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ABSTRACT

ANALYTICAL AND COMPUTATIONAL STUDY OF ELECTRON BUNCH
DYNAMICS

By

Xukun Xiang

This dissertation is centered on the analytical and numerical study of ellipsoidal electron

bunch dynamics. We are particularly interested in the focusing process of the probing

electron bunches in the ultrafast electron diffraction/microscopy system, so that we can

improve the temporal and spectral resolution of the ultrafast experiments.

More specifically, to understand the collective space charge effects throughout the bunch

evolution, we employed several analytic models to describe the bunch dynamics. We start

with an extension of the mean-field model using ordinary differential equations. Analysis

of this mean-field model leads to the identification of a longitudinal critical chirp, which

separates two regimes for particle trajectories for the longitudinal focusing of the bunches:

bounce-back, where the particles reverse their direction at the waist of the focusing process,

and cross-over, where the bunch experiences a singularity where the bunch width reduces to

zero. We show that time can be scaled by the initial plasma frequency, and the critical chirp

becoming dimensionless and solely depend on the initial bunch aspect ratio.

In order to study the emittance effect on the bunch dynamics, we introduce the self-

similar analytical (SSA) model, a statistical method describing the second order moments

dynamics to model the evolution of an ellipsoidal electron bunch. We also discussed its

linear chirp assumption, explaining how it is the key assumption that leads to the emittance

conservation according to the SSA model. We discuss the statistical nature of bunch emit-

tance noting that the space charge effect of the uniform density profile and of the Gaussian



profile are close to each other in the SSA model. The impact from a changing emittance is

captured by an additional term in the modified SSA model, which is then equivalent to the

Kapchinsky-Vladimirsky (K-V) envelope equation in accelerator physics. We point out that

the application of the statistical methods can extend beyond the uniform ellipsoidal bunch,

while the accuracy of the SSA prediction is mainly related to the discrepancy between the

actual density profile and the uniform density profile.

We present the Molecular Dynamics (MD) simulation results for the longitudinal focusing

process of uniform spheroidal electron bunches. The comparison of the longitudinal width

evolution between the MD simulations and the SSA predictions shows the impact of a vary-

ing emittance on bunch evolution. We propose two competing mechanisms for the change

of emittance throughout the compression process. The disorder-induced heating (DIH) in-

creases the emittance in both degrees of freedom while the difference in the SSA temperature

generates emittance transfer between degrees of freedom. In addition, the non-uniform den-

sity profile at the focal point introduces significant DIH that increases the emittance in both

the longitudinal and transverse directions, which can be a contributing factor for the Boersch

effect observed in bunched beams.
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Chapter 1

Introduction

The time scale of fascinating phenomena in the physics world ranges from millions of

years in cosmology to infinitesimally fractions of seconds in ultrafast phase-transitions and

nuclear reactions. [1,2] To truly understand the fundamental physics behind these intriguing

phenomena, we need the ability to record the evolution of these systems of interest at high

enough resolution in both the time and space domains. Particularly, resolving the atomic

motions throughout phase-transitions leads to the understanding of critical phase-transition

mechanisms in condensed matter physics [3–5]. To fully describe the phase-transitions with

a sub-picosecond time-scale, we need to have the ability to resolve the temporal resolution

at tens of femtoseconds.

1.1 The Ultrafast Electron Microscopy

In practice, many of ultrafast phase-transitions are explored experimentally using ultra-

fast microscopies with the so-called “pump-probe” scheme [6–11]. As the name suggests,

these experiments consist of two kinds of pulses interacting with the system of interest, the

pump pulse and the probe pulse. A pump pulse comes first as the perturbation to the system

of interest. With the excitation from the pump pulse, the system goes through the phase-

transition that we would like to explore. A probe pulse then interacts with the system at a

later time to produce a snapshot of the system at that specific delay time. This pump and
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probe process is then repeated numerous times with various delay times to obtain the time

evolution of the system throughout the phase-transition. In order to resolve these ultrafast

phenomena, both the pump and probe pulses need to be sufficiently short in time comparing

to the time-scale of the phase-transition process. In addition, for regular ultrafast micro-

scopies, the energy deposition of the pump and probe pulses are limited so that the system

is capable of going through the same phase-transition and recovering numerous times at a

reasonable repetition rate.

We are working with the ultrafast research group at Michigan State University, using a

femtosecond laser as the pump pulse to excite the system and the electron bunches as the

probe pulse to measure the system response throughout the phase-transition [12–17]. For

ultrafast electron microscopy (UEM), enough electrons are needed to generate a pattern with

good signal-noise ratio, which translates to roughly 105 to 107 electrons in one single probe

pulse for diffraction and 107 to 109 electrons for imaging. [1]

Compressing a bunch with such a high number of electrons introduces technological

hurdles as the space charge effects1 on the probing electron bunch are significant at specific

locations within the microscopy column due to the bunch’s huge electron density at those

locations [13–19]. Magnetic lenses are used to mitigate the space-charge effect induced

expansion in transverse direction, while the longitudinal focusing of the electron bunch is

achieved using radio frequency (RF) cavities. The schematic design of the beamline is

illustrated in Fig. 1.1(a) and further details can be found in the publications from the Ruan

Group [3, 15,18,20].

1Here the space charge effect is referring to the strong Coulomb interaction between electrons within the
bunch.
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Figure 1.1: Ultrafast electron beam column with optics for controlling electron bunch phase
space evolution. (a) Schematic drawing of a prototype UEM beamline. (b)–(d) The phase
space evolution in the injector portion of the beamline (enclosed in dashed line). (e) The
conceptual outline of the atomic grating approach to characterize the energy spread of the
electron bunches. Adapted from ”Active control of bright electron beams with RF optics for
femtosecond microscopy” by Williams, J. et. al., 2017, Structural Dynamics, 4(4), 044035.
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1.2 Importance of our analytical modeling

As the title of this dissertation suggests, we are interested in the analytical modeling for

the evolution of the probing electron bunch, which is critical to the design of next genera-

tion technologies. Simple analytic models are particularly helpful for improving instrument

design.

We focus our analytical study on the uniform ellipsoidal electron bunch, which is an ideal

theoretical object in systems governed by gravitational or Coulomb interactions [21]. The im-

portance of the uniform ellipsoidal bunch comes from its well-behaved linear self-field, which

leads to the maintenance of the uniform charge density profile as the bunch evolves [22].

In accelerator physics, such a uniform distribution is a prerequisite in employing techniques

such as emittance compensation [23] as well as providing the basis of other theoretical anal-

yses [17]. It has long been proposed that such a uniform ellipsoid may be generated through

proper control of the transverse profile of a short charged-particle bunch emitted from a

source into vacuum [21,24–26], and experimental results have shown that an electron cloud

emitted from a photocathode and rapidly accelerated into the highly-relativistic regime can

develop into a final ellipsoidal profile characteristic of a uniform charge distribution [27].

Although we have numerical simulations to illustrate the detailed phase-space distribution

of the electron bunch throughout the evolution, analytical study such as the methods in this

dissertation provides valuable insights about the underlying physics behind the interesting

behavior of the bunches. In addition, the new concepts from the analytical modeling are

helpful to better understanding emittance evolution and the Boersch effect, which is crucial

to improve the performance of ultrafast experiments.
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1.3 The Existing analytical models

Currently, the second-order statistics and the corresponding derivative statistics (namely,

the rms emittance) are the key measurements for improving the performance of the probing

electron bunch. The spatial variance in the longitudinal direction is related to the pulse

duration of the electron probe, which is essential to the temporal resolution of the probe

measurement. The variance of longitudinal momentum is another key second-order statistics,

determining the spectral resolution of the probing electron bunch. Therefore, the existing

analytical methods are oriented to present their predictions for the bunch evolution using

the trajectories of those second order statistics.

The difference in calculation perspective divides the existing models into two categories:

the mean-field theory (MFT) and the statistical methods. The MFT assumes a uniform

density profile and calculates the time derivatives of the bunch statistics based on that as-

sumption, i.e. the uniform density profile is the cornerstone of the bunch evolution in the

MFT. On the contrary, the statistical methods propagate the electron bunch evolution from

the time-derivatives of those second-order bunch statistics. The force related terms in the

time-derivatives of the bunch statistics are calculated based on the assumption/estimation

of the transient density profile, which is not restricted to one specific type of function. For

example, the density profile can be a uniform bunch for Kapchinsky-Vladimirsky (K-V)

envelope equations or a Gaussian bunch for the Analytic Gaussian (AG) model. Further-

more, the density profile is not required to retain the same type during the evolution as

the expression of the force is one of the components to calculate the time derivatives. The

driving factor in the statistical methods is the time derivatives of the bunch statistics, not

the specific density profile. Here is the brief overview of the three existing models that we
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will discuss in detail later.

The mean-field theory has been utilized in the astrophysics and Coulomb explosion lit-

erature where the mean-field effects of a uniform ellipsoidal electron bunch yield ordinary

differential equations for the bunch statistics. Specifically, Lin et al. developed a model

for gravitational collapse of a spheroidal ellipsoid that could be written as a system of dif-

ferential equations for the longitudinal and transverse width of the bunch [28]. Similar

techniques regarding the repulsive electrostatic force between the electrons were developed

to model Coulomb explosion from rest [22, 29], which is similar to a time reversed version

of the gravitational collapse. Both techniques require a uniform ellipsoid throughout their

evolution.

Michalik and Sipe introduced the Analytic Gaussian (AG) model that predicts not only

the spatial width evolution but also the full phase space evolution [30–32], with the assump-

tion that the bunch retains its Gaussian density profile throughout the evolution. As we

will discuss in detail later in Sec.3.3.2, the AG model can be considered as an intermediate

approach between the MFT and the statistical methods. Since AG’s Gaussian density pro-

file uses the three second-order statistics as parameters, the formulation of the AG model

appears to focus on the dynamics of the three bunch statistics while the original derivation

of the AG model is more similar to that of the MFT.

As an example of the statistical methods, the well-established Kapchinsky-Vladimirsky

(K-V) envelope equations were initially developed to describe the evolution of uniform con-

tinuous beams [33] in the accelerator physics community. Sacherer provided a simple perspec-

tive which showed that the K-V envelope equations could be derived from basic statistical

considerations with applications of the mean-field force from a uniform distribution [34].

The mathematical form of both the MFT and the AG model can also be derived from the
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K-V envelope equations with similar considerations of unifrom or Gaussian density profile,

respectively [35].

1.4 Overview

The central focus of this dissertation is to gain more insight into the evolution of the

probing electron bunch from studying the analytical models and numerical simulations. Here

is the detailed structure of this dissertation.

In Chapter 2, we overview the mean-field theory (MFT) for studying the compression

process of uniform ellipsoidal electron bunches. MFT provides the expression for electrostatic

potential inside uniform and Gaussian ellipsoidal bunches, as well as the evolution prediction

for zero-emittance uniform bunches. C.C. Lin [28] and Grech et. al., [22] first proposed the

MFT formalism for uniform bunch evolution from rest. We extend this model by adding a

linear chirp. As a result of this modification, we propose a method that enables researchers

to study the crossover phenomena of bunch focusing and its effects on the evolution of

ellipsoidal electron bunches.

In Chapter 3, we use statistical methods to model the evolution of an electron bunch,

particularly a self-similar analytical model. Statistical methods predict the evolution of

ellipsoidal bunches through the time derivatives of bunch statistics, which overcomes the

limitation of MFT and the AG model assumptions of the bunch density distribution profile.

We propose the self-similar analytical model, which builds on the MFT and the Analytic

Gaussian model. This new model and its expanded model contributes to the field, as it in-

cludes the effect of varying emittance on the evolution of electron bunches. We also discussed

the relationship between the SSA model and the K-V envelope equations.
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In Chapter 4, we compare the predictions of the SSA model to numerical simulations

for ellipsoidal bunch compression. In particular, we discuss the impact of varying emittance

on bunch evolution and our understanding of Boersch effect. Moreover, we developed a

simulation code, using it in the electron bunch compression process.

Chapter 5 presents the conclusions and disucssion. In particular, we discuss the directions

for future research, such as developing analytic models for emittance growth and the Boersch

effect, given the importance of these two concepts on bunch evolution.
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Chapter 2

Mean-field theory for dynamics of

ellipsoidal electron bunches

In this chapter, we propose a mean-field theory (MFT) to describe evolution of an ellip-

soidal probing electron bunch in ultrafast experiments. We first review the mean-field theory

for uniform ellipsoidal bunches and then we discuss the evolution of a Gaussian bunch. We

conclude this chapter by discussing the underlying assumptions of the MFT such as the

linearity assumption and self-similar evolution.

2.1 Mean-field Theory for a uniform spheroidal bunch

For modeling electron bunch evolution, the majority of existing UEM literature discusses

uniform distributions, which stems from general potential theories regarding both gravita-

tional [28] and Coulomb interactions [21,22]. The advantage of working with uniform bunch

dynamics is that they evolve self-similarly. In other words, the uniform bunch stays uniform

throughout the evolution. This self-similar evolution greatly simplifies the modeling process

and the bunch evolution can be captured by tracking the bunch size parameter in each di-

rection. The self-similar evolution comes from the linear self field inside the uniform bunch.

As Lin et. al, pointed out in their paper for gravitational collapse [28], the essence is that

the potential within a uniform spheroid is quadratic in Cartesian coordinates, i.e., the self
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field linearly depends on the spatial position. For Coulomb interactions, in electron bunches,

a similar idea was applied to study Coulomb explosion from rest with zero emittance and

achieved good agreement with numerical simulations [22,29].

To provide necessary context for understanding the MFT, we first review the non-

relativistic MFT for a uniform spheroidal bunch, and demonstrate how linear initial chirps,

i.e. the linear correlation between momentum and position, can be added into the model to

describe the bunch focusing process. Here, the bunch focusing is referring to the temporal

compression of the probing electron bunch by an radio-frequency(RF) cavity, or a transverse

compression by a magnetic focusing lens along the beamline. Also, details about the initial

conditions are examined, and the discussion naturally leads to the identification of a critical

chirp that demarcates two qualitatively different regimes of bunch behavior according to

MFT: “bounce-back” where electrons reverse their motion and never cross the bunch center

and “cross-over” where electrons cross the bunch center.

2.1.1 Mean-field theory for a uniform ellispoidal bunch

The mean-field theory we are referring to here, treats the electron bunch as an ideal ho-

mogeneous continuum object. This simplification can be considered as taking the continuum

limit of the actual bunch consisting of a finite number of discrete electrons in the experiments

and simulations, i.e. MFT is essentially modeling a bunch with N identical particles where

N → ∞ and each particle carries charge amount Q/N , with Q being the total charge of

the entire bunch. Thanks to this simplification, all the nice features of mean-field theory

are applicable to the uniform electron bunch, while the limitation of this simplification will

be discussed later. The following derivation of the Coulomb potential and field for uniform

ellipsoids are generally based on Chapter 2 in MacMillan’s book [36] for the gravitational
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interaction.

The surface of a given ellipsoid with semi-axes (a, b, c) is defined by equation:

ξ2

a2
+
η2

b2
+
ζ2

c2
= 1 (2.1)

Let the interior point for which the potential is to be computed be P (x, y, z). On taking P

as the origin of a spherical coordinates system (ρ, ϕ, θ) with the transformation:

ξ = x+ ρ cosϕ cos θ (2.2a)

η = y + ρ cosϕ sin θ (2.2b)

ζ = z + ρ sinϕ (2.2c)

and the corresponding charge element

dq = ρcρ
2 cosϕdϕdθdρ (2.3)

with the volume charge density ρc = n ·e (typically n is the electron number density). Then,

the electrostatic potential at point P (with respect to the potential zero point at infinity) is

expressed as:

V (x, y, z) =
ρc

4πε0

∫
E

dq

ρ
= κ

∫ +π
2

−π2

∫ 2π

0

∫ ρ1(θ,ϕ)

0
ρ cosϕdϕdθdρ (2.4)

We substitute κ = ρc
4πε0

to simplify the derivation.

The upper limit ρ1(θ, ϕ) of the integration with respect to ρ is a function of θ and ϕ,

since the integration is from P to a point on the surface of the ellipsoid. So, we can insert
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Eq. 2.2a into Eq.2.1 for ρ1 as:

Aρ2
1 + 2Bρ1 + C = 0 (2.5)

where

A =
cos2 ϕ cos2 θ

a2
+

cos2 ϕ sin2 θ

b2
+

sin2 ϕ

c2
(2.6a)

B =
x cosϕ cos θ

a2
+
y cosϕ sin θ

b2
+
z sinϕ

c2
(2.6b)

C =
x2

a2
+
y2

b2
+
z2

c2
− 1 (2.6c)

After a lengthy derivation,1 we can have

V = κ

∫ +π
2

−π2

∫ 2π

0

(
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

)
cosϕdϕdθ

A2

− κ

2
C

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A

(2.7)

To simplify the above expression, one may use the following:

W =
κ

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
(2.8)

The simplified form of the potential then reduces to:

V =
1

a

∂W

∂a
x2 +

1

b

∂W

∂b
y2 +

1

c

∂W

∂c
z2 − CW

=

(
1

a

∂W

∂a
− W

a2

)
x2 +

(
1

b

∂W

∂b
− W

b2

)
y2 +

(
1

c

∂W

∂c
− W

c2

)
z2 +W

(2.9)

Since W is a function of the semi-axes (a, b, c), then so are all of its derivatives. Therefore,

the coefficients of the quadratic term x2, y2 and z2 are functions of a, b, and c only. Also,

1The detailed derivation can be found in the Appendix
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W is the potential at the center of the ellipsoid if taking P (x, y, z) = (0, 0, 0). W can be

further reduced to the following form,2

W = πκabc

∫ ∞
0

ds√
(a2 + s)(b2 + s)(c2 + s)

. (2.10)

Thus the term related to the derivative of W with respect to a reads:

1

a

∂W

∂a
− W

a2
=
πκabc

a2

∫ ∞
0

∂a(a2 + s)−
1
2

∂a
− 1√

a2 + s

 ds√
(b2 + s)(c2 + s)

= −πκabc
∫ ∞

0

1

a2 + s

ds√
(a2 + s)(b2 + s)(c2 + s)

(2.11)

Therefore, the potential inside of a uniform ellipsoidal electron bunch may be expressed as:

V (x, y, z) =
ρc
4ε0

abc

∫ ∞
0

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds√

(a2 + s)(b2 + s)(c2 + s)

(2.12)

with the zero point of potential at infinity.

The corresponding electrostatic field at the interior point P (x, y, z) is,

~E(x, y, z) = Exx̂+ Eyŷ + Ez ẑ (2.13)

with x̂, ŷ, and ẑ representing the unit vectors, respectively. The components of the field can

2The detailed derivation can be found in the Appendix
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be represented by the following equations:

Ex(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

ds

(a2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14a)

Ey(x, y, z) = y · ρcabc
2ε0

∫ ∞
0

ds

(b2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14b)

Ez(x, y, z) = z · ρcabc
2ε0

∫ ∞
0

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(2.14c)

Specifically for spheroids, we introduce the radial coordinate, r, to take advantage of the

rotational symmetry of spheroids. The radial coordinate r is expressed as:

r =

√
x2 + y2 (2.15)

Although the detailed calculations below are for prolate spheroids (a = b < c), similar

results are valid for general, uniformly charged ellipsoidal bunches. We can then rewrite the

electrostatic field (Eq.2.14) as a linear function of the cylindrical coordinates, as follows:

~E(r, z) = Er(r)r̂ + Ez(z)ẑ (2.16)

with r̂ and ẑ representing the radial and longitudinal unit vectors, respectively, and

Er(r) =
ρc
2ε0

ξr(α) · r (2.17a)

Ez(z) =
ρc
2ε0

ξz(α) · z (2.17b)
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where the spheroid aspect ratio α is defined as:

α =
a

c
(2.18)

and where the corresponding geometry coefficients are

ξr(α) = α2
∫ ∞

0

ds

(α2 + s)2(1 + s)1/2
(2.19a)

ξz(α) = α2
∫ ∞

0

ds

(α2 + s)(1 + s)3/2
(2.19b)

Based on Eq.2.17 to 2.19, we can get the equations of motion through the aspect ratio

of the bunch, and the entire bunch evolution history can be obtained with proper initial

conditions.

2.1.2 Self-Similar Evolution and Equations of Motion

Before we discuss the equations of motion for the bunch evolution, we need to discuss

the self-similar assumption that enables this simple MFT formalism. The linear dependence

of the electrostatic field on spatial position results in the preservation of bunch uniformity

provided that the initial momentum-position profile does not start out non-linear. In other

words, the charge density must be homogeneous across the bunch, while the bunch size and

aspect ratio evolves. This self-similar evolution greatly simplifies our analysis as the formu-

lation presented in preceding sections always applies to the bunch throughout the process,

and the evolution is reduced to the determination of two degrees of freedom. Specifically, the

temporal evolution of the entire bunch can be represented by the evolution of two unit-less

scaling functions, R(t) and Z(t). Since these formulas hold, the trajectory of any particle
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with initial positions (r0, z0) inside the uniform spheroid at a later time t can be expressed as

by (r0R(t), z0Z(t)), where R and Z are independent of the arbitrary initial position (r0, z0).

Thus, the parameters for describing the bunch change according to:

• the semi-axes of the spheroids as (a, c) = (a0R, c0Z),

• the transient aspect ratio as α(t) = α0 · RZ ,

• the charge density from conservation of charge3 as ρc(t) =
ρc0
R2Z

=
n0e

R2Z
,

• the longitudinal width as σ2
z(t) = σ2

z0 · Z
2.

In the non-relativistic limit, each individual electron [j] with initial position (r0, z0)

follows the Newton’s second law as:

d2

dt2
(r0R) =

eEr(α)

me
=

n0e
2

2ε0me

ξr(α)

R2Z
· (r0R) (2.20a)

d2

dt2
(z0Z) =

eEz(α)

me
=

n0e
2

2ε0me

ξz(α)

R2Z
· (z0Z) (2.20b)

Similarly, the bunch evolution then follows the equations of motion (EOM) in such an electric

field, which can be reduced to the following two dimensionless ordinary differential equations

(ODEs):

d2R

dτ2
=
ξr(α)

RZ
(2.21a)

d2Z

dτ2
=
ξz(α)

R2
(2.21b)

3Ntotal = ρc0 · (4π/3)a2
0c0 = ρc(t) · (4π/3)a2c
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with unit-less reduced time τ ,

τ = t ·

√
e2n0

2ε0me
= t · Ω0 (2.22)

initial electron number density n0, and electron mass me. Notice that first, the time scaling

factor Ω0 =
ωp0√

2
, where ωp0(n0) =

√
e2n0
ε0me

is the initial plasma frequency. Second, bear in

mind that the geometry coefficients ξr and ξz are solely dependent on the transient aspect

ratio α rather than specific values of a and c.

This means that starting with the same initial conditions for the ODE, bunches with

the same initial aspect ratio α0 but with different initial densities n0, will have behaviors

which only differ by the time scaling factor Ω0 determined by the initial density n0. The

ones with higher density evolve faster, but the evolution trajectory reduces to the one with

lower density after the evolution time is scaled according to the initial Ω0.

2.1.3 Initial condition and Coulomb Explosion

We present the initial condition for solving uniform electron bunch evolution with the

ODE described above. In order to achieve this, we rely on one particular example from Grech

et al., [22], which begins with the initial conditions corresponding to a uniform spheroidal

electron bunch expanding under the Coulomb force from rest, a phenomenon often referred

to as Coulomb explosion.
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According to the definition of the two scaling functions, we can have

R(τ = 0) = 1 (2.23a)

Z(τ = 0) = 1 (2.23b)

dR

dτ

∣∣∣∣
τ=0

= 0 (2.23c)

dZ

dτ

∣∣∣∣
τ=0

= 0 (2.23d)

Specifically, Eq.2.23a and Eq.2.23b represent the initial scaling of the spheroid and are by

definition equal to 1. Meanwhile, Eq.2.23c and Eq.2.23d represent the initial change rate of

the scaling function R and Z, or the initial velocity of the expansion. As the bunch starts

from rest in this Coulomb explosion calculation, these rates equal to zero.

Using these initial conditions, the predictions derived from the ODEs (Eq. 2.21) are found

to be in good agreement with molecular dynamics (MD) simulations for time-dependent

energy distribution and particle-in-cell (PIC) simulations for temporal spheroid radii evolu-

tion [22,29].

2.1.4 Critical Chirp ω∗c , Crossover and Bounce-back

In addition to setting the initial velocity of the scaling faction (Eq.2.23c and Eq.2.23d)

to zero for bunches starting from rest, we can also assign non-zero initial velocities,4 for

4Instead of being any function of r or z
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bunches start with initial linear chirp. For example, we can have initial velocities as:

dR

dτ

∣∣∣∣
τ=0

= 0 (2.24a)

dZ

dτ

∣∣∣∣
τ=0

= ω∗ (2.24b)

where ω∗ is proportional to a longitudinal linear chirp. By linear chirp, we mean a linear cor-

relation between momentum and position. Specifically, the linear chirp in MFT means that

we are assuming for each individual particle, the longitudinal momentum pz is proportional

to its longitudinal position z.

The addition of this longitudinal linear chirp enables MFT to model bunches with a linear

chirp in the longitudinal direction, such as the probing electron bunch after a longitudinal

focusing lens, e.g. an RF cavity. As such, the initial momentum in the longitudinal direction

of any electron [j] with its longitudinal position z[j] is expressed as:

pz[j] = Cz · z[j] = me · (ω∗Ω0 · z[j]) (2.25)

where Cz is the actual linear chirp in simulations and experiments. We refer to ω∗ as reduced

linear chirp because it serves as a linear chirp in the dimensionless EOM and scales from

the actual chirp in experiments only by Ω0 as a result of the difference in the reduced time

τ . If the initial reduced chirp is negative, Z will initially decrease, i.e. the bunch will be

compressed in the longitudinal direction. As ω∗ is proportional to the actual chirp via a

parameter entirely dependent on density, we drop the “reduced” from ω∗c when we refer to

only the reduced chirp, but we keep the “reduced” when we are comparing the reduced chirp

in the model with the actual chirp from the experiments and simulations.
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The initial bunch density determines the time scale of the evolution. Therefore, the

categorization of the focusing process of a uniformly charged spheroid is entirely determined

by the initial reduced chirp and the initial aspect ratio. The effect of aspect ratio on bunch

evolution has been well studied [22]. Therefore, we examine the impact of the reduced chirp

on the bunch focusing process at a pre-specified initial aspect ratio, α0 = 10
75 .

We define the critical time, τc, as the time when the bunch reaches its minimum width,

min(σ2
z) during the focusing process. As Eq. 2.21b is only dependent on 1

R2 , which is finite

throughout our investigation, Z can become zero at some point in the compression process if

the initial chirp provides sufficient focusing power to overcome the repulsive Coulomb force.

We call the smallest magnitude of the initial reduced chirp that is able to compress Z to

zero (i.e. min(σ2
z) = 0) the critical reduced chirp, ω∗c . This critical reduced chirp is also

unitless, just as all the other quantities in the EOM and the initial condition. That means

uniform spheroidal bunches with the same aspect ratio share the same reduced critical chirp

as we will discuss later in this section. The focusing process then falls into two categories

characterized by whether min(σ2
z) reaches zero. As shown in Fig.2.1, for ω∗ < ω∗c , the

longitudinal width of the bunch is never zero. However, there is a time at τc, at which the

bunch size reaches a minimum during the compression process. When τc = 0 then ω∗ = 0,

and it increases with ω∗ increasing. This trend continues until the critical reduced chirp is

reached where the minimum width reaches zero and the corresponding critical time τc goes

to infinity (τc → ∞). When compressed by a chirp that is larger than the critical chirp,

the bunch will overcome the Coulomb repulsion and be compressed through a longitudinal

crossover, as electrons starting from one side of the bunch cross the center of mass and then

begin to continue moving on the other side without changing direction of motion. We refer

to this type of process as the “cross-over” regime. In this regime, further increasing the chirp
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Figure 2.1: Longitudinal width evolution Z(τ) of prolate spheroids with (α0 = 10/75) driven
by different initial chirps in numeric solutions of MFT ranging from below the critical chirp
(−0.35ω∗c ) to well above (−2.0ω∗c ). The sub-graph shows the dependence of minimum width
on initial reduced chirp. For this particular α0, the critical value ω∗c (red dot), divides the
focusing into bounce-back and crossover regimes.

will decrease the critical time for the bunch to reach its minimum width, but the minimum

width of the bunch during such compression will always be zero. In contrast, we call the

regime below critical chirp the “bounce-back” regime as the particles follow trajectories that

start out towards the center of mass and reverse their direction after the bunch reaches the

minimum width, without any particle crossing.

The linearity of MFT (linear initial condition and linear self-field) indicates that for a

bunch in the cross-over regime, all crossover incidents happen simultaneously across the entire

bunch at the critical time (τc), creating a singularity in the EOM where the longitudinal
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width goes to zero. To work through this singularity while numerically solving the EOM,

we use a small time step to propagate the EOM until Z falls below zero. Then, we stop the

calculation and flip the value of both the longitudinal position scaling, Z, and the longitudinal

momentum, pz to positive. The same EOM are then used to integrate the parameters for the

expansion after crossover. In effect, this two-step process skips the singularity by infinitesimal

step size in time. This two-step process is equivalent to assuming that the change of the

bunch in the transverse direction is negligible during the infinitesimal time step around τc,

which is validated by the fact that the transverse change rate or velocity is not divergent

throughout the crossover. In addition, this two-step process also implies that in the cases

where Z passes through zero, momentum does not change sign.

Analogous to the linear chirp we added in longitudinal direction, a radial chirp can also

be introduced by altering the radial initial velocity in Eq.2.23c to a non-zero value. The

linear chirp in the radial direction may be combined with the longitudinal chirp to model

bunches compressed in both degrees of freedom simultaneously. However, in contrast to

the longitudinal direction, MFT predicts that there is no such critical chirp in the radial

direction. This occurs because the change in radial velocity is proportional to the inverse

of R from Eq.2.21, which diverges as the bunch is compressed radially, preventing R from

reaching zero. Compressing the bunch radially is equivalent to compressing the x̂ and ŷ

simultaneously, and in this case there is only the bounce-back regime in the radial direction.

Here, we focus on the longitudinal focusing where both bounce-back and cross-over regimes

are accessible in MFT.

The (longitudinal) critical reduced chirp is an interesting concept that is important but

new to the community. It is important because the bunch evolution is sensitive to emittance,

especially when compressed by the critical chirp as we will show in next chapter. One
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important feature of the critical reduced chirp ω∗c , is its exclusive dependence on initial

aspect ratio α0, which stems from the governing EOM solely depending on the aspect ratio.

In Fig. 2.2, we present the reduced critical chirp ω∗c as a function of the initial aspect ratio

10 2 10 1 100 101 102 103 104

0

0.01

0.10

1.00

2.00

c

0 = 10/75

Figure 2.2: Dependence of critical reduced chirp ω∗c on initial chirp α0, with a horizontal
asymptote of ω∗c (α0 →∞) = 2.

α0. Specifically, note that for large α0, we will always have α � 1, where the geometry

coefficients ξr and ξz in the EOM can be approximated in closed forms as [22]:

ξr(α→∞) ' π

2α
→ 0 (2.26a)

ξz(α→∞) ' 2− πα2

(α2 − 1)3/2
→ 2 (2.26b)
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The EOM reduces to the following:

R ' 1 (2.27a)

d2Z

dτ2
= 2 (2.27b)

In other words, the trajectory of Z reduces to a constant acceleration. Therefore, the corre-

sponding critical reduced chirp for large initial aspect ratio is simply:

Z(t) = Z0 − ω∗c t+
1

2
ξz(∞)t2 ⇒ ω∗c = 2 (2.28)

as we can see from Fig. 2.2.

2.2 Coulomb Potential inside a Gaussian Bunch

In addition to uniform bunches, researchers have been studying Gaussian density profiles

of electron bunches [21] for various reasons. Gaussian bunches are appealing because the

laser pulses generating the electrons from photo-cathodes generally have Gaussian profiles.

In addition, the rich techniques available for Gaussian integrals provide a promising path

toward a closed-form analytical model, which is also appealing to the theoretical community.

For the Gaussian bunch we are interested in, we assume that the charge density at point

(x, y, z) depends on its scaling variable [37]:

λ(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
(2.29)

where the semi-axes (a, b, c) equal the standard deviation of the entire bunch in each direction
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(σx, σy, σz). Then, the charge density profile can be expressed as a function of λ:

ρ(λ) = ρ(
x2

a2
+
y2

b2
+
z2

c2
) =

∫
dλ · f(λ) · δ(λ− x2

a2
− y2

b2
− z2

c2
) (2.30)

Accordingly, a Gaussian bunch can be modeled with:

fG(λ) =
Q

π3/2abc
e−λ (2.31)

where Q is the total charge of the bunch. In other words, this bunch is constructed by a

series of so-called homogeneous “scaled” shells, where the shells are bounded by ellipsoids

with varying λ and the local volume charge density is the same within each shell with the

value fG(λ).

We start with the contribution to the Coulomb potential from one single shell. We then

integrate the contributions of each shell over the entire bunch yielding the Coulomb potential

and field at any interior point of a Gaussian bunch. To conclude, we discuss the numerical

strategy to model the Gaussian bunch evolution.

2.2.1 Potential Contribution from one single shell

We already have the potential for interior points P (x, y, z) of a uniform ellipsoid of semi-

axes (a, b, c) with density ρc from Eq. 2.12. Now, consider a similar ellipsoid of the same

volume charge density ρc with scaled semi-axes (
√
λa,
√
λb,
√
λc). Accordingly, the surface

of this scaled ellipsoid is defined by:

x2

a2
+
y2

b2
+
z2

c2
= λ
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We refer to this kind of arrangement as “similar and similarly placed” ellipsoids. Then, if

Ex2 is the x-component of the self field at P (x, y, z) then,

Ex2(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

λ3/2ds

(λa2 + s)
√

(λa2 + s)(λb2 + s)(λc2 + s)
. (2.32)

In this case, the integration variable can be substituted with τ = s/λ, yielding the same

electrostatic field as in Eq.2.17:

Ex2(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

dτ

(a2 + τ)
√

(a2 + τ)(b2 + τ)(c2 + τ)
= Ex(x, y, z) (2.33)

and similarly, for Ey2 and Ez2. Therefore, the field at any point of the vacuum space inside

such homogeneous shell, which is bounded by two scaled and similarly placed ellipsoids,

is zero. Meanwhile, if λ > 1, the potential in the hollow space has the constant value

V = (λ− 1)W , where W is defined in Eq. 2.8.

If λ is very close but just slightly larger than 1, then the shell can be considered as a thin

shell. Although the charge volume density is homogeneous within this thin shell, the surface

charge density is not uniform, because the thickness is not a constant across the thin shell.

The thickness of any point of the shell is proportional to the distance h from the center to

the tangent plane at that point [38], which can be expressed as:

h(x, y, z) =

x2

a2 + y2

b2
+ z2

c2√
x2

a4 + y2

b4
+ z2

c4

=
1√

x2

a4 + y2

b4
+ z2

c4

(2.34)
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Therefore, the surface charge density on the shell reads:

σ(x, y, z) = lim
λ→1

ρc ·
[
(λ1/2 − 1) · h(x, y, z)

]
= lim
dλ→0

1
2 · ρc · dλ√
x2

a4 + y2

b4
+ z2

c4

(2.35)

Meanwhile, the surface charge density for a charged ellipsoidal conductor with the same

semi-axes (a, b, c) shares the same form as:

σ =
Q

4πabc

(
x2

a4
+
y2

b4
+
z2

c4

)−1
2

(2.36)

with Q being the total charge on the conductor [38,39]. The similarity in the surface charge

distribution suggests that5 we can use the existing potential and field expressions of a charged

ellipsoidal conductor for our homogeneously charged thin shell. With a total charge Qλ on

the homogeneous thin shell λ in our Gaussian bunch6 reads:

Qλ = lim
dλ→0

ρ(λ)dV = 2πabc · lim
dλ→0

ρ(λ)λ1/2dλ (2.37)

Therefore, the contribution from any thin shell λ to the Coulomb potential at a point of

interest Pe(xe, ye, ze) can be modeled as:

φλ(xe, ye, ze) =


1

4πε0

Qλ
2

∫∞
ξ

dξ
Rλ(ξ)

λe ≥ λ

1
4πε0

Qλ
2

∫∞
0

dξ
Rλ(ξ)

λe < λ

(2.38)

5In fact, the surface charge density on the ellipsoidal conductor is proportional to the fourth root of the
total curvature of the surface. A detailed discussion can be found in [38]

6We are using the scaling variable λ of the inner surface of the shell from Eq.2.29 to designate each thin
shell across our Gaussian bunch
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with the corresponding Rλ(ξ)

Rλ(ξ) =
√

(λa2 + ξ)(λb2 + ξ)(λc2 + ξ) = λ3/2R(
ξ

λ
) (2.39)

and the lower limit of integration in ξ for exterior point cases comes from the largest root of

the following equation:

x2
e

λa2 + ξ
+

y2
e

λb2 + ξ
+

z2
e

λc2 + ξ
= 1 (2.40)

In other words, when the scaling variable λe of Pe:

λe = λ(xe, ye, ze) =
x2
e

a2
+
y2
e

b2
+
z2
e

c2
(2.41)

is larger than λ, the scaling factor of the thin shell, Pe is an exterior point and the lower

limit of integration is the corresponding ξ from Eq.2.40. While if λe is smaller than λ, then

Pe is an interior point and the lower limit of integration is zero.

2.2.2 Potential at an interior point of a Gaussian bunch

The potential at Pe due to the entire Gaussian bunch can be obtained by integrating the

corresponding contribution over all the thin shells, as:

φ(xe, ye, ze) =
∑

φλ<λe +
∑

φλ>λe

=
abc

4ε0

∫ λe

0
ρ(λ)λ1/2dλ

∫ ∞
ξ(λ)

dξ

Rλ(ξ)
+
abc

4ε0

∫ ∞
λe

ρ(λ)λ1/2dλ

∫ ∞
0

dξ

Rλ(ξ)

=
abc

4ε0

∫ ∞
0

ρ(λ)λ1/2dλ

∫ ∞
ξ(λ)

dξ

λ3/2R(ξ/λ)

=
abc

4ε0

∫ ∞
0

ρ(λ)dλ

∫ ∞
t(λ)=ξ(λ)/λ

dt

R(t)

(2.42)
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Here the relationship between t and λ for point Pe can be expressed as:

λ(xe, ye, ze; t) =
x2
e

a2 + t
+

y2
e

b2 + t
+

z2
e

c2 + t
(2.43)

derived from Eq. 2.40. The corresponding region of integration is shown as the colored area

in Fig. 2.3.

e

t=
(

)/

t( )

Figure 2.3: t(λ) and integration region in blue. Notice that for λ > λe, we have t = 0 as Pe
is an interior point of those shells

In order to take the advantage of our knowledge about the charge distribution function

ρ(λ), we interchange the order of integration:

φ(xe, ye, ze) =
abc

4ε0

∫ ∞
0

ρ(λ)dλ

∫ ∞
ξ(λ)/λ

dt

R(t)
=
abc

4ε0

∫ ∞
0

dt

R(t)

∫ ∞
λ(t)

ρ(λ)dλ (2.44)

assuming the potential is zero at infinity. If the potential is normalized such that the zero
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point of the potential is at the center of the ellipsoid, then the potential can be written as:

φ(xe, ye, ze) = −abc
4ε0

∫ ∞
0

dt

R(t)

∫ λ(t)

0
ρ(λ)dλ (2.45)

For our Gaussian bunch, we insert the charge density profile as Eq. 2.31:

ρ(λ) =
Q

π3/2abc
e−λ (2.46)

into Eq. 2.44. Therefore, the potential expression for an interior point of a Gaussian bunch

reads:

φ(xe, ye, ze) =
abc

4ε0

Q

π3/2abc

∫ ∞
0

dt

R(t)

∫ ∞
λ(t)

e−λdλ

=
Q

4π3/2ε0

∫ ∞
0

exp

[
− x2

e

a2 + t
− y2

e

b2 + t
− z2

e

c2 + t

]
dt

R(t)

(2.47)

This expression is consistent with the existing literature [37]. In addition, the potential on

an interior point of a uniform bunch in Eq. 2.12 can be reproduced as we take ρ(λ) to a

constant ρc in Eq. 2.45, with a trivial difference in the zero point of Coulomb potential.

Since the only assumption involved is the ellipsoidal symmetry of the density profile (Eq.

2.30) with no restriction on the specific form of the density profile, this potential expression

(Eq.2.44) is valid for bunches with same or higher symmetry like spherical and spheroidal

symmetry.

Since the resulting electrostatic field from the Gaussian bunch is non-linear, it is not

reasonable to apply the MFT formalism presented in the previous section for the evolution

of a Gaussian bunch. A detailed discussion about this linearity assumption will be presented

in the next section. Nevertheless, this potential and field formula from MFT will be useful
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for our study when we apply statistical methods for the evolution of Gaussian bunches in

the following chapter.

2.3 Discussion about the linearity assumption of MFT

The key assumption of the MFT formalism (Eq.2.21 as EOM with linear initial condition)

is the linearity of the uniform bunch. This fundamental assumption stems from the linear

self-field of uniform ellipsoidal bunches. The linearity of the entire system is maintained as

long as the initial condition is also linear. Therefore, for MFT, the linearity assumption is

equivalent to the self-similar evolution assumption, which greatly simplifies the expression

of the uniform bunch evolution.

This linearity assumption is also one of the major limitations to MFT. Because of this,

MFT cannot be applied to non-linear systems, such as the Gaussian bunch. Even if we

divide the Gaussian bunch into scaled thin shells and treat them individually, the Gaussian

bunch still drastically violates the linearity/self-similar evolution assumption of MFT, be-

cause its self-field is non-linear. Further complicating the situation, the non-linear field leads

to different aspect ratios for shells across the bunch, which then breaks our scaled thin shell

set-up for potential calculation in MFT.

Despite these limitations, MFT can be still be used to predict bunch evolution even

when its assumptions are not strictly satisfied. When the assumptions are not fully met, the

predictions will deviate from the actual evolution. The extent of this discrepancy depends

on how far the bunch initial condition is from a uniform bunch with a perfect linear chirp

used in MFT. A detailed discussion about the impact of different kinds of assumptions will

be presented in the next chapter.
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To reduce the limitations associated with linearity, we turn to statistical methods, which

focus on the evolution of bunch statistics rather than the exact form of the density profile.
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Chapter 3

Statistical Methods

In this chapter, we present statistical methods to model the evolution of electron bunches.

We begin with an overview of the self-similar analytical (SSA) model for uniform ellipsoidal

bunches. We then discuss the concept of emittance and its impact on bunch evolution by

comparing SSA to MFT. To follow, we discuss a semi-statistical model for Gaussian bunches

— the Analytic Gaussian (AG) model — to further illustrate the underlying assumptions of

these statistical methods. We conclude this chapter by discussing the advantages and limi-

tations of AG, SSA, and the equivalent Kapchinsky-Vladimirsky (KV) envelope equations.

3.1 The Self-similar Analytical Model

The SSA model, and other statistical methods, extract the bunch evolution trajectory

directly from the time-derivatives of corresponding bunch statistics. We refer to these types of

models as statistical methods. In contrast, the uniform bunch evolution in the MFT is found

by integrating the uniform density profile with corresponding time-dependent parameters.

To properly introduce SSA and other statistical methods, we first discuss the dynamics

of bunch statistics for a uniform ellipsoidal bunch. In each degree of freedom i = T, z, there

are three second order statistics in the position-momentum phase space:1 1) the variance

1We are interested in second order statistics because of the definition of emittance. A detailed discussion
will be presented in the Sec. 3.2
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of the position σ2
i , 2) the variance of the momentum σ2

pi
, and 3) the correlation between

position and momentum σi,pi . Specifically, in the center of mass frame, we can have these

three statistics:

σ2
i = 〈i2〉 (3.1a)

σ2
pi

= 〈p2
i 〉 (3.1b)

σi,pi = 〈ipi〉 (3.1c)

where i = x, y,or z and the 〈〉 operator yields the mean value, e.g. 〈zpz〉 =
∫ ∫

zpzf(r, p)drdp

for a continuous distribution in analytical models. We can

The non-relativistic evolution of the position and momentum can be written as:

i(t+ dt) = i(t) +
pi(t)

m
dt+O(dt2) (3.2a)

pi(t+ dt) = pi(t) + Fi(t)dt+O(dt2) (3.2b)

with the force distribution function Fi(t) based on the position information at time t. There-

fore, the dynamics of these three statistics can be expressed as:

dσ2
i

dt
' 2

m
〈ipi〉 =

2

m
σi,pi (3.3a)

dσ2
pi

dt
' 2〈piFi〉 = 2σpi,Fi (3.3b)

dσi,pi
dt
' 〈iFi +

1

m
p2
i 〉 = σi,Fi +

1

m
σ2
pi

(3.3c)

We also have another set of three statistics specifically for SSA, which is equivalent to
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Eq. 3.1, as follows:

σ2
i = σ2

i (3.4a)

γi = σi,pi (3.4b)

ηi = σ2
pi
−
σ2
i,pi

σ2
i

(3.4c)

where ηi is the variance of local momentum fluctuations, the variance of the momentum

after subtracting out the portion that is linearly correlated with position as shown below.

A detailed definition2 of these three statistics is illustrated in Fig. 3.1. In the longitudinal

direction, σ2
z is the bunch spatial variance; γz is the correlation between the longitudinal

position and momentum, and ηz is the variance of local momentum fluctuations in the lon-

gitudinal direction. Specifically, for each individual electron [j], its longitudinal momentum

pz[j] can be expressed as a linear function (with slope Cz) of its longitudinal position z[j]

plus a random variable δz[j] as follows:

pz[j] = Cz · z[j] + δz[j] =
γz
σ2
z
z[j] + δz[j] (3.5)

Here δz serves as the error term, with variance ηz = σ2
δz. In addition, δz is assumed to

be uncorrelated with the longitudinal position, i.e. σδz,z = 0. With this set of notation,

SSA essentially divides the variance of momentum into two parts: one part comes from

the momentum which is linearly dependent on position of each particle and the other part

is associated with the momentum that deviates from the linear part. The corresponding

2More underlying significance of these three statistics can be found in Sec. 3.3.1.
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Figure 3.1: Schematic representation for the three bunch parameters in SSA

dynamics for SSA statistics can be derived from Eq. 3.3 as follows:

dσ2
i

dt
=

2

m
γi (3.6a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+ σi,Fi (3.6b)

dηi
dt

= −2γiηi
mσ2

i

+
2

σ2
i

(
σ2
i σpi,Fi − σi,piσi,Fi

)
(3.6c)

The necessary initial conditions can be obtained by gathering the second-order statistics of

the bunch density distribution at the beginning of the evolution, namely the three bunch

statistics σ2
i , γi, and ηi can be derived from the three direct second-order statistics of σ2

i ,

σi,pi , and σ2
pi

.

Coupled with proper force term, the SSA prediction of bunch evolution can be obtained
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by numerically propagating the SSA dynamics from the initial conditions. Therefore, the key

of SSA — that the bunch should evolve self-similarly — comes from the force distribution

Fi. In other words, SSA assumes that the uniform ellipsoidal bunch will stay uniform

while the density profile of a Gaussian bunch will stay as a Gaussian function. The self-

similar evolution assumption simplifies the analysis by setting the force expression term Fi

as the same form of function throughout the evolution with one (or more) time-dependent

parameters in the charge density distribution.

For a uniform spheroidal bunch, as shown in Eq. 2.17, the electrostatic field is linearly

dependent on the spatial position. In other words, the force term can be written as:

Fi =
ρce

2ε0
· ξi(α) · i = KFi(α) · i (3.7)

where i = T, z for the transverse3 and longitudinal directions and α is the transient aspect

ratio of the spheroid at time t. The corresponding second-order statistics related to Fi can

then be simplified as:

σi,Fi = KFi(α) · σ2
i (3.8a)

σpi,Fi = KFi(α) · σi,pi (3.8b)

which also leads to the vanishing of the second term in Eq. 3.6c as:

σ2
i σpi,Fi − σi,piσi,Fi = 0 (3.9)

3As we take advantage of the rotational symmetry of spheroidal ellipsoids, the subscript T represents the
two transverse directions, which includes both x̂ and ŷ.
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Therefore, the resulting SSA prediction of the self-similar evolution of a uniform spheroidal

bunch yields:

dσ2
i

dt
=

2

m
γi (3.10a)

dγi
dt

=
1

m

(
γ2
i

σ2
i

+ ηi

)
+KFi(α) · σ2

i (3.10b)

dηi
dt

= −2γiηi
mσ2

i

(3.10c)

One advantage of SSA is that the two-step process for dealing with the singularity at

longitudinal crossover in MFT is not necessary here in the SSA model as the statistics

themselves are second-order moments so that there is no need to flip the sign of spatial

position and momentum in the cross-over regime.

Although the above derivations have been performed for Coulomb interactions, we would

like to stress that the same conclusions can be drawn for any interaction that leads to

linear dependence between force and position, such as gravitation [28]. Additionally, the

generalization to any general ellipsoid is achieved by simply using three degrees of freedom

with i = X, Y, Z and corresponding geometry coefficients (ξx, ξy, ξz) with functions of the

ratio between three axes (σx : σy : σz).

3.2 Emittance and bunch evolution with conserved emit-

tance

One of the major advantages of the SSA model (Eq. 3.10) is its inclusion of a conserved

emittance, while MFT always assumes a zero-emittance bunch. In this analysis, we define
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the “root-mean-square” (rms) emittance εi in each direction as:

ε2
i = σ2

i σ
2
pi
− σ2

i,pi
= σ2

i ηi (3.11)

This suggests that the value of emittance in each direction is proportional to the area of

the contouring ellipse of the bunch in the 2D phase space regarding that direction. In other

words, the rms emittance is not equal to the exact value of the occupied phase-space volume,

but rather a statistical estimate of bunch phase-space volume based on the second-order

statistics of the bunch. Although some literature conflates rms emittance with phase-space

volume, these two concepts, while related, are not equal to each other. According to [40],

emittance can grow while the actual phase-space volume stays constant as explained by

Liouville’s theorem.

To facilitate the analysis, we base our derivation using the square of emittance ε2
i which

is the product of σ2
i and ηi. Thus, the evolution of squared emittance is:

d

dt
ε2
i = ηi

d

dt
σ2
i + σ2

i
d

dt
ηi (3.12)

Although, we use the squared emittance ε2
i for analytical derivations and discussions, we

present results in emittance εi to ease the comparisons between model prediction and actual

experiments.

As we look at the emittance evolution for uniform bunches, it is conserved within each

degree of freedom according to Eq. 3.10, which seems to be the immediate result of the linear

field/force assumption of Eq. 3.7. However, as we elaborate later in the next section, it is the

linear chirp (self-similar evolution) assumption that ensures the conservation of emittance of
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the bunch.

Additionally, if we take η = 0, (i.e. zero emittance), then the SSA model will reproduce

the MFT, as shown in Fig.3.2. The linearity/self-similar evolution assumption is the reason

why SSA, as a statistical method, can reproduce the result of MFT. The self-similar evolution

assumption ensures the linearity across the bunch for SSA, as the linear momentum-position

relationship in Eq. 3.5.

The emittance effect on the SSA dynamics can be explained by studying the evolution

of the linear chirp Ci as we have:

d

dt
Ci =

d

dt

(
γi
σ2
i

)
= KFi(α) +

ε2
i

m ·
(
σ2
i

)2 (3.13)

During the focusing process, the emittance term (last term in Eq. 3.13), will drive the

negative chirp to approach zero faster. Therefore, the waist of the focusing process appears

earlier than that predicted by MFT, resulting in a larger minimum width as well. Moreover,

bigger emittance will lead to larger differences between predictions from SSA and MFT.

These two emittance effects are also shown in Fig. 3.2.

3.3 Linear chirp assumption leads to conserved emit-

tance

To further illustrate the fact that the linear chirp assumption conserves emittance in the

SSA model, we provide the following derivation.

Although the electron bunches can have various density profiles, such as uniform or

parabolic distributions, we start with an electron bunch with Gaussian density profile as an
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Figure 3.2: Longitudinal width evolution of prolate spheroids with (α0 = 10/75) focused by
different initial chirps: (a) 0.7ω∗c , (b)1.0ω∗c , (c) 1.5ω∗c . In each figure, red solid line represents
the prediction from MFT, dotted lines represent SSA with different emittance ranging from
0 to 0.01µm or mm · mrads. The SSA with zero emittance and the MFT are in perfect
agreement. Notice that (1) emittance move the waist larger and earlier comparing SSA and
MFT, (2) comparing different chirps in SSA, the bunch evolution driven by critical chirp(b)
shows higher sensitivity for emittance.
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example. We rely on this example because the expression of the Gaussian density profile can

have three explicit bunch statistics, the same set as in SSA, which makes it more advanta-

geous for our analysis. The expression for the Gaussian density profile follows this general

form:

f(r, p; t) = C(t) exp [Σi (Gi(i) +Hi(pi, i))] (3.14)

where i = x, y, z. Gi is the function for the spatial distribution in each direction, which can

be written as:

Gi(i) =
a0 + a2i

2 + a4i
4 + ...+ a2n−2i

2n−2 − a2ni
2n

2σ2
i

(3.15)

Meanwhile, Hi is the function for the momentum distribution, which can be written as:

Hi(pi, i) = −
[
pi −

(
γi/σ

2
i

)
i
]2

2ηi
(3.16)

where (σ2
i , γi, ηi) are the time-dependent statistical descriptions of the bunch in each di-

rection we previously defined in SSA. The linear chirp of the bunch can still be described

as Eq. 3.6, which leads to the self-similar evolution. The corresponding time derivative of

squared emittance reads:

d

dt
ε2
z = ηz

dσ2
z

dt
+ σ2

z
dηz
dt

= 2
(
σ2
zσpz,Fz − σz,pzσz,Fz

)
(3.17)

3.3.1 The Linear chirp assumption in detail

In the proceeding section, I concluded that uniform ellipsoidal bunches conserve emittance

after inserting the corresponding linear force from its self-field into the SSA model. Here

I show that the linear chirp assumption also leads to conserved emittance, which is not
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restricted to the uniform bunch density profile as a linear force assumption. The linear

chirp assumption focuses on the statistical relationship between the spatial position and

momentum for all the electrons of the bunch. Specifically, the linear chirp assumption

assumes that the momentum of each individual electron j can be divided into two parts: the

local average momentum based on the spatial position of electron j and the fluctuation part

for electron j, just as we described in Eq. 3.5:

pz[j] = Cz · z[j] + δz[j] =
γz
σ2
z
z[j] + δz[j]

In the linear chirp assumption, the local average momentum is proportional to its spatial

coordinates. That is, for longitudinal direction, the slope of this linear dependence (between

local average momentum and spatial coordinate) Cz is decided by the two bunch statistics

as γz
σ2
z

. Then, δz[j] is denoted as the difference between electron j’s momentum and the

projected local average momentum that is linearly based on its spatial coordinate, as shown

in Eq. 3.5. We refer to δz as the local momentum fluctuation in the longitudinal direction

with respect to the corresponding linear local average momentum. The variance of this local

momentum fluctuation is then equal to ηz as we have:

σ2
pz = σ2

γz
σ2
z
i+δz

=
γ2
z

σ4
z
σ2
z + 2

γz
σ2
z
σz,δz + σ2

δz

=
γ2
z

σ2
z

+ ηz

(3.18)

with the assumption that δz and z are uncorrelated, i.e. σz,δz = 0.

This assumption about δz and z being uncorrelated is the center piece for the linear

chirp assumption. Because the linear local average momentum can always be projected to
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the bunch density profile from the corresponding bunch statistics, the linear chirp assumption

is essentially assuming the local momentum fluctuation with respect to that linear average

momentum is uncorrelated with the spatial position. In other words, the momentum of

electrons in bunches that do not satisfy that linear chirp assumption can still be expressed

in Eq. 3.5, but the corresponding local momentum fluctuation (δi) will then be correlated

with the spatial position. Therefore, the linear chirp assumption is actually focusing on the

local momentum fluctuation (with respect to that linear chirp) being uncorrelated with the

spatial position.

One possible expression of H in a Gaussian density profile that satisfies the linear chirp

assumption is:

Hz(pz, z) = − 1

2ηz

[
pz −

γz
σ2
z
z

]2

(3.19)

which assumes that for any point inside the ellipsoidal bunch, the density distribution in

momentum space with respect to the corresponding local average momentum has a Gaussian

profile. The two bunch statistics involving pz become:

σpz,Fz = σ γz
σ2
z
z+δz,Fz

=
γz
σ2
z
σz,Fz + σδz,Fz (3.20a)

σz,pz = σ
z,
γz
σz z+δz

=
γz
σz
σ2
z + σz,δz (3.20b)

Accordingly, we can rewrite the evolution of emittance as:

dε2
z

dt
= 2

[
σ2
z

(
γz
σz
σz,Fz + σδz,Fz

)
−
(
γz
σz
σ2
z + σz,δz

)
σz,Fz

]
= 2

(
σ2
zσδz,Fz − σz,δzσz,Fz

) (3.21)

The second term equals to zero as σz,δz = 0 from the linear chirp assumption. The first term
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also vanishes if the bunch density profile is symmetric with respect to the spatial position

and fluctuation of momentum. Specifically, we can have:

f̃(z, δz) = f̃(z,−δz) = f̃(−z, δz) (3.22)

with f̃ being the shifted density distribution of the original one as:

f̃(z, δz) = f(z,
γz
σ2
z
z + δz) = f (z, pz(z, δz)) (3.23)

for a symmetric bunch density profile. The immediate consequence of a symmetric density

distribution is that the magnitude of force due to the self-field can be expressed as an odd

function of the spatial coordinates, i.e.

Fz(x, y, z) = −Fz(x, y,−z) (3.24)

Then, the following covariance term related to the force distribution vanishes as:

σδz,Fz =

∫ ∫
δzFz(z)f̃(z, δz; t)drdp (3.25a)

Specifically, this covariance term vanishes when we pair δzFz(z)f̃(z, δz; t) and δzFz(−z)f̃(−z, δz; t)

together, as these cancel each other out. As both terms in Eq. 3.21 equal to zero for a sym-

metric density profile, the emittance is conserved throughout the evolution, as:

dε2
z

dt
= 0 (3.26)
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In addition, any symmetric density profile that satisfies Eq. 3.22 can lead to conserved

emittance, not limited to the general Gaussian density profile mentioned at the beginning of

this section.

As demonstrated throughout these derivations, it becomes clear that the exact form of the

electron bunches’ density profiles do not affect emittance conservation. As long as Eq. 3.22

is satisfied, the emittance is conserved. In other words, if the fluctuation of momentum δi of

each individual electron is uncorrelated with its spatial position, the ellipsoidal symmetric

bunch conserves emittance throughout its evolution.

3.3.2 A Comparison Between the SSA model and the Analytic

Gaussian model

To further validate the argument that emittance conservation does not depend on the

exact form of the spatial portion of the bunch’s density profile, we overview the Analytic

Gaussian (AG) model — a semi-statistical mean-field approach for bunch evolution with

Gaussian density profiles.

Michalik and Sipe [30] introduced the AG model to study the evolution of bunch statistics

with Gaussian profiles in both spatial and momentum space. Their key assumption is that

bunches retain their Gaussian density profiles with the three time-dependent parameters in

each direction. We generally base the following derivation on the original AG paper, however,

we substitute in the SSA notation for consistency throughout this analysis.

We start with the Gaussian density profile used in the AG model:

f(r,p; t) = C(t) exp[−Γ(r,p; t)] (3.27)
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with

Γ(r,p; t) =
x2 + y2

2σ2
T

+
[px − (γT /σ

2
T )x]2 + [py − (γT /σ

2
T )y]2

2ηT

+
z2

2σ2
z

+
[pz − (γz/σ

2
z)z]2

2ηz

(3.28)

This expression has three main assumptions. First, this expression assumes rotational sym-

metry in x̂ and ŷ direction. The subscript T then represents the two transverse directions,

which includes both x̂ and ŷ. The longitudinal direction is denoted with subscript ẑ. Second,

the three bunch parameters in the AG model,4 (σ2
z , γz, ηz) are the same as those used in

the SSA model. This expression means the bunch has linear chirps in each direction and

the momentum follows a relationship similar to Eq. 3.5, which is illustrated in Fig. 3.1 for

the longitudinal direction. In other words, the Gaussian bunch in the AG model has linear

chirp in each direction, with the corresponding momentum spread is uncorrelated with the

spatial position. Therefore, the AG model is essentially modeling the longitudinal focusing

of a spheroidal Gaussian bunch by calculating the self-similar evolution of a Gaussian bunch

with the same initial bunch statistics. Third, the time-dependent normalization factor C(t)

comes from the conservation of total charge, which can be expressed as:

∫
f(r,p; t)drdp = N ⇒ C(t) =

N

(2π)3

(
1

σ2
T η

2
Tσzηz

)1/2

(3.29)

That is, this density profile is a function of the three parameters in each direction (T and

z). Therefore, the evolution of Gaussian bunches in the AG model can be generated from

the trajectories of the three parameters of the bunch in each direction.

4We are illustrating the parameters for longitudinal direction. Similar notations apply to transverse
direction as well.
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By assuming the Gaussian bunch follows a self-similar evolution, the AG model allows

researchers to model bunch evolution with Coulomb interactions in two main ways. First,

the impact of the Coulomb interactions can be modeled by evaluating the corresponding

Gaussian integrals. Specifically, the bunch evolution in each direction can be expressed

by the trajectories of the three parameters in Eq.3.28. The resulting force terms in the

time-derivatives of the bunch parameters are expressed as functions of the transient aspect

ratio (α(t) = σT /σz). Second, because the bunch retains a Gaussian profile, the AG model

captures the Coulomb effect throughout the evolution of the electron bunch. Specifically,

this can be expressed using the same force term with the time-dependent aspect ratio. These

two advantages of the AG model make the theoretical expression of the bunch evolution with

Coulomb interaction feasible assuming a self-similar Gaussian bunch.

The pathway to the force term is a two-step process. First, we calculate the three

parameters of the Gaussian density profile f(r,p; t) to calculate the Coulomb effect on the

bunch emittance evolution. Second, we integrate over the “flow” term and “force” term from

the time derivative of f to eventually solve for the time derivative of these three parameters.

Specifically, for the longitudinal direction,5 we have:

σ2
z =

1

N

∫
z2f(r,p; t)drdp = X55 (3.30a)

γz =
1

N

∫
zpzf(r,p; t)drdp = X56 (3.30b)

ηz +
γ2
z

σ2
z

=
1

N

∫
p2
zf(r,p; t)drdp = X66 (3.30c)

Here we use Xij to represent the corresponding second moment of the Gaussian profile

5Similar results can be applied to the transverse direction for both x̂ and ŷ.
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f(r,p; t) for simplicity. That is:

Xij =
1

N

∫
uiujf(r,p; t)drdp (3.31)

with (u1, u2, u3, u4, u5, u6) = (x, px, y, py, z, pz). Conveniently, we can have the time deriva-

tive of Xij as:

∂

∂t
Xij =

1

N

∫
uiuj

∂f(r,p; t)

∂t
drdp (3.32)

Therefore, the time derivatives of the three parameters can be written as:

∂

∂t
σ2
z =

1

N

∫
z2∂f(r,p; t)

∂t
drdp =

∂

∂t
X55 (3.33a)

∂

∂t
γz =

1

N

∫
zpz

∂f(r,p; t)

∂t
drdp =

∂

∂t
X56 (3.33b)

∂

∂t
ηz = −2γz

σ2
z

∂

∂t
γz +

γ2
z(

σ2
z

)2 ∂∂tσ2
z +

1

N

∫
p2
z
∂f(r,p; t)

∂t
drdp

=

(
γz
σ2
z

)2 ∂

∂t
X55 − 2

γz
σ2
z

∂

∂t
X56 +

∂

∂t
X66 (3.33c)

According to the Vlasov equation, we can rewrite ∂f/∂t as:

∂f(r,p; t)

∂t
= −∂f(r,p; t)

∂r

∂r

∂t
− ∂f(r,p; t)

∂p

∂p

∂t

=
(
− p

m

) ∂f(r,p; t)

∂r
− ∂f(r,p; t)

∂p
F (r)

(3.34)

The integral of the first term is called the “flow” term, K
flow
ij , as it comes from fundamental

kinematics. The integral of the second term is called the “force” term, K
force
ij . The force

term represents the effect of the Coulomb interaction on the bunch evolution.
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Accordingly, we rewrite Eq.3.32 as:

∂

∂t
Xij =

1

N

∫
uiuj

∂f(r, p; t)

∂t
drdp

=
1

N

∫
uiuj

(
− p

m

) ∂f(r, p; t)

∂r
drdp +

1

N

∫
uiuj

(
−∂f(r, p; t)

∂p

)
F (r)drdp

= K
flow
ij +K

force
ij

(3.35)

We start with the flow term. The spatial derivative of the Gaussian density profile f is:

∂f(r, p; t)

∂z
=

[
1

σ2
z
z − γz

σ2
zηz

(
pz −

γz
σ2
z
z

)]
f(r, p; t)

=

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r, p; t)

(3.36)

Therefore, the corresponding flow terms are:

K
flow
55 =

1

Nm

∫ ∫
z2pz

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r, p; t)drdp =

2

m
γz (3.37a)

K
flow
56 =

1

Nm

∫ ∫
zp2
z

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r, p; t)drdp =

1

m

(
ηz +

γ2
z

σ2
z

)
(3.37b)

K
flow
66 =

1

Nm

∫ ∫
p3
z

[(
1

σ2
z

+
γ2
z

σ4
zηz

)
z − γz

σ2
zηz

pz

]
f(r, p; t)drdp = 0 (3.37c)

If we assume F (r) = 0, then the time derivatives of the three parameters (Eq. 3.33), with

the effect of the flow term alone, models the evolution of a non-interacting bunch with a

Gaussian density profile as Eq. 3.28. That is, the non-interacting bunch evolution could be
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described by inserting Eq. 3.37 in the Eq. 3.33 as:

dσ2
z

dt
=

2

m
γz (3.38a)

dγz
dt

=
1

m

(
ηz +

γ2
z

σ2
z

)
(3.38b)

dηz
dt

= −2γzηz
mσ2

z
(3.38c)

Since the three bunch statistics are only functions of time, we replace the partial derivatives

with the total derivatives here to obtain the ordinary differential equation for the bunch

statistics evolution. Unsurprisingly, the non-interacting bunch conserves emittance through-

out the evolution when we insert Eq.3.38 into Eq.3.12.

For the purpose of measuring the Coulomb interaction effect on bunch evolution, espe-

cially on emittance conservation, we insert the corresponding force expression F (r) derived

from the expression of Coulomb potential, which we derived earlier (Eq.2.47). Consequently,

the time derivative of the three parameters (Eq. 3.33) yields the collective effect of a Gaussian

bunch through K
force
ij .

Specifically, the field distribution can be derived from Eq. 2.47 as:

Ez(x, y, z) =
Q

4π3/2ε0

∫ ∞
0

2z

c2 + l
·

exp

[
− x2

a2+l
− y2

b2+l
− z2

c2+l

]
√

(a2 + l)(b2 + l)(c2 + l)
dl (3.39)
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By leveraging the following substitutions:

K =
Qe

2π3/2ε0
(3.40a)

R(l) =
√

(a2 + l)(b2 + l)(c2 + l) (3.40b)

λ(x, y, z; l) =
x2

a2 + l
+

y2

b2 + l
+

z2

c2 + l
(3.40c)

Ic(x, y, z) =

∫ ∞
0

exp [−λ(x, y, z; l)]

(c2 + l)R(l)
dl (3.40d)

we can have a concise expression for the Coulomb force as:

Fz(x, y, z) = z · K · Ic(x, y, z) (3.41)

Then, knowing that the derivative of f with respect to pz is

∂

∂pz
f(r, p; t) =

1

ηz

(
pz −

γz
σz
z

)
f(r, p; t) (3.42)

the force term in the longitudinal direction can be expressed as:

K
force
55 = − 1

Nηz

∫ ∫
z3
(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r, p; t)drdp (3.43a)

K
force
56 = − 1

Nηz

∫ ∫
z2pz

(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r, p; t)drdp (3.43b)

K
force
66 = − 1

Nηz

∫ ∫
zp2
z

(
pz −

γz
σ2
z
z

)
· Ic(x, y, z) · f(r, p; t)drdp (3.43c)
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For the emittance evolution, we can insert Eq. 3.33 into Eq. 3.12 as:

dε2
z

dt
= ηz

dσ2
z

dt
+ σ2

z
dηz
dt

=

(
ηz +

γ2
z

σ2
z

)
K
force
55 + σ2

z

(
K
force
66 − 2γz

σ2
z
K
force
56

) (3.44)

Thus the emittance evolution with Eq. 3.43:

dε2
z

dt
= − 1

N

∫ ∫ [
z3
(
pz −

γz
σ2
z
z

)
+
σ2
z

ηz
z

(
pz −

γz
σ2
z
z

)3
]
· Ic(x, y, z) · f(r, p; t)drdp (3.45)

We can simplify this expression by a simple substitution of variable as:

δz = pz −
γz
σ2
z
z (3.46)

with the corresponding Jacobian:

J = det

 1 0

− γz
σ2
z

1

 = 1 (3.47)

Accordingly, the density distribution function f(r, p; t) shifts to f̃ as shown in Eq. 3.23. We

can rewrite the time derivative of ε2
z as:

dε2
z

dt
= − 1

N

∫ ∫ [
z3δz +

σ2
z

ηz
zδ3
z

]
· Ic(x, y, z) · f̃(r, δr; t)drdδr (3.48)

Since Ic(x, y, z) and f̃ are both even functions, this integral equals zero as we properly pair
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the elements as expressed below:

(z, δz) and (−z, δz) (3.49)

Therefore, emittance is conserved during the evolution of a Gaussian bunch according to the

AG model, even with a non-linear self-field/force. This is consistent with what we argued in

the proceeding section, that the linear chirp is the key assumption for conserved emittance,

not the linear force.

We continue the derivation for the Coulomb effect on bunch evolution in the AG model.

To further simplify the expression, we introduce the “bar” notation (Mz, Mz as a place-

holder for the corresponding quantities, which will be evaluated for the longitudinal direction)

as:

Mz = − 1

Nηz

∫ ∫
Mz · Ic(x, y, z) · f̃(r, δr; t)drdδr (3.50)

Thus, we can rewrite the force term in Eq. 3.43 as

K
force
55 = z3δz = 0 (3.51a)

K
force
56 = z2δz

(
δz +

γz
σ2
z
z

)
= z2δ2

z +
γz
σ2
z
z3δz = z2δ2

z (3.51b)

K
force
66 = zδz

(
δz +

γz
σ2
z
z

)2

= zδ3
z + 2

γz
σ2
z
z2δ2

z +

(
γz
σ2
z

)2

z3δz = 2
γz
σ2
z
z2δ2

z =
2γz
σ2
z
K
force
56

(3.51c)

where the integrals of z3δz and zδ3
z vanish due to the symmetry of Ic(x, y, z) and f̃(r, δr; t)
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(i.e. f(r, p; t)). As we can have a closed form z2δ2
z and similarly for x2δ2

x and y2δ2
y :

K
force
56 =

1

4πε0

Ne2

6
√
π

1

σz
Lz

(
1

α

)
(3.52a)

K
force
12 = K

force
34 =

1

4πε0

Ne2

6
√
π

1

σT
LT

(
1

α

)
(3.52b)

where Li(p) is:

Lz(p) =
3p2

p2 − 1
[pL(p)− 1] (3.53a)

LT (p) =
3

2

[
L(p) +

p2L(p)− p
1− p2

]
(3.53b)

and L(p) as:

L(p) =
1

2

∫ π

0

dθ

1 + p sin θ
=


arcsin

√
1−p2√

1−p2
, 0 ≤ p ≤ 1 (oblate)

ln(p+

√
p2−1)√

p2−1
, 1 ≤ p (prolate)

(3.54)

Once the flow term and force term are known, we can write the dynamics expression for

the self-similar evolution of a Gaussian bunch with the three parameters:

dσ2
i

dt
=

2

m
γi (3.55a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+

1

4πε0

Ne2

6
√
π

1

σi
Li

(
1

α

)
(3.55b)

dηi
dt

= −2γiηi
mσ2

i

(3.55c)
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3.3.3 Discussion about AG

The essence of the AG model is the evolution of a self-similar Gaussian bunch, where the

chirp is linear and the local momentum fluctuation is uncorrelated with the electron’s spatial

position. It uses the initial bunch statistics as the initial values of the three time-dependent

parameters of the Gaussian profile. Therefore, the credibility of AG’s prediction comes down

to the similarity between the actual charge density profile and the Gaussian profile that shares

the same bunch statistics. This is the reason behind the good performance for the AG model,

despite the fact that a Gaussian charge distribution does not evolve self-similarly [17,32].

To this extent, the AG model can be considered as an intermediate approach, which

shifts the focus from the exact density profile towards bunch statistics. In other words,

the advantage of the AG model is that it starts to focus more on the evolution of bunch

statistics. However, the AG model is limited in that is assumes that bunches have and retain

a Gaussian form.

3.4 Discussion

We presented the SSA model, a statistical method describing the second order moments

to model the evolution of an ellipsoidal electron bunch and explained how it can reproduce

the MFT by taking a zero momentum spread. We also discussed the linear chirp assumption,

explaining how it is the key assumption to yield emittance conservation during the bunch

evolution. In addition, we also shed light on the statistical nature of emittance, noting how

the force impacts from the uniform density profile and Gaussian profile are similar to each

other. In the following subsections, we expand our discussion upon all of these points.
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3.4.1 linear chirp and self-similar evolution assumptions

The derivation outlined in the preceding section of this chapter showed that the key

assumption for conserving emittance is the linear chirp assumption. In particular, the linear

local average momentum can always be projected on the bunch distribution function by

inserting the corresponding statistics into Eq. 3.5. The fluctuation of momentum (δi) is

then the crucial quantity that differentiates bunches from conserving emittance or not. Just

as we mentioned in the discussion about the MFT, if δi is not symmetric, or not uncorrelated

with the spatial position, we can still use the SSA model or the AG model to estimate the

evolution. However, these model estimations will deviate from the true evolution. In the

next chapter, we explore the magnitude of this discrepancy.

We refer to the SSA model as the self-similar analytic model to differentiate it from

the AG model. Specifically, through this naming, we emphasize the self-similar evolution

assumption rather than the Gaussian density profile. In this analysis, the self-similar bunch

evolution is also considered satisfying the linear chirp assumption throughout the evolution

as this ensures that the bunch with a linear chirp will evolve self-similarly.6 In reality, the

Gaussian bunch generally does not evolve self-similarly, as pointed out by the literature

[17, 32] as is also demonstrated in the simulation in the following section. Indeed, only

uniform bunches with zero emittance evolve truly self-similarly.

6There will be edge effect due to the fluctuation of momentum that create density tails on the bunch
edges, which means the bunch evolution is not strictly self-similar. We present a detailed discussion in the
following section.
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3.4.2 Kinetic energy transfer between degrees of freedom

The kinetic energy statistics of the bunch in each degree of freedom is related to the three

statistics through:

KEi =
N

2m
σ2
pi

=
N

2m

(
ηi +

γ2
i

σ2
i

)
(3.56)

The corresponding result of a crossover case is shown in Fig.3.3 The kinetic energy evolution
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Figure 3.3: Kinetic energy in longitudinal and radial direction for crossover case (−1.5ω∗c
in ẑ, corresponding to panel (c) in Fig.3.2), with solid lines for MFT and dotted lines for
SSA with different emittance (circle for KEz and triangle for KEr). The sudden change of
direction for MFT in longitudinal kinetic energy comes from the sign flip of chirp discussed
in Sec.2.

of a focusing ellipsoidal electron bunch can be written as:

d

dt
KEi =

N

m
γiKFi(α) (3.57)
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This evolution is consistent with the fundamental idea that focusing an electron bunch

against Coulomb repulsion transfers kinetic energy in the focusing degree of freedom into

potential energy while expansion works in the other directions. For example, when the

electron bunch is focused in the longitudinal direction, the kinetic energy associated with

the longitudinal direction will transfer to the potential energy. Therefore, if one degree of

freedom is focusing while the other one is expanding, it would appear to be kinetic energy

transfers between two directions. This energy transfer is mediated by the potential energy as

the kinetic energy in the focusing direction goes into the potential energy and the potential

energy converts to the kinetic energy in the expanding direction. Therefore, we can control

this energy transfer process by tuning the focusing procedure.

3.4.3 Statistical discussion and K-V/envelope equations

In this subsection, we want to discuss the statistical essense of the SSA model, namely

that the SSA model describes the evolution of second-order moments of the bunch distribu-

tion. We compare the force term for both a uniform bunch (Eq. 3.10) and a Gaussian bunch

(Eq. 3.55), as the force term for a uniform spheroidal electron bunch can also be evaluated

analytically.

Let us take the longitudinal direction of a uniform oblate (a = b > c) spheroidal bunch as

an example. For a uniform spheroidal bunch, we can have the following translations between
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parameters and bunch statistics:

a =
√

5σT (3.58a)

c =
√

5σz (3.58b)

n =
3N

4πa2c
(3.58c)

The linear coefficient KFz(α) in the force terms in the longitudinal direction from Eq. 3.10

can be rewritten as:7

KFz(α) =
ne2

2ε0
a2c

∫ ∞
0

dl

(c2 + l)3/2(a2 + l)

=
1

4πε0

Ne2

c3
3

2

∫ ∞
0

d(l/c2)

(1 + l/c2)3/2(a2/c2 + l/c2)

=
1

4πε0

Ne2

5
√

5σ3
z

3

2

∫ ∞
0

dν

(1 + ν)3/2(a2/c2 + ν)

=
1

4πε0

Ne2

5
√

5σ3
z

3

2

 2c2

c2 − a2

 c√
a2 − c2

arcsin

√
1− c2

a2
− 1


=

1

4πε0

Ne2

5
√

5σ3
z

Lz

(
1

α

)

(3.59)

Similar results apply to the transverse direction and both directions for prolate spheroids as

well. We can then rewrite the SSA evolution equations for a uniform spheroidal bunch as:

dσ2
i

dt
=

2

m
γi (3.60a)

dγi
dt

=
1

m

(
ηi +

γ2
i

σ2
i

)
+

1

4πε0

Ne2

5
√

5

1

σi
Li

(
1

α

)
(3.60b)

dηi
dt

= −2γiηi
mσ2

i

(3.60c)

7Credits to Brandon Zerbe for the evaluation of the corresponding interals.
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with i = T, z for transverse and longitudinal direction, respectively. The impact of the

collective Coulomb interaction from a uniform density profile on bunch evolution is strikingly

similar to that from a Gaussian bunch (Eq. 3.55). The difference between the two density

profiles can be expressed by the ratio of the two force terms as:

KGaussian

KUniform
=

5
√

5

6
√
π
≈ 1.0513 (3.61)

Therefore, the difference between the two density profiles is only a little over 5%. In other

words, according to the SSA model, the evolution of bunch statistics for a uniform bunch with

N electrons is identical to that of a Gaussian bunch with the same initial bunch statistics

and total number of electrons equals to 0.95N .

This similarity comes from two key factors: (1) σi,Fi describes the linear part of the

self-field with respect to the corresponding spatial position, which is the only presence of the

Coulomb interaction for bunch evolution in the SSA model with the linear chirp assumption

(2) the mean-field calculation of the linear part of the self-field (σi,Fi) shares the similar

expression as the second-order moments of spatial coordinates of the bunch distribution

[30, 41]. That is the linear approximation of the force distribution depends largely on the

second-order moments of the distribution, which is consistent with the argument by Sacherer

[34].

The Kapchinsky-Vladimirsky (K-V) envelope equations are well-established in the ac-

celerator community for describing both continuous and bunched beams. It was initially

proposed to model beams with uniform density profile and later extended to continuous

beams with elliptical symmetry as well as bunched beams with ellipsoidal symmetry. [34]

The SSA model is mathematically equivalent to the K-V envelope equations as the SSA uses
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similar rms (root-mean-square) bunch statistics for uniform bunch evolution as Sacherer

mentioned in his paper. The only difference is that the K-V envelope equation combines

the time-derivatives of three bunch statistics in each direction into one ordinary differential

equation. The SSA model counterpart related to the varying emittance in K-V envelope

equations will be discussed next.

3.4.4 SSA with emittance evolution

The SSA model is capable of estimating the bunch evolution with varying emittance. We

can rewrite the SSA model (Eq. 3.6c) as:

dηi
dt

=
d

dt

(
ε2
i

σ2
i

)
= −2γiηi

mσ2
i

+
1

σ2
i

dε2
i

dt
(3.62)

The first term on the right-hand side (RHS) can be considered as the energy transfer from

the linear local average motion to the local momentum fluctuation. The second term on

the RHS represents the energy transfer from the potential energy, describing the impact of

a varying emittance on local momentum fluctuation. The detailed form of these two terms

can be found in Eq. 3.6. Currently, in our research, the emittance evolution can be obtained

numerically from simulation data. We discuss our preliminary thoughts about the emittance

evolution process in the next chapter. A more thorough study discussing the corresponding

analytical models will be presented in future research.

As we present all the models, we test their performance and limitation by comparing them

with N -particle simulations, especially the longitudinal focusing of the electron bunches in

the next chapter.
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Chapter 4

Numerical Simulations

In this chapter, we present the molecular dyamics (MD) simulation results for the evolu-

tion of uniform ellipsoidal electron bunches focused by linear longitudinal chirps. We discuss

the comparison between the SSA model predictions and the MD simulation results for fur-

ther understanding of the electron bunch evolution (especially around crossover) and the

limitations of the SSA model.

4.1 Simulation method

Although there are many simulation methods that run faster than MD in studying the

electron bunch evolution with Coulomb effects, such as the Particle-In-Cell (PIC) method,

we rely on the MD simulation due to the fact that it fully preserves the Coulomb interaction

information between electrons. Our simulation starts from a uniform ellipsoidal bunch with

a non-zero initial emittance, which we refer to as a “warm” initial condition. Then, we solve

non-relativistic equations of motion for every electron using the velocity-Verlet integration

with the help of the Fast Multipole Method (FMM) from fmmlib3d library [42] calculating

the field at the spatial position of each electron.

Here is a simple overview about our MD simulation before we discuss the warm initial

conditions and the simulation results. First, we run the simulation in a rest frame to simulate

the evolution of an electron bunch in its center of mass frame. Each particle represents one
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individual electron. Therefore, each particle/electron j has six attributes in the center of

mass frame to describe the phase space position at time t during the simulation: (rj =

xj , yj , zj) for its spatial position in the center of mass frame and (vj = vxj , vyj , vzj) for its

relative momentum with respect to the center of mass.

Second, the Coulomb interaction on particle j from all other electrons is calculated by

the Fast Multipole Method (FMM), a numerical technique that speeds up the calculation of

long-range forces such as Coulomb interaction [42]. It achieves O(N) time complexity (where

N is the total number of particle/electron) by expanding the corresponding Green’s function

using a multipole expansion, which equivalently groups sources that lie close together and

treats them as if they are a single source for long-range interaction.1

Third, we use the velocity-Verlet integration scheme as our non-relativistic pusher to

propagate the bunch evolution forward in time. Velocity-Verlet integration, similar to the

leapfrog integration, is a second-order integration method, that updates positions and ve-

locities at interleaved time points, staggered in such a way that they “leapfrog” over each

other. With the force information Fj(t) from the FMM calculation based on the position

of particles at time t, the corresponding non-relativistic equation of motion (EOM) for each

individual particle (j) is then:

rj(t+ ∆t) = rj(t) +

(
vj(t) +

Fj(t)

me

∆t

2

)
∆t (4.1a)

vj(t+ ∆t) = vj(t) +
Fj(t) + Fj(t+ ∆t)

me

∆t

2
(4.1b)

The detailed implementation scheme for this integration is then:

1An overview of the algorithm and implementation of FMM can be in this lecture notes by Beatson and
Greengard [43].
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1. propagate the velocity to the middle-point: vj(t+ 1
2∆t) = vj(t) +

Fj(t)

me
∆t
2

2. propagate the position to the next time-point: rj(t+ ∆t) = rj(t) + vj(t+ ∆t
2 )∆t

3. Calculate the force Fj(t+ ∆t) based on the new charge distribution r(t+ ∆t)

4. propagate the velocity to the next time-point: vj(t+ ∆t) = vj(t+ ∆t
2 ) +

Fj(t+∆t)

me
∆t
2

Essentially, the velocity Verlet takes advantage of staggering the calculation time point for

position and velocity to apply mid-point estimation for both the position and the velocity

evolution at once.

To assure the validity of the simulation, we check the conservation of energy by calculating

the kinetic energy and potential energy of the bunch regularly during the simulation. In this

chapter, the representation of the MD simulation data are one line for the mean value of

the 90 samples and one same-colored area showing the size of standard deviation across the

samples.

The simulations were conducted using in-house code with the field calculation done by

the fmmlib3d library. This code has been validated through comparison to another in-house

code implementing the brute-force MD code using CUDA.

4.2 Warm initial condition

In this section, we present the “warm” initial condition for the equation of motion (Eq.

4.1) in our MD simulations. In the SSA model and MD simulation, we assume the longitu-

dinal compression process for the probing electron bunch takes place during the free-drifting

region between the RF cavity and the specimen. The warm initial condition is a thermal-

ized bunch of particles that represents an electron bunch with a non-zero emittance as our
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attempt to mimic the bunch phase-space distribution right after the RF cavity. The warm

initial condition helps us to prepare a phase-space distribution of an electron bunch with

non-zero emittance.

We first place about 19100 electrons inside a simulation box with periodic boundary

condition (PBC) at the target density, which is 10, 000 electrons for a prolate spheroid with

the semi-axes of (10µm, 10µm, 75µm). The starting position of each electron is randomly

drawn from a uniform distribution and the starting momentum is zero.

Then the electrons interact with each other until the bunch reaches equilibrium. We set

the thermalization time to be over 10 plasma oscillation periods because (1) this time period

is long enough for bunches to reach equilibrium and (2) the proper travel time from the

photo-cathode to the RF cavity is close to the duration of the thermalization process. We

refer to this process as the sample thermalization. Since we employ the periodic boundary

condition for the sample thermalization, the Particle-Particle-Particle-Mesh (PPPM) method

is the preferred standard method as the Particle-Mesh part of PPPM takes advantage of the

highly efficient Fast Fourier Transform (FFT) method [44] to speed up the evaluation of the

long-range interaction from the PBC. Therefore, the thermalization process of the initial

conditions are prepared with the high-performance PPPM feature in LAMMPS [45].

At the end of the thermalization process, we select the electrons which are inside the

desired prolate spheroidal region to construct one sample of the warm initial condition.

One sample of the warm initial conditions is shown in Fig.4.1. As the initial position is

random, the resulting samples will have slight differences in the total number of particles.

To mitigate the randomness of starting position, we prepare 90 such samples to obtain

reasonable statistical analysis for simulation results. To apply different initial linear chirp

into the warm initial conditions, the momentum of each particle is adjusted based on its
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Figure 4.1: The z−pz phase-space distribution of a warm initial condition. The initial local
momentum fluctuation has a Gaussian profile and the corresponding linear chirp is added
based on the spatial coordinates of each electron.

spatial coordinates as presented in Eq.3.5.

4.3 Width evolution

In this section, we present the comparison between MD simulation results and the SSA

model predictions for the bunch evolution, specifically, the longitudinal focusing process.

Several simulations were performed for initial linear chirps: −0.7ω∗c , −1.0ω∗c and −1.5ω∗c ,

where ω∗c is obtained from the MFT calculation in Sec. 2.1.4. As shown in Fig.4.2, the

SSA model predictions deviate from the MD simulation results in three familiar aspects:
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Figure 4.2: Comparison of longitudinal width evolution with different initial chirps from
SSA and MD simulations. For each initial chirp, the connected-dots correspond to the
average of the 90 MD simulations, the thick solid line is the SSA model prediction with the
average emittance of the warm initial conditions. The thick dotted line is the modified SSA
considering the emittance evolution in Fig. 4.4. The discrepancy between SSA and MD
simulations is driven by the longitudinal emittance decrease, seen in the simulations, which
is confirmed by the good agreement between the modified SSA and simulations.

(1) a slightly larger minimum width, (2) the critical time to reach the minimum width is

smaller and (3) the discrepancy between SSA and MD is most significant when the bunch

is compressed at the critical chirp, where the bunch evolution is most sensitive to different

emittance as we discussed in the last section. We previously saw similar trends in the

minimum width and the time to reach the minimum width as we discussed in Fig. 3.2.

As the input for the SSA model prediction in Fig. 4.2 already includes the mean value of
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the initial emittance across the 90 simulation samples, this suggests that the longitudinal

emittance may be decreasing during the MD simulations. The rms emittance evoluiton in

panel (b) of Fig.4.4 confirms the decrease of longitudinal emittance, with several interesting

features we are going to discuss later.

As discussed previously, the mathematical mechanism behind the conservation of emit-

tance in the SSA is the vanishing of the following term associated with emittance evolution

in Eq. 3.6:

σ2
i σpi,Fi − σi,piσi,Fi = 0

Currently we are working on the analytical theory to predict the evolution of these terms in

either a continuum approximation of the SSA model or the discrete particle settings like the

MD simulations.

However, we can extract the evolution of emittance from the simulation data to better

capture the accuracy of the model predictions. Specifically, as we discussed in Sec. 3.4.4, we

replace Eq. 3.6c by Eq. 3.62:

dηi
dt

=
d

dt

(
ε2
i

σ2
i

)
= −2γiηi

mσ2
i

+
1

σ2
i

dε2
i

dt

in the SSA model with the time derivative of emittance square (dε2
i /dt). The first term

on the right-hand side (RHS) can be considered as the communication between the linear

local average momentum and the local momentum fluctuation. This term comes from the

non-interacting kinematics as expansion reduces ηi and compression increases ηi. The second

term represents the energy transfer between the potential energy to ηi, which can be obtained

from the simulation data.

The evolution of the longitudinal width and the kinetic energy associated with the elec-
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tron motion in the longtudinal direction using this modification can be seen as the dotted

lines in Fig.4.2 and Fig. 4.3, respectively. Excellent agreement between these modified SSA

Figure 4.3: Comparison of kinetic energy associated with the longitudinal motion of the
electrons relative to the bunch center of mass with different initial chirps from SSA and MD
simulations. For each initial chirp, we have the connected-dots are the corresponding 90 MD
simulations, the thick solid line for SSA prediction with the average emittance of those warm
initial conditions and the thick dotted line for the modified SSA considering the emittance
evolution in Fig.4.4.

model predictions and the MD simulation results suggets that varying emittance is the main

factor causing the discrepancy between the longitudinal spatial variance and longitudinal
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kinetic energy evolution of the (constant-emittance) SSA model and the MD simulations.

Therefore, if the evolution of the covariance term σpi,Fi and σi,Fi can be understood and

modeled, we should be able to obtain the SSA model that captures the expected behavior

of electron bunches to a high degree of accuracy.

4.4 Emittance evolution

In this section, we discuss our preliminary thoughts about the emittance evolution pro-

cess, specifically discussing the electron bunch focusing process, while more thorough studies

and corresponding analytical models will be presented in the future.

For now, the emittance evolution can be obtained numerically from the simulation data

as shown in Fig. 4.4. The emittance evolution in Fig. 4.4, especially simultaneous increase

for both the longitudinal and transverse emittance, cannot be explained by the popular

heat transfer mechanism employed in the literature [46]. On one hand, as can be seen in

panel(b) of Fig. 4.4, the longitudinal emittance increases slightly at the beginning of the

simmulation followed by a gradual decrease. In addition, there is another rapid increase in

the longitudinal emittance close to tc for the simulations in the crossover regime. On the

other hand, in panel (a) of Fig.4.4, the transverse emittance likewise has a slight increase

at the beginning of the simulation followed by a gradual increase. Notice that again for

the simulations in the crossover regime, there is a rapid increase around tc as well. We

would like to emphasize that the rapid increase in the emittance of both directions are

almost coincidental — an observation that is not predicted in the literature and cannot be

explained by the heat transfer mechanism.

We propose two mechanisms, Disorder-Induced Heating (DIH) and emittance transfer,
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Figure 4.4: (rms) Emittance evolution in (a) transverse εx and (b) longitudinal εz direction
for three different initial chirps.

for driving the emittance evolution in the MD simulations [35] as discussed in the following

two subsections.

4.4.1 Disorder-induced heating (DIH)

DIH in the plasma community describes the heating process during the transition of a

bunch from a disordered state to an ordered state which is structured by Coulomb forces

[47–51]. We argue that there are two phases during the MD simulations where significant

emittance growth is generated by this mechanism: (1) the sudden removal of the thermal-

ization confinement at the beginning of the simulation and (2) around the critical time tc,
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especially for the simulations in the crossover regime.

First, we attribute the emittance increase at the beginning of the simulation to DIH.

With the sudden removal of surrounding electrons and the periodic boundary condition, the

already thermalized electron bunch is suddenly not at equilibrium in the new circumstance.

The bunch can be considered as a disordered state and it starts to evolve towards its new

equilibrium with the influence of Coulomb interaction. The heat transfer from potential

energy to the local momentum fluctuation during this initial phase of the simulation can

then be explained by DIH.

The second situation for DIH induced emittance growth happens around the critical

time (tc) or focal point where a bunch reaches its minimum. In Fig. 4.5, we present the

bunch density distribution in MD simulations throughout the crossover evolution, and its

comparison with the density profile of a uniform ellipsoid with the same longitudinal spread.

Since the difference is most significant at tc, DIH suggests a significant amount of heat

is injected into the kinetic energy associated with the local momentum fluctuations. In

other words, the focusing process of the uniform bunch (especially for the cases in crossover

regime) pushes the bunch further away from its equilibrium state, resulting in a highly

non-equilibrium state at tc. The relaxation of this highly non-equilibrium state is another

demonstration of disorder induced heating. As such DIH coming from the potential energy is

isotropic, we see a sudden increase in the emittance in both the longitudinal and transverse

direction almost simultaneously. A detailed discussion about this DIH and its possible

connection to the Boersch effect can be found in the following sections. Moreover, Eq. 3.62

also indicates this emittance increase is further amplified at crossover where σ2
z reaches its

minimum. Therefore, a significant longitudinal emittance boost is observed around tc in the

crossover case in panel (b) of Fig.4.4.
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Figure 4.5: Longitudinal density profile evolution of crossover case (−1.5ω∗c ) with the lon-
gitudinal width scaled by its standard deviation. In each panel, solid line represents the
average of simulation samples and dotted line is the density profile for a uniform spheroid
of the same longitudinal width with simulation data. The deviation from uniformity is most
prominent at crossover. Note however, tails of the distribution present in simulations at all
initial chirps.
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4.4.2 Emittance transfer between degrees of freedom

In our MD simulations for the longitudinal focusing of the electron bunch, the longitudinal

emittance decreases due to the heat transfer to the transverse direction. Here the expression

1
2me

ηi is considered to be the SSA temperature of each degree of freedom because (1) 1
2me

ηi

can be considered as the kinetic energy or temperature associated with the local momentum

fluctuation, and since ηi is the variance of the local momentum fluctuations with respect to

the linear local average momentum.

Figure 4.6: The variance of the local momentum fluctuations for the case in bounce-back
regime (0.7ωc) on a Log-Log scale.

Although the equilibrium requirement for a strict definition of temperature is not appro-

priate for the highly non-equilibrium electron bunches in this analysis, we want to borrow
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the temperature concept to facilitate our discussion about the heat/emittance transfer. At

the begining of the simulation, the initial value of the SSA temperature in both longitudinal

and transverse directions are similar to each other. Eq. 3.6c and Eq. 3.62 suggest that the

longitudinal SSA temperature (ηz) increases as the electron bunch focuses in the longitudinal

direction, while the transverse SSA temperature decreases due to the expanding transverse

direction. Therefore, this SSA temperature difference between the two direction increases as

the bunch evolves towards the focal point. We would expect a heat transfer from the hotter

longitudinal direction to the cooler transverse direction in such circumstances. This heat

transfer is achieved through the exchange between potential energy and the variance of local

momentum fluctuation ηi of each direction. The immediate result of this heat transfer can

be seen in Fig. 4.6 where ηz from the MD simulations is smaller than that from the SSA

model while ηx in the simulation is larger than the model prediction.

This heat transfer is further illustrated in Fig.4.7 as we plot the term associated with

the impact of a non-conserved emittance in Eq.3.62 for the dynamics of ηi. After the initial

DIH effect at the beginning, the increasing SSA temperature difference generates stronger

heat transfer from longitudinal direction to transverse direction. Prior to tc, the consistent

and accelerating heat transfer from the longitudinal direction into the transverse direction

is evidence of the emittance transfer between the two degrees of freedom.

Around tc, a heat influx from the potential energy is observed in both the longitudinal

and transverse directions as the electron bunch relaxes from the highly non-equilibrium

state around tc. Notice that the heat influx for the bounce-back cases are smaller than

the cross-over cases, and the non-equilibrium effect is more drastic for the cross-over cases

as the density profiles are further away from unifrom than the bounce-back case. The

discussion about the density profile at tc can be found in next section. Furthermore, the
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Figure 4.7: The heat transfer from potential to ηi (a) and (b) for bounce-back case (0.7ωc);
(c) and (d) for cross-over case (1.5ωc). The red dotted lines are the time when the transfer
in longitudinal direction switches sign.

non-equilibrium state at tc for cross-over case is so drastic that the heat continues to transfer

from the potential energy to the local momentum fluctuation well beyond tc, as can be seen

in panel (c) and (d) in Fig. 4.7.

4.4.3 Phenomenological description of the emittance evolution

Due to the similarity in the longitudinal width evolution of the MD simulation results

and the (constant-emittance) SSA predictions in Fig.4.2, the emittance evolution is largely

driven by the change in ηi.

The two competing mechanisms result in the following three phases for the emittance evo-

lution for bunches that are compressed longitudinally: (1) Initial phase dominated by DIH:

at the beginning of simulation, the DIH due to the removal of the thermalization confine-

ment is the driving factor that increases the emittance in both longitudinal and transverse
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direction; (2) Emittance transfer phase: the SSA temperature difference increases as the

bunch evolves, the emittance transfer mechanism overwhelms the initial DIH, resulting in

the decrease in longitudinal emittance and increase in transverse emittance; (3) DIH around

tc: for the cases in the cross-over regime, the bunch reaches a highly non-equilibrium state

when it approaches its minimum width around tc, creating another circumstance for a signif-

icant DIH effect. The relaxation of this DIH leads to the sudden emittance growth in both

the longitudinal and transverse direction in Fig.4.4.

4.5 Density profile at tc

In this seciton, we further study the highly non-equilibrium state and the corresponding

DIH effect around tc. We present the spatial density profile of one MD simulation sample in

the cross-over regime and the corresponding SSA estimation and uniform density profile in

Fig. 4.8.

We generate the histogram and the corresponding kernel density estimation (KDE) from

the z coordinates of the electrons in the bunch at tc. By comparing the simulation result

with the uniform density profile of the same longitudinal variance, it is clear that the density

profile in the longitudinal direction of the MD simulation at tc deviates significantly from

the uniform profile.

4.5.1 Density profile prediction from SSA and its linear chirp as-

sumption

We discuss the density profile at tc determined from the SSA model prediction, followed

by a discussion of its linear-chirp assumption.
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Figure 4.8: Longitudinal density profile at tc of one crossover case (−1.5ω∗c ). The grey
histogram represents the electron distribution along the longitudinal direction of the sim-
ulation sample at tc. The green solid line is the corresponding kernel density estimation
(KDE) of the density distribution. The blue solid line is the corresponding density profile
from the SSA calculation of that sample. The orange dotted line is representing the density
distribution of a uniform spheroid with the same longitudinal spread.

The density profile at any given time t > 0 can be obtained by progressing the phase-

space distribution from the known initial distribution of (z̃, p̃z) before adding the chirp to

(z(0), pz(0)):

dQ = S(z̃)dz̃G(p̃z)dp̃z (4.2)

with S(z̃) representing a uniform distribution with the spheroidal shape and G(p̃z) repre-

senting an independent Gaussian profile of initial momentum spread without a chirp, as
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shown in Fig. 4.1:

S(z̃) = πa2

[
1−

(
z̃

c

)2
]

(4.3a)

G(p̃z) = exp

[
− p̃z

2

2η

]
(4.3b)

from the initial bunch size (a(0), c(0)). Adding the linear chirp γ/σ2 simply means one extra

transformation:  z(0)

pz(0)

 =

 1 0

γ/σ2 1

 ·
 z0

pz0

 (4.4)

The transfer matrix T (t) for the trajectory of every particle according to the linear force in

SSA is then:

 z(t)

pz(t)

 = lim
∆t→0

t/∆t∏
i=0

 1 1
me

∆t

KFz[α(i∆t)] ·∆t 1

 ·
 z(0)

pz(0)

 = T (t) ·

 z(0)

pz(0)

 (4.5)

where T (t) and its inverse T−1(t)can then be obtained through numerical solutions for the

dynamics of the SSA model:

 z(0)

pz(0)

 = T−1(t) ·

 z(t)

pz(t)

 =

T−1
11 z(t) + T−1

12 pz(t)

T−1
21 z(t) + T−1

22 pz(t)

 (4.6)

and  z̃
p̃z

 =

 1 0

−γ/σ2 1

 ·
 z(0)

pz(0)

 =

 1 0

−γ/σ2 1

 · T−1(t) ·

 z(t)

pz(t)

 (4.7)
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So then the longitudinal density distribution function of the SSA model reads:

ρ(z; t)dz =

∫
S(z̃z(t),pz(t))dz̃G(z̃z(t),pz(t), p̃zz(t),pz(t))dp̃z

= dz

∫
πa2

[
1−

(
z̃z(t),pz(t)

c

)2
]

exp

−
(
p̃zz(t),pz(t)

)2

2ηz

 dpz (4.8)

with the help of the Liouville’s theorem, i.e. dz̃dp̃z = dz(t)dpz(t). Therefore, we obtain the

projected density profile according to the SSA model as the blue solid line in Fig.4.8, which

also deviates quite significantly from a uniform density profile as the SSA model assumed.

This derivation has a caveat that the transformation leads to a bell-shaped density profile

while the driving T matrix is calculated following the uniform density profile assumption in

the SSA model. In other words, we model the bunch evolution using a uniform density

profile while the actual density distribution is not strictly uniform. However, from the

accuracy prospective, if the deviation from the uniform density profile is not too significant

(for bounce-back case) and not lasting too long (for cross-over case), the predictions of

SSA are still in a good agreement with the simulation results as we can see from Fig. 4.2.

The cases driven by the critical chirp present the most significant discrepancy between the

simulation and the model.

This deviation from uniform density profile illustrated both the limitation and versatility

of the SSA model. The limitation lies as it relies on the linear chirp assumption to conserve

emittance while only the uniform bunch with zero emittance can maintain that linear chirp

assumption throughout the bunch evolution. The versatility of SSA is that with the addition

of the emittance change term, the modified SSA model is a complete statistical model that

focuses on the evolution of bunch statistics.
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4.6 Bunch phase space display for cylindrical bunch

The MD simulation provides the detailed phase-space structure for the bunch evolution.

It can be particularly helpful for the bunch profiles that are hard to model. For example, the

initial bunch shape might be closer to a cylinder after passing through an aperture, which

is helpful in reducing the emittance by removing the hot region on the out-skirts of the

bunch [17]. For modeling the focusing process of such bunches, we simulate a uniform bunch

starting with cylinder shape with a linear chirp in the longitudinal direction. Fig. 4.9 shows

Figure 4.9: The longitudinal phase-space (first row) and real-space (second row) distribution
evolution of a uniform bunch, which starts with a cylindrical shape, zero emittance and a
linear longitudinal chirp. Electrons are colored based on their initial longitudinal position.

an interesting non-linear phase-space and real-space electron distribution. Specifically, by

comparing the phase-space and real-space distribution, we realized that the non-linearity in

the phase-space distribution (the hook on the both ends) comes from the center of the front

and back end in the longitudinal direction, as the net effect of Coulomb repulsion from the

“extra” electrons that are initially outside of the ellipsoidal region is most significant in those

82



two regions. Furthermore, the Coulomb repulsion from those extra electrons prevents the

electrons in those two regions from crossing the bunch center, resulting in a partial-crossover

situation.

4.7 Discussion

In this chapter, we present the MD simulation results for the longitudinal focusing pro-

cess of uniform spheroidal electron bunches. We equilibrate the electrons for the warm initial

condition to minimize the initial emittance growth due to DIH. The comparison of the lon-

gitudinal width evolution between the MD simulations and the SSA predictions shows the

impact of a varying emittance on bunch evolution. We propose two competing mechanisms

for the change of emittance throughout the compression process. The DIH increases the

emittance in both degrees of freedom while the difference in the SSA temperature generates

emittance transfer bewteen degrees of freedom. In addition, the non-uniform density pro-

file at the focal point (tc) introduces significant DIH that increases the emittance in both

longitudinal and transverse directions. The MD simulations also unveil other interesting

phase-space structures during the bunch focusing process.

In this section, we extend our discussion about the MD simulation results and the com-

parison between the MD simulation and the SSA model.

4.7.1 More on the emittance evolution

In Sec. 4.4.2, we discussed the heat transfer due to the SSA temperature difference in the

longitudinal and transverse directions. In addition to the bounce-back example in Fig.4.6,

we present the evolution of ηi for a crossover case, with the comparison to the SSA model
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prediciton in Fig. 4.10. The heat influx in the transverse direction is much more significant

Figure 4.10: The variance of the local momentum fluctuations for the cases in the cross-over
regime (1.5ωc) on a Log-Log scale.

than that in the bounce-back case. As the bunch evolves far beyond tc, we would expect ηz

and ηx to become closer due to the emittance transfer. However, that is not obvious from

Fig.4.6 and Fig. 4.10. The possible explanation could be that the exchange between ηi and

the linear average motion within each direction, − 2γiηi
meσ2

i
, can be significantly larger than the

heat transfer between directions, as the γi increases along with the evolution.

While the two mechanisms for emittance dynamics, DIH and emittance transfer, is qual-

itatively reasonable, it would be more convincing if we can provide more quantitative es-

timation to differentiate the effect of these two mechanisms. Specifically, our future work

will focus on analytical models to quantify the DIH for the relaxation process from the

bell-shaped density profile to a uniform distribution as shown in Fig. 4.5. Nonetheless,
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using these two mechanisms, we reach a phenomenological description about the emittance

evolution during the longitudinal focusing process of uniform ellipsoidal bunches.

4.7.2 Boersch effect

In addition to the emittance growth, the DIH around tc also leads to the broadening of

the energy spread for the probing electron bunches, which is often referred as the energetic

Boersch effect [18,52–54].

Originally, the Boersch effect was describing the broadening of the energy spectrum in

relativistic continuous beam, especially after the beam was focused transversely. One of the

explanations in accelerator community attributes the Boersch effect to the heat exchange

between the transverse and longitudinal directions through the stochastic collisions between

electrons [46,54–60].

This explanation may not applicable to the similar broadening for the bunched beams

like the probing electron bunches in UEM. In the MD simulations for the longitudinal fo-

cusing process of the probing electron bunch, the dramatic increase of emittance (and local

momentum fluctuation) occurs almost simultaneously in both directions, which cannot be

explained by the heat transfer between different degrees of freedom. In addition, there is

the difference between the cylindrical symmetry of continuous beams and the ellipsoidal

symmetry of bunched beams. Specifically, the focusing process that triggers the Boersch

effect is different for continuous beams and bunched beams. For example, the transverse

focusing of the bunched beams leads to the entire bunch being compressed in the trans-

verse direction and expanding in the longitudinal direction. However, for the continuous

beams, only the waist section being compressed into a smaller transverse cross-section, while

the corresponding expansion in the longitudinal direction is omitted due to the cylindrical
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symmetry.

One caveat of this analysis is that the MD simulations are done using a non-relativistic

pusher in the center of mass frame, while the probing bunches are traveling with a velocity of

0.55c in the UEM experiments [18]. Nonetheless, more efforts are required to fully understand

the Boersch effect of the bunched beams such as the probing electron bunch in ultrafast

experiments.

4.7.3 Sampling error

As we presented in Fig.4.4, the emittance of a uniform bunch evolves quite dramatically in

our MD simulations. Another perspective of understanding the origin of emittance evolution

might be the sampling error. Specifically, the SSA model (and all other analytical models)

treats the electron bunch as a continuum object, while the electron bunch in MD simulations

consists of discrete electrons randomly drawn from the uniform distribution. Thus, the SSA

model can be considered as a statistical description for the population and each simulation

is just one finite-sized sample drawn from the population. In this sense, the simulation

introduces sampling errors so that the measurement of the sample deviates from the true

value of the population. For example, we assume that some bunch statistics like 〈z〉, σz,δz

are zero in the model, which are most likely non-zero in the simulations.

It is unclear if there is a recovery mechanism for this sampling error. The recovery mech-

anism here is designated to the intrinsic feature of the statistics or kinematics or Coulomb

interaction that reduces the deviation between the sample and the population towards zero

as the sample/bunch evolves. From the model and existing simulation results, there is no

such effect or the magnitude is not significant enough, i.e. the deviation between a single

simulation and the SSA model does not decrease from the initial sampling error. Further
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analytical study, such as the impact due to different size of sampling error, is needed to help

us understand the origin of this emittance change mechanism.
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Appendix

Detailed derivation for electrostatic

potential for uniform ellipsoid

In this appendix, we present the detailed derivation for Coulomb potential for uniformly

charged ellipsoids. The derivation is generally folllowed MacMillan’s book [36].

The surface of a given uniform ellipsoid with semi-axes (a, b, c) is defined by equation:

ξ2

a2
+
η2

b2
+
ζ2

c2
= 1 (.1)

Let the interior point for which the potential is to be computed be P (x, y, z). On taking P

as the origin of a spherical coordinates system ρ, ϕ, θ with the transformation:

ξ = x+ ρ cosϕ cos θ (.2a)

η = y + ρ cosϕ sin θ (.2b)

ζ = z + ρ sinϕ (.2c)

and the corresponding charge element

dq = ρcρ
2 cosϕdϕdθdρ (.3)
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with the volume charge density ρc = n ·e (typically n is the electron number density). Then,

the electrostatic potential at point P (with respect to the potential zero point at infinity) is

expressed as:

V (x, y, z) =
ρc

4πε0

∫
E

dq

ρ
= κ

∫ +π
2

−π2

∫ 2π

0

∫ ρ1(θ,ϕ)

0
ρ cosϕdϕdθdρ (.4)

We substitute κ = ρc
4πε0

to simplify the derivation.

The upper limit ρ1(θ, ϕ) of the integration with respect to ρ is a function of θ and ϕ,

since the integration is from P to a point on the surface of the ellipsoid. So, we can insert

Eq. .2a into Eq. .1 for ρ1 as:

Aρ2
1 + 2Bρ1 + C = 0 (.5)

where

A =
cos2 ϕ cos2 θ

a2
+

cos2 ϕ sin2 θ

b2
+

sin2 ϕ

c2
(.6a)

B =
x cosϕ cos θ

a2
+
y cosϕ sin θ

b2
+
z sinϕ

c2
(.6b)

C =
x2

a2
+
y2

b2
+
z2

c2
− 1 (.6c)

With A being positive and C being negative for interior points, ρ1 is then the positive root

of Eq. .5 as:

ρ1 =
−B +

√
B2 − AC
A

(.7)

To compute V , we can take the advantage of
∫ ρ1

0 ρdρ = 1
2ρ

2
1, so that Eq..4 becomes

V =
κ

2

∫ +π
2

−π2

∫ 2π

0

2B2 − AC − 2B
√
B2 − AC

A2
cosϕdϕdθ (.8)
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The second part of the integral vanishes as

R = κ

∫ +π
2

−π2

∫ 2π

0

B
√
B2 − AC
A2

cosϕdϕdθ = 0 (.9)

can be evaluated by taken in pairs the two elements canceling out each other, e.g. (θ0, ϕ0)

and (θ0 + π,−ϕ0). The integral reduces to

V =
κ

2

∫ +π
2

−π2

∫ 2π

0

2B2 − AC
A2

cosϕdϕdθ (.10)

Substituting the B value from Eq. .6 and we get

V = κ [

∫ +π
2

−π2

∫ 2π

0

{
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

}
cosϕdϕdθ

A2

+ 2

∫ +π
2

−π2

∫ 2π

0

{
xy cos2 ϕ cos θ sin θ

a2b2
+
yz cosϕ sinϕ sin θ

b2c2
+
zx cosϕ sinϕ cos θ

c2a2

}
cosϕdϕdθ

A2

− C

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
]

(.11)

By properly pairing the elements in the second integral vanishes, as

xy

∫ +π
2

−π2

∫ 2π

0

cos2 ϕ cos θ sin θ

a2b2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (2π − θ0, ϕ0)}

yz

∫ +π
2

−π2

∫ 2π

0

cosϕ sinϕ sin θ

b2c2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (2π − θ0, ϕ0)}

zx

∫ +π
2

−π2

∫ 2π

0

cosϕ sinϕ cos θ

a2b2
· cosϕdϕdθ

A2
with {(θ0, ϕ0), (π + θ0, ϕ0)}
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we can have

V = κ

∫ +π
2

−π2

∫ 2π

0

(
cos2 ϕ cos2 θ

a2
· x

2

a2
+

cos2 ϕ sin2 θ

b2
· y

2

b2
+

sin2 ϕ

c2
· z

2

c2

)
cosϕdϕdθ

A2

− κ

2
C

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A

(.12)

To further simplify the above expression, one may use the following:

W =
κ

2

∫ +π
2

−π2

∫ 2π

0

cosϕdϕdθ

A
(.13)

The simplified form of the potential then reduces to:

V =
1

a

∂W

∂a
x2 +

1

b

∂W

∂b
y2 +

1

c

∂W

∂c
z2 − CW

=

(
1

a

∂W

∂a
− W

a2

)
x2 +

(
1

b

∂W

∂b
− W

b2

)
y2 +

(
1

c

∂W

∂c
− W

c2

)
z2 +W

(.14)

Since W is a function of the semi-axes (a, b, c), then so are all of its derivatives. Therefore,

the coefficients of the quadratic term x2, y2 and z2 are functions of a, b, and c only. Also,

W is the potential at the center of the ellipsoid if taking P (x, y, z) = (0, 0, 0).

We can simplify the expression of W with the help of the following substitution:

M =
cos2 ϕ

a2
+

sin2 ϕ

c2
(.15a)

N =
cos2 ϕ

b2
+

sin2 ϕ

c2
(.15b)
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Eq..13 then becomes

W =
κ

2

∫ +π
2

−π2
cosϕdϕ

∫ 2π

0

dθ

M cos2 θ +N sin2 θ

= 4κ

∫ π
2

0
cosϕdϕ

∫ π
2

0

sec2 θdθ

M +N tan2 θ

= 2πκ

∫ π
2

0

cosϕdϕ√
MN

= 2πκabc2
∫ π

2

0

cosϕdϕ√
(a2 sin2 ϕ+ c2 cos2 ϕ)(b2 sin2 ϕ+ c2 cos2 ϕ)

(.16)

To restore the symmetry within a, b, and c, we can introduce the following substitution:

sinϕ =
c√

c2 + s
⇒ d sinϕ

ds
= − c

2(c2 + s)3/2
(.17)

where s is the new variable of integration. Eventually, W can be written as:

W = πκabc

∫ ∞
0

ds√
(a2 + s)(b2 + s)(c2 + s)

(.18)

with the term related to the derivative of W with respect to a reads:

1

a

∂W

∂a
− W

a2
=
πκabc

a2

∫ ∞
0

∂a(a2 + s)−
1
2

∂a
− 1√

a2 + s

 ds√
(b2 + s)(c2 + s)

= −πκabc
∫ ∞

0

1

a2 + s

ds√
(a2 + s)(b2 + s)(c2 + s)

(.19)

Therefore, the potential inside of a uniform ellipsoidal electron bunch may be expressed

as:

V (x, y, z) =
ρc
4ε0

abc

∫ ∞
0

(
1− x2

a2 + s
− y2

b2 + s
− z2

c2 + s

)
ds√

(a2 + s)(b2 + s)(c2 + s)
(.20)
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with zero point of potential at infinity.

The corresponding electrostatic field at the interior point P (x, y, z) is,

~E(x, y, z) = Exx̂+ Eyŷ + Ez ẑ (.21)

with x̂, ŷ, and ẑ representing the unit vectors, respectively. The components of the field can

be represented by the following equations:

Ex(x, y, z) = x · ρcabc
2ε0

∫ ∞
0

ds

(a2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22a)

Ey(x, y, z) = y · ρcabc
2ε0

∫ ∞
0

ds

(b2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22b)

Ez(x, y, z) = z · ρcabc
2ε0

∫ ∞
0

ds

(c2 + s)
√

(a2 + s)(b2 + s)(c2 + s)
(.22c)
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