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ABSTRACT

SCATTERING AMPLITUDES FOR ZZ PRODUCTION AT THE LHC AND

TOP-QUARK MASS EFFECTS

By

Bakul Agarwal

With the Large Hadron Collider providing experimental data with unprecedented preci-

sion, theoretical predictions must improve similarly as well to keep up. Among a plethora of

processes being studied at the LHC, the production of a pair of vector bosons is of particular

importance. Consequently, precise theoretical predictions for these processes are necessary.

This thesis discusses primarily the calculation of ZZ production through gluon fusion at

2-loops with full top-quark mass dependence as well as the technological improvements re-

quired to successfully perform the calculation. Also discussed briefly is the quark initiated

production of γγ+ jet at 2-loops where some of these technologies allowed to overcome prior

bottlenecks in the calculation of the helicity amplitudes.

The 2-loop corrections for ZZ production through massless quarks had been known;

in this work, the 2-loop corrections through the massive top quark are calculated . To

achieve this, a new algorithm to systematically construct linear combinations of integrals

with a convergent parametric representation is developed. This algorithm finds for linear

combinations of general integrals with numerators, dots, and dimension shifts as well as

integrals from subsectors.

To express the amplitudes in terms of these integrals, Integration-By-Parts (IBP) reduc-

tion is performed making use of syzygies and finite field based methods. A new algorithm is

employed to construct these syzygies using linear algebra. The IBP reductions for gg → ZZ

are successfully performed using these techniques. Further improvements, including prede-

termining the structure of the coefficients in IBP reductions, are used to successfully perform

the reductions for γγ + jet. Multivariate partial fractioning is used to simplify the final ex-

pressions to more manageable forms and render them suitable for fast numerical evaluation.



In the case of gg → ZZ, due to the presence of structures beyond polylogarithms, sector

decomposition is employed to numerically evaluate the finite master integrals. Evaluating the

amplitudes, agreement is found with previously calculated expansions specifically in the limit

of large and small top mass. Improved results are presented for scattering at intermediate

energies and/or for non-central scattering angles. With this calculation, the last building

block required for the calculation of full NLO cross-section for gg → ZZ is known.



Dedicated to my parents.
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Chapter 1

The Standard Model and perturbative

calculations

1.1 Overview of the Standard Model

The Standard Model of particle physics provides a fundamental description of the universe

at the smallest scales accessible to us. It provides a "unified" prescription of the electromag-

netic, weak nuclear, and strong nuclear forces and, along with General Relativity, describes

almost all known physical phenomena. Many excellent predictions have been made to date

using the Standard Model with one of the most successful being the anomalous magnetic

moment g − 2 of the electron which is calculated to 10 digits of relative precision [14, 15].

Incredibly, the experimentally measured value [16], which is also one of the most precise mea-

surements to date and of comparable precision, shows excellent agreement with the Standard

Model prediction.

The field of subatomic physics started with the discovery of the electron in 1897 using a

simple cathode ray tube. Since then, many more new particles have been discovered, most

of them composite. The last puzzle of the Standard Model was solved in July 2012 with

the discovery of the Higgs Boson [8, 9]. Predicted in 1964 [17, 18, 19, 20], the Higgs Boson
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Fermions Bosons

Leptons νe νµ ντ W±, Z
e− µ− τ− γ

Quarks u c t g
d s b h

Table 1.1.1: Standard Model Particles

completed the Standard Model and answered the longstanding question of the origin of gauge

boson masses.

The Standard Model roster can be divided into two groups: bosons and fermions. Bosons

are integer spin particles and usually appear as force carriers in gauge theories. The photon

is the force carrier for the electromagnetic force, gluon is the mediator of strong force, and

W±, Z are the mediators for the weak force; all known force-carriers are spin-1 particles.

Fermions are half-integer spin particles; electrons, protons, and neutrons make up almost

all of the visible mass in the universe; protons and neutrons are composite though and

themselves composed of quarks and gluons bound together through the strong force. All

the fermions also have corresponding anti-particles e.g. positron is the anti-particle of the

electron. Anti-particles are characterised by one or more of their quantum numbers having

the opposite sign compared to the corresponding particles. The positron e.g. is positively

charged, opposite to the electron. Neutrons are neutral, but they posses another quantum

number called Baryon number which is +1 for the neutron and −1 for the antineutron.

Quarks interact through all three forces: strong, weak, and electromagnetic. Electrons,

muons, and tau particles do not possess the colour charge and only interact with the weak

and electromagnetic forces, while neutrinos are neutral and only interact weakly. The list of

Standard Model particles is given in Tab. 1.1.1.

However, despite its many successes, the Standard Model falls short on many accounts.

Perhaps the biggest deficiency is the lack of a viable dark matter [21, 22, 23, 24] candidate

in the Standard Model. Dark matter accounts for ∼ 80% of the non-relativistic matter

content in the universe which is unexplained by the Standard Model. It also does not
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explain Dark energy [25] which makes up ∼ 70% of the energy density in the universe. The

origin of neutrino masses [26] is still a mystery, and while adding a mass term involving

right-handed neutrinos is not forbidden in the Standard Model, such a particle would never

interact with the rest of the Standard Model particles and is of little consequence. In any

case, the extremely small masses of the neutrinos compared to the rest of the Standard

Model roster remain unexplained. Other issues include the Hierarchy problem [27, 28], lack

of CP violation in the strong sector [29], and matter anti-matter asymmetry [30] which

cannot be explained by the existing CP violation in the weak sector. Consequently, it is of

extreme importance to have precise theoretical predictions for physical observables in the

Standard Model. Comparing these theoretical predictions to experimental measurements,

any deviations would signal existence of some new physics; as such, precision calculations

are essential for the particle physics program.

1.2 Discovery of the Higgs Boson

1.2.1 Higgs mechanism

Late 1940s and 1950s saw tremendous progress in the field of particle physics. The Dirac

equation predicted the magnetic moment of the electron but the experimental measurements

indicated a slight deviation. Gauge theories [31] were eventually developed and were incred-

ibly successful in making precise theoretical predictions, especially with the development of

the theory of renormalisation. Quantum Electrodynamics successfully predicted the anoma-

lous magnetic moment of the electron as well as the Lamb Shift paving the way for future

work in precision calculations and marking another achievement for Quantum theory. Pions,

proposed as the force carriers in the Yukawa potential governing the strong nuclear force,

were discovered with the masses predicted by theory. A still unsolved puzzle, however, was

the origin of masses for force carriers of the weak nuclear force, which were known from

experiments to be massive. No consistent way to generate masses for the gauge bosons while

3



(a)M (b)Mt

(c)M4pt (d)Ms

Figure 1.2.1: WW scattering with the 3 different subprocesses depicted.

preserving the gauge symmetry was known at the time. Another issue was that the scatter-

ing of W and Z bosons violated unitarity. Scattering amplitude for the longitudinal modes

of W and Z bosons grows with energy indefinitely. Consider W+
LW

−
L scattering as depicted

in Fig. 1.2.1

M(W+
LW

−
L → W+

LW
−
L ) =Mt +M4pt +Ms . (1.2.1)

Calculating the individual contributions, the 4-point vertex amplitude (Fig. 1.2.1c) is

M4pt = ig2
w(2gµρgνσ − gµνgρσ − gµσgνρ)εµL(p1)ενL(p2)ερL(p3)εσL(p4)

=
g2 (−5− 12 cos θ + cos 2θ)

32

(
s

m2
W

)2

+
g2 (1 + 3 cos θ)

2

(
s

m2
W

)
+O

(
s

m2
W

)0

, (1.2.2)
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amplitude for s-channel γ, Z exchange (Fig. 1.2.1d) is

Ms = − g2 cos θ

4

(
s

m2
W

)2

+
7g2 cos θ

4

(
s

m2
W

)
+O

(
s

m2
W

)0

, (1.2.3)

and for the t-channel γ, Z exchange (Fig. 1.2.1b) is

Mt =
g2 (−3 + cos θ) (1 + cos θ)

16

(
s

m2
W

)2

+
g2 (3− cos θ)

8

(
s

m2
W

)
+O

(
s

m2
W

)0

, (1.2.4)

where cos θ is the scattering angle. Adding the three contributions together,

M(W+
LW

−
L → W+

LW
−
L )gauge =

g2(1− cos θ)

8

(
s

m2
W

)
+O

(
s

m2
W

)0

. (1.2.5)

The E4/m4
w terms drop out after adding all the different contributions. However, the re-

mainder still grows with energy as ∼ E2/m2
W . Non-unitary behaviour of this kind suggested

a missing piece. The answer was found through the field of condensed matter physics in

spontaneous symmetry breaking [32].

As a consequence of spontaneous symmetry breaking, Nambu-Goldstone bosons [32, 33]

are produced as excitations of the quantum field. While these bosons are themselves massless,

they are "absorbed" by the gauge fields providing them with an additional longitudinal degree

of freedom and a mass term. In certain cases the symmetries are explicitly broken in addition

to being spontaneously broken. The resulting Goldstone bosons are no longer massless, but

acquire a mass depending on how softly the symmetry is broken. These are referred to

as "Pseudo Nambu-Goldstone bosons". An example is pions, which are produced through

explicit breaking of the chiral symmetry in QCD due to the quark masses; this results in

pions acquiring a small mass. Since the light quark masses are small (∼ 5 − 10 MeV), the

pions as a result have a mass that is small compared to the other hadrons.

The Higgs mechanism is best demonstrated through an example. Consider the La-
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(a) µ2 > 0 (b) µ2 < 0

Figure 1.2.2: Scalar field Φ with two different vacuum configurations. For µ2 < 0 the vacuum

state is no longer symmetric and the field acquires a non-zero expectation value.

grangian for a simple theory with a fermion and a spin-1 boson

L = ψ(iγµDµ −m)ψ − 1

4
F µνFµν . (1.2.6)

with the covariant derivative Dµ = ∂µ + igAµ. This Lagrangian is invariant under the gauge

transformation given by:

ψ → eiα(x)ψ ,

Aµ → Aµ −
1

g
∂µα(x) . (1.2.7)

It is easy to see, however, that adding a mass term 1
2
m2A2 will break the gauge symmetry.

To ameliorate this, a complex scalar field with the Lagrangian

LΦ = (DµΦ)∗ (DµΦ)− V (Φ) (1.2.8)

can be added with the potential V (Φ) given by

V (Φ) = µ2Φ∗Φ + λ (Φ∗Φ)2 , λ > 0 , (1.2.9)
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with the covariant derivative Dµ ensuring that the new scalar terms of the Lagrangian are

gauge invariant with the field transformation Φ → eiα(x)Φ. This potential presents two

interesting possibilities: For the case of µ2 > 0, the minimum of the potential is still at

zero. Expanding the field Φ around the minimum point Φ = 0 produces essentially the same

Lagrangian in Eq. 1.2.8 and the U(1) symmetry remains unbroken (Fig. 1.2.2a). For µ2 < 0,

however, the minimum of the potential shifts away from zero (Fig. 1.2.2b) and the field

acquires a non-zero vacuum expectation value given by

〈Φ〉0 =

√
−µ

2

2λ
eiα (1.2.10)

where α is some arbitrary phase. We can define the absolute value of this minimum

v√
2

=

√
−µ

2

2λ
(1.2.11)

as the vacuum expectation value. Expanding the field around the new minimum

Φ =

(
v + φ√

2

)
eiη(x) , (1.2.12)

where φ corresponds to the physical mode and η corresponds to the Goldstone mode, the

scalar part of the Lagrangian becomes

LΦ =
1

2

(
Dµ(v + φ)eiη(x)

)∗ (
Dµ(v + φ)eiη(x)

)
− V (

v + φ√
2
eiη(x))

=
1

2
(∂µφ)2 +

1

2
φ2(∂µη)2 + gφ2Aµ∂µη + gv2Aµ∂µη + 2gvφAµ∂µη + g2vφA2 +

1

2
g2φ2A2

+
1

2
g2v2A2 + µ2φ2 − µ2

v
φ3 +

µ2

4v2
φ4 + vφ(∂µη)2 +

1

2
v2(∂µη)2 + (constant terms) .

(1.2.13)
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This Lagrangian can be simplified greatly using the transformation

Aµ → Aµ −
1

g
∂µη(x) . (1.2.14)

This amounts to fixing the gauge for the vector boson so that α(x) is fixed to α(x) = η(x).

With this choice of gauge, the Lagrangian becomes

LΦ =
1

2
(∂µφ)2 − 1

2

(
−2µ2

)
φ2︸ ︷︷ ︸

Scalar mass term

+
−µ2

v
φ3 +

µ2

4v2
φ4︸ ︷︷ ︸

Scalar self-interaction terms

+
1

2
g2v2A2︸ ︷︷ ︸

Gauge boson mass term

+ g2vφA2 +
1

2
g2φ2A2︸ ︷︷ ︸

Gauge-Scalar interaction terms

+ (constant terms) . (1.2.15)

Note that the field η(x) completely disappears. The remaining scalar field is actually physical

with massmφ =
√
−2µ2. The gauge boson also acquires a massmA = gv. This is colloquially

referred to as the gauge boson "absorbing" the Goldstone mode; the additional degree of

freedom required for the longitudinal mode of the now massive gauge boson appears through

the Goldstone boson. This is referred to as the "Unitary gauge"; only the physical fields

propagate in this gauge.

The Higgs mechanism, described above to generate masses for bosons in a gauge theory,

was proposed in three seminal papers in 1964 by Brout and Englert [19], Higgs [17, 18, 34],

and Guralnik, Hagen, and Kibble [20]. In the Abelian example above, only one Goldstone

boson was generated. For non-Abelian gauge theories the number of Goldstone bosons is

equal to the number of broken generators; for a spontaneously broken SU(N), for example,

there will beN Goldstone modes. The spontaneously broken SU(2)L×U(1)Y in the Standard

Model generates 3 Goldstone bosons that give mass to the three vector bosons W± and Z.

The Higgs mechanism can also explain the origin of fermion masses [35]; this can be achieved
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Figure 1.2.3: WW scattering including the interactions with the Higgs boson.

by adding a Yukawa-type interaction to the Lagrangian in Eq. 1.2.6

L = iψ /Dψ − yψΦψψ − 1

4
F µνFµν . (1.2.16)

Expanding Φ around the minimum after symmetry breaking, the Lagrangian becomes

L =iψ /Dψ − yψ√
2

(v + φ)ψψ − 1

4
F µνFµν

=ψ

(
i /D − yψv√

2

)
ψ − yψ√

2
φψψ − 1

4
F µνFµν . (1.2.17)

Identifying yψv/
√

2 = mψ as the fermion mass,

L =ψ
(
i /D −mψ

)
ψ − mψ

v
φψψ − 1

4
F µνFµν . (1.2.18)

It’s evident from the above equation that the interaction strength between the fermion and

the scalar is proportional to the fermion mass.

As was seen in Eq. 1.2.5, the amplitude for W+
LW

−
L scattering increases indefinitely with

energy. This non-unitary behaviour is fixed after including the Higgs boson interactions

Mh =
−g2(1− cos θ)

8

(
s

m2
W

)
+O

(
s

m2
W

)0

(1.2.19)
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which when added to the pure gauge part of the amplitude in Eq. 1.2.5 gives

M(W+
LW

−
L → W+

LW
−
L ) =Mt +M4pt +Ms +Mh

=O

(
s

m2
W

)0

(1.2.20)

implying that the Higgs boson unitarises gauge boson scattering.

It was mentioned previously that the longitudinal modes of the gauge bosons are es-

sentially the Goldstone bosons appearing as a consequence of the spontaneously broken

symmetry when considering the unitary gauge. This implies that any amplitude involving

the longitudinal modes of the gauge bosons can be calculated by replacing the gauge boson

with the corresponding Goldstone boson, known as the Goldstone boson equivalence theorem

[36, 37].

1.2.2 Standard model Higgs

In the Standard Model, the Higgs boson appears as a part of the Higgs doublet which

transforms under the SU(2)L × U(1)Y symmetry of the electroweak sector of the Standard

model, details of which are provided in Sec. 1.5. Some of the the prominent decay modes for

the Standard Model Higgs are shown in Fig. 1.2.4. It is clear that for the measured mass value

mh = 125.25 GeV [1], h→ bb is the dominant decay mode with a branching ratio of ∼ 57%

(Tab. 1.2.1). However, bb channel has a huge QCD background from production of two jets

and identifying those jets as originating from b-quarks (b-tagging) is rather challenging; as

such this wasn’t the ideal discovery channel. Indeed the discovery of Higgs was reported in

the subdominant h→ ZZ∗ → 4l and h→ γγ channels [8, 9] with the resonances appearing

in the invariant mass spectra (Fig. 1.2.5 and 1.2.6). The diphoton channel, h → γγ, and

the 4l channel, h → ZZ∗ → 4l, are particularly suited for discovery owing to their cleaner

signature and more manageable backgrounds. Decay in the bb channel was discovered only a

few years back [38, 39]. More recently, the rare decay h→ µ+µ− has been observed [40, 41].
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Figure 1.2.4: Plot of the Standard Model Higgs branching ratios against the Higgs mass.

Measured value of Higgs mass is mh = 125.25± 0.17 GeV. Reproduced from [7].

The primary production mode for Higgs boson at the LHC is through gluon fusion via

a top quark loop (ggF) which accounts for ∼ 88% of the total Higgs cross-section at the

LHC with σggF = 48.6+4.6%
−6.7% pb [7, 42, 2, 43]. This is largely due to high gluon luminosity at

the LHC for low invariant mass (i.e. gluons carry most of the energy of a proton at lower

energies probed by the LHC) as well as the large Yukawa coupling of the top quark with the

Higgs. Other important production modes are Vector-boson-fusion (VBF) with cross-section

σV BF = 3.78+2.2%
−2.2%, "Higgstrahlung" where the Higgs is produced in association with a vector

boson with σV H = 2.25+4.8%
−4.4%, and production in association with a top-quark pair (tth) with

σtth = 0.50+6.8%
−9.9%.

So far the measured properties of the observed particle are consistent with those for the

Standard Model Higgs Boson. It is a electrically neutral, spin-0 particle which transforms as

a scalar under parity conjugation. It’s mass has been measured to be mh = 125.25± 0.17 [1]

GeV. The coupling of the Standard Model Higgs to other particles is proportional to the

11



Decay Channel BR Uncertainty (%)
h→ bb 0.574 +3.2 −3.3

h→ WW 0.218 +4.2 −4.2
h→ gg 0.0855 +10.2 −10.0
h→ ττ 0.0629 +5.7 −5.6
h→ cc 0.0289 +12.2 −12.2
h→ ZZ 0.0269 +4.2 −4.2
h→ γγ 0.00228 +4.9 −4.9
h→ Zγ 0.00156 +9.0 −8.8

Table 1.2.1: Branching ratios for the Standard Model Higgs boson withmh = 125.25 GeV [1].

Numbers reproduced from [2].

(a) (b)

Figure 1.2.5: Distribution of four lepton invariant mass for the h → ZZ∗ → l+l−l+l−

decay channel for (a) ATLAS (Reproduced from [8]) and (b) CMS (Reproduced from [9])

experiments.
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(a)
(b)

Figure 1.2.6: Distribution of the invariant mass of the photon pair for the h → γγ decay

channel for (a) ATLAS (Reproduced from [8]) and (b) CMS (Reproduced from [9]) experi-

ments.

particle mass. This is indeed what has been observed at the LHC as seen in Fig. 1.2.7; the

straight line through the experimentally measured values indicates that the couplings are

consistent with the SM prediction. However, to ascertain the true nature of the Higgs boson,

two key properties need to be determined precisely: Higgs potential and decay width.
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Figure 1.2.7: Plot of the measured Higgs boson couplings to other Standard Model particles

against particle mass. Reproduced from [10].

1.3 Higgs potential and width

1.3.1 Higgs potential

Higgs potential in the gauge-invariant form can be written as

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
, λ > 0 , (1.3.1)
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where Φ is a complex SU(2) doublet with the general form

Φ =

φ2 + iφ3

φ0 + iφ1

 . (1.3.2)

Expanding the Higgs field around the vacuum (and ignoring the phase for simplicity)

Φ =
1√
2

 0

v + h

 . (1.3.3)

the potential becomes

V (h) = v
(
λv2 + µ2

)
h+

1

2

(
3v2λ+ µ2

)
h2 + vλ h3 +

λ

4
h4 . (1.3.4)

Using Eq. 1.2.11 to substitute µ for v, the potential becomes

V (h) =
1

2
(2λv2)h2 + vλ h3 +

λ

4
h4 . (1.3.5)

where v is the vacuum expectation value (vev). From the above equation, the mass of the

Higgs is m2
h = 2λv2 which is measured at the LHC. Finally, the potential can be written in

terms of Higgs mass and the vacuum expectation value as

V (h) =
1

2
m2
hh

2 +
m2
h

2v
h3 +

m2
h

8v2
h4 . (1.3.6)

which means that the Higgs trilinear and quartic couplings are

λhhh =
3m2

h

v

λhhhh =
3m2

h

v2
. (1.3.7)

The vacuum expectation value appears also in the electroweak sector and can be measured
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(a) Continuum production of hh (b) hh production through single Higgs

Figure 1.3.1: Higgs pair production through gluon fusion at LO.

precisely through e.g. muon lifetime measurements. With both the mass and the vacuum

expectation value precisely measured, µ and λ and consequently the Higgs potential are

completely fixed. This is not the end of the story however since new physics can potentially

alter each of these values as well as introduce higher dimensions terms in the Lagrangian; as

such it is of extreme importance to measure the Higgs trilinear and quartic couplings and

compare them against their theoretically predicted values.

Measuring the Higgs trilinear and quartic couplings is challenging, though, at the LHC.

The trilinear coupling can be measured by studying double Higgs production. There are two

modes of production for a pair of Higgs bosons through gluon fusion shown in Fig. 1.3.1;

these two modes interfere destructively, with the magnitude of cancellation depending on

λhhh. However, the cross-section at the LHC for gg → hh in SM is only 31.18 fb [44] (NNLL

+ NNLO in large top mass approximation). The trilinear coupling can be constrained to

0.5 < λhhh < 4.5 [45] at the High Luminosity LHC while the quartic coupling λhhhh is

essentially out of reach at the LHC. The prospects look a lot better at the proposed 100 TeV

Future Circular Collider and the lepton colliders: ILC, CLIC, µ+µ− collider. Best constraint

for the trilinear coupling comes from FCC [46] with an estimated precision of 3.4− 7.8% at

68% CL. For the quartic coupling, achievable precision is 50% at a 14 TeV muon collider [47].

1.3.2 Measuring Higgs width

Another crucial property to be measured to ascertain the true nature of the observed Higgs

boson is its decay width. This is predicted in SM to be Γh = 4.07 MeV [1] and any deviation
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from this value would imply presence of new physics. However, being such a small value, it

cannot be measured directly at the LHC since the detector resolution is too low to measure it

precisely. The best constraint obtained from a direct measurement (Γh < 1 GeV [48, 49, 50])

is orders of magnitude larger than the value predicted in Standard Model of Γh = 4.07

MeV. Instead, an alternate method was proposed in [51, 52, 53] to use the offshell Higgs

signal to constrain the width. The basic idea is as follows: the production cross-section for

gg → h→ ZZ∗ → 4l can be written as [52]

dσ

dM2
4l

∼
g2
hggg

2
hZZ

(M2
4l −m2

h)
2 +m2

hΓ
2
h

. (1.3.8)

where ghgg and ghZZ are effective couplings of the Higgs to gluons and Z-bosons. In the above

equation, all the quantities independent of M4l and Γh have been suppressed for simplicity.

Integrating the above near the resonance peak gives

σon-shell ∼
g2
hggg

2
hZZ

Γh
. (1.3.9)

Assuming now that the couplings ghgg and ghZZ are scaled with a factor ξ
1
4 and the width

is scaled with ξ, the cross-section in the above equation remains unchanged. Away from

the resonance peak, however, the denominator in Eq. 1.3.8 is dominated by M4l so the

cross-section scales linearly with ξ under the above scaling

σoff-shell ∼ ξ g2
hggg

2
hZZ . (1.3.10)

Comparing the number of events, then, in the on-shell and off-shell production regions can

be used to calculate an upper bound on Γh.

1.3.3 Experimental constraints

As mentioned previously, Γh cannot be measured directly at the resonance peak at the LHC
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since it is limited by detector resolution. The off-shell method, however, can provide stringent

constraint on the width. An upper bound of γh < 88 MeV was calculated in [52] with the

possibility of the constraint being improved to Γh < 10 ΓSMh with more data. In fact, recent

analysis [54] with Run II data has constrained the width much further to 3.2+2.8
−2.2 MeV with

the 95% CL constraint 0.08 < Γh < 9.16 MeV both of which are consistent with the SM

value.

1.4 Quantum Chromodynamics

1.4.1 History of QCD

The discovery of the atomic nucleus, and consequently the proton, in the early 20th century

led to an obvious problem: the nucleus was too heavy to be accounted for just by the protons.

Among the prevalent suggestions was the electrically neutral bound states of electrons and

protons, referred to as neutrons, residing inside the nucleus. It was shown, however, that an

electron cannot be confined inside the nucleus. This issue was resolved with the discovery of

the neutron in 1932. The neutron was found to have certain remarkable properties. Other

than the electric charge, it was very similar to the proton; its mass was extremely close to

that of the proton and it had the same spin of 1/2. Furthermore, it was found that the

strong nuclear force had the same interaction strength for protons and neutrons, i.e. the

interaction strength between a pair of protons was the same as between a pair of neutrons

or a proton-neutron pair. This led to the development of isospin symmetry, as an analogue

of spin for electrons. Protons and neutrons are treated as two "isospin" states of the same

particle, the "nucleon", with pions, carriers of the strong nuclear force, acting much like the
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classic spin operators in a harmonic oscillator.

π+|n〉 =|p〉

π−|p〉 =|n〉

π0|p, n〉 =|p, n〉 . (1.4.1)

Here π± act like the well-known raising and lowering operators J± while π0 acts like the

total spin operator J .

The "isospin" model was very successful in explaining the strong nuclear force in early

days especially after the discovery of pions. As more new particles were discovered, they

were formed into isospin multiplets e.g. nucleon doublet (p, n) with I = 1/2, Sigma triplet

(Σ+,Σ0,Σ−) with I = 1, etc. A major success of the isospin model was the prediction of rho

mesons as the vector bosons which were eventually discovered experimentally. With the ob-

servation of the "strange" decays of Kaons, however, a new quantum number "Strangeness"

was introduced for the particles [55, 56] and the "Eightfold way" was proposed by Gell-

Mann [57] and Ne‘eman [58] to classify the known particles. The isospin symmetry was

extended to an SU(3) flavour symmetry with particles being grouped into octets and decu-

plets.

Eventually, the quark model was proposed by Gell-Mann [59] and Zweig [60] to explain

the observed spectrum of particles with hadrons being composed of smaller particles called

quarks. Three quarks were postulated to transform under the SU(3)F flavour symmetry.

However, while the quark model was successful in explaining the spectrum of hadrons, it

gave rise to a new question. Specifically, some of the hadrons seemed to be violating Fermi-

Dirac statistics e.g. the ∆++ baryon was proposed to be made up of three up quarks,

|∆++〉 = |u↑u↑u↑〉 , (1.4.2)

with all three up quarks having Jz = +1/2. Since the three up quarks are identical fermions,
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they cannot occupy the same quantum state [61, 62]. The solution to this problem was

introduced as the "colour charge" [63] being an additional degree of freedom possessed by

quarks. The ∆++ baryon can then be expressed as an anti-symmetric combination of three

up quarks with different "colours",

|∆++〉 =
1√
6

(
|u↑ru↑gu↑b〉 − |u↑ru↑bu↑g〉+ |u↑bu↑ru↑g〉 − |u↑bu↑gu↑r〉+ |u↑gu↑bu↑r〉 − |u↑gu↑ru↑b〉

)
, (1.4.3)

making the resulting combination "colourless". Analogous to quarks, anti-quarks possess

the anti-colour charges r, g, b. This results in mesons, which are combinations of quarks and

anti-quarks, being colourless, e.g.

|π+〉 =
1√
3

(|urdr〉+ |ugdg〉+ |ubdb〉) . (1.4.4)

The quarks now form a colour triplet,

|u〉 =


|ur〉

|ug〉

|ub〉

 , (1.4.5)

that transforms under the new SU(3)C group. Unlike the SU(3)F flavour symmetry, however,

SU(3)C colour is an exact symmetry.

In [63], the SU(3)C colour symmetry of the quarks was first considered as a Yang-Mills

gauge theory [31]. Gauge bosons for this theory were called "Gluons", acting as glue holding

the quarks together in hadrons. An interesting feature of this theory was that gluons carried

the colour charge as well, unlike photons in Quantum Electrodynamics. This leads to the

phenomena of asymptotic freedom and confinement, discussed later in this section.
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1.4.2 SU(N) gauge theory

A general SU(N) group has N2 − 1 generators; for SU(3) the number of generators is 8

corresponding to the 8 different gluons. The generators of a general SU(N) group can be

represented using T a where the index a ∈ {1, ..., N2 − 1} refers to the SU(N) charge in the

adjoint representation. These T a are traceless and hermitian.

Tr(T a) = 0 , (1.4.6)

(T a)† =T a , (1.4.7)

and satisfy the following commutation relation:

[
T a, T b

]
= ifabcT c . (1.4.8)

fabc are the totally anti-symmetric structure constants

fabc = −2 i T r
([
T a, T b

]
T c
)
. (1.4.9)

Further details of the SU(N) algebra are provided in Appendix A.3.

The Lagrangian for the gluon field can be written as

Lg = −1

4
Ga,µνGa

µν , (1.4.10)

where the field strength tensor is

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν . (1.4.11)

It is straightforward to see that the Lagrangian in Eq. 1.4.10 is invariant under the gauge
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transformation

Ga
µ → Ga

µ − ∂µθa(x)− gsfabcθb(x)Gc
µ . (1.4.12)

Expanding the Lagrangian in Eq. 1.4.10, we get the kinetic term

−1

4
(∂µGa,ν − ∂νGa,µ)(∂µG

a
ν − ∂νGa

µ) , (1.4.13)

the 3-point self-interaction term

−gs
2
fabc(∂µGa,ν − ∂νGa,µ)Gb

µG
c
ν , (1.4.14)

and the 4-point self-interaction term

+
g2
s

4
fabef cdeGa,µGb,νGc

µG
d
ν . (1.4.15)

Unlike with photons in Quantum Electrodynamics, gluons interact with themselves which

leads to the phenomena of asymptotic freedom and confinement, discussed later in Sec. 1.4.6.

Details on the QCD Lagrangian and the Feynman rules are given in Appendix A.

The above Lagrangian for the gluon field poses a problem though. Specifically, the

propagator of the gluon cannot be derived from this Lagrangian using a naive approach.

This is evident from considering the kinetic term in the Lagrangian

Lkin =− 1

4
(∂µGa,ν − ∂νGa,µ)(∂µG

a
ν − ∂νGa

µ)

=
1

2
Ga,ν(gµν∂

2 − ∂µ∂ν)δabGb,µ + ... . (1.4.16)
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The propagator Dab,µν(x− y) is defined using

δac(gµρ∂
2 − ∂µ∂ρ)Dbc,νρ(x− y) = iδab δνµ δ

(4)(x− y) , (1.4.17)

which in momentum space becomes

δac(−gµρp2 + pµpρ)D̃
bc,νρ(p) = iδab δνµ . (1.4.18)

Here, (−gµρp2 + pµpρ) is singular due to gauge invariance and hence cannot be inverted to

obtain the propagator. This can be resolved by adding a gauge fixing term to the Lagrangian

Lgauge−fixing = − 1

2ξ
(∂µG

a,µ)2 . (1.4.19)

which, of course, renders the Lagrangian in Eq. 1.4.10 no longer gauge invariant. Eq. 1.4.18

now becomes

δac
(
−gµρp2 +

(
1− 1

ξ

)
pµpρ

)
D̃bc,νρ(p) = iδab δνµ (1.4.20)

which, when inverted, gives

D̃ab,µν(p) =
iδab

p2

(
−gµν + (1− ξ)p

µpν

p2

)
. (1.4.21)

In the above equation ξ is a free parameter used to fix the gauge. This family of gauges is

known as the Rξ gauges. Some common choices are "Feynman-‘t Hooft gauge" ξ = 1 which

is the most popular choice in particular for higher-order corrections owing to the simplicity of

the resulting expressions, and "Landau gauge" (ξ = 0). The physical observables, however,

are gauge-invariant and as such ξ dependence must drop out at the end.

This procedure of gauge-fixing is made more transparent using the Path-integral formal-

ism. Note that gauge-fixing is a requirement for quantisation in this case. A consequence
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of this specific gauge-fixing procedure is the appearance of Faddeev-Popov ghost fields [64]

which are required for preserving manifest Lorentz invariance as well as unitarity. The

Faddeev-Popov Lagrangian is given by

Lghost = (∂µc∗a)(∂µc
a)− gsfabc(∂µc∗a)cbGc

µ . (1.4.22)

The ghosts live in the adjoint representation, like the gluons, and interact only with gluons

through a 3-point vertex, appearing as internal lines in Feynman diagrams. Such diagrams

are essential to obtain physical results e.g. the gluon self-energy correction at 1-loop (see

Appendix D). Feynman rules are given in Appendix A.2.

The name "ghost" arises from the fact that these fields are not physical and are simply a

tool to make sense of the path integral and preserve unitarity for the specific gauge choice;

they act to cancel the unphysical degrees of freedom appearing from ambiguity in gauge

choice. This is also evident from the fact that the ghosts violate the Spin-Statistics theorem;

they appear as spin-0 particles (scalar), however they are anti-commuting (fermions). Indeed

other choices such as the Axial gauge [65] do not require the presence of such fields. It must

be pointed out that the gauge-fixing procedure above, and consequently the appearance of

Faddeev-Popov ghosts, is not simply an artefact of a non-abelian gauge theory; while the

ghosts do appear for Quantum Electrodynamics as well, they do not couple to the photon due

to the abelian nature of the theory and hence are irrelevant for any meaningful calculations.

1.4.3 Perturbative QCD

Calculating scattering amplitudes and cross-sections in quantum field theory can be very

challenging. Very few theories are exactly solvable; for almost all phenomenological purposes,

perturbation theory is used. The observable or quantity of interest is expanded in a small

parameter, usually the coupling strength of the interaction. This is justified in most cases,

e.g. the coupling constant of QED, the fine structure constant, α ' 1/137 and the coupling
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Figure 1.4.1: Perturbative corrections to qq → γ in QCD represented using Feynman dia-

grams.

constant of QCD αS ' 0.118. For QCD, the cross-section can be expanded in the strong

coupling constant αS as:

σ = σ0 +
(αS

2π

)
σ1 +

(αS
2π

)2

σ2 +
(αS

2π

)3

σ3 + ... (1.4.23)

where σ0, σ1, σ2, ... are the contributions from each order in perturbative expansion (e.g.

Fig. 1.4.1). Standard technique to calculate these is by the use of Feynman diagrams which

provide a highly intuitive pictorial representation of the scattering process in consideration

in addition to providing a convenient tool to calculate scattering amplitudes.

While at first glance it might seem that the higher-order corrections are increasingly less

important given each successive term is multiplied by higher powers of the coupling constant,

they can be large in many cases, perhaps best demonstrated via Higgs boson production

through gluon fusion. Fig. 1.4.2 shows the QCD corrections to this process. It is clear that

the perturbative corrections here are extremely important; the Next-to-Leading Order (NLO)

correction is about as large as the Leading Order (LO) term and even the Next-to-Next-to-
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Figure 1.4.2: QCD corrections to gg → h. The uncertainty bands represent scale uncertainty

for the range µ ∈ {mh
4
,mh} with the central value at µ = mh/2. Reproduced from [11].

Leading Order term is significant, only at N3LO does the calculation become stable. The

uncertainty bands in the figure are estimated by varying the scale µ; this dependence on scale

enters through renormalisation 1.4.5 and factorisation 1.4.7, and physical observables should

not depend on it. In a sense, then, the dependence on the scale µ encodes some information

about the missing higher order terms and can be used to estimate the uncertainty. However,

the uncertainty bands at LO utterly fail to capture the NLO correction; only at N3LO the

uncertainty bands become small enough and it lies entirely within the NNLO correction

which is suggestive of the series converging (note that the perturbative series is expected to

be asymptotic and not convergent).
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Figure 1.4.3: 1-loop correction to qq −→ γ

1.4.4 Regularisation

The type of corrections shown in Fig. 1.4.1 are commonly referred to as the "virtual cor-

rections" owing to the presence of additional virtual particles. Considering the diagram

corresponding to the second term in the perturbative expansion in Fig. 1.4.1 and inserting

Feynman rules, it is found that the external momenta are insufficient to constrain the mo-

menta of the internal edges or the "loop". This loop momentum k in Fig. 1.4.3 is a free

quantity that parameterises intermediate states. Quantum Mechanics dictates that all the

intermediate states should be summed over; in this case the loop momentum k needs to be

integrated over all possible values leading to the expression

M∼
∫

d4k

(2π)4

(/k − /p1)γµ(/k + /p2)

(k2)(k − p1)2(k + p2)2
. (1.4.24)

A closer look at the above integral shows that it diverges for high values of loop momenta:

∫
d4k

(2π)4

(/k − /p1)γµ(/k + /p2)

(k2)(k − p1)2(k + p2)2

Wick rot.−−−−−→
k→∞

∫
d4kE

k2
E

k6
E

∼
∫ Λ dkE

kE
, (1.4.25)

where Wick rotation (see Appendix B) has been performed to transform to Euclidean space

and the integration domain has been cutoff with a parameter Λ to regulate the divergence.

This kind of divergence that manifests for high values of loop momenta is commonly referred
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Figure 1.4.4: A 3-point massless integral. The incoming momenta p1, p2 are massless.

to as Ultraviolet (UV) divergence. In this example a cutoff regulator was used; other choices

exist e.g. Pauli-Villars regularisation.

In fact this diagram has two different kinds of divergences originating from different

regions of loop momentum. The second kind of divergence becomes apparent in the region of

small loop-momentum. Considering only the scalar integral from Fig. 1.4.4 with p2
1 = p2

2 = 0,

I =

∫
d4k

iπ2

1

(k2)(k − p1)2(k + p2)2
. (1.4.26)

For loop momentum in the soft limit k → 0,

I ∼
∫

d4k

iπ2

1

(k2)(2k · p1)(2k · p2)
∼
∫
k→0

dk

k
. (1.4.27)

This integral also has a logarithmic divergence similar to Eq. 1.4.25, albeit of a very different

nature. This kind of divergence for small loop momentum is called a "Soft divergence".

There is another possibility for this integral when the loop momentum goes collinear to

either p1 or p2.

I ∼
∫
k→p1

d4k
1

(k2)(k − p1)2
. (1.4.28)
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These are called "Collinear divergences". The soft and collinear divergences are collectively

referred to as Infrared divergences.

As shown in Eq. 1.4.25, one way to regulate the UV divergence is by cutting the integral

off at some large scale Λ; this is "Cutoff regularisation" scheme. The divergences then appear

in the scale Λ. This scheme can also be used to regulate soft divergences by cutting off the

loop momentum at some low energy scale. The most commonly used scheme, however,

is dimensional regularisation [66, 67, 68, 69, 70]. In this scheme, ordinarily 4-dimensional

objects are assumed to be d-dimensional where d = 4 − 2ε is a complex valued quantity in

general. At the end, the limit ε −→ 0 is taken with poles appearing as 1/εn (n > 0). Consider

the UV divergent integral

I =

∫
ddk

iπd/2
1

(k2 −m2)(k + p)2
∼
∫
k→∞

ddk

k4
. (1.4.29)

This integral is finite for d < 4. We can then analytically continue the integral to d = 4− 2ε

with the divergences now appearing as poles in 1/ε. IR divergences can be similarly regulated:

I ∼
∫

ddk

iπd/2
1

(k2)(2k · p1)(2k · p2)
∼
∫
k→0

ddk

k4
. (1.4.30)

This integral converges for d > 4. Again, we can analytically continue the integral to

d = 4− 2ε.

This provides a unified prescription to deal with both UV and IR divergences and has

allowed for much of the progress in perturbative calculations. A huge advantage of using

dimensional regularisation is that it preserves gauge symmetries unlike cutoff regularisation.

In Conventional Dimensional Regularisation, all the momenta are treated in d-dimensions

as well as all the Dirac matrices etc. This has certain disadvantages e.g. it leads to spurious

structures that vanish in d = 4; this is discussed in more detail in sec. 2. An alternative

approach is the ‘t Hooft-Veltmann scheme [68] where the loop momenta are treated in

d-dimensions while the external momenta are treated in d = 4 dimensions. This leads
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to significant simplifications in many situations and prevents appearance of such spurious

structures [71, 72].

Another consequence of dimensional regularisation is that the integral measure in a loop

integral gains an additional mass dimension of (d − 4)L where L is the number of loops,

along with the couplings gaining a mass dimension as well. It is conventional to redefine the

coupling to render it dimensionless by introducing a dimensionful parameter µ such that, for

example, g′s = gsµ
4−d

2 with µ known as the "‘t Hooft scale". This is done to ensure that all

the terms in the Lagrangian have proper dimensions d.

1.4.5 UV renormalisation and IR subtraction

Since the physical observables are finite, these UV and IR divergences need to cancel in

some way. The process of removing the UV singularities is called "Renormalisation". The

Lagrangian is modified such that the "bare" parameters are replaced by "renormalised"

parameters. E.g.

m0ψ0ψ0 → (ZmZψ)mRψRψR (1.4.31)

with the renormalisation constants Zm and Zψ defined according to

mR =
1

Zm
m0

ψR =
1√
Zψ

ψ0 . (1.4.32)

The UV divergences are absorbed into the renormalisation constants during this redefinition.

The renormalised parameters are finite implying that the bare parameters are also divergent.

The renormalisation constants are written such that they have a trivial part and a countert-

erm e.g. Zm = 1 + δm where 1 refers to the tree level term and δm is the counterterm and

cancels against the poles order by order in perturbation theory. In principle there are an in-
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(a) Soft singularity. (b) Collinear singularity.

Figure 1.4.5: Infrared divergences corresponding to the emission of a real particle. Fig. 1.4.5a

shows emission of a gluon with very small momentum i.e. a soft divergence while Fig. 1.4.5b

shows the emission of a gluon collinear with the external particle.

finite number of renormalisation schemes; the divergences are fixed, however any finite term

can be added to the renormalisation constant. Some of the commonly used schemes are the

"On-shell" scheme where the renormalised parameters are chosen using on-shell properties

of the particles and the modified "Minimal Subtraction" (MS) scheme [73, 74]; these are the

two schemes used in this work. Details of the renormalisation procedure for this calculation

are discussed in Sec. 5.2 and Appendix D.

In general, new divergences appear at every order in perturbation theory. These diver-

gences must all be absorbed during the renormalisation procedure to render the result finite.

For many theories new counterterms are required at every order implying that an infinite

number is required to renormalise the theory at all orders, which results in a loss of predictive

power. Such theories are called non-renormalisable. To show that a theory is renormalisable

and requires only a finite number of counterterms is highly non-trivial; requirements for a

renormalisable theory were given in [75, 76, 77] with the renormalisability of non-abelian

gauge theories with spontaneous symmetry breaking (e.g. Standard Model) proven in [78].

The IR poles cancel against poles appearing in real emission diagrams, which have soft

and collinear poles similar to the loop amplitudes through the emission of a soft and collinear

particle respectively (see Fig. 1.4.5). For the case in Fig. 1.4.5, the propagator for the initial

particle is

1

(p+ k)2
=

1

2p · k (1.4.33)
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(a) Leading order term.

(b) Virtual correction. (c) Real correction.

Figure 1.4.6: QCD corrections to qq −→ γ. Fig. 1.4.6b shows the αS correction through the

exchange of a virtual gluon while Fig. 1.4.6c show the αS correction through the emission of

a real gluon.

for a massless particle. For both k → 0 (soft) and k → xp (collinear) the propagator

has a singularity. This is a real physical particle, hence the name real corrections. These

divergences appear during phase-space integration over the external momenta and can be

regulated using dimensional regularisation just like UV poles. It must be noted that these

divergences don’t appear for massive particles. Considering the cut diagram in Fig. 1.4.6c,

a gluon is emitted from a quark line. Since both virtual and real corrections occur at the

order αS, it is necessary to add both to get the correct result. This is most readily seen

through Fig. 1.4.6; the amplitude-squared can be thought of as γ → γ with the real and

virtual corrections simply being different cut configurations. Bloch-Nordsieck theorem [79,

80] showed that the IR divergences for QED must cancel once all configurations are included

i.e. real correction diagrams in addition to the virtual corrections. This was extended to non-

abelian gauge theories in [81, 82, 83]. Observables for which this is possible are called IR safe
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observables. However, computing amplitude-squared as in Fig. 1.4.6 is highly impractical

for all but the simplest processes. The standard technique is to subtract the poles from the

virtual corrections and add them to the real corrections. Sum of both is finite and produces

the full cross-section:

σNLO =σLO +

∫
N

dσV +

∫
N+1

dσR

=σLO +

∫
N

(
dσV −

∫
1

dσS

)
+

∫
N+1

(dσR + dσS) . (1.4.34)

Here dσS is the subtraction term; it must fulfill two conditions: it must have the same singular

behaviour as dσR such that the sum dσR+dσS is finite for d→ 4, and it must be integrable in

d-dimensions over the 1-particle phase-space and produce the infrared divergences to cancel

against the virtual corrections. The pole structure for real and virtual corrections is fixed;

there is freedom to choose the finite part of dσS, however. Many subtraction schemes exist

with the most widely used ones at NLO being the Catani-Seymour dipole subtraction [13, 84],

the Frixione-Kunzst-Signer (FKS) subtraction [85, 86], and the Nagy-Soper subtraction [87],

and have been automated successfully [88, 89]. However, the situation at NNLO is far from

settled; the reader is referred to [90] for a detailed review of the schemes utilised for NNLO

calculations.

1.4.6 Asymptotic freedom

Unlike Quantum Electrodynamics, Quantum Chromodynamics is a non-abelian gauge theory

i.e. the force carriers (gluons) also carry the charge and, as a consequence, can interact with

each other. This leads to the phenomenon of "asymptotic freedom" [91, 92] at high energies

i.e. the coupling strength of strong interaction becomes smaller with increasing energy. On

the flip-side, the coupling increases with decreasing energy leading to the phenomenon of

"confinement". This energy dependence of the renormalised coupling strength arises as a

consequence of the regularisation and renormalisation procedure. However, the bare coupling
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should remain constant irrespective of any renormalisation procedure which leads to the

equation

dαS,0
dµ

= 0 . (1.4.35)

Writing the bare coupling αS,0 in terms of the renormalised coupling αS results in

dαS(µ)

d log(µ2)
= β(αS) . (1.4.36)

The Beta-function can be expanded order-by-order in αS as

β(αS) = −αS
((αS

2π

)
β0 +

(αS
2π

)2

β1 +O(α3
S)

)
. (1.4.37)

The first few coefficients are given by

β0 =
11CA − 4TFnf

6

β1 =
17C2

A − 10CATFnf − 6CFTFnf
6

(1.4.38)

where nf is the number of active flavours. For QCD, CA = 3 and TF = 1/2 which implies

β0 > 0 for nf < 17 i.e. the coupling decreases with energy for low number of active flavours;

this is the origin of asymptotic freedom. This behaviour is experimentally confirmed as

shown in Fig. 1.4.7.

For QED, on the other hand, β0 = −2/3 which means that the coupling grows with

energy. Solving Eq. 1.4.36 to analytically solve for the running coupling,

α(µ) =
α(µ0)

1 + α(µ0)
2π

β0 log µ2

µ2
0

(1.4.39)

It is clear that the above equation has a pole at very high energy, referred to as Landau
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Figure 1.4.7: Plot showing theoretical prediction for the strong coupling αS against experi-

mental measurements. Reproduced from [1].

pole [93], where the running coupling diverges. For QED, the coupling increases with en-

ergy and the divergence appears at a very high energy (∼ 10286 eV); for QCD this happens

as the energy decreases. It makes sense, however, to interpret this as the transition from

perturbative to non-perturbative regime when the coupling α > 4π. Past this point, per-

turbation theory and, as a consequence, Eq.1.4.39 are no longer valid. The scale at which

perturbation theory breaks down for QCD is λQCD ' 200 MeV; for energies lower than this,

non-perturbative techniques such as Chiral Perturbation Theory and Lattice Gauge Theory

need to be used for calculations.
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1.4.7 Factorisation

In collider experiments, often composite particles like protons are collided at high energies

and the outgoing particles are studied to measure the observables e.g. proton-proton colli-

sions at the LHC. At such high energies, however, the constituent partons [94] are the ones

actually undergoing scattering governed by the short-distance physics which is modelled us-

ing perturbation theory. But the behaviour of these partons inside the proton, specifically

their momentum distribution (Parton Distribution Functions), cannot be described using

perturbative QCD. To perform a complete calculation of the cross-section, both short and

long distance physics is required. That the full calculation can be factorised into the per-

turbative and non-perturbative parts which can then be evaluated independently is crucial

to this. The scale separating the two is called the factorisation scale (µF ). A scattering

cross-section for the collision of two hadrons h1h2 → cd (e.g. pp at the LHC) can be written

in a factorised form as

dσh1h2→cd =

∫ 1

0

dx1dx2

∑
a,b

fa/h1(x1, µ
2
F )fb/h2(x1, µ

2
F )dσ̂ab→cd(Q2, µ2

F ) (1.4.40)

where a, b are the colliding partons and Q is the scattering energy. The fa/h1 , fb/h2 in the

above equations are the Parton Distribution Functions (PDFs) and specify the probability of

finding the parton a, b in the hadron h1, h2 with momentum fraction x1, x2 respectively. All

the unresolved particles that lead to IR poles below the factorisation scale µF are absorbed

in the PDF definitions. PDFs are process-independent but cannot be calculated using the

regular perturbation theory methods. Traditionally they are determined using data [95,

96, 97] based on the DGLAP evolution equations [98, 99, 100]. There has been significant

progress, however, in calculating PDFs through first principles using Lattice methods.

Factorisation has been proven for many processes in gauge theory [101, 102, 103, 104].

Like the renormalisation scale, the actual calculation must be independent of the factorisation

scale. However, a scale dependence still remains owing to truncation of the series, and should
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disappear if all the orders are calculated. This scale dependence manifests itself in the Parton

Distribution Functions as well as the hard-scattering cross-section (Eq. 1.4.40).

The detectors have finite resolution which means that they cannot measure particles

with arbitrarily low energies, neither can they distinguish between two particles extremely

close together. Physical observables then need to be devised such that they respect such

physical restrictions and are infrared safe i.e. additional soft or collinear radiations do not

affect them. One such observable is a jet which is just a collection of final-state partons

combined together according to a specific algorithm. They are designed to be simple to use

in both experiments and theory as well as insensitive to non-perturbative effects. A way

to imagine a jet is to consider a final state parton which radiates additional partons with

radiation within a certain cone around the radiating particle being part of the jet. Two

major kinds of algorithms are cone algorithms and sequential recombination algorithms. An

in-depth discussion of jets is out of scope for this work and the reader is instead referred

to [105, 106, 107] for details.

1.5 Electroweak sector

1.5.1 Electroweak symmetry breaking

The electroweak sector of the Standard Model describes the electromagnetic and weak in-

teractions through the SU(2)L × U(1)Y gauge symmetry [108, 109, 110, 111]. The L in

SU(2)L referes to "left", i.e. the gauge bosons associated with this symmetry interact only

with left-handed particles and Y refers to "hypercharge", the additional quantum number

possessed by SM fermions. Using the general SU(N) formula for the number of generators,

there are 3 SU(2)L gauge bosons W1,W2,W3 along with B for U(1)Y .

The kinetic term for the gauge bosons can be written as

Lkin = −1

4
BµνBµν −

1

4
W i,µνW i

µν (1.5.1)
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with the field strength tensors given by

Bµν = ∂µBν − ∂νBµ

W µν
i = ∂µW ν

i − ∂νW µ
i + g2 εijkW

µ
j W

ν
k (1.5.2)

where g2 is the coupling strength of SU(2)L. To generate masses for these bosons, the

SU(2)L × U(1)Y symmetry must be spontaneously broken through Higgs mechanism. The

Higgs part of the Lagrangian can be written as

Lhiggs = (DµΦ)†(DµΦ)− µ2(Φ†Φ)− λ(Φ†Φ)2 , (1.5.3)

where the covariant derivative Dµ is such that the above Lagrangian is invariant under the

SU(2)L × U(1)Y gauge symmetry

Dµ = ∂µ − ig1 Y Bµ − i
g2

2
σiWi,µ . (1.5.4)

which can be written as

Dµ =

 ∂µ 0

0 ∂µ

− i

2

 g1Bµ + g2W3,µ g2(W1,µ − iW2,µ)

g2(W1,µ + iW2,µ) g1Bµ − g2W3,µ

 (1.5.5)

with the Hypercharge Y set to 1/2. The gauge fields themselves transform under infinitesimal

transformations as

Bµ → Bµ − ∂µθ(x)

Wi,µ → Wi,µ − ∂µθi(x)− g2 ε
ijk θj(x)Wk,µ , (1.5.6)

similar to Eq. 1.4.12. Inserting Eq. 1.5.5 into Eq. 1.5.3 and expanding the Higgs field around
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the vacuum (keeping only the physical Higgs field) Φ = 1√
2

 0

v + h

 , the gauge bosons gain

masses:

Lgauge−mass =
v2

8

(
g2

2(W 2
1 +W 2

2 ) + (g1Bµ − g2W3,µ)2
)

(1.5.7)

It is clear that two of the SU(2)L bosons W1,W2 acquire a mass. The third boson W3 does

not acquire a mass itself, but rather the combination g1Bµ − g2W3,µ does. At this point it

makes sense to define certain quantities. The electric charge of a particle can be defined as

Q = Y + I3 , (1.5.8)

and the electromagnetic coupling e can be defined as

e =
g1g2√
g2

1 + g2
2

. (1.5.9)

Parameterising the couplings with an angle θW ,

g1 = g2 tan θW , (1.5.10)

the fields Bµ and W3,µ can be rotated as

Aµ =
g2Bµ + g1W3,µ√

g2
1 + g2

2

= cos θWBµ + sin θWW3,µ

Zµ =
−g1Bµ + g2W3,µ√

g2
1 + g2

2

= − sin θWBµ + cos θWW3,µ . (1.5.11)

It is also useful to define the linear combinations W± = W1 ± iW2. The mass terms then
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become

Lgauge−mass =
g2

2v
2

8

(
W+W− +

1

cos2 θW
Z2

)
(1.5.12)

A couple things are clear from the above equation. Z boson is predicted to be more massive

than the W± bosons since cos2 θW < 1. Also, only 3 bosons gain mass with Aµ remaining

massless. This can be seen in another way; the Q operator acting on the vacuum state gives

Q|0〉 =(Y + I3)|0〉

=

 Y + 1
2

0

0 Y − 1
2


 0

v√
2

 =

 0

0

 (1.5.13)

since Y = 1/2 for the Higgs field, meaning that Q is conserved compared to, for instance, Y :

Y |0〉 =

 Y 0

0 Y


 0

v√
2

 =

 0

v√
2

 . (1.5.14)

This implies that the SU(2)L×U(1)Y gauge symmetry spontaneously breaks down to U(1)EM

with the gauge boson of the U(1)EM symmetry, photon, remaining massless. Using Eqs. 1.5.9

and 1.5.10, the masses of the gauge bosons can be written in terms of electric charge e:

Lgauge−mass =
e2v2

8 sin2 θW

(
W+W− +

1

cos2 θW
Z2

)
. (1.5.15)

The gauge boson masses are then

m2
W =

e2v2

4 sin2 θW

m2
Z =

e2v2

4 sin2 θW cos2 θW
. (1.5.16)

Since e and v are known, measuring one of the gauge boson masses fixes the other.
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1.5.2 Custodial symmetry

It is useful to define the ρ-parameter

ρ =
m2
W

m2
Z cos2 θW

. (1.5.17)

At tree level, in SM, ρ = 1; this is guaranteed by the so-called "Custodial symmetry" [112,

113]. Before spontaneous symmetry breaking, the Higgs field has a global SO(4) symmetry

Φ†Φ =

(
φ2 − iφ3 φ0 − iφ1

)φ2 + iφ3

φ0 + iφ1

 =
4∑
i=1

φ2
i . (1.5.18)

Alternatively, it can be referred to as a global SU(2)L×SU(2)R symmetry since the two are

isomorphic. After spontaneous symmetry breaking, φ0 = h + v and the SO(4) is broken to

SO(3)

Φ†Φ→ (h+ v)2 +
3∑
i=1

φ2
i (1.5.19)

with the Goldstone bosons corresponding to W±, Z transforming as a triplet under the

residual SO(3). This SO(3) isn’t exact however and is broken by the mixing between the

W3 and B fields implying that the corrections to the ρ parameter must be proportional to the

mixing angle sin2 θW , which is indeed found through explicit calculations. On the other hand,

non-degenerate fermion doublets coupling to the Higgs also break the custodial symmetry

where the symmetry breaking is proportional to the difference in the Yukawa couplings e.g.

for the t − b doublet, the correction to the ρ-parameter vanishes in the limit yt = yb. Thus

the custodial symmetry prevents the gauge bosons from acquiring arbitrarily large radiative

corrections for their masses.
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1.5.3 Electroweak interactions

Consider again the gauge-boson kinetic terms in Eq. 1.5.1. Expanding the field strength

tensors gives the gauge boson interaction terms e.g. the 3-point vertices

− ig2 cos θW
(
∂µZν(W+

µ W
−
ν −W+

ν W
−
µ ) + Zν(W+,µ∂µW

−
ν + ...)

)
− ie

(
∂µAν(W+

µ W
−
ν −W+

ν W
−
µ ) + Aν(W+,µ∂µW

−
ν + ...)

)
, (1.5.20)

and the 4-point vertices

+
g2

2

2
W+,µW−,νW+

µ W
−
ν + g2

2 cos2 θW ZµZµW
+,νW−

ν

− e2AµAµW
+,νW−

ν − eg2 cos θW ZµAµW
+,νW−

ν . (1.5.21)

It is interesting to note that the all-W interactions involve purely the SU(2)L coupling g2

implying that this is a pure "weak" interaction while those involving the photon field Aµ

have the coupling e implying the electromagnetic nature of the interaction, the fact that the

photon is coupling to the electrically charged W±-bosons. The Z-boson interactions also

depend purely on the weak coupling g2 but only the purely weak part of Zµ = − sin θWBµ +

cos θWW3,µ contributes. Also, Z being electrically neutral, does not couple to the photon.

Considering now the fermions, the Lagrangian can be written as

Lfermion = Ψ(iγµDf
µ)Ψ (1.5.22)

where Ψ is the doublet Ψ =

ψ2

ψ1

 and the covariant derivative for fermions Df
µ is

Df
µ = ∂µ − ig1 Y Bµ − i

g2

2
PLσiWi,µ . (1.5.23)
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Taking the example of the (left-handed) e− νe doublet Le =

νe,L
eL

 , the interaction term

can be written as

Le = iLe(/∂ − ig1 Ye /B − i
g2

2
σi /W i)Le + ieR(/∂ − ig1 YeR /B)eR + iνR(/∂ − ig1 YνR /B)νR .

(1.5.24)

Since the right-handed fields eR, νR do not form part of an SU(2)L doublet, I3 = 0 for both.

For the neutrino this implies that YνR = 0 from the relation Q = Y + I3, meaning that the

right-handed neutrino does not interact with through weak interactions at all. And since

it is not charged under SU(3)C either, it is completely invisible in the Standard Model. In

principle nothing forbids its presence, however it is impossible to detect in SM and does

not interact with any other SM particles making it irrelevant to any meaningful physical

observable. This does not mean, though, that the right-handed neutrinos are pointless; in

fact many new physics models predict their interactions. Since neutrinos have been shown

to have masses through oscillation experiments [114, 115, 1], assuming that they gain their

masses through the Higgs field necessitates the presence of right-handed fields. The other

hypercharges can also be inferred similarly; since Qe = −1, Ye = −1/2 which can also be

inferred using Qν = 0 and I3(νe,L) = 1/2. For the right-handed electron, YeR = Qe = −1.

Expanding the above Lagrangian in terms of the rotated A−Z basis and using Q = Y +I3
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gives

Le = iLe/∂Le + ieR/∂eR +
e

2 sin θW
Le

 0 W−

W+ 0

Le

+ eLe

Qe /A+ 1
2 sin θW cos θW

(1− 2Qe sin2 θW )/Z 0

0 −1
2 sin θW cos θW

/Z

Le

+ eQe eR /AeR − eQe tan θW eR /ZeR

= iLe/∂Le + ieR/∂eR +
e

2 sin θW

(
νe,L /W

+
eL + eL /W

−
νe,L

)
︸ ︷︷ ︸
Charged current weak interaction

−e (eR /AeR + eL /AeL)︸ ︷︷ ︸
Electromagnetic interaction

+
e

sin 2θW

(
(1− 2Qe sin2 θW )eL /ZeL − 2Qe sin2 θW eR /ZeR + νe,L /Zνe,L

)︸ ︷︷ ︸
Neutral current weak interaction

. (1.5.25)

where, with abuse of notation, e is the fundamental electric charge. A few things to note

from the above equations: TheW±-bosons act as raising and lowering operators on an SU(2)

doublet; Z-boson acts like the I3 operator, however due to mixing between the B−W3 fields

there is also a photon like interaction that, unsurprisingly, depends on the strength of this

mixing; νe,L has no electromagnetic interactions, as expected, since it is electrically neutral.

The interactions above can be written in a more condensed form (omitting the pure EM

term) for a general fermion doublet Ψ =

ψ2

ψ1

 as

Lweak =
e

2 sin θW

(
ψ2 /W

+
ψ1 + ψ1 /W

−
ψ2

)
+

e

2 sin θW cos θW
ψf /Z(vf + afγ

5)ψf . (1.5.26)

with the purely EM interaction term being ignored for brevity. Here vf , af refer to the vector

and axial coupling of the Z-boson to the fermion f and are given by

vf =I3 − 2Qf sin2 θW

af =− I3 . (1.5.27)
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1.6 Theoretical status

1.6.1 ZZ production at LHC

Higher-order perturbative calculations are an essential part of the modern particle physics

program. One of the most important processes in that regard is the production of a pair

of vector bosons where the vector boson pair could correspond to any combination V V =

ZZ,WW, γγ,WZ,Zγ,Wγ. The specifics below refer only to gg → ZZ production since

that is the primary focus of this work.

ZZ production is key to many new physics searches as well as precision physics [116, 117,

118, 119, 120]. In addition, it is a significant background to the crucial Higgs signal process

gg → h → V V → leptons [121, 122, 54, 123]. It was also observed that it interfere quite

significantly (∼ 10%) with offshell Higgs production [51, 124] which is important for indirect

width measurement as discussed in Sec. 1.3.2. As such, precise theoretical predictions for

this process are indispensable. Since gluons don’t couple directly to vector bosons, gluon

initiated channels always appear at a higher order in the perturbation series. E.g. qq → ZZ

already starts at tree level while gg → ZZ starts at 1-loop order which is formally NNLO

for the hadronic process pp → ZZ. Nevertheless, due to high gluon luminosity at LHC it

accounts for most of the NNLO correction (∼ 60%) [125] to pp→ ZZ. The NLO corrections

to gg → ZZ were also found to be significant[126] increasing the total pp→ ZZ cross-section

by (∼ 5%) [127]. Consequently, pair production of vector bosons has been one of the focal

points of perturbative QCD efforts.

The qq′ → V V processes are all known at NLO in QCD [128, 129, 130, 131, 132, 133]

as well as NLO EW for most processes [134, 135, 136, 137, 138, 139, 140, 141]. This was

possible in large part to the so-called "NLO revolution" based on unitarity methods that

automated 1-loop calculations [142, 143, 144, 145, 146, 147, 148]. Gluon initiated processes
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are all also known at 1-loop [149, 150, 151, 152, 153, 154, 155, 156, 157, 158]. The 2-loop

amplitudes are not universally known, however. Complexity at 2-loops increases enormously

compared to 1-loop and as such 2-loop processes are calculated on a case-by-case basis. So

far no convenient and computationally feasible way to automate the 2-loop processes has

been developed. Nevertheless, there has been significant progress in the past decade. In

particular for gg → ZZ, the 2-loop contributions including only massless quarks in the loops

are known [159, 160]. This does not provide the complete picture, however, and corrections

due to massive quark loops are deemed important as a consequence of the Goldstone boson

equivalence theorem [36, 37]. This is especially true for loops involving the top quark whose

large coupling to Higgs and the longitudinal modes of the gauge bosons (as a consequence of

the equivalence theorem) could result in significant corrections in high invariant mass region.

The longitudinal modes for the Z-bosons are, moreover, particularly interesting since they

provide a window into potential new physics manifesting through loop effects as well as they

provide a way to measure the anomalous ttZ coupling [161, 162].

Calculating the 2-loop contributions to gg → ZZ with massive internal quarks provide

significant challenges. Naively, due to addition of one more variable to the problem compared

to the massless case, an increase in complexity is expected. However, it is much worse

and the traditional methods to calculate multiloop amplitudes are insufficient. The 2-loop

contributions from top quark loops were calculated in an approximation where the top quark

was considered much heavier than every other scale, colloquially referred to as the heavy

top-mass Limit, in [163, 164]. Since the expansion has a finite radius if convergence, it

cannot be used in all the regions of phase space, particularly for higher invariant mass. This

can be improved with the use of Padeé approximants as in [165] to extend the expansion

over a larger phase space region. Another approximation using an expansion around the

top quark pair production threshold together with the heavy top limit, improved with Padé

approximants, was used in [166] for contributions relevant to Higgs production. In [12], the

heavy top limit was used together with small top-mass limit to access the regions of higher
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invariant mass and improved using Padé approximants to access the intermediate region.

The amplitudes involving Higgs as a mediator have been computed with exact top mass

dependence [167, 168, 169, 170]. More recently, contributions to WW production from third

generation quark loops (b, t) were computed with exact mass dependence in [171]. It must

be pointed out that the 2-loop amplitudes for gg → ZZ with exact top quark dependence

were also calculated independently in [172] which appeared a couple months after this work

was completed.

1.6.2 Diphoton production at LHC

Another important class of processes at LHC is the production of a pair of photons. It

provides a crucial channel for new physics searches [173, 174] as well as Higgs production.

Similar to ZZ, continuum production of γγ is also an important background to Higgs signal

process. In addition, transverse momentum of the diphoton pair is sensitive to potential

new physics whether through Higgs production or through new heavy resonances It is, thus,

a crucial part of the particle physics program [175] and better theoretical predictions are

always desirable.

The NNLO QCD corrections to pp → γγ are known already [176, 177, 178, 179]. The

ingredients for 3-loop amplitudes for four particle scattering became accessible only in the

recent years [180, 181] with the full amplitudes for qq → γγ appearing very recently [182].

Including 1-jet in addition, pp→ γγ+jet is known only at NLO [183, 184]. For both pp→ γγ

at N3LO and pp→ γγ+jet at NNLO, the missing component was the 2-loop amplitudes for

diphoton plus jet production where they are required to subtract the IR poles for the former.

However, 2 → 3 particle scattering amplitudes at 2-loop provided a great challenge and

required the development of powerful new techniques. These advances, discussed in detail in

this work, led finally to the calculation of first full 2→ 3 amplitudes, first in leading colour

approximations [185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195], for simpler helicity

configuration [196], and then very recently in full colour for all helicities [197, 198].

47



Calculation of both gg → ZZ and qq(g)→ γγ+jet 2-loop amplitudes required incredible

advances in the technology and are the focus of this work along with the results.
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Chapter 2

Setup of calculation

2.1 Form factor decomposition

Let us consider pair production of Z-bosons through gluon fusion,

g(p1) + g(p2) −→ Z(p3) + Z(p4) . (2.1.1)

The gluons (p1, p2) are considered to be incoming and the Z-bosons (p3, p4) considered to be

outgoing so that momentum conservation implies

p1 + p2 = p3 + p4 . (2.1.2)

The external particles are also considered to be on-shell with the momenta then satisfying

the on-shell conditions

p2
1 = p2

2 = 0, p2
3 = p2

4 = m2
Z . (2.1.3)

Formally, the scattering amplitude for this process can be written as

M =Mab
µνρσ(p1, p2, p3, p4) εa,µλ1

(p1) εb,νλ2
(p2) ε∗ρλ3

(p3) ε∗σλ4
(p4) (2.1.4)
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stripping away the polarisation vectors ελi(pi) for the gluons and the Z-bosons with λi

denoting the particle helicity. For brevity, the colour and Lorentz indices on the polarisation

vectors are henceforth suppressed and the abbreviation εi ≡ ελi(pi) is instead used. Note

that the amplitudeM, or equivalentlyMab
µνρσ(p1, p2, p3, p4), is the full scattering amplitude;

no perturbative expansion has been performed yet. In general, it is desirable to maintain the

full Lorentz structure of the amplitude since complete polarisation information can be useful

to include e.g. decays of the outgoing particles. In special cases, however, the calculation

can be immensely simplified by the use of explicit representations for the polarisation vectors

ελi(pi), for example using the spinor-helicity formalism [199, 200, 201, 202, 203, 147]; the

most well-known example is perhaps the Parke-Taylor formula [204, 205] where the amplitude

collapses to a remarkably simple 1-line expression.

In general, evaluating Mab
µνρσ(p1, p2, p3, p4) directly can be an extremely difficult task,

especially for multi-loop amplitudes The expressions involve a large number of tensor loop

integrals, and while techniques exist to handle them in a systematic way, most of the powerful

modern methods involve scalar loop integrals where the open Lorentz indices are contracted

with loop or external momenta. As such, it is highly beneficial to separate the Lorentz struc-

ture from the amplitude. Lorentz invariance dictates that the amplitudeMab
µνρσ(p1, p2, p3, p4)

can be decomposed in terms of all possible, in this case rank-4, Lorentz tensors. These

Lorentz tensors can be composed of the independent external momenta as well as general

process-independent tensors such as the metric tensor gµν and the totally anti-symmetric

Levi-Civita tensor εµνρδ. For the process at hand, a total of 138 tensor structures appear in
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the decomposition [159]:

Mµνρσ(p1, p2, p3, p4) = a1 g
µν gρσ + a2 g

µρ gνσ + a3 g
µσ gνρ

+
3∑

i,j=1

( a1,ij g
µν pρi p

σ
j + a2,ij g

µρ pνi p
σ
j + a3,ij g

µσ pνi p
ρ
j

+ a4,ij g
νρ pµi p

σ
j + a5,ij g

νσ pµi p
ρ
j + a6,ij g

ρσ pµi p
ν
j )

+
3∑

i,j,k,l=1

aijkl p
µ
i p

ν
j p

ρ
k p

σ
l . (2.1.5)

In the above, parity-odd tensors involving the Levi-Civita tensor have been dropped. This is

because of Bose symmetry and charge-parity conservation for this process [153]. Note that

the colour indices have been dropped in the above equation for brevity.

Fundamentally, the decomposition in Eq. 2.1.5 is completely independent of the under-

lying process and should hold for any 2→ 2 scattering process involving four vector bosons

as well as satisfying Bose symmetry and conserving charge-parity. All the physics is now

contained in the coefficients aij.. which are referred to as "form factors". It would be quite

difficult to calculate all 138 form factors; thankfully, that is not the case and certain identi-

ties can be exploited to reduce this number. Transversality of the gluon polarisation vectors

(from Ward identities) implies

ε1 · p1 = 0 , ε2 · p2 = 0 . (2.1.6)

Further reduction can be achieved by explicitly choosing a gauge for the external particles

such as

ε1 · p2 = 0 , ε2 · p1 = 0 , ε3 · p3 = 0 , ε4 · p4 = 0 , (2.1.7)

which reduces the total number of independent form factors to 20. The above gauge choice
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for the polarisation vectors corresponds to the following polarisation sums:

∑
pol

εa,µ1 ε∗b,ν1 =
∑
pol

εa,µ2 ε∗b,ν2 =

(
−gµν +

pµ1p
ν
2 + pµ2p

ν
1

p1.p2

)
δab ,

∑
pol

εµ3 ε
∗ν
3 = −gµν +

pµ3p
ν
3

p3.p3

,

∑
pol

εµ4 ε
∗ν
4 = −gµν +

pµ4p
ν
4

p4.p4

. (2.1.8)

It is useful to define the Mandelstam variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 . (2.1.9)

Since they are Lorentz-invariant, it is convenient to express the amplitude in terms of these

quantities. Momentum conservation (Eq. 2.1.2) allows us to write down a relation between

the Mandelstam variables:

s+ t+ u = 2m2
Z (2.1.10)

The amplitude can then be written in terms of the remaining 20 form factors as

Mµνρσ(p1, p2, p3, p4) =
20∑
i=1

Ai(s, t,m
2
Z ,m

2
1,m

2
2, ...)T

µνρσ
i , (2.1.11)

where the Ai are the form factors depending only on the Mandelstam variables (s, t), mass of

the Z-boson (mZ), and masses of the internal particles denoted bym1,m2, .... The remaining
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20 tensors Ti are as follows:

T µνρσ1 = gµνgρσ , T µνρσ2 = gµρgνσ , T µνρσ3 = gµσgνρ , T µνρσ4 = pρ1 p
σ
1 g

µν ,

T µνρσ5 = pρ1 p
σ
2 g

µν , T µνρσ6 = pσ1 p
ρ
2 g

µν , T µνρσ7 = pρ2 p
σ
2 g

µν , T µνρσ8 = pσ1 p
ν
3 g

µρ ,

T µνρσ9 = pσ2 p
ν
3 g

µρ , T µνρσ10 = pρ1 p
ν
3 g

µσ , T µνρσ11 = pρ2 p
ν
3 g

µσ , T µνρσ12 = pσ1 p
µ
3 g

νρ ,

T µνρσ13 = pσ2 p
µ
3 g

νρ , T µνρσ14 = pρ1 p
µ
3 g

νσ , T µνρσ15 = pρ2 p
µ
3 g

νσ , T µνρσ16 = pµ3 p
ν
3 g

ρσ ,

T µνρσ17 = pρ1 p
σ
1 p

µ
3 p

ν
3 , T µνρσ18 = pρ1 p

σ
2 p

µ
3 p

ν
3 , T µνρσ19 = pρ2 p

σ
1 p

µ
3 p

ν
3 , T µνρσ20 = pρ2 p

σ
2 p

µ
3 p

ν
3 .

(2.1.12)

To extract the form factors from the amplitude, projection operators P µνρσ
i can be con-

structed such that they fulfill

∑
pol

P µνρσ
i ε∗1µε

∗
2νε3ρε4σε1µ′ε2ν′ε

∗
3ρ′ε
∗
4σ′Mµ′ν′ρ′σ′ = Ai . (2.1.13)

To find these projection operators, they can be decomposed in terms of the T µνρσi :

P µνρσ
i =

20∑
j=1

Bij(s, t,m
2
Z) (T µνρσj )† , i = 1, ..., 20 . (2.1.14)

Note that the coefficients Bij are functions of only the external kinematic configuration,

independent of the internal particles. The actual expressions for Bij are too complicated

to be provided here and the reader is instead referred to the VVamp project website. To

calculate them is relatively straightforward, however. Inserting Eqs. 2.1.11 and 2.1.14 into

Eq. 2.1.13,

20∑
j=1

Bij(s, t,m
2
Z) (T µνρσj )† T µ

′ν′ρ′σ′

k

∑
pol

(
ε∗1µε

∗
2νε3ρε4σε1µ′ε2ν′ε

∗
3ρ′ε
∗
4σ′

)
= δik . (2.1.15)

Polarisation sums from Eq. 2.1.8 can then be inserted into the above equation and the result-

ing linear system solved to obtain the coefficients Bij. Not all 20 form factors are independent
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though. With identical bosons in both the initial and final states, the process exhibits Bose

symmetry which implies that the amplitude must be invariant under the exchange of the

incoming gluons or the outgoing Z-bosons [159]:

1↔ 2 : p1 ↔ p2, ελ1(p1)↔ ελ2(p2) ,

3↔ 4 : p3 ↔ p4, ελ3(p3)↔ ελ4(p4) .

This symmetry results in certain relations between the form factors. First. there are the

identities:

A7 = A4 , A12 = −A11 , A13 = −A10 , A14 = −A9 , A15 = −A8 , A20 = A17 .

(2.1.16)

Second, the following relations under the swapping of the Mandelstam invariants t↔ u:

A1(s, t) = A1(s, u) , A4(s, t) = A4(s, u) , A7(s, t) = A7(s, u) ,

A16(s, t) = A16(s, u) , A17(s, t) = A17(s, u) , A20(s, t) = A20(s, u) ,

A2(s, t) = A3(s, u) , A5(s, t) = A6(s, u) , A8(s, t) = A13(s, u) ,

A9(s, t) = A12(s, u) , A10(s, t) = A15(s, u) , A11(s, t) = A14(s, u) ,

A18(s, t) = A19(s, u) . (2.1.17)

It must be noted that everything to this point has been treated in general d-dimensions i.e.

the external momenta and consequently the form factors and the projection operators are all

in d-dimensions. This has the advantage of being compatible with dimensional regularisation

and all the techniques used for solving loop integrals.

At this point, it makes sense to switch to physically relevant 4-dimensional observables.

A convenient choice is the so-called "helicity amplitudes", derived by explicitly fixing the

helicities for the external particles. Note that such helicity amplitudes are inherently 4-

dimensional quantities. It is rather straightforward to derive the expressions for the helicity
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amplitudes in terms of the form factors Ai. It must be pointed out that since the Z-bosons

are massive, their helicities are frame dependent; in this case, the momenta are considered

to be in the center-of-momentum frame for both the incoming and outgoing states. This

allows the momenta to be parameterised according to

pµ1 =

√
s

2
(1, 0, 0, 1) , pµ3 =

√
s

2
(1, β sin θ, 0, β cos θ) ,

pµ2 =

√
s

2
(1, 0, 0,−1) , pµ4 =

√
s

2
(1,−β sin θ, 0,−β cos θ) , (2.1.18)

where β =
√

1− 4m2
Z/s and θ is the angle between the direction of the incoming gluon (p1)

and the outgoing Z-boson with momentum p3. The polarisation vectors can then be written

as following [6]:

εµ±(p1) =
1√
2

(0,∓1,−i, 0) ,

εµ±(p2) =
1√
2

(0,±1,−i, 0) ,

εµ±(p3) =
1√
2

(0,∓ cos θ,−i,± sin θ) , εµ0(p3) =

√
s

2mZ

(β, sin θ, 0, cos θ) ,

εµ±(p4) =
1√
2

(0,± cos θ,−i,∓ sin θ) , εµ0(p4) =

√
s

2mZ

(β,− sin θ, 0,− cos θ) . (2.1.19)

It can be easily shown that the above choice of polarisation vectors satisfies the polarisation

sums in Eqs. 2.1.6, 2.1.7, and 2.1.8.

A straightforward calculation would show that there are a total of 22 × 32 = 36 he-

licity amplitudes for this process. However, parity transformation reduces the number of

independent helicity amplitudes by a factor of two [72]:

Mλ1λ2λ3λ4 = (−1)δλ30+δλ40M−λ1−λ2−λ3−λ4 . (2.1.20)

Above identity under parity transformation holds for a general external kinematics. For

the special case at hand where the gluons and Z-bosons are on-shell, following symmetry
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relations also hold [153, 12]:

M+++− =M++−+

M+−−− =M+−++

M++±0 =M++0±

M+−±0 = −M+−0∓ , (2.1.21)

where the identities in Eq. 2.1.16 have been used to derive the above relations. Another

set of relations can be derived if the variables s, θ are eliminated in favour of β, t using

θ = arccos((t− u)/(βs)) ∈ [0, π], u = 2m2
Z − s− t, and s = 4m2

Z/(1− β2):

M++++(β, t) =M++−−(−β, t),

M+−+−(β, t) =M+−−+(−β, t),

M+±+0(β, t) =M+±−0(−β, t) . (2.1.22)

Eqs. 2.1.20, 2.1.21, and 2.1.22 together reduce the total number of independent helicity

amplitudes to 8. The explicit expressions for the helicity amplitudes in terms of the form

factors Ai, as defined through Eq. 2.1.19, are provided in an ancillary file with [6].

Before taking all the symmetries into account, there are 20 form factors Ai, while there

are only 18 helicity amplitudes. In fact, looking at the analytic forms of the projection

operators, they have spurious poles in the space-time dimension d of the form 1
d−4

. This

is clearly not physical and suggests some redundancy between the form factors. It is not

unimaginable that for d = 4 certain linear relations appear between the form factors. This

phenomenon was already observed in [159] where allowing the Z-bosons to decay to fermions

and considering specific fermion helicities, only 18 independent "helicity amplitudes" were

found. These helicity amplitudes, corresponding to the helicities of the final-state fermions,

were found to be gauge-invariant physically relevant quantities, unlike the form factors Ai;
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explicit calculation showed that while the form factors Ai are dependent on the specific

regularisation scheme for γ5, the helicity amplitudes written in [159] are not. Choosing

specific helicities for the external particles also forces them to be four-dimensional. This

prescription where external particles are treated in d = 4 while all the internal quantities

are treated in general d is colloquially referred to as the ’t Hooft-Veltmann scheme.

Another disadvantage of using the form factors defined as in Eq. 2.1.13 is that they are not

orthogonal. An alternate approach was used in [12] to remedy this using the Gram-Schmidt

orthogonalisation procedure. Starting from the 20 tensors as in Eq. 2.1.12, the Gram-Schmidt

procedure results in 20 new tensors that are orthogonal linear combinations of the original

tensors. Crucially, 2 of the linear combinations vanish in d→ 4 limit with only 18 remaining,

further indicating the redundancy in the original decomposition. A general prescription to

construct physically relevant form factors in d-dimensions was provided in [71, 72]. The

authors used the ‘t Hooft-Veltmann prescription, considering all objects in d-dimensions

except the external momenta which are treated in 4-dimensions. Lastly, it must be pointed

out that in this work only the contribution from top-quarks in the loop are considered.

2.2 1-loop amplitude

2.2.1 Generation of the amplitude

The form factor decomposition in the previous subsection was general and valid to all orders

in perturbation theory. Here, the amplitude in Eq. 2.1.4 is perturbatively expanded in the

strong coupling constant αS as

M =M0 +
(αS

2π

)
M1 +O(α2

S) . (2.2.1)

HereM0 corresponds to the Leading-Order amplitude. Z-bosons don’t have "colour" charge

and hence don’t directly couple to gluons. This process, thus, starts at 1-loop through closed
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quark loops. Qgraf [206] is used to generate the Feynman diagrams. All the quarks other

than the top quark are treated as massless and only the Higgs is allowed to couple to the

top quark. A total of 10 diagrams are found out of which 2 are zero due to colour where a

single gluon couples to a closed quark loop. Of the remaining 8, 2 are mediated via offshell

production of the Higgs boson (Figs. 2.2.1a and 2.2.1b); remaining 6 are the "box" type

contributions. Note that only 2 of these "box" diagrams are truly independent, the rest

can be obtained through simple crossings of the external legs. In particular, Fig. 2.2.1d can

be obtained by crossing the incoming gluons and Fig. 2.2.1e can be obtained by crossing

the outgoing Z-bosons. This corresponds to making the change t ↔ u in the analytical

expressions. We can further exchange the Z-bosons in Fig. 2.2.1d to obtain Fig. 2.2.1f.

However, since the Z-bosons are onshell (Eq. 2.1.3), and have the same invariant mass,

crossing both the gluons and the Z-bosons leaves the diagram unchanged which implies the

diagrams in Figs. 2.2.1c and 2.2.1d are equal to Figs. 2.2.1f and 2.2.1e respectively.

The next step is to insert Feynman rules in the diagrams to obtain the amplitudes.

The Feynman rules employed here are given in the appendix A. Custom FORM [207, 208,

209] scripts are used to insert the Feynman rules into the diagrams to generate algebraic

expressions. Colour structure of the remaining non-zero diagrams is quite simple; it is

essentially a gluon propagator like structure, so the colour factor is simply given by

C = C0 δab . (2.2.2)

For the tree-level propagator, C0 is just 1 A. At 1-loop, C0 = TF = 1
2
for the diagram involving

only a closed quark loop A. At higher loops, more complicated structures appear in C0 i.e.

the quadratic Casimirs CF , CA.

The Z-boson couples to the fermion through both a vector and an axial-vector coupling
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2.1: Feynman diagrams for the process gg −→ ZZ at 1-loop (LO). 2.2.1a and 2.2.1b

are the Higgs exchange diagrams.

with the vertex written as

VV ff̄µ = ie

[
LZff̄γµ

(
1− γ5

2

)
+RZ

ff̄γµ

(
1 + γ5

2

)]
= i

e

2 sin θW cos θW
γµ (vt + atγ5) (2.2.3)

from the EW couplings in Eq. 1.5.26, where the coupling to the left-handed fermion is LZ
ff̄

=

(If3−qf sin2 θW )/(sin θW cos θW ) and to the right-handed fermion isRZ
ff̄

= −qf sin θW/ cos θW .

Here e is the positron charge and qf is the electric charge of the fermion in terms of e. Without

repeating the general forms of the vector and axial-vector couplings vt, at, for top quark they

are given by θW by vt = 1
2
− 4

3
sin2 θW and at = −1

2
, respectively, in terms of the weak mixing
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angle θW , as defined in Eq. 1.5.10.

At this point it is necessary to discuss the γ-matrices, in particular the γ5 matrix. γ-

matrices are an essential part of most scattering amplitude calculations in Standard Model.

A brief description of their properties is provided in Appendix C. While the γ-matrices

that satisfy the anti-commutation relation {γµ, γν} = 2gµν can be consistently treated in d-

dimensions, the γ5 matrix, as defined, is inherently a 4-dimensional object. As such, it is not

clear how to incorporate it in Conventional Dimensional Regularisation (CDR) [66, 67, 68, 69]

where objects are treated in d-dimensions, along with the usual γ-matrices. There are several

schemes used to work around this issue; see Appendix C for details. This calculation employs

Kreimer’s [210, 211, 212] anti-commuting γ5 scheme to properly treat γ5 in d-dimensions. In

this scheme, the anti-commuting property of γ5 is kept while traces are no longer assumed

to be cyclic. In other schemes such as the ’t Hooft, Veltman, Breiten-Lohner, and Maison

scheme [213, 214, 215, 68], the anti-commutation relation is given up and cyclicity of trace

is kept. This scheme necessarily treats 4 and d − 4 dimensional objects separately. A

fundamental disadvantage of this is that the Ward identities are not preserved requiring

addition of extra counterterms to the Lagrangian. The reader is referred to Appendix C for

a more detailed discussion ofγ-matrices and different γ5 schemes.

The two Z-bosons coupled to a fermion line can in general generate 3 different contribu-

tions: vector-vector (v2
t ), axial-vector (atvt), and axial-axial (a2

t ), and it is useful to split the

amplitude into these 3 parts. The vector-vector and axial-axial contributions are identical for

massless quarks [153]. This can be understood by looking at the traces involved; for traces

involving an even number of γ5’s, the γ5’s disappear as a result of the anti-commutation rela-

tions and the fact that (γ5)
2

= 1. The resulting trace is identical to that of the vector-vector

case (with a possible overall sign difference). This then means that the difference must be

proportional to the quark mass. E.g.

Tr
[
(/p1

+m)γµ(/p2
+m)γν

]
− Tr

[
(/p1

+m)γµγ5(/p2
+m)γνγ5

]
= 8m2gµν (2.2.4)
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The axial-vector (atvt) contribution to this amplitude vanishes identically as a conse-

quence of Bose symmetry and charge-parity conservation for this process [153]. The absence

of any terms containing the ε-tensor in Eq. 2.1.5 can also be explained through this since the

Levi-Civita tensor violates parity and hence any such terms are forbidden through charge-

parity conservation.

The projection operators from Eq. 2.1.13 are then applied to obtain analytical expressions

for individual form factors.

2.2.2 Reduction to master integrals

The form factors contain only scalar loop integrals without any open Lorentz indices. The

list of scalar loop integrals isn’t the minimal list of integrals that needs to be evaluated,

however. Indeed it can be shown that at 1-loop, all the integrals can be related to a minimal

set of integrals often referred to as the basis integrals or "master integrals". In fact, any

1-loop integral can be written as a linear combination of basis integrals [216, 217, 218]

I = c1,iAi + c2,iBi + c3,iCi + c4,iDi +R+O(d− 4) (2.2.5)

as depicted in Fig. 2.2.2, where Ai, Bi, Ci, Di are all possible 1-, 2-, 3-, and 4-propagator

scalar Feynman integrals

A0(m2
1) =

∫
ddk

iπd/2
1

D1

, (2.2.6)

B0(p2,m2
1,m

2
2) =

∫
ddk

iπd/2
1

D1D2

, (2.2.7)

C0(p2
1, p

2
2, s12,m

2
1,m

2
2,m

2
3) =

∫
ddk

iπd/2
1

D1D2D3

, (2.2.8)

D0(p2
1, p

2
2, p

2
3, p

2
4, s12, s23,m

2
1,m

2
2,m

2
3,m

2
4) =

∫
ddk

iπd/2
1

D1D2D3D4

, (2.2.9)
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= c4,i + c3,i

+ c2,i + c1,i + Rational terms

Figure 2.2.2: Decomposition of a general 1-loop Feynman integral

with

D1 = k2 −m2
1 ,

D2 = (k + p1)2 −m2
2 ,

D3 = (k + p1 + p2)2 −m2
3 ,

D4 = (k + p1 + p2 + p3)2 −m2
4 . (2.2.10)

R is the so-called "Rational term" generated from the O(d − 4) terms appearing in the

expansions for the scalar integrals Ai, Bi, Ci, Di multiplied by 1
d−4

. For example, assuming

B0(p2,m) = 1
ε

+ b0(p2,m) + ε b1(p2,m) where ε = (4− d)/2,

1

d− 4
(B0(p2

1,m)−B0(0,m)) =
1

d− 4

(
b0(p2,m)− b0(0,m)

)
+

1

d− 4
ε
(
b1(p2,m)− b1(0,m)

)
=

1

d− 4

(
b0(p2,m)− b0(0,m)

)
− 1

2

(
b1(p2,m)− b1(0,m)

)
=

1

d− 4

(
b0(p2,m)− b0(0,m)

)
+R . (2.2.11)
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The assertion in Eq. 2.2.5 is in fact more general. Any N -point function can be written as

a linear combination of d and lower point functions.

The first approach to do this was proposed by Passarino-Veltmann in [219]. Passsarino-

Veltmann reduction exploits Lorentz invariance of tensor integrals to find relations between

them. Consider the following 1-loop 2-propagator tensor integral as an example:

Iµ(p,m) =

∫
ddk

(2π)d
kµ

(k2 −m2)(k + p)2
. (2.2.12)

Here Conventional Dimensional Regularisation (CDR) is being employed to regulate the

divergences. From Lorentz invariance, the only rank-1 Lorentz tensor possible for this integral

is pµ. Using this, the integral can be written as

Iµ(p,m) =

∫
ddk

(2π)d
kµ

(k2 −m2)(k + p)2
= pµB1(p2,m) , (2.2.13)

where the scalar part has been defined as B1(p2,m), which can be related to the original

integral by contracting with pµ as

p2B1(p2,m) = pµI
µ(p,m) =

∫
ddk

(2π)d
k · p

(k2 −m2)(k + p)2

=
1

2

∫
ddk

(2π)d
(k + p)2 − (k2 −m2)− (m2 + p2)

(k2 −m2)(k + p)2

=
1

2

∫
ddk

(2π)d
1

(k2 −m2)
− 1

2

∫
ddk

(2π)d
1

(k + p)2

− 1

2
(p2 +m2)

∫
ddk

(2π)d
1

(k2 −m2)(k + p)2

=
1

2

(
A0(m)− A0(0)− (p2 +m2)B0(p2,m,m)

)
. (2.2.14)

A0(0) can be shown to vanish identically in dimensional regularisation (see Sec. 3.1); A0(m)

and B0(p2,m) are the standard 1-loop scalar integrals from Eqs. 2.2.6 and 2.2.7, also known
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as Passarino-Veltmann functions. Higher rank tensor integrals can be similarly decomposed:

Iµν(p,m) =

∫
ddk

(2π)d
kµkν

(k2 −m2)(k + p)2
= gµνB00(p2,m) + pµpνB11(p2,m) . (2.2.15)

Note the appearance of gµν as a rank-2 tensor. The B00, B11 functions in the above equations

can be similarly written in terms of A0(m) and B0(p2,m). These, along with the 3 and 4

propagator Passarino-Veltmann functions C0 and D0, form a basis of integrals at 1-loop.

The basis integrals can then be evaluated either analytically using a multitude of methods

(see Sec. 4.1), or numerically using several libraries e.g. LoopTools [220], QCDLoop [221],

OneLOop [222], Golem [223], Collier [224], Package-X [225]. Passarino-Veltmann reduction

has been used to calculate a number of 1-loop processes including the 1-loop amplitude for

gg → ZZ in [150, 153, 154].

The conventional Passarino-Veltmann reduction, however, has certain limitations:

1. In Eq. 2.2.14, for instance, B1 cannot be solved for the case where p2 = 0. In particular,

the reduction procedure for integrals with ≥ 2 propagators involves inverting the so-

called "Gram matrices" and these Gram matrices become singular in certain regions of

phase-space. This can lead to severe numerical instabilities and makes it challenging

to write efficient numerical algorithms.

2. Applying the reduction procedure to higher tensor rank integrals is a rather cumber-

some procedure and leads to an explosion in the number of terms in intermediate

stages. This results in severe algebraic complexity in the case of analytic calculation

and loss of precision in the case of numerical calculation.

3. For processes with large number of diagrams and/or external legs the integral-by-

integral reduction procedure is extremely tedious.

Several new approaches have been developed and refined in the past few decades to re-

solve the above issues; the reader is referred to [148, 226] for an overview of the modern
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1-loop amplitude methods. By far the most popular method for 1-loop computations is

the OPP method proposed by Ossola-Papadopoulos-Pittau in [143], closely related to the

ideas of generalised unitarity cuts [227, 142]. Further progress regarding efficient numerical

implementations and automation [228, 229, 144, 230, 231] lead to the so-called "NLO rev-

olution" as a result of complete automation of 1-loop amplitudes. There are a number of

public libraries for integral reduction based on OPP method: CutTools [232], Samurai [233],

Ninja [234]. The computation of the amplitudes and NLO corrections has been automated

in many publicly available codes such as BlackHat [235], HELAC-NLO [236], MadGraph [237],

GoSam2.0 [238], and OpenLoops2 [239].

Traditional Passarino-Veltmann reduction relies on step-by-step procedure to reduce high

rank tensor integrals to find the coefficients of the master integrals. Using the OPP method,

the coefficients can be calculated directly as follows. Consider the integrand of a general

4-point Feynman diagram

I(k) =
N(k)

D1D2D3D4

(2.2.16)

where Di are the propagators in d-dimensions Di = (k + qi)
2 − m2

i with k being the d-

dimensional loop momentum, k the 4-dimensional loop momentum, and qi,mi being the

momentum flowing through and mass of the edge respectively. Note that the numerator

N(k) is strictly 4-dimensional; this creates a mismatch between the numerator and the

denominator that leads to the rational terms. For now, it suffices to consider everything in

d = 4; the rational terms are computed later. The result of Eq. 2.2.5 can be extended to
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integrands as shown in [240] with the numerator decomposed as

N(k) = (d(1234) + d̃(1234; k))

+ (c(123) + c̃(123; k))D4 + (c(124) + c̃(124; k))D3 + ...

+ (b(12) + b̃(12; k))D3D4 + (b(13) + b̃(13; k))D2D4 + ...

+ (a(1) + a(1; k))D2D3D4 + (a(2) + a(2; k))D1D3D4 + ...

+ P̃ (k)D1D2D3D4 . (2.2.17)

The coefficients d(1234), c(123), etc. are independent of the loop-momentum and drop out

of the integration. These are the true coefficients same as ci,j in Eq. 2.2.5. The other

loop-momentum dependent coefficients d̃(1234; k), etc. are "spurious" and vanish after inte-

gration. In principle the problem now reduces to calculating the above equation for sufficient

values of k and inverting the system to find the coefficients. This approach is, however, very

inefficient since it requires inverting large systems and may lead to numerical instabilities.

Instead, the values of loop-momentum can be chosen such that some of the propagators go

on-shell e.g.

D1 = D2 = D3 = D4 = 0 . (2.2.18)

Denoting the solution to the above constraints by k = k±0 and substituting into Eq. 2.2.17

results in

d(1234) + d̃(1234; k±0 ) = N(k±0 ) . (2.2.19)

It turns out that d̃(1234; k+
0 ) = −d̃(1234; k−0 ) = d̃(1234)T (k+

0 ) , where the general tensor
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T (k) is known. This allows the computation of the coefficients:

d(1234) =
1

2

(
N(k+

0 ) +N(k−0 )
)

d̃(1234) =
1

2T (k+
0 )

(
N(k+

0 )−N(k−0 )
)

(2.2.20)

Once the 4-point coefficients are known, the lower point coefficients can be calculated by

setting fewer propagators on shell. Effectively, the on-shell conditions convert the linear

system into a block-triangular form that can be solved much more easily. Details of the

above procedure as well as derivation can be found in [143].

The OPP and generalised unitarity methods resolve the issues with singular Gram deter-

minants as well as explosion of terms. A huge advantage is that the procedure can be applied

to sum of Feynman diagrams instead of each individual Feynman integral. The method is

not generally applicable beyond 1-loop, however. The decomposition in Eqs. 2.2.14 or 2.2.17

works because the resultant numerator can be written as a linear combination of the prop-

agator factors in the denominator [240]. This is not possible in general beyond 1-loop; such

numerators are called "Irreducible Scalar Products". A much more general approach called

"Integration-By-Parts" (IBP) reduction [241] is most commonly used for processes beyond

1-loop. Details of IBP reduction and its application to this work are provided in Sec. 3.

2.2.3 Results

The 1-loop amplitudes after calculation are compared to published results in [12]; agreement

is found for each form factor and helicity amplitude. Below are some results for the 1-loop

amplitude.

In Fig. 2.2.3a, the amplitude-squared |M|2 is compared for 3-different contributions: Only

the top-quark contribution, top-quark contribution with Higgs exchange diagrams included,

and the contribution of a massless up-type quark. It is clear that the top-quark contribution

(in black) grows with energy. After including the Higgs mediated diagrams, however, the
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(a)

(b)

Figure 2.2.3: Comparison of |M|2 for three different type of contributions. Without including

Higgs, the top-quark contribution increases with energy.

growth is arrested and the amplitude-squared plateaus; this is the unitarising effect of Higgs.

Another important observation is that even after including the Higgs mediated diagrams,

the contribution from top-quark dominates over the massless contribution. This further

underlines the importance of a full 2-loop computation for this process. Fig. 2.2.3b shows

the same data but zoomed in to the region of smaller invariant mass. While the massless

contribution is fairly uniform and dominates in the low-energy region, massive (top-quark)

contribution starts to increase past
√
s = 2mt when the top quarks in the loop can be
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produced on-shell.

(a)

(b)

Figure 2.2.4: Comparison of |M|2 for different helicities for the top quark contribution

including the Higgs diagrams.

This unitarising behaviour and the threshold effect for
√
s = 2mt is even more apparent

in the individual helicity amplitudes as shown in Fig. 2.2.4. Fig 2.2.4a shows the individual

helicity amplitudes without the Higgs mediated diagrams included. In this case the "+ +

00" mode is dominant and increases with energy, much like Fig. 2.2.3a. This is easily

understood through the Equivalence theorem where the "00" mode corresponds to scattering

of two scalars with the coupling proportional to top mass. Including the Higgs diagrams
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(Fig. 2.2.4b) it is clear that the "++00" mode does not increase indefinitely with energy. In

fact, at very high energies, the "+− 00" mode takes over and becomes the dominant mode.

Another interesting feature of the above plot is the stark threshold effect observed in the

"+ + 00" mode; this is absent in the "+− 00" mode as a consequence of a mismatch in the

helicities, and consequently the spin-states of the top quarks being produced on-shell.

Fig. 2.2.5 shows the ratio of individual helicities to the total |M|2 for both the top

(Fig. 2.2.5a) and massless (Fig. 2.2.5b) contributions. For the massive case, the longitudinal

mode "00" has the largest contribution, unsurprisingly with the "+− 00" helicity being the

dominant mode for high energies. For the massless case, however, the longitudinal modes

are almost negligible and the "+ + ++" and "+−+−" helicities contribute the most.
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(a)

(b)

Figure 2.2.5: Ratio of contribution of individual helicities to the total |M|2 for different

helicities for (a) top quark contribution including the Higgs diagrams, and (b) Massless

contribution.
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2.3 2-loop amplitude

2.3.1 Generation of diagrams

At 2-loops, contributions to this process involving s-channel Higgs production are already

known [167, 168, 169, 170] and those for the massless quarks were computed in [159, 160].

As such, only the top-quark contribution is considered here. The diagrams for the 2-loop

amplitude are generated using Qgraf [206]. A total of 166 diagrams are generated that

contain at least 1 top-quark propagator. A total of 49 diagrams vanish from colour since

they have a single gluon coupled to a closed quark loop. The remaining diagrams can broadly

be split into two different "classes":

Class A: In diagrams of class A, both Z-bosons are attached to the same closed fermion

loop. As described previously, the anti-commuting, Kreimer’s γ5 scheme is used to handle

γ5 in d-dimensions. In general, a reading point prescription is used to ensure that all traces

are read from the same point since cyclicity is not preserved. For a closed fermion loop,

however, in case of an even number of γ5’s, it is rather straightforward to eliminate the γ5

using the anti-commutation identities. This allows for a trivial implementation of the γ5

scheme for this class of diagrams.

Class B: In this class of diagrams, the Z-bosons couple to different closed fermion

loops. The vector-vector (v2
t ) contribution for these diagrams can be shown to vanish due to

Furry’s theorem. The vecctor-axial (atvt) piece vanishes identically, as discussed previously,

as a result of charge-parity conservation for this process. However, the axial-axial (a2
t ) piece

vanishes only for a sum over a degenerate SU(2)L doublet. Since the third generation quarks

(t, b) are not degenerate, a finite term remains from the top-bottom mass splitting. For these

diagrams, there is a single γ5 in each fermion loop which is non-trivial to handle and requires

a careful application of the anti-commuting γ5 scheme. It must be pointed out that these

diagrams are effectively 1-loop*1-loop type diagrams and as such are a lot easier to reduce
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[A] [B]

Figure 2.3.1: Example Feynman diagrams representing the two classes of diagrams at 2-loops

to master integrals than Class A.

2.3.2 Class A

After generating the diagrams in class A, the Feynman rules are inserted for which custom

FORM scripts are employed. The resulting algebraic expressions are required to be interpreted

as linear combinations of Feynman integrals. For this, Reduze 2 [242, 243, 244, 245] is

employed to map them to the 4 different integral families shown in Tab. 2.3.1.

An "integral family" is essentially a set of Feynman propagators that can be used to

classify the integrals appearing in one or more topologies. The concept of an "integral family"

is discussed in a bit more detail in Sec. 3. For the purpose of this section it suffices to say that

an integral family is a set of Feynman propagators grouped together such that all possible

scalar products between the momenta in the integral family (both loop momenta and external

momenta) are uniquely determined in terms of the inverse propagators. E.g. considering

an integral family with L loop momenta and E independent external momenta, the number

of distinct scalar products (dependent on loop momentum) is N = L(L + 1)/2 + EL. This

is the number of propagators that an integral family must contain. For a 4-point topology

at 1-loop, this number is 4; at 2-loops, it is 9. Note that for a 4-point topology at 2-loops,

only 7 propagators can be present assuming all the vertices connect 3 edges. The 2 "extra"

propagators, even though they do not form a part of the topology are required to specify all

the scalar products.
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A B C D
k 2

1 −m 2
t k 2

1 k 2
1 −m 2

t k 2
1

(k1 + p1)
2 −m 2

t (k1 + p1)
2 (k1 + p1)

2 −m 2
t (k1 + p1)

2

(k1 + p1 + p2)
2 −m 2

t (k1 + p1 + p2)
2 (k1 + p1 − p3)

2 −m 2
t (k1 + p1 + p2)

2

(k1 + p4)
2 −m 2

t (k1 + p4)
2 (k1 + p4)

2 −m 2
t k 2

2 −m 2
t

k 2
2 −m 2

t k 2
2 −m 2

t k 2
2 −m 2

t (k2 + p1 + p2)
2 −m 2

t

(k2 + p1)
2 −m 2

t (k2 + p1 − p3)
2 −m 2

t (k2 + p1 − p3)
2 −m 2

t (k2 + p4)
2 −m 2

t

(k2 + p1 + p2)
2 −m 2

t (k2 − p3)
2 −m 2

t (k2 + p4)
2 −m 2

t (k2 − k1)
2 −m 2

t

(k2 + p4)
2 −m 2

t (k2 + p4)
2 −m 2

t (k2 − k1)
2 (k2 − k1 + p2)

2 −m 2
t

(k1 − k2)
2 (k1 + k2 + p4)

2 −m 2
t (k1 − k2 + p1)

2 (k2 − k1 + p4)
2 −m 2

t

Table 2.3.1: List of integral families and their propagators for the 2-loop amplitude

For simplification of the expressions, Feynman gauge is used (ξ = 1) for internal gluons.

After mapping the diagrams to the above integral families, a total of 29247 integrals are

found in the amplitude. In the worst case, the integrals have up to 4 inverse propagators

in the numerator. The algebraic expressions at this stage of the calculation are quite large,

occupying ∼ 50 GB of disk space.

Usually, topologies that have many common denominators are combined together in

one integral family. Even so, there can still be common propagators between topologies

from different topologies. This, however, leads to redundancy in the definition of integrals

and certain symmetry relations can be written down that relate integrals from different

integral families. Such relations aren’t limited to different families, though, and similar

relations between different "sectors" of the same integral family exist as well as within a

sector. Using such relations generated using Reduze 2, the total number of integrals in the

diagrams can be reduced to 4504. Adding diagrams together and considering only form

factors, this number drops to 1584 due to further cancellations and the total size of the

expressions drastically reduces to < 1 GB. This really underlines the importance of working

with objects like form factors instead of individual diagrams as well as the use of symmetry

relations; the resulting algebraic expressions are a lot more manageable and the number of

Feynman integrals appearing in the expressions reduces drastically.

Unlike the case of 1-loop, at 2-loops the master integrals are not known a priori. Addi-

74



(a) (b) (c)

(d) (e)

(f) (g)

Figure 2.3.2: Representative Feynman diagrams in class A with irreducible topologies. The

number of master integrals in each topology are 3, 4, 3, 3, 5, 5, and 4 respectively

tionally, the methods traditionally applied at 1-loop e.g. Passarino-Veltmann reduction or

OPP method are not adequate beyond 1-loop. Conventional approach to reduce integrals

beyond 1-loop is Integration-By-Parts reduction [241]. Reduze 2 is used to perform a nu-

merical reduction (i.e. with numbers substituted for kinematic variables) to find the list of

masters. A total of 264 master integrals are found out of which 172 are not related via any

crossing or exchange of external legs. In terms of topologies, there are 85 irreducible ones

i.e. the topologies containing master integrals and which cannot be completely expressed in

terms of integrals from subtopologies, with the worst topology having 6 propagators and 6

master integrals. Of the 13 top-level topologies i.e. the topologies with 7 propagators, 7 are
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3.3: Representative Feynman diagrams in class A with reducible topologies.

irreducible (Fig. 2.3.2) and the other 6 are reducible (Fig. 2.3.3).

For diagrams of Class A two different colour structures appear given by the two quadratic

Casimir invariants CF and CA i.e. the colour structure of a diagram can be written as

C = (a1CF + a2CA) δab . (2.3.1)

Interestingly, it is observed that the diagrams contributing to the CF piece are purely planar

while a mix of planar and non-planar diagrams contributes to the CA piece. Since the planar

diagrams are expected to be simpler to reduce than the non-planar diagrams, the CF piece

is expected to be simpler.

Full IBP reduction for this class of diagrams is extremely challenging and the conventional
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approach proved inadequate. For instance, Reduze 2 was used to perform the reduction for

this process for the case of massless internal quarks in [159]. However, the it was only able

to solve reductions for the massive case only for integrals with 1 inverse propagator while

the full problem requires the solution for integrals with up to 4 inverse propagators. The

new developments required to solve this problem are discussed in Chapter 3.

2.3.3 Class B

Diagrams in Class B have a single γ5 in each loop which leads to a non-trivial structure

and requires careful application of the reading point prescription. Details of the γ5 scheme

and the reading point prescription are given in Appendix C.

Since these diagrams are effectively 1-loop*1-loop, they are significantly simpler and

hence treated separately from Class A. As described previously, the only surviving terms

are of the axial-axial type (a2
t ). These should also be proportional to m2

t assuming all the

other quark flavours are massless. The colour factor for this class of diagrams is particularly

simple since this is just a product of two 1-loop diagrams.

C = T 2
F δab . (2.3.2)

In the context of this process, the application of the anti-commuting scheme is relatively

simple since every trace must be read from the same point due to the presence of only 1 γ5 in

each loop. Passarino-Veltmann reduction is used along with the 1-loop tool Package-X [225]

for manipulation of tensor objects to reduce the amplitudes to master integrals. Exact results

for these diagrams were previously presented in [165] with which full agreement is found.
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Chapter 3

IBP reduction using syzygies

3.1 Integration-by-parts reduction

A general L-loop scalar Feynman integral with N propagators can be represented by

I(ν1, ..., νN) =

∫ ( L∏
l=1

ddkl

iπ
d
2

)
N∏
i=1

1

(q2
i −m2

i )
νi (3.1.1)

where k1, ..., kL are the loop momenta, p1, ..., pE are the independent external momenta, qi

are the momenta of the propagators (linear combinations of loop and external momenta),

mi are the masses of the propagators, νi ≤ 0 are (integer) exponents of the propagators,

and d = 4 − 2ε is the number of space-time dimensions. Here, non-positive powers νi

of the propagators are also allowed, that is, an integral family is considered allowing for

general propagators. Note that in an integral family, all possible scalar products between

the momenta (both loop and external) are fixed in terms of the kinematic invariants and

inverse propagators. This requires the total number of propagators in an integral family to be

equal to L(L+ 1)/2 +LE. Feynman integrals often contain fewer propagators than this; the

remaining propagators can appear in the numerator as irreducible scalar products. E.g. the

4-point topologies at 2-loops considered in this work (Figs. 2.3.2 and 2.3.3) have a maximum

of 7 distinct propagators with the remaining 2 being used to express the irreducible scalar
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Figure 3.1.1: A tadpole graph with the thick loop corresponding to the massive propagator

with mass m.

products.

The total derivative of an integral in dimensional regularisation vanishes. This allows the

following linear relations between different integrals [241]

0 =

∫ ( L∏
l=1

ddkl
iπd/2

)
∂

∂kµj

(
vµ

N∏
i=1

1

(q2
i −m2

i )
νi

)
, (3.1.2)

where vµ could be any linear combination of loop and external momenta. The surface term

from the integration of the above integrand can be shown to vanish for small values of d.

Extending the formula to general d using analytic continuation leads to the relations known

as "Integration-By-Parts" identities.

It is instructive to look at an example. Consider a Feynman integral with just one

propagator in d dimensions e.g. in Fig. 3.1.1

I =

∫
ddk

iπd/2
1

(k2 −m2)
(3.1.3)

often referred to as a "tadpole" integral. Taking the derivative of the integrand with respect

to the loop momentum (and dropping the iπd/2 factor for brevity), as in Eq. 3.1.2, yields

∫
ddk

∂

∂kµ

kµ
(k2 −m2)

=

∫
ddk

[(
∂kµ
∂kµ

)
1

(k2 −m2)
+ kµ

∂

∂kµ

1

(k2 −m2)

]
(3.1.4)

= (d− 2)

∫
ddk

1

(k2 −m2)
− 2m2

∫
ddk

1

(k2 −m2)2
. (3.1.5)
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The left hand side of the above equation, which is a total derivative, can be shown to be

vanish for small d. This leads to the following linear relation between integrals

(d− 2)

∫
ddk

1

(k2 −m2)
= 2m2

∫
ddk

1

(k2 −m2)2
. (3.1.6)

This relation can be generalised for an arbitrary exponent of the propagator. Denoting with

I(ν) the integral with a general exponent ν for the propagator,

I(ν) =

∫
ddk

1

(k2 −m2)ν
, (3.1.7)

the general relation is

(d− 2ν) I(ν) = 2m2ν I(ν + 1). (3.1.8)

The above relation implies that in this tower of integrals I(ν), only one is independent and

the rest are simply related to it. It must be pointed out that any of these integrals can be

chosen to be the independent integral or, as is referred to more commonly, the "master"

integral. Some choices might offer certain advantages over others e.g. finiteness in d = 4

dimensions. We will explore this in more detail in chapter (ref chapter finite integral). It

is interesting to note that setting m = 0 in Eq. 3.1.8 gives zero i.e. ∀ ν 6= d/2, I(ν) = 0.

In other words, massless tadpole integrals vanish in dimensional regularisation. This is a

part of the more general statement: scaleless integrals i.e. integrals with no dependence on

external kinematic variables vanish in dimensional regularisation.

In the above example, it was possible to derive an analytical solution for the IBP relation;

this is in general not possible in practice. Consider a slightly more complicated example,

the 2-point integral with one massive and one massless propagator (Fig. 3.1.2). An integral
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Figure 3.1.2: A two-point function with one massive propagator. The thick line corresponds

to the massive propagator.

with general exponents for this topology can be written as

I(ν1, ν2) =

∫
ddk

1

(k2 −m2)ν1 ((k + p)2)ν2
(3.1.9)

where p is the external momentum entering the loop. Taking derivative with respect to the

loop-momentum vector kµ and choosing vµ = kµ, pµ,

0 =

∫
ddk

∂

∂kµ

kµ
(k2 −m2)ν1 ((k + p)2)ν2

= (d− 2ν1 − ν2) I(ν1, ν2)− 2m2ν1 I(ν1 + 1, ν2)

− ν2 I(ν1 − 1, ν2 + 1) + ν2 (p2 −m2) I(ν1, ν2 + 1),

(3.1.10)

0 =

∫
ddk

∂

∂kµ

pµ
(k2 −m2)ν1 ((k + p)2)ν2

= (ν1 − ν2) I(ν1, ν2)− ν1 I(ν1 + 1, ν2 − 1)

+ ν1 (p2 +m2) I(ν1 + 1, ν2) + ν2 I(ν1 − 1, ν2 + 1)

− ν2 (p2 −m2) I(ν1, ν2 + 1) . (3.1.11)

It is clear that a trivial analytical solution akin to Eq. 3.1.8 is not possible in this situation.

To make the equations a bit simpler, it helps to start with ν2 = 0 which gives

0 = (d− 2ν1) I(ν1, 0)− 2m2ν1 I(ν1 + 1, 0) , (3.1.12)

0 = ν1 I(ν1, 0)− ν1 I(ν1 + 1,−1) + ν1 (p2 +m2) I(ν1 + 1, 0) . (3.1.13)

In the above equations, Eq. 3.1.12 is just the solution for the tadpole integrals (Eq. 3.1.8),
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while Eq. 3.1.13 provides solutions for integrals with negative exponents for the second

propagator i.e. for the propagator appearing in the numerator. E.g. choosing I(1, 0) as the

master integral and setting ν1 = 1 results in

I(2, 0) =
d− 2

2m2
I(1, 0) , (3.1.14)

I(2,−1) =
d(p2 +m2)− 2p2

2m2
I(1, 0) . (3.1.15)

The above equations provide solutions for I(2, 0) and I(2,−1). Repeated application of

Eqs. 3.1.12 and 3.1.13 will allow the solution of integrals I(ν,−1) ∀ ν ≥ 1.

Setting, instead, ν1 = 0,

0 = (d− ν2) I(0, ν2)− ν2 I(−1, ν2 + 1) + ν2(p2 −m2) I(0, ν2 + 1) , (3.1.16)

0 = − ν2 I(0, ν2) + ν2 I(−1, ν2 + 1)− ν2 (p2 −m2) I(0, ν2 + 1) . (3.1.17)

Since scaleless integrals vanish in dimensional regularisation, I(0, ν2) = 0 ∀ ν2 ≥ 0. The

above equations then imply

I(−1, ν2) = 0 . (3.1.18)

Now the case where ν1, ν2 6= 0 can be considered. Setting ν1 = ν2 = 1 results in the

following equations:

0 = (d− 3) I(1, 1)− 2m2 I(2, 1)− I(0, 2) + (p2 −m2) I(1, 2), (3.1.19)

0 =− I(2, 0) + (p2 +m2) I(2, 1) + I(0, 2)− (p2 −m2) I(1, 2) . (3.1.20)

Here I(0, 2) = 0 (since it is scaleless) and I(2, 0) is given in Eq. 3.1.14. This leaves I(1, 1),

I(2, 1), and I(1, 2) undetermined. With 3 remaining integrals and only 2 equations, it

appears that the above 3 integrals cannot all be expressed in terms of the tadpole integral.
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Indeed, another master integral is required with both ν1, ν2 ≥ 1. Choosing I(1, 1) as the

master integral in addition to I(1, 0), the identities can be written as

0 = (d− 3) I(1, 1)− 2m2 I(2, 1) + (p2 −m2) I(1, 2) , (3.1.21)

0 =− I(2, 0) + (p2 +m2) I(2, 1)− (p2 −m2) I(1, 2) . (3.1.22)

Solving the above equations gives I(2, 1) and I(1, 2) in terms of the chosen master integrals

I(1, 0) and I(1, 1).

To summarise, the reduction procedure is started by choosing the lowest value of ν =

ν1 + ν2 + ... = 1. For ν1 = 1, ν2 = 0, the system gets reduced to that of a massive tadpole

while for ν1 = 0, ν2 = 1 the equations lead to scaleless integrals that vanish. In the next step,

the value of ν is increased to 2. Starting with ν1 = ν2 = 1, the solutions require another

master integral. However, it can be shown that for higher values of ν, all the other integrals

can be expressed in terms of these 2 master integrals. This systematic way of generating and

solving linear relations for integer exponents νi starting from lowest values of ν = ν1 +ν2 + ...

was first presented by Laporta [246]. Many public codes based on this algorithm are available

for this purpose [247, 248, 243, 249, 250].

Reduze 2, based on Laporta’s algorithm was used to perform the reductions for gg → ZZ

at 2-loops for the case of massless internal quarks in [159]. It was found that it was insufficient

for the process at hand, however. In fact, even for the planar topologies which are expected

to be significantly simpler than the non-planar topologies, the reductions for integrals with

up to one inverse propagator, denoted by s ≤ 1, were incredibly difficult and required several

months of CPU time. The integrals with s = 2 were totally out of reach with conventional

methods.

In particular, conventional IBP solvers have the following major issue.

1. Perhaps the most significant drawback is the presence of integrals with doubled prop-

agators, also referred to as dots, in IBP identities. As is evident from Eqs. 3.1.21
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and 3.1.22, IBP identities generated this way necessarily contain these doubled propa-

gators for the conventional choice of vectors vµ = (kµ1 , ..., p
µ
1 , ...). These integrals don’t

often appear in the amplitude and as such their reductions aren’t required.

2. While it is possible to avoid generating solutions for such integrals with doubled prop-

agators, reduction procedure for just the integrals required for the amplitude still pro-

ceeds through row-reduction of linear systems containing these integrals. This means

that a much larger linear system than is optimal is being solved, further slowing down

the process.

A solution was first provided to the above issues in [251] to avoid generating such integrals

with doubled propagators with specific choices of the generating vectors vµ using a Gröbner

basis approach. An alternate approach using linear algebra was instead proposed in [252],

which forms the basis of the approach used in this work. Before discussing these solutions

in detail, however, it is useful to introduce an alternate representation for the Feynman

integrals.

3.2 Baikov representation

Consider the general L-loop integral family with E independent external momenta and N

edges (propagators) from Eq. 3.1.1, with only T ≤ N propagators appearing in the integral

i.e. νi > 0 for i ≤ T . Let Q denote the set of all loop momenta and independent external

momenta i.e. Q = (k1, ..., kL, p1, ..., pE). This integral has a total of Ld integration variables.

Since the integral has no open Lorentz indices, however, it is easy to see that it depends only

upon the scalar products between the loop momenta and the external momenta appearing in

the propagators, Qi ·Qj, as well as masses and d. Maximum number of such scalar products is

L(L+1)/2+LE for i ≤ j and i ≤ L, j ≤ L+E. For an integral with T distinct propagators

appearing in the integral, the integral only depends on T scalar products, implying that only

T ≤ L(L+ 1)/2 + LE degrees of freedom are required to characterise the integral. The rest
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Figure 3.2.1: A two-point function with massless propagators. The dashed line corresponds

to the cut propagators.

of the Ld− T variables can simply be integrated over.

This can be looked at in a slightly different way by considering the loop momentum k1,

for example, and dividing it’s components into k1,⊥ and k1,‖ where k1,‖ is the projection of

k1 onto the space spanned by (k2, ..., kL, p1, ..., pE) and k1,⊥ is orthogonal to it. This allows

performing the integrations over k1,⊥ independently of the actual Feynman propagators.

The general L-loop N edge Feynman integral in Eq. 3.1.1 can be written in Baikov’s

representation as

I(ν1, ..., νN) = N0

∫
dz1...dzN

1∏N
i=1 z

νi
i

P
d−L−E−1

2 , (3.2.1)

Here N0 is a normalisation factor depending on the spacetime dimensions d and kinematics,

P is the Jacobian of the transformation known as the Baikov polynomial, and z1, ..., zN are

the integration variables called the Baikov parameters which are just the inverse propagators

zi = q2
i −m2

i . The Baikov polynomial P in general depends on the Baikov parameters and

the kinematic invariants. This representation was first proposed in [253] and later clarified

in [254]; the reader is referred to the above references for further details.

It was shown in [255, 256] that it is in general highly non-trivial to write down the

integration domain explicitly. While it is rather challenging to perform the actual integration

in this representation, a huge advantage the Baikov representation allows over the traditional

momentum-space representation is in performing unitarity cuts [257]. Cutting propagators
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in this representation is reduced to the simple task of taking the residue of the integrand at

0 for the corresponding Baikov parameter [258, 259].

Evaluating Feynman integrals on cuts is useful for many purposes. The discontinuity of

a Feynman integral across a branch cut is given by the cut integral

Discsi(I) = −CutsiI (3.2.2)

where si corresponds to some Mandelstam invariant. This relation was derived in [260, 261]

and is a consequence of the optical theorem [262]:

M(i→ f)−M∗(f → i) = i
∑
x

∫
dΠxM(i→ x)M∗(f → x) . (3.2.3)

In the above equation, i refers to the initial state, f to final state, and x to all possible

intermediate states. dΠx is the n-particle phase space weight for the intermediate state x.

This simplifies to

2ImM(i→ i) =
∑
x

∫
dΠx|M(i→ x)|2 . (3.2.4)

The imaginary part of the massless bubble integral in Fig. 3.2.1, for instance, can be

calculated by evaluating the integral on the s-channel cut denoted via the dashed line. The

integral in Fig. 3.2.1 is known to evaluate to (for d = 4− 2ε)

I =
1

ε
+ 2− log(−p2 − i0) +O(ε) , p2 < 0 (3.2.5)

where p is the incoming external momentum (see Appendix B.2). This integral is analytic

for p2 < 0 and can be analytically continued to the region p2 > 0 using the principal branch
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of the logarithm. This results in the integral picking up an imaginary part

I =
1

ε
+ 2− log(p2)− iπ +O(ε) , p2 > 0 . (3.2.6)

i.e. Im I = −iπ and the discontinuity is given by Discs(I) = −2iπ.

In Baikov representation, the integral can be written as

I = N0

∫
dz1dz2

(sz1 − 1
4
(−(p2 + i0)− z1 + z2)2)1/2−ε

z1z2

(3.2.7)

with the normalisation factor

N0 =
2iπ

3
2
−ε

Γ(3
2
− ε)(p2 + i0)1−ε (3.2.8)

The s-channel cut here corresponds to setting both the propagators on-shell i.e. computing

the residue at z1 = z2 = 0 [256], which results in

CutsI =
4iπ

p2

p2

2
+O(ε) = 2iπ +O(ε) . (3.2.9)

It is clear that the above results satisfy the cut-discontinuity equation (Eq. 3.2.2).

In addition to specific kinematic cuts as in the above example, the integrals can also

be evaluated on maximal cuts i.e. setting all propagators on-shell. This is of particular

importance in the method of evaluating Feynman integrals using differential equations since

the integrals evaluated on maximal cuts correspond to the homogeneous solution of the

differential equations [254, 263]. Since the homogeneous solution is expressed using the

same class of functions as the full solution, it can be used to determine if the differential

equations admit a polylogarithmic solution. In addition, the solution on maximal cut can be

used to determine the "uniformly transcendental" basis of master integrals [264, 265] which

satisfy particularly simple differential equations. The reader is referred to [255, 256] for a
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detailed discussion and more complicated examples of integrals evaluated on maximal cuts,

including integrals involving elliptic functions. However, the representation in Eq. 3.2.1 is

not the most convenient representation for performing the integration explicitly. In fact, the

number of integration variables can, in many cases, be reduced by performing the variable

transformation loop-by-loop [255, 256].

Similar to the momentum-space representation, the IBP relations can also be written

down in the Baikov representation [254]. For the general integral in Eq. 3.2.1, the Integration-

By-Parts identities in Baikov representation are given by

0 =

∫
dz1...dzN

N∑
i=1

(
∂fi
∂zi

+
d− L− E − 1

2P
fi
∂P

∂zi
− νi

fi
zi

)
1∏N

i=1 z
νi
i

P
d−L−E−1

2 . (3.2.10)

Here fi are arbitrary polynomials in the Baikov parameters and the kinematic invariants.

The freedom in choosing the polynomials fi reflects the freedom in choosing the vectors vµ

in the momentum-space representation. Certain choices of fi can provided advantages over

the others; this is discussed in the next section (Sec. 3.3).

Integration-By-Parts relations can also be generated on cuts [266, 267] using the general

formula in Eq. 3.2.10 which can be useful to simplify the system of equations by reducing

them into smaller and more manageable parts as well as potentially provide significant per-

formance improvement as argued in [267]. The IBPs generated on cuts can also be used to

obtain the differential equations on cuts e.g. on maximal cuts which can be used to solve for

the homogeneous solution of the differential equations.

3.3 Syzygies for IBP reduction

In the above general equation for IBP relations via Baikov representation (Eq. 3.2.10), the

simplistic choice of the polynomials fi = 1 leads to equations that have terms with 1/P . It is

straightforward to see that such terms generate integrals with shifted dimensions in the IBP

relations. In general it is highly desirable to avoid such integrals in the IBP systems since
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they do not commonly occur in the amplitudes. In addition, the presence of such integrals

leads to bloated linear systems which are relatively difficult to solve. To avoid such integrals

is relatively straightforward, however, by simply imposing the constraint [266, 267, 268]

(
N∑
i=1

fi
∂P

∂zi

)
+ fN+1 P = 0 (3.3.1)

on the polynomials fi. This is known, in algebraic geometry, as a syzygy constraint. Note

the presence of a new polynomial fN+1; together with the rest of the fi, it forms a syzygy.

The formal mathematical definition and details of syzygies is beyond the scope of this work

and the reader is referred to [269] for more details regarding syzygies in the context of

Feynman integral reduction. For the purposes here, a syzygy is basically a relation between

polynomials in certain variables. E.g. consider a set of polynomials ei = {x, x+ y, y2}. The

equation

f1e1 + f2e2 + f3e3 = 0 (3.3.2)

is satisfied by fi = {{y,−y, 1}, {x+ y,−x, 0}}. This set of solutions forms a syzygy module.

Note that any linear combination of the two syzygies, with the variables (x, y) allowed in the

coefficients, also forms a syzygy. This is easy to see by replacing fi by a(x, y)f1,i + b(x, y)f2,i

in Eq. 3.3.2 where f1,i and f2,i are the two different solutions.

For the case at hand, syzygies are formed by polynomials in the Baikov parameters

with the kinematic invariants appearing in the coefficients. Explicit solutions to the "no

dimension-shift" constraint in Eq. 3.3.1 were pointed out in [270] in Baikov representation.

These fno−dimI are simply linear polynomials in the Baikov parameters and kinemat-

ics. Note that these fno−dimi generate integration-by-parts relations identical to those in

the momentum-space representation [270]. E.g. for the bubble function with one massive
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propagator in Fig. 3.1.2, the no dimension-shift syzygies are

fno−dimi = {{−p2 − z1 + z2, p
2 − z1 + z2, 0}, {2(m2 + z1),−p2 − z1 + 2(m2 + z1) + z2,−2}} .

(3.3.3)

Substituting the above syzygies into Eq. 3.2.10, it can be seen that the IBP relations from

Eqs. 3.1.10 and 3.1.11 are recovered.

As seen in Sec. 3.1, IBP relations generated this way contain integrals with doubled

propagators and it is highly desirable to avoid generating such integrals. Looking at the

general IBP equation in Baikov representation (Eq. 3.2.10), it is clear that such doubled

propagators are generated by the term νifi/zi. They can be avoided by imposing the so-

called "no dot" constraint

fno−doti = bi zi ∀ i = 1, . . . , N ′ with νi ≥ 1 andN ′ < N. (3.3.4)

This is a rather trivial constraint. Essentially, the fi are required to be proportional to zi so

as to cancel the zi in the denominator of the offending term. For the bubble function with

one massive propagator in Fig. 3.1.2, the no-dot syzygies are simply

fno−doti = {{z1, 0, 0}, {0, z2, 0}, {0, 0, 1}} . (3.3.5)

To impose the two constraints individually is quite straightforward. Finding fi that

satisfy simultaneously both the constraints in Eqs. 3.3.1 and 3.3.4 is, however, a highly

non-trivial problem in general. The initial strategy, based on the syzygy approach using

Baikov representation, proposed in [267] was to simply replace the fi in the no dimension-

shift constraint in Eq. 3.3.1 with bizi and solve for bi. This was found to be computationally

expensive and impractical for complicated topologies. The approach proposed in [269] to

simultaneously solve the two constraints by computing a module intersection of the two
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syzygy modules was suggested to be better. Computing module intersections is a well-

known problem in Algebraic geometry and several computer algebra packages exist for this

task e.g. Singular [271].

The usual module intersection approach using Singular was found to be inadequate

for the purpose of this calculation, however. For the planar topologies, for example, which

are expected to be significantly simpler in complexity, even syzygies for sectors with 6-lines

(propagators) were found to be out of reach, using Singular out of the box. With a few

optimisations with the assistance of the author of [269], further improvement was found

rendering 6-line planar sectors solvable. However, the top-level (7-line) sectors in the planar

as well as non-planar topologies remained intractable. In addition, the approach was found

to be computationally expensive requiring several days of run-time with large amounts of

RAM.

3.4 Linear algebra based syzygy construction

In light of the inadequacy of the module intersection based method implemented through

Singular, it was clear that an alternate approach was required to compute the syzygies.

Specifically, it was observed that the module intersection method was computationally ex-

pensive and not feasible for the problem at hand. Instead, a custom linear algebra based

syzygy solver was employed to compute the syzygies required for this work.

The basic idea behind the algorithm is as follows. As mentioned in the previous section,

it is straightforward to write down the solutions to the no dimension-shift constraint as well

as the no dot constraint. The important point to note here is that if certain syzygies satisfy

a constraint, then so does any linear combination of those syzygies where the coefficients are

allowed to depend on the variables i.e.

(
N∑
j=1

F no−dim
j

∂P

∂zj

)
+ F no−dim

N+1 P = 0 (3.4.1)
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where F no−dim
j =

∑
i ai(z1, ..., zN , s12, ...)f

no−dim
j,i is the linear combination and ai are the poly-

nomials. The linear combination F no−dim
j must now satisfy the no dot constraint F no−dim

j =

bjzj which provides constraints on the polynomials ai.

In principle, the above construction should provide exactly the same syzygies as the

module intersection method if solving for general polynomials ai. However, solving for general

ai would require a Gröbner basis computation which is identical to the module intersection

approach. Instead, this method can be used to algorithmically construct the solutions up

to a certain polynomial degree by choosing an ansatz for the ai, starting with degree 0

polynomials for ai. Substituting an ansatz for ai in Eq. 3.4.1 turns the problem into row

reduction of a matrix. A custom linear solver based on Finite field methods [272, 273] is

used to provide fast and efficient row reduction of the resulting linear system.

A brief description of the algorithm first implemented for the multivariate case in, and

reproduced from, [6] is provided below.

While the module intersection method provides all possible syzygy solutions, it was ob-

served that for amplitude calculations only syzygies up to a certain degree are needed.

Indeed, in contrast with the module intersection approach based on Singular, the linear al-

gebra approach presented above was able to generate the required syzygies. For the top-level

planar topologies, the method was relatively quick requiring only O(10) CPU hours while

the non-planar topologies turned out to be significantly more difficult requiring O(100) CPU

hours per topology. This approach was also used to generate the required syzygies for the

5-point 2-loop topologies needed for the calculation of γγ + jet amplitude in [193, 197].

While this method was able to solve the syzygies for calculations at the frontier of per-

turbative QCD, there are certain limitations. In particular:

1. Solutions are only produced up to a certain polynomial degree by construction. In case

higher degree solutions are required, the task can be challenging in certain cases. E.g.

For some of the non-planar topologies, syzygies for degree up to 5 were constructed,

but these were found to be insufficient. It was estimated that computing the degree
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Algorithm 1 Syzygies for linear relations without dimension shifts or dots [6]
Input: Syzygies of degree 1 solving Eq. 3.3.1, maximal required degree nmax.

Output: Syzygies S1, . . . , Snmax up to degree nmax solving Eqs. 3.3.1 and 3.3.4.

1: Start with syzygies of degree n = 1. Let I1 be a complete set of solutions (fi) to the

no-dimension-shift constraint from Eq. 3.3.1, which are linear in the Baikov parameters

zk. These can directly be written down [270]. Abbreviating the momenta squared with

variables zN+1, . . . , the vectors in I1 are of homogeneous degree 1 in the variables zk.

2: At degree n, form a matrix Mn, where each element of (fi) ∈ In corresponds to a row.

The columns enumerate both the component i of (fi) and the power products of zi in

them; the entries of the matrix are the coefficients. A column is called admissible, if it

satisfies the no-doubled propagator constraint in Eq. 3.3.4, and non-admissible otherwise.

All admissible columns are ordered to the right of the non-admissible columns.

3: Perform a row reduction of Mn. In the row reduced form, select all rows, which have an

admissible pivot column and form the corresponding syzygies Sn from them. Sn forms a

complete set of linear combinations of the syzygies in In, which satisfy Eq. 3.3.4 for all

of their terms, and are therefore our solutions at degree n.

4: If n is the user-defined maximal degree, stop and return the solutions S1, . . . , Sn. Oth-

erwise, proceed.

5: For each vector of polynomials (fi) ∈ In and each zk, form the vector of polynomials

(zkfi). This gives the set In+1, which are solutions of Eq. 3.3.1 of degree n+ 1 in the zk

but not necessarily solutions of Eq. 3.3.4.

6: Replace n→ n+ 1 and go to step 2.
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6 syzygies would be unfeasible with the available computing resources. Instead, some

identities involving integrals with doubled propagators were indeed required for a com-

plete and successful IBP reduction. It has been suggested that syzygies up to a certain

degree, dependent on the specific problem at hand, are sufficient to obtain reductions

for integrals with arbitrarily high numerators. This is not proven, however.

2. By the nature of the construction wherein the kinematic variables are treated as inde-

terminates of the ring similar to the Baikov parameters, often identities are generated

with "true" degree less than the what it should be. In other words, the kinematic

variables sometimes inflate the polynomial degree of the syzygy so that a degree "n"

syzygy is effectively only "n-1". This can happen in two ways, either by having a

kinematic variable as an overall factor or by having each and every individual term

containing a kinematic variable. This can in principle be fixed by considering the

kinematic variables in the coefficient field instead of as indeterminates like the Baikov

parameters. It was suggested that in this approach the degree of syzygies required can

be less than in the original formulation. This is not very well understood, however,

and requires further investigation.

3. This construction may also result in syzygies that are polynomials multiplied by a

Baikov variable as an overall prefactor. Such syzygies are redundant: the loop edge

corresponding to the Baikov variable present as the overall prefactor is either part of the

topology under consideration or appears as an inverse propagator (in the numerator).

In the first case the syzygies simply generate identities from a lower topology that

are presumably contained in the identities generated specifically for that topology;

these are indeed dropped [274]. In the second case, the prefactor simply increases the

"tensor rank" of every integral in the identity by 1 which can alternatively be achieved

by increasing the rank of seed integrals in the syzygies with one degree.

Despite the above limitations, the method has been very successful in solving syzygies
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for challenging problems.

3.5 IBP reduction using syzygies

The syzygies generated using the approach outlined in the previous section are used to

generate IBP templates to generate relations between integrals, similar to templates gen-

erated through conventional IBP relations e.g. in Eqs. 3.1.10 and 3.1.11. Seed integrals

with specific propagator exponents are then inserted into the templates to generate the re-

quired IBP relations, similar to Laporta’s algorithm, which are subsequently solved using a

row-reduction procedure. An in-house custom linear solver, Finred, based on Finite field

methods [272, 273] is used for this. Instead of solving the symbolic linear system directly,

the equations are sampled over a finite field and the symbolic dependence is reconstructed

through rational reconstruction. This method allows a very high degree of parallelisation

and hence can be much faster than the traditional approach.

In the case of ZZ production, top-quark and Z-boson masses are set to numbers: mt = 1

and m2
Z = 5/18m2

t . The chosen ratio for mZ corresponds to the mass of the Z-boson in

terms of top-quark mass. This is to further simplify the linear relations to facilitate solving

the system. Note that setting mt = 1 simply amounts to factoring out powers of mt from

the quantities of interest rendering the rest of the kinematic variables, and the form factors,

dimensionless. In this way, all the Feynman integrals were successfully reduced to master

integrals. Even with the above simplifications, the reductions proved to be rather challenging

nevertheless and required a significant amount of computational resources. The reductions

took months of run-time on the High Performance Computing Cluster (HPCC) at MSU.

The resulting reduction tables occupied over 200 GB of disk space and involved extremely

complicated rational functions with up to total degree 190 in the kinematic variables. As

somewhat expected, the non-planar topologies proved to be the most challenging accounting

for almost all of the CPU time as well as disk space.
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Note that choice of basis integrals has not been mentioned yet; for ZZ the reductions

were performed in terms of the conventional Laporta basis of integrals where the integrals

with least numerator rank and no dots along with specific ordering prescription are simply

chosen as master integrals. This is optimised for evaluation later; the details are discussed

in the next section (Sec. 4). An interesting point to note is that within the planar topolo-

gies, Figs. 2.3.2a, 2.3.2c, and 2.3.2b, with adjacent gluons are significantly simpler than the

topology in Fig. 2.3.2d with the gluons at the opposite vertices.

For the case of γγ + jet, however, the situation is a lot more complicated due to the

presence of an additional external particle. Indeed, while the planar topologies had been

reduced, complete IBP reductions for a 5-point amplitude at 2-loops (including the non-

planar topologies) had been out of reach until very recently. The solutions for the non-

planar topologies were facilitated with the assistance of two key improvements. First, a

canonical basis (see Sec. 4.1 for a brief description) was chosen for the reductions instead

of the conventional Laporta basis. This already led to a reduction by a factor of 2 in the

number of samples required for a full reconstruction, effectively reducing the required CPU

time to half as well. Second, a new algorithm was used to guess the complete symbolic form

of the denominators of the rational coefficients in the reduction identities [275, 276, 197].

This further led to a reduction in the number of samples by a factor of ∼ 10 and effectively

made the reductions computationally feasible for the extremely challenging hexagon-box and

double-pentagon topologies.

For both the processes, the reduction identities are generated with the rational coefficients

in front of the master integrals over a common denominator. This representation is not ideal

for a couple of reasons. First, reduction identities occupy a huge amount of disk space in this

representation and are rather difficult to deal with for complicated processes. Second, having

everything over a common denominator can often lead to numerical instabilities. Instead,

multivariate partial fractioning of the rational coefficients results in a substantially simpler

form of the reduction identities, in particular for the non-planar topologies. For the case of
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(a) The hexagon-box topology (b) The double-pentagon topology

Figure 3.5.1: The non-planar topologies for 5-point 2-loop γγ + jet production.

ZZ, this resulted in a reduction from over ∼ 10 GB to < 500 MB of disk space. Similarly,

a reduction by a factor of ∼ 100 is achieved for the most comlicated reduction identities for

γγ + jet. Multivariate partial fractioning is discussed in more detail in Sec. 5.1.

While such drastic simplifications are certainly impressive, a deeper understanding behind

this would be highly desirable. It has been suggested that the difference in complexity is

due to combining structures with different singular behaviours and limits. Ideally, it would

be extremely useful to generate reduction identities directly in the partial fractioned form.

While an efficient algorithm to do this is not yet known, recent progress in understanding this

partial fractioning procedure as well as general structure of the singularities holds promise

for the future.
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Chapter 4

Finite basis integrals

4.1 Evaluation of Feynman integrals

Once the Feynman integrals are reduced to a set of master integrals, the next step is to

evaluate them. There are a number of methods used to evaluate master integrals, both

analytically and numerically. This section will focus on the methods of differential equa-

tions [277, 278, 279, 280, 281, 282] and sector decomposition [76, 283, 284, 285], used for

γγ + jet and ZZ production respectively.

4.1.1 Differential equations

Consider the tadpole integral from Eq. 3.1.3. This integral is dependent only on the mass

m. Taking the derivative under the integral sign with respect to m2,

d

dm2
I(m2) =

∫
ddk

iπd/2
d

dm2

1

k2 −m2

= −
∫

ddk

iπd/2
1

(k2 −m2)2
. (4.1.1)

The integral in the second line of the above equation, resulting from the derivative, can be

reduced to I(m2) using IBP relation from Eq. 3.1.6. This results in the following differential
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equation for I(m2):

d

dm2
I(m2) = −d− 2

2m2
I(m2) . (4.1.2)

The above differential equation can be solved given appropriate boundary conditions to solve

for I(m2).

Consider now a more general system with m master integrals denoted by I1, ..., Im. Tak-

ing the derivative with respect to the dimensionless kinematic variable yα and using IBP

reduction to reduce the right hand side integrals to master integrals, the derivatives can be

written as

∂

∂yα
~I = Aα~I , (4.1.3)

where ~I is the vector of master integrals (I1, ..., Im) and Aα is an m × m matrix whose

entries are rational functions in the invariants and the dimensional regulator ε. Repeating

the procedure for all the kinematic variables results in the following form

d~I = A~I , (4.1.4)

where A is an m×m matrix of one-forms

A =
∑
α

Aα(~y, ε) dyα (4.1.5)

It turns out that in many cases, the above system can be drastically simplified following

an algebraic basis change ~I = T (~y, ε) ~I ′ [286, 281] such that the differential equation in

Eq. 4.1.4 becomes

d~I ′ = εA′(~y)~I ′ . (4.1.6)
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The above form is colloquially referred to as the canonical or ε-form. Note that the entries of

the transformation matrix T are rational functions in the kinematic variables ~y and ε. In the

canonical form, the differential equations in most known cases can be easily solved order by

order in ε in terms of iterated integrals that evaluate to multiple polylogarithms (MPLs) [287,

288, 289, 290, 291, 292, 293]. Efficient numerical codes are available for evaluation of such

multiple polylogarithms [294, 295, 296, 297, 298, 299, 300, 301] allowing a fast and convenient

numerical implementation of Feynman amplitudes expressed in terms of such functions.

The method of differential equations is very powerful and has been used to evaluate a

large number of Feynman integrals for many different processes. E.g. this method was used

to calculate the master integrals for the massless ZZ amplitudes [302, 303, 304, 305] as well

as the master integrals for massless 5-point scattering [306, 307, 308, 309] required for the

γγ + jet calculation.

Despite the large-scale applicability and success of this method, however, there are some

limitations. In particular, reducing the system to the canonical form through a algebraic

transformation matrix T (~y, ε) is impossible in many cases; such systems evaluate to a class

of functions beyond MPLs. This is expected to be the case for gg → ZZ with massive

internal quarks. There has been considerable progress over the recent years in under-

standing such functions beyond polylogarithms, mostly concerning their elliptic generali-

sations [310, 311, 312, 313, 314, 315]. However, most of the progress has been achieved for

simple topologies with very few mass scales; for processes such as gg → ZZ with many

different mass scales, evaluation in terms of such functions remains extremely challenging.

Furthermore, it isn’t clear if the so-called elliptic multiple polylogarithms (eMPLs) are enough

to represent the master integrals for this process and functions beyond even eMPLs could

appear. On the other hand, for certain cases, even if the ε-form is achievable, the functions

cannot be evaluated in terms of multiple polylogarithms [316].

An alternative approach that has been recently used for many phenomenological applica-

tions is the solution of differential equations by expansions [317, 318, 319, 320, 171, 172, 321].
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Instead of solving the differential equations analytically, a series expansion is constructed

around a point and the equations are solved numerically term-by-term in the expansion

parameters. This method is extremely useful for problems involving elliptic functions or be-

yond given the lack of understanding concerning these functions. Another advantage is that

any given system of differential equations can be solved, in principle, regardless of whether

a canonical form can be achieved or not. This is, again, especially beneficial for elliptic

integrals since it can be challenging to obtain the canonical form in many cases with only a

few cases where this has been successfully done [322, 323].

4.1.2 Feynman parametric representation

Consider the general L-loop integral in d dimensions with N distinct propagators in the

momentum space representation from Eq. 3.1.1

I(ν1, ..., νN) =

∫ ( L∏
l=1

ddkl
iπd/2

)
N∏
j=1

1

(q2
j −m2

j + i 0)
νj (4.1.7)

with integer exponents νj ∈ Z. Note the i0 for the correct Feynman propagator prescription.

If all indices νj are positive, then the identity (see e.g. [324, 325])

1

Dνj
=

(−1)νj

Γ(νj)

∫ ∞
0

dxj x
νj−1
j exj D for νj > 0, D < 0 (4.1.8)

can be used to write down the integral as

I(ν1, ..., νN) =(−1)ν
∫ ( N∏

j=1

dxj x
νj−1
j

Γ(νj)

)∫ ( L∏
l=1

ddkl
πd/2

)
e
∑N
j=1 xj (q2

j+m2
j−i 0) (4.1.9)

where ν =
∑

j νj is the sum of all propagator exponents. The integral over loop momenta is

just a Gaussian integral and can be performed easily after combining the propagators and

performing Wick rotation; see e.g. [324, 326] for more details. The resulting expression is

101



the Feynman parametric representation of this integral:

I(ν1, ..., νN) = (−1)ν Γ(ν − Ld/2)

∫ ( N∏
j=1

dxj x
νj−1
j

Γ(νj)

)
δ

(
1−

N∑
j=1

xj

)
U ν−(L+1) d/2

F ν−Ld/2 (νj > 0) . (4.1.10)

The U and F polynomials in the above equation are the Symanzik polynomials of the first

and second kind respectively. U and F are both homogeneous polynomials in the Feynman

parameters x1, ..., xN of degrees L and L+ 1 respectively. The U polynomial is strictly non-

negative while the F polynomial vanished for certain kinematic configurations which, in fact,

correspond to the branch cuts of the integral.

The Feynman parametric representation can be used to directly evaluate integrals in

many cases. E.g. the calculation of the massless bubble integral in Fig. 3.2.1 (without the

s-channel cut) is shown in Appendix B. In particular, the work on linear reducibiliy [327, 328]

has expanded the applicability of the method to much more complex examples. A maple

implementation of the integration algorithm, HyperInt [329], is also available that performs

direct integration for integrals that evaluate to multiple polylogarithms. The integrals in

Feynman parametric representation can also be evaluated numerically using e.g. Monte-

Carlo methods; this is the method of choice for evaluating the master integrals for ZZ

and is discussed later in the chapter. A crucial roadblock, before evaluating integrals in

the Feynman parametric representation numerically, is the presence of divergences. It is

discussed in the next section on how to deal with the divergences.

4.2 Finite integrals

As discussed in Sec 1.4.4, Feynman integrals often have divergences. Those originating from

regions of large values of loop momentum are called Ultraviolet (UV) poles and those origi-

nating from regions of small loop momentum are called Infrared (IR) poles. It is instructive
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Figure 4.2.1: 3-point integral with 1 massive propagator.

to study the structure of integrands as well as origin of divergences in the Feynman para-

metric representation.

4.2.1 Divergences in Feynman parametric representation

Consider the 3-propagator massless integral with 1-mass in d-dimensions in Fig. 4.2.1:

I =

∫
ddk

iπd/2
1

(k2 −m2)(k + p1)2(k + p1 + p2)2
. (4.2.1)

This integral can be written in Feynman parametric representation as

I = −Γ(1 + ε)

∫ ∞
0

dx1dx2dx3 δ

(
1−

3∑
j=1

xj

)
U−1+2ε

F1+ε
(4.2.2)

where the Symanzik polynomials are given by

U =x1 + x2 + x3 ,

F =(m2x1 +Q2x3)(x1 + x2 + x3) (4.2.3)

where Q2 = −q2 = −(p1 + p2)2. This integral is known to be IR divergent and hence
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the integrand cannot simply be expanded in ε. Naively expanding the integrand around

ε = 0 leads to a finite result which is clearly incorrect; the divergence isn’t explicit in ε

but rather hidden in the integrand. To see this, consider the region Q2 > 0 where the U

and F polynomials for the above integral are both strictly non-negative. The only possible

divergences then occur at the endpoints of the integration region.

To simplify the expression, integration in x2 can be trivially performed using the delta

distribution resulting in

I = −Γ(1 + ε)

∫ ∞
0

dx1dx3
1

(m2x1 +Q2x3)1+ε
. (4.2.4)

Under the scaling {x1, x3} → {x1/λ, x3/λ} and the limit λ → 0, the integrand behaves as

1/λ indicating a non-integrable divergence near the boundary. This is the origin of the IR

divergence.

For UV divergences, consider a different example, a 2-loop "double" tadpole integral:

I =

∫
ddk1ddk2

(iπd/2)2

1

(k2
1 −m2)(k2

2 −m2)
. (4.2.5)

The above integral clearly has a UV divergence in both loops since this is simply a product

of two 1-loop tadpole integrals. In Feynman parametric representation, the integral becomes

I = −Γ(−2 + 2ε)

∫ ∞
0

dx1dx2 δ (1− x1 − x2)
U−4+3ε

F−2+2ε
(4.2.6)

with U = x1x2 and F = m2(x1 + x2)U . This simplifies to

I = −Γ(−2 + 2ε) (m2)2−2ε

∫ ∞
0

dx1dx2 δ (1− x1 − x2)
(x1 + x2)2−2ε

(x1x2)2−ε . (4.2.7)
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In this case, the Gamma function prefactor is divergent in the limit ε→ 0:

Γ(−2 + 2ε) =
1

4ε
+O(ε) . (4.2.8)

Using Cheng-Wu theorem [330], the variable x1 can be taken out of the delta distribution.

The integrand then diverges in the limit λ → 0 for the scaling x1 → x1/λ; this is the other

UV divergence.

The above approach of determining the scaling behaviour of integrands near bound-

aries was presented in [331, 332]. These boundary divergences prevent a naive Monte-

Carlo implementation since the integrand cannot be expanded around ε = 0. A universal

approach to resolve these singularities and enable an expansion in ε is sector decomposi-

tion [76, 283, 284, 285, 333]. After performing sector decomposition, the resulting expres-

sions can be integrated numerically. Public codes that implement sector decomposition and

perform numerical integration for arbitrary loop integrals in physical kinematical region are

available e.g. Fiesta4 [334] and pySecDec [3].

4.2.2 Finite integrals with dimension shifts

The usual approach to Integration-By-Parts reduction using Laporta’s algorithm leads to

a conventional basis of master integrals prefers master integrals with the lowest number of

propagators and irreducible scalar products in the numerator. This basis is, however, rather

difficult to evaluate numerically using sector decomposition due to the presence of boundary

singularities which can cause severe numerical instability during monte-carlo evaluation. A

natural solution would be to use integrals that are finite in d = 4 to avoid such issues.

Indeed it was observed in [335, 336] that the use of finite integrals in the basis leads to

significantly improved numerical stability. In addition, finite integrals often require fewer

orders in their ε expansion which makes them easier to evaluate numerically requiring less

computing resources to achieve similar precision. Another advantage is that the poles in the
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regulator ε drop out of the Feynman integrals and become explicit. The resulting analytic

expressions for the amplitude are a lot more convenient and easier to simplify (see Sec. 5.1).

These factors together improve the overall numerical performance significantly.

To construct such finite integrals, one approach is to use integrals in dimensions different

than d = 4. This was explored in [337] by considering finite integrals in d = 6. This approach

is often used in conjunction with increasing propagator exponents, with finite integrals often

requiring both dimension-shifts and higher powers of propagators. Consider the massless

scalar integral with 3-propagators in Eq. 1.4.26 in d-dimensions:

I =

∫
ddk

iπd/2
1

(k2)(k − p1)2(k + p2)2
. (4.2.9)

In the limit of small loop-momentum,

I ∼
∫

ddk

iπd/2
1

(k2)(2k · p1)(2k · p2)
∼
∫
k→0

ddk

k4
. (4.2.10)

This integral has an IR divergence for k → 0 in d = 4. It was shown in Sec. 1.4.4 that this

integral will converge for d > 4. This is the general idea behind introducing dimensionally-

shifted integrals to cure IR divergences; for large enough values of d, the singular behaviour

in soft or collinear regions is cured. The opposite approach works for UV divergences. E.g.

the bubble integral with 1-mass,

I =

∫
ddk

iπd/2
1

(k2 −m2)(k + p)2
∼
∫
k→∞

ddk

k4
, (4.2.11)

is finite for d < 4. Alternatively, the exponent of one of the propagators can be increased to

cure the singular behaviour for large values of loop-momentum. For example,

I =

∫
ddk

iπd/2
1

(k2 −m2)2(k + p)2
∼
∫
k→∞

ddk

k6
(4.2.12)

106



(a) Divergent integral in d = 4− 2ε

(k2−m2
t )

(b) Divergent integral in d = 4 − 2ε with an

irreducible numerator

(c) Finite integral in d = 6− 2ε (d) Finite integral with a dot in d = 6− 2ε

Figure 4.2.2: Examples of divergent and finite integrals in the limit ε → 0 for a non-planar

topology. Thick solid lines represent the top-quark while thick dashed lines represent Z-

bosons. Topology (b) contains an irreducible numerator, where k is the difference of the

momenta of the edges marked by the thin dash lines. Reproduced from [6].

is now finite for d < 6. It is straightforward to see that increasing propagators tames the

behaviour for large loop-momentum.

It was shown in [338, 332] that a basis of such finite integrals constructed using dimension-

shifts and higher propagator powers can always be found. From the above examples it is

clear that the dimension shifts act in opposite way to IR and UV poles. Consequently, finite

integrals often require a combination of both dimension shifts and higher propagator powers.

Examples of such finite integrals for a non-planar topology are shown in Fig. 4.2.2.

Fig. 4.2.2a shows the corner integral for the topology while 4.2.2b shows an integral with

1 irreducible numerator; both are divergent in d = 4 − 2ε. The corner integral, as shown

in Fig. 4.2.2c, is in fact finite in d = 6 − 2ε. Another finite integral can be constructed by

putting a dot on one of the propagators as shown in Fig. 4.2.2d.
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4.2.3 Finite integrals with numerators

As described in the previous subsection, it is rather straightforward to find finite integrals of

such kind involving dimension shifts and dots, especially using e.g. Reduze 2. However, inte-

grals with dots typically do not appear in amplitudes which is in fact the primary motivation

for syzygy based IBP reduction as discussed in Sec. 3; this is especially true for the top-level

topologies. Furthermore, dimension-shifted integrals require reductions for L additional dots

for topologies with L-loops which can also be quite challenging. It is therefore desirable to

consider alternative approaches to construct finite integrals.

Here, a different approach to construct finite integrals by considering linear combinations

of divergent integrals is explored. Feynman parametric representation of a general linear

combination is considered and analyse the boundary regions to put constraints on the co-

efficients [339]. This ensures that the non-integrable divergences of the individual integrals

cancel for the combined integrand resulting in a single Feynman parametric integral that

is finite. Before the algorithm to construct such integrals with numerators, first described

in [6], is presented, it is useful to define some relevant quantities and formulas.

Similar to Eq. 4.1.8, propagators with negative exponents i.e. numerators with νj < 0

can be included by employing the identity [326, 340]

1

Dνj
=

[
∂−νj

∂x
−νj
j

exj D

]
xj=0

for νj ≤ 0 . (4.2.13)

Consider an integral I(ν1, ..., νN). Let N+ be the set of all positive νj, N− the set of all

negative νj, and r =
∑

j∈N+
νj. Then an integral with positive or negative indices, using
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Eqs. 4.1.8 and 4.2.13 respectively, can be written as

I(ν1, ..., νN) = (−1)r Γ(ν − Ld/2)

∫ ∏
j∈N+

dxj x
νj−1

Γ(νj)

 δ

1−
∑
j∈N+

xj


∏

j∈N−

∂|νj |

∂x
|νj |
j

 U ν−(L+1)d/2

F ν−Ld/2


xj=0∀ j∈N−

(νj 6= 0). (4.2.14)

Using the above formula, an integral with an arbitrary combination of numerators and dots

can be expressed in Feynman parametric representation.

The ultimate objective here is to combine different integrals sharing a common parent

topology into one merged parametric representation. To that end, it would be desirable to

include integrals from subtopologies as well to write down the most general ansatz for a

finite linear combination. However, integrals from subtpologies, if their Feynman parametric

representations are generated naively using the above formula, have U and F polynomials

different from the parent topology, and hence the linear combination cannot be combined

over a common "denominator" easily. It would be useful, then, to be able to express the

subsector integrals in a similar way to the numerator integrals using the same Symanzik

polynomials as the parent topology. This can be achieved by taking derivatives with respect

to the Feynman parameters corresponding to the pinched lines without setting them to zero,

1

Dνj
= −

∫ ∞
0

dxj
∂−νj+1

∂x
−νj+1
j

exj D for νj ≤ 0, D < 0. (4.2.15)

Here line corresponds to a propagator with a positive index i.e. a propagator present in the

topology. Before writing down the general formula, it is necessary to specify some notation.

Let N = {1, . . . , N} be the set of all indices, NT the set of positive indices of the parent

topology (parent lines), Nt the set of positive indices νj of the current topology which could

either be the parent topology or a subtopology, N∆t = NT \ Nt i.e. the set of pinched lines,

N\T = N \ NT be the set of negative indices of the parent topology (parent numerators),
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r =
∑

j∈Nt νj the sum of positive indices of the current integral, and ∆t = |N∆T | the number

of pinched lines. The general integral can then be written in the Feynman parametric

representation as

I(ν1, ..., νN) = (−1)r+∆t Γ(ν − Ld/2)

∫ ( ∏
j∈NT

dxj

)(∏
j∈Nt

xνj−1

Γ(νj)

)
δ

(
1−

∑
j∈NT

xj

)
 ∏

j∈N\T

∂|νj |

∂x
|νj |
j

( ∏
j∈N∆t

∂|νj |+1

∂x
|νj |+1
j

)
U ν−(L+1)d/2

F ν−Ld/2


xj=0 ∀ j∈N\T

(νj ∈ Z).

(4.2.16)

This expression for a completely general integral was first presented in [6]. Note that the

pinched lines are allowed to appear as numerators i.e. νj ≤ 0 for j ∈ N∆t. Also, the Symanzik

polynomials U and F are calculated by taking all indices N into account.
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Algorithm 2 Finite Feynman integrals [6]
Input: Dimensionally regularized multiloop integrals with a common parent sector, possibly

involving higher powers of propagators, irreducible numerators, or dimension shifts.

Output: Linear combinations of the input integrals which are finite, i.e. they have a conver-

gent Feynman parametric representation for ε = 0.

1: From the ns input or “seed” integrals, form a general linear combination

I =
ns∑
i=1

aiIi , (4.2.17)

where Ii are the seed integrals and ai are the unknown coefficients. The ai are assumed

to depend on the kinematic invariants and the dimensional regulator ε.

2: Using Eq. 4.2.16, write the Feynman parametric representation for each seed integral

and bring their linear combination over a common denominator such that

I = (−1)ν0

∫ ( ∏
j∈NT

dxj

)
δ(1−

∑
j∈NT

xj) P
U ν0−(L+1) (d0−2ε)/2

F ν0−L (d0−2ε)/2
(4.2.18)

where NT is the set of distinct propagators in the parent sector, ν0 is the effective number

of propagators, and d0 ∈ Z the effective number of space-time dimensions to be expanded

around. The numerator P is a homogeneous polynomial in the Feynman parameters,

P =
∑
j

cjMj(x1, ..., xNT ), (4.2.19)

where the coefficients cj are polynomials in ai, the kinematic variables, and ε, and

Mj(x1, ..., xNp) are monomials in Feynman parameters. Note that the numerator poly-

nomial P in general depends on ε and it is crucial to keep this dependence to produce

correct results. It is sufficient, however, to set ε = 0 in the exponents of the U and F

polynomials for the convergence analysis in the following two steps.
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3: Check the scaling behaviour of the integrand near an integration boundary using the

prescription outlined in [331, 332].

4: Make sure a convergent integration of Eq. 4.2.18 is not prevented by a rapid growth of

the integrand near the boundary. This can be achieved by requiring the coefficients of

the offending monomials in the numerator to vanish, which provides constraints on the

ai.

5: Repeat 3-4 until all boundaries are checked.

At the end of this exercise, we are left with I =
∑nfin

i=1 ai

(∑ns
j=1 bij Ij

)
, where nfin ≥ 0 is

the number of finite integrals found, and
∑
bij Ij are the finite combinations.

With the definitions above and the formula for a general Feynman integral, the algo-

rithm 2 to construct general linear combinations that are finite in d = 4 can be presented.

This algorithm was first described in [6].

Applying this algorithm to a set of seed integrals from topology in Fig. 4.2.2a with the

constraint of integrals with only up to 1 numerator rank, the following linear combination is

obtained:

Ifin,1 = s (m2
z−s− t) I1,1 +s I2,1 +s I3,1 −s I4,1 −s I5,1 −(m2

z−s− t) I6,1 −(m2
z− t) I7,1 .

(4.2.20)

The integrals I1,1 etc. are as defined in Fig. 4.2.3. Allowing for integrals with up to numerator

rank 2 in the list of seed integrals generates several new linear combinations. Amongst them,

the linear combination

Ifin,2 = s (m2
z−s− t) I1,2 +s I2,2 +s I3,2 −s I4,2 −s I5,2 −(m2

z−s− t) I6,2 −(m2
z− t) I7,2 ,

(4.2.21)

with the constituent integrals given in Fig. 4.2.4, is quite similar to the linear combination

in Eq. 4.2.20. In fact, this linear combination can be generated simply by appending an addi-

tional inverse propagator k2−m2
t to all the constituent integrals. Indeed it is straightforward
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I1,1 : I2,1 : (k2 −m2
t )

I3,1 : I4,1 :

I5,1 : I6,1 :

I7,1 :

Figure 4.2.3: Integrals appearing in the linear combination in Eq. 4.2.20. I1,1 is the corner

integral of the topology under consideration. I2,1 is a second integral in the topology, but

with a numerator (k2 −m2
t ), where k is equal to the difference of the momenta of the edges

marked by the thin dashed lines. Integrals I3,1, I4,1, I5,1, I6,1, I7,1 belong to subtopologies. All

integrals are defined in d = 4− 2ε dimensions. Reproduced from [6].

to see that additional numerators can be added to any finite linear combination keeping them

finite in the IR limit. However, adding numerators can lead to UV divergences; it is clear

in the current example that this is not the case though through power counting, but adding

additional numerators might lead to UV poles. One way to ensure UV convergence is to

consider integrals with dots. In fact another linear combination can be generated by just

adding a dot (on a specific propagator) in all integrals of the combination in Eq. 4.2.20. It

must be pointed out, though, that such linear combinations obtained by adding numerators

or dots to other finite linear combinations aren’t the only possibilities. It was observed that

the number of finite linear combinations increases, in general, with the numerator rank.

113



I1,2 : (k2 −m2
t ) I2,2 : (k2 −m2

t )
2

I3,2 : (k2 −m2
t ) I4,2 : (k2 −m2

t )

I5,2: (k2 −m2
t ) I6,2: (k2 −m2

t )

I7,2 : (k2 −m2
t )

Figure 4.2.4: Integrals appearing in the linear combination in Eq. 4.2.21. I1,2 is the corner

integral of the topology under consideration but with a numerator (k2 − m2
t ), identical to

I2,1 from Eq. 4.2.20. I2,2 is I1,2 but with an extra numerator (k2 − m2
t ) where k is equal

to the difference of the momenta of the edges marked by the thin dashed lines. Integrals

I3,2, I4,2, I5,2, I6,2, I7,2 are the same as I3,1, I4,1, I5,1, I6,1, I7,1 but with an extra numerator (k2−

m2
t ). All integrals are defined in d = 4− 2ε dimensions. Reproduced from [6].

4.2.4 Choice of finite integrals for gg → ZZ

The algorithm presented above expands significantly the choice of integrals available for a

basis of finite integrals. In principle, the amplitude can be expressed only in terms of such

finite linear combinations defined in d = 4 − 2ε containing integrals with only additional

numerators. In fact, such a basis can be constructed for gg → ZZ where only finite linear

combinations are used to replace IR divergent integrals. There are, however, certain limi-

tations to this approach and in practice it was found to be useful to consider also integrals

with dimension-shifts and dots. This is largely due to the following reasons:
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1. In certain cases, the corner integral of a topology already has a UV divergence. This

cannot be cured using a subtopology/numerator subtraction. In particular, UV diver-

gences arising from the Γ prefactor in Eq. 4.2.16 cannot be cured through a subtraction

since they only affect the endpoint divergences. Additionally, integrals from subtopolo-

gies or with numerators will in general have worse UV behaviour, unless an integral

with many dots is considered. It is possible to consider an integral from a super-

topology instead but this often leads to increase in complexity both analytically and

numerically, and as such is not desirable.

2. While finite linear combinations exist for higher numerator ranks and, in fact, the

number of available finite integrals grows with numerator rank, choosing such integrals

leads to extreme proliferation in the number of terms in the numerator polynomial

from Eq. 4.2.19. E.g. starting at numerator rank 1, the number of terms is O(10) e.g.

for the linear combination in Eq. 4.2.20. For the linear combinations with numerator

rank 2 this increases to O(1000) e.g. for the integral in Eq. 4.2.21 while for rank

3 this becomes O(100000). Note that these numbers depend on the topology under

consideration and in general the numerator polynomials would be simpler for lower

topologies. A significant disadvantage of this is that the pySecDec libraries required to

compute such integrals can reach sizes of ∼ 1GB on the disk and are, hence, difficult

to compile on GPUs. Trying to condense the numerator polynomials result in the

appearance of spurious poles which worsen the numerical stability further.

3. As mentioned previously, finite linear combinations containing both numerators and

dots can also be constructed. This approach was explored to avoid the linear combi-

nations with high numerator rank. While these integrals, as long as numerator ranks

are small, have more manageable numerator polynomials, their numerical performance

in the physical region of kinematics, i.e. the region where contour deformation is re-

quired, suffers drastically. This is largely due to the higher power of the F polynomial
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Integral Max. order in ε Rel. error Time(s)
Divergent corner integral (Fig. 4.2.2a) 0 ∼ 2 · 10−3 45

Divergent numerator integral (Fig. 4.2.2b) 0 ∼ 4 · 10−2 63
Finite integral in d = 6− 2ε, (Fig. 4.2.2c) 1 ∼ 8 · 10−6 60

Finite integral in d = 6− 2ε with dot (Fig. 4.2.2d) 1 ∼ 8 · 10−4 55
Finite linear combination in Eq. 4.2.20 1 ∼ 1 · 10−4 18
Finite linear combination in Eq. 4.2.21 0 ∼ 5 · 10−4 150

Table 4.2.1: Numerical performance of different non-planar integrals for a physical phase-

space point. Timings generated with pySecDec [3] using the QMC algorithm [4, 5] on a single

Nvidia Tesla V100S GPU, with number of evaluations neval = 107. Note that the divergent

integrals are only evaluated to O(ε0) since they start at ε−1. Reproduced from [6].

in the denominator. In general, integrals with lower exponent of the F polynomial are

preferred.

Table 4.2.1 shows a comparison for the numerical performance for different divergent

and finite integrals from the non-planar topology in Fig. 4.2.2a. The first two orders in

the ε expansion are evaluated for most integrals except the finite linear combination in

Eq. 4.2.21. From the table it is clear that finite integrals show significantly improved nu-

merical performance compared to divergent integrals. The dimensionally-shifted finite inte-

gral in Fig. 4.2.2c has the lowest exponent for the F polynomial, specifically the integrand

∼ 1/F ; unsurprisingly, it shows the best numerical performance. What is indeed surprising

is that the finite linear combination in Eq. 4.2.20, which has the integrand ∼ 1/F3 has a

numerical performance on par with the dimension-shifted integral without dots and better

than the dimension-shifted integral with a dot (which has the integrand ∼ 1/F2. The lin-

ear combination with an additional numerator (Eq. 4.2.21) also has the integrand ∼ 1/F2.

However, the numerical performance is worse than the "simpler" finite linear combination

due largely to significantly more complicated numerator polynomial and consequently much

larger pySecDec libraries which are harder to evaluate on GPUs.

At the end, the best numerical performance for gg → ZZ is achieved using a combination

of both finite linear combinations and dimensionally-shifted integrals. Finite linear combina-
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tions with low numerator ranks are supplemented with dimensionally-shifted integrals with

low number of dots. To cure the UV poles, however, especially the ones appearing in lower

topologies such as the double tadpole, integrals with dots are used. This does not affect the

numerical performance though since the integrals are rather trivial to evaluate numerically

as well as calculating IBP reductions for them is rather easy. The full list of finite master

integrals is given in the ancillary files provided with [6].

It has been mentioned previously that choosing a canonical basis of master integrals

leads to a simpler form of the IBP relations, in general, over the generic choice of basis.

For gg → ZZ, the canonical basis is not known and is expected to be rather challenging

to find. In the absence of a canonical basis, a d-factoring basis of master integrals is used

to simplify the IBP reductions. That is, in addition to choosing the basis integrals to be

finite, they are chosen in such a way that the d-dependence of the denominators appearing in

the reduction identities factors out. Simply speaking, there are no irreducible denominator

factors appearing in the IBP identities that are simultaneously polynomials in both the

kinematic variables and d for the basis of integrals used for final numerical evaluation. This

was done using the code provided in [341] (see also [342]). It is also worth mentioning that

provided that a canonical basis is found, the structure of IBP reductions as well as the

amplitude can be simplified further by the use of a canonical basis that is also finite, referred

to as a uniform weight finite basis [343].
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Chapter 5

Compiling the 2-loop amplitude

5.1 Inserting reductions into the amplitude

Even with the d-factoring basis of finite master integrals, the IBP identitites are extremely

complicated. For gg → ZZ, the IBP identities occupy over 200 GB of disk space before any

processing. This would be a nightmare to deal with, and hence several techniques are used

to simplify them.

5.1.1 Multivariate partial fractioning

The reduction identities are first processed through Fermat [245] which performs a GCD

(Greatest Common Divisor) calculation to simplify the coefficients. This already results in

a reduction in size by about a factor of 10-20 depending on the topology. The form obtained

from Fermat where all the terms are put over a common denominator, however, is not ideal

for numerical evaluation. In addition, further simplifications can be obtained by employing

multivariate partial fractioning on the reduction coefficients. Partial fraction decomposition

is simply the expansion of a rational function to a sum of simpler rational functions, or rather
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rational decomposition of poles. E.g.

x

x2 − 1
=

1

2(x− 1)
+

1

2(x+ 1)
. (5.1.1)

The simple example above demonstrates how partial fraction decomposition can be used

to simplify expressions. However, naive approach to partial fractioning, for instance using

Mathematica, can lead to appearance of new denominators in the multivariate case. E.g.

x2y

(x2 + y − 1)(y + 1)
=

−x2

(x2 − 2)(y + 1)
+

x2(x2 − 1)

(x2 − 2)(x2 + y − 1)
. (5.1.2)

In the above example, a new denominator factor x2 − 2 appears. For scattering amplitudes,

such spurious denominators that weren’t present before can cause problems. They can cause

severe numerical instabilities especially if they have poles in the physical kinematical region.

They can also make the final expressions more complicated. Instead, a mutivariate partial

fractioning procedure based on polynomial reductions with respect to a Gröbner basis [344,

275, 345, 276] is used. A Gröbner basis is essentially just relations between polynomials

in an ideal. These relations can then be used to relate more complicated polynomials to

simpler polynomials where "simpler" is defined according to a polynomial ordering. E.g. for

the above example, assuming a ring ordering where variable y is preferred over x, and the

denominator 1/(1+y) is preferred over 1/(−1+y+x2), a polynomial reduction with respect

to the Gröbner basis using Singular [271] yields

x2y

(x2 + y − 1)(y + 1)
=− 2

(
1

−1 + y + x2

)(
1

1 + y

)
−
(

1

−1 + y + x2

)
y + 2

(
1

−1 + y + x2

)
−
(

1

1 + y

)
+ 1 . (5.1.3)

which has a maximum degree of 1 in the numerator compared to 3 for the left-hand-side

expression. The result is also much simpler than the naive partial fraction result in Eq. 5.1.2

where even degree 4 terms are present in the numerator.
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This approach to multivariate partial fractioning is used to simplify the reduction iden-

tities for both gg → ZZ and γγ + jet production. In both cases, a reduction in disk size by

a factor of 100 is observed.

5.1.2 Backsubstitution of IBPs

For gg → ZZ, the partial fractioning is implemented using Singular with a polynomial

ordering that prefers polynomials with lower degrees in kinematic variables and smaller

coefficients [276]. As mentioned in Sec. 3.5, the reduction identities are first calculated in

the traditional Laporta basis with a generic ordering preferring master integrals with lower

numerator ranks. Partial fractioning these IBP identities reduces their size drastically and

makes the backsubstitution procedure a lot more manageable. Custom FORM scripts are then

used to backsubstitute the reduction identities into the form factors. Partial fractioning

is again performed on the resulting expressions which simplify drastically at this step; the

total size of amplitudes reduces from ∼300 GB to ∼600 MB. Note that for this step, first

partial fractioning in only the denominators dependent on d (including the denominators

that depend on both d and kinematics) is performed. In a second step, partial fractioning

is performed in denominators that depend only on the kinematic variables. This is simply

to facilitate the calculation of the Gröbner basis since the traditional Laporta basis is not

d-factoring i.e. there are irreducible denominator factors that are polynomials in d as well

as kinematic variables, e.g.

−75 + 25 d+ 540 t− 180 t d− 972 t2 + 324 t2 d+ 450 s− 90 s d− 972 s t+ 324 s t d ,

where s, t are the Mandelstam variables defined in Eq. 2.1.9. Such denominators make the

Gröbner basis computation extremely challenging.

In the next step, a basis change is performed to express the form factors in terms of

the basis of finite integrals as chosen in Sec. 4.2.4; this basis is d-factoring. The basis
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change identities are themselves partial fractioned and then backsubstituted into the reduced

amplitude in terms of the traditional Laporta basis. The form factors, which are now in the

d-factoring finite basis, are then partial fractioned, again in two steps. First, a partial

fractioning in only d-dependent denominators is performed. However, this step is simpler

than for the traditional Laporta basis since there are no complicated denominators depending

on kinematic variables involved. Since the amplitude is now expressed in a basis of finite

integrals and the 2-loop amplitude is required to be expanded only to O(ε0), the expressions

can be simplified drastically by setting d = 4 everywhere except the poles 1/(d − 4). Note

that this is possible only in the case of a d-factoring finite basis since after partial fractioning

in d, the poles get isolated. Finally, partial fractioning in kinematic variables is performed on

the resulting expressions to produce the final reduced amplitude. In the final representation,

the size of the worst coefficients is brought down to less than 1 MB. The list of all surviving

denominator factors are given in Appendix E. A C++ library is created for quick and efficient

numerical evaluation of the coefficients. All the coefficients for a generic point in phase space

can be evaluated within half a minute using rational arithmetic or within 3s using floating

point arithmetic with a target precision of 15 digits on a single CPU core.

A slightly different approach is used for γγ + jet. Since the integrals are already re-

duced to a canonical basis, there are no d-dependent denominators that also depend on

kinematic variables. However, the basis is not finite, so it is not possible to set d = 4 after

partial fractioning in d. In addition, the amplitude in this case involves many crossings of

the integrals. Performing a partial fraction decomposition for each crossing would be quite

cumbersome and computationally wasteful. Instead, the uncrossed IBP identities, after sim-

plifying through Fermat, are partial fractioned using MultivariateApart [276] and then the

crossings are applied. The crossed IBPs are then inserted into the amplitude and the result-

ing expressions are partial fractioned again. At the end, the canonical master integrals are

expanded in terms of the "Pentagon functions" defined in [309] and the resulting coefficients

of the pentagon functions are partial fractioned again. The final expressions, as expected,
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are drastically simpler with the largest helicity coefficient for the most complicated colour

factor only 4.5 MB in size.

5.2 Renormalisation, IR subtraction and checks

5.2.1 UV renormalisation and IR subtraction

For gg → ZZ, the bare form factors Ai can be expanded perturbatively according to

Ai =
αs,0

2π
A

(1)
i +

(αs,0

2π

)2

A
(2)
i +O(α3

s ) , (5.2.1)

where αs,0 is the bare QCD coupling. Since the LO process for gg → ZZ already starts at

one loop, the two-loop process is effectively an NLO correction.

First, UV renormalisation of αs is performed in the 5-flavour MS scheme i.e. nf = 5

using

αs,0 = αs S
−1
ε Zαs

(
µ2
R

µ0
2

)ε
, (5.2.2)

where Sε = (4π)εe−γEε, γE ≈ 0.577 is Euler’s constant, µR is the renormalisation scale, and

µ0 is the ’t Hooft scale introduced in the bare amplitude through conventional dimensional

regularisation. Note that the top-quark contribution to the gluon self energy is subtracted

at zero momentum [346].

The renormalisation constant Zαs in the above equation is given by

Zαs = 1 +
αs

2π
δZαs + O(α2

s ), (5.2.3)
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where

δZαs = −1

ε
β0 +

1

ε

(
2

3
TF

(
µ2
R

m2
t

)ε)
. (5.2.4)

In the above equation, β0 is the first coefficient of the beta function expanded in αs, given

in Eq. 1.4.38,

β0 =
11CA − 4TF nf

6
, (5.2.5)

and CA, CF are the quadratic Casimir invariants

CA = N, CF =
N2 − 1

2N
, (5.2.6)

with TF = 1
2
.

The top-quark mass is renormalised in the on-shell scheme. The renormalised top-quark

mass is related to its bare mass according to

m2
t,0 = m2

t Zm , (5.2.7)

with the renormalisation constant defined as

Zm = 1 +
αs

2π
δZm, δZm = CF

(
−3

ε
− 4

) (
µ2
R

m2
t

)ε
. (5.2.8)

In principle, the top-quark mass in the amplitude can simply be replaced by the renormalised

mass in Eq. 5.2.7. However, in practice it is a lot more convenient to instead explicitly

subtract 1-loop counterterm diagrams (See Fig.).

Lastly, the gluon wave function is renormalised by multiplying the amplitude with Z1/2
G
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(a) Divergent diagram. (b) Mass counterterm diagram.

Figure 5.2.1: Mass counterterm diagrams required at 2-loops. The big dark cross in

Fig. 5.2.1b corresponds to the counterterm vertex insertion.

for each external gluon, where the gluon renormalisation constant ZG is defined as

ZG = 1 +
αs

2π

(
−2

3
TF

(
µ2
R

m2
t

)ε)
+ O(α2

s ) . (5.2.9)

This results in renormalised form factors given by

Aren
i =

αs

2π
A

(1),ren
i +

(αs

2π

)2

A
(2),ren
i +O(α3

s ). (5.2.10)

The renormalisation constants in the above equations are derived in Appendix D.

After UV renormalisation, IR subtraction must be performed to obtain finite results. The

IR structure of NLO amplitudes was first predicted by Catani in [13]. IR subtraction for

this calculation is performed using the “qT scheme” described in [347]. The finite remainders

resulting from IR subtraction are given by

A
(2),fin
i = A

(2),ren
i − A(1),ren

i I(1)(ε) . (5.2.11)
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The I-operators in the “qT scheme” are given by

I(1)(ε) = Isoft(1) (ε) + Icollinear(1) (ε), (5.2.12)

Isoft(1) (ε) = − eεγ

Γ(1− ε)

(
µ2
R

s

)ε (
1

ε2
+
iπ

ε
+ δ(0)

qT

)
CA, (5.2.13)

Icollinear(1) (ε) = −
(
µ2
R

s

)ε
β0

ε
, (5.2.14)

where δ(0)
qT = 0. UV and IR finite form factors are then given by

Afin
i =

αs

2π
A

(1),fin
i +

(αs

2π

)2

A
(2),fin
i +O(α3

s ). (5.2.15)

Note that the renormalisation scale µ2
R = s for all the results presented in this work.

5.2.2 Checks of the calculation

Multiple checks are performed to establish the correctness of this calculation and results, as

described below:

1. The 2-loop form factors are explicitly checked to satisfy the identities in Eq. 2.1.16.

These identities hold at the level of reduced amplitude with fully symbolic kinematic

dependence.

2. The crossing relations in Eq. 2.1.17, on the other hand, are highly non-trivial to check

analytically. Instead, these relations are verified numerically for a phase-space point

within numerical precision.

3. All the finite linear combinations used in the basis are checked by numerically evalu-

ating them and comparing them against their explicit definitions in terms of divergent

integrals for a phase space point.

4. Algebraic cancellation of the spurious 1/ε4 pole is seen when the amplitude is expressed

in the chosen basis of finite integrals; the spurious 1/ε3 pole remains, however. This
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is verified to vanish to 15 digits by calculating the amplitude numerically for a phase-

space point in the Euclidean region.

5. The 1/ε2 and 1/ε poles are verified to match Catani’s IR formula [13] numerically, for

a phase-space point in the Euclidean region, to 9 digits for the double pole and 7 digits

for the single pole. Numbers are shown explicitly in Appendix F.

6. The 1/ε2 and 1/ε poles are also verified to match Catani’s IR formula [13] for a point

in the physical region with explicit numbers shown in Appendix F.

7. The amplitude is also evaluated using an alternate finite basis constructed along the

same lines as the primary basis. The numerical results from the two bases are compared

and found to agree within expected numerical error. It must be pointed out that this

is a very stringent check on the correctness of the calculation since it simultaneously

checks the IBP reductions, the basis change from the primary to the alternate basis,

definitions of the finite integrals chosen, and their numerical evaluation. An error in

any one of these steps would imply disagreement between the two bases. Note that

the alternate basis, while composed of finite integrals, is numerically not as stable as

the primary basis and although it is useful for validating the calculation, it is generally

unsuitable for evaluation at a large number of phase-space points.

8. The axial-axial (a2
t ) piece of the 2-loop amplitude is evaluated using the Kreimer’s

anti-commuting γ5 scheme [210, 211]. In addition, a separate numerical calculation is

performed using Larin’s γ5 scheme [348, 349]. Agreement is found at the level of helicity

amplitudes defined using Eq. 2.1.19 between the two schemes for a physical as well as

Euclidean phase space point within numerical precision. This provides another strong

check of the calculation since only physical gauge-invariant observables are expected

to agree for two different schemes.

9. Lastly, the calculation is compared against several known approximations in the lit-
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erature, specifically the heavy top approximation [163, 164, 165] below the top-quark

pair production threshold and the small top-mass expansion [12] above the threshold

(at high center of mass energies). Agreement is found with both approximations in the

relevant regions of phase-space with the results of the comparison presented in Sec. 6.
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Chapter 6

Results

6.1 Results for the 2-loop gg → ZZ amplitude

In this section, the results for the 2-loop amplitude for gg → ZZ are presented and compared

against several approximations. Before presenting the results however, some quantities rel-

evant for presentation of the results need to be defined. For most of the results presented

below, the helicity basis defined in Eq. 2.1.19 is used. Similar to the form factors, UV

renormalised and IR subtracted helicity amplitudes can be written as

Mfin
λ1λ2λ3λ4

=Mfin
µνρσε

µ
λ1

(p1)ενλ2
(p2)ε∗ρλ3

(p3)ε∗σλ4
(p4). (6.1.1)

where λ1, λ2 are the helicities of the incoming gluons and λ3, λ4 are the helicities of the

outgoing Z-bosons. The helicity amplitudes can be expanded in
(
αs

2π

)
similar to form factors

in Eq. 5.2.15 as

Mfin
λ1λ2λ3λ4

=
(αs

2π

)
M(1)

λ1λ2λ3λ4
+
(αs

2π

)2

M(2)
λ1λ2λ3λ4

+O(α3
s ). (6.1.2)

It is useful to consider the squared 1-loop helicity amplitudes V(1)
λ1λ2λ3λ4

as well as the inter-

ference between the 1-loop and 2-loop helicity amplitudes V(2)
λ1λ2λ3λ4

, which can be defined
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as

V(1)
λ1λ2λ3λ4

=M∗(1)
λ1λ2λ3λ4

M(1)
λ1λ2λ3λ4

, (6.1.3)

V(2)
λ1λ2λ3λ4

= 2 Re
(
M∗(1)

λ1λ2λ3λ4
M(2)

λ1λ2λ3λ4

)
. (6.1.4)

Most of the results shown below are obtained by averaging over the helicities of the incoming

gluons as

V(i)
λ3λ4

=
1

4

∑
λ1,λ2

V(i)
λ1λ2λ3λ4

, (i = 1, 2) , (6.1.5)

with λ1, λ2 ∈ {+,−}, and by summing over the helicities of the outgoing Z-bosons as

V(i) =
∑
λ3,λ4

V(i)
λ3λ4

, (i = 1, 2) , (6.1.6)

with λ3, λ4 ∈ {+,−, 0}. Note that the 1-loop amplitudes used in calculating V(i)
λ1λ2λ3λ4

are

just the top-quark contributions. Contributions from massless quarks are ignored for the

purpose of presentation of the numerical results below.

For the numerical results shown, the electroweak couplings are chosen as

GF = 1.1663787 · 10−5 GeV−2 ,

mZ = 91.1876 GeV , (6.1.7)

where the Fermi constant GF and Z boson mass mZ are fixed according to [1]. Since the

ratio of top-mass and Z-boson mass is fixed to m2
Z/m

2
t = 5/18, inserting the above value

of mZ = 91.1876 GeV implies the top-mass value mt = 173.016 GeV. The W -boson mass is

fixed according to the ratio

m2
W/m

2
t = 14/65 . (6.1.8)
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This fixes the mass of the W -boson to mW = 80.296 GeV. For this calculation, the so-called

Gµ scheme is used i.e. GF , mZ , and mW are chosen as input quantities for the electroweak

parameters. The weak mixing angle is then fixed according to sin(θW ) =
√

1−m2
W/m

2
Z .

To numerically evaluate the master integrals, pySecDec [3, 5] is used. Sector decom-

position is applied and the integration is performed using the quasi-Monte Carlo (QMC)

algorithm [350, 4]. The QMC algorithm has been observed to show a much better con-

vergence compared to the traditional Monte-Carlo algorithms [335]. The different colour

structures appearing in the form factors (CF and CA) as well as the vector-vector (v2
t ) and

axial-axial (a2
t ) pieces are all evaluated separately. The target precision for each form factor,

for each colour structure and coupling type (v2
t or a2

t ), is set to percent level. This is achieved

using a variant of the optimisation algorithm presented in [335]. The helicity amplitudes are

then calculated from the form factors.

Using the optimisation algorithm, requiring percent level precision on all form factors,

the time taken for numerical evaluation varies between 1.5-24 hours on 2 Nvidia Tesla v100

GPUs; this usually results in most form factors being calculated to per mille or better.

Almost the entire runtime is spent on calculating master integrals; the time taken to evaluate

the coefficients is negligible in comparison (see Sec. 5.1). The independent helicity amplitudes

for a phase-space point in the physical region are shown in Tab. 6.1.1

Fig. 6.1.1 shows a comparison of the interference term V(2) calculated in this work against

the large top-mass and the small top-mass expansions (using the analytic expressions for the

expansions provided in [12]) for varying
√
s/mt and fixed value ofcos(θ) = −0.1286, with the

scattering angle θ defined in Eq. 2.1.18. Also compared is the Padé improved small top-mass

expansion. The plot shows excellent agreement for this calculation with the expansion results

in the relevant regions of phase-space. For the smallest value of
√
s = 235 GeV shown on the

plot, the large top-mass expansion agrees within 0.1% with our result. Similar agreement to

sub-per mille level is observed for the point with the largest
√
s = 878 GeV when compared

to the small top-mass expansion as well as the Padé improved result. Also observed is the
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λ1, λ2, λ3, λ4 M(1)
λ1λ2λ3λ4

(1-loop) M(2)
λ1λ2λ3λ4

(2-loop)

++++ 0.1337854(1)− 0.0286060(1) i 3.15549(8) + 0.47235(8) i

+++− 0.0015573(1) + 0.0052282(1) i 0.15950(7) + 0.14052(8) i

+−+− −0.01512820(8)− 0.01060416(8) i −0.38609(7) + 0.10539(7) i

−+++ −0.0291599(1)− 0.0062178(1) i −0.46990(8) + 0.40207(8) i

+++0 0.0292668(5) + 0.0212966(5) i 1.1248(2)− 0.0805(2) i

+−+0 −0.0643073(5)− 0.0459584(5) i −1.4803(2) + 0.4940(2) i

++ 00 0.910006(2) + 1.132536(2) i 17.2585(6) + 29.5669(6) i

+− 00 0.355092(2) + 0.404469(2) i 10.2869(5)− 1.0571(6) i

Table 6.1.1: 1-loop and 2-loop helicity amplitudes for gg → ZZ for the phase-space

point s/m2
t = 142/17, t/m2

t = −125/22, m2
Z/m

2
t = 5/18, and mt = 1, with M(1)

λ1λ2λ3λ4

and M(2)
λ1λ2λ3λ4

defined in Eq. 6.1.2. Only the 8 independent helicity amplitudes (See

Eqs. 2.1.20, 2.1.21, and 2.1.22) are shown here. Note that these include only the top-quark

contributions from class A diagrams defined in Sec. 2.3.2. The numbers in parentheses denote

the uncertainty in the last digit. Reproduced from [6].

fact that the Padé approximation improves drastically the agreement with our exact result

compared to the small top-mass expansion. Note that the expansion result is only visible for

the two highest values of
√
s and diverges rapidly from the exact result for smaller values.

The Padé improved result, on the other hand, agrees to much lower energies closer to the
√
s = 2mt threshold. In fact, this plot also shows that the expansions considered here can

reproduce the exact result within a few percent for most values of
√
s except for the region

near the top-quark pair production threshold
√
s = 2mt, for the value of cos θ considered

here.

In Fig. 6.1.2, a comparison of the interference term V(2) is shown for varying cos θ for

several fixed values of
√
s. The large top-mass expansion changes very little with variation

in cos θ, as is clear from the top-left panel. On the other hand, the small top-mass expansion

diverges rapidly away from central scattering angles (cos θ ∼ 0) as seen in the bottom panel.

In fact, for the points far away from the centre, the small top-mass expansion is way off the

plotting range. This can be understood from the way the expansion is performed i.e. in

the limit m2
Z � m2

t � s, |t|, |u|. In this limit, |t| ∼ |u| ∼ s/2 for central scattering which
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Figure 6.1.1: Comparison of the
√
s dependence of the unpolarised interference V(2) with

expansion for large and small top-quark mass [12] at fixed cos(θ) = −0.1286. The large

top-mass expansion is shown in colour red, the small top-mass expansion in blue, and the

Padé improved small top-mass expansion in purple. The exact result is shown in black. Note

that the error bars have been plotted for the exact result, they are too small to be visible

on the plot, however. Reproduced from [6].

justifies the expansion. However for back-to-back scattering (| cos θ| ∼ 1), |t| and |u| are no

longer guaranteed to be large compared to m2
t and hence the approximation breaks down. It

must be pointed out that Padé approximation significantly improves the convergence of the

expansion. For the high energy point (
√
s = 814 GeV) in the bottom panel, the agreement

of our result with the Padé improved result is almost perfect. Even for the intermediate

energy point in the top-right panel (
√
s = 403 GeV), the agreement is generally within a few

percent close to the central scattering region.

Fig. 6.1.3 shows comparisons for specific outgoing helicities averaged over the incoming

gluon helicities as defined in Eq. 6.1.5 against the expansions. Both the 1-loop amplitude

squared V(1)
λ3λ4

and the 2-loop interference with 1-loop V(2)
λ3λ4

is shown for varying
√
s with a

fixed scattering angle cos(θ) = −0.1286. Note that the expansions are only plotted for the 2-
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Figure 6.1.2: Comparison of the cos(θ) dependence of the unpolarised interference V(2) with

the results expanded in the limit of large top-quark mass for
√
s = 247 GeV (Top Left Panel)

and small top-quark mass for
√
s = 403 GeV (Top Right Panel) and

√
s = 814 GeV (Bottom

Panel). Reproduced from [6].

loop interference term. Looking at the plots, there is good agreement with the best available

expansions in the relevant regions. Unsurprisingly, the small top-mass expansion lies far

outside the plotting range for most points. The Padé improved expansion, however, agrees

well all the way down to lower
√
s near the

√
s = 2mt threshold. The level of agreement of

our result with the expansions greatly depends on the specific helicity configuration under

consideration. E.g. good agreement is seen for the V(2)
00 configuration while agreement for

V(2)
+− and V(2)

+0 clearly starts to appear worse closer to the threshold. Note that the longitudinal

configuration V(2)
00 is dominant over the others even at the 2-loop level, similar to what was

observed for 1-loop in Sec. 2.2.3 as well as in the above plots. A rapid increase in V(1)
00 and
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V(1)

Figure 6.1.3: The
√
s dependence of 1-loop and 2-loop interferences for polarised ZZ pro-

duction in gluon fusion at cos(θ) = −0.1286. Reproduced from [6].
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Figure 6.1.4: The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ

production in gluon fusion at
√
s/mt = 1.426. The large top-quark mass expansion [12] (to

order 1/m12
t ) is shown for comparison. Reproduced from [6].

V(2)
00 past the top-quark pair production threshold

√
s = 2mt is also seen, similar to what

was observed for 1-loop in Sec. 2.2.3.

Figs. 6.1.4, 6.1.5 and 6.1.6 show the comparisons for interference terms with specific

helicity configurations for varying cos θ and 3 different fixed values of
√
s. Fig. 6.1.4 shows

the comparison against large top-mass expansion. It is clear from the plot that there is very

good agreement for all helicity configurations. Note that in the chosen scaling, the 1-loop

points almost lie on top of the 2-loop point with an almost complete overlap for V(2)
+− and

V(2)
+0 .

Fig. 6.1.5 shows the comparison against the Padé improved small top-mass expansion for

intermediate energy. While in general the Padé approximation agrees well with our result,

there are some deviations, notably for cos θ away from 0 and sub-dominant helicities.

Fig. 6.1.6 shows the comparison plots for a high energy point with
√
s = 814 GeV. The

Padé improved small top-mass expansion again shows excellent agreement with our result
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Figure 6.1.5: The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ

production in gluon fusion at
√
s/mt = 2.331. The Padé improved small top-quark mass

expansion [12] is shown for comparison. Reproduced from [6].

for even larger values of | cos θ|, away from the center. This is a drastic improvement over

the "regular" small top-mass expansion which is highly divergent away from the center.

It must be pointed out that the relative level of agreement shown in the above plots

between our exact result and the various expansions depends significantly on the exact

scheme used for IR subtraction. The comparisons shown in the above plots are done in the

“qT scheme” [347]. Conversion to Catani’s original subtraction scheme [13] can be performed

using

A
(1),fin,Catani
i = A

(1),fin
i , (6.1.9)

A
(2),fin,Catani
i = A

(2),fin
i + ∆I1A

(1),fin
i , (6.1.10)
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Figure 6.1.6: The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ

production in gluon fusion at
√
s/mt = 4.703. The small top-quark mass expansion (to order

m32
t ) and Padé improved expansion [12] are shown for comparison. Reproduced from [6].

where

∆I1 = −1

2
π2CA + iπβ0, (6.1.11)

Similar transformation rules apply for the helicity amplitudes. This implies that conversion

from the “qT scheme” to Catani’s original scheme requires subtraction of π2CAV(1) where the

factor of 2 compared to Eq. 6.1.11 comes from interference (see Eq. 6.1.4) and the iπβ0 term

is ignored since it does not contribute to the interference. This corresponds to a difference

of ∼ 30V(1) which can be as large as V(2). Consequently, the 2-loop results can show a very

different qualitative behaviour compared to the 1-loop results when using Catani’s original

scheme as can be seen in Figs. 6.1.7, 6.1.8, 6.1.9, and 6.1.10. Note that the relative agreement

between our results and the expansions is visibly better in the “qT scheme” than in Catani’s

original scheme.
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Figure 6.1.7: The
√
s dependence of 1-loop and 2-loop interferences for polarised ZZ pro-

duction in gluon fusion at cos(θ) = −0.1286. Here, the top left and bottom right panels

of Fig. 6.1.3 are reproduced using Catani’s original subtraction scheme [13]. Reproduced

from [6].

The above discussion implies that the comparisons shown above are largely scheme de-

pendent, at least looking at relative agreement. As such, to better understand the deviation

of the expansions from the exact result and estimate their impact on the physically relevant

observables, real radiation contributions also need to be taken into account.
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production in gluon fusion at
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−1.0 −0.5 0.0 0.5 1.0

cos(θ)

−0.020

−0.015

−0.010

−0.005

0.000

V(2
)

+
−

0.000

0.002

0.004

0.006

0.008

0.010

V(1
)

+
−

−1.0 −0.5 0.0 0.5 1.0

cos(θ)

0

2

4

6

8

10

V(2
)

00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V(1
)

00
V(2)

Padé
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Figure 6.1.9: The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ

production in gluon fusion at
√
s/mt = 2.331. The Padé improved small top-quark mass ex-

pansion [12] is shown for comparison. Here, the top left and bottom right panels of Fig. 6.1.5

are reproduced using Catani’s original subtraction scheme [13]. Reproduced from [6].
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Figure 6.1.10: The cos(θ) dependence of 1-loop and 2-loop interferences for polarised ZZ

production in gluon fusion at
√
s/mt = 4.703. The small top-quark mass expansion (to
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scheme [13]. Reproduced from [6].
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Chapter 7

Conclusions

In this work, the calculation of the 2-loop corrections to the process gg → ZZ with internal

top quarks has been presented. Exact dependence on the mass of the top quark has been

kept. The amplitude is represented in terms of a basis of finite master integrals which are

evaluated numerically.

To perform the very challenging IBP reductions, the method of syzygies is used to avoid

introduction of integrals with dots in the linear systems; a new algorithm to construct such

syzygies using linear algebra is employed. The resulting system of equations is then reduced

using finite field techniques.

A new algorithm is presented to construct finite integrals as linear combinations with

the building blocks being integrals with numerators, higher powers of propagators, dimen-

sionally shifted integrals, and subsector integrals. The resulting parametric integrand for

such integrals is integrable for ε = 0 and admits an expansion in ε allowing for numerical

integration. This approach allows the construction of finite integrals considered more natural

since the constituent integrals in the linear combinations appear in the amplitudes already.

To evaluate the master integrals numerically, pySecDec, based on the method of sector de-

composition, is employed. Choice of such finite integrals is observed to significantly improve

the numerical performance.
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Results are provided for our 2-loop amplitudes along with comparisons against various

approximations. Good agreement is observed with the large top-mass and small top-mass

expansions in the regions where the approximations are expected to perform well. In compar-

ison to the regular small top-mass expansion, the Padé improved small top-mass expansion

is found to work over a significantly larger region of phase space, in particular for moderate

energies and/or non-central scattering. The amplitudes presented in this paper provide the

building block required to include the full top-quark mass effects in the next-to-leading order

cross section for ZZ production in gluon fusion.
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APPENDIX A

QCD Feynman Rules

A.1 QCD Lagrangian

QCD Lagrangian:

L = ψ
i
(iγµDij

µ − δijm)ψj − 1

4
Ga,µνGa

µν −
1

2ξ
(∂µGa

µ)2 + (∂µc∗a)Dab
µ c

b . (A.1)

- ψi : Quark field with colour index i in fundamental representation

- Ga
µν : Gluon field strength tensor with colour index a in the adjoint representation

- ca : Faddeev-Popov ghost field with colour index a in the adjoint representation

- Dij
µ = δij∂µ − igsT a,ijGa

µ : Covariant derivative in the fundamental representation

- Dab
µ = δab∂µ − gsfabcGa

µ : Covariant derivative in the adjoint representation

- T a,ij : SU(N) generator

- fabc : Structure functions

Split the Lagrangian into free and interacting part:

Lfree = ψ
i
(iγµ∂µ −m)ψi − 1

4
(∂µGa,ν − ∂νGa,µ)(∂µG

a
ν − ∂νGa

µ)− 1

2ξ
(∂µGa

µ)(∂νGa
ν)︸ ︷︷ ︸

Gauge fixing term

+ (∂µc∗a)(∂µc
a)︸ ︷︷ ︸

Ghost field

, (A.2)

144



Lint = gsT
a,ijψ

i
/G
a
ψi︸ ︷︷ ︸

Fermion-Gauge term

− gs
2
fabc(∂µGa,ν − ∂νGa,µ)Gb

µG
c
ν︸ ︷︷ ︸

3-point Gauge interaction

+
g2
s

4
fabef cdeGa,µGb,νGc

µG
d
ν︸ ︷︷ ︸

4-point Gauge interaction

− gsf
abc(∂µc∗a)cbGc

µ︸ ︷︷ ︸
Gauge-Ghost interaction

. (A.3)

A.2 Feynman rules

QCD Propagators:

1. Quark

i
δij

/p−m

2. Gluon

−iδ
ab

p2

(
gµν + (ξ − 1)

pµpν

p2

)

3. Faddev-Popov Ghost

i
δab
p2

QCD Vertices:

1. Quark-gluon vertex
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i gsT
a
ijγ

µ

2. Ghost-gluon vertex

gsf
abcpµ

3. 3-gluon vertex

gsf
abc (gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gµρ(p3 − p1)ν)
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4. 4-gluon vertex

−ig2
s

[
fabef cde(gµρgνλ − gµλgνρ)

+facef bde(gµνgρλ − gµλgνρ)

+fadef bce(gµνgρλ − gµρgνλ)
]

Electroweak vertices relevant for gg → ZZ:

1. Higgs-top vertex

iδij
m

v

2. Z-quark vertex

147



i
e

2 sin θW cos θW
γµ (vt + atγ5)

3. Higgs-Z vertex

i
e

sin θW cos θW
mZ g

µν

A.3 SU(N) algebra

For the SU(N) group, the Lie generators are defined using the commutation relation

[T a, T b] = −F a
bcT

c , (A.4)

where the structure constants F a
bc themselves satisfy the commutation relation

[F a
de, F

b
ef ] = −F a

bcF
c
df . (A.5)
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T a are the generators in the fundamental representation while F a
bc are the generators in the

adjoint representation. The generators T a are normalised according to

Tr
(
T aT b

)
= TF δ

ab (A.6)

where TF = 1/2 by convention. The quadratic Casimir Cr invariant for the representation r

is defined as

TaTa = Cr1n (A.7)

with n being the dimensions of the representation r. For the fundamental representation,

CF =
N2 − 1

2N
. (A.8)

This is easily derived by taking the trace of Eq. A.7.

The generators in the adjoint representation can be written in terms of the generators in

fundamental representation as

F a
bc = −2 Tr

(
[T a, T b]T c

)
. (A.9)

This can be used, along with the Fierz identity

T aijT
a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
, (A.10)

to write down trace relation for adjoint representation similar to Eq. A.6:

Tr
(
F aF b

)
= Nδab . (A.11)
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The Casimir invariant in the adjoint representation is

CA = N (A.12)

derived simply by taking the trace of F aF a = CA1n with n = N2 − 1 and Eq. A.11.

An explicit representation for the generators T a can be written in terms of the Gell-Mann

matrices T a = λa/2 where the Gell-Mann matrices are

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

The adjoint generators F a can be written in terms of the totally antisymmetric structure

constants fabc

F a
bc = −i fabc . (A.13)

Explicit values of fabc for a given representation can be determined using Eq. A.9.
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A.4 Colour factors of some simple diagrams

C = T aikδklT
b
ljδ

ab = T ailT
a
lj = CF δij

C = T aikδklT
b
ljδji = T ailT

b
li = Tr(T aT b) = TF δ

ab

C = facdf bcd = Tr
(
F aF b

)
= CAδ

ab

C = facef bce = Tr
(
F aF b

)
= CAδ

ab

At 2-loops, considering diagrams with 1 closed fermion loop:
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C = facdf bcd × TF = Tr
(
F aF b

)
TF = TFCAδ

ab

C =Tr
(
T aT cT dT b

)
δcd = Tr

(
T aT cT cT b

)
=Tr

(
T aT b

)
CF = TFCF δ

ab

C =Tr
(
T aT cT bT d

)
δcd = Tr

(
T aT cT bT c

)
= − 1

2N
TF δ

ab = TF

(
CF −

1

2
CA

)
δab

C =Tr
(
T bT cT d

)
facd = i

1

4N
δab

= − i TF
(
CF −

1

2
CA

)
δab
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APPENDIX B

Evaluation using Feynman parameters

B.1 Massive tadpole

Consider the integral in Minkowski space

∫
ddk

iπd/2
1

k2 −m2 + i0
. (B.1)

This integral is dependent on k2 = k2
0 − k2

1 − k2
2 − k2

3. To perform the integration in, Wick

rotation (Fig. B.1) can be used to transform Minkowski space into Euclidean space using

k0 → ik0,E with spatial components remaining unchanged. Thus, the integral over k0 can be

replaced by the integral over k0,E as

∫ ∞
−∞

dk0 F (k0)→ i

∫ ∞
−∞

dk0,E F (ik0,E) . (B.2)

This is easy to see using Cauchy’s theorem; the integrals over the arcs in Fig. B.1 can be

shown to vanish near infinity leaving the above relation. Note that the i0 prescription is

essential to ensure that the poles lie outside the integration contour. The integral over loop

momentum then becomes

∫
ddk

iπd/2
1

k2 −m2 + i0
= i

∫
ddkE
iπd/2

1

−k2
E −m2 + i0

(B.3)

where k2
E = k2

0,E + k2
1,E + k2

2,E + k2
3,E. The d dimensional Euclidean integral above can be

written in spherical coordinates using

ddkE = kd−1
E dkE dΩd . (B.4)
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Figure B.1: The integration contour to perform Wick rotation. Note that the poles lie

outside the contour.

Integral over the d dimensional solid angle gives

∫
dΩd =

(
d−2∏
i=1

∫ π

0

dθi sin
d−1−i θi

)∫ 2π

0

dθd−1 =
2πd/2

Γ(d/2)
. (B.5)

The remaining integral in kE is straightforward:

∫ ∞
0

kd−1
E dkE

1

k2
E +m2

=
1

2
md−2 Γ

(
1− d

2

)
Γ

(
d

2

)
. (B.6)

Combining the two, the integral gives

∫
ddk

iπd/2
1

k2 −m2 + i0
= −md−2 Γ

(
1− d

2

)
. (B.7)
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Note that the integral converges only for Re (d) < 2. Using d = 4−2ε and expanding around

ε = 0,

∫
ddk

iπd/2
1

k2 −m2 + i0
=

1

ε
m2 +m2(1− γE − logm2) +O(ε) (B.8)

where γE is the Euler-Mascheroni constant. It is common to remove these factors of γE

appearing in ε expansions of Feynman integrals by multiplying the integrals with eεγE . Note

that as expected, the divergence shows up as the 1/ε pole.

Evaluating the tadpole integral with the propagator raised to power 3 instead gives

∫
ddk

iπd/2
1

(k2 −m2 + i0)3
= −1

8
(d− 4)(d− 2)md−6Γ

(
1− d

2

)
(B.9)

which when expanded gives

∫
ddk

iπd/2
1

(k2 −m2 + i0)3
= − 1

2m2
+

1

2m2
(γE + logm2)ε+O(ε2) . (B.10)

Simple power counting shows that this integral should be finite in d = 4 as seen above.

B.2 Massless bubble

The massless bubble integral from Fig. 3.2.1 (without cuts) can be written as

I = eεγE
∫

ddk

iπd/2
1

(k2 + i0)((k − p)2 + i0)
. (B.11)

Applying Feynman’s trick, this becomes

I =

∫ 1

0

dx

∫
ddk

iπd/2
eεγEΓ(2)

((1− x)k2 + x(k − p))2
=

∫ 1

0

dx

∫
ddk

iπd/2
eεγEΓ(2)

(k2 + 2xk.p+ xp2 + i0)2
.

(B.12)
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Completing the square (k + xp)2 gives

I =

∫ 1

0

dx

∫
ddk

iπd/2
eεγEΓ(2)

((k + xp)2 − (∆− i0))2 =

∫ 1

0

dx

∫
ddk

iπd/2
eεγEΓ(2)

(k2 −∆ + i0))2 (B.13)

where ∆ = −p2x(1− x). Integrating over the loop momentum, we get

I = eεγEΓ(2)Γ(2− d/2)

∫ 1

0

dx
1

(∆− i0)
4−d

2

= eεγEΓ(2)Γ(2− d/2)

∫ 1

0

dx
1

(−p2 − i0)
4−d

2 (x− x2)
4−d

2

. (B.14)

The integral over x converges for Re(d) > 2. Integrating, and expanding in ε, we get

I =
1

ε
+
(
2− log(−p2 − i0)

)
+O(ε) . (B.15)
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APPENDIX C

Dirac algebra and γ5 schemes

C.1 Gamma matrices and identities

Fermions in a free theory satisfy the Dirac equation

ψ (iγµ∂µ −m)ψ = 0 . (C.1)

γµ are referred to as the Dirac or Gamma matrices. They generate a Clifford algebra and

satisfy the following anti-commutation relations

{γµ, γν}+ = 2ηµν1d . (C.2)

where 1d is the d-dimensional identity matrix and ηµν is the metric tensor for Minkowski

space. An explicit representation can be written for the Gamma matrices in 4 dimensions

in the Dirac representation

γ0 =

12 0

0 12

 , (C.3)

γi =

 0 σi

−σi 0

 , (C.4)
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for i = 1, 2, 3. Here σi are the Pauli matrices:

σ1 =

 0 1

1 0

 ,

σ2 =

 0 −i

i 0

 ,

σ3 =

 1 0

0 −1

 . (C.5)

The Gamma matrices satisfy the following identities in d-dimensions following from the

anti-commutation rule in Eq. C.2

γµγµ = d1d , (C.6)

γµγνγµ = (2− d)γν , (C.7)

γµγνγργµ = 2 ηνρ − (2− d)γργν , (C.8)

as well as the following trace identities

Tr(γµ) = 0 , (C.9)

Tr(γµγν) = 4ηµν , (C.10)

Tr(γµ1 ...γµm) = Tr(γµm ...γµ1) , (C.11)

Tr(γµ1 ...γµ2m+1) = 0 , (C.12)

Tr(γµ1 ...γµ2m) = 4
∑
perms

Sgn(σ) gµi1µj1 ...gµinµjn (C.13)
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with 1 = i1 < ... < in and ik < jk. σ refers to permutation of the indices i1, j1, ..., injn and

Sgn(σ) is the sign of the permutation.

C.2 γ5 in d dimensions

In d = 4 dimensions, we can define a fifth Gamma matrix γ5 as

γ5 = iγ0γ1γ2γ3 . (C.14)

An explicit representation in the Dirac basis is given by

γ5 =

 0 12

12 0

 . (C.15)

γ5 can also be defined using the totally anti-symmetric Levi-Civita tensor εµνρσ

γ5 =
i

4!
εµνρσγµγνγργσ , (C.16)

which leads to the trace identity

Tr(γµγνγργσ) = −4iεµνρσ (C.17)

in d = 4. An anti-commutation relation follows from Eq. C.2 and C.14,

{γµ, γ5}+ = 0 , (C.18)

as well as the identity

(γ5)2 = 14 . (C.19)
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Figure C.1: The triangle anomaly graph. Here the dark blob vertex represents the axial-

vector coupling.

Since the anti-symmetric tensor εµνρσ is a purely 4-dimensional object, γ5 and, as a

consequence, the trace identity in Eq. C.17 are not defined for d 6= 4. Dimensional regulari-

sation is one of the most popular methods to perform higher-order calculations. It preserves

gauge invariance which makes it highly attractive and simpler to implement. However, for

processes involving parity violating interactions, the naive regularisation scheme with the

4-dimensional γ5 cannot be used.

There are several methods to "extend" the trace relation of Eq. C.17 to d dimensions.

For a consistent definition of γ5 in d-dimensions, both the cyclicity of the trace and Eq. C.18

cannot be preserved [68, 69]. This can be seen most easily through the triangle anomaly

graph in Fig. C.1. The sum of the above diagram and its crossed diagram, where the

incoming legs with momenta p1, p2 are exchanged, can be written as

Iµνρ =

∫
ddk

iπd/2
Tr(γργ5/kγµ(/k + /p1)γν(/k + /p1 + /p2))

k2 (k + p1)2 (k + p1 + p2)2
+ [p1 ↔ p2, µ↔ ν] . (C.20)

It is straightforward to show that assuming cyclicity of trace along with the anti-commuting

γ5 (Eq. C.18) implies that the above integral, vanishes. This is of course incorrect and

demonstrates the erroneous approach to evaluating the anomaly. To appropriately deal with

this issue, there are two major classes of schemes:

1. Schemes where the anti-commutation relation in Eq. C.18 is violated in favour
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of preserving cyclicity of trace e.g. the HVBM scheme [213, 214, 215, 68] and the Larin

scheme [348, 349].

2. Schemes where the anti-commutation relation in Eq. C.18 is preserved while

cyclicity of the trace is violated [210, 211, 212]

C.3 Anti-commuting γ5 scheme

In Kreimer’s anti-commuting γ5 scheme, the cyclicity of traces is not preserved. This also

implies that the traces need to be read from a specific point and the result in general depends

on the "reading point", which is chosen to be the axial-vector vertex so as to conserve vector

currents. All diagrams, and their traces, must be read from the same reading point and in

case of multiple γ5’s, the traces need to be symmetrised.

Assuming that trace is not cyclic, the triangle anomaly above can be calculated using

the following trace identities concerning γ5 in addition to the trace identities in the previous

section for the "regular" γ-matrices:

Tr(γ5) = 0 , (C.21)

Tr(γµ1 ...γµ2m+1γ5) = 0 , (C.22)

Tr(γµγνγ5) = 0 , (C.23)

Tr(γµ1 ...γµ4γ5) = 4iεµ1µ2µ3µ4 , (C.24)

Tr(γµ1 ...γµmγ5) = Tr(γµm ...γµ1γ5) , (C.25)

Tr(γµ1 ...γµ2mγ5) = 4i
∑
σ

Sgn(σ)εµin+1
µin+2

µjn+1
µjn+2 gµi1µj1 ...gµin+2

µjn+2
(C.26)

with 1 = i1 < ... < in+2 and ik < jk. σ refers to permutation of the indices i1, j1, ..., in+2jn+2

and Sgn(σ) is the sign of the permutation. Note that any contractions with the ε-tensor are

treated in 4-dimensions since the ε-tensor is a 4-dimensional object.

Above trace rules along with the requirement of reading traces from the same vertex

in each diagram. Applying the above rules, the correct result for the anomalous triangle
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diagram can be recovered.
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APPENDIX D

UV renormalisation

D.1 Renormalised Lagrangian

The bare Lagrangian can be written as

Lbare =ψ
i

0(iγµ∂µ −m0)ψi0 −
1

4
(∂µGa,ν

0 − ∂νGa,µ
0 )(∂µG

a
0,ν − ∂νGa

0,µ)− 1

2ξ
(∂µGa

µ,0)(∂νGa
ν,0)

+ (∂µc∗a0 )(∂µc
a
0) + gS,0T

a,ijψ
i

0γ
µGa

0,µψ
i
0 −

gS,0
2
fabc(∂µGa,ν

0 − ∂νGa,µ
0 )Gb

0,µG
c
0,ν

+
g2
S,0

4
fabef cdeGa,µ

0 Gb,ν
0 Gc

0,µG
d
0,ν − gS,0fabc(∂µc∗a0 )cb0G

c
0,µ (D.1)

where all the bare parameters and fields are denoted by the subscript "0" e.g. Ga
0,µ. The

bare parameters can be replaced by the renormalised parameters:

ψ0 =
√
Zψ ψR

Ga,µ
0 =

√
ZGG

a,µ
R

ca0 =
√
Zc c

a
R

m0 =ZmmR

gS,0 =Zg gS,R

αS,0 =ZαSαS,R

ξ0 =Zξξ (D.2)

where Zψ etc. are referred to as renormalisation constants. In what follows, the R sub-

script has been dropped for the sake of brevity and any quantity without the subscript 0 is

understood to be renormalised.
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The renormalisation constants can be expanded order-by-order in αS/(2π) e.g.

Zψ = 1 +
αS
2π

δZψ +O(α2
S) (D.3)

keeping terms only up to O(αS). For brevity, it is useful to define

δψ = αS/(2π) δZψ , δG = αS/(2π) δZG , δc = αS/(2π) δZc

δm = αS/(2π) δZm , δg = αS/(2π) δZg , δαS = αS/(2π) δZαS . (D.4)

Replacing the bare parameters in the Lagrangian with the renormalised parameters and

expanding the renormalisation constants gives

L = Lren + Lct (D.5)

where

Lren =ψ
i
(iγµ∂µ −m)ψi − 1

4
(∂µGa,ν − ∂νGa,µ)(∂µG

a
ν − ∂νGa

µ)− 1

2ξ
(∂µGa

µ)(∂νGa
ν)

+ (∂µc∗a)(∂µc
a) + gST

a,ijψ
i
γµGa

µψ
i − gS

2
fabc(∂µGa,ν − ∂νGa,µ)Gb

µG
c
ν

+
g2
S

4
fabef cdeGa,µGb,νGc

µG
d
ν − gSfabc(∂µc∗a)cbGc

µ ,

Lct =ψ
i
(i(δψ)γµ∂µ − (δψ + δm)m)ψi − 1

4
δG (∂µGa,ν − ∂νGa,µ)(∂µG

a
ν − ∂νGa

µ)

− 1

2ξ
δG (∂µGa

µ)(∂νGa
ν) + δc(∂

µc∗a)(∂µc
a) + (δψ + δg + 1/2δG)gST

a,ijψ
i
γµGa

µψ
i

− (δg + 3/2δG)
gS
2
fabc(∂µGa,ν − ∂νGa,µ)Gb

µG
c
ν + 2(δg + δG)

g2
S

4
fabef cdeGa,µGb,νGc

µG
d
ν

− (δg + δc + 1/2δG) gSf
abc(∂µc∗a)cbGc

µ . (D.6)

D.2 1-loop counterterms

From the above Lagrangian, counterterm diagrams can be written as follows:
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iδGδ
ab
(
pµpν − gµνp2

)

iδij
(
δψ/p− (δψ + δm)m

)

iδcδ
abp2

i(δψ + δg +
1

2
δG) gST

a
ijγµ

(δg +
3

2
δG) gsf

abc

[
gµν(p1 − p2)ρ

+ gνρ(p2 − p3)µ + gµρ(p3 − p1)ν
]
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−i(2δg + 2δG) g2
s

[
fabef cde(gµρgνλ − gµλgνρ)

+facef bde(gµνgρλ − gµλgνρ)

+fadef bce(gµνgρλ − gµρgνλ)
]

(δc + δg +
1

2
δG) gsf

abcpµγµ

The counterterms can be determined by requiring that the divergences in the 1-loop

contributions are cancelled by the counterterm vertices. E.g. for gluon field renormalisation,

all the diagrams contributing to the 2-point function at 1-loop and the 1-loop counterterm

must sum up to be finite as shown in Fig. D.1. Note that in principle, any arbitrary finite term

can be added to the counterterm without affecting the divergent piece. This allows a lot of

freedom in choosing the exact form of the counterterms. There are multiple renormalisation

"schemes" that differ in the choice of these finite terms. The most popular is the so-called

modified minimal subtraction (MS) scheme. In this scheme, an additional −γE + ln 4π is

added to the counterterm.

Consider the 1-loop corrections to the gluon propagator in Fig. D.1. The sum of all the
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Figure D.1: All the diagrams contributing to 1-loop correction to the gluon propagator,

including the counterterm diagram. Requiring that the sum is finite allows the calculation

of the counterterm δG.

diagrams can be written as

Σ(p) = nfΣf (p) + nhΣh(p) + Σc(p) + ΣG(p) + Σct(p) (D.7)

where Σf (p) is the contribution from light quarks, Σh(p) from heavy quarks, Σc(p) from ghost

fields, ΣG(p) from gluon self-interactions, and Σct(p) from the counterterm. For example,

the contribution from massless quarks can be written as

Σf (p) =
1

2
(4πµ2)2−d/2 g2

s

16π2
δab
∫

ddk

(iπd/2)

Tr
(
/kγµ(/k + /p)γν

)
k2(k + p)2

, (D.8)
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with a factor of µ4−d added to render it dimensionless. The integral above is straightforward

to evaluate and yields

Σf (p) =
αS
6π
δab(pµpν − gµνp2)

(
1

ε
− γE + ln 4π +O(ε0)

)
. (D.9)

Rest of the integrals can be evaluated similarly yielding, for the counterterm,

δG =

[
CA

(
13− 3ξ

12

)
− 2nf + 2nh

3
TF

](
1

ε
− γE + ln 4π

)
− 2

3
TF

nh∑
i

ln
µ2
R

m2
i

(D.10)

with the heavy quark diagrams subtracted at zero momentum. Note that the longitudinal

part of the gluon propagator does not receive any corrections. Ghost propagator counterterm

can be calculated similarly:

δc = −CA
(

3− ξ
8

)(
1

ε
− γE + ln 4π

)
. (D.11)

Above counterterms were calculated using the MS scheme. For massive quarks, the

on-shell renormalisation scheme is commonly used. In this scheme, the renormalisation

conditions are set as

δψ =

[
− d

d/p
Σ(p)

]
/p=mp

δm =
1

mp

Σ(mp) . (D.12)

Evaluating Σ(p) from the 1-loop quark self-energy diagram yields

δψ = δm = −1

2
CF

(
3

ε
+ 4 + 3 ln

(
4πe−γE

µ2
R

m2
p

))
. (D.13)

With δψ, δG, δc, δm known, δg can be calculated using the 3-point vertex. In Feynman
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gauge

δψ + δg +
1

2
δG = −1

2
(CF + CA)

(
1

ε
− γE + ln 4π

)
. (D.14)

In MS scheme, δg is

δg = −
(

11CA − 4(nf + nh)TF
12

)(
1

ε
− γE + ln 4π

)
+

1

3
TF

nh∑
i

ln
µ2
R

m2
i

. (D.15)

D.3 QCD β-function

From the above result, considering only the top-quark as the heavy particle,

ZαS =1 + 2δg = 1 +
αS
2π

[
− β0

(
1

ε
− γE + ln 4π

)
+

1

ε

(
2

3
TF + ε ln

(
4πe−γE

µ2
R

m2
t

))]
(D.16)

where

β0 =
11CA − 4nfTF

6
(D.17)

is the beta function at 1-loop.
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APPENDIX E

List of denominators

In this appendix, the denominator factors which occur in the coefficients of the master

integrals in the helicity amplitudes for gg → ZZ are listed. In the calculation, the masses of

the top quark and the Z boson, mt and mZ , have been set to mt = 1 and (mz/mt)
2 = 5/18.

The exact set of denominator factors depends on the choice of master integrals. In this work,

the basis is chosen such that the dependence on the space-time dimension d factorises from

that of the kinematic invariants s = (p1 + p2)2 and t = (p1 − p3)2.

We find 9 d-dependent denominators

d− 5, d− 4, d− 3, d− 2, d, 2d− 7, 3d− 10, 3d− 8, 5d+ 52

and the 48 d-independent denominators sorted according to the polynomial ordering used

for partial fractioning.

8 polynomials dependent only on s:

s, −4 + s, −5 + 9 s, −10 + 9 s, −5 + 18 s, 134 + 9 s, −335 + 324 s,

90− 245 s+ 324 s2 .

6 polynomials dependent only on t:

t, −4 + t, 10 + 13 t, −5 + 18 t, 5 + 18 t, 5 + 31 t .
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9 degree 1 polynomials in s, t:

− 5 + 6 s+ 6 t, −5 + 9 s+ 9 t, 31 + 9 s+ 9 t, −5 + 9 s+ 18 t, −5− 18 s+ 18 t ,

− 5 + 18 s+ 18 t, −5 + 36 s+ 18 t, −155 + 117 s+ 117 t, −200 + 279 s+ 279 t .

13 degree 2 polynomials in s, t:

25− 90 t+ 324 s t, 25 + 180 s− 90 t+ 558 s t, 5 s− 5 t+ 18 s t+ 18 t2

25− 135 t+ 162 s t+ 162 t2, 25− 180 t+ 324 s t+ 324 t2,

25− 180 t+ 648 s t+ 324 t2, 25− 270 s− 90 t+ 324 s2 + 324 s t,

25− 580 s− 90 t+ 558 s2 + 558 s t, 25 + 180 s− 180 t− 324 s2 + 324 t2,

25− 1296 s− 180 t+ 324 s t+ 324 t2, 25− 25 s− 180 t+ 90 s2 + 90 s t+ 324 t2

25− 155 s− 180 t+ 324 s2 + 558 s t+ 324 t2,

3350− 6030 s− 1675 t+ 2916 s2 + 3015 s t+ 3015 t2 .

2 degree 3 polynomials in s, t:

− 25 + 180 t− 324 s t− 324 t2 + 81 s t2,

− 25 + 25 s+ 180 t− 90 s2 − 414 s t− 324 t2 + 81 s3 + 162 s2 t+ 81 s t2 .
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8 degree 4 polynomials in s, t:

400− 3080 s− 2880 t+ 4489 s2 + 11808 s t+ 5184 t2 − 2772 s2 t− 2592 s t2 + 324 s2 t2,

400− 200 s− 2880 t− 695 s2 + 1440 s t+ 5184 t2 − 180 s3 − 2772 s2 t− 2592 s t2 + 324 s4

+ 648 s3 t+ 324 s2 t2,

112225− 997920 s− 808020 t+ 1679616 s2 + 3841992 s t+ 1454436 t2 − 839808 s2 t

− 898128 s t2 + 104976 s2 t2,

112225 + 51300 s− 808020 t− 144180 s2 + 64800 s t+ 1454436 t2 − 174960 s3 − 1073088 s2 t

− 898128 s t2 + 104976 s4 + 209952 s3 t+ 104976 s2 t2,

3125 + 173250 s− 45000 t+ 145800 s2 − 1206900 s t+ 243000 t2 + 3149280 s2 t

+ 1953720 s t2 − 583200 t3 + 1889568 s2 t2 + 524880 s t3 + 524880 t4,

− 8375− 23400 s+ 88200 t− 32400 s2 + 68040 s t− 301320 t2 + 29160 s3 − 244944 s2 t

+ 29160 s t2 + 303264 t3 − 104976 s3 t− 104976 s2 t2 + 104976 s t3 + 104976 t4,

+ 9625− 64800 s− 106200 t+ 599400 s t+ 398520 t2 − 839808 s2 t− 1405512 s t2

− 536544 t3 + 209952 s2 t2 + 314928 s t3 + 104976 t4,

− 2750 + 1800 s+ 22725 t+ 2025 s2 − 52650 s t− 56700 t2 + 26973 s2 t+ 64881 s t2

+ 37908 t3 + 13122 s3 t+ 26244 s2 t2 + 13122 s t3 .
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2 degree 6 polynomials in s, t:

+ 2500− 18000 t+ 64800 s t+ 27900 t2 − 249480 s t2 + 32400 t3 + 419904 s2 t2

+ 116640 s t3 − 56295 t4 − 209952 s2 t3 − 224532 s t4 − 14580 t5 + 26244 s2 t4

+ 52488 s t5 + 26244 t6,

+ 105625− 3676500 s− 468000 t+ 25891650 s2 + 17309700 s t− 797850 t2 − 50490540 s3

− 73614420 s2 t− 19260180 s t2 + 3863700 t3 + 29452329 s4 + 80752788 s3 t

+ 75149694 s2 t2 + 25850340 s t3 + 2001105 t4 − 18187092 s4 t− 60466176 s3 t2

− 72275976 s2 t3 − 35901792 s t4 − 5904900 t5 + 2125764 s4 t2 + 8503056 s3 t3

+ 12754584 s2 t4 + 8503056 s t5 + 2125764 t6 .

Note that during the initial IBP reduction to the traditional Laporta basis, spurious

denominators with mixed dependence on d and kinematic invariants were indeed introduced.

Rotation to the current basis followed by the partial fractioning approach described in Sec. 5.1

allowed us to systematically eliminate those denominators.
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APPENDIX F

Numerical checks

In this appendix, details of the pole cancellation are provided. The amplitudes are

evaluated in the chosen basis of finite integrals using Kreimer’s anti-commuting γ5 scheme.

For an L loop amplitude, at worst 1/ε2L could appear. However, since this process is only an

NLO correction, only the 1/ε2 and 1/ε poles should remain before UV renormalisation and

IR subtraction. Indeed, for the spurious 1/ε4 and 1/ε3 poles, analytical and high precision

numerical cancellations are seen, respectively. For the Euclidean point with s/m2
t = −191,

t/m2
t = −337, m2

Z/m
2
t = −853, mt = 1, 15 digits of cancellation is seen for the 1/ε3 pole

while 8 digit cancellation is seen for the point in the physical region: s/m2
t = 142/17,

t/m2
t = −125/22, m2

Z/m
2
t = 5/18, mt = 1.

The tables below show our results for the 1/ε2 and 1/ε poles following UV renormalisation,

as well as the ε0 term, and compare them against the predicted IR poles as in Eq. 5.2.13

and 5.2.14, for the Euclidean (Tab. F.1) and the physical (Tab. F.2) point. The digits in

parentheses for the ε0 term denote the uncertainty in the last digit. It is clear from the tables

below that the calculated poles show the structure predicted in [347] with good numerical

precision for both the Euclidean and the physical point which serves as a strong check for

the calculation.
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FF 1/ε2 1/ε ε0

A1 +2.436734851 · 10−1 +8.212518984 · 10−1 + 1.531045661 i −2.806661(2) + 4.18190980(3) i
Pred. +2.436734852 · 10−1 +8.212518977 · 10−1 + 1.531045662 i
A2 −1.760872097 · 10−1 −6.021429768 · 10−1 − 1.106388569 i +2.509969(1)− 3.07651654(4) i

Pred. −1.760872097 · 10−1 −6.021429781 · 10−1 − 1.106388569 i
A3 −3.815946068 · 10−2 −7.236587884 · 10−2 − 2.397629627 · 10−1 i +1.2102(3) · 10−2 − 3.015063(4) · 10−1 i

Pred. −3.815946069 · 10−2 −7.236587838 · 10−2 − 2.397629627 · 10−1 i
A4 −1.565000574 · 10−4 −5.374251500 · 10−4 − 9.833188615 · 10−4 i +2.18538(3) · 10−3 − 2.748510(3) · 10−3 i

Pred. −1.565000575 · 10−4 −5.374251489 · 10−4 − 9.833188622 · 10−4 i
A5 +7.608919171 · 10−4 +1.926944077 · 10−3 + 4.780824914 · 10−3 i −1.051486(4) · 10−2 + 9.052930(4) · 10−3 i

Pred. +7.608919168 · 10−4 +1.926944068 · 10−3 + 4.780824912 · 10−3 i
A6 +7.576619247 · 10−4 +2.735071357 · 10−3 + 4.760530273 · 10−3 i −7.02484(5) · 10−3 + 1.41435102(3) · 10−2 i

Pred. +7.576619247 · 10−4 +2.735071351 · 10−3 + 4.760530273 · 10−3 i
A7 −1.565000574 · 10−4 −5.374251500 · 10−4 − 9.833188615 · 10−4 i +2.18538(3) · 10−3 − 2.748510(3) · 10−3 i

Pred. −1.565000575 · 10−4 −5.374251489 · 10−4 − 9.833188622 · 10−4 i
A8 −3.055600405 · 10−4 −1.158849558 · 10−3 − 1.919890357 · 10−3 i +4.35036(1) · 10−3 − 6.0546699(5) · 10−3 i

Pred. −3.055600405 · 10−4 −1.158849559 · 10−3 − 1.919890357 · 10−3 i
A9 +2.001982671 · 10−4 +7.482078266 · 10−4 + 1.257882810 · 10−3 i −3.07299(1) · 10−3 + 3.897481(1) · 10−3 i

Pred. +2.001982671 · 10−4 +7.482078292 · 10−4 + 1.257882810 · 10−3 i
A10 +3.636573767 · 10−4 +1.390161598 · 10−3 + 2.284926686 · 10−3 i −4.77622(2) · 10−3 + 7.274828(2) · 10−3 i
Pred. +3.636573768 · 10−4 +1.390161596 · 10−3 + 2.284926686 · 10−3 i
A11 +5.388240322 · 10−6 −1.272166624 · 10−4 + 3.385531242 · 10−5 i +1.04254(1) · 10−3 − 8.20955(1) · 10−4 i
Pred. +5.388240348 · 10−6 −1.272166651 · 10−4 + 3.385531259 · 10−5 i
A12 −5.388240322 · 10−6 +1.272166624 · 10−4 − 3.385531242 · 10−5 i −1.04254(1) · 10−3 + 8.20955(1) · 10−4 i
Pred. −5.388240348 · 10−6 +1.272166651 · 10−4 − 3.385531259 · 10−5 i
A13 −3.636573767 · 10−4 −1.390161598 · 10−3 − 2.284926686 · 10−3 i +4.77622(2) · 10−3 − 7.274828(2) · 10−3 i
Pred. −3.636573768 · 10−4 −1.390161596 · 10−3 − 2.284926686 · 10−3 i
A14 −2.001982671 · 10−4 −7.482078266 · 10−4 − 1.257882810 · 10−3 i +3.07299(1) · 10−3 − 3.897481(1) · 10−3 i
Pred. −2.001982671 · 10−4 −7.482078292 · 10−4 − 1.257882810 · 10−3 i
A15 +3.055600405 · 10−4 +1.158849558 · 10−3 + 1.919890357 · 10−3 i −4.35036(1) · 10−3 + 6.0546699(5) · 10−3 i
Pred. +3.055600405 · 10−4 +1.158849559 · 10−3 + 1.919890357 · 10−3 i
A16 +1.898361362 · 10−4 +6.165488820 · 10−4 + 1.192775622 · 10−3 i −2.233448(2) · 10−3 + 3.11183978(6) · 10−3 i
Pred. +1.898361362 · 10−4 +6.165488809 · 10−4 + 1.192775622 · 10−3 i
A17 −4.235989659 · 10−8 −1.659620988 · 10−7 − 2.661550798 · 10−7 i +8.1249(2) · 10−7 − 8.72727(4) · 10−7 i
Pred. −4.235989677 · 10−8 −1.659621000 · 10−7 − 2.661550810 · 10−7 i
A18 −9.857950093 · 10−8 −9.594603102 · 10−7 − 6.193932718 · 10−7 i +4.4198(6) · 10−7 − 5.632743(5) · 10−6 i
Pred. −9.857950139 · 10−8 −9.594603103 · 10−7 − 6.193932747 · 10−7 i
A19 +8.932087549 · 10−7 +3.205282901 · 10−6 + 5.612196125 · 10−6 i −7.43447(5) · 10−6 + 1.6553816(4) · 10−5 i
Pred. +8.932087551 · 10−7 +3.205282889 · 10−6 + 5.612196126 · 10−6 i
A20 −4.235989659 · 10−8 −1.659620988 · 10−7 − 2.661550798 · 10−7 i +8.1249(2) · 10−7 − 8.72727(4) · 10−7 i
Pred. −4.235989677 · 10−8 −1.659621000 · 10−7 − 2.661550810 · 10−7 i

Table F.1: Numerical poles for the Euclidean phase-space point s/m2
t = −191, t/m2

t = −337,

m2
Z/m

2
t = −853, mt = 1 compared against the predicted values. Also shown are the ε0 terms

before IR subtraction with the digits in parentheses denoting the uncertainty in the last

digit.
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FF 1/ε2 1/ε ε0

A1 −5.726898 · 10−1 − 4.634791 · 10−1i −6.75706 · 10−1 − 4.05460 i 6.87787(1)− 7.90340(1) i
Pred. −5.726897 · 10−1 − 4.634791 · 10−1i −6.75704 · 10−1 − 4.05460 i
A2 +4.153857 · 10−1 + 1.097935 · 10−1i +1.40864 + 2.02204 i −2.53566(2) + 7.06651(3) i

Pred. +4.153857 · 10−1 + 1.097934 · 10−1i +1.40865 + 2.02204 i
A3 +2.003102 · 10−1 + 3.116062 · 10−1i −5.02052 · 10−1 + 1.86425 i −3.99592(2) + 2.59711(2) i

Pred. +2.003101 · 10−1 + 3.116062 · 10−1i −5.02053 · 10−1 + 1.86425 i
A4 +3.147592 · 10−2 + 9.237206 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i −4.1039(4) · 10−2 + 5.40365(5) · 10−1 i

Pred. +3.147591 · 10−2 + 9.237121 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i
A5 +1.041667 · 10−1 + 5.382124 · 10−2i +2.44023 · 10−1 + 5.97453 · 10−1i −8.96421(5) · 10−1 + 1.736695(6) i

Pred. +1.041667 · 10−1 + 5.382123 · 10−2i +2.44022 · 10−1 + 5.97453 · 10−1i
A6 +1.242527 · 10−1 + 6.941130 · 10−2i +2.52191 · 10−1 + 7.24307 · 10−1i −1.20930(2) + 1.93865(2) i

Pred. +1.242527 · 10−1 + 6.941131 · 10−2i +2.52189 · 10−1 + 7.24307 · 10−1i
A7 +3.147592 · 10−2 + 9.237206 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i −4.1039(4) · 10−2 + 5.40365(4) · 10−1 i

Pred. +3.147591 · 10−2 + 9.237121 · 10−4i +1.39272 · 10−1 + 1.16086 · 10−1i
A8 −1.017708 · 10−2 + 8.808524 · 10−2i −4.41618 · 10−1 + 2.61228 · 10−1i −1.00384(5)− 4.4284(4) · 10−1 i

Pred. −1.017707 · 10−2 + 8.808519 · 10−2i −4.41613 · 10−1 + 2.61225 · 10−1i
A9 +7.168287 · 10−2 − 5.063902 · 10−2i +5.37076 · 10−1 + 9.24698 · 10−2i 3.07426(8) · 10−11.266108(9) i

Pred. +7.168286 · 10−2 − 5.063902 · 10−2i +5.37075 · 10−1 + 9.24707 · 10−2i
A10 +1.873343 · 10−2 − 8.497011 · 10−2i +4.70733 · 10−1 − 2.17284 · 10−1i +9.3643(1) · 10−1 + 6.3029(1) · 10−1 i
Pred. +1.873344 · 10−2 − 8.497010 · 10−2i +4.70734 · 10−1 − 2.17286 · 10−1i
A11 −7.675742 · 10−2 + 5.097567 · 10−2i −5.57824 · 10−1 − 1.06514 · 10−1i −3.1397(3) · 10−1 − 1.35727(4) i
Pred. −7.675741 · 10−2 + 5.097571 · 10−2i −5.57827 · 10−1 − 1.06513 · 10−1i
A12 +7.675742 · 10−2 − 5.097567 · 10−2i +5.57824 · 10−1 + 1.06514 · 10−1i +3.1397(3) · 10−1 + 1.35727(4) i
Pred. +7.675741 · 10−2 − 5.097571 · 10−2i +5.57827 · 10−1 + 1.06513 · 10−1i
A13 −1.873343 · 10−2 + 8.497011 · 10−2i −4.70733 · 10−1 + 2.17284 · 10−1i −9.3644(1) · 10−1 − 6.3029(1) · 10−1 i
Pred. −1.873344 · 10−2 + 8.497010 · 10−2i −4.70734 · 10−1 + 2.17286 · 10−1i
A14 −7.168287 · 10−2 + 5.063902 · 10−2i −5.37076 · 10−1 − 9.24698 · 10−2i −3.07426(8) · 10−1 − 1.266108(9) i
Pred. −7.168286 · 10−2 + 5.063902 · 10−2i −5.37075 · 10−1 − 9.24707 · 10−2i
A15 +1.017708 · 10−2 − 8.808524 · 10−2i +4.41618 · 10−1 − 2.61228 · 10−1i 1.00384(4) + 4.4283(4) · 10−1 i
Pred. +1.017707 · 10−2 − 8.808519 · 10−2i +4.41613 · 10−1 − 2.61225 · 10−1i
A16 −6.195421 · 10−2 − 9.197693 · 10−2i +1.25592 · 10−1 − 6.06299 · 10−1i 1.76383(3)− 9.4291(3) · 10−1 i
Pred. −6.195417 · 10−2 − 9.197695 · 10−2i +1.25596 · 10−1 − 6.06299 · 10−1i
A17 +9.152404 · 10−4 + 4.922399 · 10−3i −1.47185 · 10−2 + 2.71477 · 10−2i −8.6390(6) · 10−2 + 2.7504(7) · 10−2 i
Pred. +9.152368 · 10−4 + 4.922402 · 10−3i −1.47187 · 10−2 + 2.71472 · 10−2i
A18 +6.800443 · 10−3 + 5.687424 · 10−3i +7.80438 · 10−3 + 4.98318 · 10−2i −1.02182(8) · 10−1 + 1.37512(8) · 10−1 i
Pred. +6.800439 · 10−3 + 5.687435 · 10−3i +7.80405 · 10−3 + 4.98315 · 10−2i
A19 +4.208648 · 10−3 + 4.547692 · 10−3i −3.01730 · 10−4 + 3.55035 · 10−2i −7.895(10) · 10−2 + 7.980(11) · 10−2 i
Pred. +4.208616 · 10−3 + 4.547808 · 10−3i −3.13880 · 10−4 + 3.55067 · 10−2i
A20 +9.152403 · 10−4 + 4.922399 · 10−3i −1.47185 · 10−2 + 2.71477 · 10−2i −8.6391(6) · 10−2 + 2.7504(7) · 10−2 i
Pred. +9.152368 · 10−4 + 4.922402 · 10−3i −1.47187 · 10−2 + 2.71472 · 10−2i

Table F.2: Numerical poles for the physical phase-space point s/m2
t = 142/17, t/m2

t =

−125/22, m2
Z/m

2
t = 5/18, mt = 1 compared against the predicted values. Also shown are

the ε0 terms before IR subtraction with the digits in parentheses denoting the uncertainty

in the last digit.
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