Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Xianglin Ke

Associate Professor
Condensed Matter Physics - Experimental
Biomedical-Physical Sciences Bldg.
567 Wilson Rd., Room 4223
(517) 884-5658

kexiangl@msu.edu
http://www.pa.msu.edu/people/ke/

Lab:
B130 Biomedical-Physical Sciences Bldg.
(517) 884-5702

Education:
Ph.D., 2006, Department of Physics, University of Wisconsin-Madison
Post Doctoral Scholar, 2006-2009, Department of Physics and Materials Research Institute, Pennsylvania State University
Clifford G. Shull Fellow, 2009-2012, Neutron Sciences Directorate, Oak Ridge National Laboratory

Selected Publications

Heda Zhang, Jahyun Koo, Chunqiang Xu, Milos Sretenovic, Binghai Yan, and Xianglin Ke, “Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet”, Nature Communications, accepted (2022).

H. Zhang, C.Q. Xu, C. Carnahan, M. Sretenovic, N. Suri, D. Xiao, and X Ke, “Anomalous thermal Hall effect in an insulating van der Waals magnet”, Phys. Rev. Lett. 127, 247202 (2021).

H. Zhang, Z. Zhao, D. Gautreau, M. Raczkowski, A. Saha, V.O. Garlea, H. Cao, T. Hong, H. O. Jeschke, Subhendra D. Mahanti, T. Birol, F. F. Assaad, X. Ke, “Coexistence and interaction of spinons and magnons in anantiferromagnetwith alternating antiferromagnetic and ferromagnetic quantum spin chains”, Phys. Rev. Lett. 125, 037204 (2020).

H. Zhang, X. Feng, T. Heitmann, A. I. Kolesnikov, M. B. Stone, Y.-M. Lu, and X. Ke, “Topological magnon bands in a room temperature Kagome magnet”, Phys. Rev. B 101, 100405 (R) (2020).

M. Zhu, M. Matsumoto, M. B. Stone, Z. L. Dun, H. D. Zhou, T. Hong, T. Zou, S. D. Mahanti, and X. Ke, "Amplitude modes in three-dimensional spin dimers away from quantum critical point", Phys. Rev. Research 1, 033111 (2019).

M. Zhu, J. Peng, T. Zou, K. Prokes, S. D. Mahanti, T. Hong, Z.Q. Mao, G.-Q. Liu, and X. Ke, "Colossal magnetoresistance in a Mott insulator via magnetic field-driven insulator-metal transition", Phys. Rev. Lett. 116, 216401 (2016).

T. Zou, H. Cao, G. Q. Liu, J. Peng, M. Gottschalk, M. Zhu, Y. Zhao, J. B. Leão, W. Tian, Z.Q. Mao, X. Ke, "Pressure-induced electronic and magnetic phase transitions in a Mott insulator - Ti-doped Ca3Ru2O7 bilayer ruthenate", Phys. Rev. B 94, 041115(R) (2016).

M. Zhu, D. Do, C. R. Dela Cruz, Z. Dun, H. D. Zhou, S. D. Mahanti, and X. Ke, “Tuning magnetic exchange via a control of orbital hybridization in Cr2(Te1-xWx)O6”, Phys. Rev. Lett. 113, 076406 (2014).

X. Ke, L. J. Belenky, V. Lauter, H. Ambaye, C. W. Bark, C. B. Eom, and M. S. Rzchowski, "Spin structure in an interfacially-coupled epitaxial ferromagnetic oxide heterostructure", Phys. Rev. Lett. 110, 237201 (2013).

X. Ke, J. Peng, D. J. Singh, T. Hong, W. Tian, C. R. Dela Cruz, and Z. Q. Mao, "Emergent electronic and magnetic states in Ca3Ru2O7 induced by Ti doping", Phys. Rev. B 84, 201102 (R) (2011).

X. Ke, P. P. Zhang, S. Baek, J. Zarestky, W. Tian, and C. B. Eom, "Magnetic Structure of Multiferroic BiFeO3 Film with Controllable Ferroelectric Domains", Phys. Rev. B 82, 134448 (2010).

J. H. Lee, L. Fang*, E. Vlahos*, X. Ke*, Y. W. Jung, L. Fitting Kourkoutis, J.W. Kim, P. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, "A strong ferroelectric ferromagnet created via spin-phonon coupling", Nature 466, 954 (2010).

P. E. Lammert, X. Ke, J. Li, C. Nisoli, D. Garand, V. H. Crespi, and P. Schiffer, "Direct entropy determination and application to artificial spin ice", Nature Physics 6, 786 (2010).

X. Ke, J. Li, C. Nisoli, Paul E. Lammert, W. McConville, R. F. Wang, V. H. Crespi, and P. Schiffer, "Energy minimization and AC demagnetization in a nanomagnet array", Phys. Rev. Lett. 101, 037205 (2008).

X. Ke, R. S. Freitas, B. G. Ueland, G. C. Lau, M. L. Dahlberg, R. J. Cava, R. Moessner, and P. Schiffer, "Non-monotonic zero point entropy in diluted spin ice", Phys. Rev. Lett. 99, 137203 (2007).

Professional Activities & Interests / Biographical Information

Specialties

neutron scattering science, topological materials, strongly correlated materials, geometrically frustrated magnets, complex oxide heterostructures, multiferroics...

Research Focus

Our research interest is to explore emergent phenomena and understand the underlying mechanism in quantum materials, focusing on strongly correlated materials, geometrically frustrated magnets, topological materials, and complex oxide heterostructures.

Strongly correlated materials refer to a wide class of materials where the electron-electron Coulomb interaction is large and plays a key role in determining materials’ properties. The interplay among spin, charge, and lattice degrees of freedom often lead to exotic phases. For geometrically frustrated magnets, the competing interactions between magnetic ions placed on regular lattice sites can result in a large degeneracy of spins states, giving rise to a rich variety of unconventional magnetic phases. We also investigate quantum materials which may exhibit topological magnons or topological electronic properties. In topological materials, the integrated Berry curvature of magnon bands or electronic bands over the Brillouin zone remains invariant under continuous deformation of the Hamiltonian. Furthermore, we have been interested in the interfacial phenomena in heterostructures composed of different complex oxides stacking on top of each. The interfacial electronic, lattice and orbital reconstructions can lead to remarkable magnetic and electronic properties in oxide heterostructures that are drastically different from bulk counterparts.

We study materials’ properties by combining various neutron scattering techniques together with bulk electronic and thermal transport measurements. Specifically, we investigate materials’ nuclear and magnetic structures, magnetic excitation, interfacial spin structure, and electronic and thermal transport properties. In addition, we also synthesizes new materials in polycrystalline or single crystal forms using solid state chemistry method, flux and chemical vapor transport methods.