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ABSTRACT

TIME-DEPENDENT DESCRIPTION OF HEAVY-ION COLLISIONS

Hao Lin

In this thesis, we aim to advance the time-dependent transport theories

for the description of heavy-ion collisions, from two perspectives. As an

attempt to address multifragmentation in nuclear collisions, we develop a

stochastic transport model based on one-body Langevin dynamics. The

new model is subsequently tested and benchmarked with a series of other

existing models with satisfaction. The model is also applied to address

and confirm the so-called “hierarchy effect” observed in the multifragmen-

tation for certain systems around Fermi energies. Parallel to the develop-

ment towards a stochastic theory, we also extend an approach based on

non-equilibrium Green’s function for the description of correlated nuclear

systems in one dimension.

Firstly, we present a new framework to treat the dissipation and fluc-

tuation dynamics associated with nucleon-nucleon scattering in heavy-ion

collisions. The two-body collisions are effectively described in terms of

the diffusion of nucleons in viscous nuclear media, governed by a set of

Langevin equations in momentum space. The new framework combined

with the usual mean-field dynamics, forming the basis of the new stochas-

tic model, can be used to simulate heavy-ion collisions at intermediate

energies.

Subsequently, as a proof of principle for the new model, we simulate Au

+ Au reactions at 100 MeV/nucleon and at 400 MeV/nucleon and look at

observables such as rapidity distribution and flow as a function of rapidity.
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The results are found to be consistent with other existing models under

the same constrained conditions. To demonstrate the model’s ability to

describe multifragmentation, we also study the formation of fragments in

Sn + Sn reactions at 50 MeV/nucleon, and the fragment distribution and

properties are discussed and compared to two other models commonly

employed for collisions.

Next, we move on to tackle the “hierarchy effect” observed experimen-

tally for reactions around Fermi energies. We simulate Ta + Au at 39.6

MeV/nucleon and compare mainly the charge and velocity distributions

of the projectile-like fragments with experimental data. Our simulation

results can reproduce the trends observed in data, and a semi-quantitative

agreement can be reached. This is the first time, to our knowledge, that

one has succeeded in addressing the “hierarchy effect” with a dynamical

model. The simulation of U + C is also discussed.

Finally, we present a fully quantum-mechanical model based on non-

equilibrium Green’s function, with short-range two-body correlations in-

corporated as an extension. We examine its applications to one-dimensional

nuclear systems, such as the preparation and properties of the ground

states, the isovector oscillation of symmetric systems and the boosting of

a “slab” in a periodic box. In particular, the dissipation brought by two-

body correlations and the Galilean covariance of the theory are demon-

strated. These studies lay the ground for the future exploration of colli-

sions of correlated nuclear systems in one dimension.
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Chapter 1

Introduction

The work presented in this thesis aims to bring new developments to trans-

port theories on nuclear collisions. To address the phenomenon of multi-

fragmentation, I developed a new stochastic transport model that treats

the dissipation and fluctuations tied to two-body correlations on an equal

footing. Towards a fully quantum-mechanical transport theory, I stud-

ied the non-equilibrium Green’s function theory and applied it to describe

one-dimensional nuclear systems.

In the following sections, I will briefly introduce heavy-ion collisions

and the transport models for describing them. The introduction will be

followed by a discussion of incorporating fluctuation and quantum effects

into transport models, where both motivation and some state-of-the-art

attempts will be presented. An outline of the upcoming chapters will be

given in the end.

1.1 Heavy-Ion Collisions

In this thesis, we will focus on heavy-ion collisions (HIC) at intermediate

energies. These are very involved nuclear processes, in which a heavy
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projectile, typically with a mass number A > 4, impinges on another

heavy target at an incident energy ranging from tens of MeVs up to a few

GeVs per nucleon.

The two nuclei come into contact quickly afterwards, and a finite sys-

tem composed of hot and dense nuclear matter is formed as the two nuclei

compress against one another. The temperature and density achieved in

the compression phase may depend critically on the incident energies and

the alignment of the centers of the two nuclei (also known as centrality).

In general, a higher incident energy and a greater centrality will result in

hotter and denser matter. With varying incident energies and projectile-

target pairs, HIC allows one to probe the properties of nuclear Equation

of State (EoS), especially those with strong dependence on density, and

is therefore a popular playground for both experimentalists and theorists.

The study of nuclear EoS through HIC is of particular interest to astro-

physicists, as the behaviors of the nuclear EoS beyond twice saturation

density (ρ0 = 0.16 fm−3) affect properties of neutron stars, such as the

mass-radius relation [6] and the tidal deformability [7]. For now, HIC

experiment is the closest thing that one can perform to achieve the high

density nuclear environment of neutron stars on Earth. At the other end of

the spectrum concerning the low-density behaviors of the nuclear EoS, the

possible liquid-gas phase transition [8, 9] and the possible consequences

of multifragmentation [10, 11] and formation of exotic structures [12] also

received a fair amount of attention in the recent decades.
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Figure 1.1: Schematics of heavy-ion collisions in the center of mass frame. The left part

depicts the two approaching nuclei, and b is the so-called impact parameter. The dotted

lines are boundaries of the overlap regions. The right part depicts the aftermath of the

collisions: the colored dots in the central region represent the nucleons as well as possible

new particles generated in the participant zone; the two “caps” flying off are knowns as

the spectators. This figure is taken from [1].

Fig. 1.1 depicts schematically a simplified scenario of the collisions of

two heavy-nuclei in the center-of-mass frame, with the initial stage on

the left and the nearly-final stage on the right. Such a phenomenological

description of HIC is usually known as the fireball model [13]. On the

left-hand-side of Fig. 1.1, the misalignment the b is often referred to as

the impact parameter, which is a geometrical measure of the overlap of the

two nuclei. The smaller b is, the greater the overlap is. If one ignores the

minute Fermi motion in the transverse directions, only the nucleons lying

within the overlap region of the two nuclei can interact and slow down

and they are known as the participants. The other nucleons, referred to

as the spectators, outside the overlap region will just fly away as there are
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no opposing nucleons to stop them. It is in the participant regions that

nucleons are actively and frequently interacting and bouncing off one an-

other. Nucleons in the central region will ultimately decompress, fall apart

and be caught by detectors. By measuring the distributions of the final

particles, clusters and fragments and comparing the results to theoretical

simulations, one may hopefully obtain some constraints on the expected

behaviors of the nuclear EoS.

1.2 Transport Models

HIC differs from few-body direct reactions in terms of the large degrees

of freedom involved as well as the more complex reaction processes with

many more steps. The fireball model [13] mentioned previously is a simple

phenomenological model to capture the essence of HIC. As more details

and sophistication were presented by HIC experiments over time, fully

many-body and microscopic theoretical descriptions of HIC were called

for.

One of the very first microscopic models used for comparison with ex-

perimental data is the cascade model [14]. The cascade model describes

both the positions and momenta of all the nucleons in the system in a

time-dependent manner. The interaction among nucleons comes solely

from the two-body nucleon-nucleon scatterings, which are usually simu-

lated by a geometric means. Within the same time step, one checks the

closest approaches of all possible nucleon-nucleon pairs. For pairs with a

closest approach d <
√
σ(
√
s)/π, where

√
s is the relative energy of the

two nucleons and σ is the energy-dependent total cross section, one sam-
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ples randomly the final momenta of the pair from the underlying angular

differential cross section. This type of geometric treatment is still used

as a paradigm of two-body scatterings in many of the more up-to-date

transport models.

A serious problem with the cascade model is that nuclei tend to fall

apart far too quickly due to the lack of a potential that binds and sta-

bilizes the nucleons. And the cascade plus mean field model came later

as an improvement. A popular choice of mean field parametrization is

the so-called Skyrme parametrizaton. The simplest form of a mean field

potential reads U(ρ) = A(ρ/ρ0) + B(ρ/ρ0)
σ, where A < 0, B > 0 and

σ > 1. The parameters are typically adjusted to reproduce nuclear matter

properties. More sophisticated forms of the mean-field parametrization

as well as discussion will be presented in Chapter 2. With the inclusion

of mean field, positions and momenta of individual nucleons are updated

according to Hamilton’s equation (see more details in Chapter 2), on top

of the geometric treatment of the hard nucleon-nucleon scatterings.

Another issue with the naive cascade model is the violation of Pauli

exclusion principle. As a remedy, one can impose a Pauli-blocking proba-

bility for each hard two-body scattering.[15] Let the initial momenta of a

pair of colliding nucleons be (r1,p1) and (r2,p2), and the final momenta be

(r1,p1′) and (r2,p2′). Note that initial and final positions are not altered

in the cascade approach. One builds two spherical phase space regions of

radius R in coordinate space and of radius P in momentum space around

(r1,p1′) and (r2,p2′) and finds out the respective phase space occupancy

f = N/Nmax, where Nmax = (4π/3)2(RP/h)3 and N is the number of nu-

cleons in the region under consideration. The scattering is allowed with
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a probability of max{(1 − f1′)(1 − f2′), 0}. There is, unfortunately, not a

universal and/or all-around prescription of the radii R and P though. For

a smoother and more accurate description of the phase space occupancy,

one can also consider representing a nucleon by a group of test particles.

Some relevant discussions can be found in Chapter 2.

With the incorporation of mean-field dynamics and the Pauli-blocking

procedure on top of the raw cascade model, we, in effect, obtain a simula-

tion method based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation.

∂f1

∂t
+

p1

m

∂f1

∂r
− ∂U

∂r

∂f1

∂p1
=

g

h3

∫
dp2 dΩ v12

dσ

dΩ

×
(
f̃1f̃2f1′f2′ − f1f2f̃1′f̃2′

)
, (1.1)

where f1 = f(r,p1, t) is the phase space density, U is the mean-field po-

tential, g is the degeneracy factor, dσ
dΩ is the NN-differential cross section,

and f̃ = 1− f . The left-hand-side of the equation governs the mean-field

dynamics, and on the right is the two-body collision term, which describes

how binary collisions of the form (1, 2) ←→ (1′, 2′) induce depletion (→)

and accretion (←) of particles at the phase space site 1.

The BUU equation Eq. (1.1) serves as the foundation of the two major

types of transport models for HIC frequently used nowadays: the BUU

type and the QMD type. The BUU-type models tend to be more truthful

in solving the BUU equation with the test particle techniques, combining

elements of the mean-field evolution and the cascade model. The QMD-

type models represent nucleons as rigid wavepackets of finite extension and

simulate the mean-field evolution and the binary collision of the centroids

of those wavepackets. Numerical fluctuations in the QMD-type models are

generally not washed out as they are in the case of the BUU-type models,
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but QMD-type models do tend to suffer from issues of violation of Pauli

principle. More discussion regarding the Boltzmann equation as well as

the traditional transport models will be given in Chapter 2.

1.3 Fluctuations and Quantum effects

The Boltzmann equation Eq. (1.1) represents a truncation up to two-body

correlations in the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)

hierarchy, and thus cannot be the whole story. The deterministic nature

of the Boltzmann equation predicts a single averaged evolution trajectory

for HIC, as is illustrated on the left of Fig. 1.2, which is clearly at odds

with the diverse fragmentation in HIC observed in experiments [16, 17].

The formation of light clusters relies on beyond-two-body (e.g. 3-body,

etc.) correlations, and the production of IMFs is thought to be the result

of the spinodal decomposition seeded by density fluctuations. Incorporat-

ing many-body correlations, even on a semi-classical level, is prohibitively

complex. Alternatively, one may introduce the effects of higher-order cor-

relations as fluctuations in phase space. The effects of higher-order corre-

lations scale like ρn, where n is the order, and they are perturbatively small

when the density is low. The erratic and complex behaviors of higher-order

correlations, although not random in a strict sense in the semi-classical

theory, render them highly sensitive to initial conditions and hence un-

predictable, which justifies a stochastic treatment of the perturbations,

leading to the introduction of fluctuations into transport models.
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Figure 1: Illustration of the effect of fluctuations on a dynamical trajectory. In stable conditions a
moderate spread of trajectories, around the average (associated with the average collision term Īcoll[f ])
is observed (left panel). The right panel shows that in presence of instabilities the fluctuating BL term
leads to bifurcation of trajectories. Taken from [63].

2.3 Fluctuations in full phase space and the BLOB model

The latter procedure can be implemented by replacing the residual terms (Īcoll+δI) by a similar Uehling
Uhlenbeck (UU) - like term, involving nucleon packets, which respects the Fermi statistics both for the
occupancy mean value and for the occupancy variance.

Thus one may consider a rescaled UU collision term where a single binary collision involves extended
phase-space portions of nucleon distribution of the same type (neutrons or protons), A, B, to simulate
nucleon wave packets, and Pauli-blocking factors act on the corresponding final states C, D, also treated
as extended phase-space portions. The choice of defining each phase-space portion A, B, C and D so
that the isospin number is either 1 or −1 is necessary to preserve the Fermi statistics for both neutrons
and protons, and it imposes that blocking factors are defined accordingly in phase-space cells for the
given isospin species. The above prescriptions lead to the Boltzmann Langevin One Body (BLOB)
equations [64]:

∂f

∂t
+ {f, H} = Īcoll + δI =

= g
∫

dpb

h3

∫
W (AB ↔ CD) F (AB → CD) dΩ . (12)

In the above equation, W is the transition rate, in terms of relative velocity between the two colliding
phase-space portions and differential nucleon-nucleon cross section:

W (AB ↔ CD) = |vA−vB| dσ
dΩ

. (13)

The term F contains the products of occupancies and vacancies of initial and final states over their full
phase-space extensions:

F (AB → CD) =
[
(1−fA)(1−fB)fCfD − fAfB(1−fC)(1−fD)

]
. (14)

In practice, if the test-particle method is employed, the phase-space portions A, B, C and D should
be agglomerates of Ntest test-particles each, and the nucleon-nucleon cross section used in Eq. (13)

8

Figure 1.2: Illustration of the effects of fluctuations in HIC. Under stable conditions void

of fluctuations on the left panel, the dynamical trajectories of identically prepared systems

tend to be very much similar, leading to a unique outcome. The right panel shows that

trajectories can spread out in the prescience of fluctuations during the evolution and end

up in diverse configurations. This figure is taken from [2].

The so-called Boltzmann-Langevin (BL) equation [2, 18] has been in-

troduced to include the fluctuation δI[f ] of the averaged collison integral

〈Icoll[f ]〉,
∂f

∂t
+

p

m

∂f

∂r
− ∂U

∂r

∂f

∂p
= 〈Icoll[f ]〉+ δI[f ]. (1.2)

The flucutation term δI[f ] is typically assumed to be normally distributed

with a vanishing mean and a variance equal to 〈Icoll[f ]〉. [2] The inclusion

of δI[f ] induces fluctuations in the phase space density f along the evo-

lution and drives the system towards a wide variety of exit channels, as is

illustrated on the right of Fig. 1.2.

The BL equation provides a formalism of the incorporation of fluctua-

tions, the most truthfully exact numerical implementation of which is only

available in two dimension [19–21] to my best knowledge. Some attempts

of treating fluctuations [22] in transport theory indeed predate the birth of

BL equation, while many of the other modern stochastic transport models
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[23, 24] amount to approximate solutions of the BL equation in one way

or another. The stochasticity of most of the QMD-type models is largely

statistical in nature, with the use of wavepackets of finite extension, whose

tie to the BL equation is perhaps even less clean-cut. As such, the BL

equation needs not be treated as the gold standard of stochastic treat-

ment in semi-classical transport theories. In Chapter 2, I will bring up my

work of treating the dissipation and fluctuation dynamics in HIC, from a

rather different starting point and perspective.

So far, we have discussed only semi-classical transport theories, which

do come with some limitations, in spite of their simplicity and success

in interpreting HIC physics: 1. New approaches and techniques in other

fields of nuclear physics are mostly on a quantum mechanical basis, which

makes them difficult to be promptly transferred and applied to the semi-

classical transport models; 2. An exact antisymmetrization is also hard to

achieve in semi-classical models, as they often suffer from imperfections in

enforcing the Pauli-blocking in binary collisions [25]; 3. It remains largely

unknown how large a role quantum correlations play in HIC physics.

The Time-Dependent Hatree Fock (TDHF) theory has been developed

for low-energy nuclear collisions [26, 27]. The dissipation in TDHF, how-

ever, originates solely from mean-field dynamics, which is insufficient for

collisions at higher energies. The Time-Dependent Density Matrix (TDDM)

theory [28], for instance, has been developed to take into account of two-

body correlations, but its application has mostly been restricted to col-

lective vibrations [29] and fusion [30] at this point, due to its complexity.

Alternative attempts, such as the Stochastic Mean-Field (SMF) approach

by Ayik et al. [28, 31] and the Stochastic-TDHF (STDHF) [32] theory have
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also been made to incorporate beyond-mean correlations by introducing

either initial fluctuations or continuous random noise during the evolu-

tion, which should simplify the calculations in principle. Yet, applications

of these stochastic quantum approaches target predominantly low-energy

nuclear collisions [28]. In Chapter 5, we will present a quantum-mechanical

transport model based on the theory of non-equilibrium Green’s function.

The model includes short-range two-body correlations to mimic binary col-

lisions in semi-classical models, which should provide sufficient stopping

for intermediate-energy HIC.

1.4 Outline

Chapter 2 will give a formal introduction and formulation of the stochastic

transport model based on one-body Langevin dynamics, followed by some

applications to heavy-ion collisions and benchmarks with other models in

Chapter 3. In Chapter 4, I will attempt to address the “hierarchy effect”

in multifragmentation observed in experiment with the new model. In

Chapter 5, I will turn to the quantum transport approach based on non-

equilibrium Green’s function and discuss its application to nuclear systems

in one dimension. Finally, a summary and conclusion will be given in

Chapter 6.
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Chapter 2

One-body Langevin transport model

2.1 Introduction

In heavy-ion collisions at modest energies, two nuclei approach and col-

lide to form a composite nuclear system. At very low incident energies

and moderate charges, the system tends to remain fused and de-excites

by emission of a few nucleons and light clusters. The picture gains in

complexity as the incident energy increases, since more energy is available

for the system to populate a greater volume of phase space leading up to

a plethora of exit channels. In violent collisions, the composite nuclear

system formed is highly excited, and its evolution can be envisioned to be

very sensitive to the instabilities present in the system. These instabilities

may deform the shape of the system in phase space in an exotic manner,

resulting in a breakup into multiple fragments.

The fragmentation phenomenon was experimentally observed [33] as

early as in the late 1970s. Since the early 1990s, more experimental efforts

have been devoted to the study of intermediate-mass-fragment multiplici-

ties [34].

On the other hand, while different transport models have been success-

11



fully applied to describe many one-body observables, our understanding

and treatments of the fragmentation mechanism have yet to be reconciled.

The inclusion of fluctuations into transport theories is expected to be of

particular importance. It is worth noting that heavy-ion collision exper-

iments make observations and measurements over an ensemble of nearly

identically prepared colliding systems, and that experimental observables

reflect the distribution of all possible outcomes of that ensemble. Angular

cross sections, for example, are directly obtained from the angular dis-

tribution of the deflected particles, but not from any individual, isolated

event. On the contrary, a vast number of the semi-classical transport mod-

els are deterministic in nature. These models predict a single exit channel

in principle. This poses little trouble when the underlying distribution of

outcomes is sharp and narrow. Ensemble averages from transport calcu-

lations also prove to converge very well to one-body observables with only

weak dependence on channels, such as those concerning collective flows

[35, 36]. However, the configurations in multifragmentation are obviously

heavily dependent on the exit channels, and, in fact, on the intermediate

channels as well. It requires the transport models to be able to explore a

wide range of dynamical trajectories. The inclusion of fluctuations creates

branching points in the evolution of the system allowing for jumps among

different states including those susceptible to instabilities.

In general, there are two major types of transport models for simulating

heavy-ion collisions. One type of approaches are essentially molecular dy-

namics of nucleons represented by single-particle wave-packets, augmented

by a phenomenological two-body collision term of the wave-packets [37–58].

The propagation and scattering of localized wave-packets help preserve
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the many-body correlations, and the stochastic treatment of the two-body

scattering introduces fluctuations. The other type of approaches aim at

directly solving the Boltzmann-Uehling-Uhlenbeck (BUU) equation, with

the system characterized by a one-body phase space distribution function

[23, 24, 59–75]. Solving the BUU equation yields the deterministic time

evolution of the one-body distribution function leading to a single exit

channel. In recognition of the importance of fluctuations, many efforts

have been made to extend the Boltzmann framework, such as the deriva-

tion of the Boltzmann-Langevin equation by Ayik and Gregoire [76, 77],

the Stochastic Mean Field (SMF) model by Colonna et al. [23], and re-

cently the Boltzmann-Langevin-One-Body (BLOB) dynamics by Napoli-

tani and Colonna [24]. Meanwhile, the inclusion of few-body scatterings

in the pBUU model by Danielewicz [78] also describes the production of

light clusters with mass A < 4.

2.2 Formulation

In this section, we will explain the formulation of the Brownian motion

model and discuss the details of the implementation of the simulation code.

2.2.1 The Boltzmann framework

In semi-classical transport theories [15], the nuclear system is often charac-

terized by the one-body phase space distribution function f(r,p, t). The

time evolution of the distribution function f is approximated with the

Boltzmann equation,
∂f

∂t
+ {f,H} = Icoll. (2.1)
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The self-consistent Hamiltonian H encompasses all information about

the nuclear mean field interaction as well as Coulomb interaction, while

the residual two-body interaction, mainly nucleon-nucleon scattering, en-

ters through the collision integral Icoll. The Boltzmann equation provides

us with a simple deterministic model to study heavy-ion collisions theo-

retically. Numerical simulations under the Boltzmann framework can be

carried out by means of the test-particle method [15, 79].

2.2.2 The mean-field dynamics

Neglecting the collision integral in the Boltzmann equation (2.1), we re-

cover the so-called Vlasov equation,

∂f

∂t
+ {f,H} =

∂f

∂t
+

p

m
· ∇rf −∇rU · ∇pf = 0, (2.2)

where H = T + V and the mean field U = δV/δρ.

The Vlasov equation retains only one-body information. The interac-

tion between any individual particle and the rest of the system is approx-

imated by a mean-field interaction. In practical calculations, the phe-

nomenological mean-field interactions are usually employed,

Un/p
(
ρ(r), δ(r)

)
= A

(
ρ(r)

ρ0

)
+B

(
ρ(r)

ρ0

)D

+
C

ρ
2/3
0

∇2

(
ρ(r)

ρ0

)
± 2Siso

(
ρ(r)

ρ0

)
δ(r), (2.3)

where δ = (ρn−ρp)/ρ is the isospin asymmetry and parametersA, B, C, D,

and Siso, summarized in Table I, are fitted to reproduce nuclear matter

properties at normal density ρ0 = 0.16 fm−3: the binding energy of 16

MeV/nucleon, the incompressibility of 240 MeV and the symmetry energy

of 30.3 MeV at normal density ρ0[3, 79]. Spin dependence and momentum

dependence is ignored for simplicity in this parametrization.
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A [MeV] B [MeV] C [MeV] D Siso [MeV]

-209.2 156.4 -6 1.35 18

Table 2.1: Parameters for the mean-field interaction.

The Coulomb potential UCoul(ρch(r)) can be determined from the Pois-

son’s equation for electrostatics,

∇2UCoul = − 1

ε0
ρch(r). (2.4)

In the current model, we consider two species of particles only: neutrons

and protons. The numerical scheme of solving the Vlasov equation is

adapted from the lattice Hamiltonian method with test particles proposed

by Lenk and Pandharipande [79]. The coordinate space is discretized into

a cubic lattice with the lattice spacing l = 1 fm. Each test particle has a

triangular-shaped form factor and contributes to the nearest eight lattice

sites.

2.2.3 The dissipation and fluctuation dynamics

In heavy-ion collisions, nucleon-nucleon scattering acts like a dissipative

force, driving the system towards thermal equilibrium. In accordance with

the fluctuation-dissipation theorem, the dissipation of the beam energy

heats up the system and is thus inevitably accompanied by thermal fluc-

tuations. The thermal fluctuations may manifest themselves in terms of

fluctuations in phase space density, which are expected to be linked with

multifragmentation observed in intermediate-energy heavy-ion collisions.

In this subsection, we aim to develop a framework that offers a consistent

and simultaneous description of the dissipation and fluctuation dynamics.
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The collision integral tied to two-body scattering reads

Icoll =
g

h3

∫
d3pb

∫
dΩ

dσab
dΩ

vab
[
(1− fa)(1− fb)fa′fb′

−fafb(1− fa′)(1− fb′)
]
, (2.5)

where the degeneracy factor is g = 4 for nucleons (when no distinction is

made between neutrons and protons; see the discussion later), and vab is

the relative velocity between nucleons a and b, and dσ/dΩ the nucleon-

nucleon cross section. The indices a′ and b′ denote the final states of the

colliding pair.

As the scattering energy increases, nucleon-nucleon scattering peaks

more sharply forward. One can reduce the collision integral Icoll (2.5) into

a Fokker-Planck form by making an expansion over the scattering angle θ

(see Appendix A for more details) [80],

Icoll → −
∑

i

∂

∂pia

{
fa ·

1

2

[
R̃i
a + (1− fa)Ri

a

]}

+
∑

i,j

∂2

∂pia∂p
j
a

(
faD

ij
a

)
, (2.6)

where

Ri
a = − g

h3

∫
d3 pb fb Fab q

i
ab, (2.7)

R̃i
a = − g

h3

∫
d3pb fb (1− fb)Fab qiab, (2.8)

Dij
a =

g

4h3

∫
d3pb fb(1− fb)Fab(q2

abδ
ij− qiabqjab), (2.9)

with qab = pa − pb and

Fab = (πvab/2)

∫ 1

0

θ2 (dσab/dΩ) d cos θ. (2.10)
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The beyond-mean-field dynamics, depicted traditionally as two-body

scattering processes, is transformed, by the Fokker-Planck Eq. (2.6), into

diffusion processes of nucleons in the viscous nuclear system. The vector

coefficients R and R̃, usually known as the drag coefficients, are connected

to the viscosity of the system. The tensor coefficient D is referred to as

the diffusion tensor, which describes the anisotropic diffusion of particles.

Note that the cross section dσab/dΩ enters the equation through the

function Fab, and hence has an effect on all coefficients in the equation. Ad-

mittedly, only the integrated effects of the cross section can be accounted

for, so the overall magnitudes of the coefficients do not depend sensitively

on the detailed angular dependence of the cross section. The anisotropic

diffusion is predominantly governed by the anisotropy of the momentum

distribution of particles in the medium, as can be seen in the definition of

the diffusion tensor in Eq. (2.9). One, for sure, can carry out the expansion

to higher orders. The resulted differential equation beyond second order,

however, is not tractable with the aid of diffusion or Langevin dynamics.

Furthermore, similar expansions such as the Kramers-Moyal expansion of

the Boltzmann integral operator in terms of differential operators beyond

the second order have known to be ill-behaved [81]. Therefore, we stick to

the second-order Fokker-Planck equation and choose to put its validity to

tests.

Consider an ensemble of systems with identical initial conditions. In

the presence of fluctuations, the evolution of the ensemble will diverge.

The Fokker-Planck equation provides a mathematical description of the

distribution and ensemble-averaged behavior of these identically prepared

systems. Indeed, the Fokker-Planck approach has been employed to study
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the motion of an ensemble of Brownian particles, classical or quantal,

in a medium at constant temperature, as the stationary solution of the

Fokker-Planck equation yields the equilibrium distribution representing

the correct statistics [82].

Inspired by the ideas of Brownian motion in a heat bath, we intend to

encapsulate the beyond-mean-field dynamics altogether into the Brown-

ian motion of nucleons in the typically non-equilibrium nuclear medium,

through the Fokker-Planck Eq. (2.6). While the Fokker-Planck equation

is deterministic, one may simulate the different dynamical trajectories of

the system by use of the corresponding Langevin equation. The differ-

ential form of the nonlinear Langevin equation for nucleons undergoing

Brownian motion reads,

dpa =
1

2

[
R̃ + (1− fa)R

]
dt+ σdBt, (2.11)

where R and R̃ carry the same definitions and meanings as in equations

(6) and (7), σ is a 3×3 positive definite matrix such that

Dij =
1

2

∑

k

σikσjk. (2.12)

Bt denotes a Guassian random process with properties

〈dBt〉 = 0, (2.13)

〈dBi
tdB

j
t 〉 = dt δij. (2.14)

This equation describes the momentum transfer, or the “kick”, experi-

enced by a nucleon due to its interaction with the medium within a time

interval ∆t. The first term is dissipative and connected to the viscos-

ity of the nuclear medium, while the second term is stochastic and gives

rise to the fluctuations in the dynamics. In the limit of thermodynamical
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equilibrium, coefficients in the Langevin equation are related by the equi-

librium temperature, in a manner akin to the classical Einstein relation,

as is shown in Appendix B.

For the time being, we do not distinguish between nn, pp, and np

scatterings by employing a spin-isospin averaged nucleon-nucleon cross

section. We further restrict our attention to elastic scatterings by targeting

collisions at energies near or below pion production threshold. Extensions

to incorporate elastic and inelastic collisions between different species can

be made in the future at little cost by adjusting the degeneracy factor g

and adopting the suitable differential cross sections dσab/dΩ. More care

needs to be taken for the change of species though in the case of inelastic

scatterings.

The Langevin equation meets our goal of treating the dissipation and

fluctuations in the dynamics both consistently and simultaneously. We

evolve the system by application of the Langevin equation to every nu-

cleon in the system in addition to the mean-field dynamics. Details of the

numerical implementations will be discussed in a subsequent subsection.

2.2.4 Initialization with the Thomas-Fermi equations

For nucleons inside a stable nucleus, two-body scatterings are strongly sup-

pressed by the Pauli blocking. Hence, for any given mean-field potential,

the initial configuration of nucleons in phase space, ideally, should coin-

cide with the stationary solution to the Vlasov equation. This solution
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amounts to that to the coupled Thomas-Fermi equations [79],

Un
(
ρ(r), δ(r)

)
+

~2

2mn
k2
F

(
ρn(r)

)
= µn, (2.15)

Up
(
ρ(r), δ(r)

)
+ UCoul +

~2

2mp
k2
F

(
ρp(r)

)
= µp, (2.16)

where UX(ρ, δ) is the self-consistent mean-field potential as in Eq. (2.3),

µX is known as the chemical potential and kF is the Fermi momentum.

The subscript X denotes the particle species.

Owning to the surface term in the mean field, the Thomas-Fermi equa-

tions are second-order ordinary differential equations. They are to be

solved with the boundary conditions ρn/p(r→∞) = 0 and (dρn/p/dr)|r=0 =

0. One may solve them numerically by employing Ansatzes for ρn/p(r) and

adjusting µn/p iteratively [66].

In this work, we propose a different method to solve the coupled Thomas-

Fermi equations. We rewrite the equations by multiplying both sides by

density ρX ,

hX
(
ρn(r), ρp(r)

)
ρX(r) = µX ρX(r) (2.17)

with the single-particle hamiltonian hX = UX+~2k2
F/2mX+UCoul δX,p. Eq.

(2.17) has the same structure as the Hartree-Fock equation, prompting us

to tackle it as an eigenvalue problem. Using a discretized position basis,

we can obtain a matrix representation for hX and a vector representation

for ρX ,

h
(X)
ij = 〈ri|ĥX |rj〉 = hX

(
ρn/p(ri), ρn/p(rj)

)
, (2.18)

ρ
(X)
i = 〈ri|ρX〉 = ρX(ri). (2.19)

Note that hX is not diagonal, because the derivatives involved are com-

puted in terms of finite differences in the basis. In Eq. (2.17), ρX plays
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the role of the eigenvector of hX and µX the eigenvalue. We use a self-

consistent iterative method [83] to find eigenvectors and eigenvalues for hn

and hp. The pair of eigenvectors {ρn, ρp} in the position basis correspond-

ing to the smallest eigenvalues, i.e., lowest chemical potentials {µn, µp}, is

chosen to generate the fields hn/p(ρn, ρp) in the next iteration and picked

as the actual density profiles in the end.

We demonstrate this method by computing the density profiles for a

medium-sized nucleus 58Ni and a large-sized nucleus 197Au using the mean-

field potential with a K = 240 MeV mentioned above. The computed

radial density profiles are shown in Fig. 2.1. We note that density profiles

with the Thomas-Fermi approximation lacks the ripples associated with

shell effects in typical Hartree-Fock calculations. The tails of the density

profiles exhibit rapid fall-offs, which is also typical of Thomas-Fermi cal-

culations [83]. In practice, the unphysical fall-off of the tails get mitigated

by numerical sampling of test particles and coarse graining, as is seen in

the initial distributions at t = 0 fm/c in Fig. 2.2.

2.2.5 Brownian motions of nucleon wave-packets

In this model, the beyond-mean-field residual-interactions, between indi-

vidual nucleons and the nuclear medium they are locally immersed in, are

presumed to be dissipative and random, and governed by the proposed

Langevin Eq. (2.11). We refer to these momentum and energy exchanges

between particles and medium as Brownian motions. In what follows, we

will describe at length the perspective on these Brownian motions and

their numerical implementation. Given the mesoscopic nature of nuclear

systems, physics and practical details are entangled.
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Partition of test particles into nucleon wave-packets

While ensuring a sufficiently smooth coverage of the phase space in the sim-

ulation of mean-field dynamics, the large quantity of test particles used,

typically Ntest = 102 - 103 test particles per nucleon, have adverse effects

on the fluctuation dynamics. The scatterings of test particles supposedly

representing the same nucleon are uncorrelated, which would inevitably

wash out most of the fluctuations in the dynamics. This, to a large ex-

tent, explains why BUU-type approaches typically have vanishingly small

fluctuations compared with QMD-type approaches, whose degrees of free-

dom are nucleons. Different attempts have been made over the years to

restore the nucleonic degrees of freedom in two-body scatterings in the

BUU framework [24, 35]. The main idea of them is to agglomerate test

particles adjacent in phase space into so-called nucleon wave-packets and

to move them collectively as a whole.

We adopt a similar approach to enhance the effects of fluctuations. In

each time step, we partition the test particles into nucleon wave-packets

and execute Brownian motion with these nucleon wave-packets as the de-

grees of freedom. The pre-partition is accomplished through the k-means

clustering algorithm [84] with a metric in phase space parametrized in the

following form,

d2 =
(ri − rj)

2

d2
r

+
(pi − pj)

2

d2
p

(2.20)

where subscripts i and j denote two points in phase space. The parameters

dr and dp address the compactness in the coordinate and the momentum

spaces respectively. We run the k-means clustering algorithm to partition

both the neutron test particles and the proton ones separately. The algo-

rithm is set to terminate after several iterations, and the values dr = 1.2
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fm and dp = 130.5 MeV/c are used. It is found in practice that the final

results are not sensitive to either the early termination of the clustering

algorithm or the values of the metric parameters.

After the pre-partition, the system is divided into N neutron subspaces

and Z proton subspaces. The pre-partition is simple but somewhat ar-

bitrary, and thus only the centroids are to be used. We identify these

centroids as the scattering centers for the nucleons.

For each centroid (ri,pi) for which the local nucleon density is above

0.1 fm−3, we consider a spherical region centered at ri of radius R ∼ 2

fm. This value corresponds roughly to the sum
√
σNN/π+

√
〈r2
ch〉, where

the nucleon-nucleon cross section σNN ' 40 mb and the root-mean-square

proton charge radius
√
〈r2
ch〉 ' 0.86 fm. R can also be made density-

dependent, with the empirical choice of R(ρ) = [1.99−0.18ρ−
4
3 (ρ−ρ0)]fm.

The latter empirical formula is what actually used in the code. Inside the

spherical region, we search for test particles close to the centroid (ri,pi)

using the following phase-space metric:

d2 =
(ri − r′)2

σ2
r

+
(pi − p′)2

σ2
p

(2.21)

with σr = R and σp = ~/2R. This metric emphasizes the compactness in

momentum space, while connected to the Heisenberg uncertainty principle.

The Langevin Eq. (2.11) is originally intended for point-like particles, and

hence wave-packets well-localized in momentum space are preferred. The

Ntest test particles of the same species closest to the centroid form the wave-

packet to undergo Brownian motion. The rest of the particles constitute

the medium, with which the wave-packet interacts.
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Evaluations of the Langevin equation’s coefficients on a lattice

The coefficients R, R̃ and D involve integrals folded over the momentum

space, which require the knowledge of occupation at different momenta.

To this end, we construct a three-dimensional cubic lattice over the entire

momentum space inside each spherical scattering region and we evaluate

the occupation at different sites.

The lattice spacing Lp needs to be chosen with care to faithfully reflect

the actual spread and spacing of the underlying test particles. We use

the standard deviation σwpp of the momentum of test particles belonging

to the nucleon wave-packet as a measure to constrain lattice spacing. We

normally choose the spacing Lp = max{1.2σwpp , ~/(2R)}, where R is the

radius of the spherical scattering region under consideration. With such

constraints, the values of the spacing Lp typically fall between 100 MeV/c

and 140 MeV/c, which ensures a sensible coarse graining in the momentum

space.

Occupation f(p) at each momentum lattice site is evaluated in the

same fashion as spatial densities are on a spatial lattice in mean-field

dynamics simulations. Test particles have a triangular-shaped form factor,

contributing to the eight nearest lattice sites only. Integrals of R, R̃ and

D are computed as summations over all sites of the three-dimensional

momentum lattice.

Momentum transfer from the nuclear medium to the nucleon wave-packet

With a reasonable time step size ∆t ∼ 0.25 - 0.5 fm/c, the first term of

the Langevin Eq. (2.11) can be readily calculated. The stochastic term

involves a matrix σ, which needs to be extracted as the square root of
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the diffusion matrix D. Note that, by the definition in equation (8), D

is a real symmetric positive semi-definite matrix. It follows that D can

be diagonalized as D = OΛO>, where Λ is a diagonal matrix and O an

orthogonal matrix. We then represent σ, cf. Eq. (A.12), as

σ = OΛ
1
2O>, (2.22)

where Λ
1
2 is diagonal whose diagonal elements are the unique square roots

of the corresponding diagonal elements in Λ. It can be easily verified that

σ constructed according to (2.22) satisfies (8).

With a time step of size ∆t, the differential notation dBt is interpreted

as a 3-dimensional random vector, whose components are independent

Gaussian random numbers. The underlying Gaussian distribution has a

mean equal to zero and a variance equal to ∆t.

In summary, the momentum transfer ∆p within a time step ∆t in a

spherical scattering region is simulated as

∆pa =
1

2

[
R̃ + (1− fa)R

]
∆t+ σ g(0,∆t) (2.23)

with g(0,∆t) being a random vector comprised of 3 independent Gaussian

random numbers sampled with mean = 0 and variance = ∆t.

Recoil for conservation of momentum and energy

After a nucleon wave-packet is shifted in the nuclear medium inside a

spherical scattering region, the recoil of the nuclear medium needs to be

accounted for in order to preserve the conservation of total momentum

and total energy. The interaction between the nucleon wave-packet and

the nuclear medium is reciprocal. Indeed, by exchanging the subscripts a

and b in the Langevin Eq. (2.11), one obtains an expression for how the
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nucleon wave-packet induces recoil of particles in the medium. Thus, the

recoil can be treated in principle precisely.

On the other hand, owing to the facts that the number of particles

involved in the medium is large and that the recoils are coupled in a non-

trivial manner, we instead adopt a collective and approximate treatment of

the recoil effects: the center of momentum of the nuclear medium is shifted

to conserve total momentum, and all particles in the medium are scaled

with respect to the new center of momentum to conserve total energy.

Additionally, it is worth noting that the nuclear medium almost always

contains more than one nucleon. The collective shift-and-scale adjustment,

in effect, introduces many-body correlations in the nuclear medium.

Pauli-blocking procedure

Within the scattering region, after the kick of the nucleon wave-packet

and the adjustment for recoil in the nuclear medium, we compute again

the occupation over the entire lattice in momentum space. The Brownian

motion is finalized only if none of the occupation at any lattice site exceeds

1. Otherwise, we deem the Brownian motion unphysical and revert all

changes. This Pauli blocking procedure proves to be effective. For single

ground state nuclei, over 97% of the attempted Brownian motions are

blocked in the current model prescription, and stability of the nuclei are

demonstrated in Fig. 2.2.

Fig. 2.2 shows the time evolution of the radial density profiles for a

single 58Ni and a single 197Au up to 200 fm/c in steps of 40 fm/c, simulated

by the our Brownian code under the same controlled conditions specified

in Ref. [3]. Ideally, the density distribution should remain unchanged over
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time for single nuclei. In our case, the density profiles show only small scale

fluctuations over the entire course of simulation. It indicates, in particular,

that numerical solutions of the Thomas-Fermi Eq. (2.15) approximate the

true solutions of the Vlasov Eq. (2.2) reasonably well. Further, majority

of the spurious large momentum transfers are effectively blocked by the

Pauli-blocking procedure.

Summary of implementation of Brownian motions

In each time step, the occupied phase space is partitioned into N + Z

subspaces of roughly equal volume. Scattering regions are constructed

spherically around the spatial centroids of each subspace. These regions

are to be examined successively in a random order. Within each scattering

region, a separation of the nucleon wave-packet from the nuclear medium

is made. The Langevin equation is evaluated on a 3-dimensional lattice in

momentum space, and the resulted momentum transfer is applied to the

nucleon wave-packet. In observance of the conservation laws, the recoil

effects are taken into account through an adjustment of the momentum

distribution of particles in the medium. A Pauli-blocking procedure is

applied in the end to preserve the Pauli exclusion principle.
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Figure 2.1: (Color online) Density profiles of stable nuclei 58Ni and 197Au obtained from

solutions of the Thomas-Fermi equations.
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Chapter 3

Applications to heavy-ion collisions

at intermediate energies

3.1 Benchmarks

In this section, we first demonstrate practical applicability of our model

to heavy-ion collisions by simulating the Au-Au collisions at both 100

MeV/nucleon and 400 MeV/nucleon, at an impact parameter of b = 7 fm.

We study the nucleon rapidity distribution and the average in-plane flow

〈px/A〉 and compare our simulation results with those from other transport

codes in the code comparison project of Ref. [3]. After confirming that our

model can yield reasonable results for one-body observables, we proceed

to investigate its ability to describe multi-fragmentation processes. To

this end, we study the time evolution of the systems: 112Sn + 112Sn and

124Sn + 124Sn at 50 MeV/nucleon at an impact parameter b = 0.5 fm. A

preliminary comparison of results with the Stochastic Mean Field (SMF)

and the Antisymmetrized Molecular Dynamics (AMD) models from Ref.

[4] is also made.
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3.1.1 One-body observables for Au + Au system

Fluctuations associated with Brownian motions enable our model to probe

a broader range of intermediate and final channels. It is of interest to

study whether the diversity of intermediate and final channels may affect

the description of one-body observables. Our model is applied to simulate

the Au + Au reactions at two incident energies, 100 MeV/nucleon and 400

MeV/nucleon. These specific reactions were also studied and compared in

a transport code comparison project under controlled conditions [3]. The

same impact parameter b = 7 fm as there is chosen. Identical mean-field

interactions and nucleon-nucleon cross sections as there are employed.

Rapidity distribution

The rapidity distribution in the final state gives a Lorentz invariant mea-

sure of the degree of stopping of nucleons attained in heavy-ion collisions

[3]. The more particles populate the mid-rapidity region in the center of

mass frame, the stronger the stopping effects are.
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Figure 3.1: (Color online) Final rapidity distributions as a function of reduced rapidity for

197Au + 197Au at beam energies of 100 MeV/nucleon (upper panel) and 400 MeV/nucleon

(lower panel) at an impact parameter b = 7 fm. Solid curves, dashed curves and the

dashed-dot curve correspond to the Brownian model, BUU-type models, and QMD-type

models [3], respectively.

In Fig. 3.1, we display the final rapidity distributions from our calcula-

tions accompanied by results of selected BUU and QMD calculations from

Ref. [3]. At low incident energy 100 MeV/nucleon, there is a large amount

of filling of the mid-rapidity region, indicating a relatively strong stopping.

While all codes except for AMD exhibit a shallow double-humped struc-
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ture, differences in details of the rapidity distributions are not negligible.

This is probably tied to differences in treating Pauli principles in different

codes and to delicate competition of mean-field interaction and many-body

correlations at this incident energy [3]. At higher incident energy of 400

MeV/nucleon, fewer particles populate the mid-rapidity region compared

to the outer regions and the double-peaked feature is more pronounced,

due to a weaker stopping and shrinking Fermi momentum compared to in-

cident momentum per nucleon. General consistency is found among most

calculations, although nonrelativistic models such as the Brownian motion

model and AMD predict mildly stronger stopping.

Average in-plane flow 〈px/A〉

Use of a finite impact parameter, b = 7 fm, in this study, breaks the

macroscopic rotational symmetry around the beam axis in the system,

and therefore anisotropy appears in the transverse collective momentum

distribution. We focus on the average in-plane flow 〈px/A〉, simply known

as the transverse flow, as a function of the reduced rapidity y/ybeam in the

center of mass frame. When quantified, the transverse flow is commonly

described in terms of an “S-shaped” curve. The slope at the origin, com-

monly known as the “slope parameter”, is of importance. Particles in the

mid-rapidity region are expected to come from the compressed region dur-

ing the collision, and thus the study of this flow parameter can shed light

on the behavior of the nuclear equation of state beyond normal density.
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Figure 3.2: (Color online) Final average in-plane flow as a function of reduced rapidity

for 197Au + 197Au collisions at beam energies of 100 MeV/nucleon (upper panel) and 400

MeV/nucleon (lower panel) and an impact parameter b = 7 fm. Solid curves, dashed

curves and the dashed-dot curve represent the Brownian model, BUU-type models, and

QMD-type models [3], respectively.

In Fig. 3.2 we show the average in-plane flow for our calculations to-

gether with results from selected transport models from Ref. [3]. In all

calculations, the expected S-shaped curves are produced at both energies.

The positive slopes at the origin indicate that the effects of nucleon-nucleon

scattering dominate over those of the mean field. At 100 MeV/nucleon,
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the BUU-type models clearly produce greater inflections than the QMD-

type models. The prediction from the Brownian motion model lies between

them. At 400 MeV/nucleon, it appears that all five transport models yield

very consistent results in the mid-rapidity region.
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Figure 3.3: (Color online) Flow slope parameter for different transport models [3] for

197Au + 197Au collisions at beam energies of 100 MeV/nucleon (blue squares) and 400

MeV/nucleon (red triangles) at an impact parameter b = 7 fm. The error bars represent

the fitting uncertainties. These become invisible when they are smaller than the symbols.

The colored bands correspond to roughly 52% confidence intervals from the statistics of

calculations from both the BUU-type and the QMD-type models. (See text for a more

detailed explanation.)

The slope parameters at mid-rapidity can be extracted through a linear

fit in a small interval centered at the origin. The values of the slope param-
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eters at two energies for different transport simulations [3] are summarized

in Fig. 3.3. The error bars take into account the fitting uncertainties only.

On top of the simulation results, we also added shaded bands to indicate

regions in which calculations are considered to be statistically consistent

with majority of the BUU-type and QMD-type models. To obtain the sta-

tistically consistent regions, we first computed the
√

2σ-intervals centered

at the mean values for the BUU sample and the QMD sample indepen-

dently. σ stands for the standard deviation of the sample. The statistically

consistent regions were taken to be the overlap of the
√

2σ-intervals from

the two samples. If we further assume that the BUU sample and the

QMD sample follow an identical Gaussian distribution, the consistent re-

gions can also be interpreted as roughly 52% confidence intervals. Note

that throughout the statistical analysis, results from the Brownian motion

model were deliberately excluded to avoid any possible bias. Nevertheless,

the slope parameters extracted from the Brownian simulations are found

to be statistically consistent with majority of the other calculations.

The reassuring consistency of results between the Brownian motion

model and other current transport models provides evidence that the one-

body Brownian motion picture can successfully capture the effects of two-

body scattering and mean field in heavy-ion collisions.

Last but not least, in analyzing results from the Brownian motion

model, we averaged the rapidity and the in-plane flow over 32 independent

events, and the averaged results exhibit good parities as functions of the

reduced rapidity. It needs to be pointed out that the fluctuation dynam-

ics described by the Langevin Eq. (2.11) does not automatically preserve

forward-backward reflection symmetry, and that parity symmetry breaking
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or other types of symmetry breaking can be observed in individual events.

Since the “directions” of the symmetry breakings are essentially random,

symmetry can be restored by ensemble-averaging over independent runs.

In fact, these symmetry breakings, resulted from the broadening of dy-

namical trajectories, can be crucial for the formation of fragments to be

discussed in the next subsection. For instance, an uneven break-up of

two nuclei in symmetric central collisions will be likely associated with an

asymmetry in the rapidity distribution.

3.1.2 Fragmentation dynamics with Sn + Sn at 50 MeV/nucleon

In this subsection, we will demonstrate how the ability of our model to

probe a plethora of intermediate and final states is connected with the

formation of intermediate mass fragments (IMF) in central heavy-ion col-

lisions. The systems we study are 112Sn + 112Sn and 124Sn + 124Sn at 50

MeV/nucleon at an impact parameter b = 0.5 fm. These systems have

already been studied by Colonna et al. using both SMF and AMD [4].

We will make a preliminary comparison between our simulation and those

in SMF and AMD. A density-dependent and energy-dependent nucleon-

nucleon cross section is used,

σNN(Elab, ρ) = σfree
NN(Elab) exp

[
− α ρ/ρ0

1 + Elab/E0

]
(3.1)

with α = 0.3, ρ0 = 0.16 fm−3, E0 = 150 MeV and a maximum cuff-off at

150 mb. σfree
NN(Elab) is taken as the cross section parametrization by Li and

Machleidt at zero density [85]. The evolution of the systems is followed

up to 280 fm/c after initial contact.

Fig. 3.5 shows the density contour plots from projecting nucleons on the

reaction plane for the 112Sn + 112Sn system at different stages of the re-
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Figure 3.5: (Color online) Density contours for nucleons projected onto the reaction plane

in the reaction 112Sn + 112Sn at 50 MeV/nucleon at an impact parameter of b = 0.5 fm, at

different times during the reaction. Results calculated with the Brownian motion model

are displayed in the first row of the panels. The bottom two rows show results from SMF

and AMD calculations [4]. The densities for the projected contours start at 0.07 fm−2

and consecutively increase by 0.1 fm−2.

action calculated with different transport models. All three models give a

qualitatively consistent description of the compression-expansion dynam-

ics, and cluster structures are formed in the expansion phase. During the

approach and compression up to 40 fm/c, calculations from the three mod-

els with fluctuations and many-body correlation effects do not appear to be

distinguishable from what would be expected from conventional transport

models without fluctuations. The suppression in the role of fluctuations

is linked to the limited volume of phase space available for the system to

populate, since it is far from thermalized in the early stage. At 120 fm/c,

we can already observe, in all simulations, that the expanding systems
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turn inhomogeneous. These inhomogeneities, which would not have ex-

isted without fluctuations, provide seeds for fragmentation, and there are

cluster structures forming in the core. As the system continues to expand,

the lumps of matter move away from one another and escape from the

central region. For all three models, sizable fragments can be identified

after 200 fm/c, and changes between 200 fm/c and 240 fm/c are sporadic

and moderate. As a result, we assume that the configurations have frozen

out by 240 fm/c, and we terminate the simulations at 280 fm/c.

The three models differ quite substantially in details of the predictions

for the expansion phase. In the Brownian motion model calculations, the

degree of stopping is comparatively low and the system tends to expand

more along the beam direction. On the other hand, in AMD, the system

expands quickly with a focus around the x -direction, which indicates a very

strong stopping that is also seen in the Au-Au simulations. The relatively

isotropic and slow expansion in SMF can probably be explained by the

spinodal decomposition of a nearly homogeneous source at low density

[86]. We also count the number of nucleons in the “gas” phase (ρ < 1
6ρ0)

predicted by our model and compare the number to results of SMF and

AMD [87]. It is found that our model yields more gas-phase nucleons than

AMD, but only slightly fewer than SMF.

Regarding the fragmentation mechanism in our model, in-medium Brow-

nian motions introduce branching points in the dynamical trajectories and

allow for “jumps” among a greater range of intermediate and final config-

urations. These jumps, stemming from nucleon-nucleon scatterings, are

abrupt and discontinuous in time. The Langevin Eq. (2.11), with its

stochastic term introducing discontinuities in time, serves the purpose. By
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solving the Langevin equations, we attempt to simulate the abrupt jumps

from one n-body configuration to another. As the deviations from the

ensemble-averaged trajectory predicted by the Boltzmann Eq. (2.1) accrue

from the jumps, exotic configurations including those with fragmentation

eventually become accessible. In the quantum-mechanical picture, config-

urations are represented by superpositions of Slater determinants. While

mean-field evolution is coherent in principle, the residual incoherent many-

body correlations, such as two-body scattering, result in decoherence and

transitions between different Slater determinants. Among the stochastic

approximations of the quantum many-body problems are the AMD model

[37, 38, 88] and the Stochastic Time-Dependent Hartree-Fock (STDHF)

theory [32]. In treating the jumps between different configurations as a

stochastic process, the Brownian motion model is conceptually consistent

with these quantal approaches.
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Figure 3.6: (Color online) Distribution of IMF multiplicity obtained from different models

for the reaction 124Sn + 124Sn at 50 MeV/nucleon at an impact parameter b = 0.5 fm.

The upper panel shows the multiplicity distribution of IMFs with charge Z > 2 and the

lower panel with Z > 6 [4].

A comparison of the IMF multiplicity between the Brownian motion
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and the other two transport models for 124Sn + 124Sn is shown in Fig. 3.6.

In our case, fragments are identified with a simple coalescence algorithm

with a cut-off density ρc = 0.02 fm−3 [35]. The distribution is obtained

from 100 independent simulations.

For IMFs with charge Z > 2, our multiplicity distribution looks compat-

ible with that from AMD. Both distributions maximize around multiplicity

= 7 or 8 and share a similar spread. For larger IMFs with charge Z > 6,

our calculations yield a slightly lower multiplicity, while still predicting es-

sentially the same spread as the others. Since our model, as well as SMF,

predicts more free nucleon emission than AMD, fewer nucleons are avail-

able in the “liquid” phase (ρ > 1
6ρ0) for the assembly of IMFs. Moreover,

due to the large number of free nucleons and light fragments in our sim-

ulations, the effective surface-to-volume ratio is also higher, which might

lead to spurious evaporation of test particles and hinder the formation of

fragments. Nonetheless, the Brownian motion model breaks through the

limitations of traditional Boltzmann transport framework and proves to

have great potential for the description of multifragmentation.

3.1.3 Summary and discussion

In the last two sections, we have reformulated the beyond-mean-field dy-

namics in heavy-ion collisions in terms of Brownian motions of nucleons in

the viscous, out-of-equilibrium nuclear medium, as opposed to the typical

two-body scatterings. The Brownian motions represent, in effect, the mo-

mentum and energy exchange between a nucleon and the nuclear medium it

is immersed in. They are governed by a set of Langevin equations consist-

ing of a friction-like term and a stochastic term. This approach describes
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the dissipation and fluctuation dynamics consistently and simultaneously.

Furthermore, each simulation generates a unique dynamical trajectory, en-

abling us to probe different exit channels and obtain the distribution of

possible outcomes of the ensemble.

The details of the numerical simulations, including a new method to

initialize stable nuclei from the Thomas-Fermi approximation, have been

presented. We have applied our model to the time evolution of isolated

stable nuclei. The stabilities of the simulations and the nuclei are well

established.

To demonstrate that our model’s ability to describe one-body observ-

ables is on par with that of other transport models, we have studied the

final rapidity distribution and average in-plane flow in the reaction 197Au

+ 197Au at two incident energies and showed that our results are com-

parable with those obtained from either QMD-type models or BUU-type

models [3].

We have also investigated formation of fragments in heavy-ion collisions

with our model and confirmed the crucial role fluctuations play in seeding

multifragmentation. We have repeated the calculations of Sn + Sn at E =

50 MeV/nucleon, previously done with the SMF and the AMD models [4].

As seen from the time evolution of density contours for nucleons projected

on the reaction plane, and all three models depict a fragmented system

with similar general features. Regarding the distribution of IMF multi-

plicity, We find that the yield of light IMFs with Z > 2 in the Brownian

motion model is comparable to that in AMD, but our yield of large IMFs

with Z > 6 is slightly lower than that in SMF or AMD.

So far, we have successfully demonstrated the abilities and potential of
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the Brownian motion model to describe various scenarios in heavy-ion col-

lisions at intermediate energies. Its ability to traverse different dynamical

trajectories makes it particularly suitable for the study of multifragmen-

tation, which is beyond the reach of many traditional transport models.

It is also superior to many models with stochastic extensions in that it

treats dissipation and fluctuation on an equal footing. More explicit intro-

ductions of many-body correlations possibly with connections to quantal

expectation values are under consideration. In the future, it is of great

interest to confront the optimized Brownian motion model to experimen-

tal data. We have also in mind the goal of studying the fragmentation

mechanism. For example, we have looked at whether and when the cen-

tral region of a fragmented system enters the mechanically unstable region

and the findings seem to favor the spinodal decomposition mechanism. A

more careful inspection is planned.

As a final note, while the Fokker-Planck/Langevin approach has been

motivated here by the Boltzmann equation, one can think about circum-

venting the latter in the future and deriving the coefficients for the equa-

tion directly from microscopic theory, upon separating slow coarse-grained

nucleon motion from fast inter-nucleon motion [89].
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Chapter 4

Investigating “hierarchy effect” in

multifragmentation at Fermi

energies with the Brownian motion

model

The INDRA collaboration performed a series of experiments for different

colliding systems at Fermi energies and studied the fragmentation of the

quasiprojectiles [5]. For many of the systems studied, the experimental

observations seemed to suggest the presence of a “hierarchy effect” between

the charge and the parallel velocity of the quasiprojectile-like fragments

(PLF): “the ranking in charge induces in average a ranking in the average

parallel velocity, the heaviest fragment is the fastest and is focused in the

forward direction relative to the QP recoil velocity” [5]. The hierarchy

effect suggests that memories of the entrance channel play an important

role in collisions at intermediate energies. This essentially rules out the

statistical decay approach under the equilibrium assumption and calls for a

dynamical treatment of the collision and the multifragmentation processes.

We will revisit the hierarchy effect by simulating the collision of Ta+Au
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at 39.6 MeV/u with the Brownian motion model and compare our results

with the experimental findings.

4.1 Simulation setup: physical inputs and selection

of impact parameter b

The transport model used is the Brownian motion model, as described

in Chapter 2, with essentially identical physical inputs. The mean-field

potential used is of the same form as Eqn. (2.3) with parameters fitted

to reproduce the binding energy E/A = -16 MeV/nucleon, the incom-

pressibility K = 200 MeV and the symmetry energy Esym = 30.3 MeV at

normal density ρ0. The nucleon-nucleon cross section employed is energy-

dependent and with empirical in-medium modifications,

σNN(Elab, ρ) = σfree
NN (Elab) exp

[
− α ρ/ρ0

(1 + Elab/E0)β

]
(4.1)

with α = 0.3, ρ0 = 0.16 fm−3, E0 = 137 MeV, β = 1.4 and a maximum

cuff-off at 150 mb, similar to Eqn. (3.1). σfree
NN (Elab) is a parametrization

of the free energy-dependent nucleon-nucleon cross section [85].

Another important input for running the simulations is the selection

of the impact parameter b. The impact parameter is not an experimental

observable and therefore can only be deduced from the relevant centrality

observable. In the experiment, the level of violence of the collisions is mea-

sured by Et12/Ec.m., the ratio of the total transverse energies of light charge

particles with Z ≤ 2 to the center of mass energy [5]. The experimental

data for the Ta+Au system at 39.6 MeV/nucleon shows that for majority

of events, with PLF multiplicity MIMF ranging from 2 to 4 and with the

charge of the heaviest fragment Z1 between 10 and 55, the distributions of
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Et12/Ec.m. are densest in the range between 10% and 20% [5]. A sensible

goal of choosing the impact parameters for the simulations is to mimic the

distributions of Et12/Ec.m. to our best ability.
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Figure 4.1: Centrality analysis of the events in the simulation. (a) shows the distribution

of the actual impact parameter b sampled in the simulation; (b) shows the histograms

of b for each event group of definite PLF multiplicity MIMF; (c) shows the distributions

of centrality estimator Et12/Ec.m. for each event group specified by MIMF; (d) displays

the relationship between Et12/Ec.m. and b within the events that are color-coded by their

corresponding MIMF.

The distribution of impact parameter we settled for in the end is a

uniform distribution from 0 to bmax ≈ 12.7 fm. The actual distribution

sampled in the simulation is shown in panel (a) of Fig. 4.1. The total

number of events simulated is about 1500. In panel (b) of Fig. 4.1, we

sorted the events by their corresponding PLF multiplicity MIMF. Note

that events with MIMF > 4 are extremely rare and are thus omitted in

this and the following panels. Most of the fragmentation events of the
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quasiprojectile in the simulation took place with an impact parameter un-

der 10 fm. Note, in particular, there is also a surge of fragmentation events,

with MIMF ≥ 2, and a depletion of non-fragmentation events, MIMF = 1,

between 4 and 9 fm. Exit channels corresponding to fragmentation seem

to be activated most likely under semi-central or semi-peripheral condi-

tions. The centrality estimator Et12/Ec.m. sorted by MIMF is summarized

in panel (c) of Fig. 4.1. For MIMF between 2 and 4, the bulk part of the

events have their estimators Et12/Ec.m. to be in the range between 12%

and 18%, which is in a reasonable agreement with what was reported in

the experimental data [5]. Hence, this choice of uniform sampling of the

impact parameter b can be justified. In panel (d) of Fig. 4.1, we tested the

sensitivity of the centrality estimator Et12/Ec.m. to the impact parameter

b in the simulation. From the perspective of the simulation, we did not

find a strong correlation between Et12/Ec.m. and b when b is under 10 fm.

This echoes with the observation in (b) that most of the fragmentation are

limited to events with b under 10 fm. Normally, one would expect a larger

Et12/Ec.m. with a smaller b, as there are more participant nucleons in the

reaction zone getting deflected into transverse directions in more central

events. However, when fragmentation is present, the initial center of mass

energy can transfer not only into the transverse kinetic energy of free nu-

cleons, but also into energy necessary to break up the colliding systems

and to form clusters. It is the fragmentation involved that muddy up the

expected trend between Et12/Ec.m. and b. When b is greater than 10 fm

and practically no fragmentation occurs, the expected trend is recovered.
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4.2 Comparison with experimental data

In this section, we will be first comparing the charge Z, the parallel ve-

locity Vz and certain angular θF/QP (defined in details in the subsequent

text) distributions of the PLFs between the experimental data and the

simulation results, in the form of histograms. The two subsections will

dive into more details of the charge and parallel velocity distributions by

comparisons of the extracted means and standard deviations and discuss

the observation and existence of the “hierarchy effect”.

Before confronting the experimental data right away, it is of importance

to point out some of the differences of the fragments predicted by the model

and to justify the comparison. The fragments produced in the simulations

should be treated as primary fragments, which may undergo secondary

statistical decay before reaching detectors. The simulation of statistical

decay of primary fragments is out of the scope of the underlying transport

code and is thus not taken into account. Still, we would like to discuss

some qualitative and semi-quantitative comparisons between the primary

fragments from transport theory and the actual fragments analyzed in the

experimental data. One should be reminded that we aim to demonstrate

the so-called “hierarchy effect”, due to the entrance channel effects in the

distribution and properties of the PLFs. These entrance channel effects

are not expected to emerge from modifications from the statistical decay of

primary fragments, but rather as a result of the collision dynamics. Hence,

for the purpose of studying entrance channel effects in multifragmentation,

it is justifiable to look plainly at primary framgments in most cases.
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Figure 4.2: Charge Z (uppermost panels), parallel velocity Vz (middle panels) and angular

θF/QP distributions for the Ta+Au system at 39.6 MeV/nucl. The columns correspond to

events of different PLF multiplicity Mimf. Fragments are color-coded and sorted by their

charge, with Z1 being the heaviest and ZMIMF
being the lightest. Simulation results are

shown as histograms, and data of charge and velocity distributions extracted from Ref.

[5] are shown as solid dots. The theoretical charge distribution of events with Mimf = 1

is displayed as a semi-opaque shaded area in the background of the leftmost panel in the

first row. (See the text for more discussion.)
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For the comparison, we will focus on the charge Z distribution, the

distribution of the velocity component Vz in the direction of the beam,

and the angular distribution of the PLFs for events with Mimf between 2

and 4. The angle θFi/QP chosen for the angular distribution is the angle

between the velocity of the ith fragment in the frame of the quasiprojectile

(QP) and the quasiprojectile velocity VQP in the center of mass frame. To

be more specific, cos (θFi/QP ) is defined as

cos (θFi/QP ) =
(Vi −VQP ) ·VQP

|Vi −VQP ||VQP |
, (4.2)

where Vi is the velocity of the ith largest fragment in the center of mass

frame and VQP is the velocity of the constructed quasiprojectile,

VQP =

∑Mimf

i=1 ZiVi∑Mimf

i=1 Zi
. (4.3)

In both the experimental and theoretical analysis, the PLFs were selected

as fragments with charge Z > 2 and a positive velocity Vz > 0 in the center

of mass frame. The events were sorted in terms of their PLF multiplicity.

Within each type of events, the PLFs are sorted by their charge with Z1

being the fragment with the greatest charge and ZMinf
being the one with

smallest charge.

In the first two rows of Fig. 4.2, we show both the experimental data

and the simulation results for the charge Z distribution and the velocity

Vz distribution. The theoretical distributions are normalized to have the

same total counts of events as the experimental counterparts.

The data and the simulation agree coarsely on a semi-quantitative level.

The positions of peaks and the spread of the experimental distributions

are roughly reproduced by the distributions of the simulated primary frag-

ments. An exact match is not expected, as the comparison is done between
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the primary fragments predicted in theory and the actual fragments picked

up in experiments. The distributions in experimental data tend to be

wider than those predicted by the theory. Statistical decay is likely to

help broaden the narrower theoretical distributions in both charge Z and

velocity Vz. For the charge distribution corresponding to events with MIMF

= 2, there appear two peaks in the data for both of the PLFs, Z1 and Z2,

while the model predicts a single peak only. The theoretical peak of Z1-

fragments roughly corresponds to the lower charge peak in the data, while

the higher charge peak in the data is missing. This is again believed to be

because of the lack of “after-burners” treatment for the primary fragments,

especially those produced in events with MIMF = 1 in the simulations. We

put the charge distribution of the projectile-like remnants for MIMF = 1

events in the simulations in the background of the charge distribution for

MIMF = 2. It is observed that the MIMF = 1 remnants in the simula-

tions have largely filled up the missing peaks and areas around the higher

charge peak in data for Z1. Thus, it can be conjectured that taking into

account the statistical decay of the remnants in low multiplicity events

with MIMF ≤ 2 will be likely to help recover the missing peak in the case

of MIMF = 2 as well as to contribute to fragments with charge Z > 50 in

high multiplicity events with MIMF > 2.

The experimental claims regarding the velocity and the angular distri-

butions of the Z1-fragments, in relation to other fragments, can be con-

firmed. For all multiplicities, it is observed in both experiment and sim-

ulations that the largest fragment has a larger velocity component along

the beam axis z compared to the other fragments, i.e.,

〈V Z1
z 〉 > 〈V Zi

z 〉 (4.4)
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for 2 ≤ i ≤ MIMF. Similarly for the angular distributions, regardless

of the multiplicity, the largest fragment tends to peak forward when the

quasi-projectiles break up, i.e.,

〈cos (θF1/QP )〉 > 1, (4.5)

〈cos (θFi/QP )〉 < 1, (4.6)

for 2 ≤ i ≤ MIMF. Both of the observations suggest that the largest frag-

ment, being fastest and forward-peaked, retains most of the momentum of

the projectile, which serves as evidence for the presence of entrance channel

effects for the fragmentation of the system Ta + Au at 39.6 MeV/nucleon,

in agreement with the experimental observation of the “hierarchy effects”

[5].

It remains to be investigated whether a similar positive correlation be-

tween charge and velocity exists for the fragments Z2−ZMIMF
, which is not

immediately clear and evident from the histograms. In what follows, we

will compare the means and the standard deviations extracted from the

distributions in Fig. 4.2, which provide us with succinct abstractions of

the underlying distributions. Extra care should be taken though when the

distributions have more peaks than one, as the mean is no longer indicative

of the positions of the peaks.

4.2.1 Charge distribution

In Fig. 4.3, we show the means and standard deviations extracted from

the theory and the data for events with MIMF between 2 and 4. As is men-

tioned before, the charge distribution of the Z1-fragment in the data for

MIMF = 2 has two peaks, so the mean extracted in that case does not cor-
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respond to any of the peak in the data but rather lies somewhere between

two peaks. The mean extracted from the simulation for Z1 for MIMF = 2

mostly corresponds to the lower charge peak in experiment and is hence to

the left of the experimental mean. For MIMF = 2 and 3, the experimental

means are reproduced by the theoretical simulations reasonably well, and

the deviations do not exceed 2 protons in most cases. The theoretical stan-

dard deviations tend to be narrower than their experimental counterparts,

which suggest that the theory still fails to probe the entire variety of exit

channels accessible in the actual collisions. We reiterate here that parts of

those missing exit channels might be recoverable by feeding the simulated

primary fragments to secondary statistical decay.
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Figure 4.3: Means and standard deviations of the charge distributions sorted by the PLF

multiplicity (from MIMF = 2 on the leftmost to MIMF = 4 on the rightmost). Within

each panel, the fragments are ranked by their charge (with the greatest near the top

and the lightest near the bottom) and color-coded accordingly. The asterisks represent

theoretical means and the open circles represent experimental means, both accompanied

by horizontal “error bars” of the size of the corresponding standard deviation.

In Fig. 4.4, we categorize the simulated events further by their impact

parameter b in the range from 0 to 10 fm. Each row of Fig. 4.4 corresponds
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to a 2-fm range of impact parameter. However, note that, since it is impos-

sible to differentiate the experimental events by b or any other centrality

measure with what is available in Ref. [5], each column has the identical

experimental means and standard deviations in all panels. The standard

deviations for the simulations are comparatively narrow, as they take into

account the variations among events within the narrow 2-fm impact pa-

rameter range, and thus they should not be directly compared with the

experimental standard deviations, which cover the entire spectrum of cen-

trality. As the impact parameter b increases, i.e., as the collisions get more

peripheral, the average charge of Z1 shifts towards greater charge value

with greater resemblance to the original projectile. It is thus expected

that the entrance channel effects for Z1 grow as b grows. One should also

notice that, even in the most central range of impact parameters [0, 2] fm,

it is still possible to distinguish the largest fragment with Z1 from all the

other fragments with smaller charge. This goes to show that the system

does not form a compound nucleus at thermal equilibrium even in the most

central collisions. The Z1-fragment can largely be regarded as a remnant

of the projectile. Other fragments with smaller charge are much more less

distinguishable among themselves, which suggests that they possibly have

a similar origin that is different from the largest fragment, especially for

the more peripheral events. A relatively good agreement for the mean

charges between the theory and the experiment is obtained for the range

of impact parameter between 4 and 8 fm for Mimf = 3 and 4. That interval

of impact parameter also overlaps largely with the interval of b, [4, 9] fm,

with a surge of fragmentation events in the simulation.
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Figure 4.4: Means and standard deviations of the charge distributions sorted by the

multiplicity MIMF in ascending order from left to right and by the impact parameter b

in ascending order from top to bottom. The distributions within each panel are further

ranked by their corresponding charge Z and color-coded. Theoretical means are repre-

sented by asterisks, and experimental ones are by open circles. Standard deviations are

represented as “error bars”.
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4.2.2 Velocity distribution

We display both the theoretically and the experimentally extracted means

and standard deviations of the velocity Vz distributions, sorted by Minf

as before, in Fig. 4.5. Just like in the case of charge Z, the theoretical

standard deviations are narrower than the experimental ones, which again

suffers from the fact that only primary fragments are produced in the

simulations. The agreement of the extracted means between theory and

experiment is acceptable, especially when one considers that we did not

adjust or temper with any parameters in the model to force a fit to the

data. For the largest fragment with Z1, the theory tend to predict a

faster velocity Vz along the beam axis. The over-prediction gets even more

serious when the multiplicity Minf gets larger. Vz of the other fragments

with smaller charge are accordingly underpredicted in the simulations,

following from the conservation laws. This indicates that the collisions

simulated tend to have a weaker stopping than the actual collisions in the

experiment. Possible culprits for the weaker stopping include our choice of

range of impact parameters and our naive parametrization of the nucleon-

nucleon cross sections in Eq. (4.1).

Putting the issue of somewhat weaker stopping aside, we observe similar

trends and properties for the velocity distributions across the simulations

and the data. In particular, the Z1-fragment has the greatest Vz, which

distinctively differentiates it from other fragments with smaller charge as

well as smaller Vz. Such a divide between the Z1 fragment and the other

fragments has already been seen in the previous discussion about charge

distribution.
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Figure 4.5: Means and standard deviations of the distribution of parallel velocity Vz,

organized in a way similar to Fig. 4.3.

We would like to attribute these divides in the form of charge and

velocity to the fact that these fragments have two distinct sources: the

projectile-like remnant and the mid-rapidity remnant. The projectile-like

remnant retains obviously most of the entrance channel memories. The

mid-rapidity source is conjectured to be linked to the formation of a neck in

the experimental paper [5]. In the simulations, though, we have not been

able to gather enough information and evidence to support the transient

existence of a neck. In Fig. 4.6, we show two events in the simulation, with

one corresponding to a central event and the other to a semi-peripheral

event. In the more central event (a), the projectile and the target were

strongly deformed, with a lot of mass accumulating in the central zone.

The nucleons in the central zone were substantially decelerated and formed

clusters as they expanded and escaped from the central zone. In the semi-

peripheral event (b), the projectile and the target passed through each

other much more swiftly, leaving behind a thinning tail. The depletion

of matter in the central region also occurred much more rapidly. Both
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the thinning tails and the matter in the central zone belong to the mid-

rapidity region. Neither scenario in (a) or (b) would fit exactly the “neck”

formation conjecture. It could be that the neck is just far too transient and

fragile to be picked out or that many competing fragmentation mechanisms

were involved. Note also that the two pictures presented here by no means

exhaust all scenarios that occurred in the simulation.

A rather weak hierarchy effect, i.e., a positive correlation between charge

Z and velocity Vz, can be seen in both the simulations and the experimental

data for all the fragments for all multiplicities in Fig. 4.5. This hierarchy

effect, albeit weak, serves as a manifestation of the entrance channel effects

in play nonetheless.
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(a) Simulation with b ≈ 3 fm. (b) Simulation with b ≈ 9 fm.

Figure 4.6: Density plots of two simulated events at 180 fm/c. Event (a) is central, while

event (b) is semi-peripheral. The density contours are ranked by 0.1 ρ0, 0.2 ρ0, 0.4 ρ0,

0.6 ρ0 and 0.8 ρ0 from the outermost to the innermost. Neither case provides any direct

proof of the neck formation.

In Fig. 4.7, we further divide the events based on their impact parame-

ters. The theoretical standard deviations are narrow because of the small

range of impact parameters in each group of events. Other than events

corresponding to Minf = 4 and b ∈ [0, 2] fm, which suffers probably from

a small sample size, all other event groups exhibit the “hierarchy effect”

similar to those in the experimental data. Such ranking effects seem to

be strongest for semi-central events with impact parameter b ranging from

2 to 6 fm, particularly for highly fragmented events. The strong ranking

effects observed in the more central events are manifestations of the en-
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trance channel effects and can potentially be attributed to the decay of a

strongly deformed and out-of-equilibrium source, such as the fracture of

a “neck” connecting the projectile and te target as proposed in the ex-

perimental paper [5]. For greater impact parameters with b > 8 fm, the

divide between the Z1 fragment and the others is more prominent, and

the velocity gradient of the smaller fragments also appear much weaker.

As the collisions get more peripheral, the smaller fragments become more

homogeneous in terms of both charge and velocity. One may infer that

fragments in peripheral collisions are more likely to come from a nearly

equilibrated source possibly originating from the small and constrained

reaction zone at mid-rapidity.
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Figure 4.7: Means and standard deviations of the distribution of parallel velocity Vz,

sorted by the impact parameter b in the simulation and organized in a way similar to

Fig. 4.4.
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4.3 Absence of the “hierarchy effect” for U + C

As is described in Ref. [5], no “hierarchy effect” was reported for the U

+ C system at the lab energy E = 24 MeV/nucleon, especially when the

multiplicity MIMF is low.

We investigated the same collision system within our model. The first

thing we noticed in the simulations is that, regardless of the impact param-

eter, the two incoming nuclei tend to fuse together to form a compound nu-

cleus with minor deformations and non-negligible rotational motion. The

initial kinetic energy appears to be dissipated by emission of free nucleons

and in the form of internal and rotational energy of the compound nucleus

formed. Within the time scale we considered, up to 300 fm/c, we observe

no fragmentation of the compound nucleus and thus, we are unable to

produce the charge and velocity distribution of the PLFs, as we did for

the case of Ta + Au at 39.6 MeV/nucleon. Nonetheless, we speculate

that the compound nuclei predicted by our simulations are susceptible to

statistical decay, given enough time and accuracy of the description of the

energy and structure of the compound nucleus, both of which are lacking

in our semi-classical transport approach.

The absence of the correlation between the ranking of charge Z and

velocity component Vz for the U + C system in experiments is more char-

acteristics of the fission of an equilibrated source. This is, in fact, in

agreement with the theoretical prediction of a single primary source.

The strikingly different behaviors between the Ta + Au system and the

U + C in the simulations can be understood as results of their different

dominant decay channels: for Ta + Au, where the projectile and target
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are comparable, fragmentation dominates; for U + C, the fission channels

dominate, due to the high fissility of U. Fission or other sorts of decay

of an equilibrated system typically require a much longer time scale and

a rather sophisticated description of the system and is thus beyond the

scope of our model.

4.4 Summary

In this chapter, we investigated the behaviors of heavy-ion collisions at

Fermi energies and, in particular, the entrance channel effect reported ex-

perimentally [5] for the PLFs. We simulated the primary fragments in the

Ta + Au system at 39.6 MeV/nucleon. Despite the fact that we did not

produce exactly the final fragments that were picked up in the experiments

for a lack of secondary statistical decay treatment, we find that the overall

properties and trends of the experimental fragment distributions also sur-

vive in the distributions of the simulated primary fragments. In particular,

we are able to confirm the so-called “hierarchy effect” in the simulation, in

sharp contrast to what might be expected from decay from an equilibrated

source. The fact that the PLF with the greatest charge also travels fastest

can be attributed to the retention of the projectile memory. For certain

semi-central collisions, we also observe a strong correlation between the

charge ranking and the velocity ranking even for the smaller fragments,

which might be seen as circumstantial supporting evidence for the “neck

formation” conjectured by the experimental efforts [5].

We also briefly looked at the U + C system at 24 MeV/nucleon, for

which the experiment collaboration reported no “hierarchy effect”. Our
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simulations of U + C does not predict any sort of fragmentation or fission,

but rather a rotating compound source. This, however, is not entirely at

odds with the experimental observation, as fission or statistical decay of a

nearly equilibrated source is indeed consistent with the lack of “hierarchy

effect” observed.

Finally, this project, to our best knowledge, for the first time, attempt

to address the “hierarchy effect” from a dynamical standpoint with the use

of a stochastic transport theory. Our simulations confirm the “hierarchy

effect” as an important entrance channel effect for collisions at Fermi en-

ergies, when the multifragmentation mechanism dominates. In this study,

we did not adjust either the mean-field potentials or the NN -cross sections.

It will be interesting, however, to test whether there is any sensitivity of

this effect to these inputs of nuclear interactions in the future. For a more

thorough and detailed comparison with data in the future, it will also be of

great importance and necessity to combine the use of transport simulations

and that of statistical decay models.
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Chapter 5

Nonequilibrium Green’s function

approach for many-body quantum

systems

5.1 Introduction

Quantum mechanics has taken root in a bulk part of contemporary nuclear

theory, from the Hartree-Fock method [90–92] to chiral effective field the-

ory [93–95] in nuclear structure, from the distorted-wave Born approxima-

tion [96, 97] and to the coupled-channel techniques [98–100] in low-energy

nuclear reactions, just to name a few. The development of time-dependent

quantum approaches is not on par with their static counterparts, with the

most notable one being the time-dependent Hartree-Fock (TDHF) theory

[26, 27, 101–104]. However, the bare form of the TDHF theory is a mean

field theory neglecting many-body correlations, which does not provide suf-

ficient stopping and thermalization to describe intermediate or high energy

heavy-ion collisions [105]. The community of intermediate-energy heavy-

ion collisions continues to rely predominantly on semi-classical transport

models based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation, where
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quantum effects such as Pauli-blocking [106, 107], the uncertainty prin-

ciple, through the use of wavepackets [108, 109], and antisymmetriza-

tion [110, 111], can be partially incorporated. While a vast majority of

the semi-classical transport models have demonstrated their applicability

and strengths through comparison with experimental data [66, 112–114],

questions concerning the validity of the quasi-particle picture and the ef-

fects of quantum correlations linger. Moreover, as already pointed out in

Ref. [115], the semi-classical methods, detached from the rapidly develop-

ing quantum techniques employed in other fields of nuclear physics, are

difficult to improve systematically. Even attempts to take into account

the missing classical many-body correlations through the incorporation of

fluctuations [18, 23, 116, 117] will not be able to recover all effects of quan-

tum correlations, as they are of fundamentally different nature. A fully

quantum-mechanical transport model for heavy-ion collisions is called for.

Solving the many-body Schrödinger equation exactly is almost always

a forbiddingly daunting task. Fortunately, more often than not, one is in-

terested in one-body observables, for which a complete many-body wave-

function is not necessary. One can hopefully obtain enough information

from one-body reductions, such as one-body density matrix or one-body

Green’s function, by integrating out the irrelevant degrees of freedom. In

obtaining a closed equation of motion, the TDHF theory approximates

the two-body density matrix by products of one-body density matrix and

consequently neglects all two-body correlations [26, 83]. In contrast, in the

non-equilibrium Green’s function (NGF) theory, two-body correlations are

encapsulated in the self-energy and a systematic order-by-order approxi-

mation of the self-energy is possible [115, 118]. As a result, the NGF theory
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is more versatile and promising than the TDHF theory in the description

of intermediate-energy heavy-ion collisions, where effects of two-body cor-

relations are usually non-negligible.

An NGF code for the description of nuclear collisions in one dimension

was developed by Rios et al., and the mean field dynamics within NGF

was discussed in Ref. [115]. The current paper serves as an extension to

the previous work. Before we present the extensions and discuss the new

results, let us briefly go over some relevant concepts and definitions in the

NGF theory. (See Refs. [115, 118] for more details.) Within the NGF

theory, fermionic many-body systems can be characterized in terms of the

single-particle Green’s functions

G<(x1, t1;x2, t2) = i〈φ†(x2, t2)φ(x1, t1)〉 , (5.1)

G>(x1, t1;x2, t2) = −i〈φ(x1, t1)φ
†(x2, t2)〉 . (5.2)

Here φ and φ† are annihilation and creation operators in the Heisenberg

picture, and the expectation value is taken with respect to the total wave-

function also in the Heisenberg picture. When t1 = t2, the same-time

lesser Green’s function G< is equivalent to the one-body density matrix

up to a constant imaginary factor i. Thus, the lesser and greater Green’s

functions are often associated with the particle density and the hole den-

sity, respectively. One may also define Green’s functions as functions of

momentum and time arguments, by replacing the annihilation and cre-

ation operators in coordinate space by those in momentum space. Green’s

functions in coordinate space and Green’s functions in momentum space

can be converted into one another through Fourier transformation.

The equations of motion for the lesser and greater Green’s functions
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are the so-called Kadanoff-Baym equations [119],
[
i~

∂

∂t1
+

~2

2m

∂2

∂x2
1

]
G≶(1,2) =

∫
dx3 ΣHF(1,3)G≶(3,2)

+

∫ t1

t0

d3 Σ+(1,3)G≶(3,2)

+

∫ t2

t0

d3 Σ≶(1,3)G−(3,2) , (5.3)

[
− i~ ∂

∂t2
+

~2

2m

∂2

∂x2
2

]
G≶(1,2) =

∫
dx3G

≶(1,3) ΣHF(3,2)

+

∫ t1

t0

d3G+(1,3) Σ≶(3,2)

+

∫ t2

t0

d3G≶(1,3) Σ−(3,2) , (5.4)

where we have used shorthand notations such as 1 to represent (x1, t1).

The different Σ(1,2) are the so-called self-energy, and provide an approx-

imate description of correlations in the system. They can be expanded

diagrammatically, and will be discussed further in the next section. The

retarded (+) and advanced (−) functions are defined through

F±(1,2) = F δ(1,2)± θ[±(t1 − t2)] [F>(1,2)− F<(1,2)] , (5.5)

where F δ represents a singular part at t1 = t2. It has been shown that

one can derive the BUU equation from the Kadanoff-Baym equation by

approximating the interacting Green’s functions with the free Green’s func-

tions in a uniform system [118], which demonstrates a strong link between

the NGF approach and the semi-classical models based on the BUU equa-

tion. On the other hand, in contrast to classical transport theories, the

correlation integrals, integrating over the entire history, lead to memory

effects.

To advance the application of these techniques to nuclear physics, we

draw on rigorous NGF results and combine them with phenomenology
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taking into account the context of numerical limitations and the expecta-

tions regarding physical characteristics of the nuclear systems. The aim

of this paper is to show the applicability of NGF in a variety of settings

that are relevant for nuclear theory, in preparation for the application to

simulations of nuclear collisions. The organization is as follows. In Sec.

5.2, we will discuss the introduction of isospin degrees of freedom and the

incorporation of short-range two-body interactions. In Sec. 5.3, we will

describe the preparation of finite correlated nuclear systems within the

NGF approach. Sec. 5.4 examines the isovector oscillation of slabs in one

dimension and Sec. 5.5 demonstrates how to boost a finite system to move

at a constant velocity. In the end, we will give a summary and remark on

the prospects in Sec. 5.6.

5.2 Extending the non-equilibrium Green’s function

approach for nuclear systems

To describe realistic nuclear systems at moderate energies, an obvious

but nonetheless crucial extension to the previous NGF model [115] is

to introduce isospin dependence in the Green’s functions. This can be

readily achieved by introducing two versions of the Green’s functions, of

the self-energies, and of other relevant quantities, one for the neutron

subsystem and the other for the proton subsystem. The separation is

rather straightforward in practice, but comes with the cost of doubling

the memory requirement for the computation and doubling the number

of Kadanoff-Baym equations to be solved simultaneously. The mapping

from 1D neutron or proton densities to 3D densities continues [115] to
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follow the relation from the Hugenholtz-van Hove theorem: ρ3D
n/p = ξ ρ1D

n/p

with ξ ≈ 0.1217 fm−2. In what follows, the subscripts n and p, indicating

the particle species, will be dropped for the sake of brevity whenever no

confusion arises.

The bulk part of mean-field interaction U independent of isospin follows

closely from that in Ref. [115],

U(ρ) =
3

4
t0ρ+

2 + σ

16
t3ρ

1+d, (5.6)

with the parametres t0 = −2150.1MeV fm3, t3 = 14562MeV fm3(1+d) and

d = 0.257 fitted to reproduce properties of symmetric nuclear matter at

saturation density. With the mean-field U dependent on the total baryon

density, the evolutions of the neutron Green’s functions and the proton

Green’s functions are coupled right from the very beginning. Upon dif-

ferentiating the isospin degrees of freedom, we also introduce a depen-

dence on isospin imbalance, δ = (ρn − ρp)/ρ, into the nuclear equation

of state where the form valid up to the second order in the imbalance

is E
A(ρ, δ) = E

A(ρ, 0) + S(ρ) δ2, with S(ρ) = Skin(ρ) + Sint(ρ). The first

term Skin(ρ) stems from the difference in kinetic energies of the neutrons

and protons for finite imbalance, while the true isospin dependence of the

nuclear forces is reflected in the second term taken here in the form

Sint(ρ) = S0

(
ρ

ρ0

)σ
, (5.7)

where the values S0 = 20.1 MeV, ρ0 = 0.16 fm−3 and σ = 0.35 are currently

used in the model. The isospin-dependent component of the mean field

potential U sym
n/p (ρ, δ) is given by

U sym
n/p (ρ, δ) = ∂[ρ Sint(ρ) δ2]

/
∂ρn/p. (5.8)
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The Hartree-Fock self-energy ΣHF is approximated as a sum of an isospin-

independent component and an isospin dependent component,

ΣHF(1,2) = δ(1− 2){U [ρ(1)] + U sym
n/p [ρ(1), δ(1)]}. (5.9)

The introduction of explicit isospin degrees of freedom to the system and

of the isospin dependence to the mean field paves the way for future study

on the nuclear symmetry energy as well as other isospin-dependent effects

[120].

n n/pn/p p p/np/n

Figure 5.1: Second-order direct Born diagrams for neutron and proton self-energies Σn/p.

Note that the particle species in the loop can be the same as or the opposite of the species

of the propagator in the line to the left of the diagram. In the present work, the interac-

tion transfers no isospin within the Born diagram, making the scattering independent of

isospin.

One of the advantages of the non-equilibrium Green’s function ap-

proach, over the more conventional TDHF theory, lies in its ability to

incorporate two-body interactions into the residual self-energies Σ≶ in the

correlation integrals. The incorporation of two-body interactions induces

quantum correlations in the system, which have been lacking in both mean

field approaches and semi-classical approaches at the explicit level. In the

current approach, we have included in the self-energies the correlation con-

tribution represented with the diagrams in Fig. 5.1 by invoking the second-
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order Born approximation. Effectively, this direct diagram describes the

scattering within nn, pp and np pairs with different lines representing

Green’s functions of the suitable species. The corresponding self-energies

Σ≶ read

Σ≶(p, t; p′, t′) =

∫
dp1

2π~
dp2

2π~
V (p− p1)V (p′ − p2)

×G≶(p1, t; p2, t
′) Π≶(p− p1, t; p

′ − p2, t
′) , (5.10)

where

Π≶(p, t; p′, t′) = 2

∫
dp1

2π~
dp2

2π~
G≶(p1, t; p2, t

′)G≷(p2 − p′, t′; p1 − p, t) ,
(5.11)

where V (q) is the two-body potential with q being the relative momentum

and the factor of 2 accounts for spin degeneracy.

While some previous attempts were made to include residual two-body

interactions [121–123], the choice of the two-body potential V (q) in those

attempts might not have been optimal for the one-dimensional nuclear

systems under consideration. Instead, to reflect the short-range nature

of the residual nucleon-nucleon interactions and to mimic the effects of

nucleon-nucleon scattering in the kinetic limit, we adopted a new form for

the two-body potential:

V (q) = V0 |q| exp
[
−
(ηq

2~

)2]
, (5.12)

where the values V0 = 205.491 MeV and η = 0.57 fm have been chosen

to establish a correspondence between the one-dimensional collision rates

and the three-dimensional collision rates in symmetric nuclear matter in

the semi-classical limit. Note that this potential yields no difference in the

scattering between np and nn or pp pairs.
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The residual interactions introduce an extra contribution termed Ecorr

to the total energy and thus effectively alter the equation of state. This

issue arises, as we have fitted the nuclear matter in the mean-field ap-

proximation to the nuclear matter equation of states in the first place,

before introducing two-body interactions. Furthermore, in principle, the

interactions entering the Hartree-Fock self-energy ΣHF and the residual

self-energy Σ≶ should be the same, which is beyond the naive separation

of mean field dynamics and many-body dynamics employed in the current

picture. Getting around the first issue, to get back to the previous satis-

factory equation of state, we add an auxiliary parameterized contribution

to the mean-field energy

Eaux

A
(ρ, δ) = A1

(
ρ

ρ0

)τ1
exp

(
− b1

ρ

ρ0

)

+A2

(
ρ

ρ0

)τ2
exp

(
− b2

ρ

ρ0

)
δ2 , (5.13)

and adjust parameters to reproduce the nuclear matter equation of state

from the mean-field approximation in Eq. (5.9) as closely as possible.

The parameter values are summarized in Table 5.1 and the results for the

equation of state are illustrated in Fig. 5.2. The calculations are carried

out for a uniform system enclosed in a box of size L, with ∆x = 0.57 fm

and periodic boundary condition.
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A1 [MeV] τ1 [MeV] b1 A2 [MeV] τ2 [MeV] b2

39.33 1.157 1.192 -14.66 1.533 0.70

Table 5.1: Parameters for the auxiliary field in Eq. (5.13).
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Figure 5.2: One-dimensional nuclear equation of state in the NGF approach. Crosses

represent the results obtained within pure mean-field approximation. Dashed lines rep-

resent a cubic spline fit through the crosses. Open boxes show results obtained within

complete calculations with correlations, where the pure mean-field results were matched

by adjusting the parameters in the auxiliary field in Eq. (5.13).

To give context to the above results, it should be pointed out that

the discretization interval ∆x introduces a cut-off for particle momenta

in the system, pmax = h/(2∆x). That cut-off limits the integration over
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the momenta in the correlation self-energies, represented in Fig. 5.1, in

addition to what the range parameter η does. Also the size L of the peri-

odic box determines the spacing for the mesh in momentum, ∆p = h/L,

and this impacts both kinetic and correlation contributions to the energy.

With this the auxiliary energy should have a dependence on ∆x and L,

Eaux

A = Eaux

A (ρ, δ,∆x, L). We treat ∆x as a parameter of our dynamical

model, resigned to the fact that to get to analogous dynamic results we

might need to adjust some other parameters, such as V0 or η in (5.12),

when changing ∆x. Here we choose ∆x = η. As to the dependence on

L, we have carried out a number of calculations at different values of L

ranging from about 5 fm to 25 fm and different nucleon numbers corre-

sponding to a wide range of density values of interest to us up to 2ρ0. In

these calculations we see variation less than 1 MeV in E/A for uniform

matter at fixed ρ, δ and ∆x.

5.3 Preparing finite correlated nuclear systems

Following the extensions to accommodate the isospin degrees of freedom

and two-body residual interactions and the study of the equation of state

for infinite nuclear matter, we turn to the preparation of finite nuclear

systems in one dimension. Obtaining a good approximation of the ground

state is the starting point for performing simulations of nuclear collisions.

Within the full-fledged NGF approach, we continue to use adiabatic

switching techniques [115, 121–124] to evolve the system towards an ap-

proximate ground state. At t = 0, the system is initialized in an uncor-

related harmonic oscillator ground state occupying the lowest N/2 neu-
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tron shells and Z/2 proton shells. The remaining spin degeneracy g = 2

limits us to even-even nuclear systems. With the help of a switching

function f(t) varying smoothly from 0 to 1 over the switching period

[0, Ts], the total Hamiltonian H(t) switches smoothly and slowly from

the harmonic oscillator field HHO to the nuclear field Hnucl according to

H(t) = [1−f(t)]HHO +f(t)Hnucl. The nuclear Hamiltonian Hnucl contains

both the mean-field component and the two-body interaction component.

Since the second order diagrams in Fig. 5.1 contain effectively interactions

at two times, some extra care needs to be taken when adiabatically turning

on the residual self-energy Σ≶ which gets transformed according to:

Σ≶(t, t′)→ f(t) Σ≶(t, t′) f(t′) . (5.14)

During the adiabatic switching process, the system evolves towards the

nuclear ground state. The quality of the approximation to the ground

state depends crucially on the switching time Ts, with a longer switching

time yielding a better approximation. However, the entire preparation

history enters the correlation integrals in Eq. (5.3) in every single time

step in the subsequent evolution. Too long a switching time can stall the

numerical calculations quickly as the burden of history to be remembered

grows.

The effects of a cooling friction during switching have been studied

previously [122, 125? ]. Imposing an additional friction-like potential

U fric
n/p in the switching period can to a certain extent relax the need of an

excessively long switching time. The operational form that we employ for

the potential is

U fric
n/p(x, t) = f0

~
∆t

∂ρn/p(x, t)

∂t

t

Ts
exp

[
− t

Ts

]
, (5.15)
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where f0 is the strength of the friction and ∆t is the time step size in the nu-

merical simulations. While major desired dependencies have been factored

out in Eq. (5.15), the strength parameter f0 remains fragile, with optimal

values varying from system to system and from conditions to conditions.

In addition, even for optimal value any improvement in the switching with

the inclusion of the cooling friction can be marginal. In practice, ex-

tending the switching time still easily outperforms any delicately designed

switching functions or cooling frictions, when a high-quality ground state

is in need. For the time being, we simply implement the cooling friction

parametrized in Eq. (5.15) in the code with a relatively small strength

f0 = 4− 6 fm4/c, without claiming the optimality of the choice.
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Figure 5.3: Occupation of the neutron natural orbitals. The open circles represent those

of the correlated final state after the adiabatic evolution, and the crosses correspond to

the uncorrelated initial state. The lines serve to guide the eye.
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We now study the adiabatic evolution of a symmetric system with

N = Z = 6. Initially, the system is comprised of 3 neutron shells and 3

proton shells in an external harmonic oscillator potential. The initial wave

function can be written as an antisymmetrized product of the harmonic-

oscillator single-particle states, and it is therefore an uncorrelated state. In

Fig. 5.3, we denote the occupation of the neutron natural orbitals, found

by diagonalizing the one-body neutron density matrix, with red crosses. In

the uncorrelated system, the natural orbitals coincide with the eigenstates

of the single-particle harmonic oscillator hamiltonian hHO, and the lowest

three are fully occupied as expected. The case for protons is exactly the

same due to the isospin symmetry present in the system and thus is not

shown here. If the mean field were the only interactions switched-on in the

system during the adiabatic evolution, the dynamics would be identical to

that in the TDHF theory. Indeed, the NGF approach with mean-field ap-

proximation has been studied previously [115, 121]. The final state would

simply be uncorrelated, albeit as a product of complicated single-particle

states. In the momentum basis {φk ∼ eikx}, however, even such an un-

correlated state becomes a complicated superposition of uncorrelated mo-

mentum states with all sorts of particle-hole excitations. While in terms

of the complicated states the density matrix can be diagonal, the density

matrix acquires off-diagonal elements in the momentum representation.

The second-order Born diagram in Fig. 5.1 allows for swapping of or-

bital pairs in an uncorrelated state due to the interaction and for mixing

of that swapped state with the original, thus introducing a correlation im-

pacting reinteraction. Depletion in the probability of staying in the same

uncorrelated state is compensated with a probability of populating other
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uncorrelated states. In a system with weak nonuniformity, the density

matrix becomes nearly diagonal in the momentum representation. If the

system is sparse or mixing is strongly suppressed by antisymmetrization,

impact of a mixing persists over a long time. Eventually, a kinetic limit

is reached where integrations in the residual self-energies can be carried

out to arrive at energy-momentum conservation in a scattering process.

The peculiarity of the conservation in the two-particle scattering in one

dimension is that the orbitals only either retain or interchange momenta.

For the species of the same type this leads to the persistence of the un-

correlated states, when composed out of near momentum eigenstates, and

thus no apparent change compared to the mean-field dynamics. However,

because of the self-consistency in the diagram in Fig. 5.1, the admixtures

of states with swapped orbitals pile up over time, leading to correlations

between more than two orbitals even when residual interactions act be-

tween two particles only. The scattering processes in the limit of energy-

momentum conservation involve then more than two particles and more

complicated changes occur in the uncorrelated states, potentially more

similar to analogous processes in three dimensions than for the isolated

two-particle scattering. Also, for a more nonuniform system the differ-

ent orbitals may share the same momentum, so even if the momenta are

retained or swapped the occupations of uncorrelated states may change.

In Fig. 5.3 we observe a significant depletion of the occupation for the

low-lying states and increased occupation for the higher, in spite of the

one-dimensional peculiarity of the on-shell two-body scattering and of the

two-body scattering rate being coarsely set to be the same as for the three

dimensions. On the same note, even in three dimensions, when insisting
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on a quasiparticle picture for a finite system with energy conservation for

single-particle energies, the departure of occupations from 1 and 0 would

never occur.

If a particle is removed from or placed in a natural orbital from a sta-

tionary system with weak correlations, the system largely remains in a

stationary state. This can be quantified in terms of a spectral function

with a unique single-particle energy, equal to the difference in the energies

for the two stationary states. Inspired by Fermi liquid theory, this inde-

pendent quasiparticle picture is pushed to the extreme in the semiclassical

transport theory for nuclear reactions where specific energies are attributed

to quasiparticles with definite momenta [66]. The spectral function natu-

rally relates to NGF. One characteristic of increasing correlation strength

is that identification of natural orbitals becomes a challenge. They may be

always obtained by diagonalizing the density matrix but, as far as evolu-

tion of NGF in the relative time is concerned, the orbitals can be discussed

only in a perturbative context. The spectral function is not diagonal in

any orbitals anymore, but can be near-diagonal and/or diagonal elements

of the spectral function can be considered.

Given the above, in the correlated system we look at diagonal ele-

ments of the spectral function in momentum representation. For par-

ticular species with particular spin projection, denoted with ν (also specif-

ically used for neutrons in the shell-model notation), the spectral function

Sν(p, E) is related to the retarded Green’s function G+
ν (p, E) with

Sν(p, E) = −1

π
ImG+

ν (p, E) . (5.16)
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The retarded Green’s function G+
ν (p, E) admits a Lehmann representation,

G+
ν (p, E) =

∑

p

|〈Ψ(N+1)
p |φ†ν(p)|Ψ(N)

0 〉|2

E − (E
(N+1)
p − E(N)

0 ) + iη

+
∑

h

|〈Ψ(N−1)
h |φν(p)|Ψ(N)

0 〉|2

E − (E
(N−1)
h − E(N)

0 ) + iη
, (5.17)

where η → 0+, φ and φ† are annihilation and creation operators in mo-

mentum representation respectively, Ψ
(N+1)
p are eigenstates of the total

Hamiltonian with N+1 neutrons and Ψ
(N−1)
h are eigenstates with N−1

neutrons. The spectral function Sν(p, E) picks out the poles of retarded

Green’s function, which are the excitation energies of adding or removing

a neutron of momentum p with respect to the N -neutron ground state Ψ0.

The strength of the excitation is regulated by the overlap function in the

numerators in the retarded Green’s function. On account of the complete-

ness of the sets of states and commutation relation for the operators, the

spectral function integrates over energy to 1. This allows one to interpret

Sν(p, E) as the probability density for a particle ν with momentum p to

have an energy E [126].

In a noninteracting Fermi gas the spectral function peaks at the kinetic

energy of a particle with momentum p, i.e. S(p, E) = δ[E− p2
/

(2m)]. For

a self-bound slab in a box, in the semiclassical limit behind the transport

for reactions, two such peaks are expected, one at lower energy for slab

interior and one at higher for the exterior, with relative intensity of the

peaks representing the relative share of the size of the box for the slab

interior and exterior. In the Fermi liquid theory the spectral function

of a correlated uniform system is often sought in the Lorentzian form:

S(p, E) ≈ Zp/(2τp)
(E−Ep)2+[1/(2τp)]2 + S ′(p, E), where Ep is the energy of the quasi-

particle with momentum p, τp is the lifetime, Zp is quasiparticle strength
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and S ′ is contribution of incoherent background that ensures that the sum

rule is satisfied [126].

In Fig. 5.4, we show the spectral functions for neutrons in a symmet-

ric system with N = Z = 6 in an L = 15 fm box, at six of the discrete

momenta, in the mean-field calculation and in the full calculation with

two-body residual interaction. The spectral functions are obtained by

evolving the system over 300 fm/c and Fourier transforming the relative

time difference t1−t2 of the Green’s functions. For reference, we provide

in the figure the location where the kinetic energy for a given momentum

is. Multiple spikes are present in both calculations. For three of the lower

momenta, strength is present at about 55 MeV down from the free-space

kinetic energy, about the depth of the potential well in nuclear systems.

The spikes in the mean-field case are sharper, and, for the three lowest

momenta, a few of the peaks in the two different cases overlap almost

perfectly, suggesting that the mean field alone is already responsible for a

significant part of the fragmentation of natural orbitals in momentum rep-

resentation. Notably in the limit of perfectly static infinite-time evolution,

the mean-field peaks would turn into δ-functions, meaning that any width

observed for these peaks in Fig. 5.4 is due to our time domain methodol-

ogy. Inclusion of residual interactions smoothes out and spreads the peaks

and moves some well beyond any resolution impact of our methodology.
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Figure 5.4: Neutron spectral functions vs energy for an N = Z = 6 self-bound system in

an L = 15 fm box at discretized momenta. The red dashed-dot line indicates the kinetic

energy of a free neutron with momentum p. See the text for discussion.

The structures observed in Fig. 5.4 are outside of the reach of semiclas-

sical transport theory. Telling is the fact that to resolve the structures in

the spectral function reasonably well, we had to evolve the system for over

300 fm/c. Key stages of reactions to which transport is applied commonly

last a twentieth of that time [66, 114], meaning that energy structure will

generally be poorly resolved and conservation in binary collisions will not

hold [127].
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Figure 5.5: Momentum state occupation for neutrons in the same N = Z = 6 ground-

state system as in the preceding two figures and for a Fermi gas. The dashed, dash-dotted

and solid lines represent the Fermi gas at temperature T = 3.6 MeV, the mean field system

and the correlated system, respectively.

In Fig. 5.5, we show the momentum distribution for neutrons in the

same N = Z = 6 system we have been discussing and for a noninteracting

Fermi gas at temperature T = 3.6 MeV. The high-momentum tails seen in

the uncorrelated mean-field case and the case with short-range two-body

interaction lack the features of a free Fermi gas at finite temperature,

suggesting again that the underlying picture cannot be entirely captured

in the Fermi liquid theory. In particular, the high-momentum (> p1D
F ≈

195 MeV/c) tail accounts for about 25% of the neutrons in the correlated

system, comparable to what is reported to be around 20% in nuclei in

nature [128–130], while the corresponding proportion in the uncorrelated
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system is just about 10%. A significant number of the high-momentum

nucleons are present due to the short-range two-body interaction.

5.4 Exploring dissipation with isovector oscillation

in a finite system

To describe heavy-ion collisions at the intermediate energies ranging from

tens of to hundreds of MeV/u, it is important to include dissipation of the

relative energy in the center of mass frame in the dynamics, which is lacking

in the conventional TDHF theory. However, as discussed in the preceding

section, effects of the short-range two-body interactions included in the

correlation integrals in the NGF approach can be interpreted as scattering

and rearranging population of orbitals. In fact, these integrals turn into

collision integrals in the kinetic limit for the theory.

To explore the dissipative effects introduced by the short-range two-

body interactions in the NGF approach, we simulate the isovector-like

oscillation of neutrons and protons in a finite system. The simulations are

performed in two different settings, one with only mean field dynamics,

which is equivalent to the case in TDHF theory, and the other with both

mean field dynamics and residual two-body interactions. For each setting,

we prepare a symmetric nuclear system with N = Z = 4 in its ground

state at the center of a box, employing the adiabatic switching technique

discussed before. The time is reset to t = 0 fm/c after completion of the

adiabatic evolution. At t = 0 fm/c, we then perturb the neutron slab and

the proton slab, which have been overlapping with each other perfectly.

Specifically, we apply opposite jolts to the neutron and proton slabs, that
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take the form of Galilean boosts to the same-time lesser Green’s functions

G<
n/p at t = 0:

G≶, after
n/p (x, 0;x′, 0) = exp

(
± iPx

~

)

×G≶,before
n/p (x, 0;x′, 0) exp

(
∓ iPx

′

~

)
, (5.18)

where P is the small momentum boost of the order of 55 MeV/c, equivalent

to 1.6 MeV in kinetic energy per nucleon. After the jolts, the neutron and

proton center of mass start to move away from one another, but as particles

reach the edge of their optical potentials, they retreat and the centers of

mass move back. Fig. 5.6 shows the evolution of the density profiles for

neutrons and protons for the setting with mean field only. The position of

the center of mass for the neutron slab X̄ can be seen, for both scenarios,

in the top panel of Fig. 5.7. When the residual interaction is present, the

isovector oscillation is much more strongly damped.
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Figure 5.6: Isovector-like oscillation of the neutron slab and the proton slab with mean-

field approximation. The red line represents the neutron density profile and the blue line

represents the proton density profile.

On top of the isovector oscillation in Fig. 5.6, one may observe there

deformations of the neutron slab and the proton slab with respect to their

own center of mass. Since the slabs are not rigid, it is conceivable that one

induces other forms of oscillation. The additional changes may progress at

the same or multiple of the isovector frequency, or at a completely different

frequency. For more insight we evaluate two more moments for a neutron

slab and plot them as a function of time in the lower two panels of Fig. 5.7.

Specifically, the center panel displays the second moment about the center

of mass of the neutron slab, 〈(X − X̄)2〉 12 , describing the breathing mode

for the neutron slab and also for the whole system after the isovector mode
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dies down. Finally, the bottom panel displays the third moment about the

center of mass of the neutron slab, 〈(X − X̄)3〉 13 , representing skeweness

of the slab around the center of mass.
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Figure 5.7: Evolution of the lowest three moments of the neutron slab. The red lines and

the black lines correspond to calculations with mean field only and the full calculations,

respectively.

The higher moments, quantifying behavior of the farther-out features of

the density distribution, reach higher values in Fig. 5.7 than does the center

of mass position. No matter what moment is considered the damping of

its oscillations is much stronger for the dynamics with correlations than
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without. In fact within the considered time interval hardly any damping

is observed for the pure mean-field dynamics. While the oscillations in the

center of mass are fairly sinusoidal, indicating the dominance of a single

frequency, this is less so for the higher moments. The oscillations in the

third moment are in phase with the those in the first, but are definitely

anharmonic, suggesting that initialization of the Green’s functions, with

the same boost parameter at low densities as at high, might be too naive.

The second moments exhibit different periodicity than the odd moments,

suggesting that an isoscalar breathing mode got excited and progresses at

a different frequency than isovector. Both the third and second moment

damp away at a slower rate than the first moment, when the correlations

are present. In the case of the third moment, the difference in damping

compared to the first moment is subtle and can be due to the fact that

the correlations weaken at the low densities that get tested by the high

moment. In the case of the second moment the damping is weak at longer

time and we suspect that this is due to the peculiar nature of two-body

scattering in the semiclassical limit in one dimension, where the orbitals

either persist or interchange. The interchange will shuffle the momentum

between neutron and proton slabs, damping the isovector mode, but do

nothing to the isoscalar mode once the isovector mode dies out. The glitch

in the third moment occurring at 25−30 fm/c is likely due to ripples in the

density tails, produced by the boost, coming from both sides and colliding

at the boundary of the periodic box. Some early time transient behavior

in the correlated dynamics is also due to the fact that the jolts are taken

to be of a short duration compared to the relaxation of correlations.
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5.5 Galilean Covariance

The Kadanoff-Baym equations transform covariantly under Galilean trans-

formation of the reference frame. That means that Galilean transformed

solutions from one frame should remain solutions of the equations in an-

other frame. Obviously there is no guarantee that this remains true in

a numerical solution. Discretization in space introduces a cut-off in mo-

mentum space that does not transform covariantly. Practical violations of

the covariance may impair studies of moving matter whether in collective

oscillations or in collisions. In the context of the latter, we need to prepare

slabs in their ground state, boost them and direct against each other. Due

to violation of covariance, the boost can potentially excite the slab and

lead to its break-up ahead of any collision.

In this section, we explore impact of a boost on a slab in practice. In

the calculation we use a box of size L = 15 fm with periodic boundary

conditions. We prepare a symmetric system with N = Z = 2 at the

center of the box as usual. We then boost the slab to provide it with

a momentum per nucleon P . When working with a periodic box, the

momenta in representing the Green’s functions are discretized with the

spacing of ∆p = h/L. We simplify the boost by taking P = 2∆p, or

wavevector k = 2(2π/L) ' 0.838 fm−1, corresponding to boost velocity

V = P/m = 0.176 c. With this the Green’s functions can be shifted over

momentum mesh without interpolations.

The correlation integrals in the Kadanoff-Baym equation involve the

integration of the entire history of the system, rendering the dynamics

non-Markovian, in sharp contrast to both semi-classical transport theories
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and the TDHF theory. If the boost were applied to the end of the adiabatic

evolution, we would be boosting the single-particle characteristics, but

not two-particle correlations. We can afford it to a degree when exciting

isovector oscillations, risking some heating of the system in addition to

that occurring anyway due to dissipation of the collective oscillation. The

local Galilean boost operator T (x, t;V ), that transforms a Green’s function

from a frame of a still system with positions in terms of coordinate x to

one in terms of x′ = x+ V t, according to

G≶
moving(x

′
1, t1;x

′
2, t2) = T (x1, t1;V )G≶

still(x1, t1;x2, t2)

×T ∗(x2, t2;V ) , (5.19)

is

T (x, t;V ) = exp
[iP
~

(x+ V t/2)
]
. (5.20)

In momentum representation this yields

G≶
moving(p1, t1; p2, t2) = e−

iV t1
~ (p1−P/2)G≶

still(p1 − P, t1; p2 − P, t2)

×e
iV t2
~ (p2−P/2) . (5.21)

When starting investigation of a boosted slab at t0 = 0, the transformation

is applied to functions where one of the arguments coincides with t0 and

the other either coincides with or precedes t0.

After applying the boost transformation in momentum, we evolve the

system according to the Kadanoff-Baym equations in the standard man-

ner. The evolution of the density profile for a boosted slab is illustrated in

Fig. 5.8. Specifically in panel (a) we show the initial profile with a dash-

dot line. In the subsequent panels (b)-(d), we subsequently advance the

evolution by 30 fm/c in each, displaying the latest profile with a solid line
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and intermediate profiles, at 15 fm/c intervals, with dashed lines. It is ap-

parent that the slab moves at a uniform pace. Some small variations in the

profile are seen, potentially related to spatial discretization, but these are

not significant enough to be of concern in exploring slab collisions. With

this, we demonstrate covariance of the NGF approach adequate enough

for future studies of the collisions.
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Figure 5.8: Evolution of density for a correlated N = Z = 2 slab boosted with velocity

V = 0.176 c. The initial density is illustrated with a dash-dotted line in every panel. The

panels (b)-(d) show evolution advanced subsequently over 30 fm/c, with the latest profile

illustrated with a solid line. Intermediate profiles at every 15 fm/c are illustrated with

dashed lines.

5.6 Summary and future prospects

In this chapter, we have discussed the application of the NGF theory to

the description of the dynamics of one-dimensional correlated nuclear sys-
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tems in different scenarios. The preparation of finite nuclear systems is

relevant for the initialization of projectile and target in simulating nuclear

collisions. The dissipation arising from the short-range two-body interac-

tions, demonstrated in the isovector-like slab oscillation, can give rise to

the stopping effects in collisions. One should bear in mind that the dissi-

pation in one dimension simulated in the current numerical model may not

have captured the entirety of the actual dissipation in three dimensions.

In a three-dimensional description, relative longitudinal momentum can be

effectively redirected into the transverse directions, presumably enhancing

the dissipation. In the current one-dimensional description, dissipation

effects are still largely confined to the internal excitation of the systems in

terms of exchanging momentum. The translation of a stable slab partially

mimics the situation of two nuclei approaching each other before making

contact, but we do acknowledge that boosting two stable slabs in the op-

posite directions requires more careful design and is thus out of the scope

of this paper.

We shall also briefly touch on the limitations and possible future exten-

sions of the current NGF model. The tremendous amount of CPU hours

and memories needed to solve the Kadanoff-Baym equation numerically

renders direct simulations in higher dimension computationally infeasible.

In fact, even in the current model, we needed to look for techniques to

reduce the computational cost and the calculations have only been possi-

ble on high-performance computer clusters. We have used OpenMP [131]

to parallelize the code so that independent loop iterations can be carried

out simultaneously on multiple cores. We also made the observation that,

at any given moment t, in propagating the Green’s functions G<(·, t′, ·, t)
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and G>(·, t, ·, t′) with t ≥ t′, only the history correlated with the current

is relevant, i.e., quantities with time arguments (t, t′) or (t′, t). This allows

for the use of arrays with just one dimension in time for t′, which can be

overwritten during the propagation of t, in sharp contrast to the naive way

of storing quantities in both of the temporal dimensions. The optimiza-

tion made so far makes no compromise on the exactness of the numerical

solutions in the stated framework. Further reduction in time or memory

is possible under the assumption that elements far off the diagonal are

negligible. In fact, in Ref. [115] it was demonstrated that far off-diagonal

spatial elements of Green’s functions may be dropped with impunity and

one may hope to be able to introduce a finite memory time limiting extent

in time. These could reduce the time and memory cost of computations.

Regarding extension of the scope, the current separate parametriza-

tions of mean field and residual interactions represents some limitation.

Progress towards consistency between the interactions could be reached

by solving the T -matrix equation [118] with an interaction more represen-

tative of a bare interaction. With a separable approximation to the latter,

the computational effort would not be much more serious than the cur-

rent. At low energies, excitations of chaotic collective modes can compete

with nucleon-nucleon collisions in equilibrating larger colliding systems.

Accounting for such excitations can be achieved with a ring approxima-

tion to the self energy, again requiring quite similar computational effort

to the current. Beyond the short-range correlations, extensions can be

conjectured to the current NGF model to treat pairing correlations upon

differentiation of the spin degrees of freedom. Paring effects have been in-

corporated into collisions in a three-dimensional TDHF code through the
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initialization of Bardeen-Cooper-Schrieffer (BCS) ground states [104], with

the caveat that the paring amplitudes are kept fixed during the evolution.

A more proper way to treat paring correlations in time-dependent pro-

cesses is to solve the TDHF-Bogoliubov (TDHFB) equation [27, 102, 103].

It is unclear how paring can enter the current picture of the NGF theory.

Still, following the footprints of the TDHFB theory, one may try includ-

ing a time-diagonal paring-Green’s functions of the form 〈φ(x1, t)φ(x2, t)〉,
analogous to the abnormal density or the pairing tensor κ(t) in the TDHFB

theory. A paring term ∆ shall enter the Hamiltonian when the Kadanoff-

Baym equations for the normal Green’s functions are solved. An additional

equation for the time-diagonal paring-Green’s functions void of the short-

range interactions, mimicking that for the paring tensor [103], also needs

to be solved simultaneously. Within such a naive conjecture, violation of

total particle number and total energy might arise though.

In the end, we conclude that this work extends the application of the

NFG theory in nuclear physics beyond the mean field approximation and

lays the ground for the future study of nuclear collisions, taking us one

step closer to a fully quantum-mechanical and realistic transport model.

A multitude of extensions and optimization can also be considered and

implemented for the improvement of this model.
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Chapter 6

Conclusion

In this thesis, we presented two time-dependent transport models for HIC,

which represent the two major directions for future developments of trans-

port theory. The one-body Langevin transport model incorporates fluctu-

ations to take into account the effects of many-body correlations and at-

tempts to address fragmentation in HIC at intermediate energies; the NGF

transport model treats nuclear collisions in a fully quantum-mechanical

and self-consistent manner, capable of describing both the mean-field dy-

namics and the short-range two-body correlations.

In Chapter 2, we described how we had arrived at a purely one-body

transport model based on Langevin dynamics starting from the conven-

tional BUU equation. The formulation of the new model was discussed

at length and the technicalities in the numerical implementation, includ-

ing a self-consistent method to solve the Thomas-Fermi equation for the

initialization of stable nuclei, were carefully documented.

In Chapter 3, we presented a series of benchmark results to demon-

strate the reliability and compatibility of the one-body Langevin transport

model. We first simulated the Au + Au collisions at two incident ener-

gies, 100 MeV/nucl and 400 MeV/nucl, at an impact parameter of 7 fm.

97



We compared the rapidity distributions dN/dy, the average in-plane flow

〈px/A〉 and the flow parameter d〈px/A〉/dyred and found good agreement

with other existing transport codes at both incident energies under the

same controlled conditions. We also investigated the nearly central colli-

sion Sn + Sn at 50 MeV/nucl, where our model was again shown to be

robust in describing the fragmentation dynamics involved. Results were

compared with two other mature models, SMF and AMD. Despite the

drastic differences in their treatment of stochastic dynamics, all models

yield similar distributions for the primary IMF multiplicity.

In Chapter 4, we investigated the so-called “hierarchy effect” in the cor-

relation between charge and velocity of PLFs reported in experiment. The

collision of focus was Ta+Au at 39.6 MeV/nucl. By analyzing the proper-

ties of the primary PLFs generated in the simulation with the Brownian

motion model, we confirmed that the PLF with the greatest charge tends

to have the greatest velocity component and be forward-peaked, and the

existence of a weak positive correlation between charge and velocity. These

observation contrast the idea of IMF being emitted from an equilibrated

source, and can only be interpreted with a dynamical transport model,

such as the one presented in this thesis. We also simulated U+C at 24

MeV/nucl and could not predict any relevant fragmentation phenomenon,

due to the model’s inability of describing statistical decay. This, however,

does not contradict the lack of “hierarch effect” reported for the same

system in experiment.

In Chapter 5, we first presented a quantum-mechanical transport model

based on NGF, and, in particular, showed how short-range two-body cor-

relations were naturally included in the full-fledged Kadanoff-Baym equa-
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tion. The EoS E/A(ρ) of correlated nuclear matter in one dimension

was calculated. We demonstrated the correlation effects by comparing

natural orbital occupancy n, spectral functions S(p, E) as well as the mo-

mentum distribution f(p) of nuclear systems in 1D, with or without two-

body correlation. The dissipative effects brought by two-body correlation

was evidenced by simulation of the damping of spatial multipole moments

〈(X − X̄)n〉 1n of 1D nuclear systems. In the end, we also verified that

the simulation preserved the Galilean covariance, which paved the way for

future study of collision of 1D slabs.

Lastly, the work in this thesis represents just a very narrow niche of the

development of transport theories in the broad study of HIC physics, and

certain aspects of the transport models discussed here may come across

as ad hoc and/or primitive. It is, nonetheless, hoped that this record of

work could shed some light on the muddy issues of the incorporation of

fluctuations and quantum effects into transport models, and be a potential

source of inspiration for any future development.
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Appendix A

Fokker-Planck equation and

Langevin equation

In this appendix, we provide a summary of the derivation of the Fokker-

Planck equation detailed in Ref. [80] and discuss the corresponding Langevin

equations of different forms.

Consider the following Boltzmann collision integral for arbitrary statis-

tics,

Icoll =
g

h3

∫
d3pb

∫
dΩ

dσab
dΩ

vab[f̃af̃bfa′fb′ − fafbf̃a′f̃b′]. (A.1)

fx is to be regarded as the shorthand notation for the one-body phase

distribution function f(px). f̃ = 1+λf with λ = −1, 0, 1 corresponding to

Fermi-Dirac, Boltzmann, and Bose-Einstein statistics. g is the degeneracy

factor.

For a pair of particles with momenta pa and pb, vab is the relative

velocity, and dσab/dΩ is the differential cross section, where the scattering

angle Ω is defined in the center-of-mass frame of the pair. Final momenta

are denoted by primed subscripts.

In the center-of-mass frame, the initial state of the colliding pair is char-

acterized by the relative momentum qab = pa−pb and the total momentum
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Pab = pa+pb. When only elastic collisions are under consideration, Pab re-

mains constant and qa′b′ = qab. It follows that the final relative momentum

qa′b′ is completely determined by the scattering angle Ω = (θ, φ).

For a φ-independent and forward-peaked cross section, we can first make

the following expansion over the polar angle θ at a fixed azimuthal angle

φ, and then truncate it up to the leading order term upon integration over

φ,

f̃af̃bfa′fb′− fafbf̃a′f̃b′ = f̃af̃b

[ ∞∑
n=0

θn

n!
∂n

∂θn (fafb)
]∣∣∣
θ=0

−fafb
[ ∞∑
n=0

θn

n!
∂n

∂θn (f̃af̃b)
]∣∣∣
θ=0
. (A.2)

The zero-order term vanishes conveniently. Since

qa′b′ = qab(sinθ cosφ, sinθ sinφ, cosθ), (A.3)

the usual chain rule gives

∂

∂θ
=
∑

i

∂qia′b′

∂θ

∣∣∣
θ=0

∂

∂qia′b′
, (A.4)

where ∂qa′b′/∂θ|θ=0 = qab(cosφ, sinφ, 0). The integration of ∂qa′b′/∂θ|θ=0

over φ is zero, so the leading order term in Eq. (A.2) is of second order.

It is easy to show that
∫ 2π

0

dφ
∂2

∂θ2

∣∣∣∣∣
θ=0

= π

(
− 2

∑

i

qi
∂

∂qi
+ q2

∑

ij

∆ij ∂2

∂qi∂qj

)
, (A.5)

where the subscript ab for q is suppressed for brevity and ∆ij = δij−qiqj/q2

is a projection operator onto the plane perpendicular to qab.

Upon inserting the truncated expansion integrated over φ into the Boltz-

mann collision integral Eq. (A.1) and noting that ∂/∂qiab = 1
2(∂/∂pia −

∂/∂pib), one will arrive at the following Fokker-Planck equation,

∂fa
∂t

= −∇pa
·
[1

2

(
R̃a + f̃aRa

)
fa

]
+∇2

pa

(
Dafa

)
, (A.6)
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where

Ri
a = − g

h3

∫
d3 pb fb Fab q

i
ab, (A.7)

R̃i
a = − g

h3

∫
d3pb fb f̃b Fab q

i
ab, (A.8)

Dij
a =

g

4h3

∫
d3pb fbf̃bFab(q

2
abδ

ij− qiabqjab), (A.9)

and

Fab = (πvab/2)

∫ 1

0

θ2 (dσab/dΩ) d cos θ. (A.10)

By assuming that the evolution of particle momentum p is a Gaus-

sian random process and that the evolution of the momentum distribution

f(p, t) follows the Fokker-Planck Eq. (A.6), one can write down the cor-

responding single-particle Langevin equation of the Itô form[132, 133],

dp =
1

2

(
R̃ + f̃ R

)
dt+ σdBt, (A.11)

where σ is a 3×3 positive definite matrix such that

Dij =
1

2

∑

k

σikσjk. (A.12)

Bt denotes a Guassian random process with properties

〈dBt〉 = 0, (A.13)

〈dBi
tdB

j
t 〉 = dt δij. (A.14)

Here and in what follows, some subscripts may be dropped whenever no

confusion arises.

When the cross section dσab/dΩ is taken to be independent of qab, one

can verify that ∇pa
· D = 1

2R̃. Hence, the Fokker-Planck Eq. (A.6) has

then an equivalent simplified form,

∂f

∂t
= −∇p ·

(1

2
f̃ R f

)
+∇p · (D∇pf). (A.15)
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This form of the Fokker-Planck Eq. (A.15) has the corresponding Langevin

equation of the Stranovich form[132, 133],

dp =
1

2
f̃ R dt+ σ ◦ dBt. (A.16)

Note that the two forms of Langevin equations are equivalent. For the

purposes of numerical integrations, in the Itô form, successive increments

are evaluated at the beginnings of each time step, while they are evaluated

at the mid-points of each time step in the Stranovich form. Readers may

refer to Ref. [132, 133] for a more detailed discussion of the two forms of

Langevin equations.
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Appendix B

Generalized Einstein relation in

thermal equilibrium

Consider a system of particles of arbitrary statistics characterized by a

momentum distribution function f(p, t), whose evolution follows the afore-

mentioned Fokker-Planck equation,

∂f

∂t
= −∇p ·

[1

2
(1 + λf)Rf

]
+∇p · (D∇pf), (B.1)

where λ = −1, 0,+1 correspond to fermions, classical particles and bosons,

respectively. The thermal equilibrium momentum distribution function

feq(p;T ) at constant temperature T is stationary, and hence should be

solutions to Eq. (B.1) in the absence of external fields.

The two terms on the right hand side of Eq. (B.1) can be identified

with divergences of the dissipative momentum current Jdiss = Ffricf =

1
2(1 + λf)Rf and the diffusive momentum current Jdiff = −D∇f . In

thermal equilibrium, at any arbitrary location p in momentum space, the
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net momentum current must vanish: J
(eq)
diss (p) + J

(eq)
diff (p) = 0, i.e.,

J
(eq)
diss + J

(eq)
diff =

1

2
(1 + λfeq)Reqfeq −Deq∇feq

=
1

2
(1 + λfeq)Reqfeq

+Deqfeq(1 + λfeq)
p

mkBT

= 0, (B.2)

which yields the generalized Einstein relation in thermal equilibrium,

Deq p

mkBT
= −1

2
Req. (B.3)

Note that the drift coefficient Req and the diffusion tensor Deq are evalu-

ated with the same equilibrium distribution feq at constant temperature

T , and that this generalized Einstein relation holds true for all types of

statistics. The relation can also be broken down into a component-wise

form, ∑
jD

ij
eqp

j

−Ri
eq

=
mkBT

2
, (B.4)

for i = 1, 2, and 3.

Direct numerical integrations of the coefficients by definitions in Eq.

(A.7) – (A.9) have also been performed to confirm the generalized Einstein

relation in the thermal equilibrium limit.
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