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ABSTRACT

EIGENVECTOR CONTINUATION: CONVERGENCE AND EMULATORS

By

Avik Sarkar

There has been a great interest in the scientific community in using machine learning

to build emulators that can accurately predict scientific processes using only fraction of the

time needed for direct calculations. The computational advantage of emulators allows us

to study processes that are beyond what is possible with direct calculations. Eigenvector

Continuation is one such emulation technique that was introduced recently. It is a variational

method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with

one or more control parameters. The computational advantage comes from projecting the

Hamiltonian onto a much smaller subspace of basis vectors corresponding to eigenvectors at

some chosen training values of the control parameters. The method has proven to be very

efficient and accurate for interpolating and extrapolating eigenvectors.

In this work, we present a study on the error convergence properties of eigenvector

continuation. With the insights we gain from learning the convergence properties, we then

propose a self-learning algorithm to efficiently select training eigenvectors for eigenvector

continuation. Self-learning is an active-learning process that relies on a fast estimate of

the emulator error and a greedy local optimization algorithm that becomes more accurate

as the emulator approximation improves. We show that self-learning emulators are highly

efficient algorithms that offer both high speed and high accuracy, and it can be applied to any

emulator that emulates the solution to a system of constraint equations, such as solutions of



algebraic or transcendental equations, linear and nonlinear differential equations, and linear

and nonlinear eigenvalue problems.
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Chapter 1

Introduction

Eigenvector continuation (EC) is a relatively new computational technique [1] that finds the

extremal eigenvalues and eigenvectors of a parameter dependent Hamiltonian matrix. It is

a variational method where we project the Hamiltonian onto a subspace of basis vectors

corresponding to eigenvectors at some chosen training values of the control parameters.

Eigenvector continuation was originally designed for extrapolation of quantum many-

body wave functions in extremely large vector spaces where general vector manipulations

are not possible. It has been used in our research group to extend quantum Monte Carlo

methods to problems with strong sign oscillations [2]. It has been used as a fast emulator for

quantum many-body systems [3,4], and as a resummation method for perturbation theory [5].

It is well suited for studying the connections between microscopic nuclear forces and nuclear

structure, a topic that has generated much recent interest [6–14]. However, we should also

mention that eigenvector continuation is a special case of a larger existing formalism called

reduced basis methods, which is itself a special case of an even larger class of methods called

model order reduction.

Although it has been shown that eigenvector continuation gives us accurate approxi-

mations to our target extremal eigenvalue and eigenvector, its convergence properties has

not been studied before. We know that the error in our approximation improves if we take

more training points, but the location of the training points also make a big difference. This
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dependence of approximation error on the number of training points and their location is

very problem specific, and very hard to characterize.

In this work, we present a study of convergence properties of eigenvector continuation,

which give us additional insight about how the method works. Using this insight and ma-

chine learning, we then present a self-learning algorithm to select optimal training points for

eigenvector continuation. We show that this active-learning protocol of self-learning can not

only be used with eigenvector continuation emulators, but also with any emulator that tries

to emulate the solution to a system of constraint equations. With various examples, we try

to demonstrate the widespread applicability of self-learning emulators and hope that they

will be useful in other scientific fields using emulators.

This work is organized as follows. In this chapter we go over our notations, basic

definitions, and some introduction and background on basic topics that will be relevant for

studying eigenvector continuations. We encourage the reader to directly skip to the next

chapter if the reader is already familiar with these concepts. All the chapters after this will

make no reference to the materials presented in this chapter.

In chapter 2, we introduce the method of eigenvector continuation, and explain all its

details. We demonstrate with simple examples how to apply it to any sample problem,

and illustrate the advantages of using this method. In chapter 3, we consider a practical

problem in physics - the Anharmonic Oscillator. Standard perturbation theory has zero

radius of convergence in the case of the Anharmonic Oscillator, but we show that eigenvector

continuation can still be applied to this problem. The method works perfectly well, and we

can extrapolate to any region using this technique.

In chapter 4, motivated by our results from the Anharmonic Oscillator, we discuss the

error convergence properties of eigenvector continuation. We show how the approximation
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error in eigenvector continuation depends on the location and number of training points in

this problem, and we try to study the asymptotic convergence behaviour as we add more

and more training points. This helps us understand more about eigenvector continuation,

and we make an important realization about orthogonality among the training eigenvectors.

In chapter 5, we continue our discussion of error convergence and selection of optimal

training points for eigenvector continuation. We come up with an iterative self-learning

algorithm that uses eigenvector continuation emulator itself to learn where the next optimal

training point is. We then show that this algorithm is actually very general and can be applied

to a whole class of emulators with a constraint equation. We present several examples to

demonstrate that self-learning emulators work very well and that it efficiently learns the

optimal locations for training points.

In chapter 6, we give a brief introduction to our research group’s Nuclear Lattice Ef-

fective Field Theory (EFT) calculations of nuclear observables. This is done the help of

Auxiliary-Field Quantum Monte Carlo, but in these calculations we are plagued by a prob-

lem called "sign problem", which result from the repulsive nature of the Coulomb interaction.

This is a signal-to-noise ratio problem, and with strong sign problems, we cannot extract

the ground state energy using this formalism. We then present an algorithm to implement

eigenvector continuation in these lattice Monte Carlo codes, called the floating-block eigen-

vector continuation. We show that eigenvector continuation can help us alleviate some of

our sign problems by being able to extrapolate to the target point we are interested in.

Finally we end with conclusions and possible future work. We also provide some details

of our numerical calculations in a supplemental materials, which is given at the end of this

document.

We start with defining our notations and basic Hamiltonian mechanics. We will not
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describe all the details, and the reader, if unfamiliar with the topic, is encouraged to look

up any quantum mechanics book [15].

1.1 Hamiltonian

In physics, we are often interested in understanding how particles interact with each other,

and how they evolve in time. For large particles, we have Newtonian mechanics, which

describe the physics of their interactions very well. For small particles we need quantum

mechanics. Here we will first describe quantum mechanics using wave mechanics formalism.

Following the usual wave mechanics notations, we use the term wavefunction to represent

any function in our coordinate space. If we take the Fourier transform of the wavefunction

in coordinate space, we get a wavefunction in momentum space.

The wavefunction Ψ(x, t) can represent a state of particle(s), and in coordinate repre-

sentation, |Ψ(x, t)|2dx is the probability of finding the particle(s) in the region x to x+ dx.

This wave function satisfies the Schrödinger equation, which governs how it evolves in time.

In one-dimension, this is given by,

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ (1.1)

This time-dependent equation is often written in terms of the Hamiltonian operator Ĥ =

p̂2/2m + V , where p̂ = (ℏ/i)(∂/∂x). The corresponding equation is then ĤΨ = iℏ(∂Ψ/∂t).

In multi-dimensions, (∂/∂x) becomes multi-dimensional derivatives ∇.

The Hamiltonian is an important concept because any given problem and its interac-

tions can be expressed by its Hamiltonian. For example, for the free particle without any

4



interactions, the Hamiltonian is given by Ĥ = p̂2/2m.

We solve equation 1.1 by separation of variables, and separating out the time dependence

we get,

Ĥψ = Eψ (1.2)

where Ψ = ψe−iEt/ℏ. We call the solutions to equation 1.2 stationary states because the

probability of finding the particle at any point |Ψ|2 = |ψe−iEt/ℏ|2 = |ψ|2 does not change

with time.

Since the Hamiltonian Ĥ is a Hermitian operator, the stationary state solutions to 1.2

form a complete basis. This means that we can represent any given wavefunction as a linear

combination of the stationary states. This also allows us to write any operator as a function

that takes a given stationary state to some combination of other stationary states. In other

words, we can represent any operator as a matrix that acts on a vector written in terms of

a basis of stationary states. This is the matrix formalism of quantum mechanics, and using

this matrix mechanics we can turn the Schrödinger equation of 1.2 into a matrix equation,

H |ψ⟩ = E |ψ⟩ (1.3)

where H is a matrix and |ψ⟩ is a column vector. We are using the Dirac notation of bra-ket,

where |ψ⟩ is called a ket and is a column vector, and ⟨ψ| is called a bra and is a row vector.

Their inner product is written as ⟨ψ|ψ⟩, and it is just the multiplication of a row vector and

a column vector. We also assume that any given state |ψ⟩ is normalized such that ⟨ψ|ψ⟩ = 1,

because we can always re-normalize any given ket as |ψ′⟩ = |ψ⟩ /
√
⟨ψ|ψ⟩, so that ⟨ψ′|ψ′⟩ = 1.
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In this work, we will be looking at the Hamiltonian as a matrix H, and we are interested

in solving the eigenvalue problem given in equation 1.3. The eigenvalue E has a physical

interpretation as energy of the system, and thus, we will often call the eigenvalue of the

Hamiltonian as eigenenergy or just energy. We call the smallest eigenvalue as the ground state

energy, and the larger eigenvalues as excited state energies. The eigenvectors corresponding

to them are called ground state eigenvector and excited state eigenvectors respectively.

Since eigenvector continuation is a variational technique that gives best results with the

ground state, we will often we interested only in the ground state. Therefore, in this work

we will often call the ground state energy and eigenvector of the Hamiltonian as just the

eigenenergy (or simply energy) and eigenvector of the Hamiltonian respectively.

1.2 The Harmonic Oscillator

In this section we review the quantum Harmonic Oscillator that is usually covered in a first

year graduate quantum mechanics class. The Harmonic Oscillator problem is important for

us because in chapter 3, we will consider the Anharmonic Oscillator, which builds on the

Harmonic Oscillator problem. Here we define the ladder operators and show how we get the

eigenenergies for this problem.

The classical harmonic oscillator is a mass m attached to a spring with spring constant

k. Its motion is given by Hooke’s law,

F = −kx = m
d2x

dt2
(1.4)
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Its potential is given by,

V =
1

2
kx2 =

1

2
mω2x2 (1.5)

where ω =
√
k/m is the frequency of oscillation.

Accordingly, the quantum Harmonic oscillator Hamiltonian is defined by,

Ĥ =
p̂2

2m
+

1

2
mω2x2 (1.6)

To solve the Schrödinger equation with this Hamiltonian, we define the ladder operations as

follows,

a± =
1√

2ℏmω
(
∓ ip+mωx

)
(1.7)

Here a+ is called the creation operator and a− is called the annihilation operator. If we

define the eigenstates of the number operator N = a+a− as |n⟩, then a+ |n⟩ =
√
n+ 1 |n⟩

and a− |n+ 1⟩ =
√
n |n− 1⟩.

With the help of commutation relationship [x, p] = iℏ, these operators allows us to

rewrite the Hamiltonian in the following way,

H = ℏω
(
a+a− +

1

2

)
(1.8)

Since N |n⟩ = n |n⟩, we see that the eigenenergies of the Hamiltonian are of the form,

En = ℏω
(
n+

1

2

)
(1.9)
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and the eigenvectors of the Hamiltonian are the same as the eigenvectors of the Number

operator |n⟩. In coordinate representation,

|n⟩ = An(a+)
nψ0(x), where ψ0(x) =

(mω
πℏ

)1/4
e
−mω2ℏ x

2
(1.10)

where An is some normalization constant to make ⟨n|n⟩ = 1.

1.3 Perturbation Theory and Avoided Level-Crossing

In this work, we consider parameter dependent Hamiltonians of the form H(c) = H0+ cH1,

where H0 and H1 are hermitian matrices. The idea here is that H1 can be seen as a

perturbation from H0, whose solution we know already. We can think of arriving at the

target Hamiltonian H(ct) by setting c = 0 and slowly increasing it until c = ct. If the

parameter dependent wavefunction and energy is denoted by ψ(c) and E(c), then for small

c, we can expand them in a power series,

ψ(c) = ψ(0) + cψ′(0) +
c2

2!
ψ′′(0) + · · ·

E(c) = E(0) + cE′(0) +
c2

2!
E′′(0) + · · · (1.11)

where the prime represents derivative with respect to the parameter c.

In standard perturbation theory, one would put these expansions into the Schrödinger

equation and compare the coefficients of equal derivatives. We do not derive the expressions

for the results of perturbation theory here. Instead, here we will look at the expansion in

equation 1.11 in the complex plane (when we extend c to be complex parameter), and try

to understand why at some point the series expansion break down.
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If we assume that all eigenvalues of H0 and H1 are not degenerate, then as we change

the parameter in our Hamiltonian in H = H0+ cH1, the relative ordering of eigenvalues and

their corresponding eigenvectors change. When c→ −∞ the largest eigenvalue of H1 is the

smallest eigenvalue of H, and the smallest eigenvalue of H1 is the largest eigenvalue of H.

But when c → ∞ the largest eigenvalue of H1 is now the largest eigenvalue of H, and the

smallest eigenvalue of H1 becomes the smallest eigenvalue of H. As we move from c→ −∞

to c → ∞, all the eigenvalues of the H invert, and at some point they cross each other. In

general, this crossing happens somewhere in the complex plane, and not necessarily on the

real axis. If we look at only along the real axis, then we see that different eigenvalues cross

each other, but they do not intersect. Instead, we see avoided level-crossings.

Corresponding to these avoided level-crossings along the real-axis, there are associated

branch point singularities of the levels when they are continued in the complex plane. These

very special points are called exceptional points. They have been well studied [16, 17], and

we only mention some brief details here.

Consider the avoided level-crossing between two eigenvalues ϵ1(c) and ϵ2(c). Suppose

these eigenvalues meet at λc in the complex plane. At this point, the two eigenvalues are

equal, i.e., ϵ1(λc) = ϵ2(λc). At this point, there is only one eigenvector corresponding to

this eigenvalue, and the Hamiltonian is not fully diagonalizable. The two functions, ϵ1(c)

and ϵ2(c), are the values of one single analytic function on two Riemann sheets, and the two

sheets are connected at the branch point singularity occurring at c = λc.

These branch point singularities restrict the area of convergence for simple expansions

like that in equation 1.11. This means that when we have an exceptional point at λc,

standard perturbation theory will fail if we try for a large c, with |c| > |λc|. This concept

will be relevant for us when we discuss how eigenvector continuation can extrapolate beyond
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the region of convergence of perturbation theory using analytic continuation in the complex

plane.

1.4 Variational Principle

The variational principle says that for any given state |ψ⟩ and Hamiltonian H, the ground

state energy Egs will be less than or equal to ⟨ψ|H|ψ⟩, i.e., Egs ≤ ⟨ψ|H|ψ⟩. This is relevant

for us because eigenvector continuation is a variational technique, and we will see that the

eigenvector continuation energy approximation for the ground state will always be greater

than the actual energy.

The variational principle also highlights a second important observation about eigen-

vector continuation. Variational principle applies only for the ground state energy of the

system. If we want to apply variational principle for excited state, then we need to remove

the ground state and look in orthogonal directions to apply it. We have a similar situation

with eigenvector continuation. Eigenvector continuation works best for estimating ground

state energy and eigenvector (i.e. extremal eigenvector and eigenvalue), however, it can be

applied to estimate the excited state energy if we include the ground state and excited state

eigenvectors in the training data.
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Chapter 2

Eigenvector Continuation

Eigenvector continuation (EC) is a variational method that finds the extremal eigenvalues

and eigenvectors of a Hamiltonian matrix that depends on one or more control parameters.

It was first introduced in [1,2], and was originally developed from studying the convergence

of the Lanczos algorithm and searching for a set of basis states that would converge more

quickly than the Krylov subspace.

The main idea in eigenvector continuation is that as we vary the control parameters in

the Hamiltonian, the extremal eigenvector also varies with the control parameter, but this

eigenvector moves in a subspace whose dimensionality is much less than the dimension of

the Hilbert space that the eigenvector lives in. This implies that we will capture the essence

of the problem if we project the problem onto the smaller vector space that the extremal

eigenvector lives in. The estimate that we can get from this projection is much faster to

calculate because of the reduction in dimensionality. This speedup boost makes eigenvector

continuation a general technique that can be applied to variety of problems.

Typically, we apply eigenvector continuation to a problem by projecting the target

Hamiltonian onto a subspace of basis vectors corresponding to eigenvectors at some chosen

training values of the control parameters. We then solve the generalized eigenvalue problem

to find the extremal eigenvectors. Effectively, this gives a linear combination of the input

eigenvectors that minimizes the eigenvalue of the Hamiltonian at the target value of the
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parameter. This linear combination serves as a good low-dimensional estimate for our exact

eigenvector.

2.1 How to Apply Eigenvector Continuation

Let us consider a one-parameter family of Hamiltonian matricesH(c) = H0+cH1, where both

H0 and H1 are finite-dimensional Hermitian matrices, and c is a parameter. The extension

to the multi-parameter case follows naturally, and will be discussed after our discussion of

the one-parameter case.

For the given Hamiltonian family H(c), we are interested in finding the ground state

eigenvector |v(ct)⟩ (=extremal eigenvector) and eigenvalue E(ct) for some target parameter

value c = ct. As noted in Ref. [1], eigenvector continuation can also be extended to excited

states by including excited state eigenvectors at the training points. For now we will focus

on ground state calculations in this analysis.

The first advantage of eigenvector continuation that we will illustrate is that it allows

us to extrapolate to a region where we cannot access by direct calculation. Our next chapter

is entirely dedicated to illustrate this point with the help of a example on Anharmonic

Oscillator. For now, suppose that for the given ct that we are interested in, H(ct) cannot

be diagonalized directly with regular computational techniques in a reasonable amount of

time. We can only calculate its eigenvalues and eigenvectors for small c. We want to use

this information about the eigenvectors for small c to find the eigenvector at large ct. Let us

calculate the exact eigenvectors at k small c points where we can compute the eigenvector of

the Hamiltonian matrix directly. We will call these k points as our training points since we

are training eigenvector continuation to give an output based on these training eigenvectors.
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We denote these points by ci = {c1, · · · , ck}, and the ground state eigenvector at those

corresponding points by |v(c1)⟩ , · · · , |v(ck)⟩. We are interested in finding |v(ct)⟩ and E(ct),

where H |v(ct)⟩ = E(ct) |v(ct)⟩.

We define the norm matrix N as,

Nij = ⟨v(ci)|v(cj)⟩ (2.1)

We project the target Hamiltonian H(ct) on to the subspace spanned by the training

eigenvectors |v(c1)⟩ , · · · , |v(ck)⟩, and define the projected matrix H̃ as,

H̃ij(ct) = ⟨v(ci)|H(ct)|v(cj)⟩ (2.2)

Note that we are using the target Hamiltonian with parameter c = ct, but we are projecting

onto eigenvectors with parameter c = ci.

After calculating these matrices, we solve the generalized eigenvalue problem for H̃ and

N . A generalized eigenvalue problem (second sense) for these two matrices is the problem

of finding a (nonzero) vector |w(ck)⟩ that satisfies,

H̃ |w(ct)⟩ = ẼN |w(ct)⟩ (2.3)

Then, our eigenvector continuation estimate of energy is EEC = Ẽ and EC estimate of

the eigenvector is |v⟩EC = T |w(ct)⟩, where T is the matrix of training vectors,

T =

[
|v(c1)⟩ · · · |v(ck)⟩

]
(2.4)
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Here |v(ci)⟩ corresponds to the eigenvector at c = ci, with all elements written in a column.

The eigenvector |w(ct)⟩ we get after we solve the generalized eigenvalue problem is the

eigenvector we want, but it is in the projected low-dimensional space. We get our eigenvector

in our original Hilbert space, we need to multiply by the matrix of training vectors T .

In theory, that is all we need to perform eigenvector continuation. However, in practice,

we often ortho-normalize our training vectors by Gram-Schmidt algorithm. This makes the

norm matrix Nij the identity operator, and equation 2.3 just becomes a normal eigenvalue

problem. Note that when we orthogonalize our training vectors, we also need to use a

orthonormal set of eigenvectors in the training vector matrix in 2.4. Orthogonalization speeds

up our calculation especially for large number of training vectors, and it is critical for our

understanding of convergence of eigenvector continuation. We will describe the convergence

in more details after two chapters.

Before we move to an example, let us summarize the main idea of eigenvector contin-

uation. H is a n dimensional matrix, where n can be a very large number, and H̃ is a k

dimensional projection of the H matrix (at the target parameter), onto the space of k train-

ing points, and k is much usually smaller than n. The training eigenvectors are the exact

eigenvector of the Hamiltonian at different parameter values, and often far away from the

target parameter value. By solving for the eigenvalue of H̃ instead of H, we have reduced

the dimensionality of the problem, and the diagonalization is much faster. This illustrates

the second big advantage of eigenvector continuation - huge computational speed up factor.

Later we will see that instead of using eigenvector continuation for extrapolation, we can use

EC just for this computational speed boost and use it to build fast and accurate emulators

that can interpolate in between training points.

For now, we will focus on extrapolation. In the next chapter, we will show how this
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extrapolation works with a practical example - Anharmonic Oscillator. In the Anharmonic

Oscillator problem, standard perturbation theory diverges and we cannot get any results

beyond a certain value of the parameter. As we will show, eigenvector continuation is able

to extrapolate to a region where perturbation theory fails. However, before we look at the

problem of the anharmonic Oscillator, we will first take a look at a simple problem using

random matrices to demonstrate how we apply eigenvector continuation to any problem.

Suppose we have a Hamiltonian H = H0+cH1, where H0 and H1 are random Hermitian

matrices. We choose n = 10, so all our matrices are 10-dimensional. In this example, we

take H0 and H1 to be the following:

H0 =



9.87 9.00 10.14 9.86 10.62 9.94 10.01 10.11 9.90 9.04

9.00 10.11 8.93 9.58 9.38 9.15 10.77 9.70 9.71 7.90

10.14 8.93 9.88 9.87 10.85 9.86 10.11 8.78 9.78 10.55

9.86 9.58 9.87 9.93 9.82 10.35 10.06 9.91 9.47 10.81

10.62 9.38 10.85 9.82 10.15 9.74 9.63 11.29 10.03 10.68

9.94 9.15 9.86 10.35 9.74 8.08 9.67 9.00 11.16 10.52

10.01 10.77 10.11 10.06 9.63 9.67 9.41 8.54 10.73 10.15

10.11 9.70 8.78 9.91 11.29 9.00 8.54 8.74 10.40 10.04

9.90 9.71 9.78 9.47 10.03 11.16 10.73 10.40 11.20 8.96

9.04 7.90 10.55 10.81 10.68 10.52 10.15 10.04 8.96 12.27


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H1 =



0.15 0.04 0.13 0.10 0.15 0.09 0.07 0.13 0.13 0.08

0.04 0.21 0.10 0.09 0.08 0.14 0.14 0.06 0.10 0.09

0.13 0.10 0.03 0.08 0.06 0.04 0.12 0.08 0.07 0.07

0.10 0.09 0.08 0.11 0.13 0.11 0.06 0.10 0.10 0.12

0.15 0.08 0.06 0.13 0.13 0.02 0.04 0.11 0.11 0.04

0.09 0.14 0.04 0.11 0.02 0.10 0.11 0.09 0.10 0.13

0.07 0.14 0.12 0.06 0.04 0.11 0.09 0.13 0.05 0.08

0.13 0.06 0.08 0.10 0.11 0.09 0.13 0.07 0.13 0.13

0.13 0.10 0.07 0.10 0.11 0.10 0.05 0.13 0.05 0.12

0.08 0.09 0.07 0.12 0.04 0.13 0.08 0.13 0.12 0.04


Suppose we have the exact ground state eigenvector |ψ(c)⟩ at c = 50 and c = 100, but we

are interested in the eigenvector at ct = 1000. For this simple example, we can calculate the

eigenvector directly by othrogonalization of the Hamiltonian, but for demonstration purposes

we will show that we can find an estimate of the ground state eigenvector at c = 1000 with

eigenvector continuation, using only two training eigenvectors.

The ground state eigenvectors at c = 50 and c = 100 are,

|ψ(c = 50)⟩ =
[
0.31 0.08 −0.44 0.06 −0.04 −0.46 0.31 −0.46 0.24 0.36

]†

|ψ(c = 100)⟩ =
[
0.31 0.06 −0.48 0.07 −0.07 −0.42 0.39 −0.43 0.22 0.32

]†

So our T matrix is a 10× 2 matrix, where the two columns are the two eigenvectors above.

However, before projecting H(ct) onto these training vectors, we first orthonormalize them.
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The orthogonalized T matrix is,

T =

0.31 0.08 −0.44 0.06 −0.04 −0.46 0.31 −0.46 0.24 0.36

0.01 0.22 0.38 −0.12 0.24 −0.31 −0.70 −0.16 0.20 0.30


†

Now the norm matrix N is just the 2 × 2 identity matrix, and the projected Hamiltonian

matrix H̃ is given by,

H̃ = T †HT =

−124.24 27.09

27.09 −9.39



The eigenvalue of this matrix H̃ is -130.31, and its corresponding eigenvector is
[
0.98 −0.22

]†
.

When projected back to our 10-dimensional space, we get our eigenvector continuation esti-

mate of eigenvector.

|ψ(ct)⟩EC =

[
0.30 0.03 −0.51 0.08 −0.09 −0.38 0.45 −0.41 0.19 0.29

]†

The exact eigenvalue at ct = 1000 is -130.56 and the exact eigenvector is

|ψ(ct)⟩ =
[
0.31 0.05 −0.52 0.11 −0.13 −0.39 0.44 −0.39 0.22 0.23

]†

The difference in eigenvalue is 0.25, and the norm of the difference of the two eigenvectors

is about 0.08. Thus, with only two training points, eigenvector continuation gave us an

eigenvalue estimate with 99.8% accuracy, and an eigenvector estimate with 92% accuracy.

With more training points, the estimate becomes better. If we add another training point at

c = 150, then with three training points, the eigenvector continuation estimate of eigenvalue
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is 99.99% accurate, and the EC estimate of eigenvector is 99% accurate.

So eigenvector continuation reduced the problem of diagonalizing a 10-dimensional ma-

trix to diagonalizing a 2-dimensional matrix. For this particular example, we achieved a

speed-up factor of more than 7 times, while losing < 0.2% accuracy. This shows why eigen-

vector continuation can be such a efficient tool at making approximations. We can achieve

even more accurate estimates with more training points, but it will take a little longer time.

There is a trade-off between accuracy and computational speed. However, eigenvector con-

tinuation will always be faster than direct diagonalization of the target matrix.

Note that in our eigenvector continuation estimate, the accuracy in eigenvalue is higher

than accuracy in eigenvector. Furthermore, the estimate of eigenvalue is greater than the

actual eigenvalue. This is because eigenvector continuation is a variational technique, and

works by trying to minimize the eigenvalue. In the next section, we describe the variational

approach of this method, and gain deeper understanding of how eigenvector continuation

works.

2.2 Variational Principle in Eigenvector Continuation

Although it might not seem like it, eigenvector continuation is a variational technique, and

as such we see several properties in EC as seen in other variational methods. For example,

the eigenvector continuation estimate of ground state energy will always be greater than the

actual ground state energy of the problem. We mentioned before that the EC estimate of

the eigenvector is a linear combination of the training eigenvectors. Let us see why this is

true, and it will be clear why eigenvector continuation is a variational technique.

Consider again the T,H and H̃ matrix in equations 2.1, 2.2 and 2.4. This time let
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us write the eigenvector |w(ct)⟩ as a column vector |w(ct)⟩ = [a1 · · · ak]T . Also, for sim-

plification, let us orthonormalize our training vectors, so that the norm matrix becomes an

identity matrix, i.e., N = T †T = TT † = I. Now we are interested in solving the generalized

eigenvalue problem given in equation 2.3,

H̃


a1

· · ·

ak

 = Ẽ


a1

· · ·

ak



⇒
[
|v1⟩ · · · |vk⟩

]†
k×n

Hn×n

[
|v1⟩ · · · |vk⟩

]
n×k


a1

· · ·

ak


k×1

= Ẽ


a1

· · ·

ak


k×1

Multiplying both sides by T and using orthonormality of T matrix, we have

⇒ Hn×n

[
|v1⟩ · · · |vk⟩

]
n×k


a1

· · ·

ak


k×1

= Ẽ

[
|v1⟩ · · · |vk⟩

]
k×n


a1

· · ·

ak


k×1

⇒ Hn×n

[
a1 |v1⟩+ · · ·+ ak |vk⟩

]
n×1

= Ẽ

[
a1 |v1⟩+ · · ·+ ak |vk⟩

]
n×1

(2.5)

To improve clarity, we have shown the size of the vectors in subscript.

We are interested in the lowest eigenvalue, and as equation 2.5 shows, the eigenvector

continuation algorithm picks a linear combination of the training vectors that minimizes the

eigenvalue Ẽ. The eigenvector [a1 · · · ak]T of the projected Hamiltonian H̃ is in fact the

19



coefficients of the linear combination of the training eigenvectors.

Now the variational approach of eigenvector continuation is clear, because the method

is vary the coefficients [a1 · · · ak]T to minimize the energy. We do not see it directly because

we are not minimizing anything directly. However, for eigenvector continuation to give

us the lowest eigenvalue, it has to select the coefficients so that energy is minimized. This

variational principle is also the reason why eigenvector continuation works best for the ground

state eigenvector and eigenvalue, i.e., extremal eigenvector and eigenvalue.

Now let us look into why a linear combination of training points can approximate the

target eigenvector so well, even when we are extrapolating far away in the parameter space.

This brings us to our next topic - analytic continuation.

2.3 Analytic Continuation

We can understand why eigenvector continuation can extrapolate so well by seeing it as an

analytic continuation in the complex plane. By looking at series expansions in the complex

plane, we can also see how eigenvector continuation compares to perturbation theory. Let

us first see how analytic continuation can be used to extend perturbation theory, and then

we will discuss why this is relevant to eigenvector continuation. The ideas presented in this

section are not directly used while applying eigenvector continuation to a practical problem.

Here we only present theoretical ideas that can help understand how eigenvector continuation

works.

Suppose we have a parameter dependent Hamiltonian H(c), where H is Hermitian for

real c. We are interested in calculating the ground state eigenvector of H(c) for some real

c, but we can also look at the dependence of the eigenvector as we vary c in the complex
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plane. In the end we will be interested in a point on the real axis, but this extension to

complex plane has several benefits, and that one that will be obvious soon is that it allows

us to visualize the effective range of perturbation theory. For the typical Hamiltonian form

that we will consider, H(c) = H0+ cH1 with Hermitian H0 and H1, one sees several avoided

level-crossings that correspond to singular points on the complex plane. These points limit

the radius of convergence of any power series expansion of the eigenvector involved in the

level-crossing.

Suppose we want to expand the ground state eigenvector |ψ(c)⟩ around c = 0. Then we

can write,

|ψ(c)⟩ =
∞∑
n=0

|ψ(n)(0)⟩ c
n

n!
(2.6)

where |ψ(n)(0)⟩ denotes the nth derivative of the eigenvector with respect to the parameter

c, and evaluated at c = 0. Note that this derivative is another eigenvector, and is in general a

multidimensional vector. Now suppose there is a singularity at z and z̄. The situation shown

in figure 2.1. The singularity will restrict the radius of convergence of equation 2.6 to the

circle shown in picture 2.1a. Equation 2.6 is how standard perturbation theory works, and

we generally perturb from c = 0. So if we were to use perturbation theory in our problem,

we would only be able to get results for any c within the radius of convergence. If we move

outside the circle shown in 2.1a, perturbation theory breaks down.

Now we can also expand in a power series centered at another point on the real axis, say

w. This would be corresponding to doing perturbation theory, but starting our perturbation
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(a) Expansion around c = 0 (b) Expansion around c = w

Figure 2.1: Radius of convergence of power series expansion at any point is limited by the
singular points z and z̄.

from c = w. For this series we can write,

|ψ(c)⟩ =
∞∑
n=0

|ψ(n)(w)⟩ (c− w)n

n!
(2.7)

As figure 2.1b shows, the circle within which this series converges is little different to

the previous circle where perturbation theory from c = 0 converged. We have some overlap

with the previous circle, but we also have covered some region outside our circle centered at

c = 0. In the region where they overlap, both of our expansions work, and we can write an

equation for the nth derivative of |ψ(c)⟩ at c = w as a series,

|ψ(n)(w)⟩ =
∞∑
m=0

|ψ(n+m)(0)⟩ w
n

n!
(2.8)

This follows from equation 2.6. Now we can substitute this equation in equation 2.7 and get,

|ψ(n)(w)⟩ =
∞∑
n=0

∞∑
m=0

|ψ(n+m)(0)⟩ w
n(c− w)n

n!m!
(2.9)
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This equation is now applicable anywhere in the radius of convergence of the series in

equation 2.7, which is the circle shown in figure 2.1b. However, it only has derivatives at

c = 0, which can all be calculated at the origin. Thus, using only the information at c = 0,

we can calculate the eigenvector at any point in the circle shown in figure 2.1b. This means

that we have analytically continued from the circle in figure 2.1a to the circle in figure 2.1b,

and went beyond the standard perturbation theory radius of convergence. This new region

that we can access by analytic continuation is shown in figure 2.2.

Figure 2.2: Analytic continuation allows us to extend standard perturbation theory radius
of convergence.

So we have seen that we can extend perturbation theory by analytic continuation. This

is possible because of the smoothness in the parameter of the Hamiltonian, and complex

analysis tells us that the information about the far away points from origin, is actually present

near the origin. We can write the eigenvector at a far away point as a linear combination
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of the derivatives of the eigenvector at origin. Now, any given training vector can also be

written as a sum of derivatives of the eigenvector at origin, and consequently, we can combine

them to write the eigenvector at a far away point as a linear combination of our training

eigenvectors. As we have seen in our previous section, eigenvector continuation gives us a

linear combination of our input training vectors, and thus it now makes sense why eigenvector

continuation works. The important thing is that for any given value of the parameter c, there

exists a linear combination of training points that can approximate the eigenvector at that

point |ψ(c)⟩. As long as this linear combination exists, eigenvector continuation can do a

variational approach to find the best linear combination that approximates the energy the

best.

In practical application, when we perform eigenvector continuation, we are dealing with

finite dimensional matrices and we have a finite number of training points. So we don’t have

a infinite number of terms in our series and as such we are making truncated approximations

in equations 2.6, 2.7, 2.8, and 2.9. This makes our linear sum not exactly equal to the actual

target point eigenvector. However, the main point of this technique is that for numerical

purposes, we don’t need infinite or large number of training points. We get a very good

approximation with a few training points.

This relation to analytic continuation is the reason why the technique was named eigen-

vector continuation. Let us emphasize once again that in a practical calculation, we are not

calculating any series expansions. But these ideas of analytic continuation help us explain

why eigenvector continuation works so well in extrapolating. We will come back to this in

the next chapter, where we study the problem of anharmonic oscillator. In that context,

we will demonstrate the power of analytic continuation, and how eigenvector continuation

allows us to calculate values that perturbation theory cannot give.
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2.4 Interpolation and Emulators using Eigenvector Con-

tinuation

In this section we discuss the second big advantage of using eigenvector continuation - huge

computational speedup boost. As we mentioned before, by projecting the full size Hamil-

tonian H onto the subspace of training vectors, which is substantially smaller than the

dimension of the H, we reduce the dimensionality of the problem by possibly orders of

magnitude. This means that even when we can solve a problem using conventional means,

eigenvector continuation allows us to get accurate approximations of the result potentially

orders of magnitude faster.

This brings us to the next point - interpolation. So far we have seen eigenvector contin-

uation as an extrapolation technique, especially when we see it as an analytic continuation.

However, the reasoning that we used with series expansions before also works when we are

inside the base circle where perturbation theory works. Within the circle where the pertur-

bation theory works, the eigenvector at target coupling that we are interested in can also

be written as a linear combination of training eigenvectors (technically an infinite number

of training eigenvectors, but we get an approximation by truncating it). Another way to

put it is that we can analytically continue to the circle we are already in - it is the trivial

continuation. So, eigenvector continuation can be used at any target coupling, whether we

are extrapolating to a far away point in the parameter space, or we are interpolating between

training points in the parameter space.

We should mention that when eigenvector continuation was introduced as a general

technique, the interpolation aspect of the method gained more popularity than the extrapo-

lation aspect. The reason is because we can use eigenvector continuation as a emulator, by
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giving it the exact data at particular training points and estimating (or emulating) the exact

result everywhere else. This can be interpolation or extrapolation depending on where our

training data is in the parameter space, however our accuracy of our eigenvector continuation

emulator is greatly increased if our training points are spread out and we are interpolating

points in between them.

Let us illustrate this interpolation idea with an example. We will go back to the same

example that we used for extrapolation - the one with 10-dimensional random matrices. With

the same H0 and H1, we have H = H0 + cH1. But this time, instead of being interested in

the ground state eigenvector at c = 1000, we want an approximate ground state eigenvector

for all c between −700 ≤ c ≤ 700. That is a lot of points. In our case, we discretized

the c space into 14000 points, and that means we want the eigenvector at 14000 points. If

we perform direct diagonalization, we need to diagonalize 14000 times, which takes some

time to perform numerically. Instead we can perform eigenvector continuation everywhere,

using the exact eigenvectors obtained from direct diagonalization at a fixed set of training

values, as training vectors. We only need to calculate the exact result a couple of times,

and performing eigenvector continuation over the rest of the points is much faster. Figure

2.3 shows the error in our eigenvector continuation emulator across the whole c parameter

space with six training eigenvectors. The error in eigenvalue is just the difference between

the EC emulated eigenvalue and the actual eigenvalue, whereas the error in eigenvector is

the norm of the difference between the EC emulated eigenvector and the actual eigenvector.

The training eigenvectors are located at points where the log of difference of the errors is

-35. Technically the error should be −∞, but we have limitation of numerical precision, and

we manually set the error at these points to e−35.

As figure 2.3 shows, eigenvector continuation does an excellent job at interpolating
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Figure 2.3: Interpolation with eigenvector continuation - we try to find approximate eigen-
value problem solution everywhere between −700 ≤ c ≤ 700 using only six training eigen-
vectors.

everywhere across our domain −700 ≤ c ≤ 700. However, this plot also raises several

questions like, how many training points do we need to get a reasonable approximation, and

where should we take our training points? We will try to answer these questions in chapters

4 and 5. For this particular example, we actually chose our training points carefully to get

good results with only six training points, and we will explain the details behind choosing

training points later.
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Chapter 3

Anharmonic Oscillator

In this section we present our first results of eigenvector continuation applied to a practi-

cal physics problem - the anharmonic oscillator. The anharmonic oscillator has been well

studied in physics, and it has several applications in nuclear and condensed matter physics.

We will start with motivation of studying anharmonicity, and we will mention some of the

literature work done in this field. We discuss several things about how we can apply eigen-

vector continuation to this system, and how it helps solve the zero radius of convergence

of perturbation theory. We will also start looking at the error convergence properties of

eigenvector continuation, and see how they scale with increasing number of training points.

We will derive some bounds for the error, however we will come back to error convergence

in more details in the next chapter.

To start things with, we have the simple quantum harmonic oscillator, which is studied

in a typical graduate quantum mechanics course. A Hamiltonian with a harmonic oscillator

potential is given by,

H(c) = H =
p2

2m
+
mω2x2

2
(3.1)

where ω is the fundamental frequency of the harmonic oscillator. We will assume the reader

is familiar with this problem, and a small introduction is given in the first chapter.
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However, in studying vibrations occurring in several places of nuclear and condensed

matter physics, one often needs to go beyond the simple harmonic oscillator approximation.

For example, anharmonic effects can be important in systems incorporating light atoms

with large vibrational amplitudes, systems with weak bonding such as hydrogen bonding,

and systems at high temperatures.

The quantum anharmonic oscillator has been studied extensively during the past few

decades [18–23]. Several studies involving asymptotic expansions and perturbation theory,

using techniques from the WKB method, have been done. In particular, it is known that

in the case of the quartic anharmonic oscillator, perturbation theory has zero radius of

convergence. As a matter of fact, one of the reasons to consider such a system is because

this model has a well-defined but divergent perturbation series. Furthermore, the singularity

structure has been analyzed before [24], and there is a singularity that lies near the negative

imaginary axis.

Apart from being useful in modeling vibrations, the quartic anharmonic oscillator (hence-

forth referred to as just anharmonic oscillator) is also a simple model field theory in one-

dimensional space-time. This field theory is defined by the Hamiltonian,

H =
1

2
ϕ̇2 +

1

2
m2ϕ2 + λϕ4 (3.2)

with commutation relations [ϕ, ϕ̇] = i.

Since this field-theory model involves no space dimensions, there are no asymptotic

states and particle scattering. Moreover, it is a one-dimensional model, which means that it

describes a universe which has just one oscillating point. Nonetheless, this model has some

value in studying, since it may give us some idea of the underlying complexity of a more
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realistic field theory. This model has been well studied as well [25, 26].

3.1 Anharmonic Oscillator Hamiltonian

If we add a perturbation of x4 term to the Hamiltonian in equation 3.1, then we get the

Hamiltonian for anharmonic oscillator,

H(c) =
p2

2m
+
mω2x2

2
+ cx4 (3.3)

where c is the strength of the perturbation.

Since we consider the cx4 term as a perturbation, we employ the annihilation and creator

operators of the standard harmonic oscillator, which are given by,

a =

√
mω

2ℏ
(x+

ip

mω
)

a† =

√
mω

2ℏ
(x− ip

mω
) (3.4)

They act on the nth eigenstate, represented by |n⟩, by a |n⟩ =
√
n |n− 1⟩ and a† =

√
n+ 1 |n+ 1⟩. From this we can write x =

√
ℏ

2mω (a+ a†).

We choose the eigenstates of the harmonic oscillator to be our basis states. In this basis,

our perturbation Hamiltonian h′ = x4, has matrix elements given by,
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⟨i|h′|i⟩ =
( ℏ
2mω

)2
6i2 + 6i+ 3

⟨i− 2|h′|i⟩ =
( ℏ
2mω

)2
(4i− 2)

√
i(i− 1)

⟨i− 4|h′|i⟩ =
( ℏ
2mω

)2√
i(i− 1)(i− 2)(i− 3)

⟨i+ 2|h′|i⟩ =
( ℏ
2mω

)2
(4i+ 6)

√
(i+ 1)(i+ 2)

⟨i+ 4|h′|i⟩ =
( ℏ
2mω

)2√
(i+ 1)(i+ 2)(i+ 3)(i+ 4)

⟨i|h|i⟩ = ℏω(i+
1

2
) (3.5)

where h = p2

2m + mω2x2

2 is the harmonic oscillator Hamiltonian. Our entire Hamiltonian is

H = h + ch′, and for simplicity we choose ℏω = 1 and mω2 = 1. All the numerical results

in this work is with these choices of m and ω.

The x4 term dominates the potential V = mω2x2

2 +cx4 for large x, and with c being the

coefficient of x4, we immediately notice that for c < 0 the potential V → −∞ as x → ±∞,

and thus there can be no bound states. However, for c ≥ 0 there can be bound states.

This means that if we try perturbation theory at c = 0, it should diverge because there

is a singularity right on the negative x-axis that prevents any kind of series expansion at

c = 0. And we will indeed show that perturbation theory diverges for even small values of

c, however even in this situation eigenvector continuation manages to extrapolate correctly.

3.2 Eigenvector Continuation Applied to the Anharmonic

Oscillator

If we try to think of eigenvector continuation as an analytic continuation, it still makes no

sense to analytically continue if the starting circle has zero radius of convergence, and one
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would guess that eigenvector continuation should also fail. Yes, in theory we do have zero

radius of convergence, but the anharmonic oscillator problem is also infinite dimensional.

The basis eigenstates |n⟩ goes to n = 0 to n = ∞. In a practical calculation, we work with

finite basis, and this truncation causes the singular point to be not exactly at the origin, but

a little bit away from origin. As we include more basis points, the singularity comes closer

to the origin, and converges to origin our matrices dimension N → ∞. In our calculation

and results, we take N = 200.

So eigenvector continuation does have a small circle from where we can analytically

continue. This might make it look like that perturbation theory also will converge in that

small circle, however, as we take higher orders in perturbation theory, we need information

further and further away from origin. To see this, let us just write a few derivatives of any

function f(c) at c = 0,

f ′(x) =
−f(x− h) + f(x+ h)

2h

f ′′(x) =
−f(x− 2h) + 16f(x− h)− 30f(x) + 16f(x+ h)− f(x+ 2h)

12h2

f ′′′(x) =
f(x− 3h)− 8f(x− 2h) + 14f(x− h)− 10f(x) + f(x+ h) + 8f(x+ 2h)− f(x+ 3h)

4h3

Here we are using two-sided derivatives. As we can see for higher derivatives we need points

further away from the point where derivatives is being calculated (f(x ± 2h) for second

derivative, f(x± 3h) for third derivative, and so on). What this means is that in that small

circle, perturbation theory will converge for a few orders, but as we calculate higher order
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terms, the series starts to diverge because eventually higher order terms need information

outside the circle. No matter where we calculate using perturbation theory at the origin, it

will eventually diverge as we go to higher order. We show this result in figure 3.1.

Figure 3.1: Convergence of ground state energy with different methods for ct = 0.05 and 0.1.
Perturbation theory fails, but eigenvector continuation does not. Notice that perturbation
theory works for a few orders, and then diverges eventually.

Now we will explain how eigenvector continuation results was calculated as shown in

33



figure 3.1. We have already described how eigenvector continuation is applied in the last

chapter, so ere we mention where we choose our training points. In order to make a fair

comparison with perturbation theory, we take the same training eigenvectors as perturbation

theory. Perturbation theory tries to expand in a series around the point of perturbation,

and tries to approximate by truncating the series up to a certain point. We have seen this

in previous section in equation 2.6, and we write a similar expansion for perturbation theory

at c = 0, but this time truncated to order N,

|ψ(c)⟩PT =
N∑
n=0

|ψ(n)(0)⟩ c
n

n!
(3.6)

where |ψ(n)(0)⟩ denotes the nth derivative of the eigenvector with respect to the parameter

c, and evaluated at c = 0.

So theN th order perturbation theory tries to approximate the actual eigenvector as a lin-

ear combination of theN derivatives of the ground state eigenvector at c = 0, {|ψ(0)(c)⟩ , · · · , |ψ(N)(c)⟩}.

However, the coefficients for this linear sum is fixed. If we performed eigenvector continuation

with the same set of derivatives {|ψ(0)(c)⟩ , · · · , |ψ(N)(c)⟩}, then eigenvector continuation will

also try to estimate the exact target eigenvector by a linear combination of those same N

derivatives of the ground state eigenvector at c = 0. This time however, the coefficients

are not fixed, and eigenvector continuation tries to vary these coefficients to get the best

approximation. From this perspective, it seems natural that eigenvector continuation will

outperform the standard perturbation theory.

This is exactly how we do for our eigenvector continuation calculation. For N th or-

der EC calculation, we use the N derivatives of the ground state eigenvector at c = 0,

{|ψ(0)(c)⟩ , · · · , |ψ(N)(c)⟩} as our N training eigenvectors. As we mentioned before, higher
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order derivatives of the eigenvector at the origin have information of the eigenvector near

the origin, with higher the order of derivative, the further away information we have. So

our choice of training vectors {|ψ(0)(c)⟩ , · · · , |ψ(N)(c)⟩} is equivalent to taking N training

vectors close to the origin. However, the derivatives are a systematic way to adding more

training vectors, rather than randomly choosing training points near origin, and we stick to

choosing higher order derivatives as our training vectors for eigenvector continuation. This

idea of choosing training points will be important later when we discuss the convergence of

eigenvector continuation in next chapter.

We have established through figure 3.1 that eigenvector continuation works and is able

to converge to the correct result, whereas perturbation theory fails. We show in figure 3.2

that eigenvector continuation is also able to extrapolate to points far away from the origin.

This might be surprising since our original circle where we can analytically continue from is

abysmally small. However the idea of single analytic continuation can be extended to several

analytic continuations, drawing bigger and bigger circles each time. This idea of multiple

analytic continuations is illustrated in figure 3.3.

To keep this section shorter, and since it is not directly related to the results we are

presenting, we describe in the supplemental materials, how we computationally calculate the

derivatives of the ground state eigenvector.

Although figures 3.1 and 3.2 show how the eigenvector continuation method converges

as we add more training points, we learn more details when we look at it in a log graph.

The first thing we observe is that for the first few order there is an exponential convergence

(which is the best type of convergence we want). This is shown in figure 3.4. However, as

we go higher in order of eigenvector continuation, we notice that the convergence accelerates

after some time (see figure 3.5). This can be understood intuitively by the fact that as we
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Figure 3.2: Eigenvector continuation converges for ct = 5, a point far away from origin. At
this point perturbation theory diverges right away

Figure 3.3: Even though we have a singularity z0 in the negative c axis, we can analytically
continue to any point on the positive c axis with the help of multiple analytic continuations.

perform analytic continuation and go further away from our singularities, we can perform

the next analytic continuation with larger radii, which accelerates the convergence rate.
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Figure 3.4: Exponential convergence in eigenvector continuation.

We can compare the error convergence of eigenvector continuation to other simple meth-

ods, like direct diagonalization of the Hamiltonian matrix. Now direct diagonalization of a

large matrix can be difficult, however we can employ a truncation trick to simply the process.

Our Hamiltonian matrix might be a huge n-dimensional matrix, but we simply truncate the

matrix to the lowest N states, and diagonalize a N×N Hamiltonian matrix, where N can be

a small number. As we increase N and it approaches the dimension of the original Hamilto-

nian matrix, the eigenvalue solution of the truncated matrix will converge to the eigenvalue

solution of the actual matrix .However, the numerical complexity grows higher as we increase

the dimension. Furthermore, if our original unperturbed Hamiltonian is diagonal and we add

a non-diagonal perturbation matrix, the numerical complexity increases with strength of the

perturbation c. So, this direct method may not work with high dimensions of matrices

and high perturbation strength. However, for small enough dimensions and perturbation

strength, we can compare how the diagonalization method works versus the eigenvector con-
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Figure 3.5: Convergence of the eigenvector continuation method with c = 0.1 (top) and 5
(bottom). The convergence accelerates as we analytically continue further away from our
point of singularity because for each successive analytic continuation we can draw bigger
circles where our series will converge.

tinuation. We can compare how the convergence of direct orthogonalization of truncated

Hamiltonian depends on truncation size N to the convergence of eigenvector continuation

as a function of number of training points N . Figure (3.6) shows the result. Here we have
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also included the case where we perform eigenvector continuation with training vectors ran-

domly chosen at small c. These eigenvectors contain more information of the subspace than

the case where we choose training vectors from perturbative expansion, because they span

a larger space along the c axis. This is why we see this kind of eigenvector continuation

(with training points near origin) being better than perturbative EC (with training vectors

as derivatives of eigenvector at c = 0).

We should also clarify a small detail in choosing training eigenvectors for eigenvector

continuation, when we use eigenvectors of the Hamiltonian at small perturbation strengths

as training eigenvectors. As we mentioned before, the eigenvector continuation method needs

to "learn" the low-dimensional subspace through the different training eigenvectors that we

choose for the method. When we choose our training eigenvectors to be the exact eigenvectors

at K small parameter values, say {c1, · · · , cK}, we obtain a basis {|ψ(c1)⟩ , · · · , |ψ(cK)⟩},

and the method projects the Hamiltonian onto the subspace spanned by this basis to get

an approximate result. To get better results, we perform a Gram-Schmidt orthogonalization

on that set of K eigenvectors {|ψ(c1)⟩ , · · · , |ψ(cK)⟩}, and remove (if any) vectors that are

pointing in almost the same direction. The removal is justified by the fact that such vectors

do not give much additional information about the subspace. This is often the case if we

choose our ci very close together and the total Hamiltonian and its eigenvectors do not

change much within the small variation of ci.

We will now try to mathematically estimate the error convergence with eigenvector

continuation and analytic continuation. But before we begin, we remind ourselves that the

singularity that causes perturbation theory to diverge is the crossing of the eigenvectors

corresponding to different eigenvalues. The avoided level crossings for the even parity states

of anharmonic Oscillator is shown in figure 3.7.
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Figure 3.6: Comparison of error convergence for direct orthogonalization of truncated Hamil-
tonian with dimension N , and eigenvector continuation with order N . Perturbative EC refers
to the case where we take the derivatives of the eigenvector at c = 0 as the training points.
The other EC refers to the case where we random select training points at small c. For the
top figure, ct = 0.1 and for the bottom figure ct = 0.1. We consistently see eigenvector
continuation outperforming direct orthogonalization.

3.3 Error Bound for General Analytic Continuation

Consider a general case where z0 and z̄0 are the nearest singularities to the origin. Let w1

be a real number such that |w1| < |z0|, and let z1 and z̄1 be the nearest singularities to the

point w1. Let c be a real number such that |c− w1| < |z1 − w1|.
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Figure 3.7: Level crossing for even states along negative real axis of c

Figure 3.8: Analytic continuation of a general wave function |ψ(c)⟩ with singularities at
z0, z1 and their complex conjugates.

We start with the convergent series

|ψ(c)⟩ =
∞∑

n1=0

|ψ(n1)(w1)⟩
(c− w1)

n1

n1!
. (3.7)
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Since z1 and z̄1 are the nearest singularities to the point w1, they sit at the convergence radius

for this series expansion. We therefore know that for any positive ρ1 such ρ1 < |z1 − w1|,

there exists a finite positive number B1(ρ1) that gives an upper bound,

∣∣∣|ψ(n1)(w1)⟩
∣∣∣ ρn11
n1!

< B1(ρ1), (3.8)

for all n1. Let the remainder |R1(c, w1)⟩N1
be defined as

|R1(c, w1)⟩N1
= |ψ(c)⟩ − [|ψ(c, w1)⟩]N1

, (3.9)

where

[|ψ(c, w1)⟩]N1
=

N1∑
n1=0

|ψ(n1)(w1)⟩
(c− w1)

n1

n1!
. (3.10)

We then have

|R1(c, w1)⟩N1
=

∞∑
n1=N1+1

|ψ(n1)(w1)⟩
(c− w1)

n1

n1!
, (3.11)

which satisfies the bound

∣∣∣|R1(c, w1)⟩N1

∣∣∣ < ∞∑
n1=N1+1

∣∣∣|ψ(n1)(w1)⟩
∣∣∣ |c− w1|n1

n1!

<
∞∑

n1=N1+1

B1(ρ1)

(
|c− w1|
ρ1

)n1
< B1(ρ1)

ρ1
ρ1 − |c− w1|

(
|c− w1|
ρ1

)N1+1

, (3.12)

for any positive ρ1 with ρ1 < |z1 − w1|.
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We now consider the finite sum,

[|ψ(c, w1)⟩]N1
=

N1∑
n1=0

|ψ(n1)(w1)⟩
(c− w1)

n1

n1!
. (3.13)

We can write |ψ(n1)(w1)⟩ as the convergent series

|ψ(n1)(w1)⟩ =
∞∑

n0=0

|ψ(n0+n1)(0)⟩
w
n0
1

n0!
. (3.14)

Since z0 and z̄0 are the nearest singularities to the origin, they sit at the radius of convergence

for this series expansion. Therefore we know that for any positive ρ0 with ρ0 < |z0|, there

exists a finite positive number B0(ρ0) such that

∣∣∣|ψ(n0+n1)(0)⟩∣∣∣ ρn00
n0!

< B0(ρ0) (3.15)

for all n0 and for all n1 from 0 to N1. There also exists a finite positive number B̃0(ρ0) such

that
N1∑
n1=0

∣∣∣|ψ(n0+n1)(0)⟩∣∣∣ ρn00 |c− w1|n1
n0!n1!

< B̃0(ρ0). (3.16)

Let the remainder |R0(c, w0, w1)⟩N0,N1
be defined as

|R0(c, w0, w1)⟩N0,N1
= [|ψ(c, w1)⟩]N1

− [|ψ(c, w0, w1)⟩]N0,N1
, (3.17)

where

[|ψ(c, w0, w1)⟩]N0,N1
=

N1∑
n1=0

N0∑
n0=0

|ψ(n0+n1)(0)⟩
w
n0
1 (c− w1)

n1

n0!n1!
. (3.18)

43



The remainder |R0(c, w0, w1)⟩N0,N1
is then

|R0(c, w0, w1)⟩N0,N1
=

N1∑
n1=0

∞∑
n0=N0+1

|ψ(n0+n1)(0)⟩
w
n0
1 (c− w1)

n1

n0!n1!
, (3.19)

and this satisfies the bound

|
∣∣∣R0(c, w0, w1)⟩N0,N1

∣∣∣ < N1∑
n1=0

∞∑
n0=N0+1

∣∣∣|ψ(n0+n1)(0)⟩∣∣∣ |w1|n0 |c− w1|n1
n0!n1!

,

<
∞∑

n0=N0+1

B̃0(ρ0)

(
|w1|
ρ0

)n0
< B̃0(ρ0)

ρ0
ρ0 − |w1|

(
|w1|
ρ0

)N0+1

. (3.20)

Putting everything together, we have the result

∣∣∣|ψ(c)⟩ − [|ψ(c, w0, w1)⟩]N0,N1

∣∣∣ < B̃0(ρ0)
ρ0

ρ0 − |w1|

(
|w1|
ρ0

)N0+1

+B1(ρ1)
ρ1

ρ1 − |c− w1|

(
|c− w1|
ρ1

)N1+1

, (3.21)

where

[|ψ(c, w0, w1)⟩]N0,N1
=

N1∑
n1=0

N0∑
n0=0

|ψ(n0+n1)(0)⟩
w
n0
1 (c− w1)

n1

n0!n1!
. (3.22)

If we now choose ρ0 = |z0|− ϵ0 for small positive ϵ0 and choose ρ1 = |z1 − w1|− ϵ1 for small

positive ϵ1, then we have the asymptotic bounds

∣∣∣|ψ(c)⟩ − [|ψ(c, w0, w1)⟩]N0,N1

∣∣∣ = O

(
|w1|

|z0| − ϵ0

)N0+1

+O

(
|c− w1|

|z1 − w1| − ϵ1

)N1+1

,

(3.23)
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in the limits N1 → ∞ followed by N0 → ∞.

If we were to analytically continue two times (at center w1 and w2), then the asymptotic

error bound would be given by,

∣∣∣|ψ(c)⟩ − [|ψ(c, w0, w1)⟩]N0,N1

∣∣∣ = O

(
|w1|

|z0| − ϵ0

)N0+1

(3.24)

+O

(
|w2 − w1|

|z1 − w1| − ϵ1

)N1+1

+O

(
|c− w2|

|z2 − w2| − ϵ1

)N2+1

(3.25)

Similarly, we could write an equation for n analytic continuations.

3.4 Error Bound for the Anharmonic Oscillator

Now, let us consider the case of anharmonic oscillator.

H =
p2

2m
+
mω2x2

2
+ cx4 (3.26)

If we truncate our matrix dimension at some value Nmax, then this would correspond

to analyzing the anharmonic oscillator up to a certain maximum distance rmax from the

origin, which would go as rmax ∼
√
Nmax. Since x4 dominates x2, if we go large enough x,

the expression becomes negative and no bound state can exist (since V → −∞ as x→ ∞).

Thus, we will have a singularity when c is such that,

mω2r2max
2

+ cr4max ≈ 0

Thus, the dependence of the point of singularity on Nmax goes like c ∼ −1/Nmax.

When we truncate our Hilbert space at Nmax, the matrix is finite-dimensional and
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Hermitian, so the eigenvector will be analytic on the real axis (real part of c). So, the

singularity must appear on the complex plane, with non-zero Im(c). It was shown in [24]

that the singularity lies close to the negative imaginary axis. We have tried to verify this

by looking at the level crossing of the lowest two even parity states. This is shown in the

figure 3.9, where the difference between the two lowest even parity state eigenvalues is shown

over the complex plane near origin. We can see some nice avoided level crossings that we

mentioned in figure 3.7.

Let z0 be the real part of point of singularity, which would be situated along the negative

real axis. Let it be at a distance of r0 from the origin, which is related to the dimension of our

Hamiltonian matrixNmax, by r0 ∼ 1/Nmax. Then, we can perform the analytic continuation

as described earlier. To extend the reach of the process, we can perform multiple analytic

continuation. Although the actual point of singularity is at some point further than |z0|,

we will perform the following analysis assuming that the singularity is at z0. This choice

actually limits our analytic continuation, as our radius of convergence would be a little larger

than what we treat here, but we will show that even with moving the singularity a little

closer to the origin, there still exists analytic continuation to any point on the real axis.

For the first continuation, let us choose w1 = αr0 − r0 with α > 1, and so w1 lies along

positive real axis (see figure 3.10). Then, we can analytically continue to a circle of radius

r1 = αr0. Now, we can perform the analytic continuation again, but this time the expansion

would be around w1, instead of the origin. Let us choose w2 = αr1 − r0 (from the origin

and along the real axis), so the radius of analytic continuation would be r2 = αr1 = (α)2r0.

Analytically continuing again, by taking the center at w3 = αr2−r0 (expanding around w2),

this time we get the radius of convergence to be r3 = (α)3r0. Repeating this process, we find

that when we do the analytic continuation for the nth time, we can analytically continue to
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Figure 3.9: Difference of absolute values of lowest two even parity state eigenvalues

a circle of radius rn = (α)nr0. The center of the circle is at c = αrn − r0 on the real axis,

and the rightmost point on the real axis during the nth iteration is 2rn − r0. Each time the

next center of circle is (α− 1)rn away from the previous center of the circle.
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Figure 3.10: Multiple analytic continuation of the wave function |ψ(c)⟩ for the anharmonic
oscillator.

In the case of anharmonic oscillator we have z0 = z1, and thus using equation (3.23),

we can find the asymptotic error for one analytic expansion,

∣∣∣|ψ(c)⟩ − [|ψ(c, w0, w1)⟩]N0,N1

∣∣∣ = O

(
|w1|

|z0| − ϵ0

)N0+1

+O

(
|c− w1|

|z0 − w1| − ϵ1

)N1+1

= O

(
(α− 1)r0
r0 − ϵ0

)N0+1

+O

(
(α− 1)r1
r1 − ϵ1

)N1+1

∼ O (α− 1)N0+1 +O (α)N1+1 (3.27)

Now, for two analytic continuations, then the asymptotic error would be,

∣∣|ψ(c)⟩ − [|ψ(c, w0, w1, w2)⟩]N0,N1,N2

∣∣ = O

(
|w1|

|z0| − ϵ0

)N0+1

+O

(
|w2 − w1|

|z0 − w1| − ϵ1

)N1+1

+O

(
|c− w2|

|z0 − w2| − ϵ1

)N2+1
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⇒
∣∣|ψ(c)⟩ − [|ψ(c, w0, w1, w2)⟩]N0,N1,N2

∣∣ = O

(
(α− 1)r0
r0 − ϵ0

)N0+1

+O

(
(α− 1)r1
r1 − ϵ1

)N1+1

+O

(
(α− 1)r2
r2 − ϵ1

)N1+1

∼ O (α− 1)N0+1 +O (α− 1)N1+1 +O (α− 1)N2+1

(3.28)

Continuing in this fashion, we find the asymptotic error for n analytic continuations is,

∣∣∣|ψ(c)⟩ − [|ψ(c, w0, w1, ..., wn)⟩]N0,...,Nn

∣∣∣ ∼ O (α− 1)N0+1 +O (α− 1)N1+1

+ ...+O (α− 1)Nn+1 (3.29)

From equation (3.29), it is clear that as long as 1 < α < 2, we let our order of eigenvector

continuation go to infinity and we choose N0, N1, ..., Nn → ∞, the error will go to zero (the

sum of Ni is the order of EC). Thus, this analytic continuation method always converges,

even though perturbation theory diverges.

However, note that infinite N0, N1, ..., Nn would correspond to infinite order of eigenvec-

tor continuation. Let us see what we can do in finite order of EC. Suppose we are interested

in reaching near the point c = 1 on the real axis and ask ourselves the question how many

analytic continuations do we need to reach that point. We find that the number of iterations

n should be such that,

rn+1 − r0 ∼ 1

⇒ (α)n+1r0 − r0 ∼ 1 (3.30)

Substituting the relation between r0 and Nmax (recall that Nmax was our dimension of
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Hamiltonian matrix), we have

(α)n+1 − 1 ∼ Nmax (3.31)

and thus,

n ∼ ln(Nmax + 1)

ln(α)
− 1 (3.32)

So, n should be an integer larger than the right hand side of equation (3.32).

Now suppose that we are interested in analytically continuing till c = 1 with a given order

of eigenvector continuation, say M . We still need at least n separate analytic continuations,

where n is given by equation (3.32). If each of those expansion series (like equation (3.7))

have Ni terms, then we have
∑n
i=0Ni = M . With this constraint, we ask the question

"What is the optimal choice of α to minimize error for given M,Nmax and c = 1?"

With equation (3.29) in mind, we try to minimize,

n∑
i=1

(α− 1)Ni+1, (3.33)

subject to the constraint,
n∑
i=1

Ni =M (3.34)

where n is the number of analytic continuation, given by equation (3.32).

This minimization does not entirely make sense since equation (3.29) is only defined up

to order of magnitude and we are missing some constant factors in each sum term, which in

principle could be anything. However, the solution of this minimization does give us an idea

of what ideal α could look like. Utilizing symmetry in individual terms, we find that Ni are

all equal with Ni =M/n, and thus we minimize n(α− 1)M/n, with n given by (3.32).

We solve the problem numerically and list our results for different M and Nmax

50



Nmax M Number of analytic continuations (n) Optimum α
10 5 2 1.8171
10 10 4 1.6154
50 10 4 1.6154
50 20 6 1.5449
50 30 8 1.4646
50 40 9 1.4497
50 50 10 1.4297
100 10 8 1.6699
100 25 10 1.5213
100 50 12 1.4262
100 75 13 1.3905
100 100 13 1.3905

Table 3.1: The optimal choice for the number of analytic continuations and the
corresponding α (ratio of radii while performing analytic continuation) required to have

minimize error.

The results suggest that about α = 1.5 seems to be a good ratio of radii between

iterations. To find an exact value for optimal α, we would need to define equation (3.29)

more concretely, but we do not have an accurate knowledge of the wave-functions. However,

our main goal in this derivation is to show that eigenvector continuation with given order

does make sense, and the results do converge to the actual numbers as we increase our order

of EC and we have indeed shown that.

Note that the choice of optimal α has no effect on our numerical calculation of eigen-

vector continuation results. We merely present a discussion to better understand the con-

vergence of eigenvector continuation. Our eigenvector continuation method does not have α

as a free parameter and we have no control over it. For a given order of EC, the only choice

that we have is our selection of training eigenvectors for the method, and it is unclear how

that indirectly chooses some α (and therefore n) for us.
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Chapter 4

Convergence of Eigenvector Continuation

So far we have seen that eigenvector continuation works brilliantly to simply our calculations,

and allowing us to extrapolate and interpolate in the parameters of the Hamiltonian. One

natural question that arises next is how to optimize our given eigenvector continuation

calculation. We have a trade-off in accuracy of the emulator and the computational time

it takes for emulation, and we want to get the best results with a given number of training

points. So we want to know where should we take our training points to get best performance,

and what order eigenvector continuation should be perform, i.e., how many training vectors

we need. However, to answer to these questions, we need to first understand the convergence

properties of eigenvector continuation as we add more training points and as we vary the

location of training points. In this chapter, we will discuss how eigenvector continuation

converges as a function of number of training points, and we will gain additional insight into

how eigenvector continuation works. In the next chapter we will come back to where we

should take training points for best results.

The answer to what we are seeking are intuitively somewhat clear. eigenvector con-

tinuation method learns the low-dimensional subspace in which the target eigenvector lives

through the different training eigenvectors that we choose for the method. With a fixed

number of training points, we want our training points to be further apart so that we have

more information about the eigenspace, and this will make eigenvector continuation learn
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the manifold more. And it is also clear that the more training eigenvectors we choose, the

better our EC approximation will be.

No. of
terms

Values of ci ct EC ground state energy Exact Energy

3 0.01, 0.02, 0.03 0.4 0.672645280 0.668772604
3 0.02, 0.04, 0.06 0.4 0.670458737 0.668772604
3 0.03, 0.06, 0.09 0.4 0.669562096 0.668772604
4 0.01, 0.02, 0.03, 0.04 0.4 0.669503683 0.668772604
4 0.02, 0.04, 0.06, 0.08 0.4 0.668956488 0.668772604
5 0.01, 0.02, · · · , 0.05 0.4 0.668898346 0.668772604
5 0.02, 0.04, · · · , 0.10 0.4 0.668788797 0.668772604
10 0.01, 0.02, · · · , 0.10 0.4 0.668772607 0.668772604
3 0.01, 0.02, 0.03 1 0.842860074 0.803770651
3 0.02, 0.04, 0.06 1 0.827563722 0.803770651
3 0.03, 0.06, 0.09 1 0.819258718 0.803770651
4 0.01, 0.02, 0.03, 0.04 1 0.817399692 0.803770651
4 0.02, 0.04, 0.06, 0.08 1 0.809913282 0.803770651
5 0.01, 0.02, · · · , 0.05 1 0.808359378 0.803770651
5 0.02, 0.04, · · · , 0.10 1 0.805211425 0.803770651
10 0.01, 0.02, · · · , 0.10 1 0.803778746 0.803770651

Table 4.1: Eigenvector continuation in anharmonic oscillator. We calculate the exact eigen-
vectors at location ci and use them as training eigenvectors for EC, to estimate the eigenvec-
tor at ct. We see that EC approximation becomes better with more training eigenvectors,
and with more spaced apart training points.

However, the error dependence of eigenvector continuation on the location of training

points is non-trivial and extremely problem specific. It is hard to make general comments

about the convergence behavior as we move our training points around. So it is very hard

to answer for a general Hamiltonian where we should choose our training points. As to how

many training points we need, it depends on how complicated our problem is, and how much

accuracy we want. Let us look at this point through an example. Table 4.1 shows how

eigenvector continuation performs as vary the location and number of training points in the

problem of the anharmonic oscillator.

And we have seen in the case of the anharmonic oscillator that as we add more training
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points, the error convergence looks exponential (see figure 3.4). Table 4.1 shows the data for

that graph.

No. of
terms

Values of ci EC energy Exact
Energy

Difference from
Exact Energy

2 0.01, 0.02 0.917673992 0.803770651 0.113903341
3 0.01, 0.02, 0.03 0.842860074 0.803770651 0.039089423
4 0.01, 0.02, · · · , 0.04 0.817399692 0.803770651 0.013629041
5 0.01, 0.02, · · · , 0.05 0.808359378 0.803770651 0.004588727
6 0.01, 0.02, · · · , 0.06 0.805234149 0.803770651 0.001463498
7 0.01, 0.02, · · · , 0.07 0.804209584 0.803770651 0.000438933
8 0.01, 0.02, · · · , 0.08 0.803894175 0.803770651 0.000123524
9 0.01, 0.02, · · · , 0.09 0.803803266 0.803770651 3.26149E-05
10 0.01, 0.02, · · · , 0.10 0.803778746 0.803770651 8.09511E-06
12 0.01, 0.02, · · · , 0.12 0.803771231 0.803770651 5.7948E-07

Table 4.2: Energy Error with eigenvector continuation in the anharmonic oscillator at ct = 1.
It converges exponentially as we increase the order of the method (see figure 3.4)

So the eigenvector continuation error depends on the number of training points and the

location of the training points. As we mentioned in the beginning of this chapter, there are

two questions - how many training points we need, and where to choose our training points.

It is hard to answer them together because the error convergence depends on both of them in

a complicated way. We simplify the problem and study them separately. We study the error

convergence with respect to number of training points, and separately consider the question

of how to choose our training points, when we have a fixed number of them. The consider

the latter question in the next chapter. It is hard to answer the question of where to choose

our N training points, but we can come up with an algorithm to iteratively choose the best

location of the next training point, and we can start at one or two random training points

and repeat the algorithm as many times as we want.

In this chapter, we will consider the answer to the former question - the error dependence

on the number of training points. However, since the error varies so much as we vary the
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location of training point, it makes no sense to study the error convergence as we add another

training point, because the error depends on where we add the next training point. So if

we want to study the error convergence with respect to number of training points, we need

a systematic way to add our next training point. And we have seen one systematic way in

the anharmonic oscillator problem in the previous chapter. We were taking the derivatives

of the eigenvector at c = 0 and using them as our training eigenvectors. Now higher order

derivatives of the eigenvector at origin are well defined, and it makes sense to ask questions

like how does my eigenvector continuation approximation improve as we add one more higher

order derivative to the training set. This systematic way is also great way to extend to large

number of training points, because we want to know the asymptotic error convergence of the

method.

To study this idea of adding more higher order derivative to the training set more math-

ematically, we introduce a more generalized form of eigenvector continuation, and we call it

vector continuation (VC). We generalize the problem from being interested in eigenvector of

a particular n-dimensional Hamiltonian with a variable parameter c, to being interested in

a vector living in n-dimensional vector space, parameterized by c. Our n-dimensional vector

could be the eigenvector of a n-dimensional Hamiltonian, and in that case we go back from

vector continuation to eigenvector continuation. Vector continuation allows us to redefine

our problem more mathematically, and this generalization help us understand eigenvector

continuation’s convergence properties in a general sense. After we derive our results, we will

show that vector continuation when applied to our usual problem of finding eigenvectors of

a parameterized Hamiltonian gives us the same result as that of eigenvector continuation.
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4.1 Vector Continuation

Consider a n-dimensional vector space V parameterized by c. We first consider c to be

one-dimensional parameter. The ideas presented here can be extended to a vector space

parameterized by multi-dimensional c. Let us denote any vector in this space by |v(c)⟩. We

assume that this vector space varies smoothly as we vary c. Since this is a smooth space in

c, we can apply all our tools from analysis.

Suppose we are interested at knowing the vector |v(ct)⟩ at a particular value of the

parameter ct, but we only have the information of the vector at specified training points

ci = {c1, · · · , ck}. Let us denote the training vectors as |v(c0)⟩ , · · · , |v(ck)⟩.

Like eigenvector continuation, in vector continuation we approximate |v(ct)⟩ as a linear

combination of vectors |v(c0)⟩ , · · · , |v(cN )⟩ at training points c = c0, · · · , cN . The difference

is that in vector continuation we construct the best approximation by projecting |v(ct)⟩ onto

the subspace spanned by the training point vectors. While this sounds similar to eigenvector

continuation, the way we implement it in our code is different. Vector continuation is a

simpler process than the variational calculation used in eigenvector continuation. However,

we should emphasize that since it requires knowledge of the target eigenvector, vector con-

tinuation should be viewed as a diagnostic tool to study error convergence, rather than a

practical method for determining |v(ct)⟩. We will show that eigenvector continuation and

vector continuation have identical convergence properties, and so it suffices to understand

the convergence properties of vector continuation. As the name suggests, vector continuation

can also be generalized to any smooth vector path |v(c)⟩ without reference to Hamiltonian

matrices or eigenvectors.

We want to understand the asymptotic convergence of eigenvector and vector contin-
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uation at large orders. As we mentioned earlier, we need a systematic way to add more

training points. To do this we consider a sequence of training points c0, · · · , cN with a

well-defined limit point clim for large N that is some distance away from the target point

ct. Without loss of generality we can redefine clim so that our limit point corresponds to

c = 0. In the limit where the training points accumulate around c = 0, we can replace our

training vectors |v(c0)⟩ , · · · , |v(cN )⟩ with the derivatives of |v(c)⟩ at c = 0, which we write

as |v(0)(0)⟩ , · · · , |v(N)(0)⟩. These derivative vectors approximately span the same N + 1-

dimensional subspace as our original training vectors. We explained the reasoning behind

this in the previous chapter. And there is an important detail here that we should mention.

Although we are taking the limit of large N , the values of N we take are always vastly

smaller than the number of dimensions of our linear space.

Our choice of training points provides a good definition for the convergence properties

at large orders. It can be viewed as the worst possible choice of training points for best

convergence since all of our training points are clustered in one area, and we need to extrap-

olate to a target point located somewhere else. When the training points are spread apart

and not clustered, the convergence is generally much faster, especially if the training points

surround the target point from all sides. We have seen this in the example of anharmonic

oscillator. However, as we mentioned before, the convergence for this more general case is

highly dependent on the positions of the training points, and it is difficult to make a clean

definition of asymptotic convergence. Therefore, for now, with our choice of training points,

we try to learn the worst possible error convergence for large N . We have already seen the

convergence is faster in the one parameter case of the anharmonic oscillator when the train-

ing points are spread out, and later we will show that convergence for the multi-parameter

case, it is much faster if there exists a smooth curve connecting some subset of the training
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points to the target point.

We will now compare the error convergence of vector continuation, eigenvector continua-

tion, and perturbation theory. First we define what are our three different approximations to

the target eigenvector |v(ct)⟩ in the three different methods are. For the given target eigen-

vector |v(ct)⟩, we denote the order-N eigenvector continuation approximation as |v(ct)⟩ECN ,

the order-N vector continuation approximation as |v(ct)⟩VCN , and the N th order perturba-

tive theory approximation as |v(ct)⟩PTN . For eigenvector continuation to make sense, in the

following we assume that the vector |v(c)⟩ is actually the eigenvector of some Hamiltonian

H(c). As we will soon see, vector continuation does not care about H(c) and works with

only |v(ct)⟩ (assuming it is given somehow), whereas eigenvector continuation works with

the Hamiltonian H(c).

All three methods work by approximating the target eigenvector as a linear combination

of the training eigenvectors. Therefore, to make a fair comparison, we use the same set of

training vectors {|v(0)(0)⟩ , · · · , |v(N)(0)⟩} for eigenvector continuation and vector continua-

tion.

So we have our the training derivative vectors |v(0)(0)⟩ , · · · , |v(N)(0)⟩, and we per-

form Gram-Schmidt orthogonalization to get a set of orthonormal vectors, which we call

|w(0)(0)⟩ , · · · , |w(N)(0)⟩. Here we are assuming that the derivative vectors are linearly in-

dependent, and therefore our orthonormal set also has size N . This assumption is generally

true for almost all of the practical problems we encounter in physics. With this orthonormal

basis |w(0)(0)⟩ , · · · , |w(N)(0)⟩, we define our vector continuation approximation |v(ct)⟩VCN

as

|v(ct)⟩VCN =
N∑
n=0

⟨w(n)(0)|v(ct)⟩ |w(n)(0)⟩ . (4.1)

58



Notice that we have just projected the target eigenvector onto the individual (orthonormal)

training eigenvectors. Therefore, to perform this we need the information about the target

eigenvector |v(ct)⟩. As a reminder, vector continuation is not a practical method to extrap-

olate to a target location. It is only a diagnostic tool to compare and understand error

convergence.

In the same orthonormal basis of training vectors, we can also write the eigenvector

continuation approximation |v(ct)⟩ECN as

|v(ct)⟩ECN =
N∑
n=0

a(ct, n,N) |w(n)(0)⟩ , (4.2)

where the coefficients a(ct, n,N) are found by minimizing the expectation value of H(ct).

And we can consider perturbation theory (PT) around the point c = 0. If the nearest

branch point to c = 0 is z0, then the series expansion

|v(ct)⟩ =
∞∑
n=0

|v(n)(0)⟩
cnt
n!

(4.3)

will converge for |ct| < |z0| and diverge for |ct| > |z0|. We define the perturbation theory

approximation |v(ct)⟩PTN as the partial series truncated at order n = N ,

|v(ct)⟩PTN =
N∑
n=0

|v(n)(0)⟩
cnt
n!
. (4.4)

In this analysis we have assumed that the radius of convergence is greater than zero. This

follows from the fact that H(c) is a finite-dimensional Hermitian matrix. And we have made

similar observation with the case of anharmonic oscillator. For the following discussion, we

assume ct is within our radius of convergence of perturbation theory, and thus equation 4.4
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is well defined and converges.

We define the error in these three approximations to |v(ct)⟩ by computing the norm

of the residual vector, which is the difference of exact vector and its approximation. When

we look at the norm of the residual vector as a function N , we can determine whether the

approximations are converging or not.

Now we will compare the three different approximations in equations 4.1, 4.2 and 4.4

through some examples. The first example that we consider, which we call Model 1, is a

one parameter family of eigenvectors of a Hamiltonian matrix of the form H(c) = H0+ cH1,

where H0 and H1 are Hermitian matrices. We choose H0 to be a diagonal matrix, while

H1 has both diagonal and off-diagonal elements. We consider three different situations with

different H0 and H1, and we call them Models 1A, 1B, and 1C. In all three cases, the

dimension of H matrix is 800.

In Model 1A, we takeH0 to be the matrix with elementsH0(n, n) = n for n = 1, · · · , 800.

We choose H1 to be H1(n, n) = n for n = 1, · · · , 800 and

H1(n+ 2, n) = H1(n, n+ 2) = 1, (4.5)

for n = 1, · · · , 798. As we mentioned before, avoided level crossing in the complex plane is

the cause of singularities, which limit the radius of convergence of perturbation theory. Since

we want to look at a target point which is within the radius of convergence of perturbation

theory, it is important to know where the singularity for this Hamiltonian is in the complex

plane. For this model, the nearest branch point to the origin is located at c = −0.559±0.497i.

In Model 1B, we take H0 to be the matrix with elements H0(n, n) = 2n for n =
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1, · · · , 800. We choose H1 to be H1(n, n) = n for n = 1, · · · , 800 and

H1(n+ 2, n) = H1(n, n+ 2) = 1, (4.6)

for n = 1, · · · , 798. This time the nearest branch point to the origin is located at c =

−1.422± 0.503i.

In Model 1C, we take H0 to be the matrix with elements H0(n, n) = 100n for n =

1, · · · , 800. We choose H1 to be H1(1, 1) = −100, H1(2, 2) = −200, and take H1(n, n) =

−75n for n = 3, · · · , 800. For the off-diagonal entries we set

H1(n+ 1, n) = H1(n, n+ 1) = 1, (4.7)

for n = 1, · · · , 799. In this model, the nearest branch point to the origin is located at

c = 0.907± 0.255i.

With these three different sets of matrices defining three different problems, we try to

approximate the eigenvector |v(ct)⟩ with our three approximation techniques in each of the

problems. For all three model calculations, the target value of the parameter is ct = 0.2,

which is within the radius of convergence of perturbation theory for all three cases. In

Fig. 4.1 we plot the logarithm of the error for all three cases of Model 1.

From figure 4.1 we can make two important observations. The first observation is that

eigenvector and vector continuation converge faster than perturbation theory. The second

point is that eigenvector and vector continuation have nearly identical errors at each order.

We should also mention that there is nothing special about these matrix models, and we find

similar results to these in all other matrix examples where perturbation theory is convergent.
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Figure 4.1: Logarithm of the error versus order N for eigenvector continuation (asterisks),
vector continuation (solid lines), and perturbation theory (dashed lines). The three different
colors (black, blue and red) correspond with Models 1A, 1B, and 1C respectively.

So this shows that eigenvector continuation performs better than perturbation theory

even where perturbation theory works, and we have much less error at same order of calcu-

lation. The second point is even more interesting - even though we calculated eigenvector

continuation and vector continuation approximations very differently (see equations 4.1 and

4.2), they have the same convergence properties. This tell us more about how eigenvector

continuation works as a method and how well it converges. Let us try to understand why

we get similar convergence results with eigenvector continuation and vector continuation.
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4.2 Asymptotic Convergence of Eigenvector Continua-

tion and Vector Continuation

Let us now try to show that eigenvector continuation and vector continuation have iden-

tical convergence properties. Consider vector continuation at order N . Let V N (0) be the

subspace spanned by |w(0)(0)⟩ , · · · |w(N)(0)⟩, and let V N⊥ (0) be the orthogonal complement

to V N (0). Now equation 4.1 tells us that there is no error at all in the coefficients of

|w(0)(0)⟩ , · · · |w(N)(0)⟩, and the residual vector for |v(ct)⟩VCN lies entirely in V N⊥ (0).

Next we consider eigenvector continuation at order N . In this case we project H(ct)

onto V N (0) and find the resulting ground state by minimizing the eigenvalue. In this way we

have effectively turned off all matrix elements of H(ct) that involve vectors in V N⊥ (0). If we

now turn on these matrix elements as a perturbation, then we get a first-order correction to

the wave function from transition matrix elements connecting V N (0) with V N⊥ (0). However,

this correction to the wave function that lies in V N⊥ (0), and our wave function in V N (0)

is not affected. The corrections to the coefficients of |w(0)(0)⟩ , · · · |w(N)(0)⟩ will appear at

second order in perturbation theory, since this involves transitions from V N (0) to V N⊥ (0) and

then returning back from V N⊥ (0) to V N (0). If the norm of the residual vector for eigenvector

continuation is O(ϵ), then eigenvector continuation and vector continuation will differ at

O(ϵ2). This proves that eigenvector continuation and vector continuation have identical

convergence properties in the limit of large N .

Now let us study the asymptotic convergence properties by looking at the last term in

our approximations in equations 4.1, 4.2 and 4.4. The idea here is that we can understand

how quickly these series converge by looking at last term in the series, and observing how

quickly that is converging in the limit of large N . The norm of the last term of all the
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corresponding series approximations are,

LVCN (ct) =
∣∣∣⟨w(N)(0)|v(ct)⟩

∣∣∣ , (4.8)

LECN (ct) = |a(ct, N,N)| , (4.9)

LPTN (ct) =

∥∥∥∥∥|v(N)(0)⟩
cNt
N !

∥∥∥∥∥ . (4.10)

Again in equation 4.8, we need to knowledge of the exact eigenvector |v(ct)⟩. If we don’t

have that information, and we are within the radius of convergence of perturbation theory,

then we can expand |v(ct)⟩ perturbatively, similar to equation 4.3. Then we have,

LVCN (ct) =

∣∣∣∣∣
∞∑
n=0

⟨w(N)(0)|v(n)(0)⟩
cnt
n!

∣∣∣∣∣ . (4.11)

However, by definition |w(N)(0)⟩ is orthogonal to {|v(0)(0)⟩ , · · · , |v(N−1)(0)⟩} and thus we

can write,

LVCN (ct) =

∣∣∣∣∣
∞∑
n=N

⟨w(N)(0)|v(n)(0)⟩
cnt
n!

∣∣∣∣∣ . (4.12)

So even though we do not know |v(ct)⟩, we can find LVCN (ct) perturbatively, order by order.

In this series expression, we will call the first term in the series for n = N as the leading

order (LO) approximation. We will call the partial series up to n = N+1 the next-to-leading

order (NLO) approximation, and so on. The NkLO approximation is similarly defined by,

L
VC,NkLO
N (ct) =

∣∣∣∣∣∣
N+k∑
n=N

⟨w(N)(0)|v(n)(0)⟩
cnt
n!

∣∣∣∣∣∣ , (4.13)

and at leading order we have
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L
VC,LO
N (ct) =

∣∣∣∣∣⟨w(N)(0)|v(N)(0)⟩
cNt
N !

∣∣∣∣∣ . (4.14)

Now if we look at equations 4.14 and 4.10, then we notice that they are similar, except

for
∣∣∣⟨w(N)(0)|v(N)(0)⟩

∣∣∣ instead of |v(N)(0)⟩. However, notice that
∣∣∣⟨w(N)(0)|v(N)(0)⟩

∣∣∣ is

smaller than the norm of |v(N)(0)⟩ because, in general, |v(N)(0)⟩ is not orthogonal to the

other derivative vectors

{|v(0)(0)⟩ , · · · , |v(N−1)(0)⟩}. This explains why vector continuation is converging more

rapidly than perturbation theory. Perturbation theory must deal with constructive and

destructive interference between non-orthogonal vectors at different orders of perturbation

theory, a phenomenon that we call differential folding. Depending on the problem, differen-

tial folding can be a very large effect, and it is the reason why perturbation theory converges

more slowly than vector and eigenvector continuation.

Another way to put it is that we know that a Taylor expansion like

f(x) =
∞∑
n=0

f (n)(0)
xn

n!
(4.15)

converges as we take the limit to infinity. However, for an approximate with a fixed number

of terms in the series (like in equation 4.4),

f̃(x) =
N∑
n=0

f (n)(0)
xn

n!
(4.16)

the Taylor series coefficients of xn/n! for the derivatives is not optimal. Our intuition of

Fourier analysis tells us that we get a much better approximation when we make a sum of

orthogonal terms, and that is indeed the case. Vector continuation uses this orthogonality,
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and thus is better than perturbation theory.

Now let us use the last terms in the three series to study the asymptotic convergence.

We look the convergence ratio obtained by taking the ratio of the last term in the series at

two widely separated orders N ′ and N , with N > N ′. We define the convergence ratios as

follows,

µVC(ct) =
∣∣∣LVCN (ct)/L

VC
N ′ (ct)

∣∣∣1/(N−N ′)
, (4.17)

µEC(ct) =
∣∣∣LECN (ct)/L

EC
N ′ (ct)

∣∣∣1/(N−N ′)
, (4.18)

µPT(ct) =
∣∣∣LPTN (ct)/L

PT
N ′ (ct)

∣∣∣1/(N−N ′)
. (4.19)

These definitions are motivated from the ratio test of convergence for a series. Intuitively,

µ is ratio at which consecutive terms in the series converge (or diverge) asymptotically.

However, note that our definitions with finite orders will have a small dependence on N ′ and

N . However, for notational convenience, we omit writing the explicit dependence on N and

N ′. Also, when it is clear from the context, we omit writing the dependence on ct as well. We

also note that these convergence ratio functions will not be very smooth. Occasionally when

the numerator vanishes, we will have cusps and it will blow up whenever the denominator

vanishes. Fortunately these special points occur at only a few isolated values of ct, and we

eliminate cusps or divergences at any particular value of ct by changing N or N ′. Overall

the functions in Eq. (4.17), (4.18), and (4.19) provide a useful measure of the convergence

properties of the three methods.

Now let us look at how these three convergence ratios compare with an example. We

look at a new practical problem, and we call this example Model 2. In this model, we consider

a system of spin-half fermions with attractive zero-range interactions in three dimensions.
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As we vary the interaction strength between the fermions, we observe some very interesting

physics. At weak coupling this many-body system acts like a Bardeen-Cooper-Schrieffer

(BCS) superfluid, but at strong coupling it behaves like a Bose-Einstein condensate (BEC)

[27, 28]. In between the BCS and BEC regimes, there is a smooth crossover region that

contains a scale-invariant point called the unitary limit. At this point the scattering length

diverges, and the two-body system has a zero energy resonance. There have been various

experimental studies of BCS-BEC crossover and the unitary limit using trapped ultra-cold

Fermi gases of alkali atoms [29–32].

Here we use eigenvector continuation to study the crossover transition for two spin-up

and two spin-down fermions in an L = 4 periodic cubic lattice as detailed in Ref. [33]. The

corresponding Hamiltonian has 49 = 262144 dimensions, and we use projection operators

to remove all unphysical states without the proper antisymmetrization. With 4 particles,

L = 4, and 3 dimensions, one would expect 412 possible configurations, but we measure all

the particles with respect to one particle, i.e., we have 3 particles that can move around

with respect to the 4th particle. This reduces the configuration space to 49 = 262144 dimen-

sional. Without eigenvector continuation, we will have to diagonalize a 262144-dimensional

Hamiltonian matrix at the target coupling, which takes a long time, and even more time as

our coupling becomes larger. eigenvector continuation gives us a huge speed boost here.

Let n denote the spatial lattice points on a three dimensional L3 periodic lattice. We use

lattice units where all the physical quantities are multiplied by powers of the spatial lattice

spacing to make the combination dimensionless. Let the lattice annihilation operators for the

spin-up and spin-down fermions be a↑(n) and a↓(n) respectively. Our free non-relativistic

lattice Hamiltonian is given by,
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Hfree =
3

m

∑
i=↑,↓

∑
n
a
†
i (n)ai(n)

− 1

2m

∑
l=1,2,3

∑
i=↑,↓

∑
n
a
†
i (n)

[
ai(n+ l̂) + ai(n− l̂)

]
. (4.20)

We add to the free Hamiltonian an on-site contact interaction,

Hfree + C
∑
n
ρ↑(n)ρ↓(n), (4.21)

where

ρ↑(n) = a
†
↑(n)a↑(n), (4.22)

ρ↓(n) = a
†
↓(n)a↓(n). (4.23)

So the different particles feel an attraction (or repulsion depending on sign of C) only when

they are on the same site. If the attraction is strong enough, then it becomes a condensate.

Our control parameter c corresponds to the product of the particle mass m and in-

teraction coupling C. Negative coupling indicates attractive interaction, whereas positive

coupling would mean repulsive interaction. The parameter value c = −3.957 corresponds

with the unitary limit. The larger negative values of c correspond to the strong-coupling

BEC phase, and smaller negative values of c correspond to the weak-coupling BCS phase.

The point c = 0 corresponds to a non-interacting system with special symmetries and de-

generacies. We choose the training vectors at a more general point on the weak-coupling

BCS side at c = −0.4695.

Now if we compare the convergence of the three series in this model, then we see similar

results as figure 4.1. So let us now look at how the convergence ratios for the three methods
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compare for this model. In Fig. 4.2 we show the convergence ratios µVC, µEC, and µPT versus

ct for N = 10 and N ′ = 0. Note that ct is negative, meaning we are looking in the attractive

coupling regime. Smaller µ corresponds to faster convergence since by definition convergence

ratio µ is how small the next term in the series is becoming compared to the previous term.

We see from the graph that µVC and µEC remain well below µPT, indicating the faster

convergence of vector and eigenvector continuation compared to perturbation theory.

Figure 4.2: Comparison of the convergence ratios µVC(ct), µEC(ct), and µPT(ct) for Model
2 with N = 10 and N ′ = 0. The training vectors for all cases are evaluated on the weak-
coupling BCS side at c = −0.4695. The unitary limit value corresponds to c = −3.957.

As we cross into the strong-coupling BEC side, perturbation theory diverges, as indi-

cated by the convergence ratio µPT exceeding 1. However vector and eigenvector continuation

both converge even at very strong coupling far on BEC side, as indicated by µVC and µEC

both remaining well below 1. Furthermore, the vector and eigenvector continuation results
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are in close agreement with each other, with only a slight difference when the convergence

is slower. We also plot the LO, NLO, N2LO, N3LO, and N4LO approximations to µVC as

defined in Eq. (4.13). We can observe that the expansion of µVC converges for ct within the

radius of convergence of perturbation theory. Our results also show that the entire BEC-

BCS crossover region can be estimated very well by variational methods like eigenvector

continuation.

We also note that figure 4.2 also shows the convergence of the three series as a function

of the parameter c. Smaller µ corresponds to faster convergence, and we see that the con-

vergence near the origin is faster than compared to convergence for far away points on the

c axis.

To summarize our results so far, we have seen that within the radius of convergence of

perturbation theory, eigenvector continuation and vector continuation have similar conver-

gence properties, and they converge faster than the standard perturbation theory. The main

reason behind this is because of the orthonormal expansion that vector continuation employs,

and somehow eigenvector continuation also learns the orthogonal space correctly and chooses

linear combinations that makes best use of the orthonormal expansion. On the other hand,

perturbative expansion is sub-optimal because the different non-orthogonal components in

different orders of perturbation theory have constructive and destructive interference. Now

let us look at how the convergence looks like beyond the radius of convergence of perturba-

tion theory. We have already seen it a little bit in the strong coupling BEC regime in figure

4.2, but let us now look in detail for a general case.
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4.3 Convergence of Eigenvector Continuation outside Ra-

dius of Convergence of Perturbation Theory

Outside the radius of convergence of perturbation theory, we can estimate the convergence

ratio using extrapolation methods. If there are no branch points nearby, then the convergence

ratio function can be extrapolated using standard methods such as Padé approximants [5]

or conformal mapping [34,35].

To illustrate this, we consider another example, which we call Model 3. In this model,

we again consider a Hamiltonian of the form H = H0+cH1, and we take H0 to be a 500×500

diagonal matrix with entries H0(n, n) = 100n for n = 1, · · · , 500. H1 is a 500× 500 matrix

with nonzero entries as follows:

H1(1, 1) = 40, (4.24)

H1(2, 2) = −80, (4.25)

H1(3, 3) = −180, (4.26)

H1(4, 4) = −260, (4.27)

H1(5, 5) = −320, (4.28)

H1(6, 6) = −335, (4.29)

for n = 1, · · · , 499:

H1(n+ 1, n) = H1(n, n+ 1) = 2, (4.30)

for n = 1, · · · , 498:

H1(n+ 2, n) = H1(n, n+ 2) = 5, (4.31)
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for n = 1, · · · , 497:

H1(n+ 3, n) = H1(n, n+ 3) = 5, (4.32)

for n = 7, · · · , 500:

H1(n, n) = 50n. (4.33)

Figure 4.3: The lowest six energies of Model 3 as a function of c.

Model 3 was chosen in such a way that perturbation theory will break down due to

several sharp avoided level crossings in the complex plane. In Fig. 4.3 we show the energies

of the lowest six energies as a function of the control parameter c. The closest branch point

to c = 0 occurs very close to the real axis near c = 0.84. The first avoided level crossing near

c = 0.84 can be seen in the figure.

For the three different methods, we can look in model 3 at how the convergence of the

three series and the convergence ratios compare. We again find similar results as figure 4.1
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when we compare the convergence of the three different series. And a comparison of the

convergence ratios µVC, µEC, and µPT is shown in figure 4.4, as a function of ct for N = 20

and N ′ = 0. In the limit |N − N ′| → ∞, the convergence ratio µPT will cross the value

1 for ct near 0.84, indicating the divergence of perturbation theory. In our calculation, we

don’t see this because of finite |N −N ′|, but we have verified that as we increase |N −N ′|

further, the convergence ratio µPT goes closer to 1 near ct = 0.84. On the other hand, we

observe that µVC and µEC are in close agreement with each other and remain below 1 near

ct = 0.84, indicating that they still converge even though perturbation theory does not.

Figure 4.4: Comparison of the convergence ratios µVC, µEC, and µPT versus ct for Model 3
with N = 20 and N ′ = 0.

In Fig. 4.5 we plot µVC and the LO, NLO, N2LO, and N3LO approximations to µVC for

N = 20 and N ′ = 0. Once again we see that the series expansion in equation 4.12 converges

73



Figure 4.5: Plots of the convergence ratios µVC, µEC, and the LO, NLO, N2LO, and N3LO
approximations to µVC versus ct for Model 3 with N = 20 and N ′ = 0.

within the radius of convergence of perturbation theory, which for this example corresponds

to c = 0.84.

Now in this model 3, we can easily perform eigenvector and vector continuation on the

negative c axis because there are no branch points there. We show this extrapolation in figure

4.6, where we plot µVC and µEC for N = 20 and N ′ = 0, and we are going to parameter

values beyond the range of perturbation theory (which is |c| < 0.84). We also show the (1,1)

and (2,2) Padé approximations to µVC. We see that the Padé approximations describe the

shape of µVC quite well since there are no nearby branch points.

If we want to extrapolate along the positive c axis, then we have to deal with the branch

point near c = 0.84. Near these singular points, the slope of the convergence ratio function

74



Figure 4.6: Plots of the convergence ratios µVC, µEC, and the Padé approximations (1,1)
and (2,2) to µVC versus ct for Model 3 with N = 20 and N ′ = 0.

will be more than that predicted by Padé approximants or conformal mapping because the

Riemann surface of the ground state eigenvector is entwined with the Riemann surface of the

first excited state eigenvector. If the branch point is very close to the real axis, then we have

an avoided level crossing or Landau-Zener transition where the wave functions of the ground

state and first excited state interchange as we pass by the branch point. What this means is

as we pass by the branch point, the ground state becomes the excited state, and the excited

state becomes the ground state. If keep looking only at the ground state, then its properties

will change quickly as we cross the branch point. However, if we add in the information from

the first excited state, then we have a way to study the ground state convergence beyond

the level-crossing - just look at the convergence of the first excited state and extrapolate it

across the level-crossing. As we pass the avoided level-crossing, the excited state has become
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the ground state, and its convergence properties is same as that of the ground state.

We therefore have a way to predict the convergence ratio of the ground state beyond

the branch point by looking at the convergence ratio of the excited state. We define the

convergence ratios for the first excited state µVC1 and µEC1 in the same manner as µVC

and µEC, except that we replace the target ground state |v(ct)⟩ with the first excited state

|v1(ct)⟩. However, note that we are still using the same orthonormal basis states |w(n)(0)⟩

associated with the ground state at c = 0. To calculate the eigenvector continuation ap-

proximation of the first excited state, |v1(ct)⟩ECN , we want to use a subspace that includes

derivatives of the ground state |v(0)(0)⟩ · · · |v(N)(0)⟩ and also derivatives of the first excited

state |v(0)1 (0)⟩ · · · |v(N)
1 (0)⟩. Therefore at each training point location, we take the ground

state and the excited state eigenvectors as the training eigenvectors. If we have n training

point locations, then we have 2n number of training points for eigenvector continuation.

This increases the numerical complexity and the error in the estimate, but eigenvector con-

tinuation can be done for excited states in this way.

In Fig. 4.7 we show µVC, µVC1 , µEC, µEC1 , and the N3LO approximations to µVC and

µVC1 for N = 20 and N ′ = 0. Notice the approximate vertical and horizontal reflection

symmetries near the branch point. For ct < 0.84 the increase in the ground-state convergence

ratio mirrors the decrease in the excited-state convergence ratio. Also the increase in the

ground-state convergence ratio for ct > 0.84 is reflected in the decrease in the excited-state

convergence ratio for ct < 0.84.

To summarize, we can learn a great deal of information about the convergence of vector

and eigenvector continuation just from series expansions around c = 0. Near the branch

point, we know that µVC (and µEC) for ground state and excited state, cross near the

midpoint between NkLO approximations to µVC and µVC1 for any k. And the NkLO ap-
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Figure 4.7: Plots of the convergence ratios µVC, µVC1 , µEC, µEC1 , and the N3LO approxima-
tions to µVC and µVC1 versus ct for Model 3 with N = 20 and N ′ = 0.

proximations to µVC and µVC1 are calculated entirely from perturbation theory at c = 0.

Also, the location of the nearby branch point can be deduced from the convergence radius of

the series expansions. So all the information about error convergence, even beyond branch

point, is present at the origin. While there are limits to how far we can go in ct with these

convergence ratio predictions, it is clear that we can predict the convergence ratios inside

and to some extent outside the radius of convergence, from the derivatives of the eigenvectors

near c = 0. It is quite fascinating how far we can extrapolate beyond the radius of conver-

gence of perturbation theory, given that we are using the same derivatives that perturbation

theory utilizes. And the fact that these derivatives of the eigenvectors near c = 0 are being

used to predict convergence of vector and eigenvector continuation, which are completely
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Figure 4.8: Plots of the convergence ratio µVC versus ct for Model 3 with N ′ = 0 and
N = 5, 10, 15, 20.

non-perturbative calculations.

Before we move on to the next topic, let us quickly mention the dependence of our

convergence ratio results on N ′ and N . So far all our calculations were done with N = 20

and N ′ = 0. The convergence ratio µVC provides information about the rate of convergence

of vector continuation in the limit of many training vectors, so ideally we want a large

N −N ′. In Fig. 4.8 we plot µVC for Model 3 for N ′ = 0 and N = 5, 10, 15, 20. We see that

the convergence ratio is approaching a common ratio in the limit of large N .
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4.4 Multi-parameter Eigenvector Continuation

Now let us try to extend our discussion of eigenvector continuation to the case where we

have D > 1 parameters in the Hamiltonian. If we again want to take the derivatives of

the eigenvector at some point, the multi-parameter case is exactly equivalent to the one

parameter case if change our one-dimensional derivatives to directional derivatives (ct−c)·∇

that act upon |v(c)⟩. Here c is the limit point of the training data, which we can redefine to

be at the origin, and ct is the target point where we are interested in finding the eigenvector

at. In other words, we can just redefine our parameters so that we can work with only one

effective parameter.

But if we now consider the more difficult problem of convergence at all target points

at some fixed distance from c, then we cannot reduce the problem to one dimension. For

this problem, if we want eigenvector continuation estimate of the target eigenvector, then we

need to include all (k+D−1)!/[k!(D−1)!] partial derivatives at order k. But for the training

eigenvectors, we need to include all the derivatives of order less than k as well, and therefore

we can conclude that a D parameter calculation with ND training vectors is equivalent to a

one parameter calculation with N1 + 1 training vectors with

ND =
(N1 +D)!

N1!D!
. (4.34)

We will now test this idea in multi-parameter eigenvector continuation through a numeri-

cal example. LetH0 be a diagonal matrix with elementsH0(n, n) = n0.1 with n = 1, · · · , 500.

Let H1, H2, and H3 be three different random 500× 500 matrices with each matrix element

sampled from a normal distribution with zero mean and standard deviation 10−3. We will

call this random matrices example as Model 4.
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Figure 4.9: Comparison of the logarithm of the eigenvector continuation error versus ND for
D = 1 and D = 2 dimensions.

First we consider the convergence of eigenvector continuation for the two parameter

Hamiltonian given by,

H(c1, c2) = H0 + c1H1 + c2H2. (4.35)

We take the training points to be in the neighborhood of the origin c = 0. For the target point

we pick a random point ct = (−1.636, 1.150). Our convergence results are shown in figure

4.9. We first consider the one parameter case labelled as 1D Derivative EC. This corresponds

to taking directional derivatives [ct ·∇]k acting on |v(c)⟩ at c = 0 for k = 0, · · · , N1, for a

total N1 + 1 training vectors. We plot the logarithm of the error versus N1.

We now compare this with the eigenvector continuation results using N2 + 1 training
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vectors for the two dimensional case. These training vectors correspond to the N2 + 1

lowest-order partial derivatives ∇k1
1 ∇k2

2 acting on |v(c)⟩ at c = 0. This convergence data

is labelled as 2D Derivative EC in figure 4.9. From the error equivalence formula N2 =

(N1 + 2)!/(N1!2!)− 1, we have

N1 = 0 → N2 = 0,

N1 = 1 → N2 = 2,

N1 = 2 → N2 = 5,

N1 = 3 → N2 = 9,

N1 = 4 → N2 = 14,

N1 = 5 → N2 = 20. (4.36)

As we see in Fig. 4.9, these predictions work quite well. The errors for N1 are approximately

equal to the errors for the corresponding value of N2. We can compare these results with the

results we obtain when, instead of using partial derivatives, we simply take training vectors

at N2 + 1 random points in the neighborhood of the origin. This data is labelled as 2D

Random EC. As we can see, this data agrees well with the 2D Derivative EC data. This

is exactly what we expected, since the partial derivatives are well approximated by finite

differences of |v(c)⟩ at points in the neighborhood of the origin.

Now in Model 4, we now consider the convergence of eigenvector continuation for the

three parameter Hamiltonian

H(c1, c2, c3) = H0 + c1H1 + c2H2 + c3H3. (4.37)
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Figure 4.10: Comparison of the logarithm of the eigenvector continuation error versus ND
for D = 1 and D = 3 dimensions.

with random target point ct = (−1.034,−1.065, 1.341). In this case we have the error

equivalence formula N3 = (N1 + 3)!/(N1!3!)− 1 and therefore

N1 = 0 → N3 = 0,

N1 = 1 → N3 = 3,

N1 = 2 → N3 = 9,

N1 = 3 → N3 = 19. (4.38)

Our error convergence results for this case is shown in figure 4.10. As we see in the

figure, these predictions also work quite well. The errors for N1, labelled as 1D Derivative

EC, are approximately equal to the errors for the corresponding value of N3, labelled as 3D
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Derivative EC. We also show the results we obtain when we take training vectors at N3 + 1

random points in the neighborhood of the origin. This data is labelled as 3D Random EC,

and the errors match quite well with the 3D Derivative EC results.

4.5 Error Dependence in Eigenvector Continuation on

Location of Training Points

As we have mentioned before, the error in eigenvector continuation depends not only on the

order of calculation, but also on the location of training points. And since this dependence

is very problem specific, it is very hard to answer in general, which training point locations

are optimal for any given problem. Nevertheless, in this section we discuss some ideas about

this dependence, and how to choose training points more efficiently in a multi-parameter

case.

As we already noted, the multi-parameter case reduces to the one parameter case if we

select training points along a straight line passing through the target point. This probably

is the best strategy for choosing locations for training points if we are interested only at one

point, or points along one line.

If the training points lie along a smooth curved path that passes through the target

point, then we expect convergence faster than the general case but slower than the straight

line example, due to the curvature of the path and the increased path length. We illustrate

this with the two parameter example for Model 4,

H(c1, c2) = H0 + c1H1 + c2H2. (4.39)
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Figure 4.11: We show different choices of path for the eigenvector continuation training
vectors. The direct straight line is in green, semicircle is in orange, isosceles right triangle is
in blue.

Suppose that our target point, C, is located at ct = (2, 0). We first consider training

points evenly spaced along a straight line from the origin, which we label as point A, to the

target point C. This is shown in Fig. 4.11. In Fig. 4.12 we plot the logarithm of the error

versus N , where the number of training points is given by N + 1, and this data is labelled

as ’Straight Line EC’.

Now we consider training points along a semicircular arc ABC, as shown in Fig. 4.11.

The convergence for this case is displayed in Fig. 4.12 , and this data is labelled as ’Circle

EC’. The convergence is slower than for the straight line example but faster than the general

two parameter convergence that we saw in Fig. 4.9. This is in agreement with what we

predicted.

Next we consider points along a right isosceles triangle ABC as shown in Fig. 4.11. In

this example the path has a discontinuity at B. The convergence for this case is displayed
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Figure 4.12: Comparison of the logarithm of the error versus order N for different paths for
the eigenvector continuation training vectors. The number of training points corresponds to
N + 1.

in Fig. 4.12 , and this data is labelled as ’Triangle EC’. As one might expect, there is almost

no reduction in error as we take training points along the line segment AB, which does not

pass through the target point. After we reach B and turn the corner to C, we see that the

convergence rate is similar to the one parameter case again. When we are taking training

points along the line segment AB, it is as if that eigenvector continuation does not get to

see another dimension in the parameter space, but once we turn the corner, all of a sudden

the dimension space of training vectors of EC has increased, and now it gives a much better

estimate. This shows that the existence of a smooth path connecting the training points and

the target is very important for the convergence rate of eigenvector continuation.

It is also worth mentioning how our example with equally spaced points on the straight
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line compares with our analysis using derivative vectors. If the training points are not too

far apart, then the convergence is similar to that obtained by replacing the training vectors

with N + 1 derivative vectors evaluated at the centroid of the training data. If the training

points are spaced far apart, however, then the training points far away from the target

point are mostly unhelpful, and the convergence is mostly dominated by the training points

closest to the target point. In this situation, although we still call this N th order eigenvector

continuation calculation, only a few points in the N training points are actually contributing

to the calculation. This is another intricate balance of choosing our training point location

and number of training points. A few training points near the target point have much more

information than many training points far away from the target point.

The difficulty in optimizing our eigenvector continuation calculations with training

points spaced apart, is that for any given target point, we often don’t know the optimal

region where we should take training points. In our next chapter, we try to answer this

question of choosing optimal locations for training points, by using the emulator itself to

learn where it should choose its training points. We come up with Self-learning Emulator

algorithm, which is an iterative algorithm to choose the best location for the next training

point.

86



Chapter 5

Self-learning Emulators

As we mentioned before, eigenvector continuation builds on this idea that as we vary the

parameter(s) in our Hamiltonian, the ground state eigenvector varies in a subspace that has

much lower dimensionality than the full dimension of the linear space that the Hamiltonian

lives in. And we can learn this subspace in which the target eigenvector lives in through

training eigenvectors, taken at certain training points in the parameter space. In this chapter

we continue our discussion of how to choose optimal locations for our training points for

eigenvector continuation so that we can efficiently learn the subspace in which the target

eigenvector lives in.

We also discuss in this chapter about the second advantage of eigenvector continua-

tion that we mentioned in the second chapter - computational advantage of EC and its use

in emulator. The dimensionality reduction that eigenvector continuation offers, greatly ac-

celerates the numerical calculation of any problem, and provides us a huge computational

speed-up. This speed-up can sometimes be several orders of magnitude faster, and we can

use eigenvector continuation to quickly get an estimate at any point in the parameter space,

where other conventional methods would take a long time to calculate the exact result. This

is justified by that the fact that we can get more than 99.99% accuracy in a fraction of the

time we need to calculate the exact result. This is the main idea of an emulator - we can

estimate (emulate) the exact result at any point very quickly using an emulator, rather than
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performing a long exact calculation.

This observation that eigenvector continuation can function as an accurate emulator for

quantum systems, was quite recent [3], and this was followed by a number of new develop-

ments and applications [4, 36–41].

The interest in emulators across many scientific disciplines has been long standing one.

There has been great interest in using machine learning tools to build efficient emulators

that predict scientific processes beyond what is possible with direct calculations [42–45].

A common problem in all these cases is that the emulator must be trained using a large

amounts of training data, which is often hard to collect since the required computations are

difficult and expensive. It is the same case with eigenvector continuation emulator. We need

training eigenvectors for eigenvector continuation calculations, and the more training points

we have, the better our EC approximation. However, we need to perform exact calculations

at these training points, which can be computationally difficult. Ideally, we want the best

results with as few training points as possible. And this brings us back to the problem of

optimizing our choice of number of training points, and our choice of their location.

In this chapter, we build on our discussion in the previous chapter, and first show how

we could come up with a simple algorithm to choose the locations of our training points

based on orthogonality of the training eigenvectors. We then refine this idea to formulate

another algorithm to select training points for eigenvector continuation without any prior

information about the exact eigenvector at any point. The key idea here is that we can use

the eigenvector continuation emulator itself to find the next optimal training point. It turns

out that this self-learning algorithm has general applicability, and it can be applied to a

whole class of emulators that satisfy some constraint equation. In the following sections, we

will discuss and illustrate this self-learning emulator with several examples.
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5.1 Finding Optimal Training Point Locations for Eigen-

vector Continuation

In the previous chapter, through the orthonormal expansions of vector continuation we have

gained a key insight in convergence of eigenvector continuation. The eigenvector continua-

tion method works by projecting the target Hamiltonian onto the subspace spanned by the

training eigenvectors, and the higher the effective dimensionality of this subspace spanned

by the training eigenvectors, the better our eigenvector continuation estimated will be. The

effective dimensionality of this subspace is determined by how orthogonal the training vectors

are to each other. If all the training eigenvectors are pointing in almost same direction, the

information content in the subspace spanned by these training eigenvectors is low because

all the additional eigenvectors after the first eigenvector, are not providing any additional

information of the subspace in the target eigenvector lives in. On the other hand, if all the

training eigenvectors are orthonormal to each other, then the subspace spanned by these

training eigenvectors has the highest possible information content about the subspace in the

target eigenvector lives in.

With that in mind, we can come up with an iterative algorithm for selecting the loca-

tion of next training point in eigenvector continuation. We start with one or two training

eigenvectors at a random values of the parameter c0, and then iteratively add more training

eigenvectors. At each iteration, we scan through all the eigenvectors |ψ(c)⟩, and choose the

next training location such that the training eigenvectors are as orthogonal as possible. This

can be done by selecting the next eigenvector |ψ(ci)⟩ at location ci in the ith iteration, such

that the multi-dimensional volume made by the vectors {|ψ(c0)⟩ , · · · |ψ(ci)⟩} is maximized.
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If we arrange all the training vectors in a matrix form (by putting them as columns),

V =

[
|v(c1)⟩ · · · |v(ck)⟩

]
(5.1)

then we can calculate the k−dimensional volume formed by these vectors by,

volume = Det{V T × V } (5.2)

Since our eigenvectors are normalized to 1, if all of the eigenvectors are orthonormal, then

the volume is 1. If they are not orthogonal, then it will be less than 1, and we can use this

volume as a measure of how orthogonal our training eigenvectors are. If at any iteration,

after scanning though all eigenvectors |ψ(c)⟩, the addition of the new eigenvector reduces the

volume of the training eigenvectors significantly, then we know that new eigenvector is not

giving us a lot of new information about the subspace in which the target eigenvector lives

in. This would means that we already have enough training points, and additional training

points do not increase the accuracy of the eigenvector continuation estimation by much.

So, in this algorithm, we start with one or two random training points, and keep adding

more training points iteratively, until the volume become less than a specified amount. Let

us show with an example what the results look like. In fact, we have already shown the result

with this algorithm in chapter 2, when we presented an eigenvector continuation emulator

with 10 dimensional random matrices. We reproduce the plot and show it in figure 5.1 for

convenience.

In this example, we consider Hamiltonian of the form H = H0+cH1, with H0, H1 being

random Hermitian matrices given in chapter 2. We start with two random training points
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Figure 5.1: Eigenvector continuation emulator - we emulate approximate eigenvalue problem
solution everywhere between −700 ≤ c ≤ 700 using six training eigenvectors. The training
eigenvectors are chosen such that the volume formed by these vectors is maximized. The
final volume is less than 0.02.

at c = −693.4 and c = −115, and add more training points according to the algorithm

above. We stop when the volume is less than 0.02. Now, we may ask why the training points

are chosen in weird clusters of two. We ideally want far away training points to maximize

the volume formed by the training eigenvectors, however this algorithm is picking nearby

training points. This can explained once we look at the plot of avoided-level crossings in

figure 5.2.

As we can see, there are several avoided level crossings near c = −120 and c = 0. As we

go across these level crossings different eigenvectors corresponding to different eigenvalues

exchange with each other. eigenvector continuation cannot capture this information with

training points on only one side of the level-crossing, because after the level-crossing the
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Figure 5.2: Energies for different excited state for the random matrix example given in
chapter 2. After an avoided level crossing, the excited eigenvector changes with another
eigenvector, and if we want to capture this information we need training points on both
sides of the avoided level crossing. This explains our choice of training points in figure 5.1.

eigenvector has changed completely. So we need training points on both sides of the level-

crossing, and if there are several nearby avoided level crossings, then we need to take several

training points there.

The key idea here is that we want our training eigenvectors to be spaced far apart from

each other so that they are pointing in different directions in the subspace in which the

target eigenvector lives. While we might be tempted to randomly choose training points far

away from each other, this notion of ’far away’ is defined by the avoided level crossings of

our problem, and if the crossing are close in the parameter space, we need to take training

points that are close to each other. This might look counter intuitive, we are actually taking
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eigenvectors which greatly differ from each other.

So, for an ideal eigenvector continuation calculation, we want our training points spaced

out such that we capture all the information of these avoided level crossings. However, the

problem lies in the fact that for a large Hamiltonian matrix, it is not easy to compute the

location of all these avoided level crossings. Thus, we have no apriori information about

where we should select our training points. But our algorithm of trying to optimize the

volume formed by our training eigenvectors does lead us to correct locations for efficient

eigenvector continuation calculation.

We can improve this algorithm further by trying to remove some training points when

the volume becomes too low, and then adding new training points until the volume becomes

small again. We can find out which training eigenvector increases the volume the most upon

removal, and remove that vector.We can repeat this process again and again, until we reach

an equilibrium point. This will remove the dependence of the algorithm on the random

initial training point.

Although this algorithm works very well in finding optimal locations for our training

points, it has one massive flaw - we need to compute the exact eigenvector everywhere to

be able to compare and choose the eigenvector which maximizes the volume of our set of

training eigenvectors. The whole idea behind using an emulator is that direct calculations

can be computationally expensive, and we can get a quick approximate using an emulator.

If we have to find the exact result everywhere to find the optimal location of our training

point, then it beats the point of using an emulator. Nonetheless, this idea of using the volume

formed by the training eigenvectors as a measure of orthogonality between the vectors is still

very useful. In any eigenvector continuation calculation, we can use this volume measure to

know when we have added too many training points, and to remove some of the training
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eigenvectors which give the least information about our target subspace. The volume of the

eigenvectors helps us find out how many training points we need, and gives us a sense of

required dimensionality of the projected space. It is also an important concept that can be

used to deal with eigenvector continuation using noisy matrices - a work done by Caleb Hicks

in our research group. We will not describe the noise correction work here.

We now have a clear goal of what we want. We want training points as orthogonal to

each other as possible, and again we want to add training points iteratively, learning more

about the target subspace with each additional training eigenvector. But now we want to

find where to take our next training point without actually calculating the exact eigenvector

anywhere.

Now we can make use of the fact that eigenvector continuation tries to give us an

approximate solution to the eigenvalue problem of the target Hamiltonian H(ct). If at the

target parameter ct, the exact energy and exact eigenvector are denoted by E(ct) and |ψ(ct)⟩

respectively, then they must satisfy,

H(ct) |ψ(ct)⟩ = E(ct) |ψ(ct)⟩ (5.3)

If eigenvector continuation gives us an approximation of energy Ẽ(ct) and approximation

to eigenvector by |ψ(ct)⟩EC , then we can immediately test how good these approximations

are, by substituting Ẽ(ct) and |ψ(ct)⟩EC in equation 5.3, and seeing how well the equation

is satisfied. But we have to define a way to measure how "well" the constraint equation

is satisfied, and this can be done in many ways. For instance, we can use the residual

H(ct) |ψ(ct)⟩EC − Ẽ(ct) |ψ(ct)⟩EC as a measure of how well the eigenvalue equation is sat-

isfied. If the eigenvector continuation approximation is very close to the exact results, then
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the EC approximation should satisfy eigenvalue equation very well, and we should have a

very small residual. However, if the EC approximation at some point is bad, then we will

have a large residual.

Note that with a given number of training eigenvectors, we do not need to calculate the

exact eigenvector anywhere to calculate the eigenvector continuation approximation over

the entire parameter space. As we mentioned earlier, calculating the exact result can be

computationally expensive, and we only have to do it a few times when we are calculating the

exact eigenvector at a training point. In each iteration, after we use eigenvector continuation

to emulate over all parameter space, we find the point where the residual (as defined above)

is highest, and we calculate the exact eigenvector once at that point. We include that

eigenvector in our set of training eigenvectors for our next iteration.

That is all we need to do to find our next optimal training point. The key idea in

this self-learning eigenvector continuation algorithm is how we use the constraint equation,

namely eigenvalue problem, to quickly determine where our approximation error is largest.

The eigenvector at this point has lowest overlap with the linear span of our current set of

eigenvectors, and we choose that eigenvector as our next training eigenvector. The reason

behind this choice is that among all possible eigenvectors, this eigenvector will have the

largest component along the direction orthogonal to the subspace spanned by our current

set of eigenvectors, and thus will make the volume formed by the new set of eigenvectors the

largest.

Now notice that even if we were not solving an eigenvalue problem, and we wanted

to solve a different constrained equation, we can still use this idea of using the constraint

equation to find how good any given approximation to the actual solution is. Thus this idea

of self-learning can be used with any emulator, as long as we have a constraint equation
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that the exact solution satisfies. In the next section, we describe in detail this self-learning

emulator algorithm for the general case. We then show its applicability in a variety of

examples.

5.2 Self-learning Emulator

Although we described the self-learning algorithm with the example of eigenvector contin-

uation emulator, in this section we will again begin from scratch and describe the detailed

algorithm for general use. We begin this section with an introduction to emulators, and what

properties we want in a good emulator. We state the training problem that emulators face,

and then we explain the self-learning algorithm and show how it helps emulators overcome

this problem. This problem of choosing optimal training data is a machine learning problem

at its heart, and along the way we will review some machine learning literature as well.

An emulator is a form of data modelling where we build fundamental relationships

between a collection of observed input variables and some desired output variables. It is

a fast-to-evaluate statistical approximation of a detailed mathematical model. It is useful

because the detailed calculation can be slow or relatively expensive, and emulators can be or-

ders of magnitude faster to evaluate. Some examples of usage of emulators include searching

for exotic particles in high-energy physics [46], detecting likelihood of disease progression in

a patient [47], and emulating eigenvectors of a Hamiltonian in nuclear physics. Here we are

interested in the last problem, but different kinds of emulators are in use in several different

disciplines of science.

A good emulator should be detailed enough to capture salient aspects of the mathemat-

ical problem at hand, but a highly detailed model can make it computationally expensive,
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hindering its usability. An emulator is designed using some training points where the exact

data is known, and the emulator should faithfully reproduce the exact solution at those

training points. Everywhere else, the emulator provides an approximate to the exact result,

and this approximation error decreases with the number of training points as either a power

law for piecewise continuous emulators or exponentially fast for smooth function emulators.

However, more training points means more computational time to emulate, and we want the

best possible emulator with least number of training points. This means we want to optimize

the location of a fixed number of training points to get better performance. This can be

quite a challenge since finding the exact result anywhere is computationally expensive, and

each time we want to evaluate the performance of the emulator with a set of training points,

we need to solve for the exact solution at those training points. We cannot exhaustively

search for all set of training eigenvectors to find the optimal solution.

The problem at hand is about optimally selecting a subset of a large dataset that we

want to choose as training points. If we use machine learning to solve this problem, then

it becomes an active-learning problem. Active learning (also called “query learning,” or

sometimes “optimal experimental design” in the statistics literature) is a subfield of machine

learning that deals with choosing an optimal subset from a large amount of data. The key

hypothesis is that, if the learning algorithm is allowed to choose the data from which it learns

it will perform better with less training. It has been used in a variety of fields [48–50] and is

often combined with other machine learning methods like neural networks.

Now we introduce an active learning protocol called self-learning emulation that relies

on a fast estimate of the emulator error. It is a greedy local optimization algorithm and

it becomes progressively more accurate as the emulator improves. It provides a potential

solution to the problem of selecting optimal training data for emulators, when the objective
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of the emulator is to solve a system of constraint equations over some domain of control

parameters. As we will show, self-learning emulators are highly efficient algorithms that

speed up our calculations by several orders of magnitude or more. The gain in computational

speed is achieved by using the emulator itself to estimate the error.

We note that the self-learning emulators we discuss here are qualitatively different from

other machine learning algorithms that model the solutions using gradient descent optimiza-

tion of some chosen loss function. Although these gradient descent optimization methods are

highly parallelizable and very fast, they usually suffer from critical slowing down with respect

to error convergence and cannot achieve arbitrarily high accuracy in polynomial computing

time.

We can summarize the self-learning algorithm as follows. It is an iterative algorithm

to choose training points, and we start with a few random training points. We use the

constraint equation and the emulator to find over our parameter space a fast estimate of

error in emulation. We then find the point where the emulation error is largest, and then

choose our next training point there. And we iterate this algorithm to find and add more

training points. We will now describe in details on how to get this fast error estimate.

We should also mention that this idea of using the emulator to find additional training

points has been applied before. In [51], along with the usual estimate of the actual result, the

emulator also gave an estimate of error in emulation, and the active learning algorithm was

based on picking the next training point where the emulated error was the largest. While

this idea is similar to ours, our method of calculating estimated error is different, and we

achieve much better results with self-learning emulation.
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5.2.1 Constraint equations and error estimates

Suppose we have a set of simultaneous constraint equations Gi(x, c) = 0 in variables x =

{xj}, and control parameters c = {ck}, which vary over some domain D. Let us denote the

exact solutions as x(c). We assume that we have an emulator which uses the exact solutions

for some set of training points {c(i)} and constructs an approximate solution x̃(c) for all

c ∈ D.

We define the error or loss function as the norm ∥∆x(c)∥ of the residual vector ∆x(c) =

x(c) − x̃(c). We want to choose a set of training points for our emulator such that the

peak value of the error function over the domain D is minimized. And we will choose this

set of training points iteratively such that the peak error goes down with every iteration.

We want to choose our next training point at the point where the error function ∆x(c) is

largest. However, we cannot calculate the error function ∆x(c) without calculating the exact

solution x(c) there, and as we have discussed before, calculating the exact solution is slow

and computationally expensive, and we cannot find it for all c ∈ D. Thus, in each iteration,

we want to find an estimate of the error function, which should be much faster to calculate

than calculating the exact solution. We will call this error estimate as fast error estimate or

simply fast estimate.

Since the error function will vary over many orders of magnitude, it is more convenient

to work with the natural logarithm of the error function, log∥∆x(c)∥. The emulator will

reproduce the exact solution at the training points {c(i)}, and the logarithm of the error

function will become negative infinity. Therefore, the logarithm of the error function will

become a rapidly varying function of c as we include more training points.

Let us consider the case where ∆x(c) is small enough that we can accurately expand
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the constraint equations as

Gi(x̃(c), c) + ∆x(c)·∇xGi(x̃(c), c) ≈ 0. (5.4)

If the number of degrees of freedom is small, we can solve the linear inversion problem for

∆x(c). The solution for ∆x(c) will be a fast estimate for the error. This estimate is just

what we would expect from the multivariate form of the Newton-Raphson method.

However, for most cases of interest, there will be many degrees of freedom and the matrix

inversion required to solve for ∆x(c) will be too slow or computationally impossible for our

self-learning emulator training process. We therefore choose another non-negative functional

F [{Gi(x̃(c), c)}] as a substitute for ∥∆x(c)∥. The only essential requirement we impose on

F [{Gi(x̃(c), c)}] is that it is linearly proportional to ∥∆x(c)∥ in the limit ∥∆x(c)∥ → 0.

This allows us to write the logarithm of the error as

log∥∆x(c)∥ = logF [{Gi(x̃(c), c)}] + A+B(c), (5.5)

where A is a constant and the average of B(c) over the domain D is zero.

Since F [{Gi(x̃(c), c)}] is linearly proportional to ∥∆x(c)∥ in the limit ∥∆x(c)∥ → 0,

the function logF [{Gi(x̃(c), c)}] will have the same steep hills and valleys as the function

log∥∆x(c)∥ as we include more training points. In the limit of large number of training

points, we can neglect the much smaller variation of B(c) over the domain D. We can

therefore approximate the logarithm of the error as logF [{Gi(x̃(c), c)}] + A. Now the un-

known constant A is irrelevant if we are comparing the logarithm of the error for different

points c. Nevertheless, we can also quickly estimate A simply by taking several random
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samples of c and computing the average value of the difference between log∥∆x(c)∥ and

logF [{Gi(x̃(c), c)}]. Later we will show that we can even refine this estimate further using

machine learning to approximate the function B(c).

A greedy algorithm is an approach for solving a problem by selecting the best option

available at the moment. It doesn’t worry whether the current best result will bring the

overall optimal result. The algorithm never reverses the earlier decision even if the choice is

wrong. It works in a top-down approach. And the self-learning emulator training program is

a greedy algorithm since in each iteration, we search over parameter space to find the point

c where the logarithm of the error is greatest at the moment. We then add this point to the

training set and repeat the whole process.

In this manner we have constructed a fast emulator that becomes more and more accu-

rate as more training points are added and provides a reliable estimate of the emulator error.

It should be emphasized that the self-learning emulation is just an algorithm to learn the

best training points for the emulator, and it does not change the process of emulation itself.

Thus it can be used with any emulator with a constraint and reproduces the exact solution

at the training points. This could be a simple method such as polynomial interpolation or

a Gaussian process, or a more involved method such as neural networks or eigenvector con-

tinuation. We retain all the beneficial properties of the emulator such as its computational

speed advantage, parallelizablilty, ease of application, etc. It can be applied to any system of

constraints such as solutions of algebraic or transcendental equations, linear and nonlinear

differential equations, and linear and nonlinear eigenvalue problems.

We now show how this algorithm works in several examples.
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5.2.2 Natural Cubic Spline Emulator

In mathematics, a spline is a special function defined piecewise by polynomials. In interpo-

lating problems, spline interpolation is often preferred to polynomial interpolation because

it yields similar results. If we have a given set of data points (x0, y0), · · · , (xn, yn), then a

spline interpolator tries to fill in the data between the given data points by piecewise poly-

nomial functions. The data points, where different piecewise polynomial functions converge

from different sides, are called knots. A common spline is the natural cubic spline, which

uses piecewise degree 3 polynomials (i.e. cubic polynomials) to interpolate in between the

data points. The word ’natural’ refers to the fact these polynomials are joined C2 smoothly.

In the one dimensional case, this simply means that the first and second second derivatives

at the knots are equal from both sides. We describe in the supplemental materials how

from a given data set (x0, y0), · · · , (xn, yn), we can form a set of n cubic polynomials that

approximate the data in between the data points.

Let us now consider some natural cubic spline emulators and apply self-learning algo-

rithm to it. In the first example we consider, Model 1, we are interested in finding the

smallest root of an nth order polynomial of the form p(x) = cnx
n+ · · ·+ c1x+ c0, where n is

odd and the coefficients are real. Since n is odd, the polynomial crosses zero at least once if

cn ̸= 0, and so we can uniquely define the lowest real root. We will consider the case where

all of the coefficients are fixed and only the coefficient cn−1 is varied. Let x be the exact

lowest real root, and this will be a function of cn−1. We are interested in finding x(cn−1) as

cn−1 varies over some domain D, but instead of finding polynomial roots at every point, we

want to find the exact root only at a few points, and we want to use that data to build a

cubic spline emulator that will approximate the smallest root everywhere else. If the order of
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polynomial n is greater than 4, there is no algebraic solution, and the roots must be solved

numerically. Now a direct numerical root calculation will take a long time, and we want to

get a quick approximation using splines, which will be faster.

Our goal with spline emulator is to have lowest peak emulation error. We want to

optimize our choice of location for the training points that the emulator will work with,

but we don’t know the emulation error anywhere without calculating the exact root at that

point. So we perform self-learning algorithm to find the best set of points.

Let the cubic spline approximation be x̃(cn−1) for any given cn−1. The logarithm of

the error function is then log |∆x(cn−1)| where ∆x(cn−1) = x(cn−1)− x̃(cn−1). We want to

come up with a fast error estimate that we can use to guess where the error is highest. For

our fast error estimate F [x̃(z, c), c], we need some function that is linearly proportional to

the actual error ∥∆x(z, c)∥ in the limit ∥∆x(z, c)∥ → 0. There are many good choices one

can make, and here we choose,

|∆x(cn−1)| ≈
|p(x̃(cn−1))|√

|p′(x̃(cn−1))|2 + ϵ2
, (5.6)

where we have included a small regulator ϵ to avoid divergences when the derivative p′

vanishes. This estimate |∆x(cn−1)| is again motivated by the Newton-Raphson method. We

use the right-hand side of equation 5.6 for our error estimate.

For our example, we take a fifth-order polynomial, n = 5, with coefficients c5 = 5, c3 =

3, c2 = 2, c1 = 1, c0 = 1. We vary c4 in the region 0 ≤ c4 ≤ 100. We also set ϵ = 1

as defined in equation 5.6. We start with four training points for cn−1, with two on the

boundary and two in random points in between. In Fig. 5.3 we show results for the estimate

of the logarithm of the error, and how the training process occurs. At our training points,
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we manually set the error to be exp(-25). For each iteration, the self-learning algorithm is

choosing a new training point that corresponds to the location of the maximum of estimated

error function from the previous iteration.

Figure 5.3: Estimates of the logarithm of the error for the cubic spline self-learning emulator,
which finds the lowest real root of the fifth order polynomial p(x) in Model 1. We show results
after iteration 0, 1, and 2.

In Fig. 5.4 we show that there is excellent agreement between the logarithm of the error

for the actual error and the error estimate after 10 iterations. We note that the error has

dropped significantly for all values of c4 from the original error estimate in Fig. 5.3, indicating

that the self-learning emulator is functioning as intended. The fact that more training points

are needed for smaller values of c4 shows that the training process is not simply adding more

training points at random, but is instead uniformly improving the emulator performance

across the entire domain.
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Figure 5.4: Logarithm of the actual error and error estimate for the cubic spline self-learning
emulator in Model 1 after 10 iterations.

We also note that in this case the error estimate is matching well with the actual error.

Therefore both A and B(c) as defined in equation 5.5 are negligible for this example.

For this Model 1, it is relatively easy to numerically compute the roots of a 5th order

polynomial, but the spline emulator is still faster. And we find that our self-learning protocol

provides a factor of about 200 times greater computational speed over tuning the cubic spline

emulator using direct calculations of the error. Let us consider a slightly more challenging

problem for us to numerically solve. After that we will discuss and define the speed-up factor

for our emulator more precisely.

We again want to use a natural cubic spline emulator, but this time we are interested

in solving a little harder problem. In this example, Model 2, we want to find the lowest real
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solution of a transcendental equation given by,

p(x) = c5x
5 + c4x

4 sin(10x) + c3x
3 + c2x

2 + c1x+ c0 = 0, (5.7)

where all the coefficients ci are real. We again fix coefficients c5 = c3 = c2 = c1 = c0 = 1,

and we vary the coefficient c4 in the region −1 ≤ c4 ≤ 2. We are interested in the smallest

real x that satisfies equation 5.7, and for this choice of coefficients, we know that a real

solution for x always exist for real c4, however the dependence of the solution on c4 is not

trivial and has discontinuities with respect to parameter c4.

We apply the self-learning algorithm to train the natural cubic spline emulator for

this problem. We start with three training points for c4, two on the boundary and one in

the interior. We denote the cubic spline approximation by x̃(c4) for all values of c4. The

logarithm of the error function is then log |∆x(c4)| where ∆x(c4) = x(c4) − x̃(c4). We can

again estimate |∆x(c4)| using the Newton-Raphson method, and we use the right-hand side

of equation 5.6 for our error estimate with ϵ = 1.

The smallest solution to the equation is shown in Fig. 5.5. We also show how well

our spline emulator does in approximating the function everywhere. We notice that the

dependence of the solution on variable c4 is non-trivial, and there is a discontinuity at

c4 ≈ 1.232.

Figures 5.6 and 5.7 show the logarithm of the error estimate and actual error after 10

and 20 iterations of self-learning algorithm respectively. The fact that more training points

are needed near c4 ≈ 1.2 shows that the training process is not simply adding more training

points at random, but is instead choosing training points which add the most information

to the emulation process. The self-learning emulator took significantly more training points
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Figure 5.5: Plot of the lowest real solution to Eq. (5.7) versus c4 in Model 2. The self-
learning emulator needs to take significantly more training points near the discontinuity at
c4 ≈ 1.232.

near the discontinuity to accurately emulate it.

Also notice that the peak error has dropped from figure 5.6 to 5.7, as we add another 10

training points. This shows that if we keep continuing in this manner, we can reach arbitrary

precision with our emulators. Again our error estimates are matching well with the actual

error, and thus both A and B(c) as defined in equation 5.5 are negligible for Model 2.

Now let us comment on the error scaling in spline emulators, and how much speed-up

factor do we get from using this spline emulator. In the limit of large number of training

points, N , the error for the spline interpolation for a smooth function scales as O(N−4) [52].

This is because the error of the cubic interpolation scales as the fourth power of the interval

between training points. However, this is only true when the function is smooth, and in the

limit that N is large. For Model 2, however, the exact solution has a jump discontinuity,
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Figure 5.6: Logarithm of the actual error and error estimate for the cubic spline self-learning
emulator in Model 2 after 10 iterations.

Figure 5.7: Logarithm of the actual error and error estimate for the cubic spline self-learning
emulator in Model 2 after 20 iterations.

and so the power law scaling is slower. Numerically, we find that the error is approximately

O(N−2.2). We see this in figure 5.8, where the slope of the graph is −2.2.

Using an Intel i7-9750H processor, evaluating the exact solution using standard root

finding methods for one value of c4 requires about 10−1 s of computational time. In com-

parison, it takes about 10−6 s to estimate the solution for any c4, using spline interpolation

with 23 training points. So the raw emulator speedup factor is therefore sraw ∼ 105. Let

M be the number of evaluations of needed, i.e., number of points in our domain except for
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Figure 5.8: Natural spline emulator error scaling for Model 1. We plot the logarithm of the
error versus the logarithm of the number of iterations.

training points. Let Nϵ be the number of emulator training points needed to achieve error

tolerance ϵ. The overall computational speedup factor for the self-learning emulator can then

be estimated by the minimum of M/Nϵ and sraw. If the fast error estimate were not used,

then Nϵ would be replaced by the number of evaluations needed to train the emulator to the

desired error tolerance ϵ, which is generally much larger than Nϵ.

5.2.3 Reduced Basis Emulator

We now turn our attention to solving differential equations with emulators. In our next

example, Model 3, we will emulate the solution of an ordinary differential equation with

one variable z and one control parameter c. We consider a family of differential equations

109



Lx(z) = 0, where

L =
1

(1 + 2z)2
d2

dz2
− 2

(1 + 2z)3
d

dz
+ c2e2c, (5.8)

and c is a real parameter. Our boundary conditions are x(z = 0, c) = 0 and ∂zx(z = 0, c) = 1

for all c. We consider the region 0 ≤ z ≤ 1, and 0 ≤ c ≤ 1. The exact solution is given by

x(z, c) = 1
cec sin[ce

c(z + z2)].

For this problem, we consider two different emulators. The first is the natural spline

emulator, which we have already seen. We can use splines to perform interpolations and

extrapolations in c for each value of z. The second emulator is a reduced basis emulator,

which uses high-fidelity solutions of the differential equation for several training values of c

and solves the constraint equations approximately using subspace projection. Reduced basis

(RB) emulators have been proven useful for solving computationally-intensive parameterized

partial differential equations [53–57]. We also tried to emulate the solution to this differential

equation using neural networks, and Gaussian Process (GP) emulators, but they did not

perform very well, and we omit their results.

We again want a fast error estimate F [x̃(z, c), c] that is linearly proportional to the

actual error ∥∆x(z, c)∥ in the limit ∥∆x(z, c)∥ → 0. There are many ways to choose this,

but we again choose an expression that we can relate to 5.4. We define our error estimate

as,

F [x̃(z, c), c] =

∥∥∥∥∥∥ Lx̃(z, c)√( d
dzLx̃(z, c)

)2
+ ϵ2

∥∥∥∥∥∥
1

, (5.9)

where we have again included a small regulator ϵ to avoid divergences. Here we are using
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Figure 5.9: Logarithm of the actual error, error estimate, and corrected error estimate for
the natural spline emulator with self-learning in Model 3 after 20 iterations.

the L1 norm, which is the integral over z of the absolute value. Note that this fast error

estimate can be used by both the spline emulator and reduced basis emulator. In fact, for

solving this differential equation, this fast estimate can be used with any emulator.

We initialize with two training points at the boundaries and one in the interior. Figure

5.9 shows the actual error and estimated error after 20 iterations of the self-learning spline

emulator. On the other hand, we found that the reduced basis emulator performs very well

for this problem, and therefore in order to show more details of the performance before

reaching the limits of machine precision, we extend the domain to the wider interval of

0 ≤ c ≤ 2 for the RB emulator. Fig. 5.10 shows the actual error and estimated error after

10 iterations of the self-learning RB algorithm.

In both cases the difference between the actual error and estimate error is a slowly-

varying function of c as predicted. We also note that the exact solution x(z, c) = 1
cec sin[ce

c(z+
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Figure 5.10: Logarithm of the actual error, error estimate, and corrected error estimate for
the reduced basis emulator with self-learning in Model 3 after 10 iterations.

z2)] oscillates more rapidly with increasing c, and the emulators therefore need more training

points for larger c. This again shows self-learning algorithm is selecting training eigenvectors

such that the emulator performance across the entire domain is uniformly improving.

In this example, there is a difference between the error estimate and the actual error,

indicating that A+B(c) in equation 5.5 is non-zero. So we cannot tell the actual error, just

from knowing the error estimate. However, in these situations we can estimate the difference

between the error estimate and the actual error by constructing a Gaussian Process (GP)

emulator for the difference function A + B(c). We train the GP by computing A + B(c) at

the midpoints in between the emulator training points. We have performed this correction

for both the spline and RB emulators, and the results are shown in Figs. 5.9 and 5.10. We

see that the corrected error estimate is in excellent agreement with the actual error.

In this Model 3, the solution is smoothly varying function. So we should expect O(N−4)
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Figure 5.11: Natural spline emulator error scaling for Model 2. We plot the logarithm of the
error versus the logarithm of the number of iterations.

error scaling with spline emulator. However it seems that we have not yet reached the

asymptotic scaling large N limit, and the error scaling is approximately O(N−1.88). This

can be seen in figure 5.11. In contrast, the reduced basis emulator has exponentially fast

error scaling. This is because the reduced basis emulator is itself a smooth function. We can

view the addition of training points as matching more derivatives of the smooth emulator to

derivatives of the smooth exact solution. The error scaling is therefore similar to the error

scaling of a convergent power series. Figure 5.12 shows the error scaling for the reduced basis

emulator for Model 3. We see that the error scaling is O(e−2.66N ), for N above 10 training

points.

On a single Intel i7-9750H processor, numerically solving the differential equation for one

value of c takes about 7×10−2 s. In contrast the spline emulator requires about 1.7×10−3 s
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Figure 5.12: Reduced basis method error scaling for Model 2. We plot the logarithm of the
error versus the number of iterations.

for 23 training points, and the RB emulator takes about 5.5× 10−4 s for 13 training points.

Therefore the spline emulator has a raw speedup factor of sraw ∼ 40, while the RB emulator

has a raw speedup factor of sraw ∼ 130. Given the somewhat comparable values for sraw and

the exponential scaling of the error for the RB emulator, we conclude that the RB emulator

significantly outperforms the spline emulator for this example.

5.3 Self-learning Eigenvector Continuation

We return to our discussion of eigenvector continuation and show that self-learning eigen-

vector continuation works very well in selecting optimal training points for us. Suppose we

are interested in finding the ground state eigenvector |v(c)⟩, and eigenenergy E(c) of the
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Hamiltonian H(c). Let the eigenvector continuation estimate of eigenvector be |ṽ(c)⟩, and

the estimate of eigenenergy be Ẽ.

The logarithm of the error is log∥|∆v(c)⟩∥, where |∆v(c)⟩ = |v(c)⟩ − |ṽ(c)⟩. Comput-

ing the error directly will be computationally too expensive for large systems, and so we

will instead work with a fast error estimate F [ṽ(c), H(c)]. Earlier we had mentioned that

|H(c) |ṽ(c)⟩ − Ẽ(c) |ṽ(c)⟩ | could work as a fast error estimate. Here we show that we can

come up with a better error estimate,

F [ṽ(c), H(c)] =

√
⟨ṽ(c)|[H(c)− Ẽ(c)]2|ṽ(c)⟩

⟨ṽ(c)|[H(c)]2|ṽ(c)⟩
. (5.10)

This F [ṽ(c), H(c)] is proportional to the square root of the variance of the Hamiltonian, but it

will be linearly proportional to ∥|∆v(c)⟩∥ in the limit ∥|∆v(c)⟩∥ → 0. Thus, logF [ṽ(c), H(c)]

can be used as a fast error estimate.

We will now present a geometrical picture of eigenvector continuation error, as well

as some additional insight into why we choose the error estimate given in equation 5.10).

Suppose we know the eigenvectors at M different training points, {c(1), · · · , c(M)}. We label

the set of M training eigenvectors as SM = {|v(c(1))⟩ , · · · , |v(c(M))⟩}. Let us define the

norm matrix N (SM ) as


⟨v(c(1))|v(c(1))⟩ · · · ⟨v(c(1))|v(c(M))⟩

... . . . ...

⟨v(c(M))|v(c(1))⟩ · · · ⟨v(c(M))|v(c(M))⟩

 , (5.11)

and let Ω2(SM ) be the determinant of N (SM ). Then Ω2(SM ) corresponds to the square of

the volume of the M -dimensional parallelopiped defined by the vectors in the set SM . If all
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the eigenvectors are normalized, then the maximum possible volume is 1, which is attained

when all the eigenvectors are orthogonal.

Let us now consider selecting the next training point, cM+1. Let P be the projection

operator onto the linear span of SM , and let Q be the orthogonal complement so that

Q = 1− P . Suppose we now expand our training set SM by adding another training vector

|v(c)⟩ to form SM+1. Let us define the perpendicular projection vector |v⊥(c)⟩ as

|v⊥(c)⟩ = Q |v(c)⟩ . (5.12)

Since Ω2(SM ) is the squared volume of the parallelopiped defined by the vectors in SM and

Ω2(SM+1) is the squared volume of the parallelopiped defined by the vectors in SM+1, it

follows that the ratio Ω2(SM+1) to Ω2(SM ) is given by the squared norm of |v⊥(c)⟩,

Ω2(SM+1)

Ω2(SM )
= ⟨v⊥(c)|v⊥(c)⟩ . (5.13)

Let us define the projections of H onto P and Q subspaces as

HP (c) = PH(c)P, HQ(c) = QH(c)Q. (5.14)

The eigenvector continuation approximation is just the approximation of |v(c)⟩ by some

eigenvector of HP (c), which we denote as |vP (c)⟩. This is because eigenvector continua-

tion just gives us the eigenvector of the Hamiltonian projected on to the space of training

eigenvectors, which is the P subspace. Let the corresponding energy be labelled EP (c) so
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that

HP (c) |vP (c)⟩ = EP (c) |vP (c)⟩ . (5.15)

We also label the eigenvectors of HQ(c) contained in the orthogonal complement Q as,

HQ(c) |vQj (c)⟩ = EQ(c) |vQj (c)⟩ . (5.16)

When the difference between the exact eigenvector and the eigenvector continuation

approximation of the eigenvector is small, we can use first order perturbation theory to

write

|v(c)⟩ ≈ |vP (c)⟩+
∑
j

⟨vQj (c)|H(c)|vP (c)⟩

EP (c)− E
Q
j (c)

|vQj (c)⟩ . (5.17)

To first order in perturbation theory, the residual vector is just |v⊥(c)⟩ ≈ |v(c)⟩ − |vP (c)⟩.

We therefore have

|v⊥(c)⟩ ≈
∑
j

⟨vQj (c)|H(c)|vP (c)⟩

EP (c)− E
Q
j (c)

|vQj (c)⟩ (5.18)

If we now combine with Eq. (5.13), we get

Ω2(SM+1)

Ω2(SM )
= ∥|v⊥(c)⟩∥2 =

∑
j

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩

[EP (c)− E
Q
j (c)]

2
. (5.19)

We can now connect this result with the fast error estimate function in equation 5.10.

The second part of the equation gives an expression for the error term ∥|v⊥(c)⟩∥ using first-
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order perturbation theory, and the first part of the equation is a geometrical interpretation

of the error term as the ratio of the squared volumes, Ω2(SM+1) to Ω2(SM ). Taking the

logarithm of the square root in equation 5.19, we get

log∥|v⊥(c)⟩∥ =
1

2
log
∑
j

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩

[EP (c)− E
Q
j (c)]

2
. (5.20)

The term in the numerator,

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩ , (5.21)

will go to zero at each of the training points, causing large variations in the logarithm of the

error as we add more and more training points. In contrast, the term in the denominator,

[EP (c) − E
Q
j (c)]

2, will be smooth as a function of c. Similarly, ⟨vP (c)|[H(c)]2|vP (c)⟩ will

also be a smooth function of c. We can write

1

2
log
∑
j

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩

[EP (c)− E
Q
j (c)]

2
=

1

2
log
∑
j

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩

⟨vP (c)|[H(c)]2|vP (c)⟩
+ A+B(c), (5.22)

where A is a constant and B(c) averages to zero over the entire domain of c. While the

function B(c) is unknown, it will be dominated by the large variations in the logarithm of
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the error as more and more training points are added. We note that

∑
j

⟨vP (c)|H(c)|vQj (c)⟩ ⟨v
Q
j (c)|H(c)|vP (c)⟩

⟨vP (c)|[H(c)]2|vP (c)⟩

=
⟨vP (c)|H(c)(1− P )(1− P )H(c)|vP (c)⟩

⟨vP (c)|[H(c)]2|vP (c)⟩

=
⟨vP (c)|[H(c)−HP (c)]2|vP (c)⟩

⟨vP (c)|[H(c)]2|vP (c)⟩

=
⟨vP (c)|[H(c)− EP (c)]2|vP (c)⟩

⟨vP (c)|[H(c)]2|vP (c)⟩
. (5.23)

We therefore arrive at the variance error estimate used in equation 5.10,

log∥|v⊥(c)⟩∥ =
1

2
log

⟨vP (c)|[H(c)− EP (c)]2|vP (c)⟩
⟨vP (c)|[H(c)]2|vP (c)⟩

+ A+B(c). (5.24)

Thus, with the fast error estimate of equation 5.10, we apply self-learning to eigenvector

continuation emulator. We consider the ground state of a system of four distinguishable par-

ticles with equal masses on a three-dimensional lattice with zero-range interactions. We will

call this example Model 4. We use lattice units where physical quantities are multiplied by

powers of the spatial lattice spacing to make the combinations dimensionless. Furthermore,

we set the particles masses to equal 1 in lattice units. We label the particles as 1, 2, 3, 4 and

take the control parameters to be the six possible pairwise interactions, cij , with i < j. The

lattice volume is a periodic cube of size L3 = 43, and the corresponding Hamiltonian is a

linear space with 262, 144 dimensions. This model can be viewed as a generalization of the

four two-component fermions with zero-range interactions that we considered in chapter 4,

and considered in Ref. [33, 39], or the Bose-Hubbard model considered in Ref. [1].

Let n denote the spatial lattice points on our three dimensional L3 periodic lattice. Let
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the lattice annihilation and creation operators for particle i be written as ai(n) and a
†
i (n)

respectively. The free non-relativistic lattice Hamiltonian has the form

Hfree =
3

m

∑
i=1,2,3,4

∑
n

a
†
i (n)ai(n)

− 1

2m

∑
i=1,2,3,4

∑
l̂=1̂,2̂,3̂

∑
n

a
†
i (n)

[
ai(n+ l̂) + ai(n− l̂)

]
. (5.25)

which is the same as the one we have seen in chapter 4. However, instead of being ferminions,

they are distinguishable particles, and all of them can be on one site. We add to the free

Hamiltonian single-site contact interactions, and the resulting Hamiltonian then has the form

H = Hfree +
∑
i<j

∑
n

cijρi(n)ρj(n), (5.26)

where ρi(n) is the density operator for particle i,

ρi(n) = a
†
i (n)ai(n). (5.27)

For calculations discussed in this work, we use a basis of position eigenstates on the lattice.

We would like to study the appearance of interesting structures such as particle cluster-

ing [58,59] in the ground state wave function as a function of the six coupling parameters cij .

As noted in Ref. [58], we can determine the formation of particle clusters by measuring the

expectation values of products of local density operators. For example, ρij(n) = ρi(n)ρj(n)

can serve as an indicator of two-particle clusters, ρijk(n) = ρi(n)ρj(n)ρk(n) for three-particle

clusters, and ρijkl(n) = ρi(n)ρj(n)ρk(n)ρl(n) for a four-particle cluster.

Such detailed multi-parameter studies are very difficult due to the number of repeated
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calculations necessary. However, we now show that self-learning emulation with eigenvector

continuation can make such studies fairly straightforward.

Since it is difficult to visualize data for all six parameters, we first present results cor-

responding to one two-dimensional slice. We set c14 = c23 = c24 = c34 = −2.3475 and

use eigenvector continuation as an emulator to find the ground state as a function of c12

and c13 over a square domain where each coefficient ranges from −5 to 5. We initialize the

self-learning emulator with one random training point for some value of c12 and c13. When

searching for new training points, we use the method of simulated annealing [60] with an

energy functional given by − logF [ṽ(c), H(c)].

In figure 5.13 we show the logarithm of the error and error estimate obtained after 40

iterations. In (a) we show the logarithm of the actual error, and in (b) we show the loga-

rithm of the estimated error. As predicted in equation 5.5, we see that the two plots are

approximately the same up to a constant offset A, with A ≈ −2.3. The peak value of the

actual error is ∥|∆v(c)⟩∥ = 2 × 10−5. From the figure we see that the local maxima of the

error reside along an approximately flat horizontal surface. The flatness of this surface indi-

cates that our self-learning emulator is performing as intended, with the training algorithm

removing the peak error at each iteration. This is a highly nontrivial result, since the actual

error is never calculated in the training protocol. We note that the distribution of training

points is far from uniform. The region near the line c12 + c13 = −1 has a higher density

of training points, indicating that the ground state wave function has a more complicated

dependence on c12 and c13 in that location.

With the help of self-learning algorithm, we can now measure short-range correlations

between pairs of particle in the ground state wave function for all values of c12 and c13. In

figure 5.14 we show the short-range correlations for pairs of particles 1 with 2 and 1 with
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(a) (b)

Figure 5.13: Logarithm of the error in Model 2 after 40 iterations using self-learning EC. In
(a) we show the logarithm of the actual error (red), and in (b) we show the logarithm of the
estimated error (blue).

3. The correlation function ρ12 measures the probability that particles 1 and 2 occupy the

same lattice site, and the correlation function ρ13 measures the probability that particles 1

and 3 occupy the same lattice site. We see that ρ12 is close to zero when c12 is positive and

rises to a peak of 1 when c12 is negative and increasing in magnitude. Similarly, ρ13 is close

to zero when c13 is positive and rises to a peak of 1 when c13 is negative and increasing in

magnitude. This is consistent with what we should expect - positive (repulsive) coupling

should make the particles go away from each other, and negative (attractive) coupling should

bring the particles together on the same lattice site. The change in clustering probability

is most prominent near the line c12 + c13 = −1, and this is why our self-learning emulator

selects much of its training points on this line. An examination of the other short-range

correlation functions, ρ14, ρ23, ρ24, ρ34, shows that for all negative values of c12 and c13 in

our domain, the four-body system remains a compact bound state. However, when c12 or

c13 are positive, we induce a repulsive spatial separation between the corresponding particles

within the bound state wave function.

For the eigenvector continuation emulator in Model 4, we again expect exponential error
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Figure 5.14: Plot of the two-particle short-range correlations in Model 2. ρ13 (red) measures
the probability that particles 1 and 3 occupy the same lattice site, and the correlation
function ρ23 (blue) measures the probability that particles 2 and 3 occupy the same lattice
site.

scaling because both the emulator and exact solution are both smoothly varying functions.

In figure 5.15 we show the error scaling for the eigenvector continuation emulator in Model 4.

We see that the error scaling is O(e−0.27N ). Using an Intel i7-9750H processor, we found that

direct calculation of the eigenvector and eigenvalue takes about 1.95 s, whereas eigenvector

continuation emulation with 41 training points can be done in 0.013 s. This corresponds to

a raw speedup factor of sraw ∼ 150.

After studying the case where we vary two parameters, we now consider the case where

we vary each of the six control parameters cij in Model 4. We restrict the range for each

of these coefficients from −5 ≤ cij ≤ 0. We again use simulated annealing with the en-
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Figure 5.15: Eigenvector continuation emulator error scaling for Model 3. We plot the
logarithm of the error versus the number of iterations.

ergy functional −1
2 logF [ṽ(c), H(c)] to find the optimal training points. After learning the

eigenvector manifold with self-learning eigenvector continuation, we calculate the exact er-

ror at a few random points in order determine the unknown constant A in equation 5.5

and determine the logarithm of the error. After 80 iterations, the peak value of the error is

∥|∆v(c)⟩∥ = 4× 10−3.

This highlights the main result of this chapter. We are now able to choose our training

points efficiently, and can perform multi-dimensional eigenvector continuation with ease. In

our numerical calculation with the six parameter case, we take 10 points along each parameter

cij , so our 6-dimensional space has a total of 106 points. We want eigenvector continuation

emulator to emulate over all these points, and for that we select only about 80 training

points. Through self-learning, our emulator picks 80 training points out a million, such that
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it can emulate over all the million points with accuracy less than 4× 10−3 everywhere. This

is definitely a non-trivial result that will be hard to achieve without self-learning. Through

this example, we have shown how we can answer the question of how to pick our training

points optimally.
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Chapter 6

Nuclear Lattice EFT and Floating-block

method for Eigenvector Continuation

In this chapter, we consider the nuclear interaction on a lattice, and describe how we can

apply eigenvector continuation to our Nuclear Lattice Effective Field Theory (EFT) calcula-

tions. We do not provide an introduction to this subject here. The interested reader should

look here [61]. We only describe our floating-block algorithm and present preliminary results

here.

Our Hamiltonian depends on several parameters such as two-body and three-body inter-

action strength, Coulomb interaction strength, coupling for one pion exchange potential, etc.

Our calculations are affected by the Monte-Carlo sign problem, which affects us more when

the couplings are larger, and this limits the maximum value of the couplings with which we

can perform our Monte-Carlo calculations. Our goal is to use eigenvector continuation to

extrapolate from a coupling region where the sign problem is minimal and we can perform

accurate calculations, to a coupling region where the sign problem dominates.

To demonstrate the eigenvector continuation calculation, we consider the simple prob-

lem when we set all interaction coupling to zero, except the leading order SU(4) contact

interaction. Our Hamiltonian has then only one control parameter, which we will denote by

c. For quick calculations, we consider Helium-4 nucleus with Lattice size L = 4.
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This project is work in progress. We have tested the algorithm in the case where we only

vary the leading order SU(4) contact interaction. In future, we wish to test the extrapolation

in other parameters, like Coulomb interaction, strength of one-pion exchange potential, etc.

6.1 Floating Block Method

In Monte-Carlo Lattice EFT, we do not have access to the eigenvectors directly, however we

can calculate the matrix elements. Our main tool here is Euclidean Time Evolution, which is

implemented with auxiliary-field Monte Carlo. We start with an initial state and propagate

it over several time steps. In each of the time steps we multiply the current state with the

transfer matrix, which is given by exp(−H(c)δt). Our initial state will approach the ground

state as the number of time steps goes to infinity. With proper normalization, we can easily

calculate any Hamiltonian matrix element by,

⟨ψinitial|e−H(c)δt| · · · |H(c)| · · · |e−H(c)δt|ψinitial⟩
⟨ψinitial|e−H(c)δt| · · · |e−H(c)δt|ψinitial⟩

(6.1)

In practice, we perform our calculations with a finite number of time steps, and then

extrapolate to infinite time. We will denote the total number of time steps in our calculations

by Lt. We simplify the notation above to write the Hamiltonian matrix elements as,

Hij(ct) =
⟨ψinit|ci| · · · |ci|H(ct)|cj | · · · |cj |ψinit⟩

⟨ψinit|ci| · · · |ci|cj | · · · |cj |ψinit⟩
(6.2)

where |ci| represents a time step where we multiply by transfer matrix e−H(ci)δt, and there

Lt/2 time steps of |ci| and |cj | each, with H(ct) inserted in the middle. Note that since there

are equal time steps of the same coupling in numerator and denominator, the energy terms
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cancel out.

Calculating the norm matrix element is non-trivial because if we remove H(ct) from the

middle in the above expression, we just get 1.

⟨ψinit|ci| · · · |ci|cj | · · · |cj |ψinit⟩
⟨ψinit|ci| · · · |ci|cj | · · · |cj |ψinit⟩

= 1 (6.3)

So, we reorder the couplings, and move a block of cj time steps from right to left, to get

⟨ψinit|ci| · · · |ci|cj | · · · |cj |ci| · · · |ci|cj | · · · |cj |ψinit⟩
⟨ψinit|ci| · · · |ci|ci| · · · |ci|cj | · · · |cj |cj | · · · |cj |ψinit⟩

(6.4)

Now, in the numerator we have four blocks of Lt/4 time steps with couplings |ci| and

|cj | interleaved with each other. If we insert
∑
k |ψk⟩ ⟨ψk| = 1 in between time steps where

the couplings are different, and assume that Lt/4 is large enough such that after propagating

through Lt/4 time steps, only the ground state survives, then we can write equation 6.4 as,

⟨ψinit|ci| · · · |ci|
∑
k1 |ψk1⟩ ⟨ψk1| cj | · · · |cj |

∑
k2 |ψk2⟩ ⟨ψk2| ci| · · · |ci|

∑
k3 |ψk3⟩ ⟨ψk3| cj | · · · |cj |ψinit⟩

⟨ψinit|ci| · · · |ci|
∑
k4 |ψk4⟩ ⟨ψk4| cj | · · · |cj |ψinit⟩

=
⟨ψinit|ψ(ci)⟩ ⟨ψ(ci)|ψ(cj)⟩ ⟨ψ(cj)|ψ(ci)⟩ ⟨ψ(ci)|ψ(cj)⟩ ⟨ψ(ci)|ψinit⟩

⟨ψinit|ψ(ci)⟩ ⟨ψ(ci)|ψ(cj)⟩ ⟨cj |ψinit⟩
(6.5)

where ψ(ci) is the ground state eigenvector of the Hamiltonian H(ci).

We can simplify this equation to write equation 6.4 as,

⟨ψinit|ci| · · · |ci|cj | · · · |cj |ci| · · · |ci|cj | · · · |cj |ψinit⟩
⟨ψinit|ci| · · · |ci|ci| · · · |ci|cj | · · · |cj |cj | · · · |cj |ψinit⟩

= | ⟨ψ(ci)|ψ(cj)⟩ |2

⇒Nij =
(⟨ψinit|ci| · · · |ci|cj | · · · |cj |ci| · · · |ci|cj | · · · |cj |ψinit⟩
⟨ψinit|ci| · · · |ci|ci| · · · |ci|cj | · · · |cj |cj | · · · |cj |ψinit⟩

)1
2 (6.6)
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Figure 6.1: We move the auxiliary-fields of different time steps in the numerator so that
we have the same auxiliary-field for time steps in numerator and denominator with same
coupling. This figure shows the auxiliary-fields are moved around for Lt = 40. The different
time steps in numerator and denominator with same color have same auxiliary-field.

This gives us a way to calculate the norm matrix. Although equation 6.6 can be used

to calculate the norm matrix, we can further reduce the statistical error with another trick.

Usually, in auxiliary-field Monte Carlo, in each time step we sample the auxiliary-field and

use it for the Hamiltonian in both the numerator and the denominator. In equation 6.6, even

with different couplings in the same time step, the numerator and denominator has the same

auxiliary-field in the Hamiltonian. However, if we were to move the auxiliary-fields in the

numerator such that the same auxiliary-field goes with the same coupling in denominator and

numerator, then the only difference between numerator and denominator comes only from

the commutator of the transfer matrices with different coupling Hamiltonian. This reduces

the uncertainty, and gives us less error. Figure 6.1 demonstrates the idea behind moving the

auxiliary-fields of different time steps to reduce the uncertainty in the norm matrix elements

with Lt = 12. We performed all our Monte-Carlo calculations using this trick.

With both the norm matrix and the Hamiltonian matrix, we can now perform the

eigenvector continuation calculation. We tested the method and show the results in the next

section.
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6.2 Results

We consider the Helium-4 nucleus with Lattice size L = 4, and we set all interaction coupling

to zero, except the leading order SU(4) contact interaction. In the following, coupling (c or

ct) refers to the interaction strength of the leading order SU(4) contact interaction. We

compare the energy we get from eigenvector continuation to the Expectation energy, which

we define by,

Expectation energy =
⟨ψinit|ct| · · · |ct|H(ct)|ct| · · · |ct|ψinit⟩

⟨ψinit|ct| · · · |ct|ct| · · · |ct|ψinit⟩
(6.7)

We perform eigenvector continuation calculation for a fixed Lt = 40 over several target

coupling points. The results are listed in table 6.1. The error in EC is not listed here.

We should note that as we perform higher order eigenvector continuation, the EC energy

will be less than expectation energy, and closer to the actual Lt → ∞ energy. This is

because for Lt ̸= ∞, the ground state eigenvectors we get and use as training point for

eigenvector continuation is contaminated with excited states, and expected energy uses this

contaminated ground state to gives us an energy which is different from the actual ground

state. On the hand, when eigenvector continuation chooses a linear combination of these

states, it cancels out some of the excited states and reaches closer to the true ground state.

However, in our practical calculations we are noise limited in how high order eigenvector

continuation we can perform. For the calculation shown in table 6.1, 4th order EC did not

improve the result by much because of noise.

Table 6.2 shows the result when we fix the target coupling ct = −5.1e−7 and vary Lt.

From the results of table 6.2, we can perform infinite-time extrapolation to get the

eigenvector continuation energy at Lt → ∞. Fitting an exponential curve, we get Lt → ∞
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Table 6.1: Eigenvector continuation calculation for He-4 with Lt = 40

ct Expectation Energy Order 2 EC Energy Order 3 EC Energy
−4e−7 -15.499 ± 0.012 -15.601 -15.666
−5.1e−7 -30.274 ± 0.020 -30.260 -30.213
−6e−7 -43.124 ± 0.015 -42.922 -42.925

Table 6.2: Eigenvector continuation calculation for He-4 with ct = −5.1e−7

Lt Expectation Energy Order 2 EC Energy Order 3 EC Energy
40 -30.274 ± 0.020 -30.260 -30.213
80 -45.588 ± 0.015 -45.357 -45.458
120 -51.237 ± 0.018 -50.852 -51.042
160 -53.213 ± 0.023 -52.866 -53.084

energy to be -54.34, whereas the expectation energy calculated for a large Lt = 640 is

−54.269± 0.026.
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Chapter 7

Conclusions and Outlook

In this work, we have introduced the method of eigenvector continuation, and showed how

can be applied to various problems. It provides a great computational speed up, and this

can be used to make emulators that provide a fast estimate of the result at any point in our

parameter space. Apart from the computational advantage, eigenvector continuation can

also be used to extrapolate our data to regions where standard perturbation theory does not

work.

This work presented a first study of error convergence for eigenvector continuation. We

have seen that eigenvector continuation converges faster than perturbation theory. This is

because the series expansion of the wave function in perturbation theory exhibits an effect

called differential folding, the interference among non-orthogonal terms at different orders.

eigenvector continuation avoids this problem and does not diverge for any value of the control

parameter. The error in eigenvector continuation approximation depends on the number and

location of training points. While adding new training eigenvectors, it is the component of

the new training eigenvector along the orthogonal direction of the subspace spanned by the

current set of eigenvectors that contributes to accelerating the convergence of the method.

We have also shown that self-learning emulators can be used to select training data for

any emulator that emulates the solution to a set of constraint equations. The self-learning

method is an active learning protocol that relies on a fast estimate of the emulator error
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and a greedy local optimization algorithm that becomes progressively more accurate as the

emulator improves. The computational advantage of using self-learning can be as large as

the speed-up factor of the emulator itself, which can be several order of magnitude or more.

Using only 80 training points found by the self-learning algorithm, we find that we can

emulate data at 106 points in a six-dimensional space.

There are several things that can be done in the near future. The error convergence for

the anharmonic oscillator still has not been characterized completely. It has been hard to

characterize error convergence when the singular point is very close to the origin, and goes

even closer to origin as we increase our matrix dimensions. Perhaps with a bit of work, we

can explain the weird convergence behaviour we have observed so far.

The connection between eigenvector continuation and Model Order Reduction methods

needs to be explored in more details. While eigenvector continuation itself is definitely a

special case of a reduced basis methods, we need to look into the Model Order Reduction

method literature to see the connections between the two methods, and gain more insights

into eigenvector continuation. While this has been done to some extent in [53], there are still

additional work to be done. This may also allow us to improve our computations in some

way.

The work on Floating-Block eigenvector continuation method is still ongoing. We have

presented some preliminary data that shows that the method works when we extrapolate in

the SU(4) contact interaction coupling. Now we are trying to implement the method and

test it for the alpha particle (He-4 nucleus) with leading order SU(4) contact interaction, and

one-pion exchange potential. With only SU(4) contact interactions, there is no sign problem,

but once we introduce the one-pion exchange potential, strong sign oscillations dominate and

we cannot calculate our results directly any more. Instead, we now turn on the one-pion
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exchange potential as a perturbation, and this allows us to calculate ground state energies

with small strength of one-pion exchange potential. The idea here is then to extrapolate

from these small strength data points to the target coupling that we are interested in, using

eigenvector continuation. If we are successful, then this technique would allow us to employ

eigenvector continuation in all our lattice Effective Field Theory calculations, and we can

compute the properties of heavier nuclei more efficiently.
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Chapter 8

Supplemental Materials

8.1 Anharmonic Oscillator

8.1.1 Calculation of derivatives of eigenvector through perturbative

expansion

We start with Hamiltonian where some subspace is completely diagonalized. Let H(E) be

the Hamiltonian matrix

H(E) =



0 0 · · · ⟨1|H |A1⟩ ⟨1|H |A2⟩ · · ·

0 λ2 · · · ⟨2|H |A1⟩ ⟨2|H |A2⟩ · · ·
...

... . . . ...
... . . .

⟨A1|H |1⟩ ⟨A1|H |2⟩ · · · E · λA1 ⟨A1|H |A2⟩ · · ·

⟨A2|H |1⟩ ⟨A2|H |2⟩ · · · ⟨A2|H |A1⟩ E · λA2 · · ·
...

... . . . ...
... . . .



(8.1)

We have included a scaling factor E to the diagonal entries of the vectors not in the
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original subspace. We will regard the diagonal matrix

D(E) =



0 0 · · · 0 0 · · ·

0 λ2 · · · 0 0 · · ·
...

... . . . ...
... . . .

0 0 · · · E · λA1 0 · · ·

0 0 · · · 0 E · λA2 · · ·
...

... . . . ...
... . . .



(8.2)

as the unperturbed Hamiltonian matrix.

For convenience we have set the first diagonal entry of the unperturbed Hamiltonian to

zero, λ(0)1 = 0. We consider the limit E → +∞.

0 0 · · · ⟨1|H |A1⟩ ⟨1|H |A2⟩ · · ·

0 λ2 · · · ⟨2|H |A1⟩ ⟨2|H |A2⟩ · · ·
...

... . . . ...
... . . .

⟨A1|H |1⟩ ⟨A1|H |2⟩ · · · E · λA1 ⟨A1|H |A2⟩ · · ·

⟨A2|H |1⟩ ⟨A2|H |2⟩ · · · ⟨A2|H |A1⟩ E · λA2 · · ·
...

... . . . ...
... . . .



×
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

c
(0)
1
E0 +

c
(1)
1
E1 +

c
(2)
1
E2 + · · ·

c
(0)
2
E0 +

c
(1)
2
E1 +

c
(2)
2
E2 + · · ·

...

c
(0)
A1
E0 +

c
(1)
A1
E1 +

c
(2)
A1
E2 + · · ·

c
(0)
A2
E0 +

c
(1)
A2
E1 +

c
(2)
A2
E2 + · · ·

...



=

(
λ
(1)
1
E +

λ
(2)
1
E2 + · · ·

)



c
(0)
1
E0 +

c
(1)
1
E1 +

c
(2)
1
E2 + · · ·

c
(0)
2
E0 +

c
(1)
2
E1 +

c
(2)
2
E2 + · · ·

...

c
(0)
A1
E0 +

c
(1)
A1
E1 +

c
(2)
A1
E2 + · · ·

c
(0)
A2
E0 +

c
(1)
A2
E1 +

c
(2)
A2
E2 + · · ·

...



We start with c
(0)
1 = 1, c(0)j = 0 for j > 1, and c

(0)
Ai

= 0 for all i. Furthermore, since the

normalization is arbitrary, we also take c(n)1 = 0 for all n > 1. In row 1 at order n we have

∑
i

⟨1|H |Ai⟩ c
(n)
Ai

=
∑

1≤n′≤n
λ
(n′)
1 c

(n−n′)
1 . (8.3)

Since c(0)1 = 1 and c(n)1 = 0 for all n > 1, we can rewrite this as

λ
(n)
1 =

∑
i

⟨1|H |Ai⟩ c
(n)
Ai

(8.4)

In row j > 1 at order n we have

λjc
(n)
j +

∑
i

⟨j|H |Ai⟩ c
(n)
Ai

=
∑

1≤n′≤n
λ
(n′)
1 c

(n−n′)
j (8.5)

In row Ai at order n we have

λAic
(n+1)
Ai

+
∑
j

⟨Ai|H |j⟩ c(n)j +
∑
k ̸=i

⟨Ai|H |Ak⟩ c
(n)
Ak

=
∑

1≤n′≤n
λ
(n′)
1 c

(n−n′)
Ai

(8.6)
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We solve these equations recursively. From Eq. (8.6) we have,

c
(n)
Ai

= −λ−1
Ai

∑
j

⟨Ai|H |j⟩ c(n−1)
j − λ−1

Ai

∑
k ̸=i

⟨Ai|H |Ak⟩ c
(n−1)
Ak

+λ−1
Ai

∑
1≤n′≤n−1

λ
(n′)
1 c

(n−1−n′)
Ai

(8.7)

From Eq. (8.4), we get

λ
(n)
1 =

∑
i

⟨1|H |Ai⟩ c
(n)
Ai

(8.8)

And from Eq. (8.5) we have for j > 1,

c
(n)
j = −λ−1

j

∑
i

⟨j|H |Ai⟩ c
(n)
Ai

+ λ−1
j

∑
1≤n′≤n

λ
(n′)
1 c

(n−n′)
j (8.9)

For applications where the initial subspace is very large, it is impractical to fully diag-

onalize the subspace. In that case we include the lowest energy subspace-projected eigen-

vectors |j⟩ with the same quantum numbers as |1⟩ and extrapolate to the limit where all

subspace-projected eigenvectors |j⟩ are included.

8.1.2 Simplified recursion relation

We let

L = −
∑
i

∑
j

|Ai⟩λ−1
Ai

⟨Ai|H |j⟩ ⟨j| −
∑
i

∑
k ̸=i

|Ai⟩λ−1
Ai

⟨Ai|H |Ak⟩ ⟨Ak| , (8.10)

S = −
∑
j ̸=1

∑
i

|j⟩λ−1
j ⟨j|H |Ai⟩ ⟨Ai| , (8.11)
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D =
∑
j ̸=1

|j⟩λ−1
j ⟨j|+

∑
i

|Ai⟩λ−1
Ai

⟨Ai| , (8.12)

⟨rL| =
∑
i

⟨1|H |Ai⟩ ⟨Ai| . (8.13)

We also define ∣∣∣ψ(n)S

〉
=
∑
j

c
(n)
j |j⟩ , (8.14)

∣∣∣ψ(n)L

〉
=
∑
i

c
(n)
Ai

|Ai⟩ . (8.15)

We can then write the recurrence relation as

∣∣∣ψ(n)L

〉
= L

∣∣∣ψ(n−1)
L

〉
+ L

∣∣∣ψ(n−1)
S

〉
+D

∑
1≤n′≤n−1

λ
(n′)
1

∣∣∣∣ψ(n−1−n′)
L

〉
, (8.16)

λ
(n)
1 =

〈
rL

∣∣∣ψ(n)L

〉
, (8.17)

∣∣∣ψ(n)S

〉
= S

∣∣∣ψ(n−1)
L

〉
+D

∑
1≤n′≤n

λ
(n′)
1

∣∣∣∣ψ(n−n′)S

〉
. (8.18)

At first order we have ∣∣∣ψ(1)L 〉
= L

∣∣∣ψ(0)L 〉
+ L

∣∣∣ψ(0)S 〉
, (8.19)

λ
(1)
1 =

〈
rL

∣∣∣L ∣∣∣ψ(0)L 〉
, (8.20)

∣∣∣ψ(1)S 〉
= S

∣∣∣ψ(0)L 〉
+
〈
rL

∣∣∣L ∣∣∣ψ(0)L 〉
D
∣∣∣ψ(0)S 〉

. (8.21)
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At second order we have

∣∣∣ψ(2)L 〉
=L

∣∣∣ψ(1)L 〉
+ L

∣∣∣ψ(1)S 〉
+ λ

(1)
1 D

∣∣∣ψ(1)L 〉
,

=LL
∣∣∣ψ(0)L 〉

+ (LL+ LS)
∣∣∣ψ(0)L 〉

+ LS
∣∣∣ψ(1)S 〉

+
〈
rL

∣∣∣L ∣∣∣ψ(0)L 〉 [
LD

∣∣∣ψ(0)S 〉
+DL

∣∣∣ψ(0)L 〉
+DL

∣∣∣ψ(0)S 〉]
, (8.22)

λ
(2)
1 =

〈
rL

∣∣∣L ∣∣∣ψ(2)L 〉 ∣∣∣ψ(2)L 〉
=
〈
rL

∣∣∣LLL ∣∣∣ψ(0)L 〉
+
〈
rL

∣∣∣(LLL+ LLS)
∣∣∣ψ(0)L 〉

+
〈
rL

∣∣∣LLS ∣∣∣ψ(0)S 〉
+
〈
rL

∣∣∣L ∣∣∣ψ(0)L 〉 [〈
rL

∣∣∣LLD ∣∣∣ψ(0)S 〉
+
〈
rL

∣∣∣LDL ∣∣∣ψ(0)L 〉 ]
+
〈
rL

∣∣∣L ∣∣∣ψ(0)L 〉 〈
rL

∣∣∣LDL ∣∣∣ψ(0)S 〉
, (8.23)

∣∣∣ψ(2)S 〉
= S

∣∣∣ψ(1)L 〉
+ λ

(1)
1 D

∣∣∣ψ(1)S 〉
+ λ

(2)
1 D

∣∣∣ψ(0)S 〉
. (8.24)

8.1.3 Use in Eigenvector Continuation

We now use the perturbative corrections at each order n as our basis vectors for eigenvector

continuation. The norm matrix elements are

Nn,n′ =
∑
j

c
(n)∗
j c

(n′)
j +

∑
i

c
(n)∗
Ai

c
(n′)
Ai

. (8.25)
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while the Hamiltonian matrix elements are

Hn,n′(E) =
∑
j ̸=1

c
(n)∗
j λjc

(n′)
j + E

∑
i

c
(n)∗
Ai

λAic
(n′)
Ai

+
∑
j

∑
i

c
(n)∗
j ⟨j|H |Ai⟩ c

(n′)
Ai

+
∑
i

∑
j

c
(n)∗
Ai

⟨Ai|H |j⟩ c(n
′)

j

+
∑
i

∑
k ̸=i

c
(n)∗
Ai

⟨Ai|H |Ak⟩ c
(n′)
Ak

. (8.26)

For many applications of interest, the number of basis vectors |Ai⟩ will be extremely

large, so large that standard vector operators are not possible and storage of the entries c(n)Ai

require more computer memory than available. In that case we cannot use the recursion

relations directly. Instead, we need to completely unroll the recursion relations into their

individual terms. The individual expressions can be evaluated by one of two options. The

first option is exact calculation. This however becomes impractical rather quickly even with

massively parallel computing. The more practical approach is to use stochastic sampling of

the summation terms as suggested in the original stochastic error correction paper [62].

For our case of the anharmonic oscillator, we have a single parameter λ which we set to

0 after shifting the Hamiltonian by λI. The elements ⟨n|H|Ai⟩ and ⟨Ai|H|n⟩ are particularly

simple as n = 1 only. We have only one c1 as well, which is set to c(0)1 = 1 and c(n)1 = 0 for

n > 1.

8.2 Natural Cubic Splines

In this section, we show the algorithm for numerically computing Natural Cubic Splines.

This can also be found in any book on splines [63], and even on Wikipedia.
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Our input is a set of data C containing n+ 1 points.

Our output is a set of splines, which is composed of n 5-tuples.

Algorithm:

1. Create new array a of size n+ 1 and for i = 0, . . . , n set ai = yi .

2. Create new arrays b and d each of size n.

3. Create new array h of size n and for i = 0, . . . , n− 1 set hi = xi+1 − xi .

4. Create new array α of size n and for i = 1, . . . , n− 1 set

αi =
3

hi
(ai+1 − ai)−

3

hi−1
(ai − ai−1).

5. Create new arrays c, l, µ, and z each of size n+ 1 .

6. Set l0 = 1, µ0 = z0 = 0 .

7. For i = 1, . . . , n− 1

(a) Set li = 2 (xi+1 − xi−1)− hi−1µi−1.

(b) Set µi =
hi
li

.

(c) Set zi =
αi − hi−1zi−1

li
.

8. Set ln = 1; zn = cn = 0.

9. For j = n− 1, n− 2, . . . , 0.

(a) Set cj = zj − µjcj+1 .

(b) Set bj =
aj+1 − aj

hj
−
hj
(
cj+1 + 2cj

)
3

.

(c) Set dj =
cj+1 − cj

3hj
.
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10. Create new set Splines and populate it with n splines S

11. For i = 0, . . . , n− 1

(a) Set Si,a = ai.

(b) Set Si,b = bi.

(c) Set Si,c = ci.

(d) Set Si,d = di.

(e) Set Si,x = xi.

12. The n output splines S are in the form:

Sj (x) = aj + bj
(
x− xj

)
+ cj

(
x− xj

)2
+ dj

(
x− xj

)3
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