 9 represents the second time derivative of the mass quadrupole moment in an orthonormal

basis, � is the distance to the source, � is Newton’s gravitational constant, and 2 is the speed of

light. For all calculations of ℎ+ and ℎ×, we assume a fiducial distance of � = 10 kpc. Expanding
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the angular Q values in terms of Cartesian components yields

Q\\ =
(
QGG cos2 q + QHH sin2 q + QGH sin 2q

)
cos2 \

+QII sin2 \ −
(
QGI cos q + QHI sin q

)
sin 2\, (4.3)

Qqq = QGG sin2 q + QHH cos2 q − QGH sin 2q, (4.4)

and

Q\q =
(
QHH − QGG

)
cos \ sin q cos q + QGH cos \ cos 2q

+ QGI sin \ sin q − QHI sin \ cos q. (4.5)

In practice, simulation data tracks each of the ¤Q88 components through numerical integration

(Finn & Evans, 1990), and a finite difference in time is performed to construct ¥Q88. These values

are then applied to all altitudinal angles of 0 < \ ≤ c and azimuthal angles 0 < q ≤ 2c to construct

the surface plots outlined in Section 4.4.2.

4.4 Visualizing Gravitational Wave Emission

In this section, we beginwith existingmethods quantifyingGWdata, and sequentially generalize

these techniques to eventually consider GW directionality. All visualizations in this work make use

of the nonrotating (Ω0 = 0 rad s−1), slow rotating (Ω0 = 0.5 rad s−1), and fast rotating (Ω0 = 1 rad

s−1), 40"� progenitor; Ω0 refers to the central angular velocity of the model. Details regarding

the full rotation profile can be found within Pan et al. (2018).

4.4.1 Time Domain Waveforms

We begin with TDWF from the 40 "� models at all three rotation rates. Figure 4.1 displays

ℎ+ throughout the simulation duration. The left column corresponds to the expected GW signal

for an observer along the line of site of the CCSN equator. The right column corresponds to an

observer along the supernova north pole, which represents the axis of rotation for rotating models.
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The top row represents the nonrotating model, the central row represents the slow rotating model,

and the bottom row represents the fast rotating model. As a note, the scales of the vertical axes

differ between rows of different rotation rates. As rotation increases, coherent motion of the fluid

generates stronger oscillations of the PNS. Likewise in the fast rotating model, beginning ∼ 150 ms

pb, the presence of the low T/W instability excites the PNS to generate GW with larger amplitudes

as well (Pan et al., 2018).

When comparing signals of a given rotation rate, but differing viewing angle, there are only

moderate differences for the nonrotating progenitor. This result is expected because there is no

centrifugal support to deform the PNS along a particular plane (eg. a more oblate PNS in the xy

plane for an axis of rotation in the z direction). However, as rotation increases, the GW signal

detected by observers at different viewing angles becomes more pronounced. For the rotating

cases, the GW signal just after bounce, C?1 = 0 sec, commonly called the bounce signal, has a large

GW amplitude when viewed along the equator, but has an amplitude of 0 when viewed along the

axis of rotation. This effect is explained through Equation (4.1) and Equation (4.2). When viewed

along the equator, the oblate PNS will have a cross section similar to an ellipse. As the infalling

material deforms the PNS at the time of bounce, the cross section changes to a more spherical

shape, and ¥QGI, ¥QHI, and ¥QII will take on a correspondingly larger values—a higher amplitude

bounce signal is generated. By contrast, when observed along the axis of rotation, the PNS cross

section is circular. As the infalling material does not have an azimuthal dependence, just after

bounce, the cross section of the PNS retains its circular shape, the dominant ¥QGG , ¥QGH, and ¥QHH

retain smaller values, thereby preventing an observed GW signal. Hundreds of milliseconds after

bounce, the GW amplitude related to the PNS oscillations also displays variations in amplitude,

depending on viewing angle.

Examining TDWFs can be valuable in investigations such as this one. However, they are

inherently limited to observing one viewing angle at a time. Thus, there is no guarantee that

the maximum GW signal must be along the equator or pole. Furthermore, as the mechanism of

GW generation can change throughout the supernova evolution, in principle, a viewing angle of
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preferred GW emission may evolve through time.

4.4.2 Visualizing GWs in Multiple Dimensions

To address the need to observe GW emission along every viewing angle, we introduce the strain

surface plot. This figure is inspired from those in Vartanyan & Burrows (2020) that display the GW

emission by color and concavity on a 3D surface. In practice it can be difficult to compare color or

concavity by eye, so we offer another form of visualization, with examples provided in Figure 4.2.

The surfaces in Figure 4.2 are taken from different points in time for the fast rotating 40"�

model. To interpret these plots, consider Figure 4.2a. The distance from the origin to any point on

the green surface corresponds to ℎ+ along that viewing angle. The purple star indicates the direction

along which there is a maximum observed ℎ+. The x and y axes form the plane of the supernova

equator, and the z axis is the axis of rotation. Figure 4.2a displays similar ℎ+ emission when

viewed at any angle in line with the equator. By contrast, when viewed along the axis of rotation,

the surface does not extend far from the origin, indicating a weak GW amplitude. Physically, this

behavior is justified. In this panel, C?1 ∼ 1.5 ms after bounce. As explained in Section 4.4.1 and

shown in the top row of TDWFs in Figure 4.1, the bounce signal is detected when observed along

the equator due to the geometry of the deformed PNS. Figure 4.2a offers a compact way to conclude

this directional dependence without relying on multiple TDWFs.

In Figure 4.2b, we notice a deviation from azimuthal symmetry. At this point, a combination

of the ringdown from the bounce and emergence of post bounce convection begins to skew the

symmetry of the emission. The direction of maximum ℎ+ amplitude is nearly aligned with the

x axis at this time. Furthermore, moderate GW amplitude can be observed along the z axis, in

contrast to before.

Figure 4.2c displays GW amplitudes nearly 250 ms later. The configuration of the ℎ+ surface

preferentially lies along the axis of rotation, with a distinct four lobed structure. There are also

non-negligible deformations of the PNS along all three spatial degrees of freedom, likely due to

the turbulent nature of the accreting matter. Figure 4.2d shows a similar shape, indicating a similar
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Figure 4.1: Time domain waveforms (plus polarization) for the three 40"� models in Pan et al.
(2018). The left (right) column corresponds to an observed ℎ+ when viewed along the equator
(pole). While TDWFs are useful for analyzing GW emission throughout the supernova simulation,
they are inherently limited to GW signals at a single, fixed viewing angle. This motivates the need
for additional analysis methods that can identify a dominant viewing angle beyond the equator or
pole and determine if this direction evolves in time.
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geometry of the PNS deformations. However, because of the smaller ℎ+ along all viewing angles,

this indicates a period of quiescence for the PNS. For scale, the grey sphere provides a reference

value of ℎ+ = 5 × 10−22. Points on green surfaces extending beyond the grey sphere exhibit larger

ℎ+, points within grey the sphere exhibit smaller ℎ+.

For convenience, we offer methodology to translate from strain surface plots to TDWFs:

1. Construct a strain surface plot at a time of interest C

2. Identify a desired line of site (\, q). In this example we pick the equator (c/2, 0)

3. The distance from the origin to the green surface along this line of site represents the detected

GW strain ℎ(\, q, C)

4. The values (C, ℎ) correspond to the ordered pair on the TDWF.

As a point of emphasis, these surface plots represent ℎ+ detected from an observer far from

the GW source. Equation (4.1) and Equation (4.2) are applicable only for distant observers.

Thus these do not represent the GW amplitudes generated just inside the supernova. To calculate

these quantities, a more robust treatment of relativity is needed, with numerical models that track

quantities of the spacetime metric.

4.4.3 Finding Preferred Directions

Strain surface plots can be powerful diagnostic tools for analyzing the directionality of GWemission

at a specific instance in time. However, CCSNe are dynamic systems whose GW generation evolves

over seconds. To track the evolution of the preferred direction emitting gravitational radiation, refer

to Figure 4.3. Each point in this 3D scatter plot refers to the direction along which a maximum

ℎ+ would be measured; that is, all of the purple stars in Figure 4.2 are recorded from the entire

simulation duration and plotted. Points that have brighter colors occur later in the supernova

evolution.
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h+, tpb = 1.44 ms

(a) Azimuthal symmetry exhibited by ℎ+ during
the bounce.

x y

z

h+, tpb = 12.29 ms

(b) Azimuthal asymmetries arise as the cause of
PNS deformations transitions from post bounce
ringdown to turbulent post bounce convection.

x y

z

h+, tpb = 264.94 ms

(c) Due to coherent fluid flow around the PNS
during the accretion phase, this four lobed sur-
face describes preferential GW emission along
the axis of rotation. Note this is orthogonal to
the equator, which was the original preferential
direction from the bounce.

x y

z

h+, tpb = 432.34 ms

(d) Similar distribution of ℎ+, however with
smaller amplitudes. This behavior is indica-
tive of less pronounced hydrodynamic activity
around the PNS compared to Figure 4.2c.

Figure 4.2: Strain surface plots for the fast rotating 40"� case. The x and y axes form the equator
of the supernova; the z axis indicates the axis of rotation. The distance from the origin to a point
on the green surface represents the detected ℎ+ along that direction. Purple stars indicate the
direction with the largest GW amplitude. For linear scale, the grey sphere in panel 4.2d represents
an ℎ+ = 5× 10−22. Points on the green surfaces beyond the sphere indicate larger ℎ+ values; points
on the green surfaces within the sphere indicate smaller ℎ+ values.
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The nonrotating model is represented in Figure 4.3a. As dark points (early times) are close to

the center of the ℎ+ distribution, this indicates a relative period of quiescence for the early time GW

emission. As the supernova develops, GW amplitudes become more pronounced, shown through

the brighter points (later times) near the outer parts of the distribution. We do not observe any

particular structure or morphology from this distribution for the nonrotating 40"� model for either

the plus or cross polarization.

The slowly rotating model is represented in Figure 4.3b. The slow rotating case exhibits

noticeable ℎ+ amplitudes from the early evolution. These points originate from the bounce signal,

generating a dark purple distribution along the equator. In the medium brightness, blue points

display columnated behavior along the axis of rotation, we attribute to the coherent matter motion

circulating around the PNS due to rotation. The final few hundred ms of evolution displays a

relatively stochastic preferred GW direction. In total, the entire distribution of preferred GW

directions is slightly more prolate than the nonrotating case. Figure 4.3d also displays the slow

rotating case, but for the cross polarization of GWs. The later times also exhibit an isotropic

distribution of preferred angles for ℎ×. Interestingly, the early times display coherent paths for

preferred directions of ℎ×. Because of the cyclic nature of the paths traced out by darker points,

we attribute this to azimuthal fluid motion around the PNS due to the presence of rotation.

The plus polarization for the fast rotating model is represented in Figure 4.3c. Similar to the

slow rotating case, the darkest points display preferred directions along the supernova equator,

consistent with the dominant bounce signal. As time evolves, however, the dominant direction for

ℎ+ becomes noticeably columnated along the axis of rotation. This conclusion is important because

many GWworks that investigate the detectability of GWs fromCCSNe assume the ‘optimal’ source

orientation for CCSNe lies along the equator. This is indeed true for detecting the bounce signal.

However, as illustrated in Figure 4.3c, the dominant viewing angle changes ∼ 90◦ to the axis of

rotation. Furthermore, GW amplitudes along this direction are larger by the nearly a factor of two.

These results draw two main conclusions: (1) GW amplitudes along the axis of rotation can be

comparable, if not greater, than GW measurements viewed along the equator for rotating CCSNe.
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(2) There is no single optimal orientation to observe GWs over the entire duration of a CCSN.

Similar to the slow rotating case, the dominant viewing angle also traces a coherent path around

the axis of rotation. We notice this behavior for both ℎ+ and ℎ×. In Figure 4.4, we provide the

distribution of preferred viewing angles for ℎ×. We scale the axes differently than Figure 4.3c to

more clearly illustrate the precession of the preferred direction of GW emission around the rotation

axis.

As noted in Section 4.3, we also investigate the dominant viewing angle evolution for the 20"�

models from (O’Connor & Couch, 2018a). Similar to the nonrotating case for the 40"� model,

they display an isotropic distribution of dominant viewing angles for both ℎ+ and ℎ×. Likewise,

we do not notice any coherent paths for preferred GW directions during instabilities like the SASI

or Lepton-number Emission Self-sustained Asymmetry (LESA) (Tamborra et al., 2014).

As a caveat, we note these scatter plots record the magnitude of ℎ+ or ℎ×. The nature of GW

strain can elongate or contract objects, corresponding to positive and negative strain. Thus, these

visualization do not capture the sign of theGWstrain, whereas those inVartanyan&Burrows (2020)

account for the sign. Nevertheless, because Figure 4.3 is used to identify dominant directions (ie.

along certain axes), the sign remains unimportant for the scope of this work.

4.5 Discussion and Summary

4.5.1 Relating GW Directionality to Supernova Physics

There are a variety of physical mechanisms responsible for impacting the PNS oscillations that drive

GWs. Pan et al. (2021) note several potential factors such as the SASI, the low T/W instability,

and possibly the precession of the PNS rotation axis. As the GW directionality for the mesa

models with and without SASI were explored, with no clear preferred direction, we do not attribute

dominant viewing angles for GW emission to this hydrodynamic instability. In the fast rotating

model, Pan et al. (2021) note the possible emergence of the low T/W instability, based on the low

frequency of GW emission beginning ∼ 150 ms pb. As the fast rotating model exhibits a preferred

direction of GW emission along the axis of rotation and coherent paths in the evolution of the
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(a) Dominant viewing angles of ℎ+ for the non-
rotating case. The distribution of dominant GW
viewing angles remains isotropic for the duration
of the supernova evolution.
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(b) Dominant viewing angles of ℎ+ for the slow
rotating case. The dark (early time) points dis-
tributed along the equatorial plane are generated
from the bounce signal. The dominant signal
direction then aligns with axis of rotation.
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(c) Dominant viewing angles of ℎ+ for the fast ro-
tating model. The preferred GW direction is no-
ticeably columnated and follows coherent paths
that precess around the axis of rotation.
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(d) Same slow rotating model as in Figure 4.3b,
however for the cross polarization ℎ×. The dom-
inant viewing angle follows coherent paths for
darker points (earlier times), encoding rotational
content of the supernova.

Figure 4.3: These distributions represent compiling the direction of maximum GW emission
(purple stars from Figure 4.2) throughout the supernova evolution. Brighter points correspond to
later times. The xy plane forms the equator of the supernova. The z axis identifies the axis of
rotation for rotating cases.
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Figure 4.4: Dominant viewing angles of ℎ× for the fast rotating model. This image is the same
orientation as Figure 4.3c, however we rescale the axes to more clearly display the precession of
the preferred viewing angle around the axis of rotation.

preferred direction, it is possible this instability contributes. However, the presence of the low T/W

instability is not requisite for these two behaviors as the slow rotating model—which shows no sign

of low T/W—also remains slightly columnated and exhibits clear paths in Figure 4.2d.

We acknowledge many of these descriptions of the GW viewing angle evolution are qualitative

and rely upon visual inspection of the panels in Figure 4.3. For future work, we aim to provide

more quantitative descriptions of the distributions of points in Figure 4.3. One example includes

performing a spherical harmonic decomposition of the points to determine exactly when the

dominant viewing angle transitions from isotropic to exhibiting a dipole behavior (in the rotating
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cases). Furthermore, plotting the evolution of the precession of the PNS rotation axis alongside

the GW dominant angles may provide an additional insight as to the nature of GW directionality in

CCSNe.

4.5.2 Implications for Observability

These directional dependencies help prepare for the first direct detection of GWs from CCSNe.

As detector sensitivities improve and signal search algorithms become more advanced, identifying

which components of the signal can be reconstructed is vital. For example, the observability of a

GW now not only depends on the physical mechanism generating it, but also the angle it which

it is observed. For a rotating supernova, the bounce signal is most visible when viewed along the

supernova equator. However, potentially stronger GW amplitudes along the axis of rotation may

be missed. By contrast, if viewed along the axis of rotation, the broadband bounce signal will not

be detected, but high frequency oscillations from the PNS may have stronger amplitudes. For a

randomly oriented supernova, the viewing angle will likely be off-axis, so GW detection algorithms

should search for both components of the signal.

Contributions to the GW background are also affected by consequences of directionality. For

detectors attempting to quantify the spectrum of the GW background (Christensen, 2019), this

work offers motivation to consider CCSN population studies. Theoretical works could construct

populations of randomly oriented and distributed CCSNe, with varying rotation rates, to better

quantify which components of the signal may be detectable for GWs from a superposition of

sources.

4.5.3 Summary

Thiswork has considered a new factor regarding the observability of GWs fromCCSNe, particularly

the impact of viewing angle. Here we review the findings from our work:

• strain surface plots can characterize the nature of the mechanism generating GWs at a given

point in time, Figure 4.2,
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• viewing the collective distribution of preferred directions for GW emission shows CCSNe do

not have a single ‘optimal’ viewing angle, Figure 4.3,

• depending on the degree of rotation, rotating CCSNe can exhibit strong GW amplitudes along

the axis of rotation, rather than the equator,

• the dominant viewing angle of GW emission in rotating CCSNe can follow coherent paths

that precess around the axis of rotation.

We have reviewed a newmethod towards visualizing, and consequently analyzing, GWemission

from arbitrary astrophysical sources. While this study uses CCSNe, in general, any GW source can

make use of these visualization methods. As a cautionary note, we emphasize the panels of Figure

4.3 only display the direction along which a maximum GW strain occurs. Indeed, GWs are emitted

in other directions, many times orthogonal to this dominant angle. While other metrics exist, such

as taking moments of the surfaces from Figure 4.2, the methods outlined here are appropriate for

identifying dominant angles that evolve.

To further refine these results for future work, we could quantify the distributions seen in Figure

4.3 using spherical harmonics, to track how distributions in dominant angle transition from isotropic

to prolate. Likewise, we aim to quantify correlations between the coherent paths traced out by

the dominant viewing angle and the physical PNS rotation or SASI axis (eg. using Spearman’s

correlation coefficients). Acknowledging these caveats, this study offers another observable factor

to consider when generating gravitational waveforms fromCCSNe. By considering both theoretical

factors like CCSN source physics and observational factors like the impact of viewing angle, the

GW community will be better prepared for the first direct detection of GWs from stellar explosions.
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CHAPTER 5

INCORPORATING RELATIVISTIC EFFECTS INTO THE FLASH MULTIPHYSICS
CODE

This section builds upon published work: S. Couch, J. Carlson, M.A. Pajkos, Brian W. O’Shea,

A. Dubey, T. Klosterman, 2021, Parallel Computing, 102830. It also reviews unpublished work:

M.A. Pajkos, S. Fromm, S.M. Couch, E.P. O’Connor, P. Mosta, in prep.

5.1 Abstract

We present a new general-relativistic, multidimensional, magnetohydrodynamic solver in the

FLASH framework that is compatible with adaptive-mesh-refinement. We outline the details of our

numerical implementation of this new solver in the ideal MHD limit, including relativistic terms in

the magnetohydrodynamics and a novel treatment of evolving spacetimes in multiple dimensions.

A variety of tests are presented to display the robustness of the code compared to analytic solutions

and numerical tests performed by other GRMHD codes: relativistic (magnetized) shock tubes,

compact star evolution, and collapse of a dust cloud to a black hole. We also present applications of

these new physics features to six spherically-symmetric and two axisymmetric neutrino radiation

hydrodynamic simulations of core-collapse supernovae (CCSNe). We explore the impact on the

overall supernova evolution and the changes to the neutrino emission. Accounting for relativistic

hydrodynamics paired with evolving spacetimes creates a more compact protoneutron star, a higher

neutrino luminosity, and launches shocks to smaller radii after core bounce.

5.2 Introduction

The field of astrophysics is dominated with spectacular events that contain a wealth of infor-

mation regarding how the laws of physics behave when pushed beyond limits of what terrestrial

laboratories can achieve. While technology used in experiments attempts to approach astrophysical

conditions, one useful resource for analyzing energetic, space-based events are numerical models.

Core-collapse supernovae (CCSNe) are examples of events that have been extensively examined
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using simulations. The value in completing such sophisticated calculations of stellar explosions is

multifold. CCSNe are one of the principle drivers of chemical evolution in the universe, provide the

main sites for the creation of compact objects like neutron stars or black holes, and create unique

signals like ripples in spacetime called gravitational waves (GWs) whose observations make up a

growing field within astronomy. These disruptive events at the end of the life of a massive star

(& 8"�) rely on high fidelity treatments of gravity, radiation transport, hydrodynamics, and nu-

clear burning, to name a few. As such, they require the use of high performance computing (HPC)

resources to achieve practical runtimes. With many numerical physics implementations involved,

one vital element to the success or failure of these stellar explosions is gravity.

A variety of gravitational treatments exist for CCSNe, with varying levels of sophistication.

The simplest case is a Newtonian treatment, which involves solving Poisson’s equation for gravity,

typically approximating the gravitational potential with a series of spherical harmonics (e.g., Couch

et al., 2013). An often used treatment that is more sophisticated than the Newtonian case is the GR

effective potential (GREP). First introduced by (Rampp & Janka, 2002) and improved by (Marek

et al., 2006), the GREP applies empirical factors to a modified gravitational potential in order to

reproduce 3D full GR calculations quite well. While computationally efficient, only requiring a

solution to two elliptic equations, it does not formally evolve spacetime quantities and has been show

to overestimate GW frequencies from the central compact object, when used without relativistic

hydrodynamics (Müller et al., 2013).

A more accurate model is the conformal flatness condition (CFC) (Isenberg, 2008). CFC

assumes the spatial three metric is a scaled version of the flat spacetime metric. Inherently this

approximation assumes the spacetime is spherically-symmetric. Under the CFC, five elliptic

equations require solutions. CFC evolves elements of the spacetime, offering a natural integration

with relativistic hydrodynamic schemes, by granting access to quantities not available with GREP

(e.g., elements of the spatial metric).

Current state of the art treatments of gravity evolve a full set of Einstein’s field equations,

such as the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation (Baumgarte & Shapiro,

118



1998; Shibata & Nakamura, 1995). This method involves solving a set of 40 hyperbolic equations.

Physically, BSSN and CFC produce similar CCSN behavior soon after bounce, but BSSN more

properly captures GW signals later in the supernova evolution (Shibata & Sekiguchi, 2004). An

equally robust method is the so called Z4c formulation, which only requires solving∼ 25 hyperbolic

equations (Cao & Hilditch, 2012).

Incorporating relativistic effects into the MHD scheme is also a vital element to properly

modeling highly energetic astrophysical events. It accounts for magnetic field evolution while

incorporating the effects of curved spacetime, time dilation, and captures fluid velocities near

the speed of light. Likewise, it more properly captures the strong field effects that tend to slow

convective overturn in extreme spacetime environments, compared to Newtonian cases (Müller

et al., 2013). Some examples of codes that have incorporated numerical treatments of GRMHD

are the HARM code (Gammie et al., 2003), GRHydro (Mösta et al., 2014) (built from the original

Whisky code (Baiotti et al., 2010)), Athena MHD (Stone et al., 2008), Echo (Del Zanna et al.,

2007), the GRMHD code from the Tokyo and Kyoto group (Shibata & Sekiguchi, 2005), UIUC

GRMHD code (Duez et al., 2005; Etienne et al., 2010), WhiskyMHD code (Giacomazzo & Rezzolla,

2007), and the LSU GRMHD code (Anderson et al., 2006).

The software architecture in this work is FLASH (Fryxell et al., 2000; Dubey et al., 2009). While

FLASH contains a suite ofmultiphysics features, it previouslymade use ofNewtonian hydrodynamics

and the GREP to account for gravity. In an effort to provide more physics features to FLASH users,

create another code with relativistic capabilities to serve as a verification tool for other works, and

conduct higher fidelity scientific campaigns, we present new features:

• a cell centered treatment of relativistic MHD,

• a fully general relativistic 1D treatment of evolving spacetimes,

• a multidimensional extension of the evolving spacetime in 2D cylindrical coordinates and

3D Cartesian coordinates,
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• and magnetic contributions to the spacetime curvature for the multidimensional relativity

scheme.

In this work we also present a series of numerical baseline tests verifying the code behavior,

multiple 1D and 2D CCSN simulations incorporating these new physics features, and recent

progress in FLASH to prepare these features for exascale platforms.

This paper is organized as follows: Section 5.3 outlines the details of our MHD formulation.

In Section 5.4 we review the relevant numerical methods employed in the FLASH code. Section 5.5

verifies the code with a series of established baseline tests. Section 5.6 presents CCSN behavior

with relativistic features. Section 5.7.1 outlines future-focused considerations for integrating these

features into exascale-ready codes. Finally, in Section 5.7.2 we summarize.

5.3 Formulation of MHD

We express the spacetime metric in the Arnowitt-Deser-Misner (ADM) form (Arnowitt et al.,

2008):

3B2 = 6`a3G
`3Ga ≡ (−U2 + V8V8)3C2 + 2V83C3G8 + W8 93G83G 9 (5.1)

where U, V8, W8 9 , and 6`a are the lapse function, shift vector, spatial metric, and spacetime metric,

respectively. Greek indices denote 4 quantities and Latin indices denote 3 quantities. We use a

spacetime signature of (−, +, +, +) and work in units of 2 = � = "� = 1 unless otherwise noted.

Our solver assumes the magnetized fluids have infinite conductivity and do not experience

charge separation—the ideal MHD approximation. This treatment implies the electric fields in the

rest frame of the fluid �a = D`�`a = 0. In this paper, for cleaner notation, we avoid the use of the

permeability and permitivity of free space in cgs-Gaussian units. To this end, we absorb a factor

of 1/
√

4c into the relativistic Faraday tensor �`a, its dual ∗�`a = 1
2n
`aUV�UV, the electric fields,

and magnetic fields. Note n`aUV is the antisymmetric fourth-rank tensor (Jackson, 1998).

These electromagnetic (EM) quantities, namely the magnetic fields, contribute to the evolution

of a magnetized fluid. Thus the stress energy tensor can be separated into different contributions.
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The purely hydrodynamic terms are,

)
`a

Hydro = dℎD
`Da + %6`a = (d + dn + %)D`Da + %6`a, (5.2)

where d, n , %, Da, and ℎ = 1 + n + %/d are the rest mass density, specific internal energy, pressure,

four velocity, and specific enthalpy. The purely EM terms are

)
`a

EM = �`^�a^ −
1
4
6`a�^f�^f = 1

2D`Da − 1`1a + 1
2

2
6`a, (5.3)

where 1` = D∗a�
`a is the magnetic four vector; 12 can be expressed in terms of the magnetic

pressure %< , 12 = 1`1` = 2%< .

Combining the hydrodynamic and EM contributions yields a stress energy tensor of the follow-

ing form:

) `a =

(
d + dn + % + 12

)
D`Da +

(
% + 1

2

2

)
6`a − 1`1a

= dℎ∗D`Da + %∗6`a − 1`1a,

(5.4)

where the specific enthalpy and pressure are now modified to contain magnetic contributions:

ℎ∗ = 1 + n + (% + 12)/d and %∗ = % + 12/2.

The relativistic MHD equations we evolve originate from local GR conservation laws for mass

and energy-momentum,

∇`�` = 0, ∇`) `a = 0, (5.5)

where ∇` is the covariant derivative with respect to the four-metric and the mass current is

represented by �` = dD`. Likewise the following is yielded from Maxwell’s equations,

∇a∗�`a = 0. (5.6)

When evolving the hydrodynamics, we follow the scheme outlined in Toro (2009) outlining the

relationship between the vector of evolved variables U, vector of fluxes F, and associated source
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terms S:

mU
mC
+ mF

8

mG8
= S. (5.7)

The MHD components ofU and F8 govern the behavior of the magnetized fluid, in an evolution

scheme known as the Valencia formulation (Martí et al., 1991; Banyuls et al., 1997; Ibanez et al.,

1999; Antón et al., 2006) which inspires the following definitions

U = [�, �.4, ( 9 , g,B: ], (5.8)

F8 = U ×



�Ẽ8

�.4 Ẽ
8

( 9 Ẽ
8 + √W%∗X8

9
− 1 9B8/,

gẼ8 + √W%∗E8 − U10B8/,

B: Ẽ8 − B8 Ẽ:


, (5.9)

S = U√W ×



0

'a
.4
/U√W

) `a
( m6a 9
mG`
− Γ_`a6_ 9

)
+&a,�

( 9
/U +&a,"

( 9
/U

U

(
) `0 m lnU

mG`
− ) `aΓ0

`a

)
+&a,�g /U +&a,"g /U

®0


, (5.10)

with Ẽ8 = E8 − V8/U and Γ_`a are Christoffel symbols; 'a
.4

and & values are related to neutrino

effects and discussed in Section 5.4.4.

The evolved variables �, ( 9 , g, and B: can is written in terms of the primitive quantities

� =
√
Wd,, (5.11)

�.4 =
√
Wd,.4, (5.12)
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( 9 =
√
W

(
dℎ∗,2E 9 − U101 9

)
, (5.13)

g =
√
W

(
dℎ∗,2 − %∗ − (U10)2

)
− �, (5.14)

B: = √W�: , (5.15)

where W is the determinant of the spatial metric W8 9 , and .4 is the electron fraction—the ratio of

free electrons to baryons. We select E8 to represent the velocity measured by an Eulerian observer

at rest in the current spatial three-hypersurface (York, 1983),

E8 =
D8

,
+ V

8

U
, (5.16)

where, = 1/
√

1 − E8E8 is the Lorentz factor.

In terms of the primitive quantity representing the components of the magnetic field for an

Eulerian observer �8, the components of the magnetic field in the rest frame of the fluid 1` can be

written

10 =
,�:E:

U
, (5.17)

18 =
�8

,
+, (�:E: )

(
E8 − V

8

U

)
, (5.18)

12 =
�8�8

,2 + (�
8E8)2. (5.19)

5.3.1 Alternate form of Numeric Source Terms

Equation (5.10) properly describes the expression for the MHD source terms. However, in practice,

retaining the Christoffel symbols can be memory intensive and involves time derivatives of the

spacetime metric which, in general, do not have a closed form. As an alternate approach, we
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generalize the formulation in Rezzolla & Zanotti (2013) (see their Section 7.3.3 for a detailed

derivation to go from Equation (5.10) to Equation (5.20)):

S = √W ×



0

'a
.4
/√W

1
2U(

8:m9W8: + (8m9 V8 − �m9U +&a,�( 9 +&
a,"
( 9

U(8 9 8 9 − ( 9m9U +&a,�g +&a,"g
®0


. (5.20)

Here, the stress energy tensor has been decomposed into quantities measured by normal ob-

servers through in a 3+1 split of spacetime described by ) `a = �=`=a + (`=a + (a=` + (`a. The

MHD quantities of interest can be recovered via the following projections:

� = ) `a=`=a, (5.21)

(` = −W`U=V)UV, (5.22)

(`a = W
`
UW

a
V)
UV, (5.23)

where =` (=`) describe a unit normal vector (one-form) to a spatial hypersurface Σ, with

components =` = 1
U (1,−V

8) and =` = (−U, ®0). Likewise,  8 9 = −W`8 W
a
9
∇`=a represents the

extrinsic curvature. For a detailed connection of expressing  8 9 explicitly in terms of the relevant

‘remapped’ metric quantities in this work, see Appendix A.3. Source terms 'a
.4

and &a,(�/")

represent neutrino contributions; they are described in Section 5.4.4 and explicitly derived in

Appendix A.5.

5.4 Numerical Methods

Having described the GRMHD formulation, we now briefly review existing relevant physics

capabilities and detail new physics features in FLASH. The test cases in Section 5.5 are completed
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with similar setups to previous works (O’Connor & Ott, 2010; Mösta et al., 2014) by using a

uniformly spaced grid. The resolution requirements vary by each test problem and are specified in

each subsection.

The CCSN results were completed using PARAMESH (v.4-dev) adaptive mesh refinement

(AMR) library (MacNeice et al., 2000). The 1D models are performed over a domain of 104 km

and use 10 levels of refinement, for a finest grid resolution in the supernova core of ∼ 0.08 km. The

2D models are performed on a domain 104 km in each direction and use 9 levels of refinement, for

a finest grid resolution ∼ 0.65 km.

We select 12-, 40-, and 60"� progenitors for the CCSN models (Sukhbold et al., 2016b).

These progenitors are intentionally chosen because they span a wide range of compactness values.

As a reminder, compactness was first introduced by O’Connor & Ott (2011) and quantifies how

much mass is within a given radius of the progenitor

b" =
"/"�

'("bary = ")/1000 km

�����
collapse

, (5.24)

for a baryonic mass " and radial coordinate for the enclosed mass '("). The corresponding b2.5

values for the 12-, 40-, and 60"� progenitors are 0.074, 0.53, and 0.17, respectively (Pajkos et al.,

2019).

5.4.1 The Method of Lines Update

When coupling different physics treatments, ensuring the simultaneous update of primitive variables

is important for problems that evolve on relatively short timescales. For the relativistic test cases and

supernova system results presented here, a method of lines (MoL) update is appropriate (Hyman,

1979). MoL progresses through different physics subunits and stores relevant evolved variables

and right hand sides (RHS). As a simple example, for a purely hydrodynamic problem, refer to

Equation (5.7). The evolved variables correspond to U and the RHSs correspond to −mF8/mG8 + S,

scaled by a timestep 3C. The RHSs are then added to the evolved variables, and recovery of the
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primitive variables (“con2prim”) is performed. When all physics treatments are integrated into an

MoL scheme, all primitive variables are updated at equivalent time steps.

By contrast, an operator split type method may use a mix of variables from a previous stage and

the current stage to calculate a new value. For example, after a hydrodynamic update, an evolved

variable � at the = + 1 state and a metric element W11 at state = may be used to recover a primitive

d at the = + 1 state. For models that have rapidly evolving spacetimes and fluid configurations

(e.g., during BH formation) this inconsistency between variable stages can introduce numerical

instabilities.

The MoL subunit in FLASH provides Butcher tableaus to select different integration schemes

for multiphysics updates. Examples of time integration schemes vary from a simple forward

Euler approach to a 4th order Runge–Kutta scheme to generalized-structure additive Runge–Kutta

(IMEX-MRI-GARK) methods (Chinomona & Reynolds, 2020). All test problems in this work and

CCSN simulations use an explicit, strong stability preserving (SSP), second order Runge–Kutta

(RK2) time integration scheme (Gottlieb et al., 2001).

5.4.2 Magnetohydrodynamic Update

This work makes use of the Spark MHD solver. It has finite-volume and finite-difference ca-

pabilities, though for these simulations we use the finite volume approach. For finite-volume

simulations, Spark is flux conservative; this implies for simulations with AMR, where blocks of

different resolutionsmeet, a standard flux differencing scheme is applied to ensure flux conservation

across fine-coarse boundaries (Berger & Colella, 1989). For further details of Spark, we refer the

reader to Couch et al. (2020a). While the Newtonian MHD version of Spark allows for differ-

ent Riemann solvers, the relativistic simulations conducted here make use of the Harten-Lax-van

Leer-Einfeldt (HLLE) approximate Riemann solver (Harten et al., 1983; Einfeldt, 1988), due to the

relatively straightforward extension to the GR case of calculating the wavespeeds for the Riemann

fan (Gammie et al., 2003).
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5.4.3 Gravitational Treatment

We introduce a novelmultidimensional gravitational treatment inspired by theGR1D code (O’Connor

& Ott, 2011). The metric that is evolved corresponds to

3B2 = 6`a3G
`3Ga = −U23C2 + -23A2 + A23Ω2 (5.25)

where U and - can be expressed in terms of the metric potentialΦ and enclosed gravitational mass

<(A, C),

U = exp (Φ), - =
(
1 − 2<(A, C)

A

)−1/2
. (5.26)

Evolving our spacetime in spherical symmetry corresponds to radial gauge and polar slicing

(RGPS) coordinates. To calculate the gravitational mass, the Hamiltonian in RGPS is

<(A, C) = 4c
∫ A

0
A′2(dℎ∗,2 − %∗ + ga<)3A′, (5.27)

where ga< represents the neutrino contributions to the gravitational mass and is related to the

neutrino pressure %a by ga< = (4,2 − 1)%a (O’Connor & Ott, 2010). To calculate the metric

potential Φ, apply the momentum constraints and polar slicing condition

Φ(A, C) =
∫ A

0
-2

[
<(A′, C)
A′2

+ 4cA′(dℎ∗,2E2 + %∗ + ga
Φ
)
]
3A′ +Φ0, (5.28)

where ga
Φ
is the neutrino contribution to the metric potential and given by ga

Φ
= (4,2E2+1)%a. Φ0

is found by assuming vacuum at the edge of the computational domain and matching the solution

to the Schwarzschild metric,

Φ('∗, C) = ln[U('∗, C)] =
1
2

ln

[
1 − 2<('∗, C)

'∗

]
. (5.29)

We emphasize these definitions for<(A, C) andΦ(A, C) differ slightly from the expressions found

in O’Connor &Ott (2011), by including additional magnetic field contributions to the metric terms.

We now move to outlining how this previously 1D scheme is extended to multiple dimensions.
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5.4.3.1 Averaging and Remapping

As the spacetime in our gravitational scheme is updated along a 1D ray, averaging and remapping

procedures are required to translate to a multidimensional domain. After the vector of evolved

variables U is known at the = + 1 time state, the multidimensional matter profile is averaged to a

1D profile. Specifically, the user defines the resolution of a 1D spacetime vector by dividing the

maximum spherical radius from the origin to the corner of the grid by a user-selected number of

zones, either uniformly- or logarithmically-spaced. An equally weighted average is then performed

of the quantities (� + g + √Wg<a ) and (dℎ∗,2E2 + %∗ + ga
Φ
), as they are pivotal in constructing

Equation (5.30) and Equation (5.28). These quantities are chosen purposefully as they aid in the

evolution of the spacetime-related quantities.

The code then uses a modified form of Equation (5.27), what we will call the evolved form.

Using Equation (5.11) and Equation (5.14), we note

<(A, C) = 4c
∫ A

0
A′2(� + g + √Wga<)/

√
W3A′. (5.30)

Pay special attention to the factor of √W in the denominator. In this formulation of GRMHD the

evolved variables � and g are densitized by a factor related to the determinant of the spatial metric,

in contrast to the formulation in GR1D. They first must be undensitized before integrating outwards.

However, note √W depends on - , which depends on <. Thus the mass in Equation (5.30) depends

implicitly upon itself.

After the averaging procedure, Equation (5.30) and Equation (5.28) are integrated radially

outward, updating 1D vector of <(A, C) and Φ(A, C) values to the = + 1 time state. From these two

variables, the remaining metric-related quantities (e.g., W8 9 and U) can be calculated. The details

of the implicit mass integration are outlined in Appendix A.4.

With a 1D vector of - and Φ values, the code then undergoes the remapping procedure:

when the 1D updated spacetime results are remapped onto the multidimensional grid. A brief

description of the remapping procedure involves transforming the coordinates of a differential
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path length 3B2 (see Equation (5.1)) from RGPS coordinates to a coordinate system of choice:

cylindrical or Cartesian. Based on the coefficients of the terms 3G83G 9 , W8 9 can be identified for

a multidimensional, spherically-symmetric spacetime. Likewise, the metric derivatives can be

calculated as well. At this point, U, W8 9 , and the metric derivatives are known at the = + 1 time step.

The needed spacetime terms are then available for the hydrodynamic update at the next timestep.

For an in depth derivation of the metric remapping procedure with relevant metric derivatives, see

Appendix A.1 and Appendix A.2.

The strength of this procedure is its inexpensive computational cost. While other spacetime

evolution approximations that also assume spherically-symmetric spacetimes (e.g., CFC) require

solving five elliptic equations, this scheme only requires solving two . Likewise, compared to fully

robust schemes such as the BSSN formulation that require 40 hyperbolic equations, this scheme

is less computationally intensive. Of course, the averaging procedure on the evolved variables

to update the spacetime does not guarantee explicit conservation; nevertheless, we find good

agreement with numerical test problems and CCSN results.

We acknowledge the original version of GR1Dwas not formulated with the evolution of magnetic

fields due to the assumed spherical symmetry. In many contexts, multiple dimensions are needed

to capture the proper evolution of B fields. As FLASH is capable of 3D simulations, to capture the

multidimensional magnetic field effects on the metric potential and gravitational mass, we account

for 12 contributions through the ℎ∗ and %∗ quantities in Equation (5.27) and Equation (5.28).

Recall, the dot product of two vectors D` and Da is related to the metric by ®D · ®D = 6`aD`Da.

Thus multidimensional contributions to the spacetime can still be captured through the dot products

of the velocity (via ,) and magnetic field (via 12) with the spatial metric, even if the spacetime

evolution occurs only in one dimension.

5.4.4 Radiation Transport

During the collapse phase, a parameterized deleptonization scheme (Liebendörfer, 2005) is em-

ployed, which approximates the electron fraction (.4) at a given zone by its density value. While
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not exactly correct, it provides an accelerated method to evolve simulations through collapse.

After core bounce—when the central density exceeds 2 × 1014 g cm−3 and the central entropy

reaches 3 kB/baryon—the code makes use of a leakage scheme to account for the loss of leptons

streaming from the PNS core (O’Connor & Ott, 2010). The interaction of the radiation to the

momentum, energy, and electron fraction is accounted via the source terms outlined in Equation

(5.10): 'a
.4
,&a,�

( 9
,&a,"

( 9
,&a,�g , and&a,"g . 'a

.4
is a source/sink that accounts for changes in.4 due

to energy deposition of neutrinos into matter. &a,�
( 9

and &a,�g account for momentum and energy

changes of the fluid stemming from neutrino heating. &a,"
( 9

and&a,"g account for the impact of the

radiation field on the momentum of the fluid-neutrino system. These latter two quantities depend

on the neutrino pressure gradient m%a/mA . The neutrino source terms are explicitly derived in

Appendix A.5.

When calculating the necessary metric terms in the evolution of the spacetime, namely - and

Φ, there is dependence on the spatial coordinate, hydrodynamic evolved variables, and the radiation

transport primitives (e.g., ga<). In the version of FLASH used to complete these simulations (version

4), after the update step, the hydrodynamic evolved variables are known at the = + 1 timestep, yet

the value of ga< is only known at timestep =, or ga<=. This technique is similar to that used in other

work (e.g., GR1D) and allows for performant explorations of CCSN behavior. While the neutrino

contributions to the spacetime may be lagged by a timestep, the aforementioned neutrino source

terms for the MHD scheme (e.g., 'a
.4

and &a,�
( 9

) are properly synchronized. We reserve including

ga<
=+1 in the spacetime update for future work.

5.4.5 Ordering the Multiphysics Update

While theMoL scheme ensures each multiphysics subunit is updated simultaneously, the respective

calls within FLASH are still called sequentially. For clarity, we offer the ordering of the calls to each

physics subunit. After the MoL update is executed—RHSs added to the evolved variables—the

evolved variables are at the = + 1 time step. The primitive variables must now be recovered.

The first step is recovering the spatial metric. According to Equation (5.30), the <(A, C) can be
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expressed as a function of the evolved variables. Then the averaging and remapping procedure is

followed as outlined in Section 5.4.3.1. Once <(A, C) is calculated, W8 9 can be recovered using the

transformations outlined in Appendix A.1 and Appendix A.2.

With an updated spatial metric, we follow the con2prim procedure(s) outlined in Section 5.4.6.

This process yields the primitive MHD variables. With the spatial metric and primitive MHD

quantities we use Equation (5.28) to recover the lapse dependent terms.

Lastly, the radiation transport terms are updated to the =+1 time step. This sequence concludes

the recovery process needed for Input/Output (IO) and guard cell filling. The next multiphysics

update begins and the process is repeated.

Below offers a succinct review of the different steps of an MoL update and the inputs used:

1. Calculate RHSs for vector of evolved variables

2. Update evolved variables

3. Spacetime: calculate W=+1
8 9

using U=+1 and ga<=

4. MHD: con2prim using W=+1
8 9

and U=+1

5. Spacetime: calculate U=+1 using d=+1, n=+1, E=+1
8

, 1=+1
8

, W=+1
8 9

, and ga
Φ
=

6. Radiation Transport: calculate %=+1a and 'a
.4
=+1

7. Repeat

5.4.6 Conservative to Primitive Transformation

In our finite volume (FV) scheme, evolved (sometimes called conservative) variables can be ana-

lytically calculated in terms of the primitives variables and spatial metric through use of Equations

(5.11-5.15)—these steps represent the primitive to conservative (prim2con) transformation. How-

ever, once the RHSs are applied during the update step, the con2prim transformation must be done

numerically. We use the formulation introduced in Neilsen et al. (2014) and Palenzuela et al.
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(2015) because of its robustness (Siegel et al., 2018). For convenience we outline the details of this

1D root finder that uses Brent’s method (Brent, 1971) and a 3D Newton-Raphson (NR) rootfinder

(Cerdá-Durán et al., 2008).

5.4.6.1 1D Brent Rootfinder

For clarity, variables with a hat (e.g., ℎ̂) are updated each iteration step. This method solves

5 (G) = G − ℎ̂,̂ = G −
(
1 + n̂ + %( d̂, n̂ , .4)

d̂

)
,̂ (5.31)

for the unknown G ≡ ℎ, . We introduce the shortcut variables

@ ≡ g/� (5.32)

A ≡ (2/� (5.33)

B ≡ �2/� (5.34)

C ≡ �8(8/�3/2 (5.35)

which bound G according to

1 + @ − B < G < 2 + 2@ − B. (5.36)

We now review the steps taken to perform a single iteration step.

1. Using the definition of (8 (Equation (5.13)) and the previous shortcut variables, the Lorentz

factor can be written as

,̂−2 = 1 − G
2A + (2G + B)C2

G2(G + B)2
(5.37)

2. Using Equation (5.11) solve for the density at the given iteration: d̂ = �/,̂ .
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3. Apply the definition of specific internal energy n = ℎ − 1 − %/d and the previous shortcut

variables for

n̂ = −1 + G
,̂
(1 − ,̂2) + ,̂

[
1 + @ − B + 1

2

(
C2

G2 +
B

,̂2

)]
(5.38)

4. If temperature is needed, an EOS call can be used to invert n̂ and find the pressure %( d̂, n̂ , .4).

Once G is found within a user-defined tolerance, d can be found using Equation (5.11) and

Equation (5.37); n can be found using Equation (5.38). The velocity components can be found with

the following equation

E8 =
W8 9( 9

I + �2 +
� 9( 9�

8

I(I + �2)
(5.39)

where I = Gd, .

5.4.6.2 3D Newton-Raphson Rootfinder

The con2prim solver attempts the 3D NR method described here first, as it has demonstrated

accuracy and fast convergence for given roots (Siegel et al., 2018). This method finds the roots for

temperature ) ,, , and I through solving a system of three equations:

(
g + � − I − �2 + (�

8(8)2

2I2
+ %

)
,2 − �

2

2
= 0, (5.40)

(
(I + �2)2 − (2 − 2I + �2

I2
(�8(8)2

)
,2 − (I + �2)2 = 0, (5.41)

I − �, − %,
�,

− n (d, ),.4) = 0. (5.42)

During the iterations, % and n (d, ),.4) are obtained through calls to the EOS. With solutions

for ) ,, , and I, d is obtained through Equation (5.11), E8 from Equation (5.39), and n from an EOS

call. As this NR scheme is not guaranteed to converge, if 200 iterations (user-defined) have occurred

without a converged root, the con2prim solver falls back on the 1D Brent method described in

Section 5.4.6.1 which is guaranteed to converge for bounded roots.
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IC #1 IC #2
(d! , d') = (10, 1) (d! , d') = (1, 1)
(%! , %') = (13.33, 0) (%! , %') = (103, 10−2)
(E! , E') = (0, 0) (E! , E') = (0, 0)

Table 5.1: Sets of initial conditions (IC) for pure hydrodynamic shock tube test, as first shown in
(Martí & Müller, 2003). The subscripts left (!) and right (') describe the dimensionless primitive
variables on each side of an interface at G = 0.5, for a domain G = [0, 1].

5.4.7 Maintaining Divergence Free Magnetic Field

To enforce ∇ · ®� = 0, we use a method of generalized Lagrangian multipliers (GLM), also called

divergence cleaning (Dedner et al., 2002; Mignone et al., 2010). Rather than requiring additional

memory to store face-centered data like the alternate constrained transport method (Mignone et al.,

2019), divergence cleaning only requires cell centered data and advects away nonzero divergence

terms at the speed of light. We test the behavior of this method for a series of flat spacetime MHD

tests in Section 5.5.2. In practice, for a curved spacetime, the scalar field k which advects away

nonzero ∇ · ®� terms depends upon W8 9 . While this dependence will be weak for flatter spacetime, it

becomes more important as it becomes more extreme (e.g., before BH formation). Thus, we refrain

from conducting MHD tests in curved spacetimes. For future work, we will implement more robust

treatments such as those suggested in Mösta et al. (2014) or (Porth et al., 2017).

5.5 Tests

To verify the behavior of our code, and stress the multiphysics evolution in different ways,

we perform a suite of tests for four scenarios: a purely hydrodynamic relativistic shock tube, a

magnetized relativistic shock tube, a highly energetic compact star, and the collapse of a uniform

dust cloud into a black hole. While up to fourth order time integration is possible with the current

MoL implementation in FLASH, all tests are completed with a 2nd order Runge–Kutta (RK) time

integrator and the HLLE approximate Riemann solver.
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Figure 5.1: Relativistic, pure hydrodynamic shock tube results, originally proposed by (Martí &
Müller, 2003). Colored points represent FLASH output for the density, pressure, and velocity; black
lines are exact solutions at a simulation time of C = 0.4. Initial conditions for each problem can be
found in Table 5.1.

5.5.1 Relativistic Shock tube.

The relativistic shock tube explores two different sets of initial conditions, as proposed by Martí

& Müller (2003); the specific initial conditions are outlined in Table 5.1. By design, this problem

is constructed to stress the code with the formation of shocks at high energies and velocities that

approach the speed of light. These 1D tests assume aMinkowski spacetime with an EOS of the form

% = (Γ− 1)dn , with Γ = 5/3. These tests use 1000 equally spaced grid zones over a dimensionless

domain running from G = [0, 1] andWENO5 reconstruction (Shu, 2009). They are performed with

a Courant-Fredericks-Levi (CFL) factor of 0.5. In Figure 5.1 we notice good agreement between

the analytic solution (black line) and FLASH output (colored points) at a time of C = 0.4.

5.5.2 Magnetized Shock Tube
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Name (d! , d') (n! , n') E! �C
!

E' �C
'

�= Γ )4=3
B1 (1, 0.125) (1, 0.8) 0 (1.0, 0) 0 (-1.0, 0) 0.5 2 0.4
B2 (1, 1) (45, 1.5) 0 (6.0, 6.0) 0 (0.7, 0.7) 5.0 5/3 0.4
B3 (1, 1) (1500, 0.15) 0 (7.0, 7.0) 0 (0.7, 0.7) 10.0 5/3 0.4
B4 (1, 1) (0.15, 0.15) (0.999, 0, 0) (7.0, 7.0) (-0.999, 0, 0) (-7.0, -7.0) 10.0 5/3 0.4
B5 (1.08, 1) (1.425, 1.5) (0.4, 0.3, 0.2) (0.3, 0.3) (-0.45, -0.2, 0.2) (-0.7, 0.5) 2.0 5/3 0.55

Table 5.2: Initial conditions for relativistic MHD shock tubes. The subscripts left (!) and right (') describe the dimensionless primitive
variables on each side of an interface. E = (EG , EH, EI) indicates the x, y, and z velocity components are indicated by the ordered triplet.
�C = (�H, �I) indicates the ordered pair represents the transverse y and z components of the magnetic field. �= = �G indicates the
normal component of the magnetic field is in the x direction.
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The magnetized shock tube is a reliable test to ensure the code is properly exhibiting MHD

wave behavior, in the presence of high pressures and relativistic fluid velocities. This setup once

again sets left and right states for the various primitive variables inspired from Balsara (2001) and

is a generalization of the Brio-Wu shock tube setup (Brio & Wu, 1988), with similar nomenclature

for each test problem (e.g., B1 for ‘Balsara 1’) (Mösta et al., 2014). The specific initial conditions

are outlined in Table 5.2. Each test uses a gamma law EOS, % = (Γ − 1)dn , with 1000 equally

spaced grid points on a domain G = [0, 1] and a CFL condition of 0.8. The five simulations use

TVD reconstruction.

In Figure 5.2 observe FLASH output (colored points) matching the analytic result (black line)

for the first set of initial conditions in the Balsara suite of tests. The small spike at x ∼ 0.5 for

density and pressure is the formation of a slow moving compound wave, originally noted with

the introduction of these test problems (Brio & Wu, 1988). For space considerations, we display

the remaining four baseline results in Appendix A.6. For all five tests, we notice good agreement

between FLASH output and the analytic results, provided by Giacomazzo & Rezzolla (2006).

5.5.3 TOV Star

To test how our relativistic hydrodynamics scheme couples to an evolving spacetime, we study

the oscillations of a TOV star maintaining hydrostatic equilibrium. Our initial 1D profile is

obtained by solving the Tolman-Oppenheimer-Volkhoff equations (Tolman, 1939). During the

hydrodynamic and spacetime evolution, a polytropic EOS % =  dΓ with polytropic constant

 = 100 (∼ 1.455 × 105 [cgs]), adiabatic index Γ = 2, and central density d2 = 4.929 × 1014g

cm−3 is used. To determine n we make use of a gamma-law EOS % = (Γ−1)dn . These 3D models

use WENO5 reconstruction to reduce the numerical dissipative effects that would be introduced

with TVD reconstruction.

As the spacetime and fluid evolve, the TOV star attempts to achieve hydrostatic equilibrium.

Between numerical diffusion causing the star to collapse and overshooting upon expansion causing

the central density to lower, the star will experience oscillations about an equilibrium point. Figure
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Figure 5.2: Primitive variables density, pressure, x-velocity, y-velocity, Lorentz factor, and y
component of the magnetic field (By) at C = 0.4 for the Balsara1 test problem. The slight spike
seen x ∼ 0.5 is a slow moving compound wave originally seen in (Brio & Wu, 1988).
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Figure 5.3: TOV star normalized central density over 3 ms evolution for two different resolutions.
This test is conducted in 3D, using Cartesian coordinates. We see smaller amplitude oscillations,
for increasing resolution as expected. The black dashed line indicates the original central density
at C = 0.

5.3 displays the central density oscillations for a 3D test case in Cartesian coordinates. The initial

matter profile is centered at the origin and extends 20 km in each direction on a uniform grid. The

low resolution case 40 grid zones along each axis for a resolution of 1 km. The high resolution

case has 80 grid zones along each axis, yielding 0.5 km resolution. For the high resolution case,

we notice smaller oscillations and convergence toward the original central density.

For comparison, we offer Figure 5.4, which displays the normalized central density evolution in

the top panel for three different resolutions: A0 ∼ 1.5 km, A1 ∼ 0.74 km, and A2 = 0.37 km (Mösta

et al., 2014). Both test cases use the same EOS. However the TOV star in Figure 5.4 has a central

density ∼ 1.5 times larger at d2 = 7.91 × 1014g cm−3. The setup also contains a magnetic field

that evolves along with the fluid and spacetime. These contributions can change the behavior of
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Figure 5.4: Three dimensional TOV star over 6 ms of evolution for three different resolutions,
taken from Mösta et al. (2014). From top to bottom, panels represent normalized central density,
difference in normalized central density between two resolutions, !2 norm of the Hamiltonian
constraint, and normalized divergence of the magnetic field. Relevant to this work is the top panel,
which can be compared to Figure 5.3. The three resolutions correspond to A0 ∼ 1.5 km, A1 ∼ 0.74
km, and A2 = 0.37 km.
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the star by having a higher central pressure, due to the higher central density along with magnetic

contributions. These effects can provide additional support, causing it to initially expand, thereby

lowering the initial central density. A more identical setup with the matter profile and magnetic

field would be ideal and is reserved for future work.

5.5.4 Oppenheimer-Snyder Collapse

To test the coupled evolution of the spacetime and hydrodynamics in an extreme spacetime envi-

ronment, we model the collapse of an initially constant density sphere with no pressure (% = 0):

Oppenheimer-Synder collapse (OSC) (Oppenheimer & Volkoff, 1939). We use an identical setup

used in the GR1D code (O’Connor &Ott, 2011); for completeness, we include the simulation details.

The dust cloud has an initial mass of " = 1 and ' = 10 (∼ 14.8 km). We use a polytropic EOS

% =  dΓ, where we select  = 10−20 [cgs] and adiabatic index Γ = 5/3. The atmosphere outside

the dust is set to a value of d = 1 g cm−3. The simulation is initialized on a 1D uniform grid of

9000 data points and uses TVD reconstruction.

To verify the behavior of the spacetime evolution in extreme regimes, refer to Figure 5.5.

Color points refer to the FLASH outputs and black lines are the analytic profiles at various times:

C = 0.15, 0.17, 0.20, 0.21, & 0.30 ms. The top panel displays the density profile, normalized by

the initial central density d0 = 1.475 × 1014 g cm−3. The bottom panel displays the U profile.

The lapse function approaches an expected value of 0 as the edge of the dust cloud approaches

its Schwarzschild radius of A = 2 (∼ 3.0 km). As seen in O’Connor & Ott (2010), we notice an

expected spike in the central density near A = 0; this artifact is attributed to factors in the source

terms that depend on 1/A which diverge near the coordinate origin.

5.6 Supernova Simulations

Having stressed the code through a variety of baseline tests, we examine the impact of the

new relativistic features in the more sophisticated CCSN multiphysics system: coupled evolving

spacetimes, GR hydrodynamics, and radiation transport. All models make use of the SFHo EOS

(Steiner et al., 2013a) and WENO5 reconstruction.
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5.6.1 1D CCSN Models

Webeginwith a suite of six 1D simulations evolved∼ 0.5 sec after bounce. We select a 12-, 40-, and

60"� progenitors for their varying b values. To isolate the impact of the evolving spacetime and

GRMHD scheme, we do not employ multidimensional effects of turbulence, such as the Simulating

Turbulence in Reduced-dimensionality (STIR) framework (Couch et al., 2020b), which still only

has Newtonian treatments of turbulence, or the relativistic analogue from Boccioli et al. (2021).

Figure 5.6 displays the results of this 1D CCSN simulation suite. Progenitor masses are

indicated by colors of different brightness. Different physics treatments are indicated by line

pattern: solid dark lines use an evolving spacetime with GR hydrodynamics and dotted lines use

GREP with Newtonian hydrodynamics. The left column displays properties of hydrodynamic

evolution—shock radius and PNS quantities—and the right column displays properties of the

neutrino emission—luminosity, energy, and neutrinosphere radius for a4− .

5.6.1.1 Shock Radius Behavior

The top left panel of Figure 5.6 displays the shock radius evolution for all six models. Within the

∼ 0.5 ms pb window, these models do not explode. These models are inherently 1D, preventing

them from depositing sufficient turbulent kinetic energy behind the shock that is more easily

accomplished in 3D. As turbulence behind the shock is one of the principle drivers towards a

successful explosion (Couch & Ott, 2015; Burrows & Vartanyan, 2021), this behavior is expected.

We note that shock radii for the GR case are marginally smaller compared to the GREP case.

We expect the GR method to produce more gravitationally bound systems, compared to GREP.

Furthermore, this behavior is noted in other work that compares shock evolution between GR

hydrodynamics and less sophisticated hydrodynamic treatments (Kuroda et al., 2012).

5.6.1.2 PNS Characteristics

The properties of the PNS offers valuable insight regarding the birth of compact remnants from

CCSNe. The lower left panel of Figure 5.6 displays the radius of the PNS. In our work, we define

143



0.0 0.2 0.4 0.6
0

50

100

150

R
sh

o
ck

[k
m

]

12M�
40M�
60M�

GR

GREP

0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

L
ν
e

[e
rg
/
s]

×1053

0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

ρ
c
e
n
tr

a
l
[g

cm
−

3
]

×1015

0.0 0.2 0.4 0.6
0

20

40

60

E
ν
e

[M
eV

]

0.0 0.2 0.4 0.6

tpb [sec]

0

20

40

60

80

R
P

N
S

[k
m

]

0.0 0.2 0.4 0.6

tpb [sec]

0

20

40

60

80

R
ν
e

[k
m

]

Figure 5.6: Results from six 1DCCSNmodels. Colors represent different progenitors and line styles
represent different physics treatments; solid lines use evolving spacetime with GR hydrodynamics,
and dotted lines use GREP with Newtonian hydrodynamics. (Top left) Shock radius evolution. GR
cases showmarginally smaller smaller shock radii compared to GREP. (Central left) Central density
evolution. Less compact progenitors show similar central density evolution. The 40"� case with
GR reaches BH formation ∼ 75 ms earlier than GREP. (Lower left) PNS radius evolution. (Upper
right) Electron type neutrino luminosity. (Central right) Electron type neutrino energy. We notice
harder a4− spectra for GR, compared to GREP, with the more compact progenitors exhibiting more
of a difference. (Lower right) Neutrinosphere for a4− .
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the ‘surface’ of the PNS as the density contour of 1011 g cm−3. For the less compact 12"� and

60"� cases, the PNS evolution is nearly identical. However, the 40"� case displays differences

in 'PNS ∼ 5 km beginning 100 ms pb. This difference is attributed to the fact that the 40"� is

more compact. Thus, the differences between the approximate GREP and GR case, that properly

accounts for contributions to the spacetime, will become more pronounced.

5.6.1.3 Central Density Evolution and Black Hole Formation

The central left panel displays the central density evolution. The lower compactness 12"� and

60"� display similar central density evolution throughout the simulation duration. Similar to

the previous case, the lower b progenitors will have less contributions to the spacetime curvature,

lending to similar evolution between the GREP and GR cases.

The high-b 40 "� case collapses to BH within 600 ms after bounce for both cases. This

formation is indicated by the asymptotic increase in dcentral. We note BH formation roughly 75

ms earlier in the GR case, compared to GREP. The ability of the relativistic hydrodynamics to

capture strong field effects allows the collapse to BH to occur on smaller timescales. O’Connor &

Couch (2018b) compare BH formation time between the GREP and GR case (with GR1D) and note

BH formation to occur ∼ 20 ms later with GREP, compared to GR. As this reference case uses a

different 40 "� progenitor (Woosley & Heger, 2007), we attribute a delay in BH formation that is

also 10s of ms promising behavior for the implemented GR case in FLASH.

5.6.1.4 Neutrino Signal

As mentioned in the previous subsection, a more compact PNS is a result of the inclusion of

relativistic effects. Another observable modified will thus be the neutrinos. Forming at a smaller

radius, the temperature at the neutrinosphere will, on average, be higher. This higher temperature

will, in turn, shift the emitted neutrinos to higher energies—a harder neutrino spectrum. However,

the more gravitationally bound core will cause greater redshift of the neutrinos as they stream

to the outer parts of the supernova gravitational potential well. These competing effects offer a
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quintessential example of the nonlinear nature of the CCSN system. Nevertheless, in practice,

the net result is a higher neutrino luminosity and the production of neutrinos with higher energies

(Kuroda et al., 2012).

The lower right panel of Figure 5.6 displays the neutrinosphere radii for a4− to be smaller

for the GR cases, as compared to GREP. The central right panel shows similar neutrino energies

for electron type neutrinos �a4− for the low compactness progenitors. The energy difference

for the 40"� case shows a larger difference between the GREP and GR case, which is a direct

consequence of the difference in 'ae− . All cases capture the gradual increase in �a4− , which is

indicative of the contracting PNS due to a losses. As 'ae− decreases, it recedes to regions of higher

temperature. The upper right panel shows an associated larger neutrino luminosity for a4− for GR,

compared to GREP. These findings emphasize the importance of incorporating relativistic effects

into multiphysics simulations because of the noticeable impact on predictions of multimessenger

observables.

5.6.1.5 Code Performance

Our 1D models show sustained evolution by evolving ∼ 0.5 sec after core bounce. As such, we

choose to analyze the performance metrics of the 600 ms evolution of the 12"� case. The GR

case required 500 core hours for completion, whereas the GREP case required only 20 core hours.

The 25× increase in computational cost can be explained by two factors: the number of calls to

evolve gravity and the more computationally intensive GRMHD procedure.

The physics routine that updates gravity is called six times as much for the GR case, compared

to the GREP case. Below details the calling procedures for each physics treatment. For the

GREP case, the call to update gravity within FLASH is made once per time step. For the GR

case, the MoL approach evolves the MHD scheme alongside the spacetime. As noted in Section

5.4.5, the spacetime evolution must be called twice, once to calculate W8 9 and once to evolve U.

Thus, spacetime is called twice per MHD evolution. As these simulations use an RK2 integration

method, which uses two stages per time step, spacetime evolution occurs four times in the MoL
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procedure. For any physics updates that happen outside the MoL procedure, such as parameterized

deleptonization, W8 9 and U must be updated once again. In review, for the GR case, the call to

update gravity is made six times per time step.

The GRMHD procedure also incurs more computational expense than the Newtonian case used

alongside the GREP. For example, the time step restriction—which depends on the sound speed

2B—is calculated using two different expressions. The GREP case relies on a simple relation

22
B =

Γ2%

d
, (5.43)

where Γ2 is an adiabatic index. By contrast, the relativistic analogue given in Rezzolla & Zanotti

(2013) is

22
B =

22

ℎ

[(
m%

md

)
n

+ %

d2

(
m%

mn

)
d

]
, (5.44)

where (m%/md)n is the derivative of pressure with respect to density at constant specific internal

energy. (m%/mn)d is the derivative of pressure with respect to specific internal energy at constant

density. In practice, just after bounce, for a time step 3C, we notice 3CGR = 0.253CGREP. In addition

to the time step restriction, the con2prim procedure requires multiple calls to the EOS, as outlined

in Section 5.4.6. For tabulated EOSs, this iterative interpolation procedure can be costly, compared

to simple analytic relations used in Newtonian hydrodynamics. Between the time step restriction

and EOS calls, we attribute the remaining factor of 4 discrepancy between the GR and GREP run

time.

Improving the performance of the spacetime evolution andGRMHDschemewould be a valuable

revision to the work presented here. Likewise, the motivation for this work is not to outperform

GREP, but remain competitive with CFC. Such a comparison is not currently viable within the

FLASH framework and would require a cross collaborative project with a code such as CoCoNut

(Cerdá-Durán et al., 2013).
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5.6.2 2D CCSN Models

We also perform two, nonrotating axisymmetric simulations of the 12"� progenitor to test the

code in higher dimensions. Figure 5.7 displays the early time behavior of the same quantities

described in the previous section, and focuses on the first ∼ 30 ms pb. We acknowledge prolonged

evolution would allow clearer differences between GREP and GR to manifest, thus we limit our

discussion of the 2D models to qualitative descriptions and save quantitative relations for future

work with more suites of longer simulations. As these models are conducted in 2D, we note the

GREP case does not include any additional, Newtonian multipole corrections to the gravitational

potential.

5.6.2.1 Shock Radius Behavior

Figure 5.7 shows similar shock behavior to the corresponding 1D case; the less bound GREP

system launches a larger shock just after core bounce. However, as these models are 2D, they

capture another degree of freedom exhibited by the turbulence behind the shock. In general,

the inclusion of relativistic hydrodynamics will increase the timescale on which convection occurs

(Müller et al., 2013). To understand this difference, we appeal to the expression for the Brunt-Vaisala

frequency lBV for the Newtonian case given by Aerts et al. (2010)

l2
BV =

1
d

mΦ#

mA

(
1
22
B

m%

mA
− md
mA

)
, (5.45)

where Φ# is the Newtonian gravitational potenital and 2B is the sound speed. The relativistic

expression is given by Müller et al. (2013)

l2
BV =

U

dℎq4
mU22

mA

(
1
22
B

m%

mA
− md(1 + n/2

2)
mA

)
, (5.46)

where q is known as the conformal factor. This term originates from the CFC scheme. Physically

it quantifies the deformation of spacetime through W8 9 . For the purposes of this work, q2 is similar

to - from Equation (5.26). The physicality of lBV represents the frequency with which a blob of

material oscillates in an ambient medium. The larger lBV, the shorter the oscillation timescale.
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One key difference between the Newtonian andGR description lies the first term. Between Equation

(5.45) and Equation (5.46) there is a difference by a factor of U/ℎq4 which is ∼ U/ℎ-2 in this

work. Thus, the strong field effects of time dilation U ≤ 1 and - ≥ 1 create a smaller lBV, or

the fluid will evolve on longer timescales. To show these effects, we produce slices of the CCSN

.4 profiles 30 ms after bounce, during the prompt convection phase of the CCSN. The panels in

Figure 5.8 illustrate turbulence, through the mixing of material with differing .4. As displayed

in the left panel of Figure 5.8, the GR case has not experienced enough time to create the finer

turbulent structure seen in the GREP case (right panel). As such, more turbulent kinetic energy is

deposited behind the shock and results in a larger 'shock for the GREP case.

5.6.2.2 PNS Characteristics

Both the dcentral and 'PNS display similar behavior between the GR and GREP cases. This is

behavior is expected because the low b of the progenitor does not exhibit pronounced differences

compared to a high b case, as explained in the 1D results. Also, the early simulation time prevents

differences arising frommultidimensional accretion onto the PNS to influence the evolution. While

longer simulation times would be ideal, the similarity of the PNS characteristics of the 12"� model

serves as an initial verification of the 2D extension of the evolving spacetime, because of similar

behavior in the 1D case for 12 "�.

5.6.2.3 Neutrino Signal

The neutrino properties remain extremely similar between the GR and GREP cases. The neutri-

nosphere for a4− and therefore �a4− are nearly exact. !a4− remains only marginally higher for

GR, compared to GREP, as in the 1D case. For longer simulation times, a topic of investigation

will be examining how multidimensional downflows onto the PNS are modified by relativistic

hydrodynamics and therefore affect !a4− .
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Figure 5.7: Equivalent panel labels as outlined in Figure 5.6, except applied to axisymmetric 12"�
models, emphasizing the first 30 ms of post bounce evolution. We notice similar characteristics
between all quantities. There is a slightly larger shock radius for the GREP case, compared to the
GR case. Likewise, there is a slightly smaller a4− luminosity for the GREP case, compared to the
GR case.
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Figure 5.8: Central electron fraction (.4) profile at 30 ms post bounce. Left panel represent
CCSN models with evolving spacetime and GR hydrodynamics, the model in the right panel uses
GREP and Newtonian hydrodynamics, without any higher Newtonian multipole corrections. The
orange arc represents the surface of the PNS. For the GR case we notice larger convective plumes
developing and less mixing of low .4 material at the shock interface.
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5.7 Discussion and Summary

5.7.1 Looking Towards the Exascale

With the advent of exascale machines, the modern HPC ecosystem is requiring software develop-

ment to adapt to machines with different hardware architectures and maximally utilize the number

of processing units (e.g., CPUs and GPUS) available. This idea of performance portability is one of

the cornerstones for the ongoing Exascale Computing Project (ECP)1. The goal of the ECP is to lead

a national effort for advances in software design to address computationally intensive problems,

only tractable on leadership class platforms achieving 1018 floating point operations per second

(FLOPs). Of particular relevance to this work is the ExaStar project 2, whose computational aim is

to develop multiphysics software compatible with AMR; the scientific goal is to better understand

the origin of heavy element production from astrophysical explosions such as CCSNe.

To address this need, the future version of FLASH, namedFlash-X3 is currently public. Flash-X

has been designed with performance portability in mind, by allowing input from the physics unit

developers, those who maintain the code, and the hardware which the code is run on. Some

examples include generating code that adapts to a given hardware-specific platform (Rudi et al.,

2021) or modify data movement based on the memory layout of a computing resource (O’Neal

et al., 2021).

To promote the use of the various physics implementations proposed here, we have integrated

the MoL framework and memory layout into Flash-X. The integration of the GRMHD scheme

is currently being ported over to Flash-X from FLASH. As a part of the larger ExaStar goal, this

GRMHD scheme will be integrated with other multiphysics features. One implementation includes

a dynamically evolving spacetime, following the ‘Z4c’ formulation of GR (Cao & Hilditch, 2012),

to account for matter geometries that significantly deviate from spherical symmetry. Other physics

features that will be coupled include accounting for neutrino transport such as Thornado (Laiu

1https://www.exascaleproject.org/
2https://www.exascaleproject.org/research-project/exastar/
3https://flash-x.org/
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et al., 2020), a Monte-Carlo based approach, and a general relativistic M1 approach. Coupling

these features together using the proposed MoL scheme will allow flexibility for users to select

different physics features, provide numerical methods advanced enough to exercise the performance

capabilities of exascalemachines, and leverage adaptable code that canmake use ofmany computing

hardware layouts.

5.7.2 Summary

We have reviewed our new relativistic solver that is compatible with adaptive mesh refinement.

The new elements integrated into FLASH are as follows:

• a GRMHD scheme accounting for magnetized fluid with high velocities and large energies,

• a fully general relativistic evolving spacetime in 1D,

• a novel multidimensional extension of the evolving spacetime,

• the inclusion of magnetic contributions to the spacetime curvature.

We offer a variety of baseline tests that verify the code behavior in the following scenarios:

• hydrodynamic shock tube evolution with relativistic velocities, see Figure 5.1,

• magnetized fluid with high Lorentz factors, see Figure 5.2 or Appendix A.6,

• highly energetic and dense material found in compact stars, see Figure 5.3,

• rapidly evolving spacetimes tracking BH formation, see Figure 5.5.

We also perform a suite of 1D and 2D CCSN simulations, comparing two sets of physics

treatments: relativistic hydrodynamics with evolving spacetime (GR-case) and Newtonian hydro-

dynamics with the GREP (GREP-case). For both the 1D and 2D cases, we notice general trends that

the GR-case generates PNSs more gravitationally bound than the GREP case. As these systems are

more gravitationally bound, they launch weaker shocks. The neutrino quantities are also affected.
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As the neutrinospheres form at smaller radii, CCSNe with the GR-case emit more energetic a4−

and produce higher a4− luminosities, compared to the GREP-case.

Lastly, we highlight the performance portability of Flash-X and our recent integration of the

MoL numerical tools. There is ongoing development to incorporate these GRMHD features into

its framework in order to couple more general treatments of spacetime evolution and neutrino

transport. Ultimately, these features will make use of exascale computing platforms to perform

simulations of complex astrophysical systems such as CCNSe.

While these updates have allowed FLASH to become a more versatile tool, there is still work to

be done. We plan to move beyond a Newtonian treatment of divergence cleaning, to account for

the coupling between ∇ · ®� and curved spacetimes (Porth et al., 2017). After this implementation,

more multidimensional MHD tests in extreme spacetimes should be conducted, such as tracking

magnetized CCSNe to BH formation. Likewise, more extensive multidimensional testing should be

completed to quantify the impact of this evolving spacetime paired with relativistic hydrodynamics,

as it compares to other treatments of gravity.

Acknowledging these caveats, the future of CCSN science into the exascale era remains opti-

mistic. Anticipating future hardware architectures not only provides numerical tools that can utilize

next generation machines, but provides an avenue to promote the longevity of decoding the physics

that drives these stellar explosions.
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Center at the University of Chicago.

Software used in this work: FLASH (see footnote 7), (Fryxell et al., 2000, 2010), Matplotlib8

(Hunter, 2007), NuLib9 (O’Connor, 2015), NumPy10 (van der Walt et al., 2011), SciPy11 (Jones

et al., 2001–), Flash-X12,13

8https://matplotlib.org/
9http://www.nulib.org
10http://www.numpy.org/
11https://www.scipy.org/
12https://flash-x.org/
13https://github.com/Flash-X/Flash-X
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CHAPTER 6

SUMMARY

6.1 Summary

This work presented new connections between GW signal features and CCSN source physics.

Likewise, it introduced novel numerical solvers in the FLASH code that account for relativistic

effects in multiphysics simulations. Chapter 2 incorporated 15 axisymmetric CCSN models with

varying degrees of rotation. The early time GW bounce signals verify the behavior of the code

to capture stellar collapse when dominated by rotational dynamics. During the accretion phase,

we note the stabilizing effect of rotation on convection, per the Solberg-Hoiland stability criterion.

This effect dampens the PNS oscillations, which is responsible for the ‘rotational muting’ of GWs

in axisymmetry. Likewise, we note the tendency of rotation to centrifugally support the PNS as it

accretes matter and contracts. This effect shifts the peak GW frequencies to lower values, due to the

larger dynamical frequency of the compact object. Because the slope of the peak GW frequency

¤5 approaches zero with increasing rotation, we describe this effect as ‘rotational flattening’. We

also find the stabilizing effect of rotation slows the timescale on which convective overturn occurs

within the shocked material. This effect consequently lowers the frequencies of the GWs directly

emitted from the turbulent matter.

Chapter 3 analyzes 34 new axisymmetric and four previous 3D CCSN models quantifying the

degree to which rotation modifies GW signals in CCSNe. We show the importance of robust

neutrino transport during collapse, displaying differences in GW bounce signal amplitudes by

∼ 40% between simplified and advanced treatments. We show the bounce signal amplitude

and angular momentum content near the supernova center can be approximated by a third order

polynomial. For the first time using multidimensional models, we show a direct relationship

between the compactness of the progenitor and the rate at which the peak GW frequency increases.

This effect leverages multimessenger signals to show the importance of mass accretion on the rate
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at which the PNS contracts. Building on the previous chapter, we quantify the impact of rotation

on the rotational flattening of ¤5 . We note an equation of state–independent, linear relationship

between the degree which ¤5 decreases and the angular momentum content of the inner 1.75"�

of material. This observation shows the angular momentum content of the accreted material has a

distinct impact on the PNS evolution. We introduce a novel method that combines two of the most

detectable components of a single GW event to determine of the compactness of the progenitor.

Furthermore, we outline a heuristic to use this method to predict explosion properties hours–days

before shock breakout.

Chapter 4 reviews work with my undergraduate research assistant, Steven VanCamp. We

address observational considerations by investigating the poorly explored impact of viewing angle

on GW emission from CCSNe. We introduce a novel visualization method to characterize the

distribution of GW emission over all angles, at a given moment in time. Applying this method

throughout the supernova duration yields a distribution that identifies dominant directions of GW

emission, depending on the physical mechanism generating gravitational radiation. We conclude

there is no single dominant viewing angle over the entire CCSN, rather a preferred direction of GW

emission that evolves in time. For nonrotating cases, this angle drifts over all viewing angles. For

rotating cases, the preferred direction of GW emission lies along the supernova equator and then

aligns with the axis of rotation. Furthermore, for rotating CCSNe this preferred direction seems

to precess around the axis of rotation. The only instability we observe that potentially influences

these preferred directions is the hydrodynamic instability related to matter rotation, the low T/W

instability. Accounting for these directional effects could help extract CCSN GWs from the GW

background and potentially inform GW detection pipelines which features of the CCSN GW signal

are most likely to be reconstructed.

Chapter 5 outlines the new numerical solvers implemented in FLASH. We update a previously

Newtonian magnetohydrodynamic (MHD) solver, Spark, to properly accounts for magnetized

fluids moving near the speed of light and in extreme spacetimes—general relativistic magnetohy-

drodynamics (GRMHD). We verify the GRMHD scheme using a series of baseline shocktube tests
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for purely hydrodynamic and magnetized fluid with moderate Lorentz factors. We implement a

separate physics subunit, inspired by the GR1D code, that allows for dynamically evolving spacetime

in 1D, and verify its behavior by tracking the collapse of a dust cloud to black hole formation. We

introduce a novel method that extends this evolving spacetime to multiple dimensions, in either

cylindrical or Cartesian coordinates. Testing this multidimensional evolving spacetime coupled to

the GRMHD scheme, we track the stable evolution of a compact, or so called ‘TOV’, star in 3D.

We also allow for contributions of magnetic fields to the spacetime curvature, a feature that can

be particularly important for future simulations of magnetic, jet-driven supernovae. In addition,

we perform six 1D and two 2D CCSN simulations examining the influence of these relativistic

effects (GR case). In comparison to the Newtonian hydrodynamics and approximate relativistic

potential (GREP case), we notice the GR case produces a generally more gravitationally bound

system. The GR case launches shock fronts to smaller radii, creates smaller PNSs, and develops

neutrino emission of a4− with higher energies. We also introduce the newly implemented method

of lines numerical method for performing multiphysics updates in the next generation Flash-X

code, and review the future outlook for incorporating these new physics solvers into the Flash-X

framework, to allow for astrophysical simulations on next generation supercomputers.
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APPENDIX A

DERIVATIONS FOR RELATIVISTIC ADDITIONS TO FLASH

In the below sections we explicitly derive the remapping procedure from radial gauge, polar slicing

(RGPS) in spherical coordinates to 3D cylindrical and Cartesian coordinates. This step is used to

remap the evolved spacetime metric to multidimensional coordinates. The spherical coordinates

used are for a distance from the origin A, altitudinal angle from the z axis \, and azimuthal angle

from the x axis q. These terms are useful for calculating the extrinsic curvature  8 9 which depend

on the metric elements and derivatives.

A.1 Transforming the Metric in RGPS: from Spherical to Cylindrical Coordinates

We begin with the line element from RGPS in spherical coordinates:

3B2 = −U23C2 + -23A2 + A23\2 + A2 sin2 \3q2 (A.1)

In order to remap to cylindrical coordinates, observe how the spherical differential line elements

relate to the cylindrical ones,

3A = sin \3d + cos \3I, A3\ = cos \3d − sin \3I, A sin \3q = d3q. (A.2)

Substitute the respective line elements from Equation (A.2) into Equation (A.1) and expand to

yield

3B2 = −U23C2 + (-2 sin2 \ + cos2 \)3d2 + sin 2\ (-2 − 1)3d3I + (-2 cos2 \ + sin2 \)3I2 + d23q2.

(A.3)

Assuming the metric is known in the ADM form (Arnowitt et al., 2008), the metric (with

vanishing shift) will appear as

3B2 = 6`a3G
`3Ga ≡ −U3C2 + W8 93G83G 9 (A.4)
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for cylindrical coordinates of the form (d, I, q).

Explicitly, the remapped spacetime metric can then be described as

6
cyl
`a =

©­­­­­­­­«

−U2 0 0 0

0 (-2 sin2 \ + cos2 \) (sin 2\ (-2 − 1)) 0

0 (sin 2\ (-2 − 1)) (-2 cos2 \ + sin2 \) 0

0 0 0 d2

ª®®®®®®®®¬
. (A.5)

When evolving the equations of GRMHD, the required source terms depend on spatial and

temporal derivatives of the spacetime metric. In Table A.1 we list the analytic forms of the

derivatives for convenience.

From the differential line elements in Equation (A.2) the following coordinate derivatives

become useful when applied to Table A.1 for the spherical radial coordinate

mdA = sin \, mIA = cos \, mqA = 0,

for the altitudinal coordinate

md\ =
cos \
A

, mI\ = −
sin \
A
, mq\ = 0,

for the azimuthal coordinate

mdq = 0, mIq = 0, mqq = 1.

and for the cylindrical radial coordinate

mdd = 1, mId = 0, mqd = 0. (A.6)
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Metric term Derivative Expression (Cylindrical)
ln(U) C mC ln(U) = mCΦ
ln(U) 8 = d, I, q m8 ln(U) = m8Φ
600 C mC600 = −2U2mCΦ
600 8 = d, I, q m8600 = −2U2m8AmAΦ
611 C mC611 = 2-mC- sin2 \
611 8 = d, I, q m8611 = 2-m8AmA- sin2 \ + (-2 − 1) sin 2\m8\
612 C mC612 = 2-mC- sin 2\
612 8 = d, I, q m8612 = 2(-2 − 1) cos 2\m8\ + 2- sin 2\m8AmA-
622 C mC622 = 2-mC- cos2 \
622 8 = d, I, q m8622 = 2-m8AmA- cos2 \ − (-2 − 1) sin 2\m8\
633 C mC633 = 0
633 8 = d, I, q m8633 = 2dm8d

Table A.1: Nonzero spatial and temporal derivatives of the spacetime metric for cylindrical co-
ordinates. In practice, the following quantities are saved from the 1D spacetime evolution step:
mΦA , mC- , and mA- . The remaining quantities can be calculated analytically from the derivatives
in Equation (A.6): m8A , m8\, m8q, and m8d.

A.2 Transforming the Metric in RGPS: from Spherical to Cartesian Coordinates

Begin with the line element from RGPS in spherical coordinates:

3B2 = −U23C2 + -23A2 + A23\2 + A2 sin2 \3q2. (A.7)

In order to remap to Cartesian coordinates, observe how the spherical differential line elements

relate to the Cartesian ones,

3A = sin \ cos q3G + sin \ sin q3H + cos \3I,

A3\ = cos \ cos q3G + cos \ sin q3H − sin \3I,

A sin \3q = − sin q3G + cos q3H. (A.8)
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Assuming the metric is known in the ADM form (Arnowitt et al., 2008), the metric (with

vanishing shift) will appear as

3B2 = 6`a3G
`3Ga ≡ −U3C2 + W8 93G83G 9 , (A.9)

for Cartesian coordinates of the form (G, H, I).

Explicitly, the remapped spacetime metric can then be described as

6cart
`a =

©­­­­­­­­«

−U2 0 0 0

0 sin2 q + cos2 q(-2 sin2 \ + cos2 \) sin 2q(−1 + -2 sin2 \ + cos2 \) cos q sin 2\ (-2 − 1)

0 “” cos2 q + sin2 q(-2 sin2 \ + cos2 \) sin q sin 2\ (-2 − 1)

0 “” “” -2 cos2 \ + sin2 \

ª®®®®®®®®¬
(A.10)

where “" corresponds to the symmetric matrix element across the diagonal.

When evolving the equations of GRMHD, the source terms needed depend on spatial and

temporal derivatives of the spacetime metric. In Table A.2 we list the analytic forms of the

derivatives for convenience.

From the differential line elements in Equation (A.2) the following coordinate derivatives

become useful when applied to Table A.2 for the spherical radial coordinate

mGA = sin \ cos q, mHA = sin \ sin q, mIA = cos \,

for the altitudinal coordinate

mG\ = cos \ cos q/A, mH\ = cos \ sin q/A, mI\ = − sin \/A,

and for the azimuthal coordinate

mGq =
− sin q
A sin \

, mHq =
cos q
A sin \

, mIq = 0. (A.11)
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Metric term Derivative Expression (Cartesian)
ln(U) C mC ln(U) = mCΦ
ln(U) 8 = G, H, I m8 ln(U) = m8AmAΦ
600 C mC600 = −2U2mCΦ
600 8 = G, H, I m8600 = −2U2m8AmAΦ
611 C mC611 = 2-mC- sin2 \ cos2 q

611 8 = G, H, I
m8611 = sin 2qm8q(1 − -2 sin2 \) + sin 2\m8\ cos2 q(-2 − 1)

+ 2-m8AmA- sin2 \ cos2 q − sin 2qm8q cos2 \
612 C mC612 = 2-mC- sin2 \ sin 2q

612 8 = G, H, I
m8612 = 2 cos 2qm8q(-2 sin2 \ + cos2 \ − 1) + sin 2\m8\ sin 2q(-2 − 1)

+ 2-m8AmA- sin2 \ sin 2q
622 C mC622 = 2-mC- sin2 \ sin2 q

622 8 = G, H, I
m8622 = sin 2qm8q(-2 sin2 \ + cos2 \ − 1) + sin 2\m8\ sin2 q(-2 − 1)

+ 2-m8AmA- sin2 q sin2 \
613 C mC613 = 2-mC- sin 2\ cos q

613 8 = G, H, I
m8613 = 2 cos 2\m8\ cos q(-2 − 1) − sin 2\ sin qm8q(-2 − 1)

+ 2-m8AmA- sin 2\ cos q
623 C mC623 = 2-mC- sin 2\ sin q

623 8 = G, H, I
m8623 = sin 2\ cos qm8q(-2 − 1) + 2 cos 2\m8\ sin q(-2 − 1)

+ 2-m8AmA- sin 2\ sin q
633 C mC633 = 2-mC- cos2 \
633 8 = G, H, I m8633 = sin 2\m8\ (1 − -2) + 2-m8AmA- cos2 \

Table A.2: Nonzero spatial and temporal derivatives of the spacetime metric for Cartesian coordi-
nates. In practice, the following quantities are saved from the 1D spacetime evolution step: mΦA ,
mC- , and mA- . The remaining quantities can be calculated analytically from the derivatives in
Equation (A.11): m8A, m8\, and m8q.

A.3 Expressing the Extrinsic Curvature

A crucial quantity for GRMHD evolution is the extrinsic curvature  8 9 , as it influences the

energy source term (see Equation (5.20)). As the previous appendices have shown how to calculate

arbitrary metric elements—and their derivatives—in terms of spacetime quantities of interest, we

show how to express  8 9 as well.

Begin with the definition of  8 9

 8 9 = −WU8 W
V

9
∇U=V . (A.12)
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Expanding ∇U=V yields

 8 9 = −WU8 W
V

9
(mU=V − =nΓnUV). (A.13)

Retaining nonzero terms from =nΓ
n
UV

and expressing the mixed component spatial metric in

terms of the delta function and normals WU
8
= XU

8
+ =U=8 yields,

 8 9 = −XU8 X
V

9
(mU=V − =0Γ

0
UV
) = (m8= 9 − =0Γ

0
8 9 ) = UΓ

0
8 9 . (A.14)

Observe the definition the Christoffel symbol,

ΓaU` =
1
2
6aV (6`V,U + 6UV,` − 6U`,V), (A.15)

leading to

Γ0
8 9 =

1
2
60V (6 9 V,8 + 68V, 9 − 68 9 ,V). (A.16)

Because the shift vector is zero in RGPS coordinates, all 680 = 680 = 0 simplifying Equation

(A.14),

 8 9 =
−U
2
60068 9 ,0 =

1
2U
68 9 ,0. (A.17)

This result provides a simple form for  8 9 in terms of the time derivative of the 68 9 elements of

the metric, which are provided in the previous tables. In particular, it depends on the spatial metric

term - , the position on the grid (ie. \ and q), and the time derivative of the spatial metric term

mC- . As outlined in O’Connor & Ott (2011), mC- can be analytically expressed

mC- = −4cAU-3dℎ,2EA , (A.18)

where we define EA as the magnitude of the radial component of the velocity measured by an

observer in the laboratory frame. Thus, this formulation of evolving spacetimes avoids any finite

differencing of the metric elements.
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A.4 Mass Integration

This Appendix outlines the mass integration procedure as the 1D vector of spacetime values

are calculated. As in GRHydro, but with V8 = 0 from RGPS coordinates, the vector of evolved

variables U has components

� =
√
Wd,, (A.19)

( =
√
W(dℎ∗,2E 9 − U101 9 ), (A.20)

g =
√
W

(
dℎ∗,2 − %∗ − (U10)2

)
− �, (A.21)

where√W, d, ℎ, %,, , and E are the determinant of the spatial metric, density, specific enthalpy,

pressure, Lorentz factor, and velocity as observed in an at rest laboratory frame. For a simulation

with arbitrary dimension these densitized evolved variables are averaged down to 1D profiles, so as

to follow the assumption that the spacetime is spherically symmetric.

In 1D, the hydrodynamic update follows,

mU
mC
+ 1
A2
mA2F8

mA
= S, (A.22)

for a vector of fluxes F8 and source terms S. For the 1D problem, after factoring out A2 terms

as in GR1D, √W = - , where - = 1/
√

1 − 2<(A)/A. Note - depends on the enclosed gravitational

mass and can be rewritten in terms of Equation (5.11) and Equation (5.14),

<(A) =
∫ (

dℎ∗,2 − %∗ +
√
W
√
W
ga<

)
3+ =

∫
4cA2(g + � + g′a< )/-3A, (A.23)

where we denote g′a< =
√
Wga< .
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Making use of the definition of - yields an implicit integral equation for mass for <(<, A) and

resulting differential equation for 3</3A |<
9

<(<, A) = 4c
∫

3A A2(g + � + g′a< )
√

1 − 2<(A)/A , 3<
3A

����<
8

= 4cA2(g + � + g′a< )
√

1 − 2<(A)/A.

(A.24)

After each hydrodynamic update, the values of (g + �) are known at the 8Cℎ cell center and

n+1 stage, or (g + �)n+1
8

. The neutrino quantity g′a< is used from the previous timestep, but will be

fully synchronized in a future code release. As the integration continues along the 1D domain, an

updated <(A)n+1
8

can be calculated using 4th order RK integration

<(<, A)n+18 = <(<, A)n+1
8−1 + <

RK4
8−1 + <

RK4
8−1/2. (A.25)

The three terms on the RHS correspond to the enclosed mass at the 8 − 1st cell center, the mass

in the right half of the 8−1st cell, and the mass in the left half of the 8th cell, respectively. A general

<RK4
9

is calculated as

<RK4
9 =

1
6
(:1 + 2:2 + 2:3 + :4), (A.26)

with corresponding : values

:1 =
3A

2
3<

3A

����< 9
9

, :2 =
3A

2
3<

3A

����< 9+0.5:1

9+1/4
, :3 =

3A

2
3<

3A

����< 9+0.5:2

9+1/4
, :4 =

3A

2
3<

3A

����< 9+:3

9+1/2
. (A.27)

Note for a given 3</3A | 9 (where 8−1/2 < 9 < 8 +1/2), (g +� + g′a< ) is assumed to be constant

across the entire cell.

With<(A)n+1
8

, -n+1
8

is obtained. Formultidimensional cases, the remapping procedure outlined

in Appendix A.1 or Appendix A.2 is then used to construct Wn+1
8 9

. The updated evolved variables

can then be undensitized with √Wn+1 for the con2prim transformation, or

�̂ = �/√Wn+1
, (̂ 9 = ( 9/

√
W

n+1
, ĝ = g/√Wn+1

. (A.28)
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A.5 Deriving Neutrino Quantities

A.5.1 Electron Fraction Neutrino Source Term

Begin with the conservation law for .4

∇` (d.4D`) = '0
.4
, (A.29)

which depends on a source term output from the neutrino leakage scheme '0
.4
. Expanding the

definition of the covariant derivative ∇` for a coordinate frame D` = , (1/U, E8) gives

mC

(
√−6 d,.4

U

)
+ mA (

√−6d,.4E8) =
√−6'0

.4
, (A.30)

where 6 is the determinant of the spacetime metric. Applying the identity √−6 = U√W and

simplifying yields the evolution equation for .4 in multiple dimensions

mC (�.4) + mA (U�.4E8) = U
√
W'0

.4
= 'a.4

. (A.31)

A.5.2 Momentum and Energy Neutrino Source Terms

To determine the neutrino contributions to the energy and momentum source terms, begin with the

4 vector

®@ = (&0
�
, &0

"G
, &0

"H
, &0

"I
). (A.32)

From O’Connor & Ott (2010), recall &0
�

is the total heating change due to neutrinos and

&0
"
= −m%a/mA is approximated by the gradient of the neutrino pressure. Here the subscripted

&0
"8

represent partial derivatives along the 8th direction, explicitly,

&0
"G

= −mA
mG

m%a

mA
= − sin \ cos q

m%a

mA
, (A.33)
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&0
"H

= − mA
mH

m%a

mA
= − cos \

m%a

mA
, (A.34)

&0
"I

= −mA
mI

m%a

mA
= − sin \ sin q

m%a

mA
. (A.35)

In the fluid rest frame (FRF), the four velocity can be described as D`(FRF) = (1, 0, 0, 0). We

select a radial vector (orthonormal to D`) described as =`(FRF) = (0, sin \ cos q, cos \, sin \ sin q).

In frame independent notation, this yields ®@ = &0
�
®D + &0

"
®=. To transform to the coordinate frame

(CF) the relevant orthonormal vectors become

®D = , (1/U, EG , EH, EI), (A.36)

and

®= = ,
√
E2
( E

2

U
, EG , EH, EI), (A.37)

where E2 = W8 9E8E 9 .

Expressing ®@ in the coordinate frame becomes

®@ =



,
U (&

0
�
+&0

"

√
E2)

,EG (&0
�
+&0

"
/
√
E2)

,EH (&0
�
+&0

"
/
√
E2)

,EI (&0
�
+&0

"
/
√
E2)


. (A.38)

The evolution equations then become

∇`) `a = @a + ®(MHD, (A.39)

(√−6) `8),` =
√−6@8 + ®(′MHD = U

√
W@8 + ®(′MHD, (A.40)
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where we group MHD relevant source terms in ®(′MHD. This expression yields the final source

terms in Equation (5.20):

S = √W ×



0

'a
.4
/√W

1
2U(

8:m9W8: + (8m9 V8 − �m9U +&a,�( 9 +&
a,"
( 9

U(8 9 8 9 − ( 9m9U +&a,�g +&a,"g
®0


. (A.41)

where the neutrino terms are explicitly,

&
a,�
( 9

= U,E 9&
0
�
, &

a,"
( 9

= U,E 9&
0
"
/
√
E2, (A.42)

for the momentum and

&
a,�
g = ,&0

�
, &

a,"
g = ,&0

"

√
E2, (A.43)

for the energy.

A.5.3 Neutrino Luminosities

Begin with the expression of the momentum of a neutrino in the FRF

®? = (�FRF, �FRF
G , �FRF

H , �FRF
I ), (A.44)

where �FRF is the total energy of the neutrino measured in the FRF and �FRF
8

is the neutrino

momentum along a given direction.

�FRF
G = −mA

mG
�FRF = − sin \ cos q�FRF, (A.45)

�FRF
H = − mA

mH
�FRF = − cos \�FRF, (A.46)
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�FRF
I = −mA

mI
�FRF = − sin \ sin q�FRF. (A.47)

Similar to the previous Appendix, the four velocity in FRF is D`(FRF) = (1, 0, 0, 0). Once again,

we select a radial vector described as =`(FRF) = (0, sin \ cos q, cos \, sin \ sin q), thus describing

the neutrino momentum as ®? = �FRF ®D + �FRF®=. In the coordinate frame

®D = , (1/U, EG , EH, EI), (A.48)

and

®= = ,
√
E2
( E

2

U
, EG , EH, EI). (A.49)

Consider an observer at rest in the CF described by ®* = (1, 0, 0, 0); the energy of the neutrino

measured by that observer is

�CF = −6`a?`*a . (A.50)

Simplifying this expression provides a simple translation between FRF and CF:

�CF = −600�
FRF(D0 + =0) = U, (1 +

√
E2)�FRF. (A.51)

This quantity is useful for calculating the luminosity of the neutrino production, which requires

integrating the energy output of the neutrinos over the computational domain which is expressed as

!a
CF
8 = 4c

∫ A

0

[
U(A′)
U(A)

]
[&eff,a8 (A

′) −&heat
a8
(A′)] [U(A′), (A′) (1 +

√
E(A′)2)]√WA′23A′, (A.52)

where the first term in brackets [] accounts for gravitational redshift, the second term ex-

presses the heating rates of the neutrinos, and the third term involves the transformation from FRF

calculations to the CF.

A.6 Magnetized Shock Tube Profiles

Below are the remaining four numeric baseline tests for magnetized shock tubes mentioned in

Section 5.5.2, with initial conditions specified in Table 5.2.
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Figure A.1: Primitive variables density, pressure, x-velocity, y-velocity, Lorentz factor, and y
component of the magnetic field (By) at C = 0.4 for the Balsara2 test problem.
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Figure A.2: Primitive variables density, pressure, x-velocity, y-velocity, Lorentz factor, and y
component of the magnetic field (By) at C = 0.4 for the Balsara3 test problem.
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Figure A.3: Primitive variables density, pressure, x-velocity, y-velocity, Lorentz factor, and y
component of the magnetic field (By) at C = 0.4 for the Balsara4 test problem.
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Figure A.4: Primitive variables density, pressure, x-velocity, y-velocity, z-velocity, Lorentz factor,
y component of the magnetic field, and z component of the magnetic field (Bz) at C = 0.55 for the
Balsara5 test problem.
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