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ABSTRACT

ANALYSIS TECHNIQUES AND DIAGNOSTICS OF LOW β HADRON
BEAMS

By

Christopher James Richard

Beam diagnostics are essential to the operation of particle accelerators. They are used

to tune the accelerator, verify beamline modes, and ensure minimal beam loss and crucial to

the machine protection systems. The diagnostic suite is usually set when the accelerator is

initial constructed. If additional measurements are desired, it can be challenging to add new

diagnostic devices due to spacial constraints. Another approach to gain more information

about the beam is to develop new analysis techniques for the existing diagnostic devices.

This thesis presents further analysis of measurements from two devices. Firstly, it dis-

cusses converting phase space measurements taken with an Allison scanner from position-

angle coordinates to action-phase coordinates. In this coordinate system, the distribution

is stable under changes to linear optics. This allows for direct comparison of phase space

measurements taken at different locations or with different transverse focusing. Secondly,

beam profile measurements taken with Beam Position Monitors (BPMs) by measuring mul-

tiple harmonics are presented. The measurements are primarily focused on non-relativistic

beams and the challenges associated with these measurements.

Lastly, the design of a test stand to calibrate BPMs for non-relativistic effects is presented.

The test stand relies on a helical transmission line can can propagate signals with phase

velocity of 0.03c.
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Chapter 1

Introduction

1.1 Hadron Accelerators

Hadron accelerators play a critical role in fundamental science as well as industry. Nuclear

physics makes use of heavy ion accelerators to produce rare isotopes for studies. These

machines, such as FRIB, continualy push towards higher beam intensities to increase the

creation rate of rare isotopes. The high intensity beams can quickly cause significant damage

to the accelerator if even a small portion of the beam is lost. Similar issues are faced by proton

accelerators, such as the Large Hadron Collider at CERN and the Proton Improvement Plan

2 upgrade at Fermilab, that push for higher and higher energies for high energy physics

experiments. Other hadron machines used in industry and medical fields, require minimal

beam losses to minimize down time.

Essential to all of these accelerators is a diagnostics suite to ensure a high quality beam is

passing through the accelerator with minimal losses. The diagnostic system typically includes

a variety of devices to measure the beam current, position, size, and other properties.

Ensuring minimal losses starts at the low energy front end which is significantly longer

than electron accelerators due to the mass of hadrons causing them to accelerator slower.

Measurements of the beam position and size need to be taken to ensure the beam is properly

matched to the rest of the accelerator. If the beam is too large or has significant halo or tails,

the extraneous particles can be removed via purposefully scraping the beam with less concern
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of radiation from the particles hitting the scraper or boring holes through the scraper. The

lower energy also causes the beam to be less rigid allowing for more manipulation of the

beam which can enable certain diagnostic techniques and use of certain devices.

The first step in ensuring a quality beam is leaving the low energy front end is to measure

the beam. To do this, we need to understand the signals produced by the diagnostic devices,

how they relate to the beam, and their limitation. This ongoing study of existing devices

can lead to development of new diagnostics or to devise new analysis techniques that can be

applied to glean more information about the beam.

This thesis discusses new techniques for two diagnostics. Chapter 2 presents an analysis

technique for space space distribution measurements using action-phase coordinates instead

of the standard position-angle coordinates. Chapter 3 discusses broadband measurements

using Beam Position Monitors (BPMs) to measure the bunch profile. This focuses on beams

traveling at non-relativistic velocities where the measured signals must be related to be beam

through the electric field. In chapter 4, the design on a BPM test stand capable of calibrating

for the non-relativistic effects outlined line chapter 3 is presented. Chapter 5 concludes this

thesis with a brief discussion on the challenges of the presented techniques and optimistic

hope for better measurements in the future.
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Chapter 2

Analysis of Phase Portraits using

Action-Phase Coordinates

It is insufficient for prevention of beam loss to only measure the beam profiles at a given loca-

tion. As the beam is transported down the beamline, particles move in transverse position-

velocity (x − x′) phase space and alternate between having large traverse position offsets

x and large transverse velocities x′. The transverse velocity is typically normalized to the

longitudinal velocity and called angle and denoted in radians. Therefore, if the beam size in

position is measured at a given location and it appears to be sufficiently small to avoid losses

downstream, it is possible for particles that had small offset but large angle to later have

smaller angles and larger offsets and be lost. By measuring the beam distribution in x− x′

phase space it can be ensured that the beam is within the admittance of the beamline, i.e.

the maximum size in phase space that can be transported through the accelerator without

losses. The distribution in phase space is often characterized in terms of the emittance ε and
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Twiss parameters

ε =

√〈
x2
〉 〈
x′2
〉
− 〈xx′〉2 (2.1)

β =

〈
x2
〉

ε
(2.2)

α = −
〈
xx′
〉

ε
(2.3)

γ =

〈
x′2
〉

ε
=

1 + α2

β
(2.4)

where the terms in 〈...〉 are the second order moments of the phase space distribution and

are often rms values. The emittance is the area in phase space that the beam occupies and is

a conserved quantity for linear focusing. The emittance is often normalized by multiplying

by the product of the relativistic factors βrγr so it remains constant during acceleration.

The maximum ε than can be transported through the beamline is known as the acceptance.

Measurements of the phase space, referred to as phase portraits here, are taken to ensure the

beam is within the acceptance. Particles far from the beam center are typically considered

to be part of the beam tails or halo [1, 2]. These particles are the most likely to be lost in

the accelerator. Therefore, knowledge of the size and extent of the beam tails in phase space

is desired so they can be removed via scraping if necessary.

However, measuring tails is challenging. A variety of techniques and definitions are

used to measure and quantify beam tails [3, 4], however, understanding the dynamics of

the distribution from direct comparison of different phase portraits in x− x′ coordinates is

challenging since the portraits may differ dramatically when the Twiss parameters change

even for purely linear optics (e.g. Fig 2.14 (a)) [1]. Instead, it can be beneficial to describe
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the phase portraits in action-phase coordinates. The action J and phase φ are defined as

J =
1

2

(
γx2 + 2αxx′ + βx′2

)
(2.5)

φ = − arctan

(
αx+ βx′

x

)
(2.6)

where α, β, and γ are the Twiss parameters and x and x′ are the position and angle coor-

dinates of a particle [5].

In linear optics with no x-y coupling, action is a constant of motion, i.e. the action

of a particle remains the same along the beamline even if the optics settings are changed.

Therefore, a description of the particle distribution over the action provides a more stable

description of the beam, allowing for easier distinction of beam tails and changes in the beam

distribution.

There are many different types of instruments for measuring the transverse phase space

distributions including pepperpots, tomography, slit-harp scanners, two slit scanners, and

Allison-type scanners. The phase space measurements presented in this chapter were taken

with an Allison scanner in the Medium Energy Beam Transport line (MEBT) at the Proton

Improvement Plan II Injector Test (PIP2IT) facility at Fermilab [6]. Allison scanners [7]

consist of a rigid box with a thin slit on either end and a variable electric dipole between

the slits (Fig. 2.1). The beam is intercepted by the front plate and particles can only pass

through the first slit to select narrow position range. The passed beamlet is deflected by the

dipole field until it strikes rear wall. If the particles have the correct transverse angle then

the deflection will cause the particles to pass through the second slit and into a Faraday cup

to measure the passed current. For an Allison scanner of length ` and a beam of mass m
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Figure 2.1: Simplified schematic of an Allison scanner. The red line shows the trajectory of
particles through the device.
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Figure 2.2: Measured phase portrait in x − x′ coordinates and J − φ coordinates taken at
location 1.

traveling at v = βc� c the passed angle x′0 for a given voltage V is

x′0(V ) =
qV `

2mβ2c2
. (2.7)

The 2D transverse phase space can therefore be measured by stepping the whole box through

the beam so the front slit can take slices at different positions and at each position the electric

dipole strength is swept to scan a range of angles. At each position-dipole setting the current

on the Faraday cup is measured to determine the intensity of the beam in the small phase

space area that passed through the scanner. An example of a phase portrait measured with

an Allison scanner is shown in Fig 2.2 in x − x′ coordinates and with each pixel converted

into J − φ coordinates.
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Table 2.1: Parameters of the PIP2IT MEBT Allison scanner

Parameter Value Unit
Slit size 0.2 mm
Slit separation 320 mm
Plate voltage ±1000 V
Plate length 300 mm
Plate separation 5.6 mm
Maximum measurable angle at 2.1 MeV ±12 mrad

Figure 2.3: Final configuration of the PIP2IT MEBT (side view). Transverse focusing is
provided by quadrupoles with two doublets and seven triplets.

The PIP2IT MEBT was assembled and beam measurements were performed in several

stages between 2016 - 2018. Its configuration at the end of 2018 run is shown in Fig. 2.3.

The main beam parameters are summarized in Table 2.2. The Allison scanner was used in

three locations and was moved at different phases of the MEBT construction:

1. In section #1, downstream of the second doublet, in the horizontal position

2. In section #5, in lieu of the absorber prototype, in the vertical position

3. Toward the end of the line as shown in Fig. 2.3, in the vertical position.

Most of the measurements presented there were taken in the first location of the Allison

scanner (Fig. 2.4). Results from other two locations are explicitly noted.
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Table 2.2: PIP2IT MEBT beam parameters

Parameter Value Unit
Beam energy 2.1 MeV
Macro-pulse repetition rate 1-20 Hz
Macro-pulse length 0.005-25 ms
Bunch repetition rate 162.5 MHz
Pulse beam current Up to 10 mA
Transverse emittance, rms norm. ≤ 0.23 mm mrad
Longitudinal emittance, rms norm. ≤ 0.34 mm mrad

RFQ

Scraper
Allison
scanner

DumpScraper

Figure 2.4: Initial MEBT configuration.

2.0.1 Allison scanner noise

Measurements with the PIP2IT MEBT Allison scanner unfortunately were noisy. The noise

floor of the scanner was relatively large compared to the measured beam intensities. For

a typical scan of a 5 mA beam, its rms noise is 0.2%-0.3% of the maximum amplitude for

nominal operation. This limited the dynamic range of the device to ∼2 orders of magnitude.

In addition, the beam properties varied during the time it takes to make a scan (approx-

imately 5 minutes for typical scans). Significant jitter of the beam centroid was measured

with the BPMs in the MEBT, but the source of the jitter could not be located nor the jitter

eliminated [8]. In the MEBT, the jitter is predominately in the vertical plane with the am-

plitude varying along the beamline in accordance with the optics and reaching up to 0.2 mm

rms in amplitude. Spectral analysis of the BPM readings shows the jitter has frequencies up

to ∼3 Hz with no dominant harmonics. Therefore, even individual angular scans are affected
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as it takes ∼1 s to sweep the voltage over the angle range while measuring at 20 Hz. [9] The

majority of the results presented in the following sections use measurements taken in the

first location of the Allison scanner where the scanner was oriented horizontally to reduce

the effects of the jitter.

To estimate the effect of the jitter on the pixel amplitude, multiple phase portraits taken

with the same focusing were used to estimate the rms scatter at each pixel σIi [10]. At

location 2, this was found to increase approximately linearly with the pixel amplitude Ii

(Fig. 2.5 left) with the linear fit

σIi = 0.0067 + 0.024Ii. (2.8)

The intensities vary by 2-3% for pixels near the center of the beam and is dominated by

electronic noise at low intensities. The error bars shown in results from measurements taken

at location one follow Eq. 2.8.

For measurements taken at locations two and three, the jitter in the vertical plane sig-

nificantly increases the variation in the pixel amplitude and follow the general trend (Fig.

2.5 right)

σi =


0.01 + 0.3Ii for Ii < 0.9

0.28 for Ii ≥ 0.9

(2.9)

This jitter has minimal effect on the measured rms parameters of the beam and causes

an error of only ∼2% [9]. However, it confounds detailed measurements of the distribution

in phase space and beam tails.
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Figure 2.5: The rms scatter of the pixel amplitudes plotted as a function of the average
amplitudes (blue) phase portraits measured at location one (left) and location three (right).
The orange lines show the fit from Eqs.(2.8) and (2.9).

2.1 Beam description using J − φ coordinates

2.1.1 Core description

When the phase portraits measured in the MEBT were converted to action-phase coordi-

nates, it was found that in the central portion of the beam, i.e. at small actions, the pixel

amplitude is mostly independent of the phase and decreases exponentially with action

Igauss = I0e
−J/εc (2.10)

which describes a Gaussian distirbution in x − x′ coordinates. On semi-logarithmic scale,

Eq. (2.10) represents a straight-line with slope −1/εc, εc is referred to here as the central

slope. Since Eq. (2.10) describes a perfect Gaussian distribution, the central slope can be

interpreted as the rms emittance of the beam if the Gaussian core was extended and the

tails removed.
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2.1.2 Discussion on the beam distribution

The beam arrives to the MEBT after passing ∼12 betatron periods in the RFQ. After expe-

riencing multiple betatron oscillations in a periodic structure, the beam is expected to relax

toward the Maxwell-Boltzmann distribution [11], which corresponds to Eq. (2.10). However,

it was not obvious that Eq. (2.10) would adequately describe the portraits measured at the

PIP2IT MEBT. One considerations was that the distribution of the beam coming out of the

ion source significantly deviates from Eq. (2.10) for all actions since the beam is initially

spatially limited by the ion source extraction aperture resulting in the beam distribution

coming for the ion source being uniform in position and Guassian in angle. This distri-

bution, referred to here as uniform-Gaussian (UG), is clearly seen in the phase portraits

recorded near the ion source in the PIP2IT low energy beam transport line (LEBT) [12].

The UG distribution, projected into one plane and expressed in terms of action-phase, is

very different from the Gaussian’s:

IUG(J, φ) = I0

√
1− J cos2(φ)

2εUG
e
−J sin2(φ)

εUG

×H
(

1− J cos2(φ)

2εUG

)
(2.11)

where εUG is the rms emittance and H is the Heaviside function

H(x) =


0 if x < 0

1 if x ≥ 0

. (2.12)
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Two other models commonly used for approximating the beam distribution are the Kapchinskiy-

Vladimirskiy (KV) and waterbag (WB) distributions. In action they are

IKV (J, φ) = I0 ·H
(

1− J

2εKV

)
(2.13)

IWB(J, φ) = I0

(
1− J

3εWB

)
H

(
1− J

3εWB

)
(2.14)

where εKV and εWB are the corresponding emittances.

In Fig. 2.6, the high-amplitude pixels within the normalized action J < 0.15 mm mrad

(containing 60% of the measured beam), are plotted together with fits of the idealized dis-

tributions Eq.2.10, Eq. 2.11, Eq. 2.13, and Eq. 2.14. The Gaussian distribution Eq. (2.10)

is the best fit with reduced χ2 = 2.07. For a waterbag distribution, the reduced χ2 = 6.55

while the UG and KV distributions poorly fit the data with the reduced χ2 of 47 and 687

respectively.

The large absolute value of χ2 for the Gaussian fit indicates that Eq. (2.10) does not

fully catches the distribution details. Moreover, the χ2 value grows quickly when including

in the fit additional pixels with larger action. The growth is caused primarily by appearance

of a phase dependence of the pixel amplitudes, which is discussed below.

2.1.2.1 Central parameters

The first attempts to compare the measured data with Eq. (2.10) showed a relatively large

scatter of pixel intensities for any given action, even at low actions (Fig. 2.7, blue). This was

caused by the choice of Twiss parameters used to define the action which can significantly

affect the distribution in J −φ coordinates. For the distribution of Fig. 2.7, blue, the Twiss

parameters used were the rms parameters of the entire beam (referred here as the rms Twiss
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Figure 2.6: Comparison of the measured distribution in action in the beam core (black) with
several ideal distributions: Gaussian, KV, UG, and WB. Note that the UG distribution is
phase-dependent, and, therefore, pixel intensities vary for a given action and is represented
here by the area shaded in green.

parameters). This choice of Twiss parameters results in a large scatter even for particles

with low action because it includes the non-Gaussian beam tails.

Alternatively, the action can be defined using pixels in the ‘central’ portion of the beam.

The central portion was found by removing the lower intensity pixels of the beam then fitting

Eq. (2.20) to determine the ‘central’ Twiss parameters and central slope. The fraction

removed was scanned from 30-60% of the total intensity in 1% steps. Generally, the central

slope increases at large and small cuts (Fig. 2.8). The increase at small cuts is attributed

to the tails affecting the fit and at large cuts poor statistics increases the central slope

significantly when the number pixels is below ∼30. To avoid both of these effects, the

central slope was fit to a cubic polynomial and the cut was chosen to be the point closest to

the minimum of the fitted curve.

When these central Twiss parameters are used to define action, the scatter in the beam’s

central region is reduced (Fig. 2.7, red). This is seen in the reduced χ2 for fitting Eq. 2.10
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Figure 2.7: Action distribution using central Twiss parameters (red) and rms Twiss param-
eters (blue).
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Figure 2.8: Central slope as a function of the portion of the beam removed. The curve is fit
to a cubic polynomial.
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to pixels with J < 0.15 mm mrad which is 64 when using the rms Twiss parameters and 2

when using the central Twiss parameters.

2.1.3 Allison scanner phase dependence

Equation 2.7 to determine the passed angle for a given voltage assumes the slits in the

Allison scanner are infinitesimally small. In reality the slits have finite size 2d. This causes

the measured phase space area for every position-voltage setting to be a rhomboid (Fig. 2.9)

with vertices at

(
x0 + d, x′0

)
(2.15)(

x0 − d, x′0
)

(2.16)(
x0 + d, x′0 −

2d

`

)
(2.17)(

x0 − d, x′0 +
2d

`

)
. (2.18)

This distorts the measured distribution from the true distribution. For example, if a pure

2D Gaussian is measured with an Allison scanner of slit to slit length ` and slits y1 and y2

the measured intensity distribution is given by integrating over both slits [13]

Imeas(x, x
′) =

1

4d2

∫ d

−d

∫ d

−d
exp

(
− 1

2εc

[
γ(x+ y1)2+

2α(x+ y1)

(
x′ +

y2 − y1
`

)
+ β

(
x′ +

y2 − y1
`

)2
])

dy1dy2. (2.19)

The integrand was expanded to second order in y1 and y2 and the resulting measured dis-
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Figure 2.9: The shaded area represents the passed phase space area for a given position and
voltage setting of an Allison scanner. The grid is the displayed pixel size.

tribution up to order d2 is

Imeas(x, x
′) = exp

(
− 1

2εc

[
γx2 + 2αxx′ + βx′2

])
(

1 +
d2

6ε2c

[
εc

(
2α

`
− 2β

`2
− γ
)

+ 2

(
αx+ βx′

`

)2

+

(
αx′ + γx

)2 − 2

(
αx+ βx′

`

)(
αx′ + γx

)])
. (2.20)

This results in a phase dependence of the pixel intensities for all actions. At large J , when

the parameters in Table 2.1 are used, this variation is approximately 2% of the measured

intensity variation at a given action and was generally ignored. However, at low J , this

distortion needs to be accounted for when defining action central parameters.

The effect of the slits can be seen by varying the strength of a quadrupole magnet directly

upstream of the Allison scanner to change the Twiss parameters at the Allison scanner (Fig.

2.10 top). Because this is changing a linear optic, the action distribution and εc should not
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Figure 2.10: Top: Variation of parameters with quadrupole current. Bottom: The central
slope is constant when accounting for the slit size.

change. If the slit effect is not accounted for and the central Twiss parameters are found

by taking rms values over the high intensity pixels, then the central slope decreases linearly

with the quadrupole current (Fig. 2.10 bottom). If instead, the central slope and central

Twiss parameters are found by fitting to Eq. 2.20 then εc is constant within ±5%.

2.1.4 Tail description

The distinction between the beam core and tails is defined by the transition action Jtr where

the distribution deviates significantly from Eq. 2.10. The transition action is found by firstly,

determining the central parameters as outlined above and calculating the action and phase of

each pixel. Then, all the pixels are sorted into normalized action bins Ji, typically 0.05 mm

mrad in size, and the mean amplitude I(Ji) and the standard deviation σInt(Ji) of the

amplitude in each action bin is calculated. The value of Jtr is defined as the action of the
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Figure 2.11: The intensities are binned in action to determine Jtr with Eq. (2.21) to separate
the tails from the core.

bin where the mean amplitude deviates from the fit of Eq. (2.10) by more than three times

the standard deviation of the mean (Fig. 2.11)

I(Jtr)− I0e−Jtr/εc = 3σInt(Jtr). (2.21)

All particles with action less than the transition action are defined to be in the core,

and particles with larger action are in the tail. The percentage of the beam in the tails is

typically about 10-20% of the total intensity.

With this definition, the transition action and percent of the beam in the core are constant

under linear optics. Therefore, these two parameters can be used as a metric for tail growth

due to non-linear effects. In theory the maximum action can also be used. However, in

practice, because the pixel with maximum action has intensity just above the noise floor,

the maximum action is very noisy and is an unreliable measure.

At actions above Jtr the scatter of pixel intensities at a given action visibly increases
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(a) (b) (c)

Figure 2.12: Phase portrait in position-angle phase space (a) and action-phase phase space
(c). The beam splits into two branches separated in phase at large actions. The pixel
amplitude versus action (b) shows deviation from the core distribution at large action.

and clearly deviates from the Gaussian core. The dominant part of this scatter comes from

strong phase dependence with the tail being split into two “branches” of similar intensities

that are separated in phase by approximately π rad which are clearly evident when the data

is plotted in J − φ coordinates (Fig. 2.12). The location in phase of the branches φb is

defined by the phase of the second harmonic of this distribution. This is found by taking

the Fourier transform of the intensities as a function of phase for J > 1.5Jtr. Unfortunately,

attempts to find an analytical description of the tail distribution did not succeed.

Hence, the measured beam distribution is described in action phase coordinates by seven

parameters. The beam core is characterized by the central slope εc and central Twiss pa-

rameters αc, βc and is defined by pixels with action less than the transition action Jtr. All

particles with action larger than the transition action are in the tails which are characterized

by the phase of the branches φb, the maximum action Jmax, and the fraction of the particles

in the core.

Note that because the beam centroid jitter is assumed to be from a single source and

therefore predominately along a single line in phase space, it would add an asymmetry for an

initially symmetric distribution. This effect was modeled using a 2D Gaussian distribution
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with rms parameters equal to the typically measured central parameters and 0.2 mm rms

position jitter added. The resulting asymmetry, quantified by the amplitude of the second

harmonic in phase calculated for pixels with actions J > 0.5 mm mrad, was found to be at

least an order of magnitude lower than observed in measurements.

2.2 Selected beam measurements

2.2.1 Background removal

After taking a scan, the scanner operating program removes the background and calculates

the RMS parameters of the phase portrait. The background removal is performed by setting

to zero all pixels with intensity less than a user-defined threshold. By default, the threshold

is set to 1% of the peak intensity, which is adequate to remove the noise for the nominal

5 mA beam. However, for low intensity beams such rejection does not remove all noise,

artificially increasing the reported emittance. And, for high intensity, the cut level can be

too aggressive, removing otherwise observable beam tails. Therefore a more robust method

was desired.

In order study beam tails, a new method was devised to define the cut threshold based

on the noise level and remove only the pixels that cannot be distinguished from the beam

signal. This cut level is established by firstly, finding the area that is most likely to contain

only noise. The portrait matrix is divided into four identical rectangles, and the rectangle

with minimum total intensity is chosen. A 6×6 pixels square in the outermost corner of this

rectangle is assumed to contain only noise signal. The mean signal of this square is then

subtracted from each pixel over the entire portrait. The rms of the noise level σn in this
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square is calculated and the cut threshold Tc is set to

Tc = Anσn. (2.22)

To determine the coefficientAn, let us consider a rectangular portrait containingNpixels =

K ×M pixels for which amplitudes are determined by random Gaussian noise so that the

probability density Pp of finding a pixel with a given intensity Ip is

dPp
dIp

=
1√

2πσn
e
−
I2p

2σ2n . (2.23)

The probability P0 of having a pixel with amplitude An times higher than the rms noise

amplitude σn is

P0 = 0.5erfc

(
An√

2

)
(2.24)

and he probability P1 of having at least one pixel above the threshold is

P1 = 1− (1− P0)
Npixels ≈ P0Npixels. (2.25)

The cleaning procedure can use P1 to set a cut threshold that will remove all the noise.

To achieve this then An ≈ 3.3. However, if after the cut single pixels remain above the

threshold with all zero neighbors then these can be easily removed. Therefore, the cut level

can be set lower and single pixels can be removed after. For this, the cut threshold needs

to be set high enough so no pairs of neighboring pixels (side-by-side or diagonally) fluctuate
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above Anσn. The total number of independent neighboring pairs Npairs is

Npairs = 4KM − 3(K +M) + 2, (2.26)

which tends to

Npairs ≈ 4Npixels for K � 1, M � 1. (2.27)

The probability P2 that two neighboring pixels are both above the threshold is

P2 = 1− (1− P 2
0 )
Npairs ≈ 4P 2

0Npixels. (2.28)

In practice, it was accepted that one in ∼ 100 portraits may contain an un-removed noise

pair (P2 = 0.01) and calculated the value of P0 from Eq. (2.27) and (2.28) and then the

threshold by inverting Eq. (2.24). For a typical number of pixels of 3000, the multiplier in

Eq. (2.22) is An ≈ 2.2. For the nominal beam in PIP2IT, the cut threshold calculated with

this method is typically ∼0.5% of the peak intensity.

To test the robustness of this method, a horizontal scraper was stepped through the beam

upstream of the Allison scanner and the phase portraits in the vertical plane were measured

at each step. Removal of the beam horizontally results in a lower intensity of a given pixel in

the vertical phase space, so that the peak intensity can be used as a measure of the remaining

current. When the noise-based cut is used, the measured emittance is constant within 10%,

showing that the beam ellipse is not x-y coupled (Fig. 2.13). However, when the same data

are analyzed with the 1% cut, the emittance appears to increase when the peak intensity

goes below ∼1.5, corresponding to a beam current of roughly 2 mA, due to noise flooding

the phase portrait.
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Figure 2.13: Vertical RMS emittance with horizontal scraping. The five data points corre-
spond to 1, 2, 3, 4, 5 mA of beam current after scraping.

2.2.2 Quadrupole scan

To test that the stability of the measured distributions in J − φ coordinates, the strength

of a quadrupole magnet close to the Allison scanner was varied. This is a change to a linear

optic so the Twiss parameters will change but no significant changes in the distribution over

action are expected. Despite the dramatic visible changes of the portraits in x-x’ coordinates

(Fig. 2.14(a)), the distribution in action-phase coordinates stays the same (Fig. 2.14 (d,e)),

and portion of particles outside of a given action is stable for more than 99% of the measured

beam (Fig. 2.14 (f)). The portion of particles in the core and the central slope are found to

be stable (Fig. 2.14(b)) within ±3% and ±5%, correspondingly.

Note that in a given portrait the particle phase is defined according to Eq. (2.6) with

respect to the particles with zero canonical angle, i.e.

φ = 0 at x′c ≡
αx√
β

+ x′
√
β = 0. (2.29)
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(a) (b)

(c)

(d) (e) (f)

Figure 2.14: Analysis of a quadrupole scan. (a) phase portraits in (x,x’) coordinates recorded
at the quadrupole currents increasing from left to right and from top to bottom from 3.06A
to 5.46 A. The x and x’ ranges in each plot are 30 mm and 24 mrad, correspondingly. No
significant variation of the slit - corrected central slope and percent in the core are observed
while a quadrupole strength was scanned (b). The average branch phase agrees with small
changes of the simulated betatron phase (c). Phase portraits in action-phase coordinates for
the minimum and maximum quadrupole currents overlap (d), (e). The portion of the beam
outside of a given action is stable over most of the beam (f).
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Therefore, the phase of the particles for scans with different optics shifts by the difference

in betatron phase advance between these portraits. While a phase shift cannot modify the

appearance of the phase-independent core, the phase position of the tails should change

accordingly. In the case of the presented quadrupole scan (as well as in other quadrupole

scans recorded), the actual change in the phase advance is small because the distance between

the varied quadrupole and the Allison scanner is small. The observed phase position of the

branches is in agreement, within measurement errors, with the simulated phase advance (Fig.

2.14 (c)).

2.2.3 Comparison of measurements in different locations

The stability of description of the distributions in action-phase coordinates allows for com-

parisons of the phase portraits of the beam that have passed through significantly different

optics. As mentioned above, phase portraits were recorded in three locations and with two

scanner orientations over 18 months. The results of measurements, performed with the same

settings for the ion source, LEBT, and RFQ, are summarized in Table 2.3. Each result rep-

resents an average over 10 measurements made on different days in an attempt to separate

day-to-day variability from difference between locations and orientation. Errors are the rms

error over each set of 10 measurements.

Across all three locations of the Allison scanner, the RMS emittance is the same within

these errors. Also, no change, within the scatter, between locations 2 and 3 is observed in

the central slope and fraction of intensity in the core, in which the Allison scanner measured

in the vertical plane. This is interpreted as an absence of measurable changes in the beam

core parameters in the MEBT. Higher values of the central slope and percent in the core

at the location 1 are attributed to the difference between the horizontal and vertical planes,
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Table 2.3: Average rms emittances and core and tail parameters for the three locations of
the Allison scanner. The beam current is 5 mA.

Location rms ε εc % in core
1 - horz 0.20± 0.013 0.146± 0.003 88± 2.5
2 - vert 0.19± 0.015 0.117± 0.013 71± 11
3 - vert 0.22± 0.024 0.123± 0.011 72± 10

since these values stay constant from location 2 to location 3. This difference between the

two planes is also seen in the larger spread in intensities at low action for the horizontal

plane at location 1 compared to the other two locations (Fig. 2.15 (a)). However, direct

comparison by measuring both planes in single location was not performed to confirm this

theory. Outside of 99% of the measured beam intensity, the difference between distributions

is larger that one would expect from statistical fluctuations and reconstruction errors by

comparing with Fig. 2.14 (f). The increase of particle population outside of large actions

from location 2 to location 3 visible in Fig. 2.15 (c) may be a sign of tail growth. However,

due to the limited dynamic range of the Allison scanner, it is difficult to make a definitely

claim.

2.2.4 Distribution at different beam currents

The action distribution can give more information about the beam distribution than the

rms parameters. For example, Fig. 2.16 shows how the beam parameters at location 1 vary

when the current is increased by increasing the extraction voltage of the ion source. All

other settings, tuned to optimize performance at the nominal 5 mA, are kept constant.

Looking solely at the rms parameters that are typically used, an increase in the rms

emittance is seen starting at ∼3 mA corresponding to the flattening of the peak intensity of

the beam. This appears to be a saturation of the beam core resulting in increased tails.
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However, the parameters used to describe the action distribution tell a different story. At

3 mA the fraction of the beam in the core plateaus as does Jtr signifying minimal tail growth

at higher currents. The central slope, however, continues to increase for all currents. At low

current, the growth of the central slope is compensated by a reduction in the size of the

tails resulting in minimal changes to the rms emittance. Above 3 mA, the central continues

to broaden, but tails see less variation. The broadening of the central region results in the

increase in the rms emittance, not tail growth.

2.2.5 Scraping

The MEBT contains four sets of four scrapers (each set consists of a bottom, top, right and

left scraper) used for collimation and machine protection plus a temporary set of two scrapers

(a.k.a. F-scraper, top and right). One goal of the scraping system in the PIP2IT MEBT

is to remove far tails. Intercepting part of the beam with the scraping system was foreseen

as a normal mode of operation, with preliminary estimates made for a phase-independent

Gaussian beam in Ref. [14]. In this case, it is optimal to separate the scraper by π/2 betatron

phase advance to minimize the maximum passable action. However, measurements with the

Allison scanner showed the situation to be more complicated due to the phase-dependent

branches. For illustration, Fig. 2.17 compares phase portraits recorded when removing beam

with a single scraper at different locations. For this study the top scraper was moved into

the beam at each of the stations, one at a time, to intercept 10% of the current (0.5 mA)

based on the measured current at the beam dump. In Fig. 2.17 phase portraits with (red)

and without (blue) scraping are overlapped in x-x’ (left) and J − φ (right) coordinates.

The action and phase of the scraped beams are calculated using the beam centroid and the

central Twiss parameters of the non-scraped beam to maintain the same definition of action
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for direct comparisons.

Figure 2.17 shows that scraping the same fraction of the beam current by different scrap-

ers results in different decrease of the tails due to a strong dependence of the tail intensity

on phase. For example, inserting the scraper M71 (Fig. 2.17(d)) removes primarily the tail

particles, while the scraper just upstream, M61 (Fig. 2.17(c)) misses a significant portion

of the branches and does not reduce the maximum action of the beam. Instead, in order to

remove 10% of the current, the scraper removes particles with lower action. Therefore, in

order to achieve maximal tail reduction for a given reduction of the output beam current,

the beam phasing at the scrapers could be optimized by adjusting the optics and/or scraper

locations such that the phases of the branches are at 0 or π at the scrapers. Alternatively, if

such changes to the optics are not possible, scrapers that are not expected to intercept the

tails can be positioned to remove less of the total beam current.

Visually, Fig. 2.17 hints that for the upstream scrapers propagation through the beam

line smears the scraping boundary beyond of what is expected from the finite width of

the scanner slits. This could be related to non-linear space-charge fields, as expected from

preliminary simulations in Ref. [14]. In attempting to make a numerical estimation of this

effect, one can propagate the scraper footprint using the transfer matrix and calculate the

portion of the particles beyond the cut line in the recorded portrait. A scraper with vertical

offset d from the beam center produces a line in the Allison scanner portrait

y′1(y) =
y

β1
(cot(∆φ)− α1)− d√

β0β1 sin(∆φ)
(2.30)

where subscripts 0 and 1 denote the locations of the scraper and Allison scanner, correspond-

ingly, ∆φ is the vertical betatron phase advance between them, and α and β are the Twiss
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parameters. The center of the coordinate system is placed at the center of the distribution.

The rms Twiss parameters at the scanner are measured directly; the offset and the rms beam

size and, assuming a constant emittance, β0 can be reconstructed from the corresponding

scraper scan. The phase advance, however, needs to be delivered by the optics model. The

rms parameters, simulated by TraceWin [15], are found in a good agreement with the en-

velope measurements performed with scrapers [16], and the phase advances are calculated

using the rms beam sizes and emittances delivered by the program. The scraper footprints

drawn according to Eq. 2.30 are shown on all plots of Fig. 2.17 with solid lines. These lines

were expected to approximately coincide with the scraped edge of the beam distribution.

Unfortunately, this visually is not the case, and numerical estimations of the particles’ dif-

fusion over the scraper footprints cannot be made. A possible interpretation of this result

is that the accuracy of prediction with the linear Courant-Snyder model with uniform phase

advance for all particles becomes unsatisfactory for the case of long propagation of the tails.

Simulations performed with the same initial conditions and the same magnet settings but

with a zero beam current show the phase advances that are larger than at nominal 5 mA

by 10 - 20% (depending on the longitudinal position). Staying within the linear model, one

can visualize the tail particles advancing in the phase with the rate somewhere between zero

current and nominal cases. The dashed lines in Fig. 2.17 drawn with the phase advances

increased by 10% for each portrait are indeed visually closer to the scraper footprints.

This assumption of non-linear optics is supported by an increasing phase shift of the sec-

ond harmonic as a function of action throughout the MEBT. The second harmonic was calcu-

lated by taking the Fourier transform with respect to phase in action bins ∆J=0.05 mm mrad

wide. This was done for measurements at each of the three locations of the Allison scanner

and the phases were shifted by a constant for easier comparison (Fig. 2.18). At location 1,
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the phase is mostly constant with action. At location two, the phase starts to decrease at

lower actions and this behavior becomes larger at location three. The shift in the second

harmonic is approximately proportional to the amplitude of the 0th harmonic in all locations.

This effect can be interpreted as the tails have a different phase advance as the core resulting

in the beam becoming ‘S’ shaped.

This increasing ‘S’ shape can explain that despite having the same εc and fraction in the

core, the distribution at location 3 extends to higher action compared to location 2. The tail

particles are shifting away from the primary axis of the ellipse encompassing the core. This

would cause the tails to move to higher actions without the central distribution or the total

population of tail particles changing.

2.3 Future measurements

This method of analyzing the phase portraits using action-phase coordinates is feasible and

can lead to better measurements and removal of beam tails. Unfortunately with the mea-

surements in the PIP2IT MEBT, the electron noise and beam jitter confounded the mea-

surements making definitive claims of beam growth challenging. While the measurements

presented above are sufficient to show that this method is practical, to further this method,

it would be beneficial to use cleaner measurements.
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(a)

(b)

(c)

Figure 2.15: Comparison of the amplitude versus action distribution (a) and the phase
portraits in action-phase phase space (b) at the beginning and end of the MEBT. The
extent of the far tails is shown in (c). The shaded areas represent the rms errors calculated
by propagation of the pixel amplitude fluctuations.
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parameters (d) for different extraction voltages Vextr. Parameters are plotted as functions
of the beam current in the LEBT.
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Figure 2.17: Phase portraits with scraping. Rows (a) - (d) correspond to moving into the
beam one of the scrapers along the beam line presented in Fig. 2.3; from top to bottom
M00, M11, M61, M71. In each case, 0.5 mA is intercepted out of the initial 5 mA. The row
(e) represents the ’flat’ beam when top and bottom scrapers are inserted in M00 and M11
stations. The solid lines represent the attempt of propagating the scrape lines according to
5 mA beam simulations. The dashed lines represent propagation with the phase advance
increased by 10%. See other details in the text.
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Figure 2.18: Phase of the second harmonic as a function of action for the three measured
locations.
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Chapter 3

Beam parameter measurements using

BPMs

Measurements of the phase space distribution are useful to fully characterize the beam.

However, they can typically only be used in low energy regions of the beam line because

they rely on the lower rigidity of beam. In addition, because these devices intercept the

beam, they must be able to withstand the deposited beam power which becomes more

challenging at higher energies. In addition, because they are inserted into the beamline, the

phase space measurements cannot be performed during operation.

On the other hand, beam position monitors (BPMs) are non-intercepting devices that

are used throughout the entirety of accelerators but they only measure first order moments.

They are one of the primary tools to verify the beam dynamics and tune of the beamline.

Standard analysis of the BPM signals only gives the first order moments of the beam. If the

analysis can be expanded to give more information about the beam distribution, it would

be highly beneficial to operation of particle accelerators.
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3.1 BPM signals

3.1.1 Beam position monitoring

BPMs in hadron linacs commonly use capacitive pickups that couple to the electric field

generated by the beam. These have four pickups located at the top, bottom, left, and right

sides of the beam pipe. To measure the beam position, the image charge generated by the

electric field from the beam on each of the pickups is measured. The radial electric field at

(r, φ) from a pencil beam at (x0, y0) = (r0, φ0) in a pipe of radius Rp traveling at v = βc

and charge modulated with frequency ω is given by [17]

Er(r, φ) =Dω cos

(
ω

[
t+

z0 − z
βc

])∑
n=0

gIn(gr0)

ε0NπIn(gRp)
cos(n[φ− φ0])×

[
I ′n(gr)Kn(gRp)− In(gRp)K

′
n(gr)

]
(3.1)

where In and Kn are the modified Bessel functions of the first and second kind, primes

denote derivatives with respect to the argument, and

N =


2, n=0

1, else

(3.2)

g =
ω

γβc
. (3.3)

The image charge at a point on the beam pipe is

σ = −Dω cos

(
ω

[
t+

z0 − z
βc

])∑
n=0

In(gr0)

NπRpIn(gRp)
cos(n[φ− φ0]) (3.4)
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The signals are measured at two locations on opposite sides of the beam pipe φ = φm

and φ = φm + π. The difference of these two signals divided by the sum is

∆

Σ
=

∑
n

In(gr0)
NIn(gRp)

(cos(n[φm − φ0])− cos(n[φm + π − φ0]))∑
n

In(gr0)
NIn(gRp)

(cos(n[φm − φ0]) + cos(n[φm + π − φ0]))
. (3.5)

Taking terms linear in r0

∆

Σ
≈

2
I1(gr0)
I1(gRp)

cos(φm − φ0)

I0(gr0)
I0(gRp)

(3.6)

∆

Σ
≈
gI0(gRp)

I1(gRp)
r0 cos(φm − φ0) (3.7)

∆

Σ
≈
gI0(gRp)

I1(gRp)
[x0 cos(φm) + y0 sin(φm)] . (3.8)

Therefore the position of the beam can be determined using the ∆/Σ signal from a horizontal

pair of pickups to measure x0 and a vertical pair to measure y0. However, for large enough g

the result is dependent on the measured frequency and beam velocity and therefore multiple

calibrations must be used to correctly measure the beam position as the beam accelerates and

β increases. If g � 1, corresponding to relativistic beams, then Eq. 3.8 becomes frequency

independent

∆

Σ
≈ 2

Rp
[x0 cos(φm) + y0 sin(φm)] . (3.9)

The low β effects are most important in the front ends of hadron machines where the beam is

traveling non-relativistically [18]. For example, at FRIB, with f=161 MHz and Rp ≈20 mm,

these effects become negligible around β ≈ 0.07 [19].

The linear response of Eqs. 3.8 and 3.9 hold for small beam offsets from the center of

the BPM. When the beam is further away, the ∆/Σ signals vary non-linearly with beam

37



position. These non-linearities are mapped on a test stand, described in the proceeding

chapter, and a higher order polynomial is used to calculate the beam position ??.

Equation 3.4, holds for a infinitesimally small beam transversely with charge modulated

longitudinally at a single frequency. While, this is clearly a significant abstraction from

an actual beam, it is an adequate model in most cases of the BPM signals and widely

used. The single frequency model is acceptable because BPM signal processing typically

relies on narrowband filtering to only measure a single harmonic of the bunch repetition

rate to reduce noise. In addition, at higher beam energies, the ∆/Σ signals are frequency

independent. The pencil beam is an acceptable model of the transverse distribution if the

beam is small compared the pipe radius.

When the beam size is larger, the signals measured by the pickups can be modeled by

summing over a collection of pencil beams to generate the transverse profile. The components

of this discretized model far from the center will be affected by the non-linearities in the

pickups’ response and cause the measured position to be distorted ??. This distortion is

dependent on the exact transverse distribution making it challenging to model. Because this

effect is due solely to non-linearities caused by the geometry of the BPM, it is independent

of the beam velocity.

This is effect is typically on the order of a few percent variation and typically is not con-

sidered when determining the beam position. For example, consider a Gaussian beam with

σy = 2 mm located at x0=2 mm and y0=1.0 mm in a pipe of radius Rp = 23.5 mm. When

σx is varied from 1 mm to 5 mm, the resulting ∆/Σ, and therefore position measurement,

varies by 2-3% (Fig. 3.1). While the beam offset is larger than idea, these parameters are

representative of a beam in the FRIB MEBT.
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Figure 3.1: Variation of ∆/Σ when changing σx of a Gaussian beam centered at x0=2 mm
and y0=1 mm for a 47 mmm aperture BPM with 20 mm diameter button pickups.

3.1.2 Bunch profile dependence

While this infinitesimally thin, single frequency model of a beam is generally adequate for

position measurements, in reality the signals from BPM pickups also contain information

of the transverse and longitudinal beam profiles. The longitudinal profile is contained in

Dω which is the Fourier amplitude of the longitudinal profile at the measured frequency.

Therefore, it is possible, using beamline models and careful calibration, to measure the

longitudinal size of the bunch by varying the optics and measuring changes in the amplitude

of a signal harmonic [20].

The dependence of the pickup signals on the transverse distribution is more complex.

Equation 3.4 for a pencil beam must be integrated over the transverse distribution T (r, φ)

σwall(ω, zm, φm) = Dω cos

(
ω

[
t+

z0 − z
βc

])
×∫∫

rdrdφ
∑
n=0

In(gr/Rp)

πNIn(gRp)
cos[n(φm − φ)]T (r, φ). (3.10)
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This effect is strongly tied to the beam position and requires measurements of multiple

harmonics of the beam repetition rate to be resolved.

However, when multiple frequencies are measured, the geometry of the pick ups must be

taken into account. The pickups have some finite size causing their measured signal to be

the integrated image charge over the button geometry

σpickup(ω) =

∫
button

σwall dAbut. (3.11)

For a round button pickups, which are used at FRIB, of radius Rb this becomes

σpickup(ω) =

∫ Rb

−Rb
dz

∫ 1
Rp

√
R2
b
−z2

− 1
Rp

√
R2
b
−z2

Rp dφmσwall. (3.12)

For simplicity all terms independent of z and φm will be put into a single coefficient F and

φ 7→ φ+ φp to accommodate any azimuthal pickup location φp

σmeas(ω) =

∫ Rb

−Rb
dzm

∫ 1
Rp

√
R2
b
−z2

− 1
Rp

√
R2
b
−z2

Rp dφm

∫∫
rdrdφ×

∑
n=0

F cos[n(φm − φp − φ)] cos

[
ω

βc
(zm − z0)

]
(3.13)

σmeas(ω) =

∫∫
rdrdφ

∑
n=0

FRp
2

n
cos[n(φp + φ)]×

∫ Rb

−Rb
dzm cos

[
ω

βc
(zm − z0)

]
sin

[
n

Rp

√
R2
b − z

2

]
(3.14)

σmeas(ω) ≡
∫∫

rdrdφ
∑
n=0

FRp cos[n(φp + φ)] · P (ω) (3.15)

where

P (ω) =
2

n

∫ Rb

−Rb
dzm cos

[
ω

βc
(zm − z0)

]
sin

[
n

Rp

√
R2
b − z

2

]
(3.16)
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is the transit time factor for a round button pickup. Therefore the correction for the button

shape can be separated from the effects of the beam distribution.

This derivation approximates the pickup geometry as flush with the round pipe wall. In

practice, flat button pickups are commonly used because they are simple to manufacture.

Show in Fig. 3.2 is the inside of a BPM used at FRIB where flat, 20 mm diameter pickups

are used and they are recessed 1 mm from the pipe. This difference in geometry needs to be

accounted for when the measured wavelength is on the same order as the pickup size. For

the 20 mm diameter pickups used at FRIB, the frequency needs to be above ∼0.5 GHz for a

beam traveling at β = 0.033 corresponding to the beam energy after the RFQ. This estimate

is confirmed by CST Microwave Studio [21] simulations of the two BPM geometries at this

velocity which show the difference becomes significant at ∼400 MHz (Fig. 3.3). To limit the

effect of the curved approximation, the broadband measurements presented below with the

FRIB BPMs were limited to 400 MHz.

3.1.3 Pickup signal variation with transverse distribution

As discussed above, the position measurement is dependent on g for large g, i.e non-

relativistic beams. This is due to the profile of the electric field on the pipe wall generated

by a non-relativistic beam extending beyond the length of the beam and the fields profiles

are different on each pickup and vary with beam position. As the beam increases in energy,

relativistic effects ‘pancake’ the field distribution into the plane perpendicular to the beam

velocity (Fig. 3.4) and the longitudinal profile of the fields becomes similar to the beam

profile. At these higher energies, varying the beam position causes little change in the field

profiles on the wall and only changes the amplitude resulting in no frequency dependence in

position measurements.
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Figure 3.2: Geometry of FRIB BPMS.
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Figure 3.3: Signal on a flat and curved 20 mm diameter BPM pickup from a β=0.033 beam.
The two geometries give similar results up to ∼400 MHz.
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Figure 3.4: As the beam accelerates the electric field is compressed into to the plane per-
pendicular to the velocity resulting in the same field profile on opposite sides of the beam
pipe.
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Figure 3.5: Variation in the measured spectra on a 20 mm diameter pickup for an offset
pencil beam. The spectra are normalized to the centered case.

This variation of the field profile can be seen on the measured spectra from various offsets

of a pencil beam (Fig. 3.5). Because for non-relativistic beams, the signals on the pickups

vary with ω and β, they are best characterized in terms of gRp with higher g corresponds

to higher frequency and lower β. The effect of offsetting the beam is significant for g > 1

with variations on the order of 10s%. For gRp < 1 the spectra on the buttons from an offset

beam are the same as the spectra for a centered beam. For gRp > 1 Eq. 3.8 must be used

to correctly determine the position. For lower g Eq. 3.9 can safely be used.
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Figure 3.6: Variation in the measured spectrum for a centered round Gaussian beam of
different sizes. The spectra are normalized to a centered pencil beam.

To see the effect of the transverse distribution, the amplitude of the integral in Eq. 3.10

is plotted in Fig. 3.6 as a function of gRp and are normalized to the result a pencil beam.

A Gaussian beam with σx = σy was used and the transverse size was varied. Similar to

offsetting the beam, the variations due to transverse beam size are significant for gRp > 1.

For gRp < 1, the transverse size can be neglected and a pencil beam can be assumed. Similar

effects are seen when varying σx or σy while leaving the other fixed.

If a BPM is operating in a region where where transverse distributions must be accounted

for, it is important to use the exact distribution. It is not sufficient to use a model with the

same first and second order moments. For example, consider a beam with transverse profile

that is the sum of two Gaussian and a beam with a single Gaussian profile with parameters

give in Table 3.1 (Fig. 3.7). At high g the measured signals vary both in amplitude and

profile resulting in errors in the measured position. However, this effect is difficult to correct

because it requires an accurate model of the the beam. At lower g the measured spectra

become the same on all pickups and the distribution no longer needs to be taken into account.
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Table 3.1: Parameters of the distributions used in Fig. 3.7.

Amp 1 x0 1 y0 1 σx 1 σy 1 Amp 2 x0 2 y0 2 σx 2 σy 2
Double Gaussian 1 0 mm 1.07 mm 1.7 mm 2.49 mm
Single Gaussian 1 0 mm 0 mm 1.7 mm 1 mm 0.4 0 mm 2 mm 1.7 mm 3 mm

This effect is solely due to the electric field distribution and is distinct from the errors caused

by the transverse beam distribution due to non-linearities discussed above.

3.1.4 Button sum signal

The dependence on the pickup spectra on the transverse distribution makes measurements of

the beam profiles challenging. To alleviate this sensitivity, the signals from all four buttons

can be added together. By summing Eq. 3.15 over the four pickups, the summed signal is

found to be

σsum(ω) = P (ω)

∫∫
rdrdφ

∑
n=0

FRp

(
cos[n(0 + φ)] + cos[n(π/2 + φ)]+

cos[n(π + φ)] + cos[n(3π/2 + φ)]

)
(3.17)

σsum(ω) = P (ω)

∫
dAbeam

∑
n=0

FRp · 4 cos(nφ)


1, n ≡ 0 (mod 4)

0, else

(3.18)

For the circular button pickups used for FRIB, only azimuthal harmonics that are zero

modulo four remain after summing. This significantly reduces the dependence of the signal

on φ as well as the dependence on position and transverse distribution. In the case of

rectangular pickups that cover the full 2π solid angle, only the n = 0 component remains

and the signal is independent of φ.

The scalings discussed above are repeated in Fig. 3.8 using the summed signals. The

dependence on beam offset for a pencil beam is reduced by a factor of ∼7 and the dependence

45



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Pos (mm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2 x dist
y dist

100 200 300 400
Frequency (MHz)

0.90

0.95

1.00

1.05

1.10

1.15

Do
ub

le
 G

au
ss

ia
n/

Ga
us

sia
n top

right
left
bot

100 200 300 400
Frequency (MHz)

0.92

0.94

0.96

0.98

1.00

Do
ub

le
 G

au
ss

ia
n/

Ga
us

sia
n top

right
left
bot

Figure 3.7: Comparison of measured spectra from a Gaussian and double Gaussian beam
with the same first and second order moments with β=0.033 (left) and β=0.15 (right). At
large g the different distribution results in a different measured spectra.
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on the transverse size for a Gaussian beam is reduced by >20% at high g. The reduction of

dependence on bunch shape is independent of the size of the beam. These reductions allow

for the summed signal, the beam can be assumed to be a pencil beam at gRp ≈ 3 which

is an improvement from the non-summed signals which require gRp ≈ 1 to assume a pencil

beam.

However, while this method reduces the sensitivity to the transverse distribution which

is beneficial for determining the longitudinal profile, at low enough β, g will be large enough

that the transverse distribution still needs to be accounted for. But, due to symmetry, σx

and σy cannot be distinguished from each other and the position can only be determined

modulo a phase of π/4. This can result in the aggravating situation where the same number of

parameters must be used to describe the beam as the non-summed case, but less information

is obtained. In general, the sum signal should be be use when information of the transverse

distribution is not needed and when gRp ∈ (1, 3).

3.1.5 CST simulations

The required correction to recover the beam parameters from the measured signals were

checked using CST Microwave Studio simulations. The simulations were performed using

the wakefield solver with a mono-energetic pencil beam and measure the field at the pipe

wall at a single point to confirm Eq. 3.4. This eliminates corrections for the transverse

size, energy spread, and the pickup geometry and impedance; with the plan to build up to

more complex distributions to test Eq. 3.15. However, simulations using the wakefield solver

showed a discrepancy between the field at a point on the wall in simulation results and the

analytic field at the wall from a pencil beam for β < 0.15 (Fig. 3.9).

Instead, the simulation results matched the expected signals from a uniform square beam
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Figure 3.8: (Top) Variation of the summed signal for an offset pencil beam. The varia-
tions in the spectra are a factor of ∼7 lower than the non-summed signals. (Bottom) The
summed signals of a 1 mm offset Gaussian beam normalized to the single pickup signals.
The variations of the summed spectra are reduced by 20% compared to the non-summed
signals.
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Figure 3.9: CST simulations using the wakefield solver must be fit to a uniform square
beam with side length given by the mesh size. For the given frequency range, this artificial
transverse distribution can be ignored for β >0.15.

with side length equal to twice the mesh cell size suggesting the discrepancy is caused by

how CST handles meshing. The pencil beam used in the wavefield solver transversely lays on

the intersection of four mesh cells. The solver appears to assume all cells touching the beam

are part of the beam. If the analytic model uses a uniform, square transverse distribution

much better agreement is achieved with simulations.

With this unwitting inclusion of a transverse distribution at low β, the wakefield solver

was used for simulations including a BPM model. The model used is a simplified model

consisting of flat cylindrical buttons that are connected to ground via 50 Ω discrete ports

(Fig. 3.10). The impedance of these pickups was measured using S2,1 between two pickups

and fitting for the resistance and capacitance (Fig. 3.11). The measured capacitance to

ground was 4.1 pF.

The BPM signals match the expected analytic signals within 5% for β = 0.033 and the

difference decreased when β was increased (Fig. 3.12). From these signals, a resonance due

to the button size can be seen around 500 MHz for β=0.033. This resonance is not seen in
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Figure 3.10: Model of the FRIB BPMS in CST Microwave Studio.
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Figure 3.11: Fitting S2,1 of a the CST button model to determine the impedance.
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Figure 3.12: Simulation results compared to analytic results of BPM pickup signals from a
centered pencil beam using the wakefield solver.

beamline measurements due to low pass filtering.

3.2 Bunch profile measurements

3.2.1 TIS waveforms

The BPM system at FRIB can measure the signals from the buttons over a wide bandwidth

using a quasi-Time Interleaved Sampling (TIS) method. The beam is comprised of a series of

individual bunches that are longitudinally spaced at a repetition rate of either 40.25 MHz or

80.5 MHz. The pickup signals from the bunch train are sampled by the digitizer at 119 MHz.

Each sample of the digitizer occurs at a different phase with respect to the bunches (Fig.

3.13) resulting in an effective sampling rate of 2.737 GHz and can resolve harmonics of

40.25 MHz up to 1.3 GHz. However, measurements are limited to 0.5 GHz by a low-pass

filter on the board. These measured signals are referred to here has the TIS waveforms.
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Figure 3.13: Example of the sampling procedure to measure the TIS waveforms. (Image
courtesy of S. Cogan)

3.2.2 Impedance and filtering effects

The measured signals are affected by the impedance of the BPM pickup. The capacitive

BPM pickup acts as a low pass filter with cut off frequency ωc = 1/RC where R is the

resistance and C is the capacitance of the pickup. The measured voltage from a button

BPM is [22]

Vmeas(ω) ∝ ω/ωc√
1 + (ω/ωc)2

σpickup(ω). (3.19)

This causes the measured signals to appear like the derivative of the electric field at the wall.

For FRIB C=3.3 pF and ωc=6.06 GHz [19]. This effect is independent to the beam and is

corrected for before fittings for the beam parameters.

After the signal is measured by the pickup, it, passes through a cable and lowpass filter to

a digitizer. The response to this system was characterized by removing the cables from the

pickups and inputting a harmonic of 80.5 MHz up to 483 MHz into the cables and recording

the output of the digitizer. The Fourier transform of these signals was used to determine the

transfer function for each harmonic. For this calibration, the TIS waveforms could not be

recorded because that system requires the input signal to be phase locked to the 80.5 MHz
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Figure 3.14: Cable and board calibration for four buttons on a BPM.

global clock while the single generator could only lock to a 5 MHz or 10 MHz clock. For any

given tone, the harmonics of that tone were also seen. The first higher harmonic at twice

the input frequency was at least three orders of magnitude lower than the primary tone and

ignored in the analysis. This calibration is stable within ±10% for tested BPMs.

The calibration of one of the BPMs is shown in Fig. 3.14. Note that two of the buttons

are ∼ 1.5 dB lower than the other two. For these buttons, the signal processing board

includes a switch for injecting signals which causes the reduction. All BPMs have these

switches for two of the buttons and these must be correctly accounted for.

Only harmonics of 80.5 MHz were calibrated because, at the time the calibration was

performed, the TIS waveforms could only measure harmonics of 80.5 MHz. The software was

later updated to measure harmonics of 40.25 MHz. The uncalibrated 40.25 MHz harmonics,

except for 40.25 MHz, are corrected using a cubic spline interpolation of the 80.5 MHz

harmonics measurements. These calibrations were also only performed for nine BPM near

the RFQ including all four BPMs in the MEBT. For all other BPMs, the signals are corrected
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Figure 3.15: Overview of the diagnostics in the FRIB front end. The MEBT is shown in the
lower left and contains the four BPMs.

using an average of these measurements.

3.2.3 Beamline measurements

Measurements of the BPM buttons signals were taken in the FRIB MEBT (Fig. 3.15). In

this region the beam velocity is β = 0.033. The TIS waveforms were recorded for all four

BPM in the MEBT which have a 47 mm diameter aperture and 4, 20 mm diameter buttons.

However, most measurements of interest were taken with the third BPM because there is a

wire profile monitor directly upstream of it and it is sufficiently downstream of a buncher

cavity to change the bunch length.
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Figure 3.16: Example of a measured TIS waveform in the FRIB MEBT (left). The bump
at 15 ns is a partially filled RF bucket. This causes the harmonics of 80.5 MHz to be higher
than the rest of the harmonic of 40.25 MHz (right).

The TIS waveform were taken to measure harmonics of 40.25 MHz, however the RF

frequency of FRIB is 80.5 MHz. This is possible because in single charge state operation, a

prebuncher before the RFQ causes the bunches coming out of the RFQ only fill every other

bucket. However, a small signal was seen in the bucket that was supposed to be empty.

This causes the even harmonics of 40.25 MHz, i.e. the harmonics of 80.5 MHz, to be slightly

higher than the odd harmonics (Fig. 3.16). The beamline was also operated without the

prebuncher, in this case all RF buckets were filled and only the harmonics of 80.5 MHz are

non-zero.

The raw signals are corrected for the impedance and board effects (Fig. 3.17) then fit to

Eq. 3.15 assuming the beam is Gaussian transversely and longitudinally with fit parameters

x0, y0, σx, σy, σxy, σz, an amplitude, and an offset to account for noise. Because the

amplitude of each button depends on the transverse size and offset, all four button spectra

must be fit simultaneously. The measured spectra in the MEBT fit well to Eq. 3.15 with
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Figure 3.17: Raw and calibrated spectra of a BPM in the MEBT

differences primarily due to the discrepancy between the even and odd harmonics (Fig. 3.18).

Measurements were taken with the third BPM in the MEBT for a range of voltages of

the upstream buncher cavity with it set to a bunching phase to change the bunch length at

the BPM. Along with the TIS waveforms, the transverse profiles were recorded with the wire

profile scanner. The Fast Faraday Cup (FFC) could not be used to verify the longitudinal

profile for most measurements because a Faraday cup at the same location needed to be

inserted to act as a beam stop. Instead, simulations were used to compare the expected

longitudinal size to the BPM measurements (Fig. 3.19). While the BPM measurements give

longitudinal and transverse sizes on the same order as the simulation results, the longitudinal

measurements fail to follow the expected trend from changing the buncher voltage.

Separate measurements were taken with the FFC for the same range of buncher volt-

ages and they follow the expected trend of going through a minima. In addition the FFC

measurements confirm that the longitudinal beam profile is primarily Gaussian.

The abnormal behavior of the BPM measurements is believed to be cased by the trans-
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Figure 3.18: Fitting the measured spectra and fractional error from the measured values.

Figure 3.19: Comparison of the measured bunch length with simulations at the third BPM
in the MEBT when the buncher cavity voltage is varied. The BPM measurement fails to
produced to expected trend.
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Figure 3.20: Transverse profile measurement in the MEBT.

verse distribution of the beam. Measurements of the transverse profile with the wire scanner

clearly show clearly non-Gaussian profiles, especially in the vertical plane, while the BPM

measurements assume Gaussian (Fig. 3.20). For the TIS waveforms in the MEBT, gRp

ranges from 1.2 to 6.0 and in this range the effect of using the incorrect distribution will

be significant even for the summed signal. Varying an upstream quadrupole to change the

transverse distribution at the third BPM in the MEBT resulted in a variety of measured

transverse profiles at the BPM. Because of this, a better model of the beam was not de-

veloped. It is possible to input the measured profiles into Eq. 3.15 in order to fit the

longitudinal profile. However, this procedure cannot be generally applied to the other BPM

because there are no measurements of the beam distribution at these locations.

In an attempt to remove the transverse effects, the spectra were measured with BPMs

at the end of the first accelerating linac segement of FRIB where the beam is traveling at

β = 0.185 corresponding to a maximum gRp of 1.07. This is low enough to ignore the
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Figure 3.21: Spectra and fitting a pencil beam to measurements at β = 0.185. The droop at
low frequency is hypothesized to be caused by incorrectly modeling the pickup impedance.

transverse distribution and assume a pencil beam. These measurements were taken with

four BPMs and, based on simulations, the beam length should be linearly increasing across

the four locations. The BPM measurements,once again, fail to reproduce the expected trend

(Fig. 3.21 right).

The measured spectra, after corrections for the impedance and cable and board effects,

retained a droop at low frequency (Fig. 3.21 left). The longitudinal profile was measured to

be primarily Gaussian with a wire scanner in this region of the beamline which contradicts

the BPM spectra. Therefore, the it is likely that the averaged cable and board corrections

were insufficient and/or the impedance of the BPM is not properly being compensated.

3.3 Conclusion

Using the BPMs as profile monitors is a complicated measurement. It requires thorough

understanding of the BPM’s response to the beam and, especially at low β, it requires an
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adequate model of the transverse profiles. Currently with the FRIB BPM system, neither of

these requirements are achieved. These issues must be addressed before the BPMs can give

reliable results.
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Chapter 4

Helical transmission line for BPM

calibration

Measurements with the BPMs at high gRp are more challenging than measurements at

lower gRp. These measurements are also challenging to study because we must rely on

analytic and numeric models that, in practice, cannot exactly model a BPM. It would be

beneficial for BPM measurements at high g, both broadband measurements and position

measurements, to have a test stand capable of calibrating and testing the BPMs in the

regime where they will be operated. Measurements with high gRp typically are made when

the beam is traveling non-relativistically, i.e. low β. In order to calibrate for effects from

non-relativistic beams, a test stand must be capable of replicating the measured beam’s

expected velocity and longitudinal profile and generate the correct field distribution on the

BPM pickups. To calibrate and test the BPMs in the FRIB MEBT, this requires replicating

a 200 ps long beam traveling at β = 0.033.

The typical test stand for calibrating for non-linearities in BPMs consists of a straight

wire that is strung through the BPM [23]. A tone at the measurement frequency of the BPM

is passed down the wire and the signals on the pickups are measured. This is repeated while

moving the wire over a grid of positions within the BPM. The wire position is then related

to the pickup signals with a polynomial fitting to calibrate the BPM response.
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Because these test stands rely on a straight wire, they propagate signals at the speed

of light and cannot be used to calibrate for non-relativistic effects. These devices are still

useful for non-relativistic BPMs to calibrate for the velocity independent non-linear effects

and validate the models in the speed of light limit.

One possible method to create a test stand capable of replicating non-relativistic beams

is to use an electron beam tuned to match the properties of the desired beam. However,

this relies on an entirely new test stand from the currently existing straight wire one which

requires additional hardware and cost. It would be preferable to modify the existing test

stand to allow for calibration for non-relativistic effects.

A possible structure to replace the straight wire is a Gaubou line which can propagate

signals at less than the speed of light and are sometimes used to replicate electron beams

to calibrate beamline devices ??. Gaubou lines are single conductor transmission lines com-

prised of a conducting wire of radius Ri covered in a dielectric with radius a and permittivity

εi (Fig. 4.1). This dielectric layer causes a surface wave to propagate at less than the speed

of light. The dispersion relation for a Gaubou line centered in a conducting pipe of radius

Re is

γi
εi

I0(γiRi)K0(γia)− I0(γia)K0(γiRi)

I0(γiRi)K1(γia) + I1(γia)K0(γiRi)
=
γe
εe

I0(γeRe)K0(γea)− I0(γea)K0(γeRe)

I0(γeRe)K1(γea) + I1(γea)K0(γeRe)
(4.1)

where γi and γe are the transverse propagation constants in the dielectric and outside the

dielectric respectively. The longitudinal propagation constant h is found by

h2 = γ2i + εiµω
2 = γ2e + εeµω

2 (4.2)
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Figure 4.1: Cross section of a Gaubou line.

However, assuming εe = ε0, the high frequency limit of the phase velocity vp = c/
√
εi

which it reaches when λ ≈ a. In order to achieve a phase velocity of vp = 0.1c, a material

with a dielectric constant of 100 must be used which is impractical. In addition, the low

frequency limit is significantly larger than the high frequency limit (Fig. 4.2). To calibrate

the broadband measurements of the BPMs, the phase velocity must match the beam within

the measured bandwidth, e.g. up to 0.5 GHz for the FRIB BPMs. The low frequency limit

can be reduced by increasing a, however, even when the dielectric layer fills a significant

portion of the beampipe, the reduction is not enough to reach non-relativistic phase velocities.

4.1 Helical RF structures

A radio frequency (RF) structure that is known to be capable of propagating at sufficiently

low phase velocities is a helical transmission line. The low phase velocity of helices is relied

on for devices such as slow traveling wave tubes . Many solutions and applications of helical

RF structure properties have been published, however, most concern radiation modes for

antennae or transmission lines for signal propagation at 10s to 100s of GHz . For use as a

BPM test stand, the helical structure will be used as transmission line at low frequency with
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Figure 4.2: Normalized phase velocity of a Gaubou line with Ri=2 mm, Re=20 mm, εi=10ε0,
and two different dielectric layer radii a. The low frequency limit is too large to replicate a
non-relativistic beam.

a minimum usable bandwidth of 40− 500 MHz to fully calibrate the TIS waveforms.

While many of these solutions are not directly applicable to the use of a helical structure

for a low frequency broadband transmission line, the general solutions can provide insights

into the challenges of using a helical transmission line at lower frequencies. The dispersion

relation for a helix in free space [24] shows the high frequency limit of the phase velocity

is vp = c · sin(ψ) where ψ is the pitch angle of the helix. While this appears to allow

these structures to be created for any desired beam velocity by constructing a helix with

the correct ψ, the low frequency limit of the phase velocity is the speed of of light. This

clearly will not replicate the velocity of a non-relativistic beam within the desired frequency

band and, in addition, the large discrepancy between the high and low frequency limits

quickly causes the input pulse to deform due to dispersion making replicating the correct

bunch shape challenging. Most transmission can ignore these effects because they operate

at higher frequencies where the phase velocity mostly constant and has reached its high
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frequency limit. These effects will affect the lower frequency transmission line and steps

must be taken to mitigate this issue.

4.2 Helical transmission lines - analytic solution

The geometry of a helical conductor makes exactly solving for the electromagnetic fields

challenging. However, the boundary conditions can be significantly simplified using the

sheath helix model [24]. This model approximates a helix as a thin cylinder that conducts

on a helical path along the surface making the structure a 1D conductor that is longitudinally

uniform. Specifically, the boundary conditions at the helix become

Ei‖ = Ee‖ = 0 (4.3)

Ei⊥ = Ee⊥ (4.4)

Hi
‖ = He

‖ (4.5)

where the superscripts e and i denote fields in the external and internal regions of the helix

and the subscripts ‖ and ⊥ denote the field components parallel and perpendicular to the

direction of conductivity of the sheath helix. These unit vectors in cylindrical coordinates

are

‖̂ = sin(ψ)ẑ + cos(ψ)θ̂ (4.6)

⊥̂ = cos(ψ)ẑ + sin(ψ)θ̂ (4.7)
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Figure 4.3: Cross section of helical transmission line geometry.

where ψ is the pitch angle of the helix. While this model is an abstraction from real helix,

it is shown below that it well represents the tightly wound helices needed to replicate slow

beams.

The transmission line for the test stand consists of a helix of radius a and pitch ψ, a

conducting rod of radius Ri centered inside of the helix, a dielectric with permittivity εi

of thickness s = a − Ri fills the space between the rod and the helix to support the helix,

and the helix is centered inside a conducting pipe of radius Re. The analytic solution also

assumes the region between the helix and the outer conductor is filled with a dielectric with

permittivity εe; however, this is set to ε0 for all studies (Fig. 4.3).

The derivation of the electromagnetic fields presented here follows the work of S. Sensiper

and others starting with the Hertzian potentials

∇2Πe − µε
∂2Πe

∂t2
= 0 (4.8)

∇2Πm − µε
∂2Πm

∂t2
= 0. (4.9)
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If Πe and Πm are assumed to only have a ẑ component, then the fields are given by

E = ∇×∇×Πe −∇×
∂2Πm

∂t2
(4.10)

H = ∇×∇×Πm −∇×
∂2Πe

∂t2
. (4.11)

In cylindrical coordinates the general field equations in the internal region are

Ei,r =
[
−ihγi

(
I′n (γir)A

(1)
i,n + K′n (γir)A

(2)
i,n

)
(4.12)

− ωµn

r

(
In (γer)B

(1)
i,n + Kn (γir)B

(2)
i,n

)]
e−inθe−ihz

Ei,θ =

[
−hn
r

(
In (γir)A

(1)
i,n + Kn (γir)A

(2)
i,n

)
(4.13)

+ iωµγi

(
I′n (γer)B

(1)
i,n + K′n (γir)B

(2)
i,n

)]
e−inθe−ihz

Ei,z = −γ2i
[
In (γir)A

(i)
i,n + Kn (γir)A

(2)
i,n

]
e−inθe−ihz (4.14)

Hi,r =
[ωεin

r

(
In (γir)A

(1)
i,n + Kn (γir)A

(2)
i,n

)
(4.15)

− ihγi

(
I′n (γir)B

(1)
i,n + K′n (γir)B

(2)
i,n

)]
e−inθe−ihz

Hi,θ =
[
−iωεiγi

(
I′n (γir)A

(1)
i,n + K′n (γir)A

(2)
i,n

)
(4.16)

− hn

r

(
In (γer)B

(1)
i,n + Kn (γir)B

(2)
i,n

)]
e−inθe−ihz

Hi,z = −γ2i
[
In (γir)B

(1)
i,n + Kn (γir)B

(2)
i,n

]
e−inθe−ihz (4.17)

where In and Kn are the modified Bessel functions of the first and second kind and γi and

hi are the transverse and longitudinal propagation constants respectively and are related by

h2 = k2i + γ2i (4.18)
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where ki =
√
µεiω is the free space propagation constant. The external fields have the

same form except with different propagation constants and coefficients and are denoted by

exchanging the subscript i for e.

The field coefficients A
(1)
i,n , A

(2)
i,n , A

(1)
e,n, A

(2)
e,n, B

(1)
i,n , B

(2)
i,n , B

(1)
e,n, and B

(2)
e,n are found by

applying the boundary conditions at the helix (Eqs. 4.3, 4.4, 4.5) and the inner and outer

conducting surfaces. The boundary conditions in cylindrical coordinates at the conductors

and the sheath helix are

Ei,z
∣∣
Ri

= 0 (4.19)

Ei,θ
∣∣
Ri

= 0 (4.20)

Hi,r
∣∣
Ri

= 0 (4.21)

Ee,z
∣∣
Re

= 0 (4.22)

Ee,θ
∣∣
Re

= 0 (4.23)

He,r
∣∣
Re

= 0 (4.24)

Hi,z
∣∣
a +Hi,θ

∣∣
a cot(ψ) = He,z

∣∣
a +He,θ

∣∣
a cot(ψ) (4.25)

Hi,r
∣∣
a = He,r

∣∣
a (4.26)

Ei,z
∣∣
a = Ee,z

∣∣
a (4.27)

Ei,θ
∣∣
a = Ee,θ

∣∣
a (4.28)

Ee,z
∣∣
a = −Ee,θ

∣∣
a cot(ψ) (4.29)

Ei,z
∣∣
a = −Ei,θ

∣∣
a cot(ψ), (4.30)

Only a linearly independent subset of the boundary conditions are needed to solve for the

field coefficients. Using A
(1)
i,n as an overall amplitude and Eqs. 4.19, 4.21, 4.23, 4.24, 4.25,
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4.27, and 4.28 the field coefficients become:

A
(2)
i,n = −A(1)

i,n ·
In (γiRi)

Kn (γiRi)
(4.31)

A
(2)
e,n = −A(1)

e,n ·
In (γeRe)

Kn (γeRe)
(4.32)

A
(1)
e,n = A

(1)
i,n ·

γ2i
γ2e

Kn(γeRe)w1,i

Kn(γiRi)w1,e
(4.33)

B
(2)
i,n = −B(1)

i,n ·
I′n (γiRi)

K′n (γiRi)
(4.34)

B
(2)
e,n = −B(1)

e,n ·
I′n (γeRe)

K′n (γeRe)
(4.35)

B
(1)
i,n = −iA(1)

i,n ·
[
a2γiγ

2
eK′n (γiRi)w4,e

(
γik

2
ew1,iw2,e − γek2iw1,ew2,i

)
− nhw1,iw1,ew3,eK

′
n (γiRi)

(
nh cot(ψ) + aγ2e

)(
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2
e

)]
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γi

(
nh cot(ψ) + aγ2e
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where

w1,i,e = In
(
γi,ea

)
Kn
(
γi,eRi,e

)
− In

(
γi,eRi,e

)
Kn
(
γi,ea

)
(4.38)

w2,i,e = I′n
(
γi,ea

)
Kn
(
γi,eRi,e

)
− In

(
γi,eRi,e

)
K′n
(
γi,ea

)
(4.39)

w1,i,e = In
(
γi,ea

)
K′n
(
γi,eRi,e

)
− I′n

(
γi,eRi,e

)
Kn
(
γi,ea

)
(4.40)

w1,i,e = I′n
(
γi,ea

)
K′n
(
γi,eRi,e

)
− I′n

(
γi,eRi,e

)
K′n
(
γi,ea

)
. (4.41)

The dispersion relation can be found by creating a matrix from the boundary conditions

used to determine the field coefficients and setting the characteristic equation to 0.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 In(γeRe) Kn(γeRe)

0 0 nεeω
Re
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nεeω
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In(γiRi) Kn(γiRi) 0 0

nεiω
Ri
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nεiω
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Kn(γiRi) 0 0
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n(γia) iω cot(ψ)γeεeI′n(γea) iω cot(ψ)γeεeK′

n(γea)

0 0 −
(
γ2e + nh

a
cot(ψ)
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Kn(γea)
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−nh
a
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a
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a
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(4.42)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0
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After simplification the dispersion relation is

0 =γ3i

[
nh cot(ψ) + aγ2e

]2
w1,iw1,ew3,ew4,i + γ3e

[
nh cot(ψ) + aγ2i

]2
w1,iw1,ew3,iw4,e

+ a2 cot2(ψ)γ2eγ
2
i w4,iw4,e

(
γek

2
iw1,ew2,i − γik2ew1,iw2,e

)
. (4.43)

This is solved numerically for γe as a function of ke using

γ2e = γ2i + k2i − k
2
e (4.44)

and h(ω) can be determined along with the phase velocity vp(ω) = ke/h = βc.

4.2.1 Dispersion distortion correction

In order to produce the specific pulse shape at the device under test, it is ideal for the phase

velocity to be constant with frequency so any pulse input into the transmission line will not

be deformed throughout propagation. However, for a helix in free space, the phase velocity

varies from β = 1 to β = sin(ψ) which causes significant deformation to any input pulse.

Initial designs of the test stand added a conducting pipe around the helix. For this geometry,

the low frequency limit of the phase velocity was significantly less than β = 1 (Fig. 4.6).

However, the deformation due to dispersion was still a major issue.

One method to mitigate the deterioration is to use dispersion itself to correct the pulse

at a given location. This is achieved by propagating the desired pulse along the helix and

measuring the pulse at the desired location of the device under test. This pulse is then

reversed in time and input into the helix. This effectively subtracts the accumulated phase

shifts at each frequency due to dispersion and the original signal will be reconstructed at
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Figure 4.4: The deformed pulse is found by analytically propagating a pulse a set distance. It
is then reversed in time and input into the transmission line. When this pulse is propagated
along the transmission line, the dispersion will correct the pulse at the set distance. The
DUT can be placed at this location.

the place of measurement (Fig. 4.4). This method was rejected because the deformed pulses

input into the helix are rather complex and generating one would have proved challenging.

Another considered method was to slowly decrease the pitch of the helix from a loosely

wound helix at the input to the required pitch for the desired velocity. In the region of

decreasing ψ, the decreasing pitch compressed the pulse more quickly than dispersion could

distort it. This results in a shorter pulse at the end of the compression section that was

input and minimal deformation (Fig. 4.5). Once the pulse propagates along the constant

pitch portion of the system, the effects of dispersion once again deforms the pulse shape.

For this case the device under test could be placed directly after the compression section to

measure the desired pulse shape at the correct velocity.
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Figure 4.5: Propagation of a Gaussian pulse along a helix with reducing pitch. The pulse
is compressed but maintains its form during the pitch reduction but dispersion deforms the
pulse in the constant pitch section
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4.2.2 Dispersion reduction geometry

A more practical solution to prevent pulse deformation is to add an conductor inside of

the helix. The hypothesis was this would increase the capacitance of the system which

would lower the phase velocity at low frequency while leaving the high frequency limit

unchanged. Using s=0.5 mm, the dispersion becomes significantly flatter than without

the inner conductor with all other geometry the same. The change total variation in phase

velocity is ∆vp=0.039 without the inner conductor and ∆vp=0.001 with the inner conductor

for the parameters given in Fig. 4.6. Numerically solving Eq. 4.43 shows the low frequency

limit of the phase velocity linearly increases with separation s between the helix and inner

conductor as approximately

lim
f→0

(vp) ∝ 0.0025s. (4.45)

for s in mm. The high frequency limit remains the same but the phase velocity converges

more slowly for smaller s. The slow convergence results in less variation in vp over a given

bandwidth despite the larger variation between the low and high frequency limits. For

example, in Fig. 4.7, for a bandwidth up to 1 GHz, s=1 mm have a range of ∆vp=0.0028

and for s=0.1 mm ∆vp=0.00057. Therefore, a narrow separation should be used when

constructing a helical transmission line to limit the deformation of pulses.

The dielectric constant of the dielectric layer can also be varied. In the case of εi = εe =

ε0, the high frequency limit of the phase velocity is vp = c · sin(ψ) and the low frequency

limit is higher than this. As the internal dielectric constant increases the high frequency limit

drops approximately as ε
−1/3
i for a fixed geometry while the low frequency limit drops as

ε
−1/2
i (Fig. 4.7). This causes the low frequency limit to drop below the high frequency limit.

The difference in scaling causes the disparity between the low and high frequency limits
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Figure 4.6: Dispersion for different transmission line geometries. The addition of the inner
conductor significantly flattens vp(ω). Helix parameters s=0.5 mm, a=5 mm, Re=23.75 mm,
ψ=0.05, εi = ε0.
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of the phase velocity to increase with εi which is non-ideal for maintaining pulse shapes.

However, its effects can be mitigated by reducing s. In theory, the dielectric constant can be

chosen such that the high and low frequency limits of vp are equal which would be an ideal

system, however, in practice this is difficult to realize.

It should be noted that while significant efforts were made to flatten the dispersion curve,

the pulses near the helix still become significantly deformed due to dispersion. This is caused

by the short pulse propagating along helix of ∼200 ps rms needed to replicate the bunch. For

pulses this short the bandwidth is large enough to cause significantly different phase shifts

resulting in distortion. However, the fields near the helix are not representative of the fields

at the pipe wall where they will be measured by the BPM being calibrated. As the radial

distance from the helix increases, the high frequency components are suppressed because the

field is non-relativistic. Therefore, the fields at the pipe wall will propagate with minimal

deformation even though the signal near the helix has significant distortions (Fig. 4.8).

For the test stand, the helix will need to be offset in the pipe. As shown below, this does

not change the dispersion properties, however, it will reduce the radial distance between the

helix and the pipe wall resulting in a shorter pulse being measured by at least one of the

BPM pickups. Fortunately, for offsets up to 5 mm, the higher frequencies are still sufficiently

suppressed in the measured bandwidth and the measured signals are still not significantly

deformed.

4.2.3 Higher order effects

The discussions above focuses solely on the n = 0 mode, however, helical transmission lines

support higher order modes . The nth higher order mode is excited at ka ≈ n. For a = 5 mm

which will be used for the test stand, this corresponds to ω ≈10 Ghz which is well outside the
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Figure 4.8: Despite efforts to reduce dispersion effects, the pulses near the helix are sig-
nificantly deformed due to dispersion (left). However, the fields near the pipe wall have
the high frequency components suppressed and therefore maintain their shape. This same
effect distorts the pulse when the helix is offset in the pipe. Offsets up to 5 mm can be
achieved with minimal deformations (right). The pulses shown here are from Microwave
Studio simulations.

required bandwidth. Unlike the n = 0 mode which has significantly reduced phase velocity

at low frequency compared to the helix in free space, the higher order modes propagate at

vp(ωc) = c at the cutoff frequency (Fig. 4.9). The high frequency limits of the higher order

modes are the same as the n = 0 mode.

The presented analysis relies solely on the sheath helix model. More complex models can

also be made using a tape helix with windings of finite width. These models introduce forbid-

den regions in k − h space and near the boundaries of these regions, the dispersion diverges

from the sheath helix model . However, for the given geometry, the required bandwidth is

far from a forbidden region and the sheath helix model is a reasonable approximation. In

addition, the tape helix models predict radiating modes at low frequencies. It is believed

that these are seen in simulations, however these travel near the speed of light and can be

easily separated from the slow signals .
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Figure 4.9: Dispersion for the first higher order mode.

4.2.4 Impedance Properties

Once the field coefficients and propagation are found, a complete description of the fields is

known and the impedance can be calculated. For the three conductor geometry described

above, two separate impedances can be defined: Zi which between the inner conductor and

the helix, and Ze between the helix and pipe. The impedance in each region was calculated

by

Zi =

∫ a
Ri
Er,idr

a
∫ π
−πHθ,i(a)dθ

(4.46)

Ze =

∫ Re
a Er,edr

Re
∫ π
−πHθ,e(Re)dθ − a

∫ π
−πHθ,i(a)dθ

. (4.47)

In general, these are similar except at low frequencies (Fig. 4.10).

Reducing s maintains the high frequency behavior of the impedance but reduces the low

frequency limit and reduces the variation at lower frequencies. This causes the impedance

to converge more slowly to the high frequency behavior (Fig. 4.10). Ideally, a small enough
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Figure 4.10: Impedance scaling with s and εi. The solid line is the external impedance
and the dashed line is the internal. Helix parameters: s=0.5 mm, a=5 mm, Re=23.75 mm,
ψ=0.05, εi = ε0.

s should be used to achieve a near constant Z over the desired bandwidth so the input

and output of the helical transmission line can easily matched with a resistive network.

Increasing the dielectric constant reduces the low frequency limit of the impedance and

causes the impedance to start to decrease at a lower frequency. While it is preferable to use

a lower dielectric constant to increase the bandwidth of near constant impedance region, the

effect of the dielectric is not as significant as the effect of s.

To avoid internal reflections due to changes to the impedance caused by variations in

construction, the geometric parameters were varied in the analytic model to determine to

which the system is most sensitive. The impedance is primarily sensitive to the the inner

conductor radius and helix radius, but they have opposite effects the impedance. For example

as seen in Fig. 4.11, a 5% increase in the helix radius causes an almost 50% increase in the low

frequency limit of the impedance while increasing the inner conductor radius by 5% reduces

the impedance by ∼ 50%. Therefore, the separation between the helix and inner conductor

must be constant along the transmission line to limit large variations in the impedance for
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Figure 4.11: Sensitivity of the low frequency limit of the external impedance to variation of
different parameters. The impedance is most susceptible to changes in s.

even small changes. The radius of the inner conductor can vary as long as the helix radius

also changes to keep the separation the same. Other geometry factors, such as the pitch and

outer pipe radius, have a minimal impact on the impedance compared to the separation.

4.2.4.1 Inductance and Capacitance

To create a circuit model of the transmission line, the inductance L and capacitance C per

unit length of the lossless helical transmission line can be determined from the longitudinal

propagation constant and impedance

Li,e =
h

ω

1

Zi,e
(4.48)

Ci,e =
h

ω
Zi,e. (4.49)

As with the impedance, these parameters are defined separately for the internal and external

regions.
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It was speculated above that the addition of the internal conductor increases the ca-

pacitance of the transmission line. This is effect can be seen by calculating the internal

capacitance for different s (Fig. 4.12). Decreasing s does result in a larger capacitance at

low frequency and converges to the same limit at high frequency. However, competing with

this effect is a decrease in the inductance at low frequency with decreasing s which will

increase the phase velocity. The inductance is decreased by almost the same factor as the

increase in capacitance with the largest discrepancy seen at frequencies <1 GHz. This simi-

larity results in minimal changes to the phase velocity and large changes to the impedance

when changing s. As expected from Fig. 4.10, changing εi results in significant changes to

the high and low frequency limits of the capacitance and impedance.

4.3 Simulations

Time domain simulations of the helical transmission line were performed in CST microwave

studio with properties given in Table 4.1 unless otherwise stated. Simulations were per-

formed up to 1.5 GHz which is well below the cutoff frequency of the first higher mode. Note,

while it is best to minimize s to improve pulse propagation, s = 0.5 mm was used because

it was impractical to create a mesh for smaller values. The mesh size was set to resolve the

dielectric layer and spacing between windings with at least two mesh cells (Fig. 4.13). The

helix has thickness ∆a centered around the helix radius a.

4.3.1 Matching

The input signal was input using a stripline connected to the helix and inner conductor

on either end of the helix (Fig. 4.14). For most simulations, the stripline impedance was
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Figure 4.12: Scaling of the internal C and L with s and εi. The decreasing s reducing the ca-
pacitance and increases the inductance by approximately the same factor. Helix parameters:
s=0.5 mm, a=5 mm, Re=23.75 mm, ψ=0.05, εi = ε0.

Figure 4.13: Meshing of helical transmission line in CST Microwave Studio for time domain
simulations.
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Table 4.1: Simulated helix parameters.

Pipe radius, Re 20.65 mm
Inner conductor radius, Ri 4.5 mm
Helix radius, a 5 mm
Separation, s 0.5 mm
Pitch angle, ψ 0.05 rad
Dielectric constant, εi 3.5ε0
Helix wire width 1 mm
Helix wire thickness, ∆a 0.1 mm

Figure 4.14: Helical transmission line model. Microstrips are used to match the input and
output.

set equal to the low frequency limit of the helix impedance and no additional matching

was done. Alternatively, the stripline impedance can also be mismatched from the helix

impedance then matched using a resistive L-network. This matches the fields in the internal

region. An additional resistor with impedance equal to the low frequency limit of Ze must

be placed between the outer conductor and helix to match the external fields (Fig. ??).

With the stripline matched to the helix, a good match is seen with S1,1 <-15 dB and

S2,1 >-1.5 dB up to 2 GHz. Strong resonances are seen corresponding the harmonics of the

helix length for signals traveling at v = βc. These resonances are removed when the resistive

L-network is used (Fig. 4.16). The L-network also reduces S2,1 by ∼11 dB due to losses in

the resistors .

With both matching geometries, a signal traveling at the speed of light proceeds the slow

pulse that is a factor of ∼10 lower in amplitude (Fig. 4.17). The speed of light signal is not

reflected when it reaches the end of the transmission line, however, it is seen again when the

slow signal reaches the end of the helix. This signal may be a higher order mode. However,

83



Figure 4.15: Lumped elements used for impedance matching.

Figure 4.16: S1,1 with and without a resistive L-network for matching.
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Figure 4.17: The radial electric field at the wall shows minimal deformation during propaga-
tion along the transmission line. The slow pulses are proceeded by a smaller speed of light
signal that reappears once the slow pulse has reached the end of the transmission line.

the amplitude of the fast signal is independent of θ therefore it is not an n > 0 mode of the

sheath helix. It could also be an evanescent mode, but the amplitude does not decrease with

propagation distance. These signals may also be an artifact of the simulation.

4.3.2 Dispersion

The dispersion was measured by inputting a Gaussian pulse into the system and measuring

the radial electric field using probes along the transmission line. Nine probes were evenly

spaced along the transmission line. The probes should be placed as close as possible to the

helix to measure the largest bandwidth. However, if a probe is too close it will measure near

field effects from the winding of the helix. To ensure minimal near field effects, eight probes

were placed around the helix in π/4 increments. The probes were moved from 0.25 mm to

2 mm off the helix to find the radius where the field is no longer significantly dependent on

θ.
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Figure 4.18: The electric field 0.5 mm away from the helix has a strong first harmonic
due to the helix windings. At 1.5 mm away from the helix the the angular dependence is
significantly reduced.

The fields 0.25 mm from the helix vary chaotically with θ by ±50%. At 0.5 mm off

the helix, the variations are slightly reduced and show a strong cos(θ) dependence. This

behavior is sufficiently reduced for the fields 1.5 mm radially off from the helix (Fig. 4.18)

with variations on the 1-4% level. While the Ez field still has a clear cos(θ) dependence its

amplitude is small enough to ignore.

The probes were placed 1.5 mm away from the helix to maximize the measured bandwidth

and avoid near field effects (Fig. 4.19). The time signals from each probe were transformed

into the frequency domain to find the phases as a function of frequency. A linear fit of the

phases as a function of the probe position gives the phase velocity for each frequency (Fig.
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Figure 4.19: Probe suite used to measure the fields from the helix.

4.20)

φ(f, z) =
f

vp
z. (4.50)

The measured phase velocity agrees with the sheath helix model within 3% up to 2 GHz

at which point, the signals is dominated by noise. However, near exact agreement can be

achieved by assuming a = a+∆a = 0.51 mm in the analytic model (Fig. 4.21). This value is

the sum of the helix radius and the helix thickness in the simulation. This scaling also holds

for thicker helices, however, the agreement is poorer most likely because the assumption of

an infinitesimally thin helix used in the analytic model no longer holds.

The cause of this phenomenon is unknown and it is particularly strange considering in the

simulations the helix conductor is placed at r ∈ [a−∆a/2, a+ ∆a/2]. The helix conductor

does not reach a+∆a. In addition, increasing ∆a will reduce s which should cause significant

changes in the impedance and dispersion, but these effects are not seen.

4.3.3 Impedance

The impedance of the helical line was measured using S1,1. For this measurement, the

stripline impedance was changed to 102.5 Ω to be unequal to the helix impedance of Zhelix =

64.5 Ω and matched to the helix using a resistive L-network to damp the resonances. In
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Figure 4.21: Exact matching of the dispersion can be achieved by setting the helix radius in
the analytic model to the outer radius of the helix used in the simulations. The helix radius
in simulations is 5 mm for all presented measurements with ∆a given by Da on each plot.
The stated helix radius is the radius used to analytically calculate the dispersion.

89



addition, to increase S1,1 the L network was purposely poorly matched. With this network

the helix impedance is given by:

Zhelix =

(
R−1sh +

[
Z0

1− S11
1 + S11

+R

]−1)−1
(4.51)

where Z0 is the impedance of the microstrip, R is the series resistance, and Rsh is the shunt

resistance.

The real part of the impedance from simulations agrees with the analytic model within

3% up to 2 GHz. The simulation also showed a small reactance that was <15% of the

real impedance caused by material losses in the simulation which are not modeled analyti-

cally(Fig. 4.22). The reatance was not matched because the mismatch from using only the

microstrip is deemed small enough because the size of the imaginary component is on the

same order as the variation in the real component. Therefore there would be no significant

improvement to the matching without also improving the match to the resistive component.

In addition, when constructing a helical transmission line for the test stand, it would be best

to use s < 0.5 mm which will result in less frequency dependence in Z and a better match.

4.3.4 Fields

The electric field was measured using field probes at multiple radii along the transmission

line. The fields measured 1.5 mm off the helix were used to determine the field coefficients.

The expected field near the pipe wall was then found using these coefficients and it agrees

within 10% with the simulation results up to 0.4 GHz where noise starts to dominate (Fig.

4.23).

A significant feature of the fields, is near the helix the amplitude of the Er field decreases
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Figure 4.22: The analytic impedance matches the results from simulations with 5%

Figure 4.23: The field coefficients were derived from fitting the electric field 1.5 mm from
the helix. These are used to calculate the analytic electric field 15 mm from the helix. This
field profile agrees well with simulations.
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at low frequency (Fig. 4.24). This is not present in the Gaussian input pulse nor are there

signs of losses or reflections in the S parameters at low frequency.

It was found that this change in the spectra of the external fields is due to the coupling

between the internal and external regions of the transmission line. This coupling can be

derived analytically by the ratio of the internal and external radial electric fields at the helix

Er,e
Er,i

∣∣∣∣
r=a

=
γiK

2
0(γeRe)w1,iw2,e

γeK2
0(γiRi)w1,ew2,i

. (4.52)

This can be inverted to determine the appropriate input pulse to have a Gaussian field profile

at the helix in the external region. This coupling agrees with the results of simulations (Fig.

4.24). While an exact input can be generated, for simplicity, for a Gaussian pulse input in

the internal region, the spectra near the helix can be roughly fit to the difference of two

Gaussians (Fig. 4.24)

Er,e
∣∣
r=a ≈ G1 exp(−2π2σ21f

2)−G2 exp(−2π2σ22f
2). (4.53)

The standard deviations and amplitudes of the two Gaussian can be determined from the

standard deviation σi of the input Gaussian pulse. For the parameters given in Table 4.1,

the coefficients can be determined by

G1 = 0.119e−0.653σi (4.54)

G2 = 0.066e−0.826σi (4.55)

σ1 = 0.905σi − 0.005 (4.56)

σ2 = 1.582σi + 0.111 (4.57)
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Figure 4.24: The field in the external region is suppressed at low frequency compared to
the field in the internal region. This matches with signals measured 1.5 mm off the helix in
simulations. For a Gaussian input, the field in the external region can be roughly fit to the
difference of two Gaussians.

for σi in ns. This fitting can be inverted to determine the required input to achieve a Gaussian

pulse of length σi in the external region. However, the quality of this fit deteriorates for pulses

less than 100 ps rms.

4.3.5 Beam comparison

The electric field propagated by the helical transmission line needs to replicate the fields from

a beam. The longitudinal profile can be set by the input pulse with proper consideration of

the internal-external coupling. However, for non-relativistic beam, the transverse profile also

affects the BPM measurements. The radial electric field from a line charge has the same

general dependence on coordinates as the field from the helix (Eq. 4.12), however the beam
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has g as a transverse propagation constant which corresponds to a fixed beam velocity while

the helix has γe and the phase velocity varies with frequency.

This disparity in propagation constants causes the fields to scale differently with r there-

fore the fields of a beam and the helix cannot be the same over the entire pipe aperture. In

order to replicate the fields from a beam, the longitudinal profile of the helix’s external fields

at the helix must match the longitudinal profile of the beam distribution. The transverse

distribution of the beam can then be set by requiring Er at the pipe wall to be similar.

The radial electric field of the beam was fit to the field of the helix for a pencil beam, ring

beam, and uniform beam using the beam radius as a fit parameter (Fig. 4.25). The ring

distribution best fit the helix fields with deviation of at most 10% up to 1 GHz. Up to

0.5 GHz, the bandwidth of the FRIB BPMs, the ring distribution varies from the helix field

by less than 1%.

The variation of the phase velocity of the helix also means a choice must be made for the

velocity of the modeled beam. It was found for fitting up to 1 GHz, using vp(f = 1 GHz)

gives the best fit. The complications this variation in phase velocity causes with modeling

the beam is an addition reason to flatten the dispersion curve.

4.3.6 Offset helices

The analytic and simulation work presented in this chapter has all been concerned with

centered helices. However, for the test stand to calibrate BPMs, the helix must be moved

off center to replicate offset beams. The helix was moved off center in the pipe in 2 mm

steps up to 10 mm. At each step the the dispersion was calculated from probes measuring

the electric field 1.5 mm off the helix. No significant change in the dispersion was seen with

offsetting the helix up to 2 GHz(Fig. 4.26). In addition, S1,1 was also recorded for each helix
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Figure 4.25: The fields from the helix best match a ring beam. Ri=4.5 mm, a=5 mm,
Re=20.65 mm, ψ=0.05, εi = 3.5ε0
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Figure 4.26: The dispersion and impedance sees no significant variation due to offsets up to
10 mm offsets.

location using the mismatched L-pad to measure the impedance. Once, again, no significant

change in the impedance was seen when the helix was offset (Fig. 4.26). These are beneficial

behaviors because no additional considerations need to be taken when the helix is offset.
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Chapter 5

Summary

Further development of current diagnostic devices to measure low β beams is a challenging

problem. For BPMs and other non-intercepting devices, the measured signals do not directly

represent the beam unlike at higher energies. Therefore, care must be taken to understand

exactly how the measurements relate to the beam. The measured electric fields from the

beams are affected by not only the precise transverse and longitudinal bunch distribution,

but also the geometry of the pickup. While in theory this can be leveraged to use a BPM to

measure the transverse and longitudinal profiles of the beam, there can be too many variables

and assumptions in the models to give reliable results. The analysis in chapter 3 attempts

to remove as much model dependence as possible and this caused these measurements to

fail at low energy in the MEBT of FRIB. I believe it is possible with additional model

dependence, these measurements could be realized for a proton machine at the same energy

where minimal retuning is needed. For heavy ion machines such as FRIB, different ion species

with different charge to mass ratios will be accelerated and each one will have a different

transverse profile and it becomes less practical to develop a new model for each one. At

higher energies, once the transverse distribution dependence dies out, these measurements

should still possible even for heavy ion machines and allow for using the extensive prevalent

BPMs as longitudinal profile monitors. However, further calibrations of the FRIB BPMs at

these higher energies are required for these measurements.

Key to the broadband BPM measurements and position measurements at low β is un-
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derstanding the signals generated on the buttons and how they relate to the beam. Chapter

3 presents this solely through analytical and numerical methods. However, a test stand as

described in chapter 4 would be greatly beneficial and allow for controlled measurements

with a BPM that will be used in the beamline. What remains for this project is to construct

and validate analytic and numeric model before it can be used as a test stand. This test

stand would not only be useful for further studies of wide bandwidth BPM measurements

but also for calibrating narrowband position measurements for non-relativistic effects.

Lastly, with phase space measurements, the detailed beam distribution is directly mea-

sured, however, standard practice to only take rms values hides many features. Modeling the

beam in phase space to allow direct comparisons is challenging and the analysis in chapter 2

attempts to alleviate some of these difficulties by using action-phase coordinates which elim-

inates variations in linear optics. However, this method relies heavily on having an adequate

model of the beam core for fitting the central parameters. In the PIP2IT MEBT the core

was primarily Gaussian. However, while no transverse phase space distribution measure-

ments were made in the FRIB MEBT, based on the profiles measured by the wire scanner,

I believe developing a model of the core would be more difficult there. The analysis of the

phase portraits in action-phase coordinates was intended to be used to study tail growth in

the PIP2IT MEBT. However, beam jitter and electron noise confounded the measurements

and making definitive claims about the tails was challenging. This analysis would benefit if

it was applied to cleaner signals from a device with a larger dynamic range.

All three of these devices/techniques warrant further investigation and have the possi-

bility to greatly benefit the beam diagnostic’s toolbox. The broadband BPM measurements

have the most obvious advantage of turning every BPM into a non-interceptive longitudi-

nal profile monitor. The helical test stand should accompany these BPM measurements for
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measurements at low energies. And the action-phase analysis can give a more detailed view

of the beam distribution with less concern of the optics.
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