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ABSTRACT

NEUTRON-UNBOUND STATES IN THE NUCLEUS 31NE

By

Dayah Chrisman

Studies of nuclei far from stability reveal trends among groups of neighboring nuclei where

new and unexpected properties appear. One such region, the Island of Inversion near the

N = 20 shell gap, is home to nuclei with reordered single-particle energy levels compared to

the spherical shell model. Studies of the 31Ne nucleus have revealed that its ground state

has a halo component, characterized by a valence neutron orbiting a deformed 30Ne core.

This lightly-bound nucleus with a separation energy of Sn = 0.15+0.16
−0.10 MeV is expected to

have excited states that are neutron unbound.

This work presents a first study of the neutron-unbound excited states of 31Ne. Neutron-

unbound states in 31Ne were populated in a two-proton knockout reaction from an 89 MeV/u

33Mg beam incident on a segmented Be reaction target. The 30Ne fragment and associated

neutron from the decay of 31Ne∗ were detected by the MoNA-LISA-Sweeper experimental

setup at the National Superconducting Cyclotron Laboratory. Invariant mass spectroscopy

was used to reconstruct the two-body decay energy (30Ne + n).

The two-body decay energy spectrum exhibits two features: a low-lying peak at 0.30 ±

0.17 MeV and a broad enhancement at 1.50± 0.33 MeV, each fit with an energy-dependent

asymmetric Breit-Wigner line shape representing a resonance in the continuum. Accom-

panying shell model calculations combined with cross-section calculations using the eikonal

reaction theory indicate that these features in the decay energy spectrum originate from



multiple resonant states in 31Ne.
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Chapter 1

Introduction

1.1 The nuclear landscape

An atomic nucleus is a many-body system comprised of one or more protons and neutrons.

Each species of atomic nucleus, called a nuclide, is identified by the number of protons (or

atomic number, Z) and number of neutrons (N) it contains. The chart of nuclides arranges

all known nuclear species plotted on the (N,Z) plane, shown in Figure 1.1. The total

mass number A = Z + N is often used with the atomic number (Z) to refer to a nucleus.

A common notation for nuclides is A
ZXN , or more concisely, AX, where X is the atomic

symbol corresponding to the atomic number (Z). Isotopes are nuclei which have the same

atomic number (Z) but varying neutron number (N) and are visualized as rows in the chart

of nuclides. Conversely, isotones are nuclei with the same N but different Z, visualized as

columns in the chart of nuclides. Isobars are nuclei with identical mass number A, visualized

on the diagonal from top left to bottom right within the chart of nuclides. The central region

containing stable nuclei (denoted by black boxes in Figure 1.1) is often referred to as the

“valley of stability” in the nuclear landscape.
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Figure 1.1: The chart of nuclides from National Nuclear Data Center (NNDC) [1]. Colors
represent ground-state half lives.

1.1.1 Nuclear stability

Generally speaking, the further a nuclide is from the “valley of stability” on the nuclear

chart, the faster it will decay back toward stability. On either side of the valley are nuclei

susceptible to decay over some time scale. Observed half-lives for unstable nuclei range from

longer than the age of the universe down to 10−22 s for particle-unbound nuclei.

On the neutron-deficient side of the valley of stability (left), the primary decay mode is

β+ decay, turning a proton into a neutron. On the neutron-rich side of the valley (right)

the trend is the opposite: β− decay turning a neutron into a proton. Far from the valley of

stability in neutron-rich nuclei, half-lives drop significantly from roughly 1 ms down to about

1−18 ms. The “weak” nuclear force responsible for β decay processes have characteristic half-

lives much longer compared to the “strong” nuclear force which is responsible for binding
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nucleons together. The timescale of the strong nuclear force (1−18 ms) is characteristic of

the motion of the nucleons within a nucleus and can be used as a lower limit for the condition

of nuclear existence.

The one-neutron separation energy Sn refers to the amount of energy needed to separate

one neutron from a specific nuclide, the trends of which can be examined to expose patterns

of nuclear properties. For nuclides that meet the condition of existence and for which the

ground state energetically favors emitting a nucleon (having a negative one-nucleon separa-

tion energy), the nucleus decays directly by nucleon emission and are considered particle-

unbound nuclei. The location on the nuclear chart where this happens is called the neutron

“dripline” [6]. The limits of the nuclear chart and the limits of nuclear existence have yet

to be fully explored. One of the main goals of nuclear physics research is to predict the in-

teractions of protons and neutrons and the nuclei they form using a concise, cohesive model

across all nuclear systems.

1.1.2 Nuclear theory methods

Theoretical approaches to nuclear physics are numerous and are, individually, applicable

to some range of nuclei. The strong nuclear force is fundamentally what determines the

nuclear structure. In the Standard Model of particle physics, protons and neutrons are built

from elementary particles called quarks. Nuclear interactions can be built using Quantun

Chromo-Dynamics (QCD) to model the exchange of gluons between the quarks that make up

the nucleons in the Standard Model. The typical energy regime of nuclear physics makes the

calculation non-trivial (requiring lattice QCD) and it is computationally expensive, thus an

easier access to nuclei with very few nucleons [7]. An effective field theory (EFT) for nucleons
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and mesons is equivalent to the QCD calculation if it obeys the same symmetries [8]. With an

EFT, slightly higher nuclear mass numbers than lattice QCD can be reached because nuclei

are built starting from nucleon-nucleon interactions [9]. However, the calculations quickly

become computationally intensive similar to lattice QCD. This limitation encourages an

empirical approach to nuclear physics theory where experimental data informs the model

used. Configuration interaction (CI) methods can predict physical properties by applying

an appropriate interaction model based on a range of applicability, often determined by

location in the nuclear chart or by a specific mass regime, where the calculations are guided

by experimental data. The nuclear shell model is an example of one such theoretical approach

and is discussed in the next section.

For the heaviest nuclei, even configuration interaction methods are limited by the cost of

computation. A density functional theory (DFT), such as those used in atomic and condensed

matter physics, uses continuous densities and currents rather than individual particles to

calculate ground and excited state energies. Combining these methods and their range of

applicability, theorists can model and study nuclear systems with any number of nucleons,

extending to predictions for superheavy [10] and hyperheavy [11] nuclides which have yet to

be observed.

Though nuclear properties can be mostly accounted for using an approach for the appropriate

mass regime, a unified method is sought which has predictive power spanning the nuclear

chart in its entirety. Experimental data can help to benchmark these theory approaches and

inform the models used to describe nuclear properties.
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1.2 The nuclear shell model

The nuclear shell model is an example of a configuration interaction (CI) approach to nuclear

structure theory, where empirical observation informs models of a nuclear potential.

Along the nuclear chart, patterns of stability indicated by sharp drops in quantities such as

binding energy were observed at a “magic number” of either protons or neutrons (2, 8, 20,

28, 50, 52, etc.). The liquid drop model proposed by Gamow [12] worked well to describe

the binding energy of many stable nuclei, but could not account for this pattern. The

appearance of these “magic numbers” hinted at a shell structure not unlike electron shells

in atoms, where atoms with closed electron shells (noble gases) require a significant amount

of energy (compared to atoms without closed electron shells) to remove an electron. A new

set of interactions needed to be developed that could reproduce this pattern of enhanced

stability due to nucleonic “shell” structure and explain the observed trends at the “magic

numbers.”

The shell model framework describes a nucleon moving in a mean-field potential V (r). A

Hamiltonian is built with matrix elements determined by an empirically-chosen potential for

the appropriate mass regime. The eigenvalues and eigenstates are characterized by a set of

quantum numbers (n, l, j, and energy E) and used to predict nuclear structure properties.

To build a nuclear shell model, an appropriate potential V (r) describing the nucleon inter-

action is characterized in three key areas of the nucleus: the interior, the surface, and the

exterior. The potential for a bound nucleus should be attractive (V (r) < 0) and roughly flat

in the “interior,” assuming the nucleon-nucleon interaction is short-range and the nuclear

density is constant. Near the surface of the nucleus, V (r) weakens to reflect the smaller

number of interactions available to the outer nucleons. At distances greater than the range
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of interaction, V (r) approaches zero. As a first approximation, the harmonic oscillator (HO)

is chosen as V (r) due to its simple and analytic nature. However, the shape of a Woods-

Saxon potential more closely resembles the shape of nuclear densities obtained empirically.

The nuclear potential V (r) is used to generate a spectrum of energy levels available to the

nucleons.

A Woods-Saxon potential is defined by

f(r) =
V0

1 + e(r−R0)/a0
(1.1)

where V0, R0, and a0 are fitted to reproduce experimental binding energies. However,

the Woods-Saxon potential alone is insufficient in reproducing the experimentally-observed

magic numbers. In 1949 Mayer and Jensen added a spin-orbit component [13, 14, 15],

resulting in energy-level spacing that correctly reproduced the large gaps in the single-particle

energy at the observed “magic numbers,” for which they earned the Nobel Prize in Physics

in 1963.

Figure 1.2 shows the energy levels for the harmonic oscillator, Woods-Saxon, and Woods-

Saxon plus spin-orbit potentials. The Mayer and Jensen model clearly exhibits characteristic

shell closures at the magic numbers, labeled by the numbers between energy levels in Fig-

ure 1.2. The spin-orbit term can be understood as a valence nucleon experiencing “residual”

interactions with other valence nucleons. The Woods-Saxon plus spin-orbit potential re-

quire parameters for the mean-field potential (Woods-Saxon) and a model for the residual

interaction (spin-orbit) to calculate observable quantities.

The shell model is best-suited to nuclei at or near shell closures, where there are very few
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Figure 1.2: Shell model single-particle energy levels based on a harmonic oscillator poten-
tial (left), a Woods-Saxon potential (center), and a Woods-Saxon plus spin-orbit potential
(right). Note that the latter creates the gaps in energy levels at the experimentally observed
“magic numbers.” For each energy level, the labels indicate: the nucleon capacity in square
brackets followed by the cumulative nucleon capacity and then the orbital label. The or-
bitals for the Woods-Saxon are in spectroscopic notation where the number is an index of
the number of levels with a certain l-value. In the Woods-Saxon plus spin-orbit levels, the
additional last integer is 2j where j is the total angular momentum quantum number given
by j = l ± s. Figure reproduced from reference [2]
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(or zero) valence nucleons and the residual interactions are small. Away from closed shells,

the participation of more valence nucleons makes the residual interaction more significant:

anomalies in nuclear structure such as deformation and collective motion are often found

between shells where the mean-field description breaks down. The appearance, development,

and evolution of shell structure across the nuclear chart is an attractive subject, particularly

for unstable and near-stable nuclei.

1.2.1 Shell evolution and inversion

Properties of nuclei at or near shell closures are well-described by the shell model and show

remarkable agreement with experimental data. However, nuclei far from stability have re-

cently become a focus area for nuclear physics. Patterns among nuclei near the edges of

the nuclear chart emerge that indicate a departure from standard shell structure [16] and

increased nuclear deformation[17].

Nuclear deformation arising from features such as nuclear rotations associated with quadrupole

deformation of the nucleus involves collective motion of many nucleons rather than the mo-

tion of only a few valence particles. Rotational collectivity can enhance binding energy based

on the projection of a valence orbit onto the symmetry axis of prolate or oblate deformed

nuclei [18].

The spherical shell model is based on a spherically symmetric nuclear potential, which, while

appropriate for stable and near-stable nuclei, cannot explain collective nuclear structure fea-

tures that vary smoothly with mass number A. This trend is accounted for when quadrupole

collectivity is considered using a deformed nuclear potential, resulting in shell model energy

levels that depend on the spatial orientation of an occupied orbit. Thus, the experimentally
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observed enhanced binding energies suggest a strong degree of quadrupole deformation [19].

The deformed nuclear potential can produce energy levels of single-particle orbits in which

normal shell ordering dictated by a spherical nuclear potential is broken. This uncovers a

“shell inversion,” or re-ordering of neutron orbitals relative to those obtained with spherical

potential at a high degree of deformation. Regions of the nuclear chart where this shell in-

version is characteristic are called “Islands of Inversion.” [3] The N = 20 Island of Inversion

is one such region, centered at Z = 11 and N = 21 as shown in Figure 1.3. These nuclei

Figure 1.3: The nuclei belonging to the N = 20 island of inversion. Figure reproduced from
reference [3].

were shown to exhibit a change in shell structure through studies of the very neutron-rich

nuclei 31Na and 32Mg [20]. Large-scale shell model calculations indicate the conventional

N=20 shell gap is diminished for neutron-rich nuclei with Z ¡= 12, giving rise to anomalous

properties brought on by deformation effects [16, 17, 21]. This deformation can be described
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within the Nilsson model [22] which uses a quadrupole deformed nuclear potential, producing

energy levels that change smoothly with a deformation parameter. Because the nuclear po-

tential for neutrons only has a centrifugal barrier, orbitals with low angular momentum (l=0,

1) can form a density “tail” extending the nuclear matter radius, which can indicate shell

inversion if the conventionally-occupied shell model orbit cannot account for this effect. One

way to observe this anomaly is through cross-section measurements of a nuclear interaction.

The reaction rate is represented by the quantity σ called the cross-section, determined by

the fraction of detected to incident particles. Measurements of one-nucleon removal cross-

sections on both a heavy (Pb) and a light (C) target can be combined to distinguish the

relative contributions of Coulomb and nuclear effects to a breakup reaction and a Coulomb-

breakup cross section can be extracted. A large coulomb-breakup cross section is indicative

of an underlying halo structure, meaning the nucleus can be modeled as a two-body system

composed of a “core” nucleus with one (or two) weakly-bound valence nucleons where the

core-valence interaction is small. These are often found in deformed nuclei far from stability,

and they exhibit strong single-particle structure.

The observed nuclear properties of various nuclei in this region have been successfully re-

produced by the shell model for both stable and unstable nuclei where experimental data is

available [21, 3, 16]. However, there are some neutron-rich nuclei for which no experimental

data is available. Experimental studies concerning nuclei near and past the neutron drip line

provide valuable insight into trends of nuclear existence. Such studies can also validate and

inform the creation of shell model Hamiltonians for a wide range of nuclear masses. The

nuclear properties characteristic of the N = 20 island of inversion are discussed in the next

section.
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1.2.2 The N = 20 island of inversion

Energy levels of nuclei near the valley of stability have significant gaps in their level spacing

at “magic numbers” of nucleons (2, 8, 20, 28, 50, 52, etc.). However, near the neutron

dripline where deformation plays a role, the shell structure changes [16]. Deformation in

the neutron-rich N ≈ 20 nuclei causes some orbitals to rearrange themselves based on their

spatial orientation relative to the deformed nucleus, closing the conventional N = 20 shell

gap at large N/Z [16].

Shell model calculations construct their basis states relative to a closed-shell configuration.

To describe the N = 20 (a “magic number”) near-dripline nuclei, an appropriate config-

uration space involves particles promoted to orbitals that conventionally lie across a large

energy gap. For neutron number N ≈ 20, the configuration space considers neutron particles

and holes in both the sd-shell and the fp-shell on either side of the N = 20 shell gap. A

simple schematic is shown in Figure 1.4 illustrating the closed shell and the active shells in

the calculation. Shell model calculations indicate the 2p-2h configuration is lower in energy

than the 0p-0h state for some nuclei in the N=20 isotones. The strong degree of ground-

state deformation near the drip line is associated with the dominance of two-particle two-hole

excitations (2p-2h) across the diminished gap between the sd and fp shells [17, 21, 16].

Both configurations are compared in Figure 1.5, with zero denoted by a solid horizontal line.

An increase in the neutron pairing energy Enn and the proton-neutron interaction energy

Epn lowers the relative energy of the 2p-2h configurations [3, 4]. The island of inversion

includes the N = 20 nuclei circled in Figure 1.5 where the gap energy between 2p-2h and

0p-0h configurations becomes negative, that is also observed in Z = 10 − 12, N = 20 − 22

nuclei. Nuclei with few protons outside the Z = 8 shell closure experience an increase in
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Figure 1.4: A sample version of a model space showing closed shells and active orbitals for
neutrons near N = 20. The closed shell at magic number N = 8 is represented by the
shaded box and includes the 0s and 0p orbitals. The sd shell contains active orbitals 1s and
0d and is shown as one bar for simplicity. The N = 20 shell gap shown here is small, with a
two-particle two-hole excitation illustrated. The fp shell includes 0f and 1p active orbitals
and is depicted as one bar.

neutron-proton interaction energy (Epn).

The configuration space is the collection of particle-hole wavefunctions that define the basis

states for the shell model calculation. Therefore, a nuclear wavefunction generally contains

a mixture of different particle-hole configurations (1p-1h, 2p-2h, 3p-3h, etc.). In the N = 20

island of inversion nuclei, strong configuration mixing arises from competition between the

mean-field approach (favoring 0p-0h) and the growing nuclear correlations (favoring deformed

2p-2h).

The collective structure and associated degree of deformation for these nuclei are encouraged

by the nearly-degenerate p3/2 and f7/2 orbitals in the fp-shell. A transition from a spherical

to a deformed nuclear shape at N = 20 occurs, driven by large correlation energies of the

deformed configurations [21, 23].

12



Figure 1.5: The energy gap between the 0p-0h and 2p-2h configurations for N = 20 isotones,
plotted without correlations (squares) and including correlations (circles). A horizontal line
marks zero, where the two configurations have the same energy. Nuclei below are possible
members of the island of inversion. Figure reproduced from reference [4].

Some odd-N nuclei near N = 20 exhibit novel structures through the occupation of low

angular momentum single particle orbitals. For example, a nucleus with one neutron in the

fp-shell (N = 21) may have its occupancy split between the p3/2 and f7/2 orbitals. The

un-paired neutron would conventionally occupy the f7/2 orbital (l = 3), which is suppressed

by the centrifugal barrier for the neutron potential, and contributions from the p orbitals

(l = 1) can grow. For example, the nucleus 31Ne exhibits the occupation of a low angular

momentum orbit [24, 25] not predicted by the spherical shell model. This results in the

idea of a halo structure, composed of a deformed 30Ne core plus one valence neutron, with a

particle or hole in a low-l orbital. The 31Ne nucleus is the focus of this work and is discussed

in further detail in the next section.
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1.2.3 Previous studies of 31Ne

The trends of nuclear structure and existence toward the drip line indicate a breakdown of the

conventional shell model “magic numbers” arising from deformation attributed to intruder

configurations in regions of the chart referred to as the “islands of inversion”[3, 4, 26].

The nuclear potential for neutrons has a centrifugal barrier that strengthens with the or-

bital’s angular momentum l, and no Coulomb barrier to contend with. Thus, halo structures

in this region are associated with low-l intruder orbitals, and cross-section measurements

and calculations can give insight into the mechanism of this structure formation. The cross

section represents the “size” of the nucleus, interpreted as a probability of an interaction.

An example is a one-neutron removal cross section, where the interaction in question is the

removal of one neutron from the nucleus. In the spherical-potential shell model (shown on

the right in Figure 1.2), the valence neutron of 31Ne (N = 21) would occupy the 1f7/2 or-

bital (l=3). However, in the N = 20 island of inversion, normal and intruder configurations

mix considerably and give way to deformation and collective structure effects. Shell model

calculations performed by Warburton, Becker, and Brown [3] placed 31Ne among the N = 20

island of inversion nuclei, characterized by a lowering of the deformed 2h̄ω configuration be-

low that of the 0h̄ω configuration. A 1996 experiment [27] established the particle-stability

of 31Ne with respect to one-neutron decay, previously thought to be particle-unbound due to

non-observation in a 1990 experiment [28]. Mass measurements [29] indicated an ambiguous

one-neutron separation energy Sn = 0.29 ± 1.64 MeV with a large uncertainty where both

bound and unbound scenarios are in line with these mass measurements.Measurements of the

one-neutron removal cross section of 31Ne on 12C and 208Pb targets performed by Nakamura

et al. in 2009 indicated a large Coulomb-breakup cross section [24], suggesting the valence
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neutron occupies a low-l orbital with a small separation energy (Sn ≤ 0.8 MeV), consistent

with the formation of a halo structure. Nakamura, et al. performed one-neutron removal

cross section measurements in 2014 with the addition of gamma-ray detection, the analysis

of which indicated the separation energy to be Sn = 0.15+0.16
−0.10 MeV, the “smallest Sn of

any known neutron-rich nucleus” [25]. Both experiments indicated the occupancy of a low-l

intruder orbital (l=0,1) is responsible for the halo formation. The spin-parity of the ground

state was determined to be 3
2
−
with the halo formed by “a weakly-bound p-wave neutron car-

rying only about 30% of a single-nucleon strength,” indicating strong configuration-mixing

of fp orbitals [25]. A study of nuclear radii [30] and interaction cross sections [31, 32] in the

neon isotopes revealed a dramatic increase for 31Ne as seen in Figure 1.6 consistent with a

low-l orbital occupation for a weakly-bound valence neutron and with previous experimental

studies [24, 25]. Coulomb breakup cross sections calculated within the Glauber and Eikonal

models [33] also suggest a ground-state spin-parity of 3
2
−

and confirm that the 1f7/2 con-

figuration yields much smaller cross sections than 2p3/2, solidifying the link between halo

structure and inversion observed for 31Ne.

Nilsson model [22] calculations use a quadrupole deformed nuclear potential, placing limits

on the combination of a one-neutron separation energy (Sn) and a ground state spin-parity

assignment by comparison with experimentally measured cross sections [24]. Specifically, if

Sn < 500 keV then the ground state can be a p-wave halo with spin-parity 3/2−. However,

the possibility of a ground-state spin-parity of 1
2
+

remains, which would indicate a high

degree of deformation (β2 ≥ 0.6) and a radical change in shell structure [34, 35]. Studies

within the particle rotor model [36, 37] that include core excitations suggest 31Ne has a very

low one-neutron separation energy (0.13 ≤ Sn ≤ 0.20 MeV). Its ground state spin-parity
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Figure 1.6: Interaction cross-sections σI taken from ref. [?]. Solid markers represent σI for
neon isotopes with the solid line representing systematics of stable nuclei. Existing stable-
nuclide data (σI for 19F, 24Mg, 20Ne and 23Na and σR for 27Al) is shown in open markers.

was suggested to be 3
2
−

with quadrupole deformation β2=0.20 based on comparison with

measured Coulomb-breakup and reaction cross sections [24]. However, the possibility of

spin-parity 1
2
+

is not excluded, though it requires a large β2 ∼ 0.95.

Deformation effects on reaction observables were studied in the framework of anti-symmetrized

molecular dynamics (AMD) [38], but the drastically large cross section could not be repro-

duced for 31Ne without a modification for the nuclear matter density using the resonating

group method (RGM) [5, 39], resulting in the density distribution shown in Figure 1.7 . The

tail of this density distribution is especially significant for 31Ne, with the largest cross section

of the neon isotopes. Kimura et al. [40] also performed AMD calculations with a tail correc-

tion provided by RGM and determined that the 31Ne ground state can be well-described by

a valence neutron in a 2p3/2 orbital coupling to a deformed and rotating 30Ne ground band.

They also calculated the one-neutron separation energy to be Sn=0.45 MeV. The structure

of the 31Ne ground state is well described as a prolate-deformed halo nucleus with a weakly-

bound valence neutron occupying a low-l intruder orbital and a ground state spin-parity of
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Figure 1.7: Neutron one-body densities in 31Ne. The results of the calculation with AMD
is shown by the dashed line, and the result from AMD + RGM is shown by the solid line.
Taken from reference [5].

3
2
−
, though the possibility of 1

2
+

cannot be excluded [40]. It is useful to consider the one-

neutron separation energy for 31Ne: it was originally taken from mass measurements [29] as

Sn = 0.29 ± 1.64 MeV. This was the value used until 2014 when Nakamura et al. [25] ob-

tained the value Sn = 0.15+0.16
−0.10 MeV. The ambiguity of the one-neutron separation energy,

while improved, challenges the predictions and interpretations of the low-energy spectrum

of 31Ne. With such a weak binding, this nucleus likely has low-lying excited states that are

neutron-unbound, or a resonance of the 30Ne + n system in the continuum. Experimental

data on these excited states can shed light on the complex shell evolution among deformed

nuclei near the drip line.

1.3 Motivation and purpose

31Ne is a prime example of a deformed halo nucleus. It lies within a region of the nuclear chart

characterized by an onset of shape coexistence, shell inversion, and deformation by virtue

of core rotation. The strong single-particle nature of the even-Z nucleus with one neutron
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(N = 21) outside the N = 20 shell closure allows for streamlined theory calculations. The

two protons outside the Z = 8 shell closure create a significant proton-neutron interaction

influencing the nuclear properties and observables. Data regarding excited states of this

nucleus can be useful for determining and describing systematic trends of nuclear existence

and the location of the neutron drip line. This thesis examines the excited states of 31Ne

through the energy released in the one-neutron decay of 31Ne* neutron-unbound excited

states via the invariant mass spectroscopy method.

18



Chapter 2

Theoretical Background

The present work examines 31Ne neutron-unbound excited states populated by the two-

proton knockout 33Mg(-2p). A decay energy was reconstructed from the detection of the

one-neutron decay products. The method of invariant mass spectroscopy is employed to

calculate the energy released in the one-neutron decay, called the decay energy. To create a

theory-generated decay energy spectrum to compare with experimental data, both the two-

proton knockout of 33Mg populating the 31Ne states as well as the following one-neutron

decay to 30Ne were calculated. This involves a combination of reaction and structure theory.

Shell model theory provides the structure part of the knockout and decay calculations. R-

Matrix methods were employed to calculate the two-proton knockout cross sections and

provided a derivation of an appropriate lineshape to simulate a one-neutron decay from a

neutron-unbound state.

2.1 Invariant mass spectroscopy

The direct measurement of neutron-unbound states is not possible because the neutron decay

is, for all intents and purposes, immediate [6]. One way to study such short-lived systems is

through the method of invariant mass spectroscopy. This section will consider the kinematics

of a two-body decay where the decay energy quantity is derived based on the conservation
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of four-momentum and the invariant mass quantity. The decay energy is defined as the

amount of energy released in the decay in the center-of-mass frame. Figure 2.1 shows a

simple schematic relevant to the considered decay. The following equations use units with

h̄ = c = 1.

Figure 2.1: Schematic of the two-body decay 31Ne → 30Ne + n.

Consider a two-body decay of the form

A → B + C (2.1)

The conservation of energy and momentum require the initial state four-momentum to be

equal to the sum of the four-momenta of all final state particles:

P
µ
A = P

µ
B + P

µ
C (2.2)

The quantity (Pµ)2 is referred to as the “invariant mass” quantity and is Lorentz-invariant,

meaning it can be evaluated in any frame of reference. Squaring equation 2.2 yields

(P
µ
A)

2 = (P
µ
B + P

µ
C)

2 (2.3)
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Expanding the right side of this equation gives

(P
µ
A)

2 = (P
µ
B)

2 + (P
µ
C)

2 + 2(PB)
µ(PC)

µ (2.4)

The squared terms evaluated in their rest frames are the square of the rest mass of the relevant

particle and the cross term is evaluated in the lab frame. Equation 2.4 becomes

m2
A = m2

B +m2
C + 2(EBEC − p⃗B · p⃗C) (2.5)

The energy difference between the initial nucleus and the decay products is referred to as

the decay energy and is expressed as:

Edecay = mA − (mB +mC) (2.6)

Substituting mA into equation 2.6 by taking the square root of equation 2.5 results in the

decay energy expression:

Edecay =
√
m2

B +m2
C + 2(EBEC − p⃗B · p⃗C)−mB −mC (2.7)

The decay energy quantity is now defined in terms of the rest masses, energies, and momen-

tum vectors of the two particles in the final state. Particles B and C are interchangeable

for this example. For the relevant single neutron decay, A represents the decaying nucleus

31Ne, B represents the daughter nucleus 30Ne, and C represents a neutron, and equation 2.7

becomes
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Edecay =
√
m2

30Ne
+m2

n + 2(E30Ne
En − p⃗30Ne

· p⃗n)−m30Ne
−mn (2.8)

2.2 Shell model calculations

The shell model is an example of a configuration-interaction (CI) approach to nuclear struc-

ture. A CI calculation requires the selection of a complete basis, the matrix elements of the

Hamiltonian within this basis, and the resulting eigenvalues and eigenvectors of the matrix.

The shell model described here follows the formalism from reference [2] performed with the

NuShellX code [41]. The required associated wrapper codes bring in a prescribed Hamilto-

nian for which NuShellX finds the overlaps for the a+ and a+a+ operators. These overlaps

are then converted by the wrapper codes into spectroscopic factors and two-nucleon transfer

amplitudes, respectively. The spectroscopic factor is interpreted as the “probability” that the

overlap of the initial and final states looks like the single-particle assumed in the calculation.

The two-nucleon transfer amplitudes inform two-nucleon removal cross section calculations.

The present work involves overlaps for both the two-proton knockout cross sections pop-

ulating states of 31Ne, and the subsequent one-neutron decay from the neutron-unbound

excited states. The ⟨n,30Ne(Jπf )|
31Ne(Jπi )⟩ overlaps provide spectroscopic factors for the

one-neutron particle-unbound decay. The ⟨2p,31Ne(Jπf )|
33Mg(3/2−)⟩ overlaps provide the

two-nucleon transfer amplitudes used for the cross section calculation.

The NuShellX code uses a proton-neutron basis with a fixed total angular momentum J

and isospin component Tz, where the J basis states are linear combinations of M states.

The NuShellX basis states have the form
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| Bi, J ⟩ = | [pi ⊗ ni]J ⟩ (2.9)

where pi stands for labels (Jpi , αpi), with the proton angular momentum Jpi , and αpi all the

other quantum numbers required for a complete basis; with similar labels for neutrons with

ni representing (Jni , αni). The basis states can be partitioned, dictated by a model space,

into a set of active shells and particle-hole configurations for each species of nucleon.

The Hamiltonian for configuration mixing of two states is a symmetric matrix with diagonal

terms H11 and H22 where the matrix is organized H11 < H22.... Considering interaction

between the states introduces non-zero off-diagonal elements H12. The generalized Hamil-

tonian can be expressed as

H11 H12

H21 H22

 , (2.10)

The addition of non-zero off-diagonal elements H12 introduces a small difference (δ) in the

eigenvalues of the Hamiltonian. For this mixed configuration, the eigenvalues are

E1 = H11 − δ

E2 = H22 + δ

(2.11)

where the subscripts 1(2) indicate eigenstates associated with the particle wavefunction Φ1(2)

for the case where H12 = 0, and where δ contains the dependence on H12. As H12 grows,

the states will be separated by an additional 2δ.

The Hamiltonian chosen for the present work was generated by the empirically-determined
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FSU spsdf − p cross-shell interaction [42] that has been successful at reproducing absolute

binding energies for a large range of nuclei and the shell inversion associated with the N = 20

island of inversion. This interaction also describes two-particle two-hole cross-shell excita-

tions and binding energies remarkably well even for nuclei which were not part of the fit.

Therefore, it is appropriate for the nuclei relevant to this work, which lie in the region where

this interaction excels at reproducing experimental data.

2.2.1 Spectroscopic factors

The spectroscopic factor with isospin dependence, in terms of the creation operator a+,

is

S(tz) ≡ CsS = |⟨TTz|T ′T ′
zttz⟩|2

|⟨ΨAωJT ||a+||ΨA−1ω′J ′T ′⟩|2

(2J + 1)(2T + 1)
, (2.12)

where ω is an additional quantum number, introduced when there is more than one state for

a given J . The |⟨TTz|T ′T ′
zttz⟩| is the isospin Clebsch-Gordan coefficient and the (2J + 1)

quantity is conventionally associated with the heavier nucleus (A). The spectroscopic factor

is used to calculate structure properties of the one-neutron decay of 31Ne unbound excited

states. The neutron decay widths for unbound states are obtained by using single-particle

widths (for unbound states in one-body potentials) multiplied by the spectroscopic factors

from configuration mixing.

2.2.2 Two-nucleon amplitudes

To model the population of 31Ne states from 33Mg(-2p), a combination of structure and

reaction theory were used. The structure part is provided by the two-nucleon spectroscopic
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amplitudes (TNAs) calculated with the ⟨2p,31 (Jπf )|
33(3/2−)⟩ overlaps. The TNAs can be

expressed in the tensor form of either the creation or destruction operators A+ or Ã respec-

tively. The tensor form of the destruction operator for two particles is defined by

Ã(kαkβJ0M0) = N12[ãkα ⊗ ãkβ
]
J0
M0

(2.13)

with

N12 =
1√(

1 + δkαkβ

) (2.14)

J0 and M0 are associated with the ground state of the projectile nucleus to which the two

valence neutrons are coupled. In terms of the destruction operator representing a two-nucleon

knockout, the TNAs are defined by

TNA(ω, J, ω′, J′, kαkβJ0) =
⟨(n− 2)ωJ||Ã(kαkβJ0)||nω′J′⟩

(2J + 1)
(2.15)

In the present work the TNAs were used by the reaction theory to generate two-proton

knockout cross sections for the reaction 33Mg(-2p)31Ne. The details of the reaction theory

are discussed in the next section.

2.3 Reaction theory

Reaction theory using R-matrix methods were used to calculate the two-proton knockout

cross sections into each state in 31Ne and also provides a derivation of an appropriate
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one-neutron decay lineshape. The R-Matrix formalism here is presented in Thompson and

Nunes [43] and a simplified version of the derivation is outlined here.

2.3.1 R-matrix methods

There are two spatial regions to consider in the R-matrix formalism: the interior of the

nucleus where particles interact via the strong force and the exterior, where they do not.

These regions meet at a radius a, chosen such that this assumption holds true. The R-

matrix basis states for the two regions are required to have fixed logarithmic derivatives at

R = a.

The generalized R-matrix for a transition from the entrance channel α to the exit channel

α′ and pole p for the uncoupled case has elements

Rα′α(E) =
P∑
p=1

γpαγpα′

ep − E
(2.16)

where γpα are the reduced width amplitudes, ep is the pole (resonance) energy, P is the

number of poles, and E is the energy of the incident particle.

The scattering S matrix is then defined as:

S =
t1/2H− − aRt1/2(H− − βH−)

t1/2H+ − aRt1/2(H+ − βH+)
(2.17)

The diagonal matrix t has elements tα = h̄2/2µ and the diagonal H± matrices have Hankel

functions as the diagonal elements. β is the logarithmic derivative of the R matrix evaluated

at the radius a. The Hankel function for a particular partial wave is composed of regular
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and irregular Coulomb functions H±
l = Gl ± iFl. The S matrix can be transformed into

the symmetric matrix S̃ using the transformation

S̃ = v
1
2Sv−

1
2 (2.18)

where v is a diagonal matrix with elements vα = h̄kα/µα.

2.3.1.1 Two-proton knockout

The two-proton knockout is calculated using the eikonal, direct reaction model as outlined

in[44]. The 33Mg(-2p)31Ne reaction is modeled as the sudden removal of two protons in a pe-

ripheral, high-speed reaction with the target nucleus, using the spectator-core approximation

where the “core” nucleus 31Ne interacts (at most) elastically with the target nucleus.

The projectile 33Mg is treated as an anti-symmetrized A+2 nucleon system having a many-

body wavefunction Ψ(A, 1, 2) that describes the shell-model ground state. This state is

associated with an angular momentum and isospin Ji and Ti, and respective projections Mi

and τi. The 33Mg projectile experiences the sudden removal of two protons upon collision

with the target. The resulting 31Ne∗ (A=31) residue is generally found in one of a number

of final states ΦJfMf
(A) having spin Jf and isospin Tf with the respective projections Mf

and τf .

The two protons removed from one or more partially-filled single-particle orbitals ϕj with

spherical quantum numbers n(ls)jm, are assumed to couple to states with intermediate total

angular momentum I, µ and isospin T , τ . The overlap functions relative to a specific core

state f is a sum over a number of two-particle configuration contributions, expressed as
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Ψ
(f)
JiMiTiτi

≡ ⟨ΦJfMfTf τf
(A)|ΨJiMiTiτi

(A, 1, 2)⟩

=
∑
Iµα

C
JiJf ITiTfT
α (IµJfMf |JiMi)(TτTf τf |Tiτi)[ϕj1(1)⊗ ϕj2(2)]

Tτ
Iµ

(2.19)

Where the [ϕj1(1)⊗ ϕj2(2)]
Tτ
Iµ are the normalized antisymmetrized two-nucleon wavefunc-

tions and C
JiJf ITiTfT
α are the shell-model two-nucleon amplitudes carrying the structure

information, discussed in section 2.2.2.

In the eikonal direct reaction theory, the interaction of the two nucleons (labeled 1 and 2)

and the A-body residue f with the target are described by their elastic S-matrices Si, which

are functions of their individual impact parameters bi and assumed to be spin-independent.

The absorption cross section is the projectile ground-state expectation value

σabs =
1

2Ji + 1

∑
Mi

∫
db⟨ΨJiMi

|[1− |SfS1S2|2]|ΨJiMi
⟩ (2.20)

2.3.1.2 One-neutron decay lineshape

The decay of an unbound resonant state is characterized by a central energy and width.

Extracting these quantities from the experimental spectrum involves de-convolution of res-

olution and acceptance effects. A decay line shape specified by an energy and width can

instead be simulated and subjected to the experimental resolutions and acceptances. This

method allows for a direct fit to the experimental data to extract the energy and width of

the decay. This section will use R-matrix reaction theory to derive an energy-dependent

Breit-Wigner lineshape which is used to simulate the desired neutron-unbound decay.
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The single neutron decay is described in R-matrix theory as an inelastic scattering process

with different entrance and exit channels denoted α and α′. This method allows a derivation

of an appropriate line shape which describes a resonant decay and is directly fit to the data

to extract a pole energy and width. Defined in section 2.3.1, the symmetric S-matrix S̃ can

be written:

S̃ = Ω[1 + 2iP
1
2 (1 − aRL)−1RP

1
2 ]Ω, (2.21)

where Ω is the matrix with diagonal elements eiϕα , and ϕα are the hard-angle phase shifts.

For the two-channel case relevant to this work, the S̃ elements are

S̃α′α = eiϕα
[
δα′α +

2iP
1
2
α γαγα′P

1
2
α′

(ep − E)(1 − aR11L1 − aR22L2)

]
eiϕα

′
(2.22)

which looks like an isolated Breit-Wigner resonance with a total formal width Γtot = 2γ21P1+

2γ22P2 = Γ1 + Γ2. The total cross section for scattering to channel α from αi is

σααi(J
π
tot) =

π

k2i
gJtot |S̃ααi |

2

=
π

k2i
gJtot

ΓαΓαi

(E − E
f
r )2 + Γ2tot/4

(2.23)

which is the form of an isolated Breit-Wigner resonance with a strong peak at E ≈ E
f
r and

a full-width half-max Γtot. E
f
r is the formal resonance energy, defined by

E
f
r ≡ ep − γ21S

0
1 − γ22S

0
2 (2.24)
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Note that the formal resonance energy is shifted from the pole energy ep due to channel-

coupling. Substituting the elements of the symmetric S-matrix from equation 2.22 yields

σαα′ =
π

k
α2

(
2J + 1

(2Ip + 1)(2It + 1)

)[
ΓαΓα′

(E − E
f
r )2 + 1

4Γ
2

]
(2.25)

From equation 2.24 in which the formal resonance energy depends on the coupling between

reaction channels, we can define an “energy-dependent” lineshape. The cross section can now

be written in terms of the pole energy and total width and takes the form of an “energy-

dependent” Breit-Wigner distribution with a strong peak at E
f
r and a full-width at half-max

(FWHM) of Γ. This function is also called an “asymmetric” Breit-Wigner for l > 0.

σ(E; ep,Γl) = A
Γl(

ep − E +∆l(E; ep,Γl)
)2

+ 1
4Γ

2
l

(2.26)

where A is a proportionality constant. This line shape was used to simulate resonances

with l > 0 with pole energy and total width parameters p and Γl respectively . After

being propagated through the simulated experimental setup, these resonant lineshapes are

fit directly to the experimental data.
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Chapter 3

Experimental Techniques

The experiment to study 31Ne neutron-unbound excited states took place at the National

Superconducting Cyclotron Laboratory (NSCL) in November of 2017. The Coupled Cy-

clotron Facility (CCF) [45] and the A1900 Fragment Separator [46] produced a secondary

beam of 33Mg via fast fragmentation [47] of a 48Ca primary beam. The experimental setup

included a segmented target, the MoNA (Modular Neutron Array) and LISA (Large multi-

Institutional Scintillating Array) arrays, and the Sweeper superconducting dipole magnet

with its suite of charged particle detectors. This chapter details the beam production and

detectors utilized.

3.1 Beam production

In this work, the 33Mg secondary beam was produced and delivered by the CCF [45] and

A1900 fragment separator [46] seen in Figure 3.1. An electron-cyclotron resonance (ECR)

ion source produced 48Ca8+ ions which were extracted and accelerated through the K500

cyclotron to roughly 12 MeV/u. The beam was then sent to the K1200 cyclotron where

the ions were stripped of their remaining electrons and accelerated to 140 MeV/u. The

fully ionized 48Ca20+ ions were then accelerated by the K1200 cyclotron to an energy of

140 MeV/u. The 48Ca ion beam then impinged on an 846 mg/cm2 thick beryllium pro-
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duction target, undergoing a fragmentation reaction which created a diverse assortment of

nuclei called “fragments”.

Figure 3.1: The layout of the NSCL coupled cyclotrons and the A1900 fragment separator
utilized in this work.

To isolate the desired secondary beam of 33Mg from the rest of the fragments, the A1900

Fragment Separator was utilized. The A1900 is a magnetic separator consisting of four main

dipoles and eight quadrupole triplets. The dipole magnetic fields were tuned to the magnetic

rigidity (Bρ = p/q) of the 33Mg fragment of interest. The fragments followed trajectories

through the magnet based on their magnetic rigidity (Bρ) and an adjustable slit was used

to remove particles having sufficiently different rigidity. To assist in fragment separation, a

736 mg/cm2 aluminum wedge was included in the middle of the A1900 Fragment Separator.

Because the energy loss through the aluminum wedge is dependent on the atomic number

(Z), charged fragments with similarBρ were separated in the magnets downstream. A second

set of slits were used after the wedge to remove more particles with incompatible Bρ using a
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momentum acceptance of 0.01%. After fragment separation, the 33Mg secondary beam was

57% pure, with an energy of 88.8 ± 0.17 MeV/nucleon corresponding to a magnetic rigidity

of 3.82 ± 0.038 Tm. The secondary beam passed through a timing scintillator at the A1900

focal plane before being transmitted to the experimental area, shown in Figure 3.2, where

it passed through another timing scintillator and then entered the segmented target, which

contained four silicon wafer detectors and three beryllium targets in alternating order. The

beam then traveled through a large-gap dipole magnet and into a suite of charged particle

detectors. The details of these detectors are discussed in the following sections.

Figure 3.2: Overhead view of the detector configuration for the performed experiment, which
was located in the N2 experimental vault at the NSCL.

3.2 A1900 and Target scintillators

The time-of-flight of the secondary beam was measured by two plastic timing scintillators

upstream from our reaction target in the N2 experimental vault. The first was the A1900

extended focal plane (XFP) plastic timing scintillator 10.9 m upstream from the reaction

target, made of 144 µm thick BC-400 material and coupled to a photo-multiplier tube (PMT).
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The second scintillator was the Target scintillator, 1.03 m upstream of the reaction target,

made of 420 µm thick BC-404 material and coupled to a PMT.

3.3 Segmented target

The secondary beam then traveled to the Segmented Target, an array of four position-

sensitive silicon detectors and three target holder positions in an alternating order as depicted

in Figure 3.3 [48]. The group of four silicon detectors and the group of three targets are

located on independent drives and each group can be individually inserted in the beam

line. The beam passed through the segmented target components inserted in the beam line,

losing energy in each component and potentially fragmenting in the beryllium targets or

silicon detectors.

3.3.1 Silicon detectors and beryllium targets

The silicon detectors, phosphorus-doped n-type silicon wafers, with dimensions 62 mm× 62 mm

and ∼140µm thick, had four corner signals and an anode signal. The corner signals were

taken from the detector face, a boron-implanted p-type resistive anode layer with a border

of resistive ion-implanted strips that are 0.5 mm wide. The anode signal was taken from the

back face and measured the energy deposited independently of the corners.

For this experiment, three beryllium targets each approximately 1,076 µm thick were used.

Prior to the experiment, calculations were performed to select the target thicknesses which

optimized both the production rate of the desired nucleus and the decay energy resolu-

tion. Target thicknesses were measured using calipers, with a measurement uncertainty of

±4 µm (±0.7 mg/cm2) Be. The silicon detector thicknesses are reported by the manufacturer
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Figure 3.3: Schematic of the segmented target utilized in the experiment. The labels illus-
trate the locations of: (a) the beam viewer plate used during beam tuning, (b) the detector
mounting base, (c) the frames for the silicon detectors, (d) one of three beryllium targets
located between each pair of silicon detectors, and (e) the target mounting base. The target
and detector mounts are on independent pneumatic drives.

with uncertainties of ±1 µm (±0.2 mg/cm2) Si. The thicknesses of the beryllium targets

and the silicon detectors used in this work are listed in Table 3.1.
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Table 3.1: Silicon detector and beryllium target thicknesses used in the Segmented Target.

Segment Thickness [µm] Areal Density [mg/cm2]
Si 0 140 32.5
Be 1 1076 199.1
Si 1 135 31.3
Be 2 1076 199.1
Si 2 138 32.0
Be 3 1075 198.9
Si 3 142 33.0

3.3.2 Segmented target readout and electronics

Each silicon detector had four corner signals and one anode signal, for a total of 20 signals

for the assembly. Each anode signal was sent to a preamplifier that was characterized by an

0.05 µs rise time and 500 µs fall time with a typical output signal of 30 mV when a 5.5 MeV

α source was placed 7.1 m in front of the detector in vacuum [49]. The signals are then sent

to to a Tennelec 241S shaping amplifier with a shaping time of 6 µs before being sent to an

ADC. The corner signals were each sent to one of 16 Mesytec MMPR1 preamplifiers and

then to a single Mesytec MSCF-16 shaping amplifier. These are separate (from the anode)

preamplifier and shaping amplifier, having a shaping time of 2 µs for all corner channels.

Both anode and corner signals are then sent to the same Mesytec MADC-32 ADC. Figure 3.4

shows the electronics diagram for the segmented target signals.

3.4 Sweeper magnet

The beam continued toward the Sweeper magnet, a large-gap (14 cm) superconducting dipole

magnet with a bending angle of 43.3 degrees and a radius of 1 meter with a maximum mag-

netic rigidity of 4 Tm. The field was controlled by setting the current in the superconducting
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Figure 3.4: Segmented Target electronics diagram for one silicon detector. The anode and
four corner signals were sent to separate preamplifiers and shaping amplifiers before being
sent to the same ADC.

coils and was monitored using a Hall probe. To center the trajectory of the 33Mg secondary

beam through the magnet, the current was set to 345 Amps (Bρ = 3.73 Tm). For the 30Ne

fragments of interest in the production setting, the current was set to 337 Amps (Bρ = 3.67

Tm).

All charged particles from the fragmentation reactions (and any un-reacted beam) were

“swept” off their trajectory toward the charged particle detectors as they passed through

the magnetic dipole field. The neutrons continued through the 14 cm vertical gap of the

Sweeper magnet and through the air toward the MoNA-LISA neutron detectors which are

discussed in Section 3.6.
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3.5 Sweeper detectors

A variety of charged particle detectors were used along the path of the beam and the associ-

ated charged fragments. The first three were the A1900 and Target scintillators, which were

described in Section 3.2 and the Segmented Target, discussed in Section 3.3. The remainder

of the charged particle detectors were contained in a large vacuum box directly following

the Sweeper Magnet, referred to as the Sweeper detectors. These consisted of two cathode

readout drift chambers (CRDCs) used to measure the position of the charged particles, an

ion chamber to measure the energy loss, and a “Thin” plastic timing scintillator to measure

the outgoing time-of-flight for the charged fragments.

3.5.1 Cathode Readout Drift Chambers

There are two CRDCs placed approximately 1.55 m apart in the Sweeper detector box that

individually measure the horizontal (x) and vertical (y) position of a charged fragment. The

angle of a fragment detected in both CRDCs is deduced from this position information. The

fragment’s momentum at the reaction vertex, necessary for calculating the decay energy, is

reconstructed with position and angle information provided by the CRDCs.

The CRDCs are gas-filled detectors with a 30 cm × 30 cm active area perpendicular to the

incoming beam axis. The volume is filled with a 1:4 mixture of isobutane and CF4. Ion

pairs, created by charged particles interacting with the gas, drift apart due to a 1,000 V

electric field applied vertically between a plate at the top and a Frisch grid near the bottom

of the detector. An anode wire and 128 aluminum pads each 2.54 mm wide are laid out in

the horizontal (x) direction underneath the Frisch grid. When the electron avalanche reaches

the anode, it induces charge on the cathode pads and the distribution of the deposited charge
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Figure 3.5: CRDC schematic with the z dimension expanded. The electron avalanche does
not occur until the electron reaches the Frisch grid but is shown for illustrative purposes.

is fit to extract the x-position of the fragment. The y-position is determined by the drift

time of the electron through the applied electric field.

3.5.2 Ionization chamber

The ionization chamber is a gas-filled detector with an active volume 40 cm × 40 cm × 65 cm.

The front window of the chamber measured 30 cm × 30 cm perpendicular to the beam axis

to match the dimension of the CRDC2 immediately preceding it, while the rear window

measured 40 cm × 40 cm to allow for dispersion. The detector volume was filled with P-10

gas (90% argon, 10% methane) at 300 Torr. As particles passed through the ion chamber

they created ion pairs that drifted apart, subject to a drift voltage of 10 V applied between

a large plate at the top and 16 collection pads at the bottom of the detector. The pads
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were discretized in the direction of the beam path (z) and extended along the horizontal (x)

direction perpendicular to the beam. Energy loss through the ion chamber was determined

using the sum of the charge collected on all pads.

3.5.3 Thin scintillator

A “Thin” timing scintillator contained in the Sweeper detector vacuum box was the last

detector along the charged particle path. The Thin scintillator, made of EJ-204 material, is

shown in Figure 3.6. It had dimensions 55 cm × 55 cm perpendicular to the beam axis with

an active area of 40 cm × 40 cm, and a thickness of 5 mm. Four trapezoidal light guides were

attached, two at the top and two at the bottom as shown in Figure 3.6, each coupled to a

PMT. This scintillator provided a trigger for the data acquisition upon detection of a charged

fragment and measures time-of-flight relative to the target or XFP timing detector.

Figure 3.6: Schematic drawing of the Thin scintillator which measures outgoing time-of-
flight for the charged fragments. The upper-left (ul) PMT provides the system trigger for
the data acquisition.
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3.6 MoNA-LISA

The Modular Neutron Array (MoNA) and the Large multi-Institutional Scintillating Array

(LISA) [50] were utilized in this experiment to measure the three-dimensional neutron hit

position as well as the time-of-flight for the detected neutrons. Both are large neutron

detectors of similar modular design and can be arranged in a variety of configurations.

MoNA and LISA were comprised of 128 and 144 plastic scintillator bars respectively, each

bar measuring 2 m × 10 cm × 10 cm. The 2 m length of the bars extend along the horizontal

(x) direction. They were organized into 8 layers for MoNA and 9 layers for LISA, and each

layer contained a vertical stack of 16 bars. MoNA layers were labeled A through H and

LISA layers were labeled J through R. The two arrays were separated into 3 groups of layers

referred to as “tables,” displayed in Figure 3.7. The front of the first table in the beam path

was LISA II (layers N-R), 596 cm from the target position, followed by LISA I (layers J-M),

812 cm from the target. All MoNA layers A-H comprised the last table, 1041 cm from the

target.

Figure 3.7: MoNA-LISA experimental setup orientation and grouping (spacing between layer
groups not to scale) viewed from the side. Neutrons travel left to right through the array.
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The MoNA bars are made of BC-408 and the LISA bars of EJ-200 material, each with a light

attenuation length greater than 3.8 m which are physically and chemically equivalent. The

bars were individually wrapped with reflective material to reduce light leaks and with black

plastic to avoid introducing ambient light. On either end of each 2 m scintillator bar was a

light guide coupled to a photo-multiplier tube (PMT). MoNA utilized Photonis XP2262/B

PMTs and LISA utilized Hamamatsu R329-02 PMTs.

Neutrons undergo a nuclear interaction within the plastic detector volume which produced

scintillation light. The neutron-to-hydrogen mass ratio is much larger than the neutron-

to-carbon mass ratio so neutron-proton interactions produced more scintillation light. The

recoiling protons deposited energy in the plastic, causing light to be produced that propagates

to both ends of the bar and is detected by the PMTs on either end. The PMTs each had

an anode signal for timing information, used in the reconstruction of the neutron four-

momentum and a dynode signal for the charge collected which assisted in neutron event

selection.

The time difference between the left and right PMT signals is used to determine the hor-

izontal (x) position of a neutron hit along the bar. The average of the two timing signals

is used to determine the time-of-flight from the target position to the neutron hit position.

The segmentation in the vertical (y) direction and beam axis (z) direction allows determina-

tion of a 3-dimensional location for the neutron hit. Under the condition that the neutrons

originate from the center of the reaction target, this provides all the necessary information

for the reconstruction of the neutron four-momentum at that location.
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3.7 Electronics and Data Acquisition System

The electronics and data acquisition (DAQ) for the MoNA-LISA and Sweeper systems has

been described and characterized in previous works [51, 52, 53, 49, 54]. An overview will be

summarized here with settings specific to this work.

3.7.1 Data acquisition hardware

There are three subsystems of the data acquisition that operate independently: one for

MoNA, one for LISA, and one for the Sweeper detectors. They are connected through a

logic system handled by Xilinx Logic Modules (XLMs) with field-programmable gate arrays

(FPGAs) which is split into three “levels”. Levels 1 and 2 determine whether a MoNA-LISA

event is valid. Level 3 controls the coincidence between MoNA-LISA and the Sweeper and

is responsible for generating and distributing the system trigger and a timestamp for each

registered event to all three individual subsystems.

For this experiment, the data acquisition ran in “Sweeper singles” mode, meaning the Level

3 logic generated a system trigger from the channel 0 (upper left) PMT of the Thin timing

scintillator in the Sweeper subsystem. This trigger opens a coincidence gate for a signal from

a hit in MoNA-LISA. Regardless of the validity of an event in MoNA-LISA, the Sweeper

subsystem is read out. If MoNA-LISA registers a hit without the system trigger, Level 3

will be set to “busy” and the MoNA-LISA acquisition is cleared. A schematic of the MoNA,

LISA, and Sweeper subsystems is shown in Figure 3.8.

The two independent subsystems of MoNA and LISA have electronics setups identical in

design. Each of the PMTs for each MoNA-LISA bar had an anode signal used for timing

and a dynode signal used to measure the light deposited. Each PMT anode signal was sent
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to a constant fraction discriminator (CFD). A copy of this signal was sent to both a time-

to-digital converter (TDC) and an XLM for the subsystem trigger logic. The CFD provided

the start signal for the TDC and the stop signal was generated by the Level 3 logic. Each

PMT dynode signal is sent to a charge-to-digital converter (QDC) module that integrated

the charge collected to determine the amount of scintillation light detected. The time and

charge signals from the TDC and QDC respectively were read out by the DAQ computer.

A schematic of the MoNA-LISA electronics is shown in Figure 3.9.

The Sweeper subsystem detectors for this experiment included three timing scintillators,

four segmented-target silicon detectors, two CRDCs, and an ion chamber. Each of the

three timing scintillators (A1900 XFP scintillator, Target scintillator, and Thin scintillator)

signals were sent to CFDs and TDCs for timing information. In addition, the channel 0

(top left PMT) signal of the Thin scintillator was sent to the Level 3 logic, providing the

system trigger. The PMT charge signals for the Target and Thin scintillators were separately

processed by an ADC. The CRDC anode signals were sent to a time-to-amplitude converter

(TAC) and then to an analog-to-digital converter (ADC). The CRDC pad signals were

sampled by Front-End-Electronics (FEEs) and sent to an XLM for readout. The individual

ion chamber pad signals were sent to a shaping amplifier and to an ADC. The segmented

target electronics have been discussed in Section 3.3.
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Figure 3.8: Level 3 data acquisition electronics schematic for this experiment.

Figure 3.9: LISA data acquisition electronics schematic. MoNA uses an identical setup.
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3.7.2 Data acquisition software

The MoNA, LISA, and Sweeper subsystems had individual readout programs for this exper-

iment that used the NSCLDAQ version 11.2 run on a dedicated DAQ computer for each

device (spdaq40 for MoNA, spdaq42 for LISA, and spdaq34 for the Sweeper). Each had its

own ring buffer, a data structure having a fixed size with the pointers “put” and “get”. Each

ring buffer had a single producer (MoNA, LISA, or Sweeper) and multiple consumers, and

behaved in a first-in-first-out manner. Additional details can be found in the NSCLDAQ

documentation [55]. A producer stores data in a ring buffer with the put pointer, and a

consumer can read the data in the ring buffer with the get pointer. After use, the respective

pointer is incremented. The ring buffer is defined as full when incrementing put will give the

location of get and empty if put and get are at the same location.

When the MoNA, LISA, and Sweeper subsystems operated simultaneously, a “Master” read-

out was utilized that synchronized all the independent readouts and was the producer for

the Master ring buffer called the “built” ring. Events were built in the Master readout by

combining ring items from each subsystem using 64-bit timestamps. A consumer of this

“built ring” used the get pointer to write the data to a binary file, which was unpacked

offline into a ROOT file for calibration and analysis. Other consumers for the ring buffers

include individual TclTK scripts used by SpecTcl [56] for each subsystem which allowed

for visualization and analysis of data as it came in during the course of the experiment.

A DAQ software diagram showing the ring buffers and detector subsystems is shown in

Figure 3.10.
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Figure 3.10: The DAQ software schematic. Yellow denotes a data producer (MoNA, LISA,
and Sweeper subsystems), orange denotes a ring buffer, green denotes an event builder (EVB)
which builds events from one or more ring buffers using a 64-bit timestamp, and blue denotes
a data consumer. The sweeper producers VMUSB and CCUSB refer to crate controllers for
VME and CAMAC crates respectively.
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Chapter 4

Data Analysis

4.1 Charged particle detector calibrations

4.1.1 Cathode Readout Drift Chambers

The cathode readout drift chambers (CRDCs) are responsible for detecting the positions

and angles of the incoming fragments as discussed in section 3.5.1. Each CRDC provides an

x- and y-position for each fragment event, the combination of both detector positions allows

extraction of the angles of the fragments relative to the beam axis in both horizontal and

vertical directions. In order to obtain accurate position information the pad responses are

normalized and a position calibration is performed.

4.1.1.1 CRDC pedestal calibration

Each cathode readout drift chamber has 128 charge collection pads. When the detectors

and associated electronic modules are powered, there is a small current that is induced and

processed throughout all modules. This electronic noise, which should be the same for each

channel, shows up in the energy spectrum of the CRDC pads. This feature is called a

“pedestal” and needs to be subtracted for all CRDC pads so their minimum charge collected

is the same. An offline data acquisition with the CRDCs turned on is used to populate
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these pedestals, and they are fit with a Gaussian function on each collection pad. The mean

value of this fit is then subtracted for the respective pad. Some CRDC pads show spectra

indicating poor charge collection and are removed from the analysis, listed in Table 4.1.

The result of the CRDC pedestal calibration is shown in Fig. 4.1.

Figure 4.1: CRDC pedestal response calibration. Red regions indicate the highest number
of counts. The Un-calibrated (raw) spectrum is on the left and the calibrated spectrum is
on the right.

4.1.1.2 CRDC gainmatch

The deposited energy is a function of the incident ion proton number Z, distributed on a

number of neighboring pads in the region of the particle interaction. This distribution is

fit with a Gaussian function to extract the horizontal (x) position. The response of each

pad in each CRDC needs to be matched such that each pad has the same response when

it detects the same amount of energy. To do this, a ”sweep” run is performed during the

experiment. The 33Mg beam is continuously moved across the face of the CRDCs in the

x-direction, using a varying magnetic field produced by the Sweeper magnet. This aims to

illuminate as many of the pads as possible. Un-reacted beam events are selected to isolate
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particles with the same Z. The charge collected by each pad is then normalized to a chosen

reference pad near the center of the array using a linear calibration. Some CRDC pads show

spectra indicating poor charge collection or have little charge collection, because the cone of

the beam is not large enough to cover the face of the detector, and they are removed from

the analysis, listed in Table 4.1. Fig. 4.2 shows the gainmatch performed on CRDC2. An

identical process was used to gainmatch CRDC1.

Table 4.1: Pads removed from analysis for CRDC1 and CRDC2 due to charge collection
spectrum features.

CRDC 1 CRDC 2
1-40 1-13
80 127

96-127

Figure 4.2: CRDC gainmatch. Events shown correspond tothe un-reacted beam with Z =
12. The un-calibrated (raw) spectrum is on the left and the calibrated spectrum is on the
right.

4.1.1.3 CRDC time drift

The vertical (y) positions of the detected fragments in the CRDCs are measured using the

drift time across an electric field in a gas volume. The measurement can drift over time due to
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fluctuations in the applied electric fields and gas pressure and temperature fluctuations. To

account for this, a drift correction is performed through a linear calibration which normalizes

the response of the CRDC as a function of time over the course of the experiment. Figure 4.3

shows the measured drift time signal as a function of time for both CRDC1 and CRDC2.

The run number is a measure of time: each run is one hour long (two hours for runs 1076

and later) and the data was gathered over the course of one week.

Figure 4.3: CRDC time-to-amplitude converter (TAC) drift calibration. This plot shows the
TAC signal as a function of time (represented here by the run number). The black markers
denote the mean drift time for each run number. The raw spectrum is on the left, and the
calibrated spectrum is on the right.

4.1.1.4 CRDC position calibration

The horizontal (x) position calibration is determined by the charge collected among a handful

of 2.54 mm wide pads. Pads that do not function properly were removed from the analysis

in the pedestal calibration and are listed in Table 4.1. Removal of these pads should not
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hinder the x-position determination, provided that a Gaussian fit of the charge deposited as

a function of pad number among several illuminated pads can still be performed to extract

the position. The vertical (y) position is measured via the drift time of the electron through

the applied electric field at the top and bottom of the CRDCs. The drift time for the y-

position and the charge distribution for the x-position need to be converted to positions

in the lab frame. This detector frame to lab frame calibration is performed with a “mask

run.” The incoming beam is de-focused in order to detect particles in as large an area on

the face of the CRDCs as possible. Two tungsten masks 6.35 mm thick with 1 mm diameter

holes at known locations are inserted on independent drives in front of each CRDC one at

a time. Heavy ions are either stopped by the tungsten mask or pass through the holes,

creating a pattern which can be calibrated to the physical dimensions of the detector in

the lab frame. A linear relationship between measured charge and x-position as well as

between the measured time and y-position is obtained and applied. The x-position slope

comes from the physical dimensions of the detector, and the offset is determined by the mask

calibration. The y-position slope is determined by the spacing between the holes in the mask

and the offset by the relative positions between the masks and CRDCs. CRDC1 has fewer

mask holes visible in the spectrum because the beam spread is smaller directly following

the Sweeper magnet where this CRDC sits. Slopes and offsets for the CRDC calibration

are listed in Table 4.2. The CRDC pads are numbered in opposite orientations in the two

detectors: CRDC1 pad number increases in the +x direction in the lab frame, and CRDC2

pad numbers in the −x direction. The slopes for the position calibration have opposite sign

to reflect this geometry.
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Table 4.2: Slopes and offsets for the CRDC position calibrations. The horizontal direction
(x) and vertical direction (y) calibrations use a linear relationship. The opposite slopes
reflect the opposite CRDC orientation in the lab frame.

xslope xoffset yslope yoffset
[mm/pad] [mm] [mm/ns] [mm]

CRDC1 2.54 -176.71 -0.085 110.97
CRDC2 -2.54 186.66 -0.085 111.12

Figure 4.4: CRDC mask position calibration showing y-position versus x-position. The
CRDC1 spectrum is on the left and the CRDC2 spectrum is on the right.

4.1.2 Ion chamber

The ion chamber is a gas-filled detector responsible for measuring the energy loss of a frag-

ment in the suite of charged particle detectors, allowing for element identification of the

detected fragments. The ion chamber has 16 charge collection pads segmented in the direc-

tion of the beam path. Charge collection is normalized over all pads to a reference pad for

a given Z. Position dependence in the horizontal (x) direction is corrected for a given Z in

order to normalize the response at the edges. The following sections detail the calibrations

performed for the ion chamber.
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4.1.2.1 Ion chamber gainmatch

The ion chamber is used to separate charged fragments with different proton number Z.

The charge response for each pad needs to be normalized in order to ensure that the charge

collected is the same for a known Z.

To get a large number of fragments with different Z, the wedge was removed from the

A1900 fragment separator, discussed in section 3.1. This wedge is responsible for assisting in

separation of various beam fragments with a similar Bρ to the 33Mg beam; the removal of this

wedge allows transmission of many beam fragments created in the initial fragmentation of

48Ca. The energy loss for the fragments in the ion chamber is proportional to Z2 (Following

the Bethe-Bloc formula) and the charge collection for each pad shows multiple peaks as

shown in Figure 4.5 (left panel). Pads with bad charge collection are eliminated from the

analysis and are listed in Table 4.3.

Table 4.3: Ion chamber pads removed from the analysis due to erroneous charge collection
spectra.

Pad Number
0
4
7
15

Because the charge collection is summed over all pads, the exclusion of some pads does not

affect the resulting measurement. For each pad, the peak positions are recorded and a linear

fit between the peak positions relative to a reference pad is used to extract a slope and an

offset. An example of this linear calibration for a single pad is shown in Figure 4.5 (right

panel).
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Figure 4.5: Energy loss measured by the first pad in the ion chamber during an “unwedged”
beam setting. The multiple peaks in the left plot correspond to the various Z of the measured
fragments. The peak locations inform the data points on the right plot.

The calibrated charge as a function of pad number for valid pads is shown in Figure 4.6

for a “beam-down-center” run for which the reaction target is removed. The two bands

correspond to the desired secondary beam 33Mg (Z=12) on bottom and the most prominent

contaminant beam 36Si (Z = 14) above. The un-calibrated spectrum is on the left and the

calibrated spectrum is on the right.
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Figure 4.6: Ion chamber collected charge as a function of pad number during a “beam
down center” run. The red region indicates the highest number of counts. The two bands
correspond to the secondary beam 33Mg with Z=12 (bottom) and the heavier contaminant
beam 36Si with Z=14 (top). The left spectrum shows the un-calibrated response and the
right shows the calibrated one.

4.1.2.2 Ion chamber position correction

After the charge in each pad has been normalized for proton number Z, the position depen-

dence in the horizontal direction must be corrected. The charge collected in the center of the

ion chamber pads should be the same as the charge collected at the edges. To correct the

position dependence of the ion chamber, “sweep” runs are performed during the experiment

with no reaction target, varying the current supplied to the Sweeper dipole magnet discussed

in section 3.4. Due to low statistics, two types of “sweep” runs were combined and used in

the analysis: a “continuous sweep” where the beam was swept by continuously varying the

dipole magnet currents, and “step sweeps” where the beam is swept using discrete currents

for each run. The former illuminates the full area of the CRDCs available to the beam, while

the latter illuminates different CRDC positions depending on the selected current. Events

corresponding to un-reacted beam in the ion chamber are selected in order to isolate particles

with the same Z. The energy loss as a function of position in the second CRDC, which lies
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directly upstream of the ion chamber, is then used to correct the position dependence of the

charge collection in the ion chamber. This correction is shown for one ion chamber pad in

Figure 4.7. The un-corrected spectrum is shown on the left and the corrected spectrum is

shown on the right.

Figure 4.7: Ion chamber position correction. This plot shows the charge collected in the ion
chamber as a function of the CRDC2 calibrated position. The raw spectrum is on the left
and the calibrated spectrum is on the right.

4.1.3 Segmented reaction target

4.1.3.1 Detector drift correction

Over the course of the experiment, the silicon detectors in the segmented target array (dis-

cussed in section 3.3) incur radiation damage, impacting the efficiency of their charge collec-

tion. A calibration based on charge collected over time during the experiment is performed

such that the detector has the same response to a given Z throughout the experiment. A

linear calibration is performed on each detector’s anode signal for 33Mg beam particles as a

function of the experiment run number which is analogous to time. This correction can be

seen in Figure 4.8 for the first silicon detector.
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Figure 4.8: Silicon detector drift correction. The charge collected is shown as a function of
the experiment run number (time) for events corresponding to un-reacted 33Mg beam. The
un-calibrated spectrum is on the left and the calibrated spectrum is on the right.

4.2 MoNA-LISA calibrations and corrections

The MoNA-LISA array (details discussed in section 3.6) consists of 144 bars of plastic scintil-

lator. Calibrations for position and both global and relative time calibrations are performed

in order to accurately reconstruct the neutron four-momentum. These processes are dis-

cussed in the following sections.

4.2.1 Charge calibration

The QDC calibration involves the determination of a threshold used by the data acquisition

which is set to remove the QDC pedestal which represents the minimum charge collected due

to noise in the electronics. A charge calibration is then performed to normalize the charge

response in each bar. In order to calibrate the QDCs, cosmic ray data is collected. This is

an offline procedure capturing background events, many of which originate from cosmic ray

muons interacting with the MoNA-LISA detector bars. On average, the light produced by a
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cosmic ray muon in a MoNA-LISA bar is roughly 20 MeVee (MeV electron equivalent)[57].

The light collected by each PMT is converted from raw charge in QDC channels into a

calibrated light output in MeVee using the pedestal for an offset and the cosmic ray muon

peak location for the slope. The two remaining features are a sharp peak at low energy from

background γ rays and the broad cosmic muon peak. Figure 4.9 shows the charge collected

in a single LISA detector bar before calibration (left) and after calibration (right) with the

pedestal feature indicated.

Figure 4.9: The collected charge in a single bar of the LISA array detected during an offline
acquisition. The un-calibrated spectrum is on the left, and the calibrated spectrum is on
the right. There is a minimum charge collected in each pad, called the “pedestal,” denoted
by the arrow in the left panel. The peak corresponding to the cosmic rays is calibrated to
20 MeVee as seen in the calibrated spectrum.

4.2.2 Time calibration

The MoNA-LISA detector bars are optically coupled to a PMT on both ends. The time

signals are processed by a time-to-digital converter (TDC) for which a slope must be found

to calibrate the time signals The offsets are set in subsequent calibration sections. A time

calibrator module was utilized, providing a start and a stop signal at a set interval of 40 ns.
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The time spectra associated with each PMT are characterized by a series of evenly spaced

sharp peaks. The slope of a linear relationship between the TDC channels and time in

nanoseconds is extracted and applied individually to each PMT. The final calibration for

one PMT is shown in Figure 4.10. This provides a slope parameter for the TDC calibration,

and overall timing offsets are discussed in section 4.2.4

Figure 4.10: Un-calibrated (raw) LISA TDC spectrum for a single LISA detector bar during
a run using a pulser (time calibrator) module. The “picket fence” pattern provides points
for a linear calibration providing an identical timing response for each detector bar.

4.2.3 Position calibration

The MoNA-LISA array is segmented in the direction of the beam path (z) and in the vertical

direction (y). This provides positions in these dimensions with an accuracy of the width

of one scintillator bar(10 cm). The horizontal (x) position is determined by the time-of-

flight of the scintillation light produced by the nuclear reaction induced by a neutron in the

detector volume. Because the light produced travels at a constant speed, the position of

the interaction can be deduced from the time difference between PMT signals read out from
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either end. A long offline acquisition of cosmic ray muon data provides events uniformly

distributed along the length of the bar. The raw calibration spectrum has distinct edges fit

with a Fermi function and the locations converted to the dimensions of the detector, shown in

Figure 4.11. A linear calibration slope and offset are extracted and applied, resulting in the

calibrated spectrum on the right panel of Figure 4.11. The position calibration detailed here

specifies the location of a hit relative to the center of the bar. Precise laser measurements

of the experimental vault are used to determine the offset for absolute locations in the lab

frame.

Figure 4.11: The x-position calibration for a single LISA detector bar. The un-calibrated
time spectrum is on the left showing the distribution fit on both ends with a Fermi function.
The calibrated position spectrum is on the right, with the red vertical lines corresponding
to the ends of the bar at -100 cm and 100 cm.

4.2.4 Timing offsets

Previously detailed TDC calibrations provided a slope for a linear calibration of the MoNA-

LISA detector bars. The overall timing offset must also be determined for each bar. The

MoNA-LISA array is organized into three “tables” or groups of bars which are shown in

chapter 3. Timing offsets between each bar and a reference bar in its layer must be de-
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termined, as well as the timing offset of each table relative to the reaction target. These

processes will provide time offsets for each of the MoNA-LISA detector bars such that they

are all on the same time scale.

The triggering signals used are not individually wired, but chained together, so the TDC

times are slightly different. This leads to shifts in average time calculated between the

two TDCs which informs the x-position of the event. A long, offline run collecting cosmic

ray muon data was performed and events were selected for which the muon traveled nearly

vertically through a given layer. The difference in the calibrated x-position of the hits

between bars in a given layer and the speed of the muons (assumed to be c) are used

to determine an absolute timing offset between a given bar and a reference bar in that

table.

The overall timing offset between the reaction target and each MoNA-LISA table must then

be determined. γ rays from fragmentation at the reaction target occasionally deposit energy

into MoNA-LISA. The speed of the photons and the calibrated position of the neutron hit in

MoNA-LISA, assuming that the photons originate from the center of the segmented target

array, provide an absolute time of flight as shown in Figure 4.12. Once these two timing

offsets have been applied, each bar and table of the MoNA-LISA array are on the same

absolute time scale and calibrations are complete.
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Figure 4.12: Calibrated time spectrum for the center bar in the first layer of the LISA array
during all experimental runs. The large peak corresponds to the neutron time of flight, and
the peak with the fastest time of flight corresponds to the γ rays, marked by the red vertical
line.

4.3 Event selection

Reconstructing the decay energy spectrum of an unbound nucleus requires selecting events

that correspond to a specific charged fragment detected in coincidence with a neutron. A thin

scintillator detects charged fragments and is responsible for triggering the data acquisition.

Secondary beam contaminants, reactions other than the two-proton knockout desired, and

background events from random coincidence between MoNA-LISA and Sweeper can trigger

this acquisition and must be removed from the analysis to isolate the desired 30Ne fragments.

The following sections detail the process of distinguishing events corresponding to the desired

reaction and subsequent decay.

4.3.1 Beam identification

The 33Mg secondary beam was delivered along with two other beam fragments referred to as

“contaminants,” 36Si and 34Al. Accompanying these main components are light fragments
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originating from reactions in the aluminum wedge in the A1900 separator. Event selection

begins with isolating those coming from the desired 33Mg which is done using a combination

of two software cuts: one on the time-of-flight and one on the energy loss.

The first of these cuts is on the time-of-flight from the A1900 XFP scintillator to the target

scintillator. The delivered fragments all have the same magnetic rigidity (Bρ) but different

A and Z, and thus different velocities. The time-of-flight for the 33Mg beam was sufficiently

isolated from the 36Si and 34Al beam “contaminants” as seen in Figure 4.13. The intense

regions from left to right correspond to 36Si, 34Al, and 33Mg. The red lines indicate the

selected events.

Figure 4.13: Time-of-flight between the A1900 fragment separator and the scintillator just
upstream of the reaction target. The secondary 33Mg time-of-flight selection is shown be-
tween the red lines.

The second cut is on the energy loss in the segmented target’s first silicon detector. The

delivered beam includes many low-Z fragments which need to be separated from the 33Mg

selection. A cut on the energy loss in the silicon detector eliminates light particles for
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which the time-of-flight are the same as the desired 33Mg beam. The segmented target has

four silicon detectors, which had been used (and radiation damaged) in only one previous

experiment [49, 48]. The bias voltage for these detectors was not changed to account for

this radiation damage, and signal pileup is evidenced by the observed “tails” of the energy

loss distributions. The time-of-flight gate will include nuclides with identical A
Z to 33Mg.

Any lighter nuclides whose tail may “leak” into the 33Mg selection are filtered out of the

analysis when element selection is done in a later step. There are no nuclides heavier than

33Mg expected from the A1900 fragment separator and thus the full vertical extension of the

tail is accepted as part of the 33Mg beam selection. Figure 4.14 shows the energy loss as a

function of time-of-flight. The three intense regions above 3000 in the figure correspond to the

three heaviest nuclides: 36Si, 34Al and 33Mg from left to right, respectively. The collection

of intense regions below channel 3000 are various lighter species of nuclei produced in the

fragmentation of the primary 48Ca beam. The final beam selection of 33Mg can be seen in

Figure 4.14.
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Figure 4.14: Energy loss in the first silicon detector of the reaction target as a function of
the time-of-flight between the A1900 fragment separator and the scintillator just upstream
of the reaction target. The secondary 33Mg beam selection is shown in the red box.

4.3.2 Element identification

At the segmented reaction target, the 33Mg nuclei may fragment in any of the three beryllium

reaction targets. Most of the beam will not react and these events can provide a benchmark

for isotope identification. After the 33Mg secondary beam is selected using the first silicon

detector, the neon isotopes must be separated from the rest of the reaction products. This

is achieved by examining the energy loss in the ion chamber as a function of the time of

flight between the scintillator in front of reaction target and the one directly following the

ion chamber. The corresponding reaction products originating from the fragmentation of the

33Mg beam are shown in Figure4.15. The most intense region of the histogram corresponds

to un-reacted 33Mg. Because the energy loss is proportional to Z2, the resulting bands can

easily be identified, starting from 33Mg at Z = 12. The events corresponding to the lighter

elements can be assigned in descending order. The neon reaction products, with Z = 10, are
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identified in the red box in Figure 4.15.

Figure 4.15: Energy loss in the ion chamber as a function of the time of flight between the
scintillator just upstream of the reaction target and one directly following the ion chamber.
The most intense region of the histogram represents un-reacted secondary 33Mg beam events.
The neon element selection is shown in the red box.

4.3.3 Reaction target identification

The segmented reaction target used in this experiment is comprised of four silicon detectors

which measure the energy loss of the detected particles, and three thin beryllium targets

interleaved with the silicon detectors, where the two-proton knockout from 33Mg into 31Ne

takes place, as well as the instantaneous neutron decay to 30Ne. The energy loss mea-

surements before and after each reaction target provide a way to distinguish particles with

different Z, making it possible to identify the specific target associated with the desired

two-proton-knockout and improve the resolution of the decay energy measurement by lim-

iting the ambiguity about the reaction location. To do this selection, a plot of the energy

loss in one silicon detector is plotted versus another for events which entered the setup as

67



33Mg and reaction products which have been determined to be neon. The incoming par-

ticles will lose energy in the first silicon target corresponding to the 33Mg beam, and the

neon reaction products will deposit less energy in the detectors following the target where

the reaction took place. The selections for each target are shown in Figure 4.16, along with

a schematic that explains the selection requirements in the top left panel. Figure 4.17 shows

the one-dimensional projections of the cuts made on the data.

Figure 4.16: Target selection gates for each of the three Beryllium targets. The energy loss
of one silicon detector is plotted versus the energy loss in the preceding one; the reaction
target associated with the identification is between them. Top left: schematic showing an
example of the selection. The selection in the data are shown for target 1 (top right), target
2 (bottom left) and target 3 (bottom right). This plot includes only events which originate
as 33Mg and react to form a neon isotope.
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Figure 4.17: Target selection gates for each of the three Beryllium targets. The energy loss
is shown for the second (left), third (middle), and fourth (right) silicon detectors, with red
lines showing the gates from Figure 4.16. This plot includes only events which originate as
33Mg and react to form a neon isotope.

4.3.4 Isotope identification

After specific events are selected to isolate the reaction products by atomic number Z, an

identification of mass number A must be made in order to isolate the fragment of interest,

in this case 30Ne. The magnetic rigidity of each (non-relativistic) charged fragment is given

by Bρ = mv
q and the velocity v = ∆L

∆t . Therefore, the time of flight through a magnetic field

is proportional to the fragment mass number A:

v =
∆L

∆t
=

Bρq

m
=

BρZe

Amu
∝ 1

A
(4.1)

where L is the path length of the trajectory of the fragment through the magnetic field,

t is the time of flight, q = Ze is the fragment charge, A is the mass number and mu is

the nucleon mass. In principle, a time-of-flight measurement can be used to separate mass

number for fragments with the same Bρ.

The position and angle at the CRDCs and the time-of-flight are all dependent on the mass
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number A but cannot independently provide isotope identification. Variations in the path

length L and magnetic rigidity Bρ cause the time-of-flight and position distributions of in-

dividual isotopes to be washed out and overlap. These distributions are influenced by the

momentum acceptance of the A1900 fragment separator, straggling in the segmented target,

the non-uniformity of the Sweeper magnetic field, and decay and reaction dynamics. Assum-

ing the incident beam position to be the reference position and with an angle perpendicular

to the target, a correlation between these the remaining parameters can be untangled to

provide a “corrected” time-of-flight parameter which is capable of separating the isotopes of

an element band such as the neon selected in Figure 4.15.

Figure 4.18: Correlation between time-of-flight, position, and angle for neon reaction prod-
ucts.
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Figure 4.19: Projection of the time-of-flight onto the dispersive angle and dispersive position.
The curve follows the contour of a constant time-of-flight.

The first step in the isotope identification is to construct a parameter which contains infor-

mation about the relationship between the time-of-flight and the dispersive plane position

and angle. A 3D scatter plot of the time-of-flight versus dispersive angle and position for

the neon reaction products is shown in Figure 4.18. There are faint band structures cor-

responding to the various detected neon isotopes. This plot can then be projected down

onto the dispersive angle versus dispersive position plane as shown in Figure 4.19. The color

contours, highlighted by the curve in the figure, are representative of an iso-time-of-flight,

for which particles with different A will be separated.
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Figure 4.20: The functional dependence of the CRDC1 x position (dispersive position) on
CRDC x angle (a new parameter) as a function of the time-of-flight. The curve represents
the correlation function between the two parameters.

Figure 4.21: One-dimensional particle ID parameter indicating the mass number A. The
labels correspond to the isotopes present.

The second-order polynomial relationship shown between the dispersive angle and dispersive

position is unfolded and plotted versus the time-of-flight, shown in Figure 4.20. Another
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second-order polynomial can be used here, shown as a black curve, in the same way to create

another parameter which can be examined for isotope separation. This so-called “Particle

Identification”(PID) parameter is shown in Figure 4.21 which is proportional to the mass

number A. The heaviest expected neon reaction product from the 33Mg beam will be 31Ne

due to the two-proton knockout, which is bound in its ground state and should be detected

in the suite of charged particle detectors. Figure 4.21 shows labels for all detected neon

fragments originating from fragmentation of the 33Mg beam. In Figure 4.22 the detected

isotopes of neon are distinctive colors, emphasizing the band structure which is hard to

discern in Figure 4.18.

Figure 4.22: Correlation between time-of-flight, position, and angle for neon reaction prod-
ucts. The detected isotopes are shown in various colors to emphasize the banding structure
of the various neon isotopes.

4.3.5 Neutron selection

After the desired charged particle events have been selected, a neutron requirement must

be imposed to select events which correspond to a detection of both the neutron and the
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desired fragment. The charge and time-of-flight spectra for MoNA-LISA contain true neutron

events, but also coincidences with other particles such as photons or muons which should be

removed from the analysis. To do this, an event selection is imposed on the MoNA-LISA

time-of-flight and charge collection spectra in order to isolate true neutron events. The

desired neutrons will have a time-of-flight similar to that of the beam and a one-dimensional

cut on this parameter is utilized to isolate the desired neutrons. Further constraints on the

background include a one-dimensional cut on the charge collected to eliminate events with

low light output.

Figure 4.23: Neutron selection based on time-of-flight and deposited charge in LISA. Events
which lie in the un-marked area are selected as neutron events. All others are assumed to
be detected particles other than neutrons (e.g. photons).

Once the neutron events have been selected, a coincidence between the selected 30Ne is

imposed. Figure 4.24 shows the particle ID again in dark green, and in light green the events

in coincidence with a neutron. These events originate from a 33Mg beam which underwent

a two-proton knockout populating 31Ne∗ that immediately decayed via one-neutron decay
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to populate 30Ne, for which a neutron was detected in coincidence (represented by the light

green region between the two red lines in Figure 4.24).

Figure 4.24: One-dimensional particle ID parameter indicating the mass number A. All
detected fragments are shown in the dark green histogram, while a neutron coincidence
requirement gives the light green histogram. The selection on 30Ne fragments is shown
between the red bars.

4.4 Fragment reconstruction

The method of invariant mass spectroscopy requires knowledge of the four-momentum vector

at the decay point for the decay products. The neutrons from the various reactions and

decays in the segmented reaction target travel without a significant loss of speed to the

MoNA-LISA neutron detectors and their four-momentum is reconstructed based on angle

and position. The charged fragments, however, pass through the magnetic dipole field of the

Sweeper magnet on paths unique to each nuclide. The determination of the four-momentum

at the target position is accomplished through the use of a third-order non-linear ion-optical

matrix calculation with COSY INFINITY [58], with the measured fragment angles and
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positions as inputs, that tracks the fragment path back to the target location and includes

information about the strength and shape of the magnetic field. The angles and positions

at the center of each target, as well as the energy of the fragment at the exit of the target

come from this matrix calculation.
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(4.2)

However, COSY INFINITY uses a different set of coordinates (x, a, y, b, l, δ) which are defined

as

a ≡ px
pz

= tanθx ≈ θx (4.3)

b ≡
py
pz

= tanθy ≈ θy (4.4)

l ≡ − v0γ0
1 + γ0

(t− t0) (4.5)

δ ≡ K −K0

K0
≈ 2

∆p

p
(4.6)
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where the subscript 0 denotes the reference particle which follows the central trajectory used

in the creation of the ion-optical matrix. The transverse angles of the beam, θx and θy

are assumed to be small and are represented by the quantities a and b, respectively. The

quantity δ is the deviation of the kinetic energy from the reference particle.

The matrix is not square and non-linear terms must be included. The calculation was carried

out to third order, and the matrix elements were calculated by COSY INFINITY. Not all

phase space dimensions are used in the analysis, therefore the dimensionality can be reduced

so that the matrix can be “partially inverted,” resulting in the equation:



at

yt

bt

lt

δ


= Mpart. inv.



xd

ad

yd

bd

xt


(4.7)

where the t subscripts refer to the target-position variables, and d refers to the detector-

position variables.

Table 4.4: Inputs for the COSY INFINITY matrix calculation.

Parameter Value Description
order 3 Optics calculation order
angle -0.3° Incoming beamline angle
pos 0.050 m Coordinate conversion for field map
drift 1.56 m Arc length of central trajectory

The calculation of the partial inverse matrix using COSY INFINITY requires information

about the angle and position of the beam line, the path length through the center of the

Sweeper dipole field, and the beam particle mass, charge, and reference Bρ. These inputs
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Table 4.5: Sweeper current, Hall probe value, and magnetic rigidity for the 30Ne setting used
in the COSY map generation.

Current (A) 337
Hall Probe (kG) -10.360
Bρ for 43.3 ° bending 3.674

are detailed in Tables 4.4 and 4.5.

4.5 Modeling and simulation

After the calibrations are complete, the desired events corresponding to the one-neutron

decay of 31Ne have been isolated, and the desired quantities are reconstructed and calcu-

lated, a simulation must be performed to fit a decay model to the experimental data. The

simulations include the effects of the acceptance and efficiency of both MoNA-LISA as well

as the charged particle detectors, and take into account the incoming beam profile, energy

losses in the segmented target, and also include reaction and decay processes.

There are two parts to the simulation code which handle the charged fragments and neu-

tron interactions individually. One part of the code is comprised of an in-house C++ based

simulation package called ST MONA which handles the charged particle propagation and

detection. The other part of the code is a GEANT4 simulation for the neutron interactions

in MoNA-LISA using the neutron physics package MENATE R within GEANT4. Charac-

terization of the simulation code has been performed and benchmarked in previous stud-

ies [59, 53, 60, 51, 61, 52].

The incoming beam parameters in the transverse directions (x− and y-position and angles)

are modeled in ST MONA by Gaussian distributions that can be set with a mean and

standard deviation. Kinetic energy of the beam is modeled by a uniform distribution in which
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the centroid and width are determined by the A1900 separator rigidity and slit settings.

The beam is propagated through the target, in which energy loss and straggling are taken

into account. The reaction occurs at a randomly-chosen position, the dynamics of which

are modeled in the Glauber formalism using a longitudinal momentum kick as in Ref. [62]

and a transverse momentum kick as in Ref. [63]. The resonant lineshape input distribution

used by ST MONA which models the decay is sampled randomly to model the subsequent

decay. The two-body decay energy is modeled within ROOT using the TGenPhaseSpace

class. The fragment energy loss is calculated as the beam passes through the segmented

target. The fragments are then propagated through the dipole magnetic field using the

third-order COSY matrix and onto the face of CRDC1, after which a drift is applied for

the fragments to reach CRDC2. Each CRDC has resolution effects on the simulated data,

which is tracked backward to the target position using the partial-inverse COSY matrix.

This backward-tracking is the same process applied to the data when reconstructing the

four-momenta; using it for the simulation ensures the simulation and data are treated in

a similar manner. The output of this ST MONA simulation contains the charged particle

detections and is sent to a GEANT4 simulation which handles the neutrons associated with

the simulated ST MONA decays.

The output ROOT file is put through a GEANT4 simulation which simulates the neutron

interaction in MoNA-LISA. The neutron interactions are modeled using the MENATE R

database which supplies cross-sections for the neutron-carbon and neutron-hydrogen inter-

actions which make up the MoNA-LISA scintillator bars. This simulation contains timing

and position resolutions of the MoNA-LISA bars as well as a calculation of the light out-

put as described in Ref. [64]. The output of the ST MONA and GEANT4 simulations are
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merged, now including both the charged particles and the neutron interactions. The inverse

tracking is done at this point and the decay energy is reconstructed at the target position

using the partial-inverse COSY matrix, following the same procedure as the data, allowing

direct comparison.

Each simulation provides information about the position of the reaction within a specific

beryllium target. However, because the segmented target contains three of these targets, one

simulation for each target is performed and these three simulation files are merged before

comparison with the experimental data. Cuts on the latter which select the desired fragment

and neutron associated with the desired decay can inform simulation integrity as beam

parameters are tuned. There are three types of parameters to set: incoming beam parameters

to describe the 33Mg beam, reaction parameters describing the two-proton knockout of 33Mg

to 31Ne, and the decay parameters associated with the one-neutron decay of 31Ne. The

following sections describe the tuning of these parameters.

4.5.1 Incoming beam parameters

The incoming beam profile was determined by comparing the x− and y-positions and angles

at each CRDC corresponding to the incoming 33Mg and detected charged fragment 30Ne.

The beam energy of 88.80 MeV/u with a spread of 0.17 MeV/u just upstream from the

segmented target was determined by the settings of the A1900 fragment separator and the

energy loss in the timing scintillator located upstream from the reaction target. The x- and

y-positions and angles measured at the CRDCs (peak centroids) were used to tune the beam

parameters such that the charged fragment distributions match the simulated data against

the experimental data as shown in Figure 4.25. Table 4.6 shows the beam parameters
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determined from this comparison.

Table 4.6: Beam parameters used in the ST MONA simulation package.

Parameter Value Description
eBeam 88.6 Beam energy (MeV/u)
beamA 33 Beam A
beamZ 12 Beam Z
targA 9 Target A
targZ 4 Target Z
dEbeam 1.7 Width of energy distribution (MeV/u)
bSpotCx 0.006 Beam spot x centroid (m)
bSpotCtx -0.018 Beam spot θx centroid (rad)
bSpotCy -0.0095 Beam spot y centroid (m)
bSpotCty 0.0065 Beam spot θy centroid (rad)
bSpotDx 0.018 Beam spot x width (σ) (m)
bSpotDtx 0.008 Beam spot θx width (σ) (rad)
bSpotDy 0.007 Beam spot y width (σ) (m)
bSpotDty 0.007 Beam spot θy width (σ) (rad)

81



Figure 4.25: Comparisons of simulation parameters with data for positions and angles mea-
sured by the CRDCs. Data is represented by open circles and the simulation by blue curves.
Top Row: CRDC1 x− and y−position. Middle row: CRDC2 x− and y−position. Bottom
row: CRDC x− and y−angle.

4.5.2 Reaction parameters

The two-proton knockout from 33Mg was simulated by the removal of the two nucleons and a

subsequent momentum kick is imposed on the resulting system. The scale of this momentum

kick is a reaction parameter which needs tuning. The momentum kick was implemented by

the Glauber model as described in Refs. [62, 63]. The momentum kick is input as a Gaussian

distribution centered at zero with a standard deviation as defined in Refs. [62, 63], the width

of which is scaled by an adjustable scaling factor. The scale of the Glauber kick was fixed
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through the comparison of the width of the CRDC position and angle distributions with the

experimental data. Table 4.7 shows the scale of the momentum kick used in the simulation.

This kick is included in the comparison shown in Figure 4.25 and contributes to the peak

widths.

Table 4.7: Glauber kick implemented for the two-proton knockout reaction in ST MONA.

Parameter Value Description
glaub 3.10 Scale of momentum kick

4.5.3 Decay parameters

After the incoming beam and reaction parameters have been determined, the decay param-

eters for the one-neutron decay are the only free paraeters in the simulation. The neutron-

decay Breit-Wigner lineshapes are detailed in Chapter 2. Each resonant lineshape is defined

by an energy (E) and a width (Γ). The values of the decay parameters are determined using

a method of maximum likelihood, which is discussed in the following section.

4.5.4 Parameter estimation

4.5.4.1 Binned likelihood method

Parameter estimation of the resonant lineshapes was accomplished through the use of a

binned likelihood maximization, the method of which is discussed in Ref. [65]. The ex-

perimental data can be considered as a set of random values populated by some intrinsic

probability density function (PDF). A functional form of this PDF can be assumed and

the values of the parameters that describe it can be estimated from the experimental data

set.
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A maximum likelihood method is one way of performing this parameter estimation given a

finite set of data. The likelihood function is defined as:

L(θ⃗) =
n∏

i=1

f(xi, θ⃗) (4.8)

Where θ are the parameters of the chosen PDF, n is the number of data points, and xi

are the measured values of the experimental data set. The values of the estimators θ⃗ are

determined by finding the values which maximize log L(θ⃗). This work uses a logarithm of

the likelihood function such that the product in equation (4.8) becomes a sum.

For this analysis, the log L(θ⃗) (log-likelihood) is calculated with binned data. The histogram

is treated as an N -dimensional random vector, with n entries and expectation values ν(θ⃗).

The joint PDF is a multinomial distribution:

fjoint (n⃗, ν⃗) =
ntot!

n1!...nN !

(
ν1
ntot

)n1
...

(
νN
ntot

)nN
(4.9)

Taking the logarithm of this PDF and dropping terms that do not depend on θ⃗ results in

the log-likelihood function:

log L(θ⃗) =
N∑
i=1

ni log νi

(
θ⃗
)

(4.10)

The estimators θ⃗ are found by maximizing this log-likelihood function.

For a function with only one parameter, the log-likelihood can be expanded about the max-

imum likelihood estimator θ̂ by a Taylor expansion.
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log L(θ) = log L(θ̂) +

[
∂log L

∂θ

]
θ=θ̂

(
θ − θ̂

)
+

[
∂2log L

∂2θ

]
θ=θ̂

(
θ − θ̂

)2
+ ... (4.11)

By definition, log L(θ̂) = log Lmax and the second term is zero when the maximum-likelihood

estimator is at the “true” value. Ignoring higher-order terms yields the equation

log L(θ) = log L(θ̂)− (θ − θ̂)2

2σ̂2
θ̂

(4.12)

or

log L(θ̂ ± σ̂
θ̂
) = log Lmax − 1

2
(4.13)

A 1σ statistical uncertainty is identified where the maximum-likelihood value decreases by

the value 0.5. For more than one parameter, the profile of the log-likelihood distributions

following the maximization were used to determine statistical uncertainties for each param-

eter. One such profile can be seen in Figure 4.26, showing the log-likelihood distribution for

the energy parameter of one resonance. The highest value in the log-likelihood profile is the

parameter best value, which corresponds to the likelihood maximum of all parameters.
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Figure 4.26: The log-likelihood distribution for the energy parameter for one resonance.
A second-order polynomial fit (red curve) is applied to extract an uncertainty from the
calculation, indicated by the vertical bars. The highest value is that which maximizes the
likelihood for all parameters.
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Chapter 5

Results and Discussion

5.1 Resolution and acceptance

In order to usefully interpret the decay energy spectrum, the experimental setup acceptance

and resolution was characterized using the simulation package discussed in Section 4.5.

The acceptance was determined by the physical dimensions of the CRDCs detecting the

charged particles and the vertical gap in the sweeper magnet which restricts the neutron

cone detected in MoNA-LISA. The resolution of the setup was attained by a Monte Carlo

simulation in which a uniform energy distribution was propagated through the experimen-

tal setup and requirements for physical dimensions were imposed. Figure 5.1 shows the

acceptance of the experimental setup as a function of decay energy.

The experimental resolution was estimated by modeling a neutron decay as a delta func-

tion energy distribution and the events were propagated through the experimental setup,

including resolution effects from the individual detectors used. The width of the resulting

two-body decay energy distribution was fit with a Gaussian function to extract a width

which determines the resolution at the input energy. The result of this calculation can be

seen in Figure 5.2.
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Figure 5.1: The simulated acceptance of the experimental setup, shown as the fraction of
detected and incident events as a function of decay energy.

Figure 5.2: The simulated resolution of the experimental setup in terms of the reconstructed
width of an input delta function as a function of the two-body decay energy.
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5.2 Results

5.2.1 Two-body decay energy

The measured two-body decay energy represents the energy released in a one-neutron decay

from neutron-unbound excited states in 31Ne to a state in 30Ne. The measured spectrum

is shown in Figure 5.3. Determining the energy of a neutron-unbound excited state of 31Ne

relative to its ground state relies on knowledge of the one-neutron separation energy, which

at present has a large uncertainty at Sn = 170± 130 keV [66].

The fit to the decay energy distribution requires at least two resonances to describe the shape

of the spectrum. The line shape of the simulated resonances is an asymmetric Breit-Wigner

line shape as discussed in section 2.3.1.2.

Figure 5.3: The measured two-body decay energy spectrum for the 30Ne + n coincidences.
The open circles are the data points. The curves are the individual line shapes of the
individual decays fit to the spectrum at 300 keV (dot-dot-dash) and 1.5 MeV (dashed), with
the solid black curve as the sum of these decays.

The data was fit using a method of maximum likelihood outlined in section 4.5.4.1. The

free parameters of the fit were a central energy for each resonant decay, En, an associated
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decay width, Γn, the orbital angular momentum ln, and the relative contributions of each

line shape. The likelihood was not sensitive to the width of the line shape, but indicates it

is broader than the experimental resolution, requiring a width of at least 1 MeV to fit the

decay energy spectrum as shown in Figure 5.5. The angular momentum value of the decay

was expected to have negative parity and was fixed at l = 1 for this analysis; use of l = 3 to

model the decay did not indicate an appreciable difference in the log-likelihood statistic. The

relative scale factor was treated as a nuisance parameter for the likelihood analysis.

The remaining free parameters were the central energies for each decay, for which a best fit

and a 1σ uncertainty was extracted. These uncertainties were obtained by varying param-

eters across a physically reasonable range and examining the likelihood statistic profile for

each parameter following the methods of [65]. This profile was constructed by calculating

a log-likelihood for different values of one parameter where all other parameters were held

constant; this was extended to all dimensions of the fit and a global maximum likelihood was

found. The likelihood statistic used will converge to a χ2 distribution in the large sample

limit, exhibiting a near-parabolic shape at its maximum (or minimum for a χ2 analysis)

which can be fit to extract a 1σ uncertainty, determined by the parameter value at which

the likelihood statistic falls to its maximum value minus a value of 1
2 (see equation 4.13).

One such profile, shown in Figure 5.4, shows the likelihood statistic as a function of the

energy of the first resonance.
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Figure 5.4: The log-likelihood statistic as a function of the energy for the first resonance. A
global maximum likelihood is found, indicating a best set of parameters. Data points are the
likelihood statistic using various values of a central energy; all other parameters are fixed at
the value found by the maximization routine.

Figure 5.5: The log-likelihood statistic as a function of the decay width of the 300 keV
resonance. Data points are the likelihood statistic using various values of a decay width; all
other parameters are fixed at the value found by the maximization routine.

The fit using two resonances results in decay energies of 0.30±0.17 MeV and 1.50±0.33 MeV.

The uncertainties quoted represent the uncertainties of the log-likelihood fit and include the

detector resolutions and acceptance of the experimental setup. The energy resolutions of the

experimental setup at these energies are roughly 150 keV and 370 keV respectively.
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5.2.2 Theory calculations

To get information about potentially populated 31Ne excited states, cross-section and shell

model calculations were performed to generate a theoretical decay energy spectrum. Theory

background for this modeling is covered in Chapter 2.

The cross-sections populating 31Ne∗ are shown in Figure 5.6. The secondary beam nucleus

33Mg has a ground state spin-parity of 3
2
−

and only the negative-parity states of 31Ne are

populated through the two-proton knockout reaction. Therefore, only negative-parity 31Ne∗

states were calculated.

Figure 5.6: Two-proton knockout cross sections to the first 30 negative parity unbound states
of each spin as a function of the 31Ne∗ energy above threshold.

The corresponding spectroscopic factors were calculated for 31Ne∗ decaying to the 0+, 2+,

and 4+ states of 30Ne. A summary of the more strongly populated levels, their spin-parity,

and their cross-sections including spectroscopic factors are listed in Table 5.1. Only levels

in 31Ne with a cross section for the one neutron decay to 30Ne + n larger than 0.020 mb are

shown.
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Table 5.1: Calculated cross sections (σ) for the 33Mg(−2p)31Ne∗ and 31Ne∗ → 30Ne + n
decays larger than 0.020 mb. This cross-section folds in spectroscopic factors pertaining to
a specific decay. Ex is the energy of the 31Ne level, En is the decay energy and Γt is the
decay width for each of the spin parity states Jπ.

2Jπ Ex σ Jπf En Γt
(MeV) (mb) (MeV) (MeV)

5− 0.43 0.029 0+ 0.26 0.004
7− 0.70 0.053 0+ 0.53 0.157
9− 1.49 0.097 2+ 0.52 0.167
11− 2.13 0.069 2+ 1.17 0.367
7− 2.52 0.022 2+ 1.56 0.541
5− 3.11 0.027 2+ 2.15 0.698
7− 3.72 0.032 4+ 1.32 0.423
7− 4.27 0.086 4+ 1.86 0.464
7− 4.36 0.022 4+ 1.95 0.275
5− 4.53 0.027 2+ 3.57 0.468
5− 4.53 0.027 4+ 2.13 0.468
7− 4.95 0.054 4+ 2.54 0.129
11− 4.99 0.023 4+ 2.59 0.215

5.3 Discussion

The first feature of the two-body decay energy is a low-lying peak, fit with a resonant line

shape at En = 0.30±0.17 MeV. The shell model predicts three states (9/2−, 7/2− and 5/2−)

with associated decay energies consistent with this measurement (see Figure 5.7). The 9
2
−

state at 1.49 MeV has the largest cross section from the two-proton knockout at 0.097 mb

and the decay to the 2+ state in 30Ne would give an En of 0.52 MeV. The 7
2
−

state at 0.70

MeV has a cross section of 0.053 mb and a decay to the ground state of 30Ne would result

in an En of 0.53 MeV. These two decays are close in energy, but populate different daughter

states in 30Ne. The absence of γ ray detection in our setup means these two decays cannot

be resolved. A third decay consistent with this energy is of the first excited state of 31Ne,

with a spin-parity of 5
2
−

at 0.43 MeV, decaying to the ground state of 30Ne, with a decay

energy of 0.26 MeV. The widths of these individual decays are narrow (less than 200 keV,
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see Table 5.1).

The second resonance in the maximum likelihood fit is at En = 1.50 ± 0.33 MeV above

the neutron threshold. There are multiple calculated decays that are consistent with this

measurement. The 11
2
−

at 2.13 MeV decaying to the 2+ state in 30Ne is predicted to be a

prominent decay with an En of 1.17 MeV. Also consistent with this measurement is the 7
2
−

state at 3.72 MeV to the 4+ state of 30Ne with an En of 1.32 MeV.

The first 9
2
−

state in 31Ne decaying to the ground state of 30Ne is also consistent with this

measured decay energy, however it is outside the model space of the shell model calculations

performed. The single-particle decay width for an l = 5 decay is about 0.026 keV. The spec-

troscopic factor for mixing an h9/2 orbital about 30 MeV above the 0f7/2 must be less than

about 0.01. This indicates a width for the decay to 0+ being less than 0.26 eV; which is not

expected to compete with the decay to 2+ which has a decay width of 0.167 MeV (see Ta-

ble 5.1). A level scheme based on experimental data and levels from shell model calculations

can be seen in Fig. 5.7. The center panel shows energy levels that the 300 keV and 1.5 MeV

decays could potentially originate from. On the right panel is the shell model prediction,

with bar length representing the two-proton knockout cross-section to that state.

The cross-sections (Figure 5.6) show a non-negligible strength up to roughly 6.5 MeV in 31Ne

where the calculation was truncated. Decays were calculated from these populated 31Ne∗

states to the ground state or either of the first two excited states of 30Ne. The enhanced cross

sections, the high density of the predicted excited states, and the multiple potential decay

paths imply a complex decay scenario. In total, there are 140 potential decays to consider

when the cross section requirement is relaxed to 0.001 mb. The decay energy spectrum of

all calculated decays is shown in Figure ??.
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Figure 5.7: Decay energy and level scheme for the decay of 31Ne into 30Ne + n. The left
level scheme shows states in 30Ne from the Evaluated Nuclear Structure Data File (ENSDF).
In the center are levels potentially observed by the present experiment, color coded by the
measured decay energies (see text for detail). The arrows specify potential decay paths to
states in 30Ne. The right spectrum shows the NuShellX calculations with the length of the
bars (excluding the ground state) indicating a population cross section from the two-proton
knockout. Energies listed are relative to the one-neutron separation energy of 31Ne.

The two-neutron separation energy for 31Ne, beyond which two neutron decay would be

possible, is at S2n = 3.72±1.62 MeV [67] for 31Ne. The reaction theory predicts a significant

cross section for populating a number of states above this energy which may be subject to

two-neutron decay. It is not possible to say, within the scope of the reaction and structure

theory, how much mixing there is for one-neutron and two-neutron decays. Therefore, the

reality lies in between two extremes. Either every 31Ne∗ state decays via one-neutron decay

or only 31Ne∗ states below S2n decay via one-neutron decay. In reality, these processes

compete and an accurate picture of this complex decay spectrum lies in between the two.

The overlap between these cases is shown in Figure 5.9 overlaid with the data points. The

shape of the measured data spectrum is consistent with the predictions of the shell model
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calculations.

Figure 5.9: Solid lines represent theoretical spectra. The larger distribution (top line) as-
sumes one neutron decay for all calculated 31Ne states. The smaller distribution (bottom
line) includes decays only from states in 31Ne below S2n = 3.72 ± 1.62 MeV. The open
markers indicate the measured spectrum. The only free parameter for this comparison is the
overall scaling.
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Chapter 6

Summary and Conclusions

This work studied the neutron-unbound excited states of 31Ne for the first time using the

method of invariant mass spectroscopy. The population of these states originated from a

two-proton knockout reaction from an 88 MeV/nucleon 33Mg incident beam provided by the

NSCL coupled cylcotron facility at Michigan State University. The 31Ne nucleus exhibits

a halo structure with an un-paired valence neutron which is loosely bound. Due to the

low one-neutron separation energy, it is predicted that low-lying states would be neutron-

unbound. The valence neutron is emitted immediately following the population of 31Ne

neutron-unbound excited states. The neutron was detected by a large plastic scintillator

array (MoNA-LISA) and the 30Ne charged fragment nucleus was deflected by a large-gap

dipole magnet and detected with a suite of charged particle detectors. The decay energy

spectrum was fit with a Breit-Wigner distribution, representing a resonant decay charac-

terized by a central energy and width. This decay line shape was propagated through a

simulated experimental setup with resolution and acceptance effects before it was compared

with experimental data.

The decay energy spectrum resulting from the invariant mass calculation exhibited two

features that were fit as resonant decays, resulting in central energies of 300 keV and 1.50

MeV, respectively. The widths of these distributions are determined through the fit to be

97



much larger than the resolution of the experimental devices.

Interpretations of this data were guided by both reaction and structure theory. The two-

proton knockout cross sections to 31Ne excited states were calculated using the eikonal model

(section 2.3.1.1) and spectroscopic factors (section 2.2) for overlaps with 30Ne were calculated

to describe the one-neutron decay. The results indicate a complicated decay scenario due

to substantial two proton knockout cross-sections populating 31Ne∗ states up to roughly

6 MeV, shown in Figure 5.6.

Table 6.1: Summary table of potentially observed decays. These entries have a cross-section
greater than 0.02 mb. The first column specifies the fits to the spectrum that were obtained.
The next two columns pertain to the 31Ne nucleus. The cross-section listed in the fourth
column contains the spectroscopic factor for the specified decay folded in. The last two
columns pertain to the daughter nucleus 30Ne.
*This resonant decay is outside the scope of the shell model calculations performed [see text].

Efit 2Jπ En σ Ex Jπf
(MeV) (MeV) (MeV) (mb) (MeV) 30Ne
0.300 9/2- 0.52 0.097 1.49 2+

7/2- 0.53 0.053 0.70 0+
5/2- 0.26 0.029 0.43 0+

1.50 11/2- 0.069 1.17 2.13 2+
7/2- 0.032 1.32 3.72 4+
9/2-* 0.097 0.091.49 1.49 0+

The first feature of the two-body decay energy was fit with a resonant line shape at a central

energy of En = 0.30 ± 0.17 MeV. The method of maximum likelihood utilized was not

sensitive to the decay width parameter, but indicates it is larger than the experimental

resolution, requiring at least 1 MeV to reproduce the spectrum. The shell model predicts

three states with associated decay energies consistent with this measurement. The 9
2
−
state

at 1.49 MeV has the largest cross section from the two-proton knockout at 0.097 mb and the

decay to the 2+ state in 30Ne would give an En of 0.52 MeV. The 7
2
−
state at 0.70 MeV has

a cross section of 0.053 mb and a decay to the ground state of 30Ne would result in an En

98



of 0.53 MeV. These two decays are close in energy, but populate different daughter states in

30Ne. Unfortunately, the absence of γ ray detection in our setup does not allow us to resolve

these two decays. A third decay consistent with this energy is of the first excited state of

31Ne, with a spin-parity of 5
2
−

at 0.43 MeV, decaying to the ground state of 30Ne, with a

decay energy of 0.26 MeV. The widths of these individual decays are narrow (less than 200

keV, see Table 5.1). The resolution of the detector setup a this energy is roughly 150 keV.

The large width of the fit necessary to describe this feature of the spectrum suggests this

“resonance” is a group of unresolved resonant decays.

The second resonance extracted from the maximum likelihood fit is En = 1.50 ± 0.33 MeV

above the neutron threshold. There are multiple calculated decays that are consistent with

this measurement. The 11
2
−
state at 2.13 MeV decaying to the 2+ state in 30Ne is predicted

to be a prominent decay with an En of 1.17 MeV. Also consistent with this measurement is

another prominent decay of the 7
2
−

state at 3.72 MeV to the 4+ state of 30Ne with an En

of 1.32 MeV. It is also worth noting that although the decay from the first 9
2
−
state in 31Ne

decaying to the ground state of 30Ne is consistent with this measured decay energy, it is

outside the model space of the shell model calculations performed. The single-particle decay

width for the l = 5 decay required is about 0.026 keV. The spectroscopic factor for mixing

an h9/2 orbital about 30 MeV above the 0f7/2 must be less than about 0.01. This indicates

a width for the decay to 0+ being less than 0.26 eV; which is not expected to compete with

the decay to 2+ which has a decay width of 0.167 MeV.

The cross-sections show a considerable strength up to roughly 6.5 MeV in 31Ne where the

calculation was truncated. Decays were calculated from these populated 31Ne∗ states to the

ground state or either of the first two excited states of 30Ne. The enhanced cross sections,
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the high density of the predicted excited states, and the multiple potential decay paths imply

a complicated decay scenario. In total, the shell model calculations provide 140 decays to

consider when the cross section requirement is relaxed to 0.001 mb.

The two-neutron separation energy for 31Ne, beyond which two neutron decay would be

possible, is at S2n = 3.72 MeV [67] for 31Ne. The reaction theory predicts a significant

cross section for a number of states above this energy which may be subject to two-neutron

decay. It is not possible to say, within the scope of the reaction and structure theory

implemented, how much mixing there is for one-neutron and two-neutron decays. Therefore,

the reality lies in between two extremes. Either every 31Ne∗ state decays via one-neutron

decay, or only 31Ne∗ states below S2n decay via one-neutron decay. In reality, these processes

compete and an accurate picture of this complex decay spectrum lies in between the two

assumptions.

The puzzle of 31Ne neutron-unbound excited states was approached in this work for the

first time. The resonant decays which fit the observed decay energy spectrum are best

interpreted as groups of closely-spaced resonances which the current experimental setup is

not able to discriminate. This is supported by the shell model calculations performed for this

work, which indicate many low-lying states populated in the two-proton knockout. From

the compilation of all states calculated, it is reasonable to conclude that many decays were

likely observed, but conclusions are limited by the experimental resolution and the absence

of γ-ray detection. This work suggests that the observed decay of 31Ne is consistent with

the predictions of the shell model due to the agreement with the predicted spectrum and the

predicted decay candidates falling within the uncertainty of the decay parameters extracted

by the fit.
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There are ways in which this experiment could be expanded upon to improve the current

interpretation of the decay scenario and the structure of 31Ne. The most notable of these

efforts would be to narrow down the large uncertainty in the one-neutron separation energy

measurement of 31Ne (Sn = 0.15+ 0.16
− 0.10 MeV) which affects the interpretation of the decay

energy measurements relative to the 31Ne ground state. Furthermore, the addition of γ-

ray detectors around the target position would provide information about which daughter

states in 30Ne are populated in the decay of 31Ne. For example, there are two competing

decays with almost identical energies that lie within the En = 0.30 ± 0.17 MeV fit to the

spectrum but decay to different daughter states in 30Ne. The interpretation of the gathered

data is also limited by the production rate of 31Ne nuclei. A subsequent experiment could

be performed with a higher 31Ne production rate, available with advanced beam production

facilities such as the Facility for Rare Isotope Beams (FRIB) at Michigan State University.

These considerations would provide an improved understanding of the decay of the exotic

31Ne nucleus and provide information pertaining to systematic evolution of nuclear structure

near the neutron drip line, particularly in the N=20 island of inversion.
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