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ABSTRACT

CONSTRAIN NEUTRON STAR PROPERTIES WITH ScRIT EXPERIMENT

By

Chun Yuen Tsang

The study of nuclear matter is an interdisciplinary endeavor that is relevant to both astrophysics and

nuclear physics. Astrophysicists need to understand the properties of nuclear matter for neutron

stars are made of mostly nuclear material. Properties of nuclear matter is also fundamental to the

understanding of nuclear physics. They are critical to our understanding of the existence of nuclei,

their composition and also the dynamics of nuclear collisions.

Recent measurements of gravitational waves from binary neutron star mergers open a new

channel for physicists to study nuclear matter. Such astronomical observations of neutron stars

are sensitive to nuclear matter at high density that is usually inaccessible on earth. One of the

ways physicists are able to reach such high density in laboratory is through heavy-ion collision.

Transport calculations show that head-on collisions of heavy nuclei at high beam energy compress

them momentarily to densities comparable to the interior density of neutron stars.

To study neutron star where number of neutrons far exceeds that of protons, the dependence of

nuclear properties on neutron to proton ratio (#//) needs to be understood. This dependence is

quantified as the symmetry energy, which describes the difference in binding energy between pure

neutron matter and symmetric matter, matter with equal number of protons and neutrons. Internal

neutron star pressure that supports itself from gravitational collapse depends on symmetry energy.

Most of the existing heavy-ion collision data come from collisions of stable isotopes. This limits

the range of available #// in nuclear experiments. Extending results to a wider range of #// is

the goal of ScRIT experiment using projectiles provided by the cutting-edge Radioactive Isotope

Beam Factory in RIKEN, Japan. ScRIT time projection chamber (TPC) is developed to measure

charged pions spectra from the collision of neutron-rich system (132Sn + 124Sn), neutron-poor

system (108Sn + 112Sn) and intermediate system (112Sn + 124Sn) at 270 AMeV. By comparing



fragmentation patterns for reactions with different number of neutrons, symmetry energy effects

can be isolated. Previous results from the analysis of pion spectra is reviewed. In this work,

we focus on light fragments spectra that are also available from the TPC data. The data analysis

software, with highlights on correction of some major detector aberrations, is discussed in details.

Monte Carlo simulation of the ScRIT TPC is performed to understand the behavior of ScRIT data

and validate the data analysis procedure.

Bayesian analysis is performed to compare some selected light fragment observables to transport

model simulations using Markov-Chain Monte Carlo and Gaussian emulators. These observables

are chosen to minimize systematic uncertainty from both the experiment and model. This provides

comprehensive constraints on numerous symmetry energy parameters. When previous results from

the analysis of pion spectra alone is combined with results from light fragment observables in this

analysis, the uncertainty on the slope of symmetry energy is reduced by 39%. Its implication on

neutron star is briefly studied to demonstrate the importance of data from rare isotope heavy-ion

collisions.
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CHAPTER 1

INTRODUCTION

1.1 Nuclear equation of state (EoS)

Unification is a general goal pursued by all physicists. Isaac Newton unified gravity on Earth with

the trajectory of celestial objects and James Maxwell unified magnetism and electricity through

the famous Maxwell’s equations. The beauty of unification is that it ties seemingly unrelated

phenomena together with a single description. In the study of nuclear equation of state (EoS)

presented in this work, we hope to unify astronomical observations, which is the study of massive

celestial objects, with heavy-ion collision measurements, which is the study of tiny invisible nucleus.

The masses of interest in these two fields differ by 55 orders of magnitude, and yet they are related

in a unify description of nuclear EoS.

The key is to realize that the environment in the interior of neutron star (NS) is similar to that

in the core of ordinary nucleus. Ordinary matters we find in our everyday life are supported by the

electrostatic repulsion of electrons, but the gravitational pull is too strong for neutron star matter

to be supported by electrostatic force. The extreme environment forces electrons and protons to

merge and form neutrons. Such homogeneous matter of nucleons is called nuclear matter and

is supported by nuclear degeneracy pressure due to Pauli exclusion principal. This is similar to

nucleus during heavy-ion collision where part of it is being compressed to supersaturation density.

Our knowledge on nuclear collisions can be extrapolated to predict properties of NS.

Properties of nuclear matter are described quantitatively by nuclear EoS. It is an equation that

relates various state variables such as pressure, volume and internal energy. One of the simplest

yet powerful approximation to nuclear EoS is the semi-empirical mass formula (SEMF). It models

nucleus as an in-compressible drop of nuclear matter [9] which yields the following formula,

�� = 0+ � − 0(�2/3 − 0�
/2

�1/3 − 0�
(# − /)2

�
+ X(#, /). (1.1)
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Here �� is the binding energy, / is the number of protons, # is the number of neutrons and

� = # + / is the total number of nucleons. The five terms in SEMF can be understood as follows:

The first term with coefficient 0+ is called the volume term which accounts for the increased

interactions due to proportionally increased number of nucleons. The second term with coefficient

0( is called the surface term and is negative to account for the fact that nucleons on the surface

have less neighbors to interact with, so overall strength of interaction is reduced. The third term

with coefficient 0� is called the Coulomb term which accounts for the Coulomb repulsion between

protons. This term resembles Coulomb potential once you realize that average distance between

nucleons ∝ �1/3 and charge of nucleus ∝ / . The fourth term with coefficient 0� is called the

asymmetry term which arises due to asymmetry in number of protons and neutrons. If the number

of protons and neutrons are the same, they share the same Fermi energy. However if there are

more neutrons than protons, some neutrons are forced to occupied higher energy level due to Pauli

exclusion principal. Although Fermi energy of proton is reduced, the overall internal energy is

raised which resulted in a reduction of binding energy. The final term is called the pairing term

which is caused by spin-coupling. For the purposes of this thesis, the pairing term will not be

discussed.

The SEMF was developed to approximately describe the mass and stability of atomic nucleus.

It’s agreement with measured binding energies of various nuclei is satisfactory for some best fitted

values coefficients [10]. If we naively approximate NS as one giant nucleus with �→ ∞, EoS for

NS can be written as,

��

�
= �8B + �8EX2, (1.2)

with �8B = 0+ , �8E = 0� and X = (# − /)2/�. These terms are relabelled to emphasize that

the first term is the isoscalar term which makes no distinction between protons and neutrons, and

the second term is the isovector term which accounts for the effects of having an unequal amount

of protons and neutrons. Such approximated NS EoS is inaccurate in predicting NS properties

because baryon density in ordinary nucleus is different from NS. Baryon density in ordinary
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nucleus is roughly d ≈ d0 = 0.155 fm−3 where d0 is called the saturation density. However,

density inside a NS changes with depth. NS density is zero on the surface and can be up to multiple

times the saturation density at its center. The parameters in SEMF are fitted with data from ordinary

nucleus so the equation is only valid for nuclear matter at d ≈ d0. Despite the shortcomings, it is

still instructive to see how EoS decomposes into isoscalar and isovector terms.

To overcome the over-simplifications in SEMF, we incorporate density dependence to equa-

tion (1.2),

� (d, X) = �8B (d) + X2�8E (d) +$ (X4), (1.3)

The isovector term is often denoted as ((d) and is sometimes referred to as the symmetry

energy term. Measurements of collective flow and Kaon production in energetic nucleus-nucleus

collisions have constrained �8B to densities up to 4.5d0 [11–13]. Specifically, the symmetric matter

constraints on pressure vs. density were determined from the measurements of transverse and

elliptical flow from Au + Au collisions over a range of incident energies from 0.3 to 1.2 GeV/u [11].

These constraints were confirmed in an independent analysis of elliptical flow data [14]. Similar

constraint from 1.2d0 to 2.2d0 was obtained from the Kaon measurements [12, 13]. These heavy-

ion constraints are consistent with the Bayesian analyses of the NS mass-radius correlation [15].

This is in stark contrast to constraints on �8E as it is constrained only at densities near or below

d0. Since NS composed mostly of neutrons, �8E should play a prominent role. Indeed studies found

that NS properties is sensitive to �8E at 2d0 [16]. The purpose of this study is to constrain the �8E at

high density using heavy-ion collision. In a medium-energy heavy-ion collision, the colliding part

of the nucleus is compressed and experience higher density than d0, and when it expands afterward

it temporarily experiences density below d0. Complete knowledge of nuclear EoS across different

densities is needed for nuclear theory to accurately predicts collision observables.

There are multiple ways of parameterizing nuclear EoS, such as Skyrme type EoS [3], poly-

tropes [17] and Meta-modelling EoS [1]. Nuclear structure probes are generally sensitive to the

density region around saturation [18–21], so derivatives of EoS with respect to density at this point
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are often used as empirical parameters to characterize the density and isospin dependence of the

EoS. These derivatives are commonly expressed as coefficients in the Taylor expansion when EoS

is expanded in terms of G = (d − d0)/(3d0):

�8B (d) = �0 +
1

2
 satG

2 + 1

3!
&satG

3 + 1

4!
/satG

4 + ... (1.4)

�8E (d) =(0 + !G +
1

2
 symG

2 + 1

3!
&symG

3 + 1

4!
/symG

4 + ... (1.5)

For some EoS families, energy depend on density and asymmetry in a way that cannot be separated

into the sum of two terms, but the isoscalar term is always well-defined:

�8B (d) = � (d, X = 0). (1.6)

The isovector term can be defined as the second order Taylor expansion coefficient in X around

X = 0 (not to be confused with Taylor EoS expansion coefficients which expands in G),

�8E (d) =
1

2

m2� (d, X)
mX2

���
X=0

. (1.7)

Likewise Taylor EoS coefficients can always be extracted from any nuclear EoS. This allows for

comparison of variables across families of EoS.

1.2 Neutron Star

The matter in the interior of a NS is one of the densest material besides black hole in the universe.

This matter is so dense that it becomes energetically favorable for protons and electrons to combine

and form neutrons. At densities ranging from somewhat below saturation density (d0 = 0.155 fm−1

) to 3d0, it is reasonable to describe NS matter as locally uniform nuclear matter composed mostly

of neutrons. Study of NS is of great relevance to nuclear physics because it provides unique

information on the properties of asymmetric nuclear matter at high density. Refs. [22–24] provide

more in depth discussions on the subjects.
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Astrophysical NS properties, combined with constraints from nuclear observations, have

provided a rough understanding of nuclear EoS. Typical temperatures of NSs are low with

:�) < 1 MeV, thus finite temperature effect is small, but the uncertainty in the relation between

the pressure and energy density of nuclear matter at various baryon densities remains large [25].

Recent gravitational wave observations from LIGO collaboration [26] opened a new window

for understanding neutron-star matter. Specifically, the LIGO observation provides estimation for

tidal deformability, also known as tidal polarizability, a quantity that bears direct relevance to

nuclear EoS. When a NS orbit around another NS, tidal force deforms its companion star. The

mass quadrupole that developed in response to the external quadrupole gravitational field emerges

as:

&8 9 = −_�8 9 . (1.8)

Here �8 9 is the external gravitational field strength and _ is the tidal deformability. The orbital

period of the in-spiral differs from point mass calculations because tidal deformation contributes to

an overall orbital energy loss and changes the rotational phases. This difference is used to extract the

dimensionless tidal deformability (Λ) of a NS [27, 28]. Throughout this thesis, tidal deformability

given below always refers to the dimensionless tidal deformability Λ defined as,

Λ =
_210

�4"5
=

2

3
:2

( 22'

�"

)5
, (1.9)

where :2 is the second Love number [29, 30]. This whole expression, including the Love number,

is sensitive to the nuclear EoS [26, 31, 32]. Steps necessary to calculate Λ for a given EoS are

detailed in Appendix A.1. With the gravitational wave observation of a neutron star merger event

170817, LIGO group first constrained this value to Λ < 800 [26], and later refined to Λ = 190+390
−120

with additional assumption on the functional form of EoS [33]. The quantitative relation between

constraint on Λ and EoS parameters will be explored in this thesis.

1.3 Heavy-ion collision

Another source of constraints on density dependence of the symmetry energy comes from

heavy-ion collision (HIC). When nucleus collide, part of the target and projectile nucleons overlap
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Figure 1.1: Cartoon illustration of impact parameter b, spectator and participant nucleons. Taken
from Ref. [2].

with each other. The collision pushes the density of the overlapping region to well above d0,

sometime to density as high as 2d0 [2]. The nucleons in the overlapping region is commonly

referred to as the participant nucleons whereas those not directly in the path of collision is referred

to as spectator nucleons. The two types of nucleons are illustrated in Fig. 1.1. The patterns at

which participant nucleons emerges as light fragments will shed light into the nuclear EoS.

Before the advancement of Rare-Isotope (RI) beams, only stable nucleus can be studied which

limits the range of neutron to proton ratio in a reaction. With the development of modern RI beam

facility, it is now possible to collide unstable nuclei with a higher neutron to proton ratios than

before. By comparing results from reactions at various neutrons to protons ratios, the asymmetry

contribution to EoS can be studied.

The perpendicular distance between target and projectile is called the impact parameter 1.

Events with small 1 are called central events while those with large 1 are called peripheral events.

Collision dynamics changes with impact parameter so different observables are used for central and

peripheral events to study nuclear EoS [11, 34–36]. Recently, pion observables on central events

(will be detailed on Chapter 4.4) have been compared to theory to successfully constrain symmetry

energy term at high density [37].

Most of these analyses explored a few parameters at a time. For instance, Ref. [11] vary only

the curvature parameter  sat while keeping other parameters, such as in-medium cross-section
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and effective mass fixed. Different experiments have led to different one-variable constraints or

two-variable correlation constraints. Ref. [37] only varies two variables (! and Δ<=?), with other

parameters such as in-medium cross-section or  sym restricted to best fitted values from other

experiments. Due to the complexity of nuclear dynamics, observables rarely depend on only one or

two parameters. If certain parameters are fixed, the potential constraining power of the observable

on those parameters are lost. Improvements can be made by constraining multiple parameters with

multiple observables simultaneously.

1.4 Organization of Dissertation

To probe the density dependence of symmetry energy term, a set of Sn + Sn heavy-ion experi-

ments were preformed in 2016 at RIKEN with a time projection chamber (TPC) called ScRIT placed

inside the SAMURAI magnet. Constraints have been extracted from pion yield and ratios [37],

but it can still be improved by incorporating other observables involving light fragments. TPC was

used under magnetic field as it can distinguish c+ from c−, measure the momentum of high energy

fragments and provide a large geometrical coverage, but the analysis of TPC data is complicated

as Chapter 3.2 shows. In this thesis I will demonstrate the improvements on data analysis and

Monte Carlo simulation for light fragments observables, develop an efficient algorithm to search

for best fits in multi-dimensional parameter space and perform correlation analysis between EoS

parameters and deformability Λ. This correlation will be the connection between nuclear physics,

represented by EoS parameters, and astrophysics, represented by Λ from LIGO experiment.

The organization of the dissertation is as follows: In Chapter 2, the correlation between nuclear

EoS and neutron star properties is studied. Then a brief introduction to the set up of ScRIT

experiment and data analysis software are presented in Chapter 3. The results from the experiment

are shown next in Chapter 4. Monte Carlo simulation of the ScRIT TPC is discussed in details

in Chapter 5 to verify the accuracy of our analysis software. Bayesian analysis is then performed

in Chapter 6 to translate experimental results into constraints on nuclear EoS parameters. Its

implication on NS properties will be discussed. Finally a brief summary is given in Chapter 7.
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CHAPTER 2

NEUTRON STAR CALCULATIONS

In this chapter, we will explore the correlation between tidal deformability and Taylor expansion

parameters. Previous studies have explored the constraints on different 2D parameter planes [16,

20], on a diverse set of models [38–40], and with Bayesian analysis on EoSs from chiral effective

field theory [41]. In this study, we will expand the analysis by using EoSs that are commonly used

in HIC and exploring a larger parameter space by employing a less restrictive form of EoS.

A family of theoretical EoS is needed to correlate the Taylor expansion parameters with the

predicted Λ. One widely used family in astrophysics is the piece-wise polytropes [17], but it is not

suitable in this study because a Taylor expansion assumes that the EoS is analytic over the range of

interest. As long as there is only one polytrope, a Taylor expansion is valid, but its validity does

not extend past the point of connection between the original polytrope and the next.

A commonly used family of EoS used in nuclear physics is the Skyrme interactions [3]. It derives

from simplified approximate nuclear interaction and relies on 15 free parameters in its expanded

form. Many different Skyrme interactions have been developed to calculate nuclear properties

and these studies are well documented in the literature [3, 19, 42]. Most of the compiled Skyrme

interactions used in this work has been tested to be consistent with certain nuclear properties. Due

to its prevalence in nuclear physics, we will review how the new merger observable such as the

tidal deformability correlates with nuclear physics parameters in nuclear EoS constructed from

commonly used Skyrme interactions and how the insights gained can be used to guide the nuclear

physics experiments designed to constrain the symmetry energy term of the nuclear EoS.

Recently, Meta-modelling EoS [1] is proposed as an alternative to Skyrme EoS. Its functional

form is less restrictive and would be suitable for understanding the effect from higher order terms.

Due to their unique advantage, we will also study the correlations between high order Taylor

parameters and NS properties using Meta-modelling EoS.
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2.1 Structure of a NS and modifications on the nuclear EoS

Neutron stars are more than a “giant nucleus”. There are structural changes at various density

regions as a result of a competition between the nuclear attraction, chemical potential of various

particle species and the Coulomb repulsion. The dynamics of the outermost layer of NSs is

described mostly by the Coulomb repulsion and nuclear masses, where nuclei arrange themselves

in a crystalline lattice. As the density increases, it becomes energetically favorable for the electrons

to capture protons, and the nuclear system evolves into a Coulomb lattice of progressively more

exotic, neutron-rich nuclei that are embedded in a uniform electron gas. This outer crustal region

exists as a solid layer of about 1 km in thickness [32].

At intermediate densities of sub-saturation, the spherical nuclei that form the crystalline lattice

start to deform to reduce the Coulomb repulsion. As a result, the system exhibits rich and complex

structures that emerge from a dynamical competition between the short-range nuclear attraction

and the long-range Coulomb repulsion [43].

At densities of about half of the nuclear saturation, the uniformity in the system is restored

and matter behaves as a uniform Fermi liquid of nucleons and leptons. The transition region from

the highly ordered crystal to the uniform liquid core is very complex and not well understood.

At these regions of the inner crust which extend about 100 meters, various topological structures

are thought to emerge that are collectively referred to as “nuclear pasta”. Despite the undeniable

progress [44–57] in understanding the nuclear-pasta phase since their initial prediction over several

decades ago [58–60], there is no known theoretical framework that simultaneously incorporates

both quantum-mechanical effects and dynamical correlations beyond the mean-field level. As a

result, a reliable EoS for the inner crust is still missing.

The matter in the core region of NS can be described as uniform nuclear matter where neutron,

proton, electrons and muons exist in beta equilibrium [43]. Although a phase change and exotic

matter such as hyperons [43, 61, 62] could appear in the inner core region, there is currently no

direct evidence of their existence. In this work, we calculate the EoS in this region by assuming

that the neutron-star matter is composed of nucleons and leptons only.
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Due to the rich structure of NS, the nuclear EoS needs to be contextualized before it can be used

for NS properties calculation. To begin with, crustal EoS should be used at density below transition

density d) . Normally the determination of d) requires complicated thermodynamic calculations,

but some simple relationship has been found between transition densities and Taylor parameters of

the EoS [63] that greatly simplifies its calculation. In this study, the following equation is used to

determine d) :

d) = (−3.75 × 10−4! + 0.0963) fm−3. (2.1)

Outer and inner crust exhibit different physical properties and should be described by different

EoSs. For the outer crust, EoS provided by Ref. [64] is used in this analysis. For the inner crust,

either a Fermi-gas EoS (used in Section 2.2) or spline interpolation (used in Section 2.3) is used.

Its main purpose is to connect the outer crust and outer core. The outer crust is used in the region

of 0 < d < 0.3d) and the inner crust in 0.3d) ≤ d < d) . The transition density at 0.3d) is

chosen ad-hoc and this connection region cannot precisely describe crustal dynamics, properties of

the neutron star core such as tidal deformability does not appear to be sensitive to the choice of the

crustal EoS [32, 65, 66].

The outer core region d > d) is characterized by the EoS of a beta equilibrated system of

protons, neutrons, electrons and muons. Proton and neutrons are collectively described by nuclear

EoS while electrons and muons are modeled as relativistic Fermi gases. Equilibrium is attained

by minimizing the Helmholtz free energy at different densities. Beyond a certain high density

threshold d2, the EoS of outer core may not be applicable. To complete the description of NS

EoS, polytropes (used in Section 2.2) or EoS with speed of sound equals to speed of light (used

in Section 2.3) can be used to extend the EoS to the central density region of a neutron star. The

high density region mainly affects the maximum neutron star mass and does not affect the relevant

properties of the 1.4 solar mass neutron stars considered here.
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To summarize, EoS of the neutron-star matter is formulated as follows:

%(E) =




%outer crust(E), if 0 < d < 0.3d)

%connection(E), if 0.3d) < d < d)

%outer core(E), if d) < d < d2

%inner core(E) if d2 < d.

(2.2)

In the above equation, %outer crust is the pressure from outer crustal EoS and %outer core is the

pressure from beta-equilibrated nuclear EoS. %connection is the intermediate equation that smoothly

connects %crust(Ecrust(0.3d) )) to %outer core(Eouter core(d) )).

2.2 Neutron stars from Skyrme EoS

In this section, a collection of 248 Skyrme interactions from Refs. [3, 19, 21] are used to form

the outer core EoS. The outer core is assumed to be valid until d2 = 3d0, where a transition to inner

core occurs. A polytropic EoS of the form  ′dW is used to extend the EoS to the central density

region of a neutron star. The constants  ′ and d0 are fixed by the conditions that the pressure at

thrice the normal nuclear density, %inner core(d2) matches the pressure from the Skyrme density

functionals %outer coure(d2) and that the polytrope pressure at 7d0 is such that the EoS can support

a 2.17 solar-mass neutron star, the maximum neutron star mass predicted from the neutron star

merger event [67].

The EoS in different density regions are presented by the different color curves in Fig. 2.1.

At the lowest densities, the EoSs, describing the outer crust, are represented by yellow lines.

The Fermi-gas EoS that connect the crust to the inner core are represented by the green curves.

As a vehicle in connecting nontrivial nuclear physics observables to 1.4 solar mass neutron-star

observables, we use the Skyrme interactions (green curves) [3, 19, 42] at densities found in the

inner core region (between 0.5d0 to 3d0) that represent the nuclear matter environment where such

interactions can apply. The polytropic EoS above 3d0 are plotted in red. The Skyrme interactions

that generate negative pressure at 3d0 or otherwise would not support a 2.17 solar mass neutron
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Figure 2.1: Composition of EoSs in different density regions in the neutron star. The outer crust
EoS is represented by the yellow line, relativistic Fermi gas polytropic EoSs by the green lines,
Skyrme EoSs by the blue lines and high density polytropes by the red lines. See text for details.

star are excluded as they are not realistic.

2.2.1 Results for a 1.4-solar mass NS

From the collection of Skyrme EoSs, only 182 of them can support a 2.17 solar mass neutron

star. Each EoS, represented by an open circle in Fig. 2.2, gives rise to a unique prediction for

the neutron-star radius and tidal deformability. The trend exhibited by the open circles reflects

the fact that tidal deformability and neutron-star radius are correlated as described by Eq. (1.9).

Tidal deformability is sensitive to pressure at density region region of (0.5 − 3)d0 [17, 41, 68].

If we neglect the crust in our calculations, we arrive at the blue dashed curve. Above Λ > 600,

calculations including a crust produce larger radii. The phenomenon that the crust adds to the radii

has been also observed in other calculations [67, 68].
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Figure 2.2: Correlation between neutron-star tidal deformability and radius from current calcu-
lations are represented by open circles and those from Ref. [3] by open squares. The light blue
shaded area represents constraint from recent GW170817 analysis [4]. Five interactions, KDE0v1,
LNS, NRAPR, SKRA, QMC700, deemed as the best in Ref. [3] in describing the properties of
symmetric matter and calculated pure neutron matter, are plotted as red stars. The dashed curve is
the best fit to our results if no crust is included in our neutron star model.

The increase in crustal thickness with neutron star radius is consistent with Ref. [69], which

shows that the crust thickness increases inversely with neutron star compactness ("/'). The reason

is that crust thickness contributes to the total radius but does not affect the total mass and depends

little on uncertainties in the crustal EoS. In the region of large tidal deformability, our results

are consistent with those from EoSs based on relativistic mean-field interactions [4] following

analogous methodology and represented by the open red squares in Fig. 2.2. The range of the

updated values Λ = 70 − 580 and ' = 10.5 − 13.3 km obtained from the GW170817 analysis [33]

is represented by the light blue-shaded square there. Our calculations lie nearly diagonally across

the box with about 130 interactions inside.

13



One advantage of Skyrme nuclear density functionals is that many different Skyrme interactions

have been developed to calculate nuclear properties and these studies are well documented in the

literature [3, 19, 42]. Most of the compiled Skyrme interactions used in this work has been tested

to be consistent with some nuclear properties. As described in Ref. [3], eleven constraints that

represent the properties of symmetric nuclear matter and pure neutron matter are used to assess 240

Skyrme interactions. Five interactions, KDE0v1, LNS, NRAPR, SKRA, QMC700, which satisfy

nearly all the eleven constraints, are highlighted as red stars in all the figures in this section. The Λ

values (∼ 250) they yield, with the associated radii (∼ 11.3 km), are well within the GW constraint.

As mentioned in Section 1.1, it is customary to expand EoS in Taylor parameters expanded

at saturation density. By taking advantage of the large range of Skyrme parameter used in this

work, we can explore the correlations of the set ( sat, &sat, (0, !,  sym, &sym) to the neutron star

properties, specifically, the tidal polarizability, Λ. Since Λ is monotonically related to the neutron

star radius ', we observe similar correlation between ' and the set ( sat, &sat, (0, !,  sym, &sym)

even though the latter correlations are not discussed below.

First we explore the connection to the parameters in �8B. Fig. 2.3 shows the plots of Λ vs  sat

(left panel) and &sat (right panel). The value of  sat, also known as compressibility, has been

fairly well determined experimentally to be 230 ± 30 MeV [3]. Most of the Skyrme interactions

studied here cluster around  sat ∼ 240 MeV and, within this tight bound on  sat, show no obvious

correlation with Λ. &sat values cluster around ∼ −380 MeV and again show no correlation with Λ.

This observation that Λ is not strongly connected to  sat and &sat that characterize the symmetric

matter, is consistent with conclusions of previous studies [70]. This implies that it would be difficult

to extract properties of the symmetric nuclear matter from the dipole deformability of the neutron

star alone.

Next we explore the importance of the parameters in symmetry energy term, (0, !,  sym, and

&sym in Fig. 2.4. The abscissa scales are chosen to represent the respective ranges of values found

in Ref. [3] and that the correlations between the plots are comparable. The correlations between

Λ and symmetry energy parameters are stronger than those for symmetric nuclear matter. The
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Figure 2.3: Correlation between the neutron star deformabilityΛ and the compressibility parameter
 sat (left panel) and skewness parameter &sat (right panel) defined in Eq. (1.5) for the symmetric
matter EoS of Skyrme functionals used in the study. The red stars in both panels represent the five
interactions, KDE0v1, LNS, NRAPR, SKRA, and QMC700 that satisfy nearly all 11 constraints
of Ref. [3].

correlation is strongest in  sym followed by !. The slope ! mainly characterizes the vicinity of

saturation density region as it is the first derivative, also known as the slope. Since the second-order

term,  sym impacts more the higher densities, it is not surprising that  sym should have stronger

influence on Λ. The much weaker sensitivity to &sym probably reflects that &sym impacts density

above 3d0. Different models may have different correlations between (0, !,  sym, and &sym .

Thus the correlations observed here may not be universal. It would be interesting to examine these

correlations with other density functionals and, in particular, with interactions that have different

correlations between density regions than those that are implicitly contained in the Skyrme.

2.2.2 Neutron star of different masses

Fig. 2.2 shows the power-law relationship between the tidal deformability and the radius for 1.4

solar mass neutron star. If mass of the neutron star changes, a different power law relationship

is expected. The left panel of Fig. 2.5 shows the tidal deformability as a function of neutron star

radius for neutron-star mass of 1 (closed violet circles), 1.2 (open violet circles), 1.4 (closed blue
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Figure 2.4: The four panels show the correlation between the neutron star deformability Λ and
Taylor expansion coefficients (0 (lower left), ! (upper left),  sym (upper right) and &sym defined
in Eq. (1.5) for the symmetry energy and obtained for the Skyrme functionals used in the study.
The symbols follow the same convention as in Figs. 2.2 and 2.3

squares), 1.6 (open blue squares), 1.8 (closed red triangles) and 2 (open triangle) solar masses. A

universal relationship with the tidal deformability is obtained if the mass is taken into account as

shown in the right plot of Fig. 2.5 where the radius is replaced by the compactness factor ("/').

As expected, the tidal deformability has an inverse power law relationship to the compactness factor

("/'). For a fixed solar mass, the range of the compactness factor is limited since the radius of

the neutron star mostly span a range from about 8 to 14 km. Thus it is easier to deform a smaller

star giving rise to larger deformability than to deform a star with larger mass.
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Figure 2.5: Left panel: Correlation between neutron-star tidal deformability and radius for neutron
stars with different masses. From top: closed and open circles, closed and open squares, closed
and open triangles represent neutron star mass of 1, 1.2, 1.4, 1.6, 1.8 and 2 solar masses. Right
panel: Universal relationship between neutron-star tidal deformability and compactness ("/') for
neutron stars with different masses as plotted in the left panel.

2.3 Neutron stars from Meta-modelling EoS

While Skyrme EoS provides numerous advantages, it is difficult to explore new physics from

the Taylor expansion parameters because they are strongly constrained by the form of the Skyrme

interaction itself. It is difficult to access the functional dependencies of the Taylor expansion

parameters that are not contained in the original choice for the Skyrme functional form [71, 72].

This can be overcome with Meta-modelling EoS from Ref. [1]. Such metamodels for the EoS can

be easily constructed with only Taylor expansion parameters and effective masses. Their derivatives

of different orders are independent of each other by construction.

Four different empirical local density functionals (ELF) meta-models are proposed in Ref. [1]:

ELFa, ELFb, ELFc and ELFd. ELFa does not produce vanishing energy as density approaches

zero. ELFb does not converge to a typical Skyrme EoS even when identical Taylor parameters are
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used. ELFc does not have the shortcomings of EFLa and ELFb and closely resembles Skyrmes

with similar Taylor parameters. Although ELFd agrees with Skyrmes better than ELFc, it relies on

high density information that is not well constrained by experiments.

From the above considerations, we adopt ELFc in this study. Similar choice is also made in

other recent studies [68, 73]. The formulation of ELFc is detailed in Appendix A.2. The following

choices of parameters have been accurately constrained by nuclear experiment and are fixed in the

analysis [1]: �sat = −15.8 MeV, d0 = 0.155 fm−3.

Apart from the usual Taylor series coefficients, another important quantity that characterizes

nuclear matter properties in Meta-modelling is the effective mass<∗(d, X). It is used to characterize

the momentum dependence of nuclear interaction and it can be different for protons <∗
p(d, X) and

neutrons <∗
n(d, X) depending on the environment under which the nuclear matter is subjected to.

It is generally assumed that <∗
p = <∗

n in SNM.

Comparison of effective masses is commonly carried out through the comparison of two

quantities: the nuclear effective mass in SNM at saturation <∗
sat and the splitting in neutron and

proton effective masses in pure neutron matter (PNM) at saturation Δ<∗ = <∗
n − <∗

p. The choice

of the two quantities mirrors the spirit of splitting EoS into isoscalar term and isovector term in

Eq. (1.3) where contribution from SNM is separated from the correction factor that arises due to

asymmetry in numbers of protons and neutrons.

Sometimes it is more convenient to express <∗
sat and Δ<∗ in terms of ^sat, ^BH< and ^E:

^sat =
<

<∗
sat

− 1 = ^B,

^sym =
1

2

( <
<∗
=
− <

<∗
?

)
,

^E = ^sat − ^sym.

(2.3)

The parameter ^E plays the role of the enhancement factor in Thomas-Reiche-Khun sum rule

and depends on the energy region of the resonance energy [74]. In this analysis, the effective

masses will be expressed in terms of <∗
sat/< and ^E .

NS EoSs are constructed from Meta-modelling EoS using procedure detailed in Section 2.1,
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with spline interpolation as the connection EoS and beta-equalibrated EFLc as the EoS for outer

core. The inner core is represented by the "stiffest" possible EoS in this section where speed of

sound is equal to the speed of light. The determination of transition density from outer to inner

core will be outlined below.

Additional characteristics of nuclear matter can be inferred using thermodynamic equations

once an EoS is specified. The pressure at various densities %(d) is related to the derivative of the

energy:

%(d) = d2 m� (d, X)
md

. (2.4)

The adiabatic speed of sound can then be calculated [75]:

(EB
2

)2
=

( m%
mE

)
(
, (2.5)

where E = d(� + <22) is the energy density of the material, including mass density. This implies

any thermodynamic stable EoS must satisfy
(
m%
mE

)
(
> 0. Furthermore, since information cannot

travel faster than the speed of light due to causality, the inequality EB < 2 must hold for all densities

relevant to NS. This may not be always true for ELFc. To keep the EoS valid, we will switch from

ELFc to an expression for the stiffest possible EoS whenever causality is violated:

%inner core(E, EB, E0, %0) =
(EB
2

)2
(E − E0) + %0. (2.6)

This equation represents a EoS with constant speed of sound EB, with EB = 2 yields the stiffest

possible EoS [76]. Here E0 and %0 are reference values of energy density and pressure, respectively.

The reference values can be adjusted to match the conditions at a specific density where energy

density and pressure are known. The switch in EoS avoids superfluous rejection when causality is

considered.

2.3.1 Bayesian inference

We use Bayesian inference to study the influence of tidal deformability constraints from LIGO

on nuclear-matter EoS parameters. These parameters are sampled uniformly within reasonable
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ranges and are then transformed into samples of neutron-star matter EoSs. Through solving TOV

equation, we are able to calculate the corresponding tidal deformabilities. By combining their

prior distribution, which is our initial believe on parameter values based on findings from literature,

and likelihood, which indicates the compatibility between the calculated and the observed tidal

deformability, Bayesian inference will assign probability for each EoS parameters with Bayes

theorem:

%(M) = 1

+tot
F(M)?(Λ(M))

∏
8

68 (<8). (2.7)

In this equation, M is the set of all EoS parameters, <8 ∈ M is the 8th EoS parameters, +tot is the

normalization constant, ?(Λ(M)) is the likelihood of a EoS calculated from its predicted Λ, 68 is

the prior distribution of the 8Cℎ parameter and F(M) is the filter condition that filters out EoSs that

are nonphysical.

The likelihood of EoS is the probability of having the observed LIGO event with the assumption

that the given theoretical EoS is the ultimate true EoS. We will model the likelihood function as an

asymmetric Gaussian distribution base on the extracted Λ = 190+390
−120 [33] for 1.4-solar mass NS

from GW170817.

?(Λ) =




1
+ exp(− (Λ−190)2

2×1202 ), if Λ ≤ 190

1
+ exp(− (Λ−190)2

2×3902 ), if Λ > 190.

(2.8)

In the above, + is the feature scaling constant such that the likelihood function integrates to 1.

The sought function is the probability distribution of EoS parameters rather than that for Λ, so

prior distribution 68 is required to convert between the two using Bayes theorem. A commonly

used prior is the Gaussian distribution:

68 (<8) =
1√

2cf2
8

exp
(
−

(<8 − <8,prior)2

2f2
8

)
, (2.9)

where<8,prior and f8 are the prior mean and standard deviation of the free parameters, respectively.

They should be chosen to reflect our current understanding of those free parameters.
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Some parameter sets may yield nonphysical EoSs due to various additional considerations. The

filter condition F(M) takes that into account; it is set to 1 if the following three conditions of

stability, causality and maximum mass, are all satisfied and it is set to 0, if not.

The stability condition rejects EoSs whose pressure decreases with energy density. Above the

crust-core transition density, we require the EoSs to be mechanically stable with thermodynamical

compressibility greater than zero, which means that the pressure of homogeneous matter does

not decrease with density. For EoSs with negative compressibilities at density above the crust-

core transition densities predicted by Eq. (2.1), they will be rejected as being inconsistent with

experimental information.

The requirement of causality rejects EoSs whose speed of sound is greater than the speed of

light in the core region of their respective heaviest NS. The maximum mass condition rejects EoSs

that fail to produce a NS of at least 2.04 solar mass in accordance with observation. [77, 78].

Using the fact that the binary NS merger GW170817 detected by LIGO did not promptly produce

a black hole, the heaviest possible NS should be around 2.17 solar mass [67]. Other sources put the

maximum mass at around 2.15-2.40 solar masses [79–84]. Neither of these constraints have been

adopted in here but can be implemented in the future.

The calculated probability distribution from Eq. (2.7) is referred to as the posterior distribution.

By comparing prior to posterior distribution, we will be able to infer the sensitivity of various

EoS parameters to NS tidal deformability. By construction, priors of different free parameters in

meta-modeling EoS are not correlated with each other, so any correlations in the posterior reflect

the collective sensitivity of the Taylor expansion parameters to NS tidal deformability.

Prior distributions of the parameters should reflect our initial belief of those quantities before

information on tidal deformability is taken into account. For this, we rely on Ref. [1] which

summarizes the distributions of EoS parameters from three phenomenological families, Skyrme,

relativistic mean field (RMF) and relativistic Hartee-Fock (RHF). The mean and standard deviation

of the parameters for each family are tabulated in the first six rows of Table 2.1. In this study,

the prior means and standard deviations are the weighted average values of the three families,
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with weights of 0.500, 0.333, 0.167 respectively. The weights reflect our confidence in of the

models. We give Skyrme EoS the most weight as it is the most heavily employed parametrization

in a myriad of nuclear predictions [3]. These relative weights are ad-hoc, but should cover most

plausible parameter spaces. Prior means and standard deviations are listed in the seventh and eighth

row in Table 2.1 respectively.

Table 2.1: Summary information of various models in Ref. [1]. The bottom half shows character-
istics of the prior and posterior distribution respectively.

!

("4+)
 sym
("4+)

 sat
("4+)

&sym
("4+)

&sat
("4+)

/sym
("4+)

/sat
("4+)

<∗sat
< ^E

Skyrme Average 49.6 -132 237 370 -349 -2175 1448 0.77 0.44

Skyrme f 21.6 89 27 188 89 1069 510 0.14 0.37

RMF Average 90.2 -5 268 271 -2 -3672 5058 0.67 0.40

RMF f 29.6 88 34 357 393 1582 2294 0.02 0.06

RHF Average 90.0 128 248 523 389 -9956 5269 0.74 0.34

RHF f 11.1 51 12 237 350 4156 838 0.03 0.07

Weighted Average 69.0 -45.3 248 367 -114 -3990 3310 0.712 0.42

Weighted f 20.1 70.8 18.3 214 200 1530 989 0.06 0.17

Posterior Average 71.6 -76.9 245 436 -97 -3410 3490 0.74 0.41

Posterior f 16.5 66.0 23 219 202 1710 970 0.07 0.25

The EoSs are sampled uniformly within ranges of plus or minus 2f from the mean values from

the seventh and eighth of Table 2.1. Each EoS is weighted by the product of filter condition, prior

and likelihood of Eq. (2.7). A total of 1,500,000 EoSs have been sampled and 682,652 of them

satisfy all of our constraints. Only 11,711 EoSs apply to all densities without switching to the

stiffest EoS.

2.3.2 Results for a 1.4-solar mass NS

After incorporating the constraint on Λ from gravitational wave observation of the merger of two

1.4-solar mass NSs by LIGO, posterior distributions of Taylor expansion parameters are shown

in Fig. 2.6. The lower triangular plots show the bivariate distributions for two parameters. The
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diagonal plots show the prior (blue curves) and marginalized posterior distributions (red curves)

for each individual parameter. The upper triangle displays the Pearson correlation coefficients for

parameter pairs defined as,

d-,. =
E[(- − -̄) (. − .̄ )]

f-f.
, (2.10)

where E is the expectation value and f- and f. are the standard deviations of the parameters

distributions. The Pearson coefficient ranges from -1 to 1 and its absolute value reflects the strength

of the correlation. A positive value close to 1 indicates a strong correlation and a negative value

close to -1 indicates strong anti-correlation while a value close to 0 indicates lack of correlation [85].

Only bivariate distributions between !,  sym,  sat, /sym and /sat are shown because the higher

order parameters do not seem to be influenced by our tidal deformability constraints. The full

correlation plot is included in Appendix A.3. Characteristics of the probability distributions are

summarized in the bottom two rows of Table 2.1.

Fig. 2.7 shows the mean and 2f region of pressure at different densities spanned by the EoSs

in the posterior. The 2f region converge to a line for E . 20 MeV/fm3, which corresponds to the

outer crust. Since we connect all EoSs to the crustal EoS given by Ref. [64], this convergence is

expected. From around 20 MeV/fm3 to 70 MeV/fm3, the spline connection kicks in and manifests

in the broadening of pressure.

The cut-offs in the lower left corner of /sym vs. /sat distribution and the upper left corner of

 sym vs. ! distribution in Fig. 2.6 are the consequence of stability condition. At such extreme

values, speed of sound may be imaginary when extrapolating to NS of 2.04 solar masses. This

is evident in Fig. 2.8 in which 50 randomly selected EoSs from the cut-off region in  sym vs. !

are shown in the lower panel. The pressure for those EoSs do not increase monotonically with the

energy density and become mechanically unstable. These EoSs are discarded.

The posterior distributions of  sym and /sym differ from the prior distributions significantly.

The tidal deformability constraint favors lower  sym region. The inference also narrows the range

of possible !. Parameters such as  sat and /sat, whose posterior distributions are not altered

significantly reflect that they are not sensitive to the tidal deformability constraints.
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Figure 2.6: Bivariate characteristics of posterior likelihood distributions. Three regions can be
distinguished. The lower triangle panels show likelihood distributions, with intensity proportional
to distribution value, for pairs of Taylor parameters. The diagonal panels display prior (blue) and
marginalized posterior (red) distributions for each parameter. The upper triangular region shows
Pearson correlation coefficient for parameter pairs. Three dots indicate weak correlations with
magnitude less than 0.1.

While this Bayesian analysis is well suited to discuss the sensitivity of the deformability to

the Taylor expansions parameters !,  sym,  sat, etc., it has some limitations. In particular, we

note that the prior and posterior distributions of Λ as shown in Fig. A.3.1 (row 2 column 10 in

Appendix A.3) are drastically different, probably as a consequence of the narrow prior distributions

of the Taylor expansion parameters listed in Table 2.1. This reflects the strong sensitivity of Λ to
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Figure 2.8: Upper panel: The 50 dots in the upper left hand corner of  sym vs. ! correspond to 50
randomly chosen parameter space within the stability cut-off region. Lower panel: Unstable EoSs
that correspond to the 50 dots. The red and blue lines correspond to the red and blue points in the
upper panel respectively. They are highlighted to showcase how a typical EoS in the cut-off region
looks like.
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Table 2.2: Predicted tidal deformability for NS of different masses

Λ(1.2) Λ(1.4) Λ(1.6) Λ(1.8) Λ(2.0)

Posterior Average 1490 624 281 132 64

Posterior f 310 129 61 31 17

the prior distributions of the EoS. Furthermore, the posterior distribution of Λ is much sharper and

peaked at 624 ± 129 which exceeds the value of 190+390
−120 from the analysis of the GW170817 [33].

While the GW constraint reflects the high density of NS core, the prior distributions of the Taylor

expansion parameters do not have rigorous laboratory constraints at high density region where Λ

is determined.

2.3.3 Neutron star of different masses

In anticipation that more merger events involving different NS masses than the nominal NS mass

of 1.4 solar mass will be observed in the future [86], we use the posterior EoS distributions to

predict deformability of NS with different masses.In Table 2.2, we provide our predictions for

the tidal deformabilities for NS with 1.2, 1.4, 1.6, 1.8 and 2 solar mass using this group of EoSs

weighted by their posterior distributions. To show the sensitivity of these predictions to the Taylor

parameters, the bivariate distributions between the Taylor parameters from the posterior and the

predicted tidal deformabilities on different stellar masses are shown in Fig. 2.9. We find that Λ is

more strongly correlated with ! and  sym than it is with higher order Taylor expansion parameters.

The sensitivity to  sym increases, while the sensitivity to ! decreases, with stellar mass.

To quantify this dependence of sensitivity on mass, the Pearson correlation coefficients for a few

selected Taylor parameter pairs are shown in Fig. 2.10. A gradual reduction in correlation between

! and tidal deformability is observed as the mass of a NS increases. This is expected as relevant

average density for more massive stars shift upward and away from those directly impacted by !. A

high density parameter %(2d0), the pressure for pure neutron matter at twice the saturation density,

is also included in Figs. 2.9 and 2.10. The strong correlation between tidal deformability and
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Figure 2.9: Bivariate distributions between deformabilities with NS of different masses and Taylor
parameters. Correlation with tidal deformability is clearly seen with !,  sym and %(2d0).
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Figure 2.10: Pearson correlations for different NS masses.

%(2d0) is consistent with prior work [17, 33, 41, 87]. While this strong correlation is maintained

for both heavy and light NS, the slope of the correlation becomes smaller reflecting the decrease in

average values and variations of Λ with stellar mass.

Such decrease is correlated with an increase in stellar compactness. Using the posterior

distributions of Taylor expansion parameters, predictions can be made on the relation between
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Figure 2.11: Tidal deformability vs. inverse compactness for 1.2, 1.4, 1.6, 1.8 solar mass NS.

stellar mass and inverse compactness ('/"). Fig. 2.11 shows tidal deformability plotted against

inverse compactness, with calculation results for 1.2, 1.4, 1.6 and 1.8 solar mass NS all combined

together. It is consistent with Eq. (1.9) where Λ ∝ :2('/")5. The best fitted power law has an

index of 5.84 due to additional interdependence of tidal Love number :2 and '/" . The result is

consistent with Refs. [32, 88, 89].

We found that independently and in parallel, Ref. [73] conducts a very similar analysis using

ELFc. Our work examines correlations between more parameters and our study extends to higher

mass neutron star. Ref. [73] uses much wider priors while our prior is more restrictive and provide

finer details in a smaller phase-space. In addition, they apply additional constraints on the EoS

using data from jEFT approach and ISGMR collective mode. Even though their extracted &sat

and  sym values are consistent with our extracted values, details in the correlations are not the

same. The subtle differences suggest that Bayesian analysis results depend on the choice of priors

and constraints applied to the EoS.
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CHAPTER 3

ScRIT DATA ANALYSIS

3.1 ScRIT experiment

Nuclear EoS has been studied with heavy-ion collision experiments where heavy-ions are

accelerated by particle accelerator(s) and guided by magnets to collide with target nucleus. Particle

detector(s) records the collision fragment distributions, from which observables are constructed

from the data and compared to transport models. The properties of nucleus and constraints on

nuclear EoS can then be inferred.

In the ScRIT heavy-ion experiment, the particle accelerators are provided by the Radioactive

Isotope Beam Factory (RIBF) at RIKEN, JAPAN. Tin isotopes are accelerated to 270 AMeV. The

target is an isotopically highly enriched stationary Tin foils and the main particle detector is the

ScRIT time projection chamber (TPC). In this chapter, the configuration and working principle of

the accelerators and ScRIT TPC will be briefly described. Details can be found in Ref. [90].

3.1.1 Radioactive Isotope Beam Factory (RIBF)

RIBF produces rare Tin isotope beams from relatively stable primary beams. This primary beam

is created by accelerating the primary ion progressively by a linear accelerator (RILAC) and four

coupled cyclotrons (RRC, fRC, IRC and SRC) to reach a beam energy of 345AMeV. The ions are

guided to hit a rotating Be target, which breaks the primary ion down to smaller fragments, and

in some events one of these fragments is the desired Tin isotope. For the creation of neutron-rich

132Sn and 124Sn beams, 238U primary ion is used and for more symmetric 112Sn and 108Sn beams,

124Xe is used.

The fragments are selected by the BigRIPS spectrometer, which is a series of dipole magnets,

slits and wedge degraders arranged in such a way that only particles within a narrow range of

magnetic rigidity (�d = ?// , where ? is the momentum magnitude and / is the charge) can pass
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Figure 3.1: An overview of RIBF extracted from Ref. [5], with accelerators on the left, fragment
separator BigRIPS in the middle and SAMURAI spectrometer on the top right.

through. It filters out most of the undesirable fragments, but some contaminating isotopes can

still pass through. To select events from a particular isotope, scintillators and ion chambers are

set-up along the beam line after the spectrometer. They measure the time-of-flight (ToF) and charge

number (Z) of isotopes that reaches the ScRIT detector respectively. �d is calculated from ToF

information and magnet settings in BigRIPS, and when it is used in conjunction with the charge

state information we can identify the isotope that passes through BigRIPS event by event. This

beam selection process is described in Ref. [2]. In this work, only events from the desired Tin

isotope are analyzed.

The configuration of RIBF is illustrated in Fig. 3.1. The BigRIPS guided the Sn beam towards

SAMURAI spectrometer, inside of which was the ScRIT TPC.

3.1.2 ScRIT Time Projection Chamber (TPC)

The ScRIT TPC is a rectangular detector designed to measure momentum distributions of pions

and other light fragments from a fixed target collision with an activae gas volume of dimensions
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Figure 3.2: A cartoon illustration of ScRIT TPC. The pads are not drawn to scale.

86.2 cm × 51.3 cm × 134.4 cm (width, height, length). It was surrounded by auxiliary trigger

detectors on both sides and downstream. It is placed inside the SAMURAI dipole magnet which

provides a near uniform 0.5 T magnetic field for the TPC. Please refers to Ref. [91] for details of

SAMURAI spectrometer.

Fig. 3.2 is a simplified cartoon that illustrates its working principle. The detection volume was

filled with 90% Ar and 10% CH4 (P10 gas) at atmospheric pressure. When charged particles pass

through the detector volume, they interact with and ionize the gas molecules, leaving behind trails

of free electrons and positive ions.

Magnetic and electric fields inside the detection volume force trailing electrons to drift upward

and positive ions downward. The electric field is created by the walls of the TPC, called the field

cage, which is made of PCBs and depicted as the brown vertical walls in Fig. 3.2. The field cage
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consists of 50 vertically stacked layers of copper strips, with each layer wraps around the detection

area horizontally and is electrically isolated from nearby layers. During operation, maximum

voltage is applied to the top layer and gradually lowered voltages are applied to each successive

lower layers. This potential gradient on the boundary creates a uniform electric field.

Once the drift electrons reach the top of the TPC, they enter the wire plane, which consists of

three planes of gating grid, anode wire and ground wire from bottom to top. When drift electrons

enter the volume between anode and ground wires, they are accelerated to speed high enough to

ionize gas molecules by the large potential difference between these two layers. Electrons from

these ionized molecules are also accelerated to create more electrons. This electron multiplying

process is called avalanche and it amplifies the signal from the drift electrons, but a lot of unwanted

positive ions are also created. They drift back into the detection volume by electrostatic force and

if too many are presence, the uniform electric field will be distorted. To maintain the uniformity

of electric field, the gating grid is placed below anode wire to prevent excessive electrons from

entering the anode in the first place. One of the major source of excessive electrons is collision

events that do not satisfy trigger conditions. The gating grid consists of a series of parallel wires.

When trigger condition is not met, the grid is set to “close” configuration such that the voltages

of the wires are staggered. Electrons approaching the grid are pushed towards and absorbed by

gating grid wires with lower voltage. When trigger condition is satisfied, the grid is set to “open”

configuration such that voltages of all wires are identical. This allows electrons to move upward

unimpeded. Simulation shows that average transparency is 100% in “open” position and 0% in

“close” position [8]. The movement of drift electrons when gating grid is “open” and “close” are

illustrated in Fig. 3.3.

The induced electrons from avalanche enters the pad plane, which consists of pads (pixels) that

detect the amount of drifting electrons they come into contact with. There are 112 layers of pads

along I-direction and 108 rows along G-direction, with the size of each pad being 1.2 cm × 0.8 cm

(length, width). Signal from all pads can be combined to trace the two-dimension projection of

the fragment trajectory along the horizontal (G-I) plane. This is illustrated in Fig. 3.2 where the
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Figure 3.3: Cartoon depiction of grating grid in “open” configuration (left) and “close” configuration
(right).

red cells corresponds to pads with signal and the blue curve corresponds to the two dimension

projection of a fragment track on the pad plane. Vertical information for each track can be inferred

from the signal detection time on each pad relative to the start counter time-stamp. Electrons drift

at a constant speed of 5.42 ns/µm in ScRIT TPC [92] so electrons that originate from lower vertical

position takes longer to reach the top.

Trajectories of charged fragments inside the TPC are curved due to magnetic field. The

curvature of each track is indicative of their corresponding momentum over charge (?//) value.

With appropriate curve fitting routine, we can reconstruct momentum distributions of various

fragments. Such procedures will be described in details in later chapters.

3.1.3 Beam Drift Chambers (BDC)

To boost the momentum distributions from laboratory frame to center-of-mass frame, we need to

measure the projectile angle of incidence for each event. This is achieved with a pair of Walenta-

type detectors called Beam Drift Chambers (BDCs). They are placed upstream of the target along

the beam pipe.

These chambers consist of two sets of Parallel Plate Avalanche Counters (PPACs). They are

approximately 1 m apart along the beam line. PPAC records the location of the beam particle as

33



it passes through, therefore two readings from the two PPACs can be interpolated to estimate the

angle of incidence. The uncertainty in BDC beam angle of the order of magnitude of 0.1 µrad [2].

3.1.4 KYOTO array and KATANA veto bars as trigger detectors

The four major triggers in the ScRIT experiment are the Scintillating Beam Trigger (SBT), Active

Veto Array, KYOTO Multiplicity array and KATANA veto bars. Given that the primary objective

of the experiment is to measure pions created in central collisions [93], the triggers are set-up to

favor central collision events and disproportionately rejects peripheral events.

SBT is located 4.5 m upstream of the detector. It is a plastic scintillator that serve as a start

counter when a beam particle registers a hit. Active veto array consists of four plastic scintillators

immediately upstream of the target forming a rectangular shape with a rectangular hole in the

middle. The hole allows for beam particles with small angle of incidence from BigRIPS to pass

through. Veto array is hit only if beam particle arrives off-center so events with a signal from veto

array are rejected. These two detectors are set-up to maintain beam quality on recorded events.

The remaining two detectors, KYOTO array and KATANA veto bars, are set-up to dispropor-

tionately accept central events by selecting high multiplicity and low projectile mass events. They

are depicted as the transparent walls surrounding the TPC in Fig. 3.4. These conditions skew the

multiplicity distribution away from what is expected from geometric cross-section.

The KYOTO multiplicity arrays are the two arrays flanking the left and right sides of the

ScRIT chamber. Each side consists of 30 tightly packed rectangular plastic scintillator bars with

dimensions of 450 × 50 × 10 mm2. The hardware specifications are detailed in Ref. [94].

Krakow KATANA veto bars are three sintillating paddles at the downstream end of the ScRIT

chamber, shifted slightly left of the beam axis to intercept the heavy residue traversing the magnetic

field [2, 95]. The signal amplitude is proportional to the charge state / of the residue. The trigger

condition is to only accept events where charge of heavy residue hitting KATANA is lower than

/ ≈ 20 and four or more KYOTO bars are being hit simultaneously.
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Figure 3.4: Illustration of KATANA and KYOTO arrays. KYOTO arrays surround the chamber
on the left and right sides and the KATANA array is immediately downstream. For the KATANA
array, the two narrow strips with deeper shade of brown and the one between them are the veto
paddles used in trigger condition.

3.2 Data analysis

The ScRITROOT framework is developed to analyze data from ScRIT TPC [96]. It is developed

based on the FAIRROOT framework which offers modular design pattern with different tasks

running sequentially to convert raw electronic signal to physical observables step-by-step. These

tasks can be classified into two groups: track level tasks and particle level tasks. The former deals

with recognizing tracks from pad signals and the latter deals with reconstructing observables given

the fitted tracks. Track level tasks for all fragments and particle level tasks for pions are detailed in

Refs. [2, 8] so they are only reviewed briefly here. Particle level tasks for light fragments are newly

developed and will be discussed in more details.
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3.3 Track Level analysis

The following tasks are required to recognize particle tracks from pad signals,

1. Decoder task.

2. Pulse Shape Analysis (PSA) task.

3. Helix Finding task.

4. Correction task.

5. Space charge task.

6. Track fitting and vertex reconstruction (GENFIT task).

These tasks are run sequentially, in the order that is listed above. Each task has access to output

of any tasks that are executed before itself.

3.3.1 Decoder, PSA and Helix and correction task

The Decoder task translates the raw data in binary files into a C++ readable data structure called

the STRawEvent class [6]. This class contains multiple instance of STPad class, each corresponds

to an individual pad. STPad class encapsulates the digitized electric pulses.

The PSA task uses data from STRawEvent class to identify the amount and arrival time of

drift electrons for all pads. Pulse from a single packet of drift electrons follows a standard shape

whose height is proportional to the amount of electrons in that packet. Since it is common to

have multiple tracks passing under a pad at different height, the detected pulse is often a linear

combination of multiple standard pulses, each with different amplitudes and different rise time.

PSA Task de-convoluted the combined signal into its constituent single pulses as illustrated in

Fig. 3.5. We called each of these pulse a hit. The fitted amplitude and start time will be stored in a

data structure called the STHit class. Vertical location is then calculated from the start time.

To the first order approximation, locus of charged particles under magnetic field is the arc of a

circle. Helix task uses Riemann track finding algorithm to group hits from each event into disjoint
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Figure 3.5: An example result from pulse analysis. Taken from Ref. [6].

sets such that hits from each set forms an arc [97]. The fitted arc and the grouping of hits are stored

in another data structure called STHelixTrack class.

The next task is the correction task which extends the dynamic ranges of 3�/3G. The signal

strength in some pads are off-scale high (i.e. the digitized signal saturates at the maximum ADC

channel) which renders its energy loss information unreliable, but usually such pads are surrounded

by multiple pads with lower signal amplitude. Avalanche electrons spread across an area and these

nearby pads detect the tails of the electron distribution. The correction task uses signals from these

nearby pad to estimate the expected signal amplitude on the saturated pads [98].

3.3.2 Space Charge effect

Space charge effect is a distortion caused by the accumulation of positive ions in the detection

region. Reaction cross-section of Sn + Sn collision is so small that 98% of incoming projectile

passes through the target foil without a collision [92]. When these un-reacted and highly charged

projectiles transverse the detector volume, they ionized a lot of gas molecules. The ionized electrons

are pushed upwards by the E- and B-field. They drift relatively quickly and are promptly removed

by gating grid or anode wire. The massive positive ions, however, drift downward at much slower

speed. Ions from a projectile do not have time to clear the height of the TPC before the next
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Figure 3.6: The drak red sheet illustrates the expected approximate shape of the positive ion
distribution inside the ScRIT TPC.

projectile enters the detector, which causes ions to accumulate. The resultant charge configuration

can be approximately described as a sheet charge extending downward from the beam track as

Fig. 3.6 illustrates. The figure also shows the coordinate systems for ScRIT data, where the origin

is located at middle of the front edge of the active pads and at the same height as the pad-plane.

The sheet charge is expected to be approximately uniform as drift velocity of ions is constant.

Their presence in the detection area distorts the otherwise uniform E-field. This slight distortion

has negligible impact on trajectories of reaction fragments due to their strong inertia, but the same

cannot be said for electron drift. Electrons acquire a "side-way" component to its drift velocity which

distort the observed curvatures on pad plane. Other TPCs, such as STAR, detect such distortion

directly with lasers [99], but such equipment was not available during the ScRIT experimental

campaign. Below are two strange features from our data that can be attributed to space charge

effect.

Fig. 3.7 is the proton center of mass momentum distribution for forward emitting (i.e. %CMz > 0)
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Figure 3.7: Proton momentum distribution when gated on particles with %G > 0 (Beam left) and
%G < 0 (Beam right). The two distributions are expected to be identical due to cylindrical symmetry
of the reaction.

tracks. The procedure needed to identify proton, correct for efficiency and transform into center of

mass frame will be discussed later in Section 3.4. Only tracks with azimuth of −30◦ < q < 20◦

(beam left) are selected in the blue distribution and only tracks with azimuth 160◦ < q < 210◦

(beam right) are selected in the green distribution. It is important to note that the G-axis is defined

with respect to detector orientation instead of the reaction plane for each event, and G-axis points

to the left when looking downstream of the beam. The coordinate system is illustrated in Fig. 3.6

above the target entrance. The two distributions should be similar due to cylindrical symmetry

arguments, but they are not.

Another curious feature is found when distance to vertex distribution is examined. The recon-

structed tracks can be extrapolated back to the target plane and the extrapolated point should agree

with the measured vertex location from BDC. The displacement vector between the extrapolated

vertex and the measured BDC vertex location is denoted as ®Δ+ . The definition of this vector is

illustrated in Fig. 3.8a.

The distribution of G-component of ®Δ+ , denoted as Δ+G , should be Gaussian-like with peak
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Figure 3.8: (a): Cartoon illustration of the definition of ®Δ+ . (b): The distribution of �4;C0+G for
particles with \ > 40◦. Blue histogram is drawn with tracks going beam left and green histogram
with tracks going beam right. The definition of Δ+!' is illustrated on the plot as the distance
between the peak locations of blue and green histograms.

centers at zero. Our data, however, shows that the peak location changes with on track azimuth.

Fig. 3.8b shows the Δ+G distributions for fragments going in beam left and beam right direction for

tracks with polar angle \ > 40◦, and neither distribution peaks at 0 mm.

Evidence that supports space charge as the causative effect for these features can be found by

correlating ®Δ+ with beam intensity. Denote Δ+!' as the separation between the two peaks of Δ+G

distributions in Fig. 3.8b. It is observed that Δ+!' is directly proportional to the beam intensity of

the run. This correlation is shown in Fig. 3.9 and since the strength of space charge effect is also

proportional to the beam intensity, it is an indication that our observed features are related to space

charge.

If space charge is indeed responsible for our observations, we should be able to correct for it as

the effect of space charge is described by well established equations: To begin with we need to solve

for the distorted E-field with Poisson’s equation. The field follows Dirichiet boundary condition as

field cage fixes potential on boundaries of the TPC. The sheet charge distribution is approximated

as uniform and its magnitude is denoted as fSC, whose value will be determine later. The curvature

of the sheet is easily calculated as it follows the trajectory of un-reacted Tin projectile. After that
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Figure 3.9: Difference in peak location Δ+!' is plotted against beam intensity and it shows a strong
positive correlation.

we calculate the expected lateral electron movement with Langevin equation,

3®G
3C

=
`

1 + (lg)2
(
®� + lg

®� × ®�
| ®� |

+ l2g2
®� · ®�
| ®�|2

®�
)
. (3.1)

This equation describes the averaged motion of charged particles moving through gaseous

medium under E- and B-field. l = 4�/< is the cyclotron frequency, g is the mean free time between

collisions and ` = 4g/<, where< and 4 are the mass and the signed electric charge of electrons/ions

respectively. This equation can be solved to find the expected amount of literal movement acquired

by drift electron when initial conditions are given, and during track reconstruction the measured hit

points will be shifted literally in the opposite direction to compensate for space charge distortions.

The remaining loose end is the determination of fSC. Since ΔLR is expected to center at zero

when space charge effect is corrected, we vary fSC in track reconstruction until ΔLR = 0. This

procedure of varying fSC is computationally intensive as track reconstruction algorithms need to

be run multiple times for each run, so only five runs with wildly different beam intensities are
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Figure 3.10: The recovered sheet charge density fSC is plotted against beam intensity for five
selected runs. The fitted linear line is used to approximate the sheet charge magnitude for the other
runs.

determined this way. The fSC for these five runs are plotted against beam intensities in Fig. 3.10.

This linear relation will be used as an estimation of fSC for all other runs. When center of mass

momentum for proton is plotted after space charge effect correction in Fig. 3.11, the distributions

of beam left and beam right particles now agree with each other.

3.3.3 Leakage Space Charge effect

Due to design issues, the gating grid does not extend all the way to the end of the field cage. The gap

between the end of gating grid and field cage allows secondary electrons from highly charged heavy

residue fragment to leak into the avalanche region as Fig. 3.12 illustrates. The induced positive ions

leak back into the field through the same gap. Ions pour out of the gap continuously as they drift

steadily from the top to the bottom of the TPC, forming a sheet like positive charge configuration.

This type of sheet charge will be referred to as “leakage” space charge fleak to distinguish itself

from the “beam” space charge described in previous section.
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Figure 3.11: Center of mass proton momentum distribution for experimental data with %I > 0 after
space charge effect is corrected. "Beam left" histogram is populated only with tracks emitted at
−30◦ < q < 20◦ and "Beam right" histogram is populated with tracks emitted at 160◦ < q < 210◦.
The two histograms agree with each other much more than in Fig. 3.7.

e- e- e- e-

Top Plate

Anode Plane

Ground Plane

Gating Grid
Top Perimeter

Beam (+Z)

e
-

D
ri

ft
 (

+
Y

)

e- e- e- e-

Figure 3.12: Sketch of gating grid near the rear end of ScRIT TPC, taken from Ref. [7]. Electrons,
represented as the red points, leak into the anode plane from the gap between gating grid and top
perimeter and induce position ions.
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Figure 3.13: (a): The three azimuthal angle cuts when viewed into the beam axis. Beware that
G-axis points toward the left in our right-handed coordinate system and I-axis points into the page,
as indicated by the circle with a dot in the center of the image. (b): The three cuts with their
respective azimuth and polar angle conditions are drawn as red, magenta and blue rectangle on q
vs. \ phase space. The background colored histogram is the proton phase space distribution from
experiment. See text for details. We will revisit this phase space plot in Fig. 3.21

The presence of leakage space charge means that even after correcting for beam space charge

effect, experimental momentum distributions of particles at some phase space regions are still

unreasonable. This can be demonstrated by comparing momentum distributions in three different

azimuthal regions in Fig. 3.13a where Cut 1 corresponds to 74◦ < q < 132◦, cut 2 corresponds to

−29◦ < q < 29◦ and cut 3 corresponds to −86◦ < q < −143◦.

With an ideal detector, the momentum distributions in all three cuts should be identical due

to cylindrical symmetry. With ScRIT TPC, however, we expect momentum distributions to agree

with each other only when polar angle cut of 6◦ < \ < 12◦ is imposed because tracks with large

polar angle suffer from geometric coverage issues. The TPC is shorter than it is wide, so large polar

angle tracks with q ≈ ±90◦ (move sideways) will leave a shorter trail of ionized electrons in the

field cage than those with q ≈ 0◦ or q ≈ 180◦ (move up or down). Shorter tracks are reconstructed

less efficiently due to the lack of hit points. Tracks with small polar angle do not escape from the

sides so the average track length in the three cuts should be similar with the polar angle condition.

Fig. 3.13b shows the three cuts in q vs. \ plots, with experimental proton distribution of 132Sn +
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Figure 3.14: Triton momentum distributions in the three azimuth cuts at 6◦ < \ < 12◦ after space
charge correction is applied. (a): Track reconstructed with all available hit points. (b): Track
reconstructed only with hit points at I ≤ 100 cm.

124Sn with number of clusters > 15 and distance to vertex < 15 (the definition of these conditions

will be detailed in Section 3.3) is plotted in the background. Unfortunately, even with 6◦ < \ < 12◦

imposed, the momentum distribution in cut 3 still looks different from that in cuts 1 and 2, contrary

to our expectation. The Triton distributions in all three cuts are plotted in Fig. 3.14a. Triton is

selected as it has the highest average ?// value among all light fragments and the discrepancy is

the most prominent.

Although the behavior of both leakage and beam space charge can be described by Eq. (3.1),

they affect tracks in different phase space regions due to differences in their charge configuration.

The expected shapes of the two sheets are shown in Fig. 3.15 with leakage space charge located at

the rear end of the detector, therefore hit points in the forward half of the detector should not be

affected by leakage charge. Furthermore, charge density of leakage space charge is much higher

than beam space charge due to the magnifying effect of the avalanche. Detailed analysis in the later

sections reveals that the charge density of leakage space charge is 9.8 times that of normal beam
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Figure 3.15: Approximate shape of the leakage sheet charge and normal sheet charge. The width
of the leakage space charge is only 3.96 cm and extend all the way from top to bottom of the TPC.

space charge.

There is strong evidence that leakage space charge is the cause of the discrepancy in Fig. 3.14a.

First and foremost, most detector distortions, such as the beam space charge and geometric ineffi-

ciencies, have been corrected for or circumvented with our correction algorithms and polar angle

cuts. Second, if we plot Fig. 3.14a again but with hit points beyond I = 100 cm discarded during

track reconstruction, we get Fig. 3.14b and the discrepancy in momentum distributions among the

three cuts are eliminated. The causative agent of the distortion must be located at the downstream

end of the detector. Third, if we include additional leakage sheet charge in the space charge

correction algorithm, it eliminates the discrepancy without discarding any hit points.

To incorporate leakage charge into space charge correction, we need to estimate its shape and

charge density. The shape, as illustrated in Fig. 3.15, is approximated as the last 3.96 cm of normal

beam sheet charge but extended all the way to the top of the TPC. Charge estimation is more

complicated as the procedure in Section 3.3.2 for beam space charge cannot be used for leakage

46



space charge. In previous section, fSC is varied until Δ+!' = 0, but this cannot be done for

leakage charge as it is located at the downstream side of the detector while the vertex is located

at upstream. As an alternative, we will vary the leakage charge density until the reconstructed

momentum remains unchanged before and after discarding hit points downstream.

The reconstructed Triton momentum in cut 3 changes as the I coordinate threshold varies, the

threshold beyond which hit points are discarded. When reconstructed Triton momentum with a

particular I threshold is plotted against that with another I threshold track-by-track inside cut 3,

we get a two-dimensional distribution. The two dimensional plot needs to be simplified such that

results with different I thresholds can be overlaid on a single graph for direct comparison. To do

this, the distribution is cut into slices along G-axis and only the mean y-values is shown for each

G-slice. For comparison sake, momentum reconstructed with various I thresholds are all against

that with a standard I < 100 cm threshold, the threshold at which momentum distributions in all

three cuts agree with each other. Fig. 3.16a is the comparison plot with different I thresholds, and

the slope of each line will be referred to as "Triton consistency". Without leakage space charge,

Triton consistency should always be one. Deviation from unity indicates distortions in track

reconstruction. Triton consistencies are plotted against their respective I thresholds in Fig. 3.16b,

which shows that it is monotonically increasing with I-cut value, with a sudden change in slope at

I-cut = 120 cm.

The goal is to vary the leakage charge density in the space charge correction task until Triton

consistency stays at one regardless of I threshold values. It is computationally expensive to estimate

fleak for each run, so instead we assumed that fleak ∝ Beam rate ∝ fbeam. This approximation

stems from the fact that leakage charge is induced by beam particles. The proportionality factor

between fleak and fnorm, denoted as 0, is assumed to be constant across runs with different beam-

intensities. Fig. 3.17a demonstrates how Triton consistency vs. I-cut changes with 0 by scanning

through multiple test values.

The desired slope and y-intercept for all plots in Fig. 3.16b are zero and one respectively. These

two conditions allow us to determine 0 in two ways: Interpolate slope as a function of 0 and find
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Figure 3.16: (a) shows the mean values for the sliced distributions of Triton momentum recon-
structed with different I-thresholds against that with a standard I-threshold of 100 cm. (b) shows
the slopes (labelled as Triton consistency) for each line in (a) as a function of their respective
I-threshold.
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Figure 3.17: (a): Triton consistency vs. I-threshold when different values of 0 are used. Ideally we
want 0 to be set such that Triton consistency is always one at all I-thresholds. (b) and (c): Slopes
and intercepts of the linear fits of the four lines in (a).
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Figure 3.18: Same as Fig. 3.14 (a), but leakage space charge has been corrected with 0 = 9.8.

where slope = 0 corresponds to or interpolate y-intercept as a function of 0 and find where intercept

= 1 corresponds to. The former is performed in Fig. 3.17b and the latter is performed in Fig. 3.17c.

Both methods yield 0 = 9.8. It is verified in Fig. 3.18, which is the same as Fig. 3.14a but with

leakage correction performed at 0 = 9.8, that the correction is able to eliminate the discrepancy in

momentum distributions. The gating grid is modified after the last experiment and extends to the

end of the field cage [7]. Future experiments involving ScRIT TPC will not suffer from leakage

space charge distortion.

3.3.4 GENFIT task

The corrected hit points are passed onto the final GENFIT task. It uses a well established tracks

fitting routine called GENFIT to reconstruct the momentum for each track [100]. It offers greater

reconstruction accuracy than Helix task as it takes energy loss in the medium and non-uniformity

of the magnetic fields into account. The grouping of hits and rough momentum estimates from

Helix task will be used as initial guess for GENFIT. Another function of GENFIT task is to find the

location of vertex using the RAVE vertex finding package [101]. Events where vertex is located
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too far upstream or downstream of the target plane will be rejected from the analysis.

Hit clusters that are too close to the edges of the detector volume are not used for track recognition

as they suffer from edge effects that render their cluster location unreliable [8]. Furthermore, there

are too many clusters close to each other near the reaction vertex. The chances of these clusters

being misidentified for the wrong track are high, so they are also not used in the track fitting. For a

cluster to be used in momentum reconstruction, all of the following conditions must be satisfied,

|G | ≤ 420 mm,−522 mm ≤ H ≤ −64 mm,

( G

120 mm

)2
+

(
H − Hbeam height

100 mm

)2

+
(
I − Itarget foil

220 mm

)2

> 1.

The numbers are expressed using the coordinate system in Fig. 3.6. The condition on the

second line represents an ellipsoid cut centers at reaction vertex. Geometric measurement of our

experimental set-up shows that Hbeam height = −260 mm and Itarget foil = −11.9 mm.

This task is executed twice. It is first run without using vertex location from BDC measurement

in curve fitting, and then again with the inclusion of vertex location. The purpose of the first run is

to isolate tracks that do not converge to a common vertex and the second is to improve momentum

resolution by incorporating accurately know vertex location from BDC into GENFIT routine.

3.4 Particle level analysis

3.4.1 Track and event selection

Tracks with poor detection quality must be removed for accurate results. One of the track quality

condition used in the analysis is to remove tracks with number of clusters < 20 for pions and <

15 for other light fragments. Number of clusters of a track is the sum of number of row clusters

and number of layer clusters. Row refers to the pad numbering along G-direction and layer refers

to pad numbering along I-direction. Number of layer clusters is the number of layer of pads that

register hits for a track when its yaw angle, defined as the angle between the projected track on G-I

plane and I-axis, is less then 45◦ [8]. An illustration about the way clusters are counted is provided

in Fig. 3.19. In this example, the track spans five layers but the last layer is not counted because
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Figure 3.19: An not-to-scale illustration of how numbers of row and layer clusters are defined. The
yellow line corresponds to the track trajectory projected on G− I plane and the cells that are labelled
red are pads directly on top of the track.

yaw of the track exceeded 45◦ beyond the 4th layer, therefore the number of layer clusters = 5. In

similar fashion, number of row clusters is the number of row of pads that register hits for a track

when its yaw angle exceeds 45◦. In our example figure, number of row clusters = 3 and the number

of clusters is 4 + 3 = 7. Number of clusters corresponds to the number of points GENFIT used

for curve fitting. Momentum resolution will be poor for tracks with inadequate points to fit. The

number of clusters threshold is imposed to filter out tracks with unreliable momentum values.

The second condition is to remove tracks with distance to vertex> 20 mm for pions and> 15 mm

for all other light fragments. Distance to vertex is the closest distance between reconstructed track

and vertex when extrapolated back to the target, as illustrated in Fig. 3.20. If the distance to vertex

is too large, then either the track does not originate from the same reaction as other tracks or the is

badly fitted. Either way these tracks are not good enough to be counted towards the final spectrum

and are removed.

The third condition is to only accept tracks with −40◦ < q < 20◦ or 160◦ < q < 220◦, where
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Figure 3.20: Illustration of distance to vertex, taken from Ref. [8].

q is the particle azimuth. The ScRIT detector is wider than it is tall, so tracks that are emitted in

the general upward or downward direction escape the detection volume quicker than those emitted

sideways and leaves less hit points. After imposing the number of cluster cut, tracks that are emitted

at q ∼ ±90◦ are mostly be cut away. Fig. 3.21 shows the distribution of q vs \ for all protons with

number of clusters > 15. The cluster condition completely rejects all tracks near q ∼ ±90◦ when

\ > 40◦. This phase-space cut-off boundary is not simple and the resultant geometric bias will be

difficult to correct for. Thus we decide to reject tracks emitted in those poorly accepted q ranges

entirely.

The fraction of particles removed by these cut conditions must be accounted for if we want

to accurately count the yield of particles. The efficiency loss due to the number of clusters and

distance to vertex conditions can be accurately calculated through efficiency unfolding procedure

discussed in Sections 3.4.4. For the azimuth condition we can simply multiply the result by a

constant factor of ((220 − 160) + (20 + 40))/360 = 3 since the reaction should exhibit cylindrical

symmetry.

The beam particles could react with nuclei such as the counter gas other than those from the

target. These events have to be removed from the analysis. To ensure projectile reacts with the

desired Tin nucleons, cuts on vertex locations are made. A I-coordinate cut is applied to vertex

52



0 20 40 60 80

 (deg)θ

100−

0

100 (
d
e
g
)

φ

Figure 3.21: Distribution of q against \ for protons with distance to vertex cut < 15 mm and number
of cluster cut > 15. Data is taken from 132Sn + 124Sn after gating on beam purity.

fitted from tracks to make sure the reaction does not originate up-stream or down-stream of the

target foil. Cuts in G- and H-coordinate are applied to BDC extrapolated vertex position to make

sure the beam does not hit the frame of the target.

All cut conditions are tabulated and summarized in Section 3.4.5. Unless otherwise specified,

analysis in the following sub-sections are done after vertex, number of clusters and distance to

vertex cut have been applied and corrected for.

3.4.2 Particle identification

As particle traverse the TPC, it loses energy and ionizes the detector gas molecules. The amount

of energy loss depends on particle velocity and electric charge according to Bethe-Bloch equation
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Figure 3.22: Particle identification plot with all events in 132Sn + 124Sn.

(BBE) [102],

−
〈
3�

3G

〉
=
 /2

V2

[
ln

(
�V2

1 − V2

)
− V2

]
(3.2)

Where  and � are constants that depend only on the properties of detector gas, V = E/2 is

the particle’s velocity over speed of light and / is the absolute particle electric charge in multiples

of the electron charge. This allows for different particle types to be identified through a plot of

average energy loss per unit length vs. momentum, commonly referred to as the PID plot. Different

elements are separated into lines of different height as 3�/3G ∝ /2. Isotopes with equal velocity

lose the same amount of energy, but they have different momentum due to mass differences and

therefore isotopes are also separated into distinguishable lines in PID plot.

PID plot for 132Sn + 124Sn reaction is shown in Fig. 3.22. There are slight overlap between some

particle species, most noticeably the Triton line and 3He line are very close at ?// < 700 MeV/c.

To estimate the degree of cross-contamination and to classify particle type for each tracks, we

follow the Bayesian PID method outlined in Ref. [103].

Instead of classifying each track as a single type of particle, this method tabulates the probability
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of a track being each type of isotope. A single track can be identified as multiple isotopes with

varying probability near the ambiguous region of PID. For a track with observed momentum

magnitude ?, the likelihood of detecting energy loss � given that it comes from a particle of type

�8 is given by,

%(� |?, �8) =
1√

2cf(?, �8)
4
− (�−�̂ (?,�8))2

2f(?,�8)2 . (3.3)

In the equation, �̂ (?, �8) is the expected energy loss and f(?, �8) is the measured width of

PID line. The resolution in both momentum and 3�/3G measurement contribute to the width of

PID lines [8]. Using Bayes theorem, it can be inverted to give the probability of the track being �8

given the energy loss and momentum value,

%(�8 |?, �) =
%(� |?, �8)%A (?, �8)∑

:=%,�,),... %(� |?, �8)%A (?, �8)
. (3.4)

%A (�8) is the prior in the above equation. Following Ref. [103], an iterative procedure will be

used in which the priors in the first iteration are assumed to be constants. The posterior distributions

from this initial run will be used as prior for the next iteration. This is repeated until the posterior

converges.

The expected energy loss �̂ (?, �8) and measured resolution f(?, �8) are fitted empirically. To

do this a crude graphical cut is made to each PID line. The mean and standard deviation of 3�/3G

at different momentum bins inside the cut will be fitted with ad-hoc functions to represent �̂ (?, �8)

and f(?, �8). Any functions that fit data good enough will work, and in this case �̂ (?, �8) takes

the form of a modified BBE,

�̂ (?, �8) =
�8 + �8V
V2

[
ln

(
�8 +

(
<

V

)�8 )
− V�8 + �8

]
. (3.5)

Here V = ?/
√
?2 + < is the velocity, �8, �8, �8, �8, �8 and �8 are parameters to be fitted. The

reason for a modified BBE is that the measured 3�/3- is the truncated mean energy loss instead

of the real averaged energy loss. The truncation is needed to minimize the effect of outliner energy
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Figure 3.23: The fitted �̂ (?, �8) and f(?, �8). The red line in the center of the red shaded region
corresponds to �̂ (?, �8) and the width of the shaded region on each side the line corresponds to
1f(?, �8) (1 SD).

loss data point caused by delta electrons [98]. The truncation skews the distribution to the point

where the original BBE is not a good enough fit. The f(?, �8) takes the following form,

f(?, �8) =
U8

?V8
+ W8, (3.6)

where U8, V8 and W8 are parameters to be fitted. The result fitted from 132Sn + 124Sn data is

shown in Fig. 3.23

The classification results for 132Sn + 124Sn is shown in Fig. 3.24, where the left panel shows

3�/3G distributions within a narrow range of momentum and the right panel shows where the range

of momentum is on the PID plot. Histograms for each particle type on the left panel are weighted

distributions, with each track weighted by the probability of it being a particular particle type. For

instance, a track can be 50% proton and 50% deuteron and is counted as 0.5 count in both proton

and deuteron distributions. The tails of the distributions overlap with each other in a way that make

intuitive sense. When observables for light fragments are constructed in Chapter 4, only tracks

with %(�8 |?, �) > 0.7 and f(?, �8) < 2.2 are counted. These conditions are chosen by analysis of
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Figure 3.24: Particle selection of Bayesian PID on a selected momentum range. Left: Distributions
of 3�/3- , with each track weighted by the probability of it being a particular isotope. Right: PID
plot with a rectangular box indicating where the momentum cut is set in the making of 3�/3-
distribution on the left.

systematic errors from PID selection, in which fragments observables are found to not vary much

within a range of % and f thresholds that centers around 0.7 and 2.2 respectively [104].

Special care must be taken in pion selection because pion PID lines are contaminated by electron

and positron PID lines. The Lepton PID lines are not described well by Eq. (3.5) and therefore a

different fitting procedure is needed to estimate the amount of contamination for pions. The details

on pion selection are described in Ref. [98] and the threshold is set to %(�8 |?, �) > 0.2. This is

laxer than for light fragments because pion lines are far away from the PID lines of other isotopes.

3.4.3 Frame transformation

Center of mass frame is the most convenient reference frame for analysis. To transform measured

momentum from laboratory to center of mass frame, it is first rotated such that the beam is traveling

in the direction of I-axis in the rotated frame. BDC measures the location and angle of incidence of

beam particle in each event, and this information is used to properly rotate the coordinate system.
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The 4-momentum vector, defined as P = (�/2, ?G , ?H, ?I), is constructed for each track and is then

boosted back to center of mass frame with Lorentz transformation.

We need to know the mass of each fragment to construct the 4-momentum because �2 = <224+

?222, where< is the mass of the fragment and 2 is the speed of light. During particle identification,

a track can be identified as multiple isotopes simultaneously with different probabilities. The mass

of the most probable isotope in particle identification is used as the fragment mass during frame

transformation.

The initial beam energy from BigRIPS is inferred from Time-of-Flight (ToF) measurement. On

average, nuclear collision are assumed to occur in the middle of the target foil along the beam axis,

so the final beam energy for Lorentz transformation is the expected energy after the beam particle

traverses half the thickness of the target foil, calculated from LISE++ program [105].

3.4.4 Efficiency unfolding

Particle yields are often underestimated due to inefficiencies of the detector. However, detection

efficiency can be accurately estimated with Monte Carlo (MC) embedding techniques, details of

which will be described later in Section 5.9.1. In this section it is sufficient to know that for particles

with a given initial momentum, MC embedding returns the percentage of them being recognized

in track recognition and their distribution of reconstructed momentum. Reconstructed momentum

is not identical to the initial momentum due to detector resolution.

The naive approach to correct for efficiency loss is simply to weigh each track by the inverse

of fraction of recognized tracks over all embedded tracks. Efficiency depends strongly on track

momentum so it must be taken into account. To construct efficiency as a function of momentum

phase space, MC embedding calculation is repeated across a range of initial momentum. The phase

space can be divided into finite bins, with each bin populated by the number of detected tracks

over that of initial tracks. Such seemingly innocuous procedure, however, suffers from ambiguity

stemming from the fact that detected momentum is not identical to initial momentum given the

finite resolution in track fitting routine, so looking efficiency up with detected momentum may
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results in inaccuracies.

To demonstrate this effect, denote '8 as the number of tracks with reconstructed momentum

inside the 8th phase space bin and )8 as the number of tracks with true momentum inside the 8th

phase space bin. In other words, '8 is the reconstructed momentum distribution and )8 is the true

momentum distribution. A fraction of tracks with true momentum in bin 8 end up with reconstructed

momentum in bin 9 due to finite resolution. Denote "8, 9 as the fraction of tracks that migrate from

bin 8 to 9 after track reconstruction such that,

'8 = )8"8,8 +
∑
8≠ 9

)9" 9 ,8

=

∑
All 9

)9" 9 ,8 .

(3.7)

'8 is detected in the experiment and the goal of efficiency unfolding is to extract )8 from it.

Beware that some tracks are lost in reconstruction due to detector inefficiencies and track quality

cut, so it is expected that
∑
8 " 9 ,8 ≤ 1. " 9 ,8 can be calculated from MC embedding from the

following procedure: MC embedding is performed with � initial tracks on each momentum bin

such that,

'embed
8 =

∑
�;; 9

)embed
9 " 9 ,8 = �

∑
All 9

" 9 ,8, (3.8)

since )embed
8

≡ �. Note that the embedded tracks have to pass track quality conditions to be

counted towards 'embed
8

. Efficiency �8 is defined as,

�8 =
'embed
8

)embed
8

=

∑
All 9

" 9 ,8 . (3.9)

It is tempting to divide the number of experimental reconstructed tracks by �8 bin-by-bin

to recover the true momentum distribution, but such division does not always yield the correct

distribution. Denote ��8 (stands for efficiency corrected) as the result of division for bin 8,

��8 =
'8

�8
=

∑
9 )9" 9 ,8∑
9 " 9 ,8

. (3.10)
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There are only two ways ��8 equals to )8: If "8, 9 = �8X8, 9 or if )8 is a constant. The former

corresponds to zero bin migration, in other words perfect momentum resolution, and the latter

corresponds to uniform particle distribution in momentum space. Neither is true in general, but

if bin migration is small enough, ��8 will be very close to )8. Let "8, 9 = �8, 9X8, 9 + f8, 9 where

f0,0 = 0 and f8, 9 ≪ �8, 9 , we have,

��8 =

∑
9 )9 (� 9 ,8X 9 ,8 + f9 ,8)∑
9 (� 9 ,8X 9 ,8 + f9 ,8)

=
�8,8)8 +

∑
9 f9 ,8)9

�8,8 +
∑
9 f9 ,8

= �−1
8,8 (�8,8)8 +

∑
9

f9 ,8)9 )
(
1 +

∑
9 f9 ,8

�8,8

)−1

=

(
)8 +

∑
9 f9 ,8)9

�8,8

) (
1 −

∑
9 f9 ,8

�8,8

)
+$ (f2

9 ,8)

= )8 +
∑
9 ()9 − )8)f9 ,8

�8,8
+$ (f2

9 ,8)

= )8 +$ (f9 ,8)

(3.11)

��8 ≈ )8 to the first order of f, but the accuracy can be improved with an iterative procedure

where each embedded particles are weighted by ��8. This iterative procedure will be referred

to as unfolding and will be repeated until the efficiency corrected histogram converges. Let

n8 =
∑
9 ()9 − )8)f9 ,8/�8,8, the embedding tracks are weighted as follows,

)
embed(2)
8

= )
embed(1)
8

��
(1)
8

= � ()8 + n8) +$ (f2),
(3.12)

The number in the parenthesis on superscript states the order of iteration. Following Eq. (3.8),

'
embed(2)
8

=

∑
All 9

)
embed(2)
9

" 9 ,8

= �
∑
9

()9 + n 9 ) (� 9 ,8X 9 ,8 + f9 ,8) +$ (f2)

= � (�8,8)8 + �8,8n8 +
∑
9

)9f9 ,8) +$ (f2)

(3.13)
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The new efficiency is,

�
(2)
8

=
'

embed(2)
8

)
embed(2)
8

=
� (�8,8)8 + �8,8n8 +

∑
9 )9f9 ,8) +$ (f2)

� ()8 + n8) +$ (f2)

=
�8,8 (� ()8 + n8)) + �

∑
9 )9f9 ,8 +$ (f2)

� ()8 + n8) +$ (f2)

= �8,8 +
∑
9 )9f9 ,8 +$ (f2)
)8 + n8 +$ (f2)

+$ (f2).

(3.14)

Make use of the fact that n8 ∼ $ (f), the efficiency becomes,

�
(2)
8

= �8,8 +
∑
9 )9f9 ,8 +$ (f2)
)8 +$ (f) +$ (f2)

= �8,8 +
∑
9 )9f9 ,8 +$ (f2)

)8
(1 −$ (f)) +$ (f2)

= �8,8 +
∑
9 )9f9 ,8

)8
+$ (f2).

(3.15)

The efficiency corrected histogram in the second iteration is,

��
(2)
8

=

∑
9 )9 (� 9 ,8X 9 ,8 + f9 ,8)

�8,8 +
∑
9 )9 f9,8
)8

+$ (f2)

=

)8 (�8,8 +
∑
9 )9 f9,8
)8

)

�8,8 +
∑
9 )9 f9,8
)8

+$ (f2)

= )8 +$ (f2)

(3.16)

Iteration improves the accuracy by a factor of f. Eventually the procedure will converge to

a stable ��8. To prevent tracks with extremely small efficiency from blowing up the histogram,

tracks with the unfolded efficiency smaller than 0.15 will be discarded.

3.4.5 Conditions for event and track selections

Event and track conditions described in the last three sub-sections are summarized in Table 3.1.

The track lost due to number of clusters, distance to vertex and detector inefficiencies should be
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Table 3.1: Cut conditions used in event and track selection for reconstruction of particle distribu-
tions.

Track conditions Light fragments Pions

Number of clusters > 15 > 20
Distance to vertex < 15 mm < 20 mm
PID probability > 0.7 > 0.2
PID f > 2.2 Not imposed
Efficiency > 0.15
Azimuth range −40◦ < q < 20◦ or 160◦ < q < 220◦

Vertex conditions

System z(mm) BDC-x(mm) BDC-y(mm)
108Sn + 112Sn −14.8 ± 3.1 0.0 ± 2.5 0.0 ± 2.4
108Sn + 112Sn −14.8 ± 3.7 0.0 ± 3.0 0.0 ± 2.3
108Sn + 112Sn −14.3 ± 2.6 0.0 ± 2.5 0.0 ± 3.0
108Sn + 112Sn −14.8 ± 3.7 0.0 ± 2.8 0.0 ± 2.5

corrected by efficiency unfolding. The multiplicative factor of 3 due to azimuth range cuts will be

imposed after efficiency unfolding. Although Monte Carlo simulation is able to recreate the shape

of particle PID to an certain extent, it is not accurate enough to be used for calculating the amount

of track lost due to PID cuts. The performance of MC PID will be discussed in Section 5.9.2.

3.4.6 Reaction plane determination

Reaction plane is the plane that the beam axis and the displacement vector between target and

projectile span. Estimation of reaction plane azimuth Φ is needed in the determination of collective

flow, which was the focus of numerous previous studies [11, 106–108]. Flows are expected to shed

light into the properties of nuclear matter. Collective flow indicates the degree of non-uniformity

in azimuth distribution with respect to reaction plane. In this work, Q-vector method [109] is used

to approximate reaction plane angle, which stated that the azimuth of ®& defined as,

®& =

∑
F(HI) ®?) , (3.17)

is a good approximation to Φ. Here F = 1 for HI > 0.4Hbeam CM, F = −1 for HI <
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−0.4Hbeam CM and F = 0 otherwise. Fragments with |Hbeam CM | < 0.4 are not used as mid-

rapidity fragments do not contribute to reaction plane determination [110]. When applied to

ScRIT data, the number of clusters cut is relaxed to > 7 and no azimuth range cuts are applied

to minimize bias in azimuth acceptance. Denote ΦA as the approximated reaction plane angle.

Q-vector method work best for detectors with uniform azimuth acceptance, but given that ScRIT

TPC does not exhibit cylindrical symmetry the acceptance is non-uniform. Fragments emitted at

some angles are less efficiently detected than the others, leading to under-representation of particles

in those angular ranges. There are multiple ways to correct for such bias, and in this analysis we

expand the distribution of ΦA as a Fourier series and shifts reaction plane angles event-by-event in

a way that makes the final distribution isotropic [111]. This shift is achieved by first normalizing

each component of Q-vector to have zero mean and unit standard deviation,

&̂8 = (&8 − 〈&8〉)/f&8 , (3.18)

where 8 denotes the component of Q-vector and can be either G or H. Define ®̂& = &̂G Ĝ + &̂H Ĥ,

then the =th Fourier components of the azimuth distribution of ®̂& is,

0= = −2

=
〈sin(=q( ®̂&))〉,

1= =
2

=
〈cos(=q( ®̂&))〉.

(3.19)

To correct for acceptance bias, reaction plane angles are shifted to erase the contributions of

each Fourier component by the following amount,

Φflat = q( ®̂&) +
∑
=

[0= cos(=q( ®̂&)) + 1= sin(=q( ®̂&))] . (3.20)

The effect of Eq. (3.20) is demonstrated in Fig. 3.20 where the Q-vector azimuth distributions

from 108Sn + 112Sn before and after bias correction are plotted. This correction is verified to flatten

the reaction plane distributions for all reaction systems in ScRIT experiment.

Although the flattened reaction plane angle Φflat provides a reasonable estimation of reaction

plane angle Φ, they are still not identical due to stochastic nature of nuclear reaction, particle
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Figure 3.25: Distributions of reaction plane azimuth before (blue) and after (orange) correction of
Eq. (3.20) is made. The selected events come from 108Sn + 112Sn.

detection resolution and efficiency effects. Fortunately, as we will show in Section 4.4.4, flow

observables can be accurately determined from inaccurate reaction plane angle as long as reaction

plane resolution is given. It can be calculated with the sub-event methods which quantifies the

resolution as 〈cos(8(Φ −Φflat))〉 for 8 = 1, 2, ....

In sub-event method, fragments in each events are grouped randomly into two disjoint sub-

events with equal multiplicity, which we denote as group 0 and 1. Denote Φ0flat and Φ1flat as

the reconstructed Q-vector reaction plane angle for events in group 0 and 1 respectively and

j< = 〈cos(Φ0flat−Φ
1
flat)〉/

√
2, then the relation between reaction plane angle and sub-event reaction

plane angles can be approximated as,

〈cos(Φ −Φflat)〉 = 0.626657j< − 0.09694j3
< + 0.02754j4

< − 0.002283j5
< ,

〈cos(2(Φ −Φflat))〉 = 0.25j2
< − 0.011414j3

< − 0.034726j4
< + 0.006815j5

< .

(3.21)

These equations are then solved numerically. For full derivation of sub-event method please

refers to Ref. [109].
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CHAPTER 4

EXPERIMENTAL RESULT

4.1 Introduction

The goal of the ScRIT experiment is to study the properties of nuclear matter such that our

understanding of neutron star, which is composed mostly of nuclear matter, can be improved.

Experimental results will be compared against theoretical predictions to constrain nuclear EoS pa-

rameters. Using the ScRITROOT analysis framework, various spectra of pions and light fragments

can be reconstructed.

Theoretical predictions are made using transport models, a class of semi-classical algorithm

that describes the dynamics of nuclear collisions from Fermi to relativistic energies. A review on

the different transport models can be found in Ref. [112].

In this chapter, a brief summary on transport models will be provided, followed by results from

the ScRIT experiment.

4.2 Transport model

The idea of transport model is to extend the classical Vlasov equation for one-body phase-

space distribution with a Pauli-blocked Boltzmann collision term. The resulting equation, called

Boltzmann-Uehling-Uhlenbeck (BUU) equation, is formulated as,

(
m

mC
+ ®∇?n · ®∇A − ®∇An · ®∇?

)
50 (®A, ®?, C) = �coll

[
50 (®A, ®?, C),

3fmed
01

3Ω

]
. (4.1)

In this equation, 50 (®A, ®?, C) is the one-body phase-space distribution for particle 0, n [ 50] is

the single-particle energy function, �coll [ 50, 3fmed
01

/3Ω] is the two-bodies collision integral and

3fmed
01

/3Ω represents all the in-medium nucleon-nucleon differential scattering cross sections

between particle 0 and 1. n and in-medium cross sections are inputs that must be provided by the
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user. In particular, n is governed by the mean-field potential which contains contributions from

nuclear EoS. The collision term for the collision ?0 + ?1 → ?′0 + ?′1 is,

�coll

[
50 (®A, ®?, C),

3fmed

3Ω01

]
=

∑
1

61

(2cℏ)3
∫

33?1E01
3fmed

01

3Ω1
[(1 − 50) (1 − 51) 5 ′0 5 ′1

− 50 51 (1 − 5 ′0) (1 − 5 ′1)],
(4.2)

where E01 is the relative velocity between particle 0 and 1, 61 is the spin degeneracy and the

summation over 1 corresponds to summation over all neutrons and protons. The collision term is

solved by performing stochastic collisions. In each time step, we first check if two test particles are

close enough to incur a collision and then check if the final state of the collision is permitted by

Pauli-exclusion principle.

There are two types of transport models, namely the quantum molecular dynamics (QMD)

models [113–121] and the stochastic extensions of Boltzmann-Lagevin type [122–127]. They

mainly differ in how fluctuations and many-body correlation are introduced. Only QMD models

are described here as the availability of transport codes due to their availability to our group.

QMD models approximate the many-body wave-function as a product of multiple Gaussian

wave-packets with fixed width. The one-body Wigner function, which is the phase space distribution

for the corresponding many-body wave-function, is,

5 (®A, ®?) =
�∑
8

58 (®A, ®?), with

58 (®A, ®?) =
(

ℏ

ΔGΔ ?

)3

exp

[
− (®A − ®'8 (C))2

2ΔG2
− ( ®? − ®%8 (C))2

2Δ ?2

]
.

(4.3)

The centroid position ®'8 (C) and ®%8 (C) are treated as variational parameters. This summarizes

how QMD type models simulate nuclear dynamics, but the details in collision simulation and mean

field formulation differ from code to code. We will briefly describe ImQMD, dcQMD and UrQMD

in the next three subsections as these three models are used in different part of our analysis.
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4.2.1 ImQMD

ImQMD was first developed at China Institute of Atomic Energy (CIAE) by the group of Prof.

Zhuxia Lia. It was improved by Yingxun Zhang in 2003 [121, 128–130]. Its mean field derives

from Skyrme energy density functional with explicit Skyrme-type momentum-dependent interac-

tion [131]. Collision between nucleons is only attempted when their transverse distance is less

than
√
fmed/c, where fmed = (1 − [d/d0)ffree and [ is a free parameter, and their longitudinal

distance is less than E8 9WXC/2, where E8 9 is the relative velocity, W is the Lorentz factor and XC is the

length of time step. It is suitable for the study of Skyrme interaction, a commonly used EoS family

in low-energy nuclear physics, including neutron star calculations.

4.2.2 UrQMD

UrQMD was first developed in the mid-1990s at Frankfurt [132]. It was extended to include 50

different baryon species and 35 different meson species and is commonly used to study collisions

over vast energy ranges. Different versions of UrQMD use different mean field formulations for

the study of different topics in heavy-ion experiments [133–140]. The mean field of UrQMD

in sections 5.8 and 5.9.3 uses Skyrme type mean field with in-medium cross-section equals to

cross-section in free space [141].

4.2.3 dcQMD

dcQMD was adapted from TuQMD, which was first developed in the 90s in Tubingen, Ger-

many [142, 143]. TuQMD includes the degrees of freedom for a lot of particle species [144].

It was extended to dcQMD for the study of asymmetric part of nuclear EoS at a few hundred

AMeV [145, 146]. The mean-field of dcQMD was formulated to introduce independent variations

of compressibility or slope parameters in EoS. It allows the isospin-dependent potential of nucleon

to be different from that of Δ (1231) which has a large impact on pion multiplicities [147]. There-

fore this flexibility makes dcQMD suitable for the comparison of pion observables. A collision
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is attempted when c32
min ≤ f, with f being the scattering cross-section. A particular feature of

dcQMD is that it considers the total energy balance due to in-medium potential in a collision. This

condition shifts the production threshold based on differences between the initial and final potential

energy [148].

4.3 Coalescence

After transport model propagates nucleons to their final position, clusterization (also called

coalescence) algorithm will be used to group nucleons into light fragments such as Deuteron and

Triton. It usually involves combining neutrons and protons with small relative distance and speed

into isotopes. This procedure is unreliable as the physical fragment production mechanism involves

many body correlations that are not well understood [149, 150].

In some models, clusterization algorithms are handled better and yield more consistent results

with data. Most prominently, the Asymmetrized Molecular Dynamic (AMD) propagate nucleons

and calculate cluster formation in one unified step. Its predictions on light fragment yield was

shown to agree with data to a satisfactory extent [149, 151]. For all the transport models that will

be used for comparison with data in this manuscript, however, use the less reliable clusterization

process and therefore energy spectra of light fragments cannot be compared directly.

To overcome this issue, observables must be chosen carefully to minimize their sensitivity to

clusterization. To be more precise, we want to construct observables whose values depend weakly

on the clusterization process. This can be achieved by one of the following ways:

1. Consider particles that do not form elements or isotopes.

2. Sum up protons from all light fragments to reconstruct the primary nucleon distribution

before clusterization.

3. Take ratio of the same observables between different reaction systems. The division could

potentially cancel systematic errors from clusterization.
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Various observables have been constructed with those methods. In this chapter, those observ-

ables will be described and their measured values from ScRIT experiment will be shown.

4.4 Pion Observables

Since pions do not form isotopes with other particles, their yields should be independent of the

clusterization process. Furthermore, pion observables are believed to be sensitive to nuclear EoS

at high density due to pion’s unique production mechanism: In nucleon-nucleon collisions, some

interactions are energetic enough to form excited Δ (1323) baryon resonance (## ↔ Δ) which

then promptly decay into pions. The high production threshold of Δ resonance (1232 MeV/c2) at

the early stage of the reaction ensures that pions originate from high density region. ScRIT data on

pion momentum spectra in central collisions have been published [37, 147] and their results will

be reviewed. It will be followed by data on other new pion observables.

4.4.1 Pion yield of central events

The most straight-forward pion observable to extract is the total yields of charged pions. Although

they are measured reliably in ScRIT experiment, comparison with theory is hard to carry out

because a lot of different physical processes must be taken into account for the prediction of

total pion yields to be accurate. Some of these processes are not well understood which introduce

additional uncertainties in quantifying the relation between pion yield and symmetry energy. These

issues can be mitigated by using the ratio of . (c−) to . (c+) instead. The division cancels out

contributions from physical processes that act on both c− and c+ in similar way while magnifying

the symmetry energy effects which act on c− and c+ with opposite sign.

The study of pion yields is the focus of Ref. [147]. The ScRIT experiment measured the pion

ratios of 108Sn + 112Sn, 112Sn + 124Sn and 132Sn + 124Sn systems. The total neutron to proton ratio

#// of these three systems are 1.36, 1.2 and 1.56 respectively. Due to limited geometric coverage

of the ScRIT TPC, only pions with ?I ≥ 0 in center of mass frame are measured. The observed pion

yield only covers the forward 2c solid angle instead of the complete 4c. The effects of incomplete
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Figure 4.1: Yield of c+ over that of c− in 1 < 3 fm events for pions with ?I > 0 in center of mass
frame, plotted as a function of #// . The yellow crosses show the yield ratios with no transverse
momentum cut while the blue crosses shows that with ?) > 180 MeV/c. The radius of circle inside
each cross represents the statistical uncertainty of the ratio. The dashed blue line and dotted blue
line corresponds to best fitted power functions of #// for ?) > 0 and ?) > 180 MeV/c pion ratios
respectively.

coverage should be minimized when ratios between yields of c− and c+ are taken. To impose

centrality gate, only events with multiplicity larger than 50 are considered. This corresponds to an

impact parameter cut of 1 < 3 fm.

With a Δ resonance model for pion production, one would expect that . (c−)/. (c+) follows a

(#//)2 dependence [35, 152]. However, the measured pion ratios in Fig. 4.1 (yellow cross with

circle marker) follows #// with a best fitted power index of 3.4 instead. The radius of the circle

in the center of each cross is the uncertainty of yield measurement. The discrepancy indicates the

presence of dynamical factors beyond a simple Δ resonance model. If transverse momentum cut

of ?) > 180 MeV/c is imposed, the result (blue crosses with circle marker) still shows a (#//)3.4

dependence instead of the expected (#//)2. The effects unexplained by Δ resonance model persist

even for high momentum pions.
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4.4.2 Pion ratio spectra of central events

The analysis of pions momentum spectra in central collisions is the focus of Ref. [37]. Their results

will be briefly summarized in this section.

dcQMD’s predictions will be compared against the measured pion spectrum to constrain nuclear

EoS. As described in Section 4.2.3, dcQMD is suitable for describing pion emissions due to its

flexibility in adjusting Δ potential independently from that of nucleons. This is essential as it was

found that if Δ potential is set to equal to that of nucleons, the predicted yield of c− and c+ will be

incorrect [147, 153]. The potential depth at saturation density is adjusted until dcQMD is able to

reproduce experimental pion yields and mean kinetic energies [153].

Only ! and the scaled difference between neutron and proton effective mass Δ<∗
=? = [<∗

= −

<∗
?]/(<X) are allowed to vary to simplify the analysis. Other EoS parameters are fixed to the best

fit values from other analysis. Following results in Ref. [154],  sat is set to 250 MeV and&sat is set

to −350 MeV. Following results from nuclear mass and radius measurements [19, 20], ! will be

correlated with  sym via  sym = −488+ 6.728! (MeV) and ((d = 0.1 fm−3) is fixed to 25.5 MeV.

When the measured c+ and c− transverse momentum (?) ) spectra in 108Sn + 112Sn and

132Sn + 124Sn reactions for events with impact parameter 1 < 3 fm are compared against dcQMD

predictions in Fig. 4.2, it is found that pion potential is required to describe pions accurately. Only

pions with ?I > 0 in center of mass frame are counted due to acceptance limitations of the ScRIT

TPC. The black markers correspond to measured spectra and both the blue and red lines correspond

to dcQMD calculations with ! = 80 MeV, Δ<∗
=? = 0 and optimized Δ potential depth. The

difference between the two curves is that pion optical potential is used on the red curves but not the

blue curves.

Next we focus on the single ratio spectrum ('(c−/c+) = [3# (c−)/3?) ]/[3# (c+)/3?) ].

This ratio magnifies symmetry energy effects as the contribution of symmetry energy to isovector

mean field potential is opposite in sign for c− and c+, similar to our rationale for taking ratios of

total yield in the previous section. We use dcQMD to predict single ratios at 12 different points in

the ! vs. Δ<∗
=? space, forming a regular lattice. The value of ! in the lattice is either 15, 60, 106
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Figure 4.2: Measured ?I > 0 pion spectra for 1 < 3 fm events. Red curves show dcQMD
predictions with best fitted pion potential. The blue curves are identical except that no pion
potential is used.

or 151 MeV and Δ<∗
=?/X is either -0.33, 0 or 0.33.

A few selected calculations and the measured single ratios are shown in Fig. 4.3. The (!,Δ<∗
=?)

values of solid blue line is (60,−0.33X), dashed blue line is (60,−0.33X), solid red line is

(151,−0.33X) and dashed red line is (151,−0.33X). Coulomb effect dominates the low ?) region

which cause a steep rise in measured ratios at ?) < 200 MeV. All calculations at ?) < 200 MeV

disagree with data, which could be caused by inaccuracies in the simulation of Coulomb interac-
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Figure 4.3: Single pion spectral ratios in 132Sn + 124Sn (left) and 108Sn + 112Sn (right) reactions
with four selected dcQMD predictions overlay on top. See text for details.

tions or pion optical potential above saturation density. At ?) > 200 MeV, the Coulomb effects

diminishes and the ratios should be good probes to the symmetry energy effect.

The predicted single ratios at ?) > 200 MeV are interpolated with 2D cubic splines over

(!,Δ<∗
=?) space. The interpolated predictions are compared against experimental measurement

through a chi-square analysis. The resultant multivariate constraint on ! and Δ<∗
=? is shown in

Fig. 4.4 where the green shaded region is the one-sigma confidence interval and the area enclosed

by the two blue dashed curve is the two-sigma confidence interval. Without any constraints on the

effective mass, the best fitted value is ! = 79.9 ± 37.6 MeV. The correlation between Δ<∗
=? and !

suggests that tighter constraint on ! can be made if Δ<∗
=? is constrained better.

4.4.3 Pion yield dependence on impact parameter

Using the machine learning algorithm described later in Section 5.9.3, events are separated into

impact parameter bins from 0 to 10 fm with bin size of 1 fm. The pion yield is plotted against

impact parameter for 132Sn + 124Sn and 108Sn + 112Sn systems in Fig. 4.5. Due to limitations in

geometric acceptance of ScRIT TPC, only pions with ?I > 0 in center of mass frame are counted.

The pion yields decrease with increasing impact parameters where the overlapping zone between
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systems. The green shaded region corresponds to 68% confidence interval while the dashed blue
lines denote the contours of 95% confidence interval.

projectile and target (also known as the participant zone) decreases. The neutron rich system of

132Sn + 124Sn generates the largest difference between c− and c+ yields. While c+ yields is nearly

the same for both systems, the c− is a factor of 2 larger for the neutron rich systems.
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Figure 4.5: Pion yield of (Left) 108Sn + 112Sn and (Right) 132Sn + 124Sn.
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Figure 4.6: (a): Single ratios of c−/c+ as a function of impact parameter for 132Sn + 124Sn (orange
circle) and 108Sn + 112Sn (blue circle) reactions. (b): Double ratio of c−/c+ from 132Sn + 124Sn
over 108Sn + 112Sn as a function of impact parameter.

The predicted pion yield may suffers from systematic errors due to incomplete description of

nuclear dynamics. To minimize such effect, ratio of yields (c−/c+) can be used to cancel out the

contribution of systematic errors. To further minimize the errors, the double ratio of c−/c+ of

132Sn + 124Sn over that of 108Sn + 112Sn can be used for comparison with models.

These single and double ratios are shown in Fig. 4.6. It is interesting to note the the double

ratio is almost constant across all impact parameters.

As described in the previous sections, pions with high transverse momentum provide a clearer

signal to symmetry energy as other undesirable effects, such as Coulomb, diminishes. The analysis

is repeated with ?) > 180 MeV/c and the results are shown in Figs. 4.7 and 4.8. They are identical

to Figs. 4.5 and 4.6 respectively except that only pions with ?) > 180 MeV/c are counted. Within

statistical errors, the impact parameter dependence of single and double ratio is still nearly flat, and

the double ratio for the high ?) region is slightly higher than that without ?) cut.

4.4.4 Pion direct flow

Collective flow in nuclear collisions have been the focus of numerous studies [11, 106–108] and

was demonstrated to be a sensitive probe for nuclear EoS. It is quantified as the Fourier coefficient
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Figure 4.7: Same as Fig. 4.5 except only pions with ?) > 180 MeV are counted.
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Figure 4.8: Same as Fig. 4.6 except only pions with ?) > 180 MeV are counted.

of the fragments’ azimuthal distribution with respect to reaction plane azimuth Φ [109],

3#

3 (q −Φ) ∝ 1 + 2E1 cos(q −Φ) + 2E2 cos(2(q −Φ)) + ... (4.4)

Here q is the fragment azimuths, E1 is the direct flow and E2 is the elliptical flow. Azimuthal

distribution of nuclear fragment is not isotropic because in mid-central collisions, emission near

reaction plane is blocked by spectator nucleons. Nucleons outside of the overlapping region between

projectile and target nucleus along the beam line are called spectator nucleons and those inside are

called participant nucleons. If the mean field is highly repulsive, participant nucleons experience
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higher pressure in the collision which leads to early emission. The spectator nucleons do not have

time to leave and blocks emission of particle near the reaction plane azimuth, leading to stronger

flow. Vice versa for when mean field is less repulsive [11].

The observed direct and elliptical flow are calculated as follows,

Eobs
1 = 〈cos(q −Φflat)〉

Eobs
2 = 〈cos(2(q −Φflat))〉

(4.5)

The observed value Eobs
8

is smaller than the true E8 due to non-zero resolution in the determination

of reaction plane by Q-vector. Fortunately E8 can be reconstructed using resolution information

from sub-event method,

E8 = E
obs
8 /〈cos(8(Φ −Φflat))〉. (4.6)

It is customary to plot observables as a function of normalized rapidity H0 = HCM/HNN. Here

H�" = 0.5 ln((� + ?I)/(� − ?I)) is the center-of-mass rapidity for fragments in consideration and

HNN is the relative rapidity of nucleons between projectile and target. In fixed target experiment

like ScRIT, target is stationary in laboratory frame so the relative rapidity is simply half of beam

rapidity in laboratory frame, HNN = 0.5HBeam Lab.

Fig. 4.9 shows pion direct flow (E1) from ScRIT experiment for 108Sn + 112Sn and 132Sn +

124Sn reactions at average impact parameter of 5.1 fm (28 < " ≤ 49) and 5.2 fm (31 < " ≤ 49)

respectively. The flow of c− is positive while that of c+ is negative with larger amplitude. Such

characteristics are not reproduced by current transport models. The direct flow of pion is expected

to be sensitive to the pion potential so further studies are warranted. There is not enough statistics

to extract E2 and higher order terms with satisfactory accuracy.
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Figure 4.9: E1 of c+ and c− as a function of rapidity H0 for 108Sn + 112Sn (left) at 〈1〉 = 5.2 fm
and 132Sn + 124Sn (right) reactions at 〈1〉 = 5.1 fm

4.5 Light fragments observables

4.5.1 Coalescence invariant proton spectrum

For most transport models, spectrum of individual light fragment cannot be compared between

data and model. However, when all proton contributions from light fragments are summed up, it

should reproduce the primary proton distribution before the clusterization process. Neutron-to-

proton spectrum ratio constructed this way has been successfully used to constraint nuclear EoS

in previous experiment [155]. By summing the rapidity distributions for light fragments, we get

the coalescence invariant proton spectrum (CIP). In the ScRIT experiment, protons from light

fragments up to 4He are summed,

.CIP = .p + .d + .t + 2.3He
+ 2.4He

. (4.7)

The scaling factor of 2 in front of Helium isotopes reflects the fact that Helium consists of

two protons. Isotope heavier than 4He are not counted since their yields are low. Furthermore,

due to the geometric constraints of ScRIT TPC, only fragments emitted in the direction of the

beam (?I > 0) are measured. This is problematic as we need to know how many nucleons are
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Figure 4.10: Coalescence invariant proton spectrum of 112Sn + 124Sn at 1 = 1.0 fm from the
ScRIT experiment.

recovered in the summation. It is imperative that most protons are being counted in the CIP for such

reconstruction of initial proton distribution to be accurate. For 132Sn + 124Sn and 108Sn + 112Sn,

this estimation cannot be done but fortunately for 112Sn + 124Sn, the mirrored reaction 124Sn +

112Sn systems are available. The full CIP spectrum can be reconstructed by flipping spectrum of

124Sn + 112Sn along H0 = 0 and then combining with spectrum of 112Sn + 124Sn system.

Fig. 4.10 shows the complete CIP of 112Sn + 124Sn at 〈1〉 = 1.0 fm. The impact parameter

selection is done with multiplicity cut of " > 55. 93% of all the protons in the reaction are

accounted for.

4.5.2 Stopping

The observable VarXZ is believed to be sensitive to the transparency, or stopping, of heavy-ion

collision [36]. Stopping refers to the degree of equilibrium between target and projectile. This
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observable allows us to quantify the deviation of reality from a completely stopped scenario, an

assumption that were made previously using a hydrodynamic model [36]. It is also useful in

understanding the nuclear shear viscosity [156]. Define VarX and VarZ as the variance of particle

rapidity distributions in G-direction (transverse direction) and I-direction (longitudinal direction)

respectively, then VarXZ = VarX/VarZ. The G-axis in VarX is an arbitrary laboratory axis and not

reaction plane azimuth. If the target and projectile are completely equilibrated in the collision,

the information on beam axis is lost and we expect the variance in either G- or I-direction to be

identical, thus VarXZ = 1. On the other hand, if target and projectile do not interact at all, which is

the case for complete transparency, there is no collision and VarXZ should be 0.

Although ScRIT TPC cannot detect backward emitting particles, a complete 4c particle dis-

tribution for 112Sn + 124Sn reaction can be reconstructed by combining it with results for 124Sn

+ 112Sn in a fashion identical to how coalescence invariant proton distribution is constructed in

previous section. Experiment on mirror system of 108Sn + 112Sn is not performed in the ScRIT

campaign, but particle distributions are expected to be approximately symmetric around H0 = 0 as

the mass number of target and projectile are similar. The H0 < 0 portion of the rapidity distribution

is approximated as a mirror image of H0 > 0 part of the distribution. VarXZ from 132Sn + 124Sn is

not calculated as the mass difference between target an projectile is too large for the mirror image

approximation to hold. Fig. 4.11 shows VarXZ for proton, Deuteron and Triton for 108Sn + 112Sn

with centrality gate of 〈1〉 = 1.1 fm (" > 55) and 112Sn + 124Sn at 〈1〉 = 1.0 fm (" > 55). VarXZ

decreases with increasing atomic mass on hydrogen isotopes, which is consistent with Au + Au

results from FOPI [36] who called this phenomena stopping hierarchy.

4.5.3 Isospin Tracing

Global equilibrium is not reached in central heavy-ion collision. These non-equilibrium effects are

expected to be influenced by a myriad of processes, such as in-medium effects and deflections in

momentum-dependent mean fields. To quantify the extent of non-equilibrium, Isospin Tracing was

proposed in Ref. [157] to constrain the magnitude of in-medium cross-section with data from the

80



Proton Deuteron Triton
y0

0.6

0.7

0.8

0.9

1.0
Va

rX
Z

108Sn + 112Sn, b  = 1.1 fm
Flipped around y0=0

Proton Deuteron Triton
y0

112Sn + 124Sn, b  = 1.0 fm

Figure 4.11: Left: VarXZ for 108Sn + 112Sn at 1 = 1.1 fm from the ScRIT experiment. Right:
VarXZ for 112Sn + 124Sn at 1 = 1.0 fm.

FOPI experiment [157]. In this section, the construction of Isospin Tracing will be described and

the measured values from ScRIT experiment will be presented.

Isospin Tracing 'G is a meta-observable that is defined with respect to an observable G as

follows:

'G =
2G�� − G� − G�

G� − G�
. (4.8)

In this equation, G��, G� and G� are the observable values for � + �, � + � and � + � reactions

respectively. 'G takes the value of +1 if � + � behaves like � + � and −1 if it behaves like � + �.

If global equilibrium is reached, it should take the value of 0 everywhere in the phase-space. 'G

quantifies how well target and project are “mixed".

In the case of Ref. [157], � = Ru and � = Zr. 'G is tested with G being either Triton to

Helium-3 ratio (t/3He) or coalescence-invariant proton spectrum (/). '
t/3He

and '/ both increase

monotonically as a function of impact parameter 1. This trend agrees with the general belief that

reactions are more equilibrated in central than peripheral collisions. Furthermore, when a centrality

gate of 1 ≤ 1.3 fm is imposed, '/ is observed to be proportional with rapidity H0, with '/ = 0
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at H0 = 0. It indicates that equilibrium is reached at mid-rapidity, but not so for fragments with

high rapidity. Transport model calculations showed that the slope at which '/ increases with H0

in central events is sensitive to in-medium cross-section [157].

4.5.3.1 Adapting Isospin Tracing for ScRIT

Due to acceptance issues with ScRIT TPC, particle data at ?I < 0 is only available for 112Sn +

124Sn reaction, which comes from data of the mirrored system 124Sn + 112Sn. As a result, isospin

tracing will only be calculated on that system. In this section, G is chosen to be coalescence-invariant

proton spectrum. It is tempting to repeat the analysis of Ref. [157] simply by substituting � with

112Sn and � with 124Sn, but it cannot be done due to the absence of data for symmetric reactions.

The calculation of '/ requires data for 112Sn +112 Sn and 124Sn +124 Sn reaction, which are

not performed in the ScRIT experiment. Fortunately these distributions can be approximated by

linear combinations of distributions for reaction systems performed in the experiment. Denote /�

as CIP for � + � reaction and /�� as CIP for � + � reaction. To begin with, the distribution

/
112Sn + /124Sn can be approximated as /

112Sn124Sn + /112Sn124Sn. The two distributions are

mirror image along H0 = 0. The heuristic reason for the approximation is the fact that the total

masses of the target and projectile between L.H.S. and R.H.S. of the equation are equal.

This takes care of the second and the third term on the numerator of Eq. (4.8). With the help of

data for 132Sn+124 Sn reaction, the terms on the denominator can also be approximated. Using the

mass summing heuristic, 0.5 ∗ (/132Sn124Sn + /112Sn124Sn) ≈ /124Sn since the average projectile

mass of L.H.S. = 0.5 ∗ (132 + 112) = 122, which is close to the desired projectile mass of 124.

These approximated distributions will be referred to as proxy, as oppose to the real distributions

calculated with data from the symmetric systems. The accuracy of proxy will be verified with

transport model.

The last variation from Ref. [157] is that we scaled the amplitude of each distribution by

the inverse of total system mass to eliminate any effect caused by mass difference between the

symmetric and mixed systems. This step is not needed in Ref. [157] because their target and
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Figure 4.12: Isospin tracing from dcQMD with different parameters. Top left: ?)/� > 0 MeV/c
and f = 0.6ffree. Top right: ?)/� > 0 MeV/c and f = ffree. Bottom left: ?)/� > 300 MeV/c
and f = 0.6ffree. Bottom right: ?)/� > 300 MeV/c and f = ffree.t

projectile are chosen to be of the same mass.

Using dcQMD [153], proxies and real distributions are compared in Fig. 4.12. These distribu-

tions are generated at 1 = 1 fm. From left to right, the in-medium cross-section is increased from

0.6ffree to ffree. The distributions become flatter, albeit subtlety. This is expected as increasing

cross-section should push the reaction closer to equilibrium. For the two graphs on the bottom,

only fragments with transverse momentum per nucleon ?)/� > 300 MeV/c are used. The slope of

'I at mid-rapidity increases with ?)/� threshold, which reflects an enhancement of transparency

for high momentum fragments. '/ from proxies in all four cases are very close to those from real

distributions when |H0 | < 1.

Proxies results from the ScRIT experiment are shown in Fig. 4.13. As expected, the slope of

'I increases with the ?)/� threshold. When ?)/� cut is absent, data disagrees with dcQMD

predictions regardless of in-medium cross-section but when ?)/� > 300 MeV/c is imposed, data
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Figure 4.13: Isospin tracing from ScRIT experiment at 1 = 1 fm. On the left no ?)/� cut is
imposed and on the right ?)/� > 300 MeV/c is imposed. The legend on the lower left hand corner
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agree with predictions for f = 0.6ffree better that for f = ffree. This demonstrates the momentum

dependence of in-medium cross-section. By varying the ?)/� slices, it may be possible to constrain

this dependence in the future.

In summary, we have demonstrated the viability of using Isospin Tracing on ScRIT data.

Using proxies, 'I can be constructed despite the absence of experimental data for symmetric

systems. A comparison between dcQMD predictions and experimental data reveals a possible

momentum dependence of in-medium cross-section and future studies are warranted to construct a

comprehensive constraint on the in-medium effects.

4.5.4 Direct and elliptical flow

Fig. 4.14 shows the direct and elliptical flow for 108Sn + 112Sn and 132Sn + 124Sn reactions at

average impact parameter of 5.1 fm (28 < " ≤ 49) and 5.2 fm (31 < " ≤ 49) respectively. The

methods used to determine collective flows for light fragments are identical to that for pions detailed

in Section 4.4.4. Only H0 > −0.5 are plotted due to limitations of detector acceptance. Figs. 4.14c
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and 4.14d show E1 as a function of ?)/� and are both gated on 0.2 < H0 < 0.8. The rapidity cut is

imposed to increase sensitivity as it is observed that E1 ∼ 0 when H0 ∼ 0. Finally E2 as a function

of H0 for the two systems are shown in Figs. 4.14e and 4.14f.

Direct and elliptical flows of light fragments are also influenced by the coalescence process.

Similar to the construction of coalescence invariant proton spectrum, the results can be made

less dependent on coalescence by summing proton contributions from all light fragments. The

Coalescence invariant flow (C.I. flow) distributions are constructed by taking weighted average of

cosines in Eq. (4.5) for all Hydrogen and Helium isotopes, with Helium isotopes weighted twice

as much as hydrogen isotopes. Fig. 4.15 shows C.I. flow for 108Sn + 112Sn and 132Sn + 124Sn

reactions.
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Figure 4.14: (a): Direct flow E1 of 108Sn + 112Sn plotted as a function of H0 at average impact
parameter of 5.1 fm. (c): Direct flow E1 of 108Sn + 112Sn is plotted as a function of ?)/� and
gated on 0.3 < H0 < 0.8. (e): Elliptical flow E2 as a function of H0 of 108Sn + 112Sn. (b), (d) and
(f) are the same as (a), (c) and (e) respectively but with results from 132Sn + 124Sn, all at average
impact parameter of 5.2 fm.
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Figure 4.15: (a): Coalescence invariant direct flow E1 as a function of rapidity. (b): Coalescence
invariant direct flow E1 as a function of transverse momentum ?) , gated on 0.3 < H0 < 0.8. (c):
Coalescence invariant elliptical flow E2 as a function of rapidity.
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CHAPTER 5

MONTE CARLO SIMULATION

5.1 Introduction

The goal of an experiment is to extract knowledge on the physical world by comparing measured

results with theoretical predictions. This comparison is made complicated by the fact that detector

resolutions, inefficiencies and abbreviations often skew the observed data. It is imperative that the

impact of detector effects be understood to ensure the accuracy of the reconstructed values. This is

achieved with Monte Carlo (MC) simulation.

MC simulation for ScRIT is developed as a part of ScRITROOT framework to simulate the

working principle of ScRIT TPC. It incorporates known detector effects to generate electronic

signals from a given initial particle distribution. The signals can be analyzed as if they are

experimental data. Due to the stochastic nature of the physical processes, simulation needs to be

repeated for multiple events sampled from the initial particle distribution to understand the average

performance of the TPC.

MC simulation routine follows a task-based sequential pipeline structure, similar to that of data

analysis routine in Section 3.2. The routine mainly consists of 7 tasks:

1. Geant4 Virtual Monte Carlo

2. Space Charge task

3. Drift task

4. Pad Response task

5. Beam Saturation task

6. Electronic task

7. Trigger task

These tasks will be described in this chapter.
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5.2 Geant4 Virtual Monte Carlo

The first task, “Geant4 Virtual Monte Carlo”, uses Geant4 (version 10-02-patch-01) to simulate

the interaction between detector material and the particle fragments. The geometry, material of and

magnetic field map in ScRIT TPC are taken into consideration. Geant4 simulation covers most of

the important physical processes in particle-gas interaction and scattering from detector walls, like

particle transport, energy loss, multiple scattering and particle decays [158]. The output of this

task is the amount of energy loss in keV/cm and the location of interaction (x,y,z).

5.3 Space Charge Task

In Section 3.3.2, we showed two idiosyncrasies in experimental data that are caused by the

space charge effect. To recap briefly, the first idiosyncrasy is the fact that the peak location of Δ+G

distribution differs between beam left particles and beam right particles. The second is the fact

that that center of mass momentum distribution for beam left and beam right particles are not in

agreement when they should be due to cylindrical symmetry arguments.

Here we will try to recreate these idiosyncrasies by distorting the Monte Carlo hit points with

space charge effect without correct for it in the analysis of simulated data. It serves as a confirmation

that space charge effect distorts detector measurements in ways that matches our expectations.

By integrating Eq. (3.1), the expected lateral displacement for each drift electron as it drifts

toward pad plane can be calculated. Each MC interaction points will be displaced accordingly.

Unlike in the correction for experimental data where f(� is a measured quantity, we are free to

choose the value of f(� in simulation. All simulations in this sub-section will be performed with

an ad-hoc value of f(� = 4 × 10−8 C/m2, which is approximately the average f(� for all runs in

132Sn + 124Sn.

As stated previously, the two main features of space charge effect are disagreement of momentum

distributions in Fig. 3.7 and Δ+G distributions in Fig. 3.8b between left-going tracks and right-going

tracks. With space charge distortion included in MC simulation and space charge correction disabled

in track reconstruction, both features can be reproduced in Fig. 5.1a and Fig. 5.1b. Both figures are
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Figure 5.1: (a): G-component of distance to vertex on target plane distributions. (b): Center-
of-mass momentum distributions. Both distributions are populated with simulated data after the
inclusion of space charge effect. Cut conditions are identical to what is being used in Fig. 3.7 and
Fig. 3.8b.

drawn with cut conditions identical to that of Fig. 3.7 and Fig. 3.8b.

The space charge simulation procedure can also be used to simulate leakage space charge, which

is described in Section 3.3.3. The only modification needed is to include the sheet charge geometry

and density for the leakage in electric field calculation. The multiplicative factor of 9.8 found in

experiment that converts f(� to leakage sheet charge is used here. Therefore the simulated leakage

charge is 9.8f(� = 3.92 × 10−7 C/m2. After the inclusion of leakage charge, results from Monte

Carlo simulation exhibit inconsistencies in reconstructed Triton momentum in ways that are similar

to what is being observed in experimental data. Simulated Triton momentum distributions inside

the three azimuth cuts are plotted in Fig. 5.2 which shows that the momentum distribution in cut

3 disagrees with that in cuts 1 and 2 when leakage charge simulation is enabled. To recap the cut

conditions, cut 1 corresponds to 74◦ < q < 132◦, cut 2 corresponds to −29◦ < q < 29◦ and cut 3

corresponds to −86◦ < q < −143◦. On top of the azimuth cuts, a polar angle cut of 6◦ < \ < 12◦

is imposed on all three cuts. The dependence of Triton consistency on I-threshold, first shown in

Fig. 3.16b for experimental data, is roughly recovered in simulation as Fig. 5.3 showed.
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Figure 5.2: Simulated Triton momentum distributions in the three azimuth cuts. (a): Momentum
distributions when "leakage" space charge is simulated. (b): Momentum distributions when
"leakage" space charge is not simulated.
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Figure 5.3: Triton Consistency from Monet Carlo simulation (blue inverted triangle) and experi-
mental data (red circle) after including leakage charge. It shows a sharp increase in values beyond
I-cut = 120 cm, which is consistent with real data.
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5.4 Drift task

The “Drift task” then converts the interaction points to secondary ionized electrons. The amount

of electrons #4− created in an interaction is described by the following equation,

#4− =
Δ�

�
, (5.1)

where Δ� is the energy loss from Geant4 task and � is the ionization coefficient of P-10 gas,

which is 26.2 eV. Electrons frequently collide with gas molecules and diffuse as they drift upward,

therefore each secondary electron is displaced by a random vector ®ΔA. The random vector is

sampled from the following random distribution,

ΔA8 ∼ Gaus(0, 28
√
!). (5.2)

In this equation, ! is the vertical distance between interaction point and the anode wires and 8 is

the component index which can either be C, the transverse direction or ;, the longitudinal direction

relative to fragment trajectory. 28 represents the diffusion coefficient along the two directions, whose

values are 2C = 240 `m/cm1/2 and 2; = 340 `m/cm1/2 according to Garfield++ calculation [159].

5.5 Pad Response task

The “Pad task” calculates the signal amplitude for each pad. Due to the spread of avalanche

electrons in the anode wires, some pads that are not directly over but near the secondary electrons

will also register signals with lowered amplitudes. It is determined from data that signal amplitude

depends on the horizontal displacement between hit points and the pad location as a two-dimension

Gaussian function, whose width depends on trajectory direction. The width as a function of

trajectory angle is determined empirically [8]. For each secondary electron from the drift task, this

empirical function is used to distribute signals amplitude on different pads. If multiple signals are

registered at the same time bucket on the same pad, their amplitudes will be summed.
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5.6 Beam Saturation task

Most incoming beam particles do not react with the target and pass through the TPC detection

volume unimpeded. Even when collision occurs, most of them are peripheral as geometric cross-

section of peripheral events is larger than that of central events. In most peripheral collisions,

projectile nucleus is not broken up effectively which results in heavy residues with high atomic

number. When the highly charged particles from either un-reacted beam or heavy residues interact

with detector gas, large amount of electrons will be created. They saturate the pads directly on top

such that hit points directly below the particle trajectory are not recorded. Furthermore, some pads

that were saturated in previous events may not have time to recover before the next collision event

occurs. Those pads will be unresponsive for the entire duration of some events. The purpose of

Beam Saturation task is to simulate such saturation modes.

The effects of this saturation mode can be seen in Fig. 5.4 which shows the q vs. \ (phase space)

distribution for protons in laboratory frame. The creases at q ≈ ±90◦ demonstrate the inefficiencies

created by the saturated of pads by heavy residues. To accentuate beam saturation at large polar

angle, no cut is set on number of clusters and only distance to vertex cut of < 15 mm is applied.

The naive approach to simulate beam saturation is to include heavy-fragments in event generator.

Pad saturation is already handled by the simulation without needing a dedicated beam saturation

task. However this approach suffers from performance and memory issues. Heavy-fragments

spawn orders of magnitude more ionized electrons than light fragments due to its high electric

charge. Since each electron is simulated individually in drift task, this approach consumes a lot

of computational powers. It crashes the simulation on our available computation hardware due to

excessive memory consumption.

As a result, empirical approach where pads are saturated randomly according to some given

probability distributions is preferred. The saturation effect of heavy-fragment is manifested in two

ways which we called complete beam saturation and normal beam saturation. A pad suffers from

complete beam saturation when it is unresponsive for the entire duration of an event, which happens

when the pad has not recovered from saturation in previous events. In normal beam saturation, the
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Figure 5.4: q against \ for protons. It is similar to Fig. 3.21, but here no number of clusters cut is
applied.

pad is responsive before secondary electrons from the heavy-fragment reach the pad plane. Both

saturation modes are needed to accurately reproduce the observed creases.

To simulate complete beam saturation, we tabulate the experimental fraction of events for each

pad where it is unresponsive from the beginning of an event. This unresponsive event fraction for

each pad is visualized in Fig. 5.5. The empirical fraction is used as probability for each pad to be

saturated randomly at the beginning of each simulated event.

To simulate normal beam saturation, we register a large signal amplitude, large enough to

saturate the pads, to pads directly on top of the projectile track at time bucket that corresponds to

height of the beam. This direct injection of signal circumvent the need to simulate electrons in drift

task. This algorithm do not capture all the physics of heavy residues, but it is accurate enough for

simulation to reproduce the creases in Fig. 5.4.

Fig. 5.6a shows phase space distribution of simulated protons when only complete beam

saturation is applied. Although creases appear, the one at q = −90◦ is not deep enough when

compared to experimental result. After normal beam saturation is enabled, a deeper crease is

observed at q = −90◦ in Fig. 5.6b. This indicates that both saturation modes are present in the
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experiment.

5.7 Electronic task

The “Electronic task” converts signal amplitudes from previous tasks into electronic pluses.

The pluses are stored as analogue-to-digital (ADC) readings at different time buckets. Since pulse

shape does not vary significantly from pulse to pulse apart from its height, a standard template

pulse shape can be extracted empirically. Electronic task takes this template pulse, scales its height

according to signal amplitude and displaces its start time to give the simulated pulse [8]. If there

are more than one interaction point below a pad, pulses from those interactions are superimposed

to form a complete pulse. If total pulse amplitude exceeds the dynamic range of ADC, a saturated

template pulse will be appended at the saturation time. All signals beyond saturation time will be

discarded.
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Figure 5.6: Simulated proton q vs \ distribution when (a): only dead pads are simulated, (b): both
dead pads and the beam are simulated.

5.8 Trigger task

Trigger conditions lead to biases due to their tendency to disproportionately rejects certain type

of events. To estimate and understand the effect of trigger bias, simulation of triggers have to be

implemented. Here the simulated triggers will be described and simulated results will be compared

against experimental data.

The geometry and material of KATANA and KYOTO arrays are imported into Geant4 Virtual

Monte Carlo task, which allows for the interaction between fragments and the triggers to be

simulated. It is possible to convert energy loss in KATANA veto bars and KYOTO arrays to

simulated electronic pulses to be reconstructed with ScRITROOT, but since we are only interested

in studying the qualitative effects of trigger bias, approximations can be made to reduce complexities

in analysis and simulation. To begin with, the electric charge of heavy-residue is not calculated

from energy loss amplitude in KATANA veto bars, rather the exact charge / of fragments that

passes through KATANA veto bars is saved to files. Similarly, the energy depositions in KYOTO

arrays will not be converted to electric signal. Any energy deposition inside a KYOTO bar counts
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as a hit in trigger and the total number of KYOTO bar being hit is saved to disk. This approximation

is reasonable as KYOTO efficiency is measured to be about 99% [160].

To simulate nuclear dynamics, events are generated from Ultra-relativistic Quantum Molecular

Dynamic (UrQMD) for 132Sn +124 Sn reactions at 270 AMeV with soft EoS of Ref. [141]. The

impact parameter distribution follows the geometric cross-section 3f = 2c131 from 1 = 0−10 fm.

These events are converted to electronic signals using ScRITROOT and are reconstructed with

tracking algorithms, identical to what is being done with experimental data. The multiplicity

distribution of the reconstructed UrQMD simulation will be referred to as simulated multiplicity

distribution whereas that of experimental data will be referred to as real multiplicity distribution.

For comparison sake, both real and simulated multiplicity distributions are normalized to unit area.

The simulated multiplicity distribution without any trigger conditions is plotted in Fig. 5.7 as

the blue histogram. The steep rise at low multiplicity reflects the fact that cross-section increases

with impact parameter. In contrast, the real distribution (black markers) shows a suppression of

low multiplicity events due to trigger bias.

When trigger conditions are applied, the simulated distribution resembles real distribution

better. The blue curve in Fig. 5.8 is created with the conditions that KYOTO hits ≥ 4 and

KATANA / ≥ 20, which are the same trigger conditions in ScRIT experiment. On the high

multiplicity (≥ 50) side, there are more events in simulation than data, but that is most likely

caused by inaccuracies in clusterization of UrQMD rather than problems with trigger simulation.

It is well-known that UrQMD, like other similar QMD type models, over predicts light fragment

yields [149]. This was discussed in Chapter 4 when transport models were introduced.

On the low multiplicity side (≤ 40), the simulated distribution underestimates the yield of

peripheral events. This is also caused by inaccuracies in clusterization process: if the / distribution

of heavy residues is inaccurate, the events rejected by KATANA simulation will not reflect the event

selection bias accurately. To compensate for this, the KATANA charge threshold in simulation

is raised from ≤ 20 to ≤ 35. This new threshold is chosen to match the simulated multiplicity

distribution on the low multiplicity side to real distribution. The red histogram in Fig. 5.8 shows
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Figure 5.7: Simulated multiplicity distribution (blue line) and real multiplicity distribution (black
points). The H-axis are normalized such that areas under the curves are always one.

simulated multiplicity distribution after the charge threshold is raised.

To conclude, the shape of multiplicity distribution depends strongly on the trigger conditions.

We have reproduced the approximate shape of multiplicity distribution with trigger simulation.

The remaining differences between simulation and data that can be attributed to inaccuracies in

UrQMD and the rough implementation of trigger simulations. Hopefully with advancements on

nuclear models in the future, the agreement between data and simulation can be improved.

5.9 Application of Monte Carlo Simulation

One of the important applications of MC is embedding efficiency calculation. Simulation is

used to generate electric pulses of ScRIT TPC for a single particle. Those pulses will be appended

to pulses from experimental events in a process called embedding, and the embedded events will be

analyzed with ScRITROOT. The fraction of events in which ScRITROOT successfully identifies

the embedded simulated particle is the efficiency of the detector. This technique is also use in
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Figure 5.8: Simulated multiplicity distribution (blue line) and real multiplicity distribution (black
points). The H-axis are normalized such that area under the curves are always one.

STAR TPC [161].

It can also be used for Closure testing. Analysis routine reconstructs Monte Carlo data as if it is

experimental data, and the extracted observable values will be compare against the true value from

event generator. This step is essential in demonstrating the validity and precision of the analysis

routine, as well as revealing any potential issues the analysis may have missed.

The Monte Carlo routine was developed after the 2016 ScRIT experiment. While it could not

be used for the design of ScRIT TPC and the current experiment, the code will be indispensable for

future experiment planning by testing the accuracy in reconstructing the purposed observables. The

effects of any modifications to the detector can also be studied in advance. Other experiments also

use Monte Carlo simulation for Detector Design and Optimization and Software and Computing

Design and Testing [162].

In this chapter, the various applications of Monte Carlo simulation in ScRIT experiment will
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be reviewed.

5.9.1 Efficiency calculation with track embedding

Embedding is a special type of Monte Carlo simulation, used mainly for detector efficiency calcu-

lation. If we only consider single track events, efficiency can be calculated without the need for

special embedding techniques. It is simply the amount of reconstructed tracks divided by that of

initial tracks.

However, real events are rarely single track events. The multiplicities of ScRIT events are often

close to 50. The particle distributions affect detector efficiency due to varying degree of saturation

or overlapping of electric pulses. If we want to calculate efficiency with ordinary Monte Carlo

simulation (i.e. simulate all ∼ 50 tracks in an event and see how many are reconstructed), the events

from event generator needs to accurately imitate real events. This is very hard to do, especially

when there are many different correlations between particles that are not yet studied. On top of that,

cosmic ray background which may affects the overall efficiency is also absent from the simulation.

Single track embedding is developed to overcome those difficulties. Instead of simulating the

entire event, only one particle is simulated per event. The simulated signals will be appended to

signals of a real event, unless the pad it tries to embed onto is already saturated. The combined

event is reconstructed as normal. The detector efficiency is the fraction of events where appended

tracks are correctly identified.

Special routine is developed to handle the pulse appending procedure (embedding) and to

single out the appended tracks from all the other tracks after track reconstruction. Fig. 5.9 shows a

simplified flow diagram for the embedding procedure.

For a track to be identified as the embedded track among all reconstructed tracks, it has to

satisfy two conditions that quantify how similar the selected reconstructed and the initial MC track

is. The first condition is #MC > 5, the fitted track has to make use of at least 5 row or column pad

clusters from the MC simulation. The second condition is #MC/#total > 0.5, at least half of the

clusters used to reconstruct the track has to originate from MC simulation.
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Figure 5.9: Flow diagram for the embedding software.

Figure 5.10: Top-down hit pattern before (a) and after (b) embedding. The plot behind (b) shows
signal generated by MC simulation.

Naturally this rises the question of how pad clusters from MC and data are differentiated.

Clusters are designated as MC cluster if at least one pulse in a cluster originates from MC. The

identification of MC pulses is done in PSA task in two steps. The first is to tag all pulses

that satisfy following two criteria as "not MC pulse": | (&Exp − &Exp + embed)/&Exp | < 0.05

and |CExp − CExp + embed | < 3 where & and C represent the charge and time of the hit point

respectively. The subscript "Exp" means fitted pulses from only experimental data and "Exp +

embed" means that from the embedded data. The second is to tag the all remaining pulses that

satisfy |CEmbed − CExp + embed | < 3 as MC pulses. If there are more than one track that satisfy all

the similarity conditions, the one with the smallest distance to vertex is chosen.
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5.9.2 Verification of data analysis pipeline

Although each step in our data analysis pipeline is tested vigorously, it remains to be seen if

they can work in unison to reconstruct observables accurately. By analyzing data from Monte

Carlo simulation of ScRIT TPC, any errors in the software can be caught by comparing the

reconstructed observables with the ground truth, which is the expected observable values from the

event generator. In this section, simulation refers to the simulation of ScRIT TPC responses instead

of QMD simulation.

Particle distributions are constructed in such a way that the expected observable values equal

to some initial chosen values. These chosen values are called ground truth. Event generator will

sample particles from the particle distributions, and then be simulated and reconstructed with

ScRITROOT analysis framework. How close the reconstructed values is to the ground truth is by

definition the accuracy of the analysis.

The ?) vs. H0 distributions of proton, Deuteron, Triton, 3He and 4He for 112Sn + 124Sn reaction

are reconstructed from experimental data. These reconstructed distributions will be used as ground

truth for event generator in the Monte Carlo simulation of ScRIT TPC. Only distributions from

112Sn + 124Sn system are used because that is the only system where complete 4c distribution can

be recovered by combining experimental results for 112Sn + 124Sn with the mirror system 124Sn

+ 112Sn. Due to computational limitations, only events with 112Sn as the target and 124Sn as the

projectile are simulated at different impact parameters. Since the accuracy and resolution of ScRIT

TPC are intrinsic properties of the detector and do not depend strongly on reaction systems, our

conclusion from 124Sn + 112Sn reaction can be applied to other reactions.

We first test the performance of rapidity distributions reconstruction. Accurate rapidity dis-

tributions are needed in reconstructing VarXZ and Coalesence invariant proton spectrum. The

ground truth ?) vs. H0 distributions come from data with centrality gate of 〈1〉 = 2.1 fm as the

observables of interest are sensitive to central collision. The particle azimuth are assumed to be

uniformly distributed for simplicity. It will be fined when collective flow is considered.

The particles from event generator are converted to ADC pulses. These simulated pulses are
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Simulation Data

Figure 5.11: PID from simulation (left) and experimental data (right). The plots on the left
shows not PID lines for fragments heavier than 4He because heavy fragments are not simulated in
ScRITROOT, but otherwise the two look qualitatively similar.

treated as experimental data in the analysis pipeline. Cut conditions described in Table 3.1 are also

used in the analysis of simulated data to keep the settings consistent between simulated and real

data. However, due to imperfections in simulation, a few adjustments must be made. The PID lines

are refitted with simulated data as the shape of simulated PID lines is not exactly identical to that of

real PID lines. PID of simulated and experimental data are plotted side-by-side in Fig. 5.11 which

shows that, at first glance, the two look very similar. However, the exact 3�/3- values for each

isotopes are slightly different and there are no PID lines for isotopes heavier than 4He as they are

not simulated in ScRITROOT due to computational constraint. Furthermore, since cosmic rays are

not included in the simulated data, the amount of background junk tracks in real data differs from

simulation. Therefore embedding efficiency is also recalculated, this time with simulated event as

the background for single tracks to embed onto.

The reconstructed rapidity distributions and true distributions for proton, Deuteron and Triton

are plotted from left the right in that order in Fig. 5.12. Due to geometric coverage limitations of

ScRIT TPC, particles with H0 < −0.6 are poorly detected so only spectrum with H0 > −0.6 are

shown. The upper half of each subplot in Fig. 5.12 is the rapidity distribution, with red histograms
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Figure 5.12: From left to right: Rapidity distributions of proton, Deuteron and Triton. The red
lines correspond to the initial distribution from event generator and the black points correspond to
the rapidity distributions reconstructed with results from simulation of ScRIT TPC. The ratio plots
on the bottom of each graphs show the ratio of the true distribution over reconstructed distribution.

being the ground truth and black solid circle being the reconstructed spectrum. The lower half is

the ratio of ground truth over reconstructed spectrum, which is very close to the expected value of

one. This comparison shows no significant errors in the data analysis.

Next we test the performance of flow reconstruction. The ?) vs. H0 distributions are extracted

from data with centrality gate that gives 〈1〉 = 5.2 fm as flow is more sensitive to mid-peripheral

than central events. Additional steps are needed to generate collective flow from the event generator.

Let Φ be the reaction plane azimuth, q8 be the azimuth of the 8th particle in an event, E18 be the

ground truth direct flow value for particle 8, we can define function � (G) as,

� (G) = G + 2E18 sin G. (5.3)

Although not explicit in the formulation, E18 does not need to be constant. It can be a function
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Figure 5.13: From left to right: Direct flow E1 of proton, Deuteron and Triton as a function of H0.
The red lines correspond to the initial E1 from event generator and the black points correspond to E1
reconstructed with results from simulation of ScRIT TPC. The estimation of reaction plane angle
with Q-vector or the estimation of reaction plane angle with sub-event method are re-calculated for
simulated data.

of H0 of particle 8. The desired flow can be incorporated if q8 is being sampled as follows,

Φ ∼ U(0, 2c),

q8 = Φ + q′8 + �−1(q′8) where q′8 ∼ U(0, 2c),
(5.4)

where U is the uniform distribution and �−1(G) is the inverse of the function � (G). In the

following analysis, the ground truth E18 follows the reconstructed E1 vs. H0 correlation from 112Sn

+ 124Sn at 〈1〉 = 5.2 fm. The dependence of E1 on ?) and any higher order flow term are not

included in the ground truth for simplicity.

The simulated data is again analyzed as if it is real data. Bias correction and reaction plane

resolution of real data cannot be used since flow distributions in the simulation is simplified not

to include dependence on ?) and higher order terms. They need to be re-calculated "empirically"

from the simulated data following steps in Section 3.4.6. Fig. 5.13 shows that the reconstructed

flow matches the true flow reasonably well.
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5.9.3 Impact parameter determination with Machine Learning algorithm

Impact parameter cannot be measured directly, but can be inferred from other indirect observables.

Traditionally, the inference is done with the help of an observable that depends on impact parameter

monotonically. Examples of such observables include total charged multiplicity and ratio of total

transverse kinetic energy to longitudinal kinetic energy (ERAT) [34]. With the assumption of

geometric cross-section 3f = 2cA3A , impact parameter can be calculated from the cumulative

distribution of such observable using the following formula [2],

1 = 1max

√
#$≥$�
#total

, (5.5)

where$� is the current observable value, #$≥$� is number of observed events with observable

value ≥ $� , #total is the total number of observed events and 1max is the maximum impact

parameter. 1max is calculated from the empirical total reaction cross-section. The method of impact

parameter determination using charged particle multiplicity in equation (5.5) will be referred to as

traditional method in the following sections.

Recent developments of machine learning (ML) algorithms demonstrated their potential in im-

pact parameter determination. Ref. [141] specificity shows that with a perfect detector, algorithms

based on Convolutional Neural Networks (CNN) and Light Gradient Boosting Machine (Light-

GBM) can be used to predict impact parameter of Au + Au collisions at various beam energies with

simulated data generated from ultra-relativistic quantum molecular dynamics (UrQMD) model,

and the prediction error is smaller than traditional method.

With the development of Monte Carlo simulation for ScRIT TPC, such ML algorithms can

be extended beyond perfect detector by providing realistic simulation of detector response. In

this section, such algorithms will be developed and applied to real experimental data. A few key

observables will be compared to gauge the quality of the impact parameter selection.
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5.9.3.1 Machine Learning Algorithms

Ref. [141] shows that performance metrics of LigthGBM is slightly better than CNN with perfect

detector, trained on events from UrQMD. Base on this, LightGBM is selected for this study.

The training data set consists of 135,000 UrQMD 132Sn +124 Sn events at �/� = 270 MeV for

1 = 0 − 10 fm is used. The reaction is chosen to align with the experimental settings of the ScRIT

experiment. UrQMD is configured to use the parameter set “SM-F", in which the compressibility

 sat = 200 MeV and the nucleon-nucleon elastic scattering cross-section in free space is used as

the in-medium cross-section.

Following Ref. [141], the following seven observables are chosen as features for the algorithm

to infer impact parameter: (i) Total multiplicity of charged particles. (ii) Transverse kinetic

energy of hydrogen and helium isotopes. (iii) Ratio of total transverse-to-longitudinal kinetic

energy. (iv) Total number of hydrogen and helium isotopes. (v) Averaged transverse momentum

of hydrogen and helium isotopes. (vi) Number of free protons at mid-rapidity |HI/H140< | ≤ 0.5.

(vii) Averaged transverse momentum of free protons at mid-rapidity |HI/H140< | ≤ 0.5.

Mean deviation (Bias) and standard deviation (S.D.) of the predicted impact parameter will be

used to quantify the quality of the algorithm. Intuitively, bias and S.D. corresponds to accuracy

and precision, respectively, and are defined as:

Bias (1pred) = 1pred − 1true

S.D. =
√

Var (1pred − 1true).
(5.6)

1true is the true impact parameter used in event generation and 1pred is the predicted impact

parameter from the LightGBM. To study the performance as a function of impact parameter, events

are binned according to their 1true values. The averaging is done over all events in the same bin.

5.9.3.2 Results on simulated events

Fig. 5.14 shows bias (top panel) and S.D. (bottom panel) as a function of impact parameter (1CAD4).

LightGBM is used to train and test on two data sets: one includes the response of the ScRIT
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Figure 5.14: Impact parameter dependence of bias (upper panel) and S.D. (lower panel) predicted
by LightGBM without detector response (solid stars) and with detector response (open circles).

experiment (open red circles) and one without (blue solid stars). Both the training and the testing

data sets use the same UrQMD input parameter set of SM-F. As expected both bias and S.D.

worsens with the inclusion of detector response, especially in the mid-peripheral regions. Around

1=3 fm, both bias and S.D. worsen by a factor of 2 when detector response is included. The

worsening in bias and S.D. even when detector response is not included could be related to the

physics of transport models. In central collisions (small 1), nucleon-nucleon scatterings dominate

in the collision dynamics while in peripheral collisions (large 1), the mean field dominates. In the

mid-central or mid-peripheral regions (1=3-5 fm), accurate treatment of both the mean-field and

collisions are very important but transport models may fall short.

The black inverted triangle represent results from traditional method. In general, traditional

method performs worse than ML, especially for central collisions. Experimentally, we also see that

ML selects central collision events better as discussed below.

If the determination of 1 is perfect, both bias and S.D. will be zero. That happens for the

bias only in the range of 1=5-8 fm. Over this region, the detector effects are minimal. S.D. never

approaches zero over the range of 1 we investigate. The worsening of both bias and S.D. around

1 ≈ 0 fm and 1 ≈ 10 fm have been observed with other ML algorithms. This could be due to the
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inability of the LightGBM and traditional method to predict accurately near the boundaries of the

observable limits.

To verify that application of the LightGBM algorithm trained on the UrQMD simulations is not

restricted to only simulations from the UrQMD model and can be generalized to experimental data,

we test the algorithm using simulations from four different transport models, Antisymmetrized

Molecular Dynamics (AMD) model [163, 164] plus three different families of Quantum Molecular

Dynamics (QMD) models, dcQMD [165, 166], IQMD [167, 168] and ImQMD [169]. All these

models, including UrQMD, use different techniques and approaches to simulate the nucleus-nucleus

collisions. All of them have had various success in describing different aspects of heavy ion collision

data. The differences, underlying assumptions and performance between models are detailed in

Refs. [170, 171]. In the simulations described here, default physics input parameters for each code

are used. This allows us to not only gauge the discrepancy caused by different model assumptions,

but also by uncertainty in input parameter values. In addition to these four different models, we

also include a different input parameter set for the UrQMD model, labeled as UrQMD/SM-I. It can

be considered as a different model.

Tests at 1 = 3 fm are perform to quantify the performance of ML. About 5000 events at 3 fm are

generated from each code. LightGBM trained with UrQMD/SM-F data is tasked with predicting the

impact parameter of these events. The bias and the corresponding S.D. values are listed in the top,

middle, and bottom sections of Table 5.1. The top section contains results from the perfect detector

(i.e. without the inclusion of detector response to simulated events) both for training and testing.

The middle section contains results from including the detector response for both training and

testing. Finally, in the bottom section, we apply the ML algorithm trained with perfect detectors to

testing events that include detector response. The last option gives the largest deviation of 1CAD4 by

predicting the mean 1?A43 as nearly 6 fm. Therefore the algorithm not including detector response

in the training is unacceptable and would not be discussed any further.

AMD has the largest bias (1.09 fm), reflecting the very different approaches used in simulating

HIC in AMD and other QMD-type models. As expected, both the bias and S.D. are larger than
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Table 5.1: Statistical properties of 1pred on simulated events from various transport models.
Simulated data from UrQMD/SM-F input parameter set are used for training. The bias values are
plotted as absolute numbers. All values are in unit of fm.

Model AMD dcQMD ImQMD IQMD Average UrQMD/
SM-F

UrQMD/
SM-I

Perfect detector

1pred 4.09 2.84 3.29 3.19 3.35 2.77 3.20
S.D. 0.68 1.00 0.74 0.88 0.83 0.66 0.94
|Bias| 1.09 0.16 0.29 0.43 0.49 0.23 0.20

With realistic detector response

1pred 4.06 3.77 3.22 2.66 3.43 2.44 2.96
S.D. 0.91 1.22 1.02 1.03 1.04 0.94 1.05
|Bias| 1.06 0.77 0.22 0.34 0.60 0.56 0.04

Trained with perfect detector, applied to simulation with detector response

1pred 6.45 6.45 6.25 6.04 6.30 5.87 5.69
S.D. 0.44 0.46 0.44 0.46 0.45 0.62 0.46
|Bias| 3.45 3.45 3.25 3.04 3.30 2.87 2.69

those values listed under UrQMD/SM-F column in Table 5.1 since these transport models were

not used to train the events. Except for AMD, the bias and S.D. from different transport models

are similar to the results of UrQMD/SM-I where the training and testing data use different input

parameter sets. For AMD, while the accuracy worsens, the S.D. values are similar to the reference

of UrQMD/SM-F.

As a reference, the best case scenario is LightGBM predictions on UrQMD/SM-F since training

and testing data sets come from the same model. When average performance of different models is

compared to it, S.D. increases by 20%. The UrQMD/SM-F under-predicts while the other models

over-predict 1. As expected, including the detector response worsens the bias and S.D. for all

models. Assuming that the data could be described by the average of the models, then one could

expect that the ML algorithm could determine 1 with a bias of 0.6 fm and S.D. of 1 fm from

experimental data.
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Figure 5.15: Tthe 1pred values from the LightGBM is plotted against that from traditional method.
Color represent number of counts in each bin. The red diagonal line shows the expected correlation
if impact parameters are determined perfectly.

5.9.3.3 Results on experimental data

After extensive tests with transport models, we apply the ML algorithm to experimental data.

Fig. 5.15 plots the correlations between 1pred from LightGBM and 1pred from traditional method.

Generally, they are in agreement as evidenced by the overall diagonal distribution. Experimental

cross-section measurements sets 1max of traditional method to be 7.5 fm while 1pred from the

LightGBM extends beyond the sharp cut off limit resulting in a horizontal tail at 7.5 fm. It should

be noted that the measured cross-section from which 1max is calculated is smaller than the true

geometric cross-section due to trigger bias.

The histogram in Fig. 5.16 shows the experimental impact parameter distributions from the sharp

cut off model of eq. (5.5). The impact parameter distribution predicted by the LightGBM (open

symbols) exhibits a tail that extends 1pred beyond 7.5 fm. It resembles smearing of the experimental

impact parameter distribution which is consistent with the expectation that the experimental data

should contain a range of impact parameters that would extend beyond 1max. In addition, one would
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Figure 5.16: Distribution of 1pred made with the LightGBM (open symbols) and sharp cut off
model with 1max = 7.5 fm (black line).

expect the sharp cutoff model multiplicity distribution should always be equal to or higher than the

realistic multiplicity distributions. Fig. 5.16 shows that from 4 to 6.5 fm, there are slightly more

events from LightGBM than from traditional method. This apparent discrepancy is not understood.

It could be that, not all the detector response has been accurately reproduced. It could also be

that the UrQMD is not describing the experimental data accurately enough in this region as is also

evidenced by the worsening of the accuracy and broadening of S.D. in Fig. 5.14. Nonetheless, the

effects are small.

Unlike events from transport models, we do not have the true value of impact parameter from

experimental data so we cannot evaluate the accuracy of 1pred values. Fig. 5.16 suggests that the

LightGBM algorithm determines the impact parameter for peripheral events more accurately as

it does not have the sharp cutoff limit and the impact parameter smearing occurs naturally. To

evaluate the performance at central collisions, we use observables whose qualitative behavior with

impact parameter is known.

One such observable is the reaction plane resolution 〈cos(Φ" − Φ')〉[109]. Here Φ" and
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Figure 5.17: The reaction plane angle resolution, 〈cos(Φ" − Φ')〉 is plotted against 1pred. The
predictions are made with traditional method (inverted black triangle) and LightGBM (red open
circle).

Φ' are the measured and the real azimuthal angle of the reaction plane, respectively. The reaction

plane should vanish as 1 approaches zero due to azimuthal symmetry. In a perfect head-on collision

(1 = 0 fm), the fragment emission is isotropic and Φ" is reduced to a random number between

0 − 2c, which makes the average of cosine zero.

As shown in Fig. 5.17, the reaction plane resolution 〈cos(Φ" − Φ')〉 decreases with 1pred.

However, at 1pred < 3 fm the reaction plane resolution is closer to zero if the central event selections

are made with LightGBM. This finding supports the assertion that events selected by LightGBM

are more central than the corresponding events selected by traditional method, although neither

intercepts the H-axis at zero.
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CHAPTER 6

EQUATION OF STATE PARAMETER CONSTRAINTS

6.1 Introduction

We are interested in searching for the parameter phase space where model predictions agree

with measured observables. The observables described in Chapter 4 are constructed to overcome

limitations of clusterization process and should be directly comparable to model predictions. In this

analysis, the Improved Quantum Molecular Dynamic (ImQMD) model will be used for constraining

nuclear EoS parameters.

We will search in a multi-parameter space, as oppose to the one- or two-parameters search that

some other analysis have done to explore the high dimensional correlations between different pairs of

parameters. Such a high dimensional search is made with Bayesian analysis using Markov Chain

Monte Carlo (MCMC) sampling. It incorporates our initial believe on parameter values (often

results from other analysis) as prior and searches the high dimensional parameter space efficiently.

This analysis returns the posterior distribution, the probability distribution in multivariate parameter

space when conditioned on the measured observables. It can be easily projected onto one or two

dimensional marginal probability distribution for visualization and interpretation.

A downside to such analysis is the intense computational requirement. MCMC sampling asks

for model predictions on tens of thousands of parameter sets. Given that ImQMD typically takes

half an hour to calculate each one parameter set, MCMC sampling will be prohibitively slow.

To speed-up the calculations, we adopt the Gaussian emulator [172] and Principal component

analysis [173]. It is a non-parametric interpolation algorithm that interpolates model predictions

from a few tens of parameter sets. The emulator is robust against statistical fluctuations from

ImQMD simulation, able to estimate interpolation uncertainty and fast.

In this chapter, we will describe the mathematical background of Bayesian analysis, MCMC,

Gaussian emulator and Principal component analysis. These algorithms will be validated with
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closure test. A constraint on effective mass will be made through Bayesian analysis with ImQMD

and ScRIT data. When the constraint is used in conjunction with results from pion spectral yield

ratios, the uncertainty on symmetry energy term at 1.5d0 can be reduced by 39%.

6.2 Bayesian analysis

Denote = as the number of free nuclear EoS parameters, \8 as the 8th parameter,< as the number

of observables, H 9
%
( ®\) as the predicted values for the 9 th observable from a given parameter set

®\ = {\1, ...\=}, f 9
%
( ®\) as the statistical uncertainty of H 9

%
( ®\), H 9

"
as the measured observable value

and f 9
"

as the experimental uncertainty of H 9
"

. We will refer to the collection of all predicted and

measured observables as −→H% and −−→H" respectively.

From Bayes theorem, the posterior probability distribution is given by%( ®\ |−−→H" ) = %( ®\)%(−−→H" | ®\).

The first term %( ®\) is referred to as Prior and it is the assumed probability distribution of the pa-

rameters from prior knowledge, in other words, constraints from other experiments. The second

term %(−−→H" | ®\) is called the likelihood, which is the conditional probability of having the measured

observable values given ®\. It is formulated as,

%(−−→H" | ®\) ∝ exp

(
−

<∑
8=1

(H8
"

− H8
%
( ®\))2

2f82( ®\)

)
. (6.1)

In this expression, f82( ®\) = f
9

"
2 + f

9

%
2( ®\) to incorporate the uncertainty from both the

experiment and model simulation.

It is hard to visualize distributions with dimensionality higher than three. To interpret the

high dimensional posterior distribution, it is customary to project the distribution onto one or two

dimensions such that correlation of any pairs of parameters can be examined. Such projected

distributions are called marginal distributions and defined as

%(\8, \ 9 ) =
∫

· · ·
∫ ∞

−∞
%( ®\ |−−→H" ) 3\1 . . . 3\8−1 3\8+1 . . . 3\ 9−1 3\ 9+1 . . . 3\=, (6.2)

where \8 and \ 9 are the pair of parameters to be visualized. With conventional numerical

integration technique, such integration is computationally expensive. This is mitigated by sampling
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the posterior with Markov Chain Monte Carlo (MCMC) which randomly walks along the parameter

space according to some pre-defined conditions [174]. Those conditions are imposed such that

the path of this random walk will converge to posterior distribution. Marginal distributions can be

plotted efficiently by filling histograms with parameters from the samples. All posterior distributions

in this study are generated with the help of python library PyMC2 [175].

6.3 Gaussian emulator

Gaussian process will be used as a surrogate model in lieu of ImQMD in MCMC sampling.

It is an interpolation algorithm for arbitrary dimensional input [172]. Only calculations from

ImQMD at several tens of randomly distributed parameter sets are needed for the interpolation to

work accurately. Gaussian process is better than other interpolation algorithms because it is robust

against fluctuations in the training samples and able to estimate interpolation uncertainty. Since

ImQMD is a Monte Carlo simulation of nuclear collision, its predictions suffer from statistical

fluctuations. Gaussian process is also non-parametric, meaning that the interpolation does not

assume any predetermined functional forms. This is advantageous in eliminating potential sources

of bias in our choice of regression functions.

Gaussian process takes the form of a high dimension Gaussian distribution, with dimensionality

equals to number of training sets [172]. Denote = as the number of training sets, G8 and H8 as the

set of nuclear EoS parameters and predicted observable values of the 8th training set respectively.

A covariance function : (G8, G 9 ) is specified ad-hoc to quantify the covariance between pairs of

training sets. The discussion on covariance function is delayed until later sections. Consider the

following = × 1 column matrix 5 with random variable elements that follow multivariate Gaussian

distribution,

5 ∼ N(0,  (-, -)), (6.3)

where - represents the collection of EoS parameters G8 of all = training sets and  (-, -) is

a = × = matrix with elements  8, 9 = : (G8, G 9 ). To predict outcome on a new parameter set Gnew,
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Eq. (6.3) can be written as,

©­­«
5new

5

ª®®¬
∼ N

©­­«
0,

©­­«
 (Gnew, Gnew)  (Gnew, -)

 (-, Gnew)  (-, -)

ª®®¬
ª®®¬
. (6.4)

In this equation, 5new is a scalar random variable,  (Gnew, -) is a 1 × = row matrix with

elements  0,8 = : (Gnew, G8),  (-, Gnew) =  (Gnew, -)) and  (Gnew, Gnew) = : (Gnew, Gnew) is a

scalar. Gaussian process assumes that the prediction of ImQMD follows 5new, with an important

twist: since the value of column matrix 5 is given as the training sets, the distribution of 5new

should be conditioned on 58 = H8. Denote H as a column matrix with elements H8. After applying

the formula for conditional Gaussian distribution (see Ref. [176]), the probability distribution of

5new becomes,

P( 5new | 5 = H) = N
(
 (Gnew, -) (-, -)−1H,

 (Gnew, Gnew) −  (Gnew, -) (-, -)−1 (-, Gnew)
)
.

(6.5)

H8 from ImQMD are not exact due to statistical fluctuations. Assume that such random noises

follow independent and identically distributed Gaussian function with variance f2, they can be

added to the covariance in Eq. (6.3),

©­­«
5new

5

ª®®¬
∼ N

©­­«
0,

©­­«
 (Gnew, Gnew)  (Gnew, -)

 (-, Gnew)  (-, -) + f2�

ª®®¬
ª®®¬

(6.6)

Equation (6.5) has to be modified to accommodate the additional noise,

P( 5new | 5 = H) = N
(
 (Gnew, -) [ (-, -) + f2�]−1H,

 (Gnew, Gnew) −  (Gnew, -) [ (-, -) + f2�]−1 (-, Gnew)
)
.

(6.7)

Covariance function is essential in the construction of Gaussian process [177]. A major

assumption in interpolation is that 5new is similar to H8 if Gnew is close to G8. The covariance

function encodes our assumption on the similarity between points. A commonly used covariance

function is the squared exponential function,

: (G1, G2) = f 5 exp
(
−

<∑
8=1

(G81 − G
8
2)

2

2;2
8

)
. (6.8)
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In the equation,< is the number of dimension of EoS parameters, G8 is the 8th component of G, ;8

is the length-scale and f 5 is the covariance amplitude. ;8, f 5 and f of Eq. (6.6) are free parameters

that one need to adjust for optimal performance. In the context of machine learning, they are called

hyperparameters and the problem of selecting optimal values are called model selection. Squared

exponential function is used in this chapter.

We will use leave-one-out cross-validation (LOO-CV) for model selection [178]. The idea is

to remove a particular parameter set from the training data set. The leave-one-out point, which is

usually called the validation data, is used to quantify the predictive accuracy with log probability,

log ?(H8 |-−8, H−8, hyperparameters) = −1

2
log(f2

pred) −
(H8 − Hpred)2

2f2
pred

− 1

2
log 2c. (6.9)

(-−8, H−8) denotes the set of training data with 8th set left out and Hpred and fpred are the

predicted values and uncertainty at G8 respectively. The hyperparameters will be adjusted until the

sum of log-likelihood over all left-out sets is maximized,

hyperparameters = argmax
=∑
8=1

log ?(H8 |-−8, H−8, hyperparameters) (6.10)

The maximization is performed with Adaptive Movement Estimation (ADAM) algorithm [179].

For a more comprehensive description and derivation of Gaussian process, readers are encouraged

to read Ref. [180].

6.4 Principal Component Analysis

The output of Gaussian process is usually a scalar. Although multivariate Gaussian process has

been developed [181], they are invented recently and we do not have access to such algorithms.

This is problematic because our observables are spectrum with different values at different rapidity

or momentum bins. The desired output should be a vector of the spectrum values instead of a

scalar.

The naive approach is to emulate each bin with an independent Gaussian process, but this

approach carries some major drawbacks. If the spectrum is binned finely, a lot of Gaussian
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processes are needed which slows down the calculation. The inability to capture the correlated

errors between nearby bins in the spectrum is also a potential concern.

Following the approach adopted by the Modeling and Data Analysis Initiative (MADAI) [182],

we perform a dimension reduction on the spectrum with Principal Component Analysis (PCA) be-

fore interpolation. PCA returns the ranked orthogonal coordinate bases which satisfy the following

conditions: the variance of spectrum projections on the first basis is the greatest among all possible

orthogonal coordinate bases, and the variance of spectrum projections on the second basis is the

greatest among all possible orthogonal coordinate bases that are orthogonal to the first one, etc.

These bases are called principal components (PC) and only PC with large variance needs to be

emulated. Low variance PCs can be approximated as constant without losing too much accuracy.

The formula for PCA is shown here without proof. Readers are encouraged to read Ref. [173]

for detailed derivation. Denote 3 as the number of bins in the spectrum and Σ as the 3 × 3

covariance matrix of all bins in spectrum on training data set, and H8 as the 3-dimensional vector

representing the 8th spectrum in the training set. If we only keep the first : components, then H8

can be transformed into a lower dimensional vector I8 by,

I8 = eig(Σ, :) (H8 − H). (6.11)

Here, eig(Σ, :) is the matrix formed by stacking : row-eigenvectors of Σ with : largest eigen-

values. H is the mean H vector over all the observed data points and I8 is a : dimensional vector.

It is important to note that : ≤ 3 since number of eigenvectors equals to the dimension of the

covariance matrix. H8 can be approximated by I8 using the following inverse transformation,

Ĥ8 ≈ H + eig(Σ, :)) I8 . (6.12)

It is guaranteed that Ĥ8 ≈ H8 if : is large enough. To be precise, let _8 be the 8th largest eigenvalue

and we use superscript to denote the component of a vector, then Ĥ8 satisfies the following condition,

1

=

=∑
8=1

3∑
9=1

(H 9
8
− Ĥ8 9 )2 =

3∑
8=:+1

_8 . (6.13)
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In the above equation, = is the number of training parameter sets. This means that as long as

_8 for all 8 > : are all very small, the averaged square difference between Ĥ8 and H8 will be very

small. Therefore, it is possible to approximate 3−dimensional spectrum with just :−dimensional

PCs, where : ≤ 3. Empirical evidence suggests that rarely do we need more than three PCs to

emulate a spectrum, even if the spectrum contains as much as fifteen bins.

During MCMC, : emulators are used to interpolate : PCs independently. The interpolated PCs

will be transformed back to spectrum with equation (6.12). The emulated uncertainties for each PCs

are also transformed to covariance matrix of the spectrum. The truncation error of equation (6.13)

is divided by 3 to estimate the average truncation error of each bin, which will then be added to the

diagonal elements of covariance matrix for likelihood estimation.

6.5 Sensitivity of each observables

The training data for Gaussian emulator comes from ImQMD predictions on 70 parameter

sets. On each parameter set, calculation is repeated for each required reaction system and impact

parameter. For each calculation, 3000 events are simulated. The following three classes of

observables, totalling in eight spectra, are extracted on each parameter set,

1. Coalescence Invariant Direct flow (C.I. E1) at 1 = 5 fm

a) C.I. E1 as a function of H0 for 108Sn + 112Sn

b) C.I. E1 as a function of ?) for 108Sn + 112Sn (0.3 < H0 < 0.8)

c) C.I. E1 as a function of H0 for 132Sn + 124Sn

d) C.I. E1 as a function of ?) for 132Sn + 124Sn (0.3 < H0 < 0.8)

2. Coalescence Invariant Elliptical flow (C.I. E2) at 1 = 5 fm

a) C.I. E2 as a function of H0 for 108Sn + 112Sn

b) C.I. E2 as a function of H0 for 132Sn + 124Sn

3. Stopping (VarXZ) at 1 = 1 fm
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a) VarXZ of p,d and t for 108Sn + 112Sn (Histograms flipped along H0 = 0)

b) VarXZ of p,d and t for 112Sn + 124Sn

The constructions and physic importance of each observable were described in Chapter 4. In

addition to symmetry energy term, the momentum dependence of nuclear mean-field potential

also influences the properties of nuclear matter [183–189]. This dependence manifests itself as

a reduction of nucleon masses. The ratio of effective mass in symmetric matter to free nucleon

mass <# is called the isoscalar effective mass <∗
B/<# . In asymmetric matter, the contribution

of isovector (symmetry) mean-field potential causes the neutron and proton effective mass to

differ [183, 185, 186], which is quantified in terms of isovector effective mass <∗
E/<# [184]. The

in-medium NN cross sections in ImQMD is formulated as [190],

fmed
QMD =

(
1 − [d

d0

)
ffree, (6.14)

where ffree is the NN cross-section in free space taken from Ref. [191] and [ is the reduction

factor to be determined. These parameters, together with (0 and ! in density dependence of

symmetric energy term, strongly influence the dynamics of nuclear collision. It is expected that the

predicted flow and stopping depends on the competing effect of in-medium cross-section, symmetry

forces and the momentum dependence in mean-field potential.

70 parameter sets are sampled randomly and with Latin Hyper-cube within parameter space

ranges specified in Table 6.1.

Parameters Min. Max.

(0 (MeV) 25 50
! (MeV) 15 160
<∗
B/<# 0.6 1

<∗
E/<# 0.6 1.15

[ -0.25 0.25

Table 6.1: The ranges of parameters for the training of Gaussian emulator.
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The sensitivity of each observable group on nuclear EoS parameters can be tested with the

Closure test, where the analysis is performed by pretending ImQMD prediction from a new pa-

rameter set, one that is not used in the training of Gaussian emulator, is the experimental data.

If the marginalize posterior distributions does not show narrow peaks around the initial values, it

indicates a lack of sensitivity, and vice versa.

This section can be separated into two parts: The first part examine the sensitivity of each

individual observable group and the second part tests the maximal constraining power when all

observables are combined in a simultaneous global fit. In the first part, Bayesian analysis will be

performed three times, each by comparing only one class of observables. Pairwise marginalize

probability distributions between all pairs of parameters from the Closure tests will be shown.

This analysis illustrates the correlation between parameters and observables qualitatively, so the

Closure test is only done on one randomly generated parameter set for brevity. The second

part is a quantitative analysis that examines the average performance of the analysis across the

entire parameter space. All observables are compared simultaneously for maximum performance.

Closure test is repeated 18 times, each with a randomly generated set of parameters to span

the entire parameter space uniformly. The one-dimensional marginalized distributions will be

fitted with asymmetric Gaussian to estimate predicted averages and uncertainties, which are then

compared to the true initial parameter values to gauge the accuracy of the algorithm.

6.5.1 Sensitivity of each group of observables

Through out this section, prior is uniform within ranges listed in Table 6.1, and the true parameter

values is (0 = 37.4 MeV, ! = 47.3 MeV, <∗
B/<# = 0.80, <∗

E/<# = 1.11 and [ = 0.13. The

parameter values are chosen at random, and the qualitative dependency of posterior on different

groups of observables sheds light into the constraining power of the observables.

The posterior in Fig. 6.1 is the result of closure test when only the first group of observable (C.I.

E1) is being compared. It tries to simultaneously fit the spectrum of coalescence invariant proton

E1 as a function of H0, and E1 as a function of ?) gated on 0.3 < H0 < 0.8 for 108Sn + 112Sn and
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Figure 6.1: Posterior of closure test when all observables in group C.I. E1 are compared. The
black line in every plot and the black star in every off diagonal plot shows the initial true parameter
values.

132Sn + 124Sn at 1 = 5 fm. The black vertical lines in the diagonal plots and star markers in the

off-diagonal plots show the location of the true parameter values as a visual reference. The contour

on off-diagonal plots shows 68% (1-f) confidence interval, 95% (2-f) and 99% (3-f) confidence

interval with increasingly lighter shades. This posterior peaks narrowly only for <∗
B/<# , which

is consistent with the belief that direct flow is related to the momentum dependence of nuclear

mean field [11]. There is an anti-correlation between <∗
B/<# and <∗

E/<# which demonstrates that

increasing <∗
B/<# and <∗

E/<# has the opposite effect on coalescence invariant direct flow.

The sensitivity of coalescence invariant elliptical flow in Fig. 6.2 is slightly different. The figure

is the posterior of closure test by fitting only the coalescence invariant proton E2 as a function of

H0 for 108Sn + 112Sn and 132Sn + 124Sn at 1 = 5 fm. It reveals a narrow peak on <∗
E/<# as

well as <∗
B/<# , which indicates that higher order flow terms are more sensitive to the isovector
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Figure 6.2: Same as Fig. 6.1 but only observables in group 2 (C.I. E2) are being fitted.

contributions to momentum dependence.

The final group of observables to be tested is VarXZ from 108Sn + 112Sn and 112Sn + 124Sn at

1 = 1 fm. Previous studies showed that VarXZ is mostly sensitive to the in-medium cross-section,

and closure test corroborates this finding with a narrow peak on [ in Fig. 6.3. The peaks of <∗
B/<#

and <∗
E/<# are wider than those on Fig. 6.2, which indicates that the constraining power of VarXZ

on effective masses is not as strong as E2.

The maximum constraining power can be obtained by comparing all of the above observables

simultaneously in one global fit. Posterior with all observables being compared are shown in

Fig. 6.4. This shows that <∗
B/<# , <∗

E/<# and [ can be recovered with reasonable accuracy while

the sensitivity on (0 and ! is lacking.
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Figure 6.3: Same as Fig. 6.1 but only observables in group 3 (VarXZ) are being fitted.

6.5.2 Performance across parameter space

All posteriors in the previous section are analyzed on only one particular true parameter set, but

the accuracy may change with parameter values. To understand the behavior of Bayesian analysis

across the entire parameter space, closure test is repeated 18 times, each with a different randomly

generated parameter set to cover the phase-space uniformly. The predicted values are plotted

against the true values in Fig. 6.5. The error in the figure is the 68% confidence interval from

the marginalized posterior distribution. Off-diagonal correlations between pairwise parameters are

not shown for brevity. The red dotted G = H line on each sub-plot represents the best possible

performance where predicted values equal to true values. The sensitivities on (0 and ! is lacking

throughout the parameter space, but the sensitivities on <∗
B/<# , <∗

E/<# and [ are quite good as

the analysis is able to predict the correct values.
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Figure 6.4: Same as Fig. 6.1, but all eight spectra across three groups of observables are used
simultaneously in this analysis to demonstrate the maximal constraining power.

6.6 Constraints from experimental results

With the validity of the algorithms established, a comparison between ImQMD and experimental

data from ScRIT experiment in Chapter 4 can be performed to constraint nuclear EoS parameters.

Unlike in previous sections where priors of all parameters are uniform, Gaussian priors are used

on (0 ∼ Gaus(` = 35.3, f = 2.8) MeV and ! ∼ Gaus(` = 80, f = 38) MeV. These priors come

from the analysis of pion spectrum ratios in Section 4.4.2.

The centrality of the experimental data are selected with multiplicity gate and the selected events

spans a range of impact parameters. The ranges of multiplicities are different across reactions

and observables because multiplicity distributions for each system are different and centrality

requirements for different observables are also different. The averaged impact parameters for each

observable are 〈1〉 = 5.1 fm in 108Sn + 112Sn reaction and 〈1〉 = 5.2 fm in 132Sn + 124Sn reaction
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Figure 6.5: The predicted parameter values plotted against the true parameter value from the 18
closure tests. The markers and error bars indicate the medians and 68% (1-f) confidence intervals
from the marginalized probability distributions respectively. The red diagonal lines on all five plots
are G = H to indicate where each point should be if the algorithm performs with perfect accuracy
and precision.

for E1 and E2, and 〈1〉 = 1.1 fm in 108Sn + 112Sn reaction and 〈1〉 = 1.0 fm in 112Sn + 124Sn

reaction for VarXZ. The ImQMD predictions that the emulator is being trained on, however, are only

calculated at impact parameter enumerated in Section 6.5 without spanning a range. The impact

parameters in ImQMD calculations differ slightly from the average impact parameter of the selected

events from the experiment, but given that the resolution of impact parameter determination with

multiplicity is larger than 0.5 fm (see Section 5.9.3), this slight disagreement should be negligible.

The posterior is shown in Fig. 6.6. Tight constraints on <∗
B/<# , <∗

E/<# and [ are achieved

while the uncertainty of (0 and ! remains large. The performance is consistent with our findings

from closure test. The agreement between experimental spectra and emulated ImQMD predictions

are shown in appendix A.4.

The results can be converted to a probability distribution on effective mass splitting Δ<∗
=?/X
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Figure 6.6: Posterior distribution when ImQMD is compared against experimental data from
Chapter 4. All eight observables are used for Bayesian analysis. The values for median and 68%
confidence interval of the marginalized distribution are tabulated on the upper right hand side of
the figure.

with the following relation [155],

5� =
<#

<∗
B
− <#

<∗
E

Δ<∗
=?

X
≈ −2 5�

(
<∗
B

<#

)2

.

(6.15)

Using this equation, we find that X<∗
=?/X = −0.11 ± 0.04. Analysis of n/p ratio using ImQMD

at 120 AMeV shows that X<∗
=?/X = −0.05 ± 0.09 [155] while nuclear elastic collision shows that

X<∗
=?/X = −0.25 ± 0.27 [192]. Previous analysis are inconclusive about the sign of effective mass

splitting, but this analysis shows that X<∗
=?/X is most likely negative.

Although closure test shows that our analysis is not able to constrain ! reliably, this can
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Figure 6.7: Same as Fig. 4.4, with X<∗
=?/X = −0.11 ± 0.04 overlay as green hatch.

still be achieve indirectly by invoking previous constraint from pion ratio spectra. The previous

constraint shows a correlation between Δ<∗
=?/X and !, therefore a tighter constraint on ! can be

achieved with Δ<∗
=?/X narrowed down, as Fig. 6.7 illustrates. The combined analysis of flows,

stopping and pion ratios gives ! = 68± 23 MeV, which is 39% tighter than the previous pion ratios

constraint. Since pion observables are sensitive to d = 1.5d0 [138], our constraint should be place

there instead of at d0. Calculation with EoS in dcQMD shows that ((1.5d0) = 46 ± 8 MeV and

! (1.5d0) = 61 ± 51 MeV.

To test the prediction power of our results, ImQMD is executed with the best fitted parameters

((0 = 35 MeV, ! = 68 MeV, <∗
B/<# = 0.83, <∗

E/<# = 0.89 and [ = −0.07) to predict VarXZ

for 197Au + 197Au and 129Xe + 133Cs reactions at 250 AMeV and 1 = 1 fm. ! = 68 MeV comes

from the analysis with pion constraints and all other parameter values are taken from Fig. 6.6.

Experimental results on these systems have been published by FOPI group [36]. Their results

covers a wide range of beam energy, but results of 250 AMeV is chosen for they are close to

that of ScRIT experiment. As illustrated in Fig. 6.8, the agreement between model predictions

(orange points) and experimental data (blue points) are reasonable. Our constraints are applicable

to reactions near 270 MeV.
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Figure 6.8: VarXZ of proton, Deuteron and Triton for Au + Au and 129Xe + 133Cs reactions at
250 AMeV when 1 = 1 fm. The orange points show ImQMD predictions using the best fitted
parameter values. The blue points show experimental results from the FOPI data set.

Even though  0 (another name for  sat in Eq. (1.4)) is known experimentally to be around

230 MeV, the dependence of effective mass constraints on  0 should still be studied. Additional

Bayesian analysis is done with  0 included as a free parameter, ranging from 200 to 300 MeV. The

prior for  0 is a Gaussian distribution with mean = 237 MeV and standard deviation = 27 MeV.

The values are taken from Table 2.1, which shows the statistics of  sat for commonly used Skyrme

type EoSs. The posterior in Fig. 6.9 shows that our observables are not sensitive to  0 as the

marginalized posterior distribution for  0 is almost identical to its prior. Furthermore, posterior

distributions of <∗
B/<# and <∗

E/<# show no correlation with  0 and peak at around the same

values as in Fig. 6.6. Although [ correlates with  0, it does not affect our constraint on effective

masses.

6.7 Implications on NS properties

With the connection between EoS parameters and NS properties established in Chapter 2, the

impact of ScRIT constraint on NS properties will be inspected.

Meta-modelling EoS from Section 2.3 is chosen for this analysis. These EoSs are randomly

generated with (, !,  , & and / values distributed uniformly within two standard deviation from
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Figure 6.9: Same as Fig. 6.6, but  0 is allowed to vary from 200 to 300 MeV.

the mean of all commonly used models in Table 2.1. Unlike in Section 2.3, however, Gaussian

priors on (, !,  , & and / and constraint on Λ from LIGO are not used as we want to test the

constraining power of just the heavy-ion results.

We follow Eq. (2.7) to calculate posterior distribution. The EoSs that violate either maximum

mass > 2.2"⊙ or causality will be discarded. The remaining EoSs are weighted with the product

of three Gaussian distributions with means and standard deviations given by the following three

constraints from heavy-ion collision: ! (1.5d0) = 69 ± 51 MeV from analysis of ScRIT data,

((0.67d0) = 25 ± 1 MeV from nuclear mass [19, 20] and ! (0.67d0) = 71 ± 23 MeV from neutron

skin thickness measurement of 208Pb from PREX-II [193].

The pair-wise correlations and marginal distributions of the three constraining parameters, as

well as radius and Λ of 1.4"⊙ NS, are shown in in Fig. 6.10. The diagonal distributions show
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Figure 6.10: Posterior distributions for ((0.67d0), ! (0.67d0), ! (1.5d0), ' and Λ of 1.4"⊙ NS.
See text for details.

the marginal probability distributions from only maximum mass and causality conditions (red

histograms), and with heavy-ion constraints included in addition to the previous two conditions

(blue histogram). The off-diagonal pairwise correlation are plotted with heavy-ion constraints. The

table in the upper right hand corner of the figure shows the ranges of parameter values by fitting

the marginal distribution with asymmetric Gaussian. The numbers on the row labelled "Before"

corresponds the fitted values for blue histograms and "After" for red histograms. Our calculations

indicate that ' = 13.3+0.4
−0.6

km and Λ = 646+120
−140 for 1.4"⊙ NS.

The 95% confidence interval (C.I.) of pressure as a function of density is plotted in Fig. 6.11a.

Solid blue region and open dashed blue region are C.I. with and without using heavy-ion constraints

respectively. The result is consistent with multimessenger constraints from the survey of NICER,
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Figure 6.11: (a): Dependence of pressure on matter density. (b): Dependence of symmetric energy
terms on matter density. See text for details.

gravitational wave and X-ray pulse PSR J0030 + 0740 [194] whose 90% C.I. predictions on pressure

is shown as the solid red region on the figure.

Fig. 6.11b shows the 95% C.I. of symmetry energy term with (solid blue region) and without

(dashed blue open region) heavy-ion constraints. Constraints from various analyses are also plotted

on top for comparison. These analyses are: Neutron to proton ratio (n/p) [155], isospin diffusion

(isodiff) [195–197], nuclear masses (Mass(Skyrme) [19] and Mass(DFT) [18]), isobaric analog

states (IAS) [42], electric dipole polarizability [198] and neutron skin thickness of 208Pb [193].

The open red triangle labelled "HIC(c)" corresponds to the refined constraint on ((1.5d0) from

ScRIT experiment. The sensitive density for each experiment is extracted in Ref. [199] and the

green region corresponds to 1f region from fitting all of the constraints, excluding HIC(c), with

second order polynomial expended at d = 0.67d0.
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CHAPTER 7

SUMMARY

The properties of neutron stars depend strongly on high density part of symmetry energy term in

nuclear equation of state. Equation of state is used as an input for Tolman–Oppenheimer–Volkoff

equation to predict neutron star properties such as radius or Tidal deformability (Λ). This work

demonstrates a strong correlation between Λ and the slope parameter (!) in symmetry energy term

with Skyrme type and Meta-modelling EoS.

To place constraints on nuclear EoS, the ScRIT TPC was constructed to probe symmetry energy

term with the main goal of measuring pion emissions from heavy-ion collisions of rare neutron-rich

isotopes. The production threshold of pion implies that pions originate from high density region

where neutron star properties are most sensitive to. Four different reactions: 108Sn + 112Sn, 112Sn

+ 124Sn, 124Sn + 112Sn and 132Sn + 124Sn at 270 AMeV are preformed during the experimental

campaign. 108Sn and 132Sn are radioactive.

To extract useful spectrum from ScRIT TPC, multiple steps are needed to recognize nuclear

fragments, remove detector aberrations and correct for detector resolution and efficiency effects.

Upstream bean detectors have to be calibrated and analyzed to isolate the desired isotopes from

contamination. After corrections on detector aberrations such as space charge and pad saturation

is done, the hit points are fitted with GENFIT package to reconstruct the ?// value for each

fragments. The final steps in the analysis is to correct for detector efficiency with embedding and

reaction plane resolution with sub-event methods.

To verify our understanding of detector response, Monte Carlo simulation of ScRIT TPC is

developed to recreate aspects of experimental data. It shows that the sudden loss of tracking

efficiency for particles emitting at q = ±90◦ can be recreated by incorporating saturation modes of

heavy residue. Discrepancies in momentum distributions between particles with positive ?G and

negative ?G can be recreated by incorporating space charge effect and the shape of multiplicity

distributions can be quantitatively reproduced with simulation of KYOTO and KATANA trigger
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conditions.

By comparing experimental pion ratios with transport model dcQMD, a correlated constraints

on Δ∗
=?/X and ! can be imposed in Fig. 4.4. To reduce our uncertainty on !, a tighter constraint

on Δ∗
=?/X is needed. It is achieved in this work by utilizing the light fragment observables. The

coalescence invariant direct and elliptical flow for 108Sn + 112Sn and 132Sn + 124Sn from peripheral

events, and VarXZ for 108Sn + 112Sn and 112Sn + 124Sn from central events are reconstructed from

ScRIT data. A global Bayesian fit is performed by comparing all these observables with predictions

from transport model ImQMD.

(0, !, <∗
B/<# , <∗

E/<# and [ are compared simultaneously using Markov-Chain Monte Carlo

(MCMC). It searches parameter space by sampling predictions from ImQMD thousands of time,

but such calculations are too demanding even for supercomputers. As a work around, Gaussian

process with Principal Component Analysis is employed to emulate the behavior of ImQMD from

just 70 calculations as a surrogate model. To test the performance of such algorithms, closure test

is performed on simulated data. It shows that our method is able to constraint <∗
B/<# , <∗

E/<# and

[ but not (0 and !.

The final global fit with experimental data shows a tight constraint on <∗
B/<# , <∗

E/<# and

[. The predicting power of the constraints is verified by running ImQMD again with the best

fitted parameters on Au + Au and Xe + Cs reactions at 250 AMeV. The predicted VarXZ agrees

reasonable well with published results from FOPI. Our values of<∗
B/<# and<∗

E/<# are converted

to Δ∗
=?/X to give Δ∗

=?/X = 0.11 ± 0.04. When imposed together with constraint from pion ratio,

the constraint on ! can be tighten to ! = 68± 25 MeV and when calculated to the sensitive density

of pion ratio at 1.5d0, we get ((1.5d0) = 45 ± 9 MeV and ! (1.5d0) = 69 ± 51 MeV.

Overall the ScRIT experiment have successfully constrained nuclear EoS at high density. A

major source of uncertainty comes from the limited statistics of pions. It is hoped that with improved

analysis technique we can increase the statistics by relaxing the cut conditions. Furthermore,

collaborative efforts from theorists are underway to better understand the effect of pion potential

and ensure consistent model predictions. A better understanding of nuclear EoS is within reach as
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theory converges and data from different experiments are being finalized.
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A.1 TOV equation

The Tolman–Oppenheimer–Volkoff (TOV) equation set predicts the structure of a static spher-

ical object under general relativity for any given EoS. The equations are:

3%(A)
3A

= − (E(A) + %(A)) (" (A) + 4cA3%(A))
A2(1 − 2" (A)/A)

,

3" (A)
3A

= 4cA2E(A).
(1)

Here geometrized units � = 2 = 1 are used, E(A) is the energy density given by EoS, %(A) is the

internal pressure at given depth and " (A) is the integral of gravitational mass from the core up to

radius A. The surface is defined as the radial distance ' at which %(') = 0.

A list of equations whose solutions will lead to the value ofΛ from the above structural functions

will be shown without derivation. Please refer to Refs. [31, 200] for details. To begin with, an

auxiliary variable H' = H(') is calculated,

A
3H(A)
3A

+ H(A)2 + H(A)� (A) + A2&(A) = 0. (2)

where

� (A) = A − 4cA3(E(A) − %(A))
A − 2" (A) . (3)

&(A) =
4cA (5E(A) + 9%(A) + E+%(A)

m%(A)/mE − 6
4cA2

A − 2" (A)

− 4
[ (" (A) + 4cA3%(A)
A2(1 − 2" (A)/A)

]2
.

(4)
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The tidal Love number :2 can then be calculated with the following expression:

:2 =
1

20

('B
'

)5 (
1 − 'B

'

)2 [
2 − H' + (H' − 1) 'B

'

]
×

{'B
'

(
6 − 3H' + 3'B

2'
(5H' − 8) + 1

4

('B
'

)2

×
[
26 − 22H' + 'B (3H' − 2)

'
+

('(
'

)2
(1 + H')

] )
+ 3

(
1 − 'B

'

)2 [
2 − H' + 'B (H' − 1)

'

]
× ln

(
1 − '(

'

)}−1
.

(5)

In the above, '( = 2" is the Schwarzschild radius. The value of Λ is then extracted with Eq. (1.9).

A.2 Meta-modeling parameters and Taylor parameters mapping

ELFc energy functional is written as a sum of kinetic energy term and potential energy term:

���!2 (d, X) = C��∗(d, X) + E#��!2 (d, X), (6)

where d is the density and X is the asymmetry parameter. The kinetic energy term C��∗(d, X) in

the above is written as:

C��∗(d, X) =
C��sat

2

( d
d0

) 2
3
[(

1 + ^satd

d0

)
((1 + X)

5
3+

(1 − X)
5
3
)
+
^symd

d0
X((1 + X)

5
3 − (1 − X)

5
3 )

]
.

(7)

In the above, the parameters C��sat = 22.1 MeV while ^BH< and ^B0C are effective mass parameters

described in Eq. (2.3).

The potential energy term E#
��!2

(d, X) is written as:

E#��!2 (d, X) =
4∑
8=0

1

8!
(E8B8 + E8E8 X

2) (1 − (−3)5−8)

× exp
(
− 6.93d

d0

)
G8 .

(8)
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In the above, the parameters E8B
8

and E8E
8

are free parameters. These 10 parameters can be uniquely

mapped onto Taylor parameters using the following formulas (For a detailed derivation, please refer

to Ref. [1]):

E8B0 = �sat − C��sat (1 + ^sat), (9)

E8B1 = −C��sat (2 + 5^sat), (10)

E8B2 =  sat − 2C��sat (−1 + 5^sat), (11)

E8B3 = &sat − 2C��sat (4 − 5^sat), (12)

E8B4 = /sat − 8C��sat (−7 + 5^sat), (13)

E8E0 = (0 −
5

9
C��sat (1 + (^sat + 3^sym)), (14)

E8E1 = ! − 5

9
C��sat (2 + 5(^sat + 3^sym)), (15)

E8E2 =  sym − 10

9
C��sat (−1 + 5(^sat + 3^sym)), (16)

E8E3 = &sym − 10

9
C��sat (4 − 5(^sat + 3^sym)), (17)

E8E4 = /sym − 40

9
C��sat (−7 + 5(^sat + 3^sym)). (18)

When exploring the parameter space, Taylor parameters will be translated to Meta-modeling EoS

using the above formulas and NS features will then be calculated with TOV equation. Neutron star
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properties will be examined to search for Taylor parameter spaces flavored by the observed tidal

deformability.

A.3 Full correlation between tidal deformability and parameters

The correlation between !,  sym,  sat, &sym, &sat,/sym, /sat,
(
<sat/<

)
, %(2d0) and Λ are

shown in Fig. A.3.1. This is an extension of Fig. 2.9 where bivariate distributions of some selected

parameters are shown. The organization is similar: Lower triangles show bivariate distributions

between variables and marginal distribution of each variable is shown on the diagonal. The upper

triangles shows Pearson correlation coefficients between each variable pairs if it is larger than 0.1

otherwise they are omitted for simplicity and 3 dots are put in its place.

A.4 Best fit from ImQMD

The fitted results from Bayesian analysis are shown in Figs. A.3.2 and A.4.1.

Fig. A.3.2 shows results on direct and elliptical flow. Plots on the left column show results in

108Sn + 112Sn reaction and on the right show that of 132Sn + 124Sn reaction. From top to bottom,

the three rows show E1 as a function of H0, E1 as a function of ?) (MeV) and E2 as a function of H0.

Fig. A.4.1 is similar to Fig. A.3.2 but with results of VarXZ being shown. Beware that the

reaction on the right column is now 112Sn + 124Sn instead of 132Sn + 124Sn. Using symmetry

arguments in Chapter 4, rapidity distributions are reflected along H0 = 0 only in 108Sn + 112Sn

reaction when VarXZ is calculated.

ImQMD calculations are done at 1 = 5 fm for flow results and at 1 = 1 fm for stopping results,

and on both Figs. A.3.2 and A.4.1 the averaged impact parameter on the label of H-axis reflects the

centrality gate on experimental data.
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Figure A.3.1: Bivariate characteristics of posterior likelihood distributions. This is an extension to
Fig. 2.6 and correlation pairs of all parameters pair are shown. Three regions can be distinguished.
The lower triangle panels show likelihood distributions, with intensity proportional to distribution
value, for pairs of Taylor parameters. The diagonal panels display marginalized distribution for
each parameter. The upper triangular region shows Pearson correlation coefficient for parameter
pairs, but when correlation in magnitude is less than 0.1, it is omitted and 3 dots are put in place of
its value.
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Figure A.3.2: Comparison of direct and elliptical flow between the best fitted ImQMD predictions
and experimental results. The blue region shows the maximum range of prediction values from
ImQMD with the parameter range in Table 6.1 and the purple region shows the 2f confidence
region of ImQMD’s prediction after Bayesian analysis. The orange points show results from ScRIT
experiment, which is identical to what is shown in Chapter 4. See text for details.
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