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Abstract

CONSTRAINING THE P PROCESS: CROSS SECTION MEASUREMENT OF
84Kr(p, γ)85Rb

By

Alicia R. Palmisano

One of the biggest questions in nuclear astrophysics is understanding where the elements

come from and how they are made. Everything around us, from our pets to our food to

our computers, was made from material originally created in a star. There are so many

aspects to consider when trying to answer these questions: “What astrophysical events

make what elements?”, “How many elements are made?”, “How much of each element is

made?” and more. The first step in answering these questions is running simulations of

these astrophysical events. However, in order to get the correct final abundances of the

elements from these events huge amounts of nuclear data is required that has never been

measured. This work focuses on the p process and the elements created in this process known

as the p nuclei. The p process is responsible for making the stable isotopes on the proton

rich side of stability and is thought to occur in core collapse or Type Ia supernova. Currently

scientists rely heavily on theory to define parameters in astrophysical and nuclear reaction

codes. In addition, experiments are being performed to slowly measure more nuclear data

to add constraints to theory for the p process reaction networks.

The focus of this thesis was an experiment that was performed with the Summing Sodium

Iodide (NaI) (SuN) detector at the National Superconducting Cyclotron Facility (NSCL) at

Michigan State University (MSU) using the ReAccelerator (ReA) facility. A new reaction

gas target was designed and fabricated as well as a new analysis technique for background

subtraction and efficiency calculations of the detector. The 84Kr(p,γ)85Rb cross section was



measured, which is on a stable isotope important for the astrophysical p process. Running

with a stable beam was also important for developing the techniques for radioactive beams.

In the future, this experimental setup will be used for radioactive beam experiments which are

of interest for astrophysics applications. The cross section measurement of the 84Kr(p,γ)85Rb

reaction and more details will be discussed.



ACKNOWLEDGMENTS

I have many people to thank for my achievements throughout my graduate career! First,

my undergraduate advisor, Sharon Stephenson, for encouraging me to even go to graduate

school. Her guidance got me on the right path for the career I didn’t even know I wanted

yet as an undergraduate student. Second, my wonderful and supportive graduate advisor,

Artemis Spyrou, who has helped me these last few years. She has kept me motivated and

provided so many opportunities for me to grow as a scientist and as a person. Thank you

so much for helping me and believing in me through this process!

Next I want to thank the SuN and Beta groups at the lab! The sense of camaraderie

between our groups and its members helped to make all those late nights and long days

at the lab an adventure. Everyone was so kind and helpful whenever I had questions and

I always felt welcome in any office for work questions, chatting or job advice. Thank you

Alex, Mallory, Stephanie, Andrea, Caley, Becky, Katie, Lauren and anyone I have forgotten

for being wonderful friends and mentors. I love you all dearly and will miss you so much!

There are many other scientists at the lab that deserve thanks! Big thanks to my com-

mittee, Sean Liddick, Vladimir Zelevinsky, Chris Wrede and Steve Zepf for their guidance

and direction. A big shoutout to the ReA operators who worked tirelessly during my thesis

experiment. John Yurkon and Marco Cortesi for all of their help making the gas cells along

with Jorge Pereira and Remco Zegers for the assistance with the gas handling system. I feel

like there are more people than this so I apologize if I miss anyone!

My family and friends outside of the lab have been instrumental in helping me. Thanks

to my mom and dad for helping and supporting me in my accomplishments and to Matt for

keeping me motivated and sane during quarantine! Without you guys none of this would

iv



have been possible and I am truly grateful.



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Solar System Abundances . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Big Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Stellar Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Neutron Capture Processes . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 p Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 p Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2.1 s-process Seeds . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2.2 Initial Masses . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2.3 Temperature and Density Profiles . . . . . . . . . . . . . . . 20
1.3.2.4 Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2.5 Sensitivity Studies . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Nuclear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Stellar Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Gamow Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Astrophysical S Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Nuclear Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 3 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Experimental Set Up: Overview . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 NSCL and ReA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 Experimental End Station . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Summing Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Chapter 4 Calibrations and Background Subtraction . . . . . . . . . . . . . . . . 64
4.1 Gain Matching and Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Sum Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Chapter 5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1 Efficiency Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 RAINIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.1.1 Level Densities . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.1.2 γ-ray Strength Functions . . . . . . . . . . . . . . . . . . . 79

vi



5.1.2 90Zr(p,γ)91Nb Comparison . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 GEANT4 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Chi Squared Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Efficiency Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Effective Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Conclusions and Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



LIST OF TABLES

Table 2.1: Shows the various calculated Gamow energies and their widths at different
temperatures for the 16O(p, γ)17F reaction shown in Figure 2.23 [1]. . . . 33

Table 2.2: Shows the various calculated Gamow energies and their widths at different
temperatures for the 84Kr(p, γ)85Rb reaction. . . . . . . . . . . . . . . . . 33

Table 4.1: Shows the calculated β values using Equation 4.1 for the Doppler correction
for each beam energy and the calculated center of mass (CoM). . . . . . . 69

Table 4.2: Shows the angles used in the Doppler correction from Steve Quinn’s thesis
for each segment of the SuN detector [2]. It also shows the correction values
for each segment for the highest beam energy, 3.7 MeV/u with β = 0.0810. 70

Table 4.3: Shows the energy loss of the beam through different sections of the gas cell:
the molybdenum foil window and half of the gas within the gas cell. The
energy loss is directly related to the width of the sum peak. There is also
energy straggling of approximately 0.003 MeV. . . . . . . . . . . . . . . . 71

Table 5.1: Lists the input parameters for the various colors in Figures 5.3 and 5.4. . 80

Table 5.2: Lists the statistical uncertainties from subtracting the spectra. The Good
Counts are counts in the sum peak energy range, the empty counts are the
same energy range for the gas cell without hydrogen gas and subtracted
counts are the remaining statistics. . . . . . . . . . . . . . . . . . . . . . . 89

Table 5.3: Lists the RAINIER input parameters used for the simulations to calculate
the efficiency of SuN and quantify the uncertainty in the simulation process. 90

Table 5.4: Show the χ2 and associated cross sections values for the 3.1 MeV energy
for each RAINIER input listed in Table 5.3. The average for each value is
also listed showing a percent difference calculated compared to Simulation
11 since it has the lowest χ2 value. . . . . . . . . . . . . . . . . . . . . . . 91

Table 5.5: Shows the initial beam energy, the energy after the foil and gas cell, the
energy loss and the effective energy. The measured cross section has a
higher probability of coming from reactions at this calculated Eeff . . . . 93

viii



LIST OF FIGURES

Figure 1.1: The Butterfly Nebula with a wingspan of approximately three light years.
[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: Chart of the Nuclei with increasing neutrons on the x axis and increasing
protons on the y axis. The black isotopes are stable and the various other
colors are decay modes listed in the legend. [4] . . . . . . . . . . . . . . . 3

Figure 1.3: The total solar system elemental abundances as a function of mass number
normalized to 106 Si atoms. Interesting features of the abundance pattern
are highlighted in blue and will be discussed. [5] . . . . . . . . . . . . . . 5

Figure 1.4: Shows the Chart of the Nuclei with increasing neutrons on the x axis
and increasing protons on the y axis. Shows what stellar burning creates,
where the iron (Fe) peak lies, what elements are made from the s process,
r process and p process, and the magic number rectangles. . . . . . . . . 7

Figure 1.5: This plot shows the relative abundances of the elements from the s process,
r process and p process normalized to 106 Si atoms. S process is the solid
line, r process are the open circles and p process are the filled in squares. [6] 8

Figure 1.6: Shows the onion-like structure of a 25M� after undergoing fusion from
hydrogen through silicon burning leaving an inert iron core before core
collapse [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 1.7: Shows an example of an s process path following a series of stable isotopes
and undergoing neutron captures. The black isotopes are stable and the
other colors are various lifetimes with darker colors having longer lifetimes.
The yellow arrows are the neutron captures and the green arrows are the
beta decays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.8: The Chart of the Nuclei showing example s process, r process and p process
paths. The thicker light grey shows the p process, the black lines along
stability show the s process and the lines coming from the neutron drip
line show the r process. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.9: The p nuclei are shown in the red boxes on the proton rich side of stability.
Also shown is the s process and r process paths. [2] . . . . . . . . . . . . 15

Figure 1.10: Examples for the p process reaction network with a series of (γ, n), (γ, p)
and (γ, α) reactions. The red boxes are the p nuclei. . . . . . . . . . . . 17

ix



Figure 1.11: Figure from Ref. [8] showing the s seed nuclei abundances after helium
burning from varying the initial metallicity of the star from Z = 0.003 to
0.01. The solid dots are nuclei made only from the s process. . . . . . . . 18

Figure 1.12: Figure from Ref [9] showing the overproduction factor for the p-nuclei in a
supernova explosion calculation of a 13-25 M� star. The error bars refer
to the same calculations done with various initial solar masses. . . . . . . 19

Figure 1.13: Figure from Ref. [10] showing the overproduction factor of selected p
nuclei with varying temperatures in the O/Ne layer during a supernova. . 20

Figure 1.14: Figure from Ref. [10] showing the over production factors when varying
the reactions rates by a factor of three up and down for (a) (p, γ) and
(γ, p) reactions and (b) (α, γ) and (γ, α) reactions. . . . . . . . . . . . . 21

Figure 1.15: Figure from Ref. [11] showing key branching point nuclei from a model
independent sensitivity study performed by Rauscher. . . . . . . . . . . . 22

Figure 2.1: (a) Shows the binding energy per nucleon as a function of mass taken from
Illiadis with data from the Atomic Mass Evaluation [1] [12]. (b) Zooms
into the iron peak region and shows the isotopes with the largest binding
energies per nucleon: 62Ni, 58Fe and 56Fe. . . . . . . . . . . . . . . . . 25

Figure 2.2: A cartoon view of an archery target where points are only awarded if a
smaller 50 point circle is hit synonymous to target nuclei with incoming
beam particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.3: Figure taken from Illiadis [1]. (a) shows the Maxwell-Boltzmann dis-
tribution, dashed line, and the Gamow factor, dotted-dashed line and
their product in a solid line. (b) shows the same Gamow peak for the
12C(α, γ)16O reaction in a linear scale. . . . . . . . . . . . . . . . . . . . 32

Figure 2.4: Figure taken from Illiadis with data from Angulo 1999 [13][1]. (a) shows
the cross section as a function of energy for the 16O(p, γ)17F reaction. At
low energies there is an exponential drop off whereas in (b) it shows S(E)
which is smooth at low energies. . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.5: Figure taken from Illiadis [1] and (a) shows the 16O(p,γ)17F non-resonant
cross section. Notice the cross section is smooth throughout the energies
shown whereas (b) shows the 13C(p,γ)14N resonant cross section whose
cross section has a peak around 0.55 MeV showing the resonance. . . . . 37

Figure 2.6: Shows the experimental cross sections for Plutonium-239. While the total
cross section looks smooth as a function of energy it is actually made up
of multiple resonant peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



Figure 2.7: Shows the NON-SMOKER theoretical cross section for the 84Kr(p,γ)85Rb
reaction. Notice that it has a smooth cross section but it is still a resonant
cross section [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.8: Shows the shape of a Breit-Wigner resonance with energy Er and width Γ. 40

Figure 2.9: Figure taken from Illiadis and shows a cartoon example of a capture reac-
tion, 1 + 2→ 3 + 4, in the (a) lab and (b) a stellar plasma. The reaction
has initial energy levels, µ, and final energy levels, ν [1]. . . . . . . . . . 49

Figure 3.1: A close up of the experimental setup. The beam went from right to left
following the green arrow. The positions of the Si and MCP detectors are
shown. The SuNSCREEN detector is not pictured here but was sitting
above SuN and the gas target was at the center of the SuN detector. . . 52

Figure 3.2: An outline of the NSCL and ReA facilities. Our beam began with in-
jecting an 84Kr beam into the cooler-buncher before EBIT and was then
accelerated to our experimental end station shown in Figure 3.1. . . . . . 53

Figure 3.3: A schematic of the SuN detector. SuN is a segmented total absorption
γ-ray detector made of sodium iodide. [15] . . . . . . . . . . . . . . . . . 55

Figure 3.4: The SuNSCREEN detector sitting above the SuN detector from the ex-
periment measuring the 84Kr(p, γ)85Rb cross section. The green bricks
are lead bricks to help reduce background. The beam went through the
center of SuN from left to right. . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.5: Two different views of the gas cell target that was filled with hydrogen
gas at the center of SuN. (a) shows the front face of the cell and (b) shows
the side of the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.6: Shows (a) a schematic overview of the gas handling system for the SuN
hydrogen gas target, (b) the upper panel and (c) lower panel of the gas
handling system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.7: A cartoon example of the γ-summing technique. A compound nucleus
will be excited to the entry state level and de-excite via γ-ray emissions
to the ground state or long lived isomeric state. The summing technique
will sum the γ-rays from each cascade into the sum peak, at the entry
state energy, shown in black. . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.8: Shows a cartoon of an inverse kinematics setup where a heavy beam,
84Kr, impinges a light hydrogen gas target.The red lines represent the
γ-rays from the de-excitation of the compound nucleus. . . . . . . . . . . 62

xi



Figure 4.1: Shows the bottom segment PMTs of SuN and their gain match fitting.
Gaussians are fit on the centroid of the 40K background peak for each
PMT. The centroid of a center PMT is chosen and multiplicative factors
are calculated to shift the other PMT centroids to the same channel.
E[0][1][1] refers to a specific PMT. The first bracket is top or bottom half,
the second bracket is the segment and the last is the PMT within that
segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.2: Shows the four bottom segment 60Co source runs. The two lower peaks
are the 1173 keV and 1332 keV γ-rays. The higher energy peak is the
occasional instance where the two γ-rays are summed within the same
crystal to see the 2505 keV γ-ray. . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.3: Shows a forward kinematics sum peak from the 60Ni(α, γ)64Zn experiment
and a reverse kinematics sum peak from the 84Kr(p, γ)85Rb experiment
at 3.7 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.4: Two different views of the gas cell target that was filled with hydrogen
gas at the center of SuN. (a) shows the front face of the cell and (b) shows
the side of the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.5: A cartoon of the beam time structure and the time gates to isolate cosmic
background. With time going from left to right, yellow represents the
continuous cosmic ray background, the green arrows represent the 200 ms
of dead time between each blue 100 µs beam gate. The orange boxes are
the same 100 µs gates shifted in time by 100 ms which should only be
room background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.6: Shows the 3.7 MeV sum peaks before and after background subtraction.
The black line is the original sum peak, red is the empty cell runs, green
are the scaled empty cell runs and blue is the fully subtracted spectra. . 73

Figure 5.1: Shows a cartoon example of the γ-ray cascades from an excited compound
nucleus. The energy and multiplicity of the cascades will change depend-
ing on the input parameters used in RAINIER. . . . . . . . . . . . . . . 77

Figure 5.2: Shows the 70Ni γ-ray strength function [16]. Notice at lower energies there
is an upward trend or an upbend. . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.3: Shows the 90Zr(p,γ)91Nb sum peak from a previously published data set
with SuN. Black is the experimental data and the colors are various input
parameters with RAINIER changing the level densities and gamma ray
strength functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



Figure 5.4: Shows the 90Zr(p,γ)91Nb sum of segments, (b), and multiplicity, (c), gated
on the sum peak in Figure 5.3 with the same colors. . . . . . . . . . . . . 81

Figure 5.5: Shows the 90Zr(p,γ)91Nb cross section from the new analysis technique,
dark blue diamonds, previously published SuN data, orange circles, previ-
ously published data from Laird, green squares, and the theoretical NON-
SMOKER values [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.6: Shows the updated GEANT4 geometry of the gas cell placed in the center
of the SuN detector. (a) shows the outside of the cell and (b) shows the
inside of the cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 5.7: Shows the simulations (a) before the Doppler shift is applied, (b) with the
Doppler shift and (c) after it is corrected. Notice that the final simulation
in (c) is wider than the original since the correction process is not perfect. 85

Figure 5.8: Shows the fitted TAS spectra centered around the sum peak, the fitted
sum of segments gated on the sum peak and the multiplicity gated on the
sum peak. Red are simulations and black is the experimental data for the
highest beam energy 3.7 MeV. . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.9: Shows the feeding ratios for each of the entry state energies used in the
simulation. There is one feeding ratio for each of the initial entry state
energies used which are all summed to form the final spectra shown in
Figure 5.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.10: Image taken from Illiadis [1] showing the comparison between (a) cross
section and (b) yield as the beam particles move through a target and
loss energy. The effective cross section in (a) corresponds to the effective
energy in (b) where the yield above and below this energy is equal. . . . 92

Figure 5.11: Shows the final cross sections and their uncertainties in black measured at
the energy after the foil and the purple squares measured at the effective
emergy compared to TALYS in blue and the NON-SMOKER theoretical
values in brown [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.12: Examples for the p process reaction network with a series of (γ, n) (green
arrows), (γ, p) (red arrows) and (γ, α) (purple arrow) reactions. The red
boxes and purple boxes and branching points, the yellow box is a p nuclei. 95

xiii



Chapter 1

Introduction

How and where are the elements formed in the universe? The origin of the elements

is an evolving and prominent question for the nuclear astrophysics community and is the

motivation of this thesis work. It may seem like a simple question but it involves multiple

fields and becomes complex quickly. Scientists have a good general picture but there are still

many unanswered questions.

Seconds after the Big Bang, all of the hydrogen and helium, and small amounts of lithium,

in the universe were created. But then where do all the heavier elements come from? The

first step in answering this question is looking closer at stars. They are fascinating objects

encompassing numerous types of physics including nuclear physics, fluid dynamics, quantum

mechanics, statistical mechanics and more. During star formation, a cloud of gas, or a nebula,

will slowly condense into a ball and slowly collapse onto itself until a star is born. Figure 1.1

shows the Butterfly Nebula where one can see the gas from a previous star. After formation,

stars will fuse hydrogen together to make helium and other elements up to iron with non-

explosive processes. It isn’t until its death that the heavy elements, elements heavier than

iron, get created and are blown back into the universe. These elements float through the

interstellar medium and form new nebulae where the process begins again. Through this

continuous cycle heavier elements are made and ejected to make objects on the Earth.

This thesis will focus on the origin of a specific subset of elements known as the p nuclei

1



Figure 1.1: The Butterfly Nebula with a wingspan of approximately three light years. [3]

which will be discussed in great detail in later sections. Where these elements are thought to

form and how having accurate nuclear data is very important to calculate the astrophysics

observables. The new experimental and analysis techniques developed at the NSCL with

this work will help measure future radioactive beam experiments. This thesis outlines the

direct cross section measurements of the 82,84Kr(p,γ)83,85Rb reactions.

1.1 The Elements

There are 118 stable elements in the universe that have been observed. Stable elements

do not undergo decay whereas the unstable elements will emit particles or gamma rays until

they reach a stable state. An element is built up of atoms with each atom having a unique

nucleus at the center of a negatively charged electron cloud. The nucleus is much smaller

than the total size of the atom and is made up of positively charged protons and neutral

neutrons bound tightly together. The number of protons in the nucleus defines the element

but each element can have multiple isotopes. An isotope is when there are the same number

2



of protons, so the element remains the same, but the number of neutrons in the nucleus is

changing. For example, one proton and one neutron is hydrogen and one proton and three

neutrons is still hydrogen but also an isotope of hydrogen commonly called tritium. Figure

1.2 shows the Chart of the Nuclei which is a convenient way to organize the known elements

and their isotopes. The x axis represents increasing number of neutrons, so each box is a

different isotope as you move horizontally, and the y axis represents increasing number of

protons, so each row is a different element as you move vertically. Each box represents one

of approximate 3,000 stable and radioactive isotopes that have been seen naturally or in the

lab [19].

Figure 1.2: Chart of the Nuclei with increasing neutrons on the x axis and increasing protons
on the y axis. The black isotopes are stable and the various other colors are decay modes
listed in the legend. [4]

The black boxes in Figure 1.2 are the stable isotopes which are commonly referred to as
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the “valley of stability”. The other isotopes are radioactive and their colors correspond to

their decay mode displayed in the legend. When one of the radioactive isotopes are created

they will want to decay towards the valley of stability. For example, if an isotopes is created

on the neutron rich side of stability it will undergo β− decay back towards stability.

The dark blue rectangles are proton and neutron “magic” numbers where the nuclear

structure makes these isotopes more stable than their neighbors. Therefore, it takes more

energy to remove or add protons or neutrons to these nuclei. The magic numbers and

their repercussions were theoretically proposed in 1949 and this phenomenon is similar to

how electrons fill in orbitals around the nucleus in an atom [20]. Protons and neutrons fill

energy shells in the nucleus instead of orbitals like the electrons and these “magic” numbers

correspond to closed shells. When the energy shell is completely filled with protons or

neutrons it reaches a more stable configuration for a nucleus and is considered a closed shell.

The notation for writing out a specific nucleus is as follows: AZXN where X is the element,

Z is the number of protons, N is the number of neutrons and A is the mass number or Z+N.

With this notation we can write hydrogen and tritium from the previous example as 1
1H2 and

3
1H4. However, it is more common to drop the neutron and proton number as each isotope

can be uniquely labelled with only the element and mass number. Recall that the number

of protons is also defined as the element and is thus redundant. Using this notation with the

same examples we have hydrogen and tritium written as 1H and 3H. This notation will be

used for the remainder of this work.

1.1.1 Solar System Abundances

The elemental solar system abundances are the relative amounts of each element present

in our solar system. These abundances serve as the main astrophysical observable scientist
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use to compare to theory when running simulations. Measurements of the solar system

abundances are taken with two main methods: measuring the solar photosphere and looking

at specific types of meteorites [1]. Measuring these abundances gives scientists a metric for

our solar system’s elemental abundance during its formation as a collapsing nebula as the

overall composition has not been drastically altered. The isotopic abundances are calculated

from the elemental abundances using the terrestrial isotopic ratios [21]. Figure 1.3 shows the

elemental abundances as a function of mass number from the data presented by Lodders [5].

Figure 1.3: The total solar system elemental abundances as a function of mass number
normalized to 106 Si atoms. Interesting features of the abundance pattern are highlighted
in blue and will be discussed. [5]

During the Big Bang hydrogen, helium and some lithium were created and are still the

most abundant elements. However, there is a deficit of lithium, beryllium and boron because

they are highly reactive elements with large cross sections. These elements are thought to be

created through spallation events and interaction with galactic cosmic rays [22]. Moving up
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in mass, there is a general decrease in abundances until the iron peak. The elements in this

mass region are formed through charged particle nuclear reactions in stars and the general

decrease in abundance is due to the increasing Coulomb repulsion as the mass increases [1].

The iron peak arises because these elements are the most energetically stable. The elements

with masses higher than iron are created in various explosive processes in stars, like neutron

capture and γ induced processes, which will be discussed later.

1.2 Nucleosynthesis

Nucleosynthesis is the creation of the elements in the universe. This can happen in multi-

ple different types of astrophysical environments such as star evolution, supernovae, neutron

star mergers and more. Some of the founding nuclesynthesis papers were by Burbidge, Bur-

bidge, Fowler, and Hoyle (B2FH) [23] and Cameron [24] in 1957. They stated that heavy

element nucleosynthesis occurred in stars as opposed to all the elements being created via

Big Bang nucleosynthesis. These publications are still considered to be a solid foundation

for stellar nucleosynthesis and have been built upon as the scientific understanding evolves.

Since their release, more astrophysical simulations, nuclear data experiments for masses and

cross sections, astrophysical observations and galactic chemical evolution simulations are

being incorporated to continue our understanding of nucleosynthesis.

Sections 1.2.1 and 1.2.2 will discuss the nuclesynthesis of elements lighter in mass than

iron. For elements heavier than iron there are four main processes: the s process, r process,

i process and p process which will be discussed in Sections 1.2.3 and 1.3.1. Figure 1.4 shows

a cartoon layout of the processes responsible for creating various sections of the Chart of the

Nuclei. Stellar burning for masses less than iron and the s process, r process and p process

6



for masses above iron. While this is a simplified picture, as there are other processes that

can create these isotopes, this thesis will only discuss these and the i process. Figure 1.5

shows the relative abundances of the s, r and p processes nuclei normalized to 106 Si atoms

[6]. From Figure 1.5 it is clear that most of the elements are made through the s process and

r process. However, even though the p process isotopes are much lower in total abundances,

they are still very important and generally cannot be made through the s process, r process

or i process.

Figure 1.4: Shows the Chart of the Nuclei with increasing neutrons on the x axis and
increasing protons on the y axis. Shows what stellar burning creates, where the iron (Fe)
peak lies, what elements are made from the s process, r process and p process, and the magic
number rectangles.

For a more complete overview of the nucleosynthesis landscape, the rest of this chapter is

dedicated to an overview of the processes listed in Figure 1.5 along with some extra processes
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relevant to this work. This dissertation work is focused on the creation of the p nuclei and

Section 1.3 will go into more detail about processes that create these isotopes.

Figure 1.5: This plot shows the relative abundances of the elements from the s process, r
process and p process normalized to 106 Si atoms. S process is the solid line, r process are
the open circles and p process are the filled in squares. [6]

1.2.1 Big Bang Nucleosynthesis

During the Big Bang, there was a massive amount of energy released creating the building

blocks for the universe. Some of the original ideas behind Big Bang nucleosynthesis came as

early as 1937 by Weizsäcker [25]. He hypothesized that the universe stayed super hot after

the initial bang and the universe heated all the elements into the abundance patterns we

see today. It wasn’t until a few years later that Gamow and colleagues introduced the idea

of the fast expansion and cooling of the universe after the Big Bang [26]. Once this cooling

took place, free protons and neutrons combined making 1H, 2H, 3He and 4He. These initial

abundances are still seen in Figure 1.3. Trace amounts of lithium and beryllium were also

8



made in this process but the majority are thought to be made through spallation reactions

in the interstellar medium [1].

However, no heavier mass elements were made during the Big Bang. Since there are no

isotopes of mass five and eight they proved to be barriers to heavier element creation [27].

Once 4He was created, if a single proton or neutron was captured the isotope was unstable

and would decay back to 4He. A proton and neutron had to simultaneously capture onto

a 4He to create 6Li to bridge this gap. This was less probable than capturing one at a

time resulting in less 6Li from the Big Bang. Similarly, there are no stable isotopes with

mass eight making it nearly impossible to create any heavier mass elements. The rest of the

elements were therefore made through various other processes that will be discussed in the

rest of the chapter.

1.2.2 Stellar Burning

After the Big Bang, millions of years went by while the universe expanded and continued

to cool. Clouds of hydrogen and helium gas began to slowly condense into large clumps

forming the first nebula. As the gas continued to collapse under its own gravitational force,

the temperature and pressure at the center of the cloud became high enough to ignite hydro-

gen fusion. The gravitational pressure that was collapsing the gas and the energy released

from the fusion reactions at the center counteracted each other and formed an equilibrium.

In this way, a star was born with its core stably burning hydrogen into helium. This period

in a star’s life is called main sequence burning. Stars live most of their lives on the main

sequence burning hydrogen as the majority of a star’s mass is made of hydrogen.

During the main sequence, hydrogen is fused either with pp chain or CNO cycle burning.

Stars with lower initial masses, M < 1.5M�, will generate energy via the pp chains in the
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core and stars with larger initial masses, M > 1.5M�, will undergo the CNO cycle in the

core [1]. The three pp chains, or the proton-proton chains, are various reaction chains that

convert four protons into one α particle or a 4He isotope. They all begin with the same two

reaction, as other light nuclei reactions are less probable, and end with the creation of an α

particle [28]. Heavier mass stars will undergo the CNO cycles instead of the pp chains. These

stars will typically contain more nuclei other than hydrogen and helium such as carbon (C),

nitrogen (N) and oxygen (O) which are required for the CNO cycles. Like the pp chains

these cycles convert four protons into one α particle and have multiple reaction chains that

could occur with the same end result [1]. The C, N, and O in these reactions simply act as

a mechanism for the burning and are not consumed or created during the processes.

Similarly to how the initial mass of the star dictates which hydrogen burning will occur,

the initial mass of the star also decides the star’s evolutionary path. Only super massive

stars, over approximately eleven solar masses, will be able to undergo fusion all the way

through silicon burning and hit the iron peak elements. A brief outline of the life cycle of

a super massive star of 25M� will follow. First, the star undergoes hydrogen burning on

the main sequence converting its hydrogen into helium. Eventually, the star will run out

of hydrogen in its core as it is replaced by inert helium. Hydrogen will continue to burn

in the outer shell and add mass to the helium core. It takes higher temperatures to ignite

helium burning and the core is no longer producing energy through fusion. Therefore, the

inert helium core begins to shrink causing the temperature and pressure to increase until

the helium ignites. Once helium ignites in the core the star expands as the outer hydrogen

layer gets heated and the star becomes a super-giant [29].

Now the star is fusing helium into carbon in its core and some of the s process elements

are synthesized. It will slowly replace its core with inert carbon and create a new layer
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Figure 1.6: Shows the onion-like structure of a 25M� after undergoing fusion from hydrogen
through silicon burning leaving an inert iron core before core collapse [2].

of helium burning beneath the hydrogen burning. When it runs out of helium in the core

it will shrink again until the temperatures are hot enough to ignite carbon burning. This

process repeats with carbon burning, neon burning, oxygen burning and silicon burning until

the star is left with an onion-like structure as shown in Figure 1.6. However, once the star

completes silicon burning it can no longer create enough energy in its core to counteract

its gravitational force. Iron burning is no longer energetically favorable; all the previous

cycles are exothermic whereas iron burning is endothermic and energy will not be released.

Consequently, the stable nuclei in the core at this stage are mostly the iron peak nuclei.

Once a star of this mass ignites silicon burning it is guaranteed to undergo a core collapse

supernova; whether or not it leaves behind a black hole or a neutron star is unclear [1]. Core

collapse supernovas of this kind are also known as Type II, Ib and Ic supernova with the

differing classifications based on their spectral lines. Once the star has the structure shown

in Figure 1.6, the iron core will expand until it reaches the Chandrasekhar limit of 1.4M� at
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which point the core will collapse as it can no longer counteract its gravity. The core collapses

in free fall until the densities reach a nuclear density of ≈ 1014g/cm3 at which point the

nuclear force begins to act like a spring and storing energy. The nuclear potential releases

causing the inward falling core to rebound and the shock wave proceeds back out through

the core of the star [29]. It is still unclear how the shock wave is fueled as it moves through

the core and through the outer layers of the star. When the shock wave passes through the

oxygen and neon layer (O/Ne) of the star, it is theorized that the correct temperatures are

met for the p process and as the shock wave passes through the deeper layers of the star it

is hypothesized that conditions for the r process are also met.

1.2.3 Neutron Capture Processes

This section will go over three different neutron capture processes differentiated by the

neutron densities in their astrophysical environment: the s process, r process and i process.

The s process is also known as the slow neutron capture process and is responsible for making

a large number of the heavy isotopes as shown in Figure 1.5 [30]. The s process occurs during

the asymptotic giant branch (AGB) phase of a star’s lifetime. While a star undergoes helium

and carbon burning there are enough free neutrons created to allow for neutron captures on

the stable seed nuclei. The neutron density must be approximately 108 neutrons per cm3

for the s process [29].

Beginning with stable seed nuclei already present in the star, neutrons will capture on a

stable isotope through a series of (n, γ) reactions. This notation means the initial isotope is

capturing a neutron and the resulting isotope is giving off a gamma ray. This can also be

written with the isotopes for specific reactions, for example the reaction on the bottom in

Figure 1.7: 75As(n, γ)76As. The yellow arrows in Figure 1.7 represent the (n, γ) reactions
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Figure 1.7: Shows an example of an s process path following a series of stable isotopes and
undergoing neutron captures. The black isotopes are stable and the other colors are various
lifetimes with darker colors having longer lifetimes. The yellow arrows are the neutron
captures and the green arrows are the beta decays.

and the green arrows represent the beta decays. For the s process, there is a balance between

the cross section of the neutron capture and the β decay lifetime. The cross section referring

to how probable it is to capture a neutron and the lifetime referring to how long it takes the

unstable nucleus to decay. The s process generally moves along the stable isotopes as shown

in Figure 1.7 and isotopes like 80Se will be produced instead by the r process.

The r process is the rapid neutron capture process [7]. Similar to the s process, isotopes

undergo a series of (n, γ) reactions before β decaying back to stability. However, unlike the

s process, the neutron fluxes for the r process are much higher, approximately 1021 neutrons

per cm3 [1]. With such a high neutron flux isotopes all the way to the neutron drip line can

be made before the beta decays. Figure 1.8 shows the pathways of the s process, r process

and p process from M. Arnould et. al. [7]. The light grey downward arrow shows the

pathway of the p process, the black line shows the s process path and the arrows pointing

down from the neutron rich side show the r process decays. The r process is thought to occur

in core collapse supernova and/or neutron star mergers. Recently a neutron star merger was
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Figure 1.8: The Chart of the Nuclei showing example s process, r process and p process
paths. The thicker light grey shows the p process, the black lines along stability show the s
process and the lines coming from the neutron drip line show the r process. [7]

observed where r process signatures were detected [31]. This is an exciting confirmation that

neutron star mergers are an r process site.

The i process is the intermediate neutron capture process [32]. Again this process is a

series of (n, γ) reactions with a different neutron density. This process is thought to occur in

stars when there is mixing between the hydrogen and helium burning layers. With sufficient

mixing there are neutron densities of approximately 1016 neutrons per cm3. There have been

astrophysical observations that could not be explained by a combination of s process and r

process which indicated a need for a new neutron capture process.

The s process, r process and i process are all a series of (n, γ) reactions. However there

are a handful of nuclei that are shielded by the valley of stability on the proton rich side that

cannot be made through neutron capture reactions. Figure 1.7 shows two examples 74Se

and 78Kr. These two nuclei are a set of nuclei known as the p nuclei which will be discussed

in the next section.
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1.3 p Nuclei

The p nuclei are a series of nuclei that cannot be made through neutron capture processes

like the s process and r process. There are 35 p nuclei on the proton rich side of the

valley of stability that range in mass from 74Se to 194Hg as shown in Figure 1.9. They are

approximately 100 times less abundant than the s-process and r-process elements except

for molybdenum (Mo) and rubidium (Ru) [1]. Trying to figure out where the p nuclei are

made has been an ongoing challenge in the nuclear astrophysics field and is still not well

understood. The two prevalent sites are Type Ia supernova [33] and Type II core collapse

supernova in the O/Ne layer [34] [35]. Core collapse supernova were discussed in Section

Figure 1.9: The p nuclei are shown in the red boxes on the proton rich side of stability. Also
shown is the s process and r process paths. [2]

1.2.2. Once a star has an inert iron core, the core will collapse from its own gravitational

force. It then emits a shock wave out from the core and through the layers of the star. When

this shock wave passes the O/Ne layer, the correct temperatures are met for the p process

to tale place. Type Ia supernova are in binary systems with a white dwarf and a companion
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star accreting mass on to the white dwarf. Once the white dwarf gains enough mass to ignite

a thermonuclear runaway and explodes.

1.3.1 p Process

The p process was originally believed to be the fast proton capture process [23] and was

later determined to be a series of photodisintegration reactions. Sometimes the p process is

also referred to as the γ process as it involves a series of (γ, n), (γ, p) and (γ, α) reactions

on the s-process seed nuclei. Figure 1.10 shows an example of different reactions that could

appear in a p-process reaction network. The red boxes are p nuclei, the green arrows are

(γ, n) and (n, γ) reactions, the yellow arrows are (γ, p) reactions and the purple arrows are

(γ, α) reactions. The dominant reaction flow for the more neutron rich nuclei during these

photodisintegration reactions are (γ, n) reactions. For example, in Figure 1.10 starting from

84Sr the reactions travel to the left through (γ, n) reactions. Eventually the flow reaches

branching points where certain isotopes will have other competing reactions, either (γ, p) or

(γ, α).

The p process is highly dependent on the temperature of the stellar environment and only

occurs in a given temperature range [1]. If the temperatures are too high in the environment

the nuclei burn up through photodisintegrations back to the iron peak and if they are too

low the photodisintegrations will not occur. The temperatures will be discussed in more

detail later in this chapter.
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Figure 1.10: Examples for the p process reaction network with a series of (γ, n), (γ, p) and
(γ, α) reactions. The red boxes are the p nuclei.

1.3.2 Uncertainties

In order to see where the elements are made, scientists run simulations and compare those

outputs to the observed abundances. Running these simulations is a complicated multi step

process. First, astrophysics simulations are run to simulate whatever environment is being

considered. Second, these outputs are run through post processing codes that take nuclear

data into account such as reaction cross sections, decay properties and masses. Finally, to

test the validity of these simulations the outputs are compared to the elemental or isotopic

solar system abundances. Improving the accuracy of the simulations involves developing the

theory (both astrophysics and nuclear) and performing measurements which are used in the

simulations. Each portion of the simulation process holds uncertainty: astrophysical sites

and theory, nuclear theory and nuclear data. There are numerous astrophysical uncertainties
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including s-process seed abundances, initial star mass and metallicity, and temperatures.

These p-process reaction networks are very complex requiring approximately 2000 nuclei

and 20,000 reactions all of which require nuclear data [6]. Constraining the nuclear data

through experimental measurements is the best way to help constrain these theories and

reduce the overall uncertainty in these calculations.

Figure 1.11: Figure from Ref. [8] showing the s seed nuclei abundances after helium burning
from varying the initial metallicity of the star from Z = 0.003 to 0.01. The solid dots are
nuclei made only from the s process.

1.3.2.1 s-process Seeds

Before the p-nuclei abundances can be calculated, the s-seed nuclei abundances need to be

calculated. Correct calculations rely on galactic chemical evolution calculations, astrophysics

simulations and nuclear data inputs all of which carry uncertainties. Figure 1.11 shows an

example of uncertainties from the s-seed nuclei at the end of helium burning when varying

the initial metallicity of the star [8]. The metallicity is how many heavier elements, such

as C, O, N, are present in the initial composition of the star. There is up to two orders of

magnitude uncertainty in the s-seed abundances when varying the metallicities. Since the
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p-process abundances begun with the s-process seed nuclei abundances, this large variance

will carry through the simulations to the p nuclei.

1.3.2.2 Initial Masses

Varying the initial mass of the star in astrophysical simulations also carries uncertainties.

Figure 1.12 shows the normalized over production factors for the p nuclei post a supernova

explosion with various initial solar masses [9]. If the points land on the centered dashed line

labelled one the simulation would be creating the correct amount of each element. Anything

above is over produced and anything below is under produced. The uncertainties from the

initial mass are slightly smaller than the uncertainties seen from varying the metallicities

and the s-process seed abundances. Most of these isotopes vary within an order of mag-

nitude whereas the s-process seed abundances carried closer to two orders of magnitude

uncertainties.

Figure 1.12: Figure from Ref [9] showing the overproduction factor for the p-nuclei in a super-
nova explosion calculation of a 13-25 M� star. The error bars refer to the same calculations
done with various initial solar masses.
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Figure 1.13: Figure from Ref. [10] showing the overproduction factor of selected p nuclei
with varying temperatures in the O/Ne layer during a supernova.

1.3.2.3 Temperature and Density Profiles

Along with uncertainties in the s seed nuclei there are uncertainties in the temperature

and density profiles of the stars during supernova which will greatly affect the final abun-

dances of the p nuclei. As mentioned previously, the photodisintegrations rates are highly

temperature dependent and as the temperature of the layer changes, the final abundances

change drastically. Figure 1.13 shows this clearly with the overproduction factors of selected

p nuclei as a function of maximum temperature in the O/Ne layer of the star. For example,

looking at 184Os shows the final abundance can change by a factor of 100 by varying the peak

temperature by only 0.2GK. This is the same order of magnitude in uncertainty as varying

the initial s-seed abundances and the metallicites. The observed solar abundances are a mix-

ture of stars with various initial masses, metalicities and temperature-density profiles which

all produce different p nuclei abundances. In order to match the solar abundances there

needs to be the correct combination for all these astrophysical properties which currently

have uncertainties up to a factor of 100 in magnitude.
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1.3.2.4 Reaction Rates

The previous sections discussed the astrophysical uncertainties but there are still uncer-

tainties in the nuclear data which also change the final abundances of the p nuclei. The

experimental measurement performed in this thesis can help constrain the nuclear theory

uncertainties in the reaction rates. Most of the 20,000 reactions in the p process reaction

networks are on radioactive isotopes which rely heavily on theory and have no experimental

constraints. Figure 1.14 shows how varying the reaction rates up and down by a factor of 3

for the (a) (p, γ) and (γ, p) reactions and the (b) (α, γ) and (γ, α) reactions affects the final p

nuclei abundances [10]. The (p, γ) reaction variations predominantly change the abundances

of the lighter mass p nuclei and the (α, γ) reactions variations change the heavier mass p

nuclei.

Figure 1.14: Figure from Ref. [10] showing the over production factors when varying the
reactions rates by a factor of three up and down for (a) (p, γ) and (γ, p) reactions and (b)
(α, γ) and (γ, α) reactions.

The variations in final abundances due solely to the nuclear reaction rates is much smaller

than the average uncertainties due to the astrophysical inputs. However, it is still important

to lower these uncertainties which are still up to a factor of 5 in magnitude. The future

of the experimental nuclear astrophysics field for the p process is to help set experimental
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constraints on these reaction rates to reduce the uncertainties in the models. This work

focuses on developing and validating an experimental and analysis technique which can be

used in future radioactive experiments to measure more of these relevant reaction rates. Even

the measurement made on the stable 82,84Kr nuclei can help to constrain these theoretical

uncertainties.

1.3.2.5 Sensitivity Studies

Because these p-process reaction networks are so large it is impossible to measure ev-

erything experimentally. In order to chose the most important nuclei to measure sensitivity

studies are performed to identify which reactions vary the final abundances the most when

altered.

Figure 1.15: Figure from Ref. [11] showing key branching point nuclei from a model inde-
pendent sensitivity study performed by Rauscher.

In Figure 1.15 there are two sets of isotopes, priority 1 and 2, listed that have been

highlighted in a model independent sensitivity study. They are important branching point

nuclei that can vary the reaction flow within the p-process reaction network. Priority 1

reactions are sensitive branching points and priority 2 could become new branching points
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in their rate is measured higher than its current theoretically accepted value [11]. The

84Kr(p, γ) reaction is listed as a priority 1 and therefore is a branching point between the

dominant (n, γ) and (p, γ) reaction flow. This reaction was chosen for its importance in

determining the reaction flow of the p process in this region. If the measured value for the

cross section is lower than the accepted theoretical value, the reaction network will favor the

(n, γ) reaction and if it is higher it will favor the (p, γ) reaction.
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Chapter 2

Theoretical Considerations

2.1 Nuclear Properties

One of the most fundamental quantities of a nucleus is its mass. However, early mea-

surements of the total mass of a nucleus showed it is not simply the sum of its parts and is

instead less [36]. The mass of a nucleus can then be written as

mnuc = Zmp +Nmn −∆m (2.1)

where mnuc is the mass of the nucleus, mp is the proton mass, mn is the neutron mass and

∆m is the missing mass. The missing mass, or mass defect, can be written as an energy

which was originally proposed by Einstein [37]. This energy corresponds to the amount of

energy required to break the nucleus into free nucleons or the amount of energy released

when the given nucleus is assembled. This energy is also known as the binding energy and

can be written as

B.E. = (Zmp +Nmn −mnuc)c
2 (2.2)

where the notation follows Equation 2.1 and c is the speed of light.

Shown in Figure 2.2 is the binding energy per nucleon as a function of mass [1]. The

general trend of (a) has an exponential increase in binding energies until it peaks in the iron

24



Figure 2.1: (a) Shows the binding energy per nucleon as a function of mass taken from
Illiadis with data from the Atomic Mass Evaluation [1] [12]. (b) Zooms into the iron peak
region and shows the isotopes with the largest binding energies per nucleon: 62Ni, 58Fe and
56Fe.

region and then slowly decreases again. Most binding energies are around 7-9 MeV/u. Part

(b) zooms into the peak shown in part (a) showing the most tightly bound nuclei 62Ni, 58Fe

and 56Fe that have binding energies around 8.7 MeV/u [12]. The binding energies of the

nuclei both heavier and lighter in mass are all lower and they are less tightly bound.

The trend shown in part (a) of Figure 2.2 also helps to explain the nucleosynthesis

landscape. Nuclear energy is released when the reacting nuclei have a lower binding energy

than the products of a reaction. Therefore for a star to generate energy it can either undergo
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fusion until reaching the iron peak or undergo fission past the iron peak.

The energetics of a nuclear reaction can also be quantified from the masses of the nuclei

in the reaction. For a nuclear reaction written as A + a = B + b and because mass and

energy are related, the energy difference, or Q value, of this reaction can be written as

Q = (minitial −mfinal)c
2 = (mA +ma)c2 − (mB +mb)c

2 (2.3)

where m is the corresponding mass of each reactant. Reactions with positive Q values are

exothermic and release energy and reactions with negative Q values are endothermic and

require energy.

2.2 Cross Sections

This thesis is a direct measurement of a reaction cross section for two different reactions

at different energies. A cross section can be thought of as the probability of a reaction

taking place. To approach this concept, consider a game of archery where arrows are shot at

a target that looks like Figure 2.2. Points are only awarded if an arrow lands within one of

the smaller circles labeled “50 points”. Assuming the arrow always lands within the larger

circle, the probability of hitting an inner circle and getting points is a ratio of the areas.

If the total area of the circle is A and the area of the smaller circles is A50 then the

probability to hit a 50 point circle is

P50 =
N50A50

A
=
N50πr

2

A
=
N50σ

A
(2.4)

where N50 is the number of smaller 50 point circles, r is the radius of the 50 point circles
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Figure 2.2: A cartoon view of an archery target where points are only awarded if a smaller
50 point circle is hit synonymous to target nuclei with incoming beam particles.

and σ is the cross-sectional area of the 50 point circles. Notice that the cross section, σ, has

units of area. If a large number of arrows, Na, are shot then the number of times a 50 point

circle, Nc, is hit can be written as

Nc = NaP50 = Na
N50σ

A
. (2.5)

Now we can rearrange and solve for σ to find the cross section of the 50 point circles from

the example by writing

σ =
Nc

Na(N50/A)
. (2.6)

The (N50/A) term is left in this notation because it is the areal density of the 50 point

circles. If the terms from Equation 2.6 are now written in relevant physics terms we have

σ =
Nc

Na(N50/A)
=

Nreactions
Nbeam(Ntargets/A)

=
(I/ε)

Nbeam(NAξ/mt)
(2.7)

where I is the number of recorded events, in this case successfully hitting a 50 point circle, ε
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is the detection efficiency, Nbeam is the number of beam particles, NA is Avogadro’s number,

ξ is the target thickness in units of g/cm2 and mt is the target mass. Equation 2.7 is how

the cross section will be calculated for the entirety of this thesis.

The substitutions were made so it is easy to track which physical aspects relate to

Nreactions, Nbeam and (Ntargets/A). For instance, the I/ε term corresponds to Nreactions

and the (NAξ/mt) term corresponds to (Ntargets/A). The number of good events seen in a

detector corrected for its efficiency will give the final number of times the reaction occurred

in the target. The target’s areal density will then be given by the target thickness. In order

to accurately measure a cross section of a reaction the incoming beam particles, number

of reactions within the detector, the target thickness and the detector efficiency must be

accurately measured throughout the entire experiment.

It is important to note that the cross section is directly related to a probability but has

units of area. In the above example the cross section of hitting one 50 point circle is the area

of a single 50 point circle from Figure 2.2. In a nuclear physics experiment that is equivalent

to the area of a target nucleus which is on the order of 10−24cm2. This value has also been

defined as 1 barn or 1 b. The cross sections in this thesis work are even smaller on the order

of 1 mb or 10−3b.

The above approach is still using a classical foundation and there are quantum mechanical

effects to be considered. The substitution of σ = πr2 is a classical substitution. To take

quantum mechanics into consideration the more appropriate substitution is

σ ≈ πλ2 = π
h̄2

2µE
(2.8)

where λ is the reduced de Broglie wavelength, h̄ is the reduced Planck constant, µ is the
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reduced mass, and E is the center of mass energy of the beam and target system. The

inverse energy dependence is one of the reasons that astrophysically relevant cross section

measurements are difficult to measure as the relevant energies are very low. The cross section

expression used in this work is

σ =
A

Nξ

1

Nb

I

ε
(2.9)

where A is the target mass, N is Avogadro’s number, ξ is the target thickness, Nb are the

beam particles, I is the number of times the reaction occurs and ε is the detector efficiency.

2.3 Stellar Reaction Rates

In order for a star to generate energy there always needs to be a positive amount of

nuclear energy released from a reaction. Therefore, knowing the rate of nuclear reactions

is imperative for understanding the energy and element generation within a star. For each

reaction it is important to know how much nuclear energy is liberated within a stellar volume.

This depends on the nuclear cross section of the particles, the velocity distribution of the

particles within the stellar plasma and the abundance of each type of interacting particle.

Beginning from Equation 2.5 denoting the number of successful attempts to hit a 50 pt circle,

the reaction rate per unit volume per time,
NR
V t , can then be written as

NR = N1
N2

A
σ −→ NR

V t
= σ

N1

V

N2

Ax

x

t
(2.10)

where N1/V and N2/Ax are the number densities of the interacting particles and x/t rep-

resents the relative velocity [1]. The right side of the equation has been multiplied by 1 in

the form of xx to get the velocity and second number density. The number densities can be

29



rewritten as
Ni
Vi

= ni. Looking back to the previous section, the cross section is also energy

dependent. Since the reaction rate is already dependent on velocity the cross section can be

written as a function of velocity. Taking all this into account the reaction rate from Equation

2.10 can then be written as

r12 = n1n2σ(v)v. (2.11)

In a stellar environment the relative velocities between the particles are not always the

same. Instead they have a velocity distribution defined as a probability function, P (v) where∫∞
0 P (v)dv = 1. Now adding this expression into Equation 2.11 we get

r12 =
n1n2

1 + δ12

∫ ∞
0

P (v)σ(v)vdv (2.12)

where δ12 is the Kronecker delta. In a reaction between the same nuclei it is 0 and for a

reaction between different nuclei it is 1. Equation 2.12 can be further reduced to the reaction

rate per pair, 〈σv〉, written as

〈σv〉 =

∫ ∞
0

P (v)σ(v)vdv. (2.13)

Now we need an expression for the relative velocities of the particles within the stellar

plasma. Nuclei in a stellar environment are nonrelativistic and nondegenerate particles.

Therefore the velocities can be written with the Maxwell-Boltzmann distribution seen below

where k is the Boltzmann constant and T is the temperature of the stellar plasma.

P (v) = 4πv2
( µ

2πkT

)3/2
e
−µv2

2kT (2.14)
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With the substitution E = µv2/2 and dE/dv = µv to perform a change of variables from

velocity to energy and adding the Maxwell-Boltzmann distribution into Equations 2.13, we

can write the reaction rate per particle pair as a function of energy as;

〈σv〉 =

√
8

πµ(kT )3

∫ ∞
0

Eσ(E)e−E/kT dE. (2.15)

2.4 Gamow Window

For a specific astrophysical temperature it is possible to calculate the energy with the

highest importance for these reaction rates. This energy range is called the Gamow peak

which appears within the integral of the reaction rate given in Equation 2.15. This Gamow

peak arises from the competition between the Gamow factor introduced in Equation 2.23

and the Maxwell-Boltzmann distribution used in Equation 2.15. For a specific temperature

in the stellar environment, there is a corresponding energy range where the reactions can

occur. Plugging the cross section written in terms of the astrophysical S factor, Equation

2.23, into the reaction rate per particle pair in Equation 2.15 we can write the reaction rate

as

〈σv〉 =

√
8

πµ(kT )3

∫ ∞
0

e−2πηe−E/kTS(E)dE (2.16)

where T is the temperature, E is the energy, and η = Z1Z2e
2/h̄v and is also called the

Sommerfeld parameter. Using the velocity and energy relation, E = µv2/2, rewriting the

Sommerfeld parameter as a function of energy and some algebra we get

〈σv〉 =

√
8

πµ(kT )3

∫ ∞
0

e

Z1Z2e
2π

h̄

(√
2µ
E

)
e−E/kTS(E)dE (2.17)
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where Zi are the charges of the interacting particles and µ is the reduced mass in atomic mass

units. This can be further simplified by introducing a constant term, EG = π
h̄Z1Z2e

2√2µ.

Inserting this into Eq. 2.17 it becomes easier to see the competing energy dependencies for

the Maxwell and Coulomb terms. With this substitution we have

〈σv〉 =

√
8

πµ(kT )3

∫ ∞
0

e
−

(√
EG
E

)
e−E/kTS(E)dE. (2.18)

Figure 2.3: Figure taken from Illiadis [1]. (a) shows the Maxwell-Boltzmann distribution,
dashed line, and the Gamow factor, dotted-dashed line and their product in a solid line. (b)
shows the same Gamow peak for the 12C(α, γ)16O reaction in a linear scale.

The Gamow factor term will go to zero as the energy goes to zero whereas the Maxwell-

Boltzmann factor goes to zero as the energy increases. While the integral depends on the

astrophysical S factor, it has a small effect on the peak location as it has a weak energy

dependence. Both terms are drawn in Figure 2.3 taken from Illiadis [1]. Part (a) shows the

Maxwell-Boltzmann distribution (dashed line), the Gamow factor (dotted-dashed line), and

their product (solid line) for the 12C(α, γ)16O reaction. The product is the known as the

Gamow peak. Part (b) of Figure 2.3 also shows the Gamow peak on a linear scale with

the dotted line showing a Gaussian approximation. The Gamow peak is an energy range

for specific stellar temperatures, also known as the Gamow window, where the majority of
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nuclear reactions are taking place in a stellar environment. For measurements to be relevant

for astrophysics the experimental energies must be within this energy window.

The peak energy will differ for each reaction and can be solved by taking the derivative

of the integrand of Equation 2.17 and setting it to zero. Because S(E) is a smooth varying

function with respect to energy, it is approximated as a constant and removed from the

integral. Taking the derivative gives the Gamow peak energy as

Epeak =

(
EGkT

2

)2/3

(2.19)

with a width of

∆E = 4

√
EpeakkT

3
. (2.20)

Peak Energy (MeV) Energy Width (MeV) Energy Range (MeV) Temperature (GK)
0.745 0.827 0.331 - 1.159 2
0.864 0.997 0.366 - 1.363 2.5
0.976 1.160 0.396 - 1.556 3
1.082 1.319 0.422 - 1.741 3.5

Table 2.1: Shows the various calculated Gamow energies and their widths at different tem-
peratures for the 16O(p, γ)17F reaction shown in Figure 2.23 [1].

Peak Energy (MeV) Energy Width (MeV) Energy Range (MeV) Temperature (GK)
2.103 1.390 1.408 - 2.798 2
2.440 1.675 1.603 - 3.278 2.5
2.756 1.949 1.781 - 3.731 3
3.054 2.217 1.946 - 4.162 3.5

Table 2.2: Shows the various calculated Gamow energies and their widths at different tem-
peratures for the 84Kr(p, γ)85Rb reaction.

Tables 2.1 and 2.2 show the peak energy, Epeak, the energy width and the corresponding

energy ranges for the 16O(p, γ)17F and 84Kr(p, γ)85Rb reactions at various temperatures.

Notice that both the peak energy and the width are dependent on the particle charges and
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the stellar temperature. For higher charges and higher temperatures the Gamow peak is

shifted higher in energy which can be seen in Tables 2.1 and 2.2. The lower charge nucleus,

Oxygen, has a lower Gamow window then the higher charged nucleus, Krypton, whose peak

energies are almost 1.5 MeV higher in energy. The experimental work in this thesis was run

at such low energies to ensure the measurements were astrophysically relevant within the

Gamow window for the 84Kr(p, γ)85Rb reaction.

2.5 Astrophysical S Factor

Cross sections can be very difficult if not impossible to measure experimentally at astro-

physically relevant energies. The nuclear reactions taking place in stellar environments occur

at low energies where the cross sections are significantly lower and drop off exponentially

as a function of energy due to the Coulomb barrier. The Coulomb barrier is repulsive for

particles of the same charge. However, they also attract through the nuclear force which can

cause quantum tunnelling. The Coulomb potential can be written as

VC =
Z1Z2e

2

r
(2.21)

where Z1 and Z2 are the charges of the particles. However, particles can still undergo quan-

tum tunnelling through the Coulomb potential at low energies and this tunnelling probability

is

Pt = e
−2π

Z1Z2e
2

h̄v = e−2πη (2.22)
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where η = Z1Z2e
2/h̄v. The cross section can then be rewritten in terms of this probability

and the astrophysical S factor as

σ(E) =
1

E
e−2πηS(E). (2.23)

The exponential factor, e−2πη, is also known as the Gamow factor which approximates

the transmission probability for energies much lower than the Coulomb barrier. The Gamow

factor removes most of the energy dependence from the σ(E) and leaves the smooth function

in Figure 2.4 [13][1].

Figure 2.4: Figure taken from Illiadis with data from Angulo 1999 [13][1]. (a) shows the
cross section as a function of energy for the 16O(p, γ)17F reaction. At low energies there is
an exponential drop off whereas in (b) it shows S(E) which is smooth at low energies.

Because the S(E) function changes less drastically at lower energies it is also more useful

for extrapolating the cross section at low energies that are of astrophysical relevance. Fig-

ure 2.4 shows both the (a) cross section and the (b) astrophysical S factor, S(E), for the

16O(p, γ)17F reaction. This comparison highlights the differences and the usefulness of the

astrophysical S factor. S(E) is much smoother at low energies than the cross section which

drops off exponentially making S(E) more useful for extrapolation.
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2.6 Nuclear Statistical Model

During a nuclear reaction, nuclei collide to form a new nucleus that is typically in an

excited state. All nuclei have excited states; at low energies their excited states are discrete

beginning at the lowest ground state energy and increasing. At higher excitation energies

the energy levels become closer together until they must be treated as a continuum of excited

states instead of discrete levels. These excited states typically have short lifetimes, ≈ 10−12s,

before deexciting through a γ-ray emission back to the ground state or nucleon emission to

another nucleus. Higher lining states do not have to deexcite straight to the ground state

and can go through multiple energy levels before finally reaching the ground state. Some

excited states can also live much longer and are called metastable or isomeric states.

A generic nuclear reaction can be written as A + a → B + b where A and a are the

entrance channel nuclei and B and b are the exit channel nuclei. Each excited state, as

well as the entrance and exit channels, have energy fluctuations about a mean energy. This

fluctuation is known as the energy width, Γ. The energy widths of these states are related

to the state lifetime, τ , through the Heisenberg uncertainty principle: Γ = h̄/τ . The energy

widths of the entrance and exit channel represent the energies for which the reaction can

occur, like an energy window, and are called partial widths, Γi. Summing over the partial

widths gives the total energy width of the nuclear reaction. Taking the ratio of the partial

width for a specific channel and the total energy width, Γ1/Γ, gives the probability that the

nuclear reaction will decay through that specific reaction channel and is called the branching

ratio.

In some cases, the energies of the nuclear reaction and the excited state of the resulting

nucleus will match and create a resonance. There are also non-resonant reactions which do
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Figure 2.5: Figure taken from Illiadis [1] and (a) shows the 16O(p,γ)17F non-resonant cross
section. Notice the cross section is smooth throughout the energies shown whereas (b) shows
the 13C(p,γ)14N resonant cross section whose cross section has a peak around 0.55 MeV
showing the resonance.

not have this property and instead are smoothly varying cross sections with respect to energy

because the resulting nucleus has no energy levels in the corresponding energy range. Both

can be seen in Figure 2.5 from Illiadis which (a) shows the 16O(p,γ)17F non-resonant cross

section and (b) shows the 13C(p,γ)14N resonant cross section [1]. (a) is a smoothly varying

cross section whereas (b) has an obvious peak or resonance in the cross section around 0.55

MeV.

A compound nucleus is an intermediate state formed by the combination of a target and

incident particle nucleus before decaying to stability. A resonance energy is the energy for

which the probability is enhanced because the entrance channel energy matches an energy

level in the resulting compound nucleus. Figure 2.5 shows an example of a reaction both

with and without a compound nucleus. The 13C(p,γ)14N reaction has an excited compound

14N nucleus that will decay via γ-ray emissions to the ground state and the 16O(p,γ)17F

reaction does not have a compound nucleus. This thesis work will focus primarily on resonant

reactions as the reactions discussed are resonant however their cross sections are not the same
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shape as shown in Figure 2.5 (b).

Figure 2.6: Shows the experimental cross sections for Plutonium-239. While the total cross
section looks smooth as a function of energy it is actually made up of multiple resonant
peaks.

At lower excitation energies a resonant cross section will look similar to (b) in Figure 2.5

because there are a discrete number of excited states in the compound nucleus. However, as

the energy increases the number of resonances and excited states will increase and begin to

overlap. Imagine taking the single peak from (b) in Figure 2.5 and adding another to the

cross section for each new energy level in the compound nucleus. Eventually the resonant

cross section will begin to look the same as (a) from Figure 2.5 as more and more peaks are

added since there are so many resonances. For example, the cross section of 94Pu(n,γ)95Pu

is plotted in Figure 2.6. At lower energies there are discrete peaks from the discrete energy
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levels in the compound nucleus but as the energy increases the peaks increase in number

and make the cross section appear smooth.

Figure 2.7: Shows the NON-SMOKER theoretical cross section for the 84Kr(p,γ)85Rb re-
action. Notice that it has a smooth cross section but it is still a resonant cross section
[14].

The theoretical cross section for the 84Kr(p,γ)85Rb reaction is shown in Figure 2.7. This

cross section is also a resonant cross section similar to the cross section shown in Figure

2.6. Even though it appears smooth it is made up of multiple resonances. The slight dip

in the cross section around 3.4 MeV corresponds to the neutron channel opening which will

decrease the cross section of the this (p, γ) reaction occurring.

The resonant reaction cross section can be written with the Breit-Wigner equation

σ(E) =
ωλ2

4π

Γ1Γ2

(E − Er)2 + (Γ/2)2
(2.24)

where ω is given by

ω =
2Jr + 1

(2J1 + 1)(2J2 + 1)
, (2.25)
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λ is the de Broglie wavelength, Γ is the resonance width, Er is the resonance energy, Γi

are the partial widths of the entrance and exit channels and Ji are the respective angular

momenta. Notice in Figure 2.8, that these Breit-Wigner resonances are quite narrow. These

resonances are also dependent on the angular momenta of the excited states and will follow

quantum selection rules which are accounted for with the expression for ω.

Figure 2.8: Shows the shape of a Breit-Wigner resonance with energy Er and width Γ.

To see the effect of the resonances on the reaction rates, the cross section from Equation

2.24 is plugged into the derived reaction rate from Equation 2.15. Before writing the expres-

sion, note that the resonances will act like a delta function within the integral since they are

so sharp. Therefore, the resonances can be removed from the integral and replaced simply

by the energy of the resonance, Er. The substitution λ2/4π = πh̄2/(2µE) is also made and

the reaction rate can then be written as

〈σv〉 =

√
2π

(µkT )3
h̄2ωΓ1Γ2e

−Er/kT
∫ ∞

0

1

(E − Er)2 + (Γ/2)2
dE (2.26)
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where the integral simplifies to

∫ ∞
0

1

(E − Er)2 + (Γ/2)2
dE =

2π

Γ
. (2.27)

Plugging this into Equation 2.26, the reaction rate is

〈σv〉 = ωγ

(
2π

µkT

)3/2

h̄2e−Er/kT (2.28)

where ωγ is defined as the resonance strength

ωγ =
2Jr + 1

(2J1 + 1)(2J2 + 1)

Γ1Γ2

Γ
. (2.29)

These resonant reaction rates are then dependent on the resonance strength (ωγ), the reso-

nant energy (Er) and the temperature of the stellar environment.

At lower energies the excitation energies of the nucleus are discrete and well spaced. As

the excitation energy, related to the beam energy for an experiment as well as the temperature

within the star, increase, these levels become more numerous and begin to overlap. It

becomes imprudent to treat the levels separately and instead to treat the levels statistically

and average over the resonances. As the energy levels become more numerous and closer

together the cross section will appear to look smooth because of the quantity of overlapping

resonances. Consider an energy range, ∆E, at a high excitation energy where there are

multiple overlapping Breit-Wigner resonances that correspond to energy levels in a compound

nucleus. The average over this region can be calculated starting with Equation 2.24 and

integrating over the energy region while simultaneously summing over the energy levels
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present by writing

〈σ12(E)〉 =
1

∆E

∫ E

E−∆E

∑
i

ωλ2

4π

Γ1Γ2

(E′ − Er)2 + (Γ/2)2
dE′ (2.30)

where ω is given by Equation 2.25 and depends on the angular momentum, J and parity, and

the sum is over the Breit-Wigner resonances. For a complete solution the angular momentum

dependence must also be taken into account and summed which will be added in later steps

of the derivation. Recall ω is energy independent as well as the sum which is simply the

number of Breit-Wigner resonances within the energy range, nres, and both can be removed

from the integral. The previous expression is now

〈σ12(E)〉 =
ωλ2

4π

nres
∆E

∫ E

E−∆E

Γ1Γ2

(E′ − Er)2 + (Γ/2)2
dE′. (2.31)

The expression nres/∆E can be simplified as ρ(E) where ρ(E) is the average level spacing or

the level density as a function of energy. The average level spacing is much smaller than the

energy range of interest and thus the integral can be taken from zero to infinity. With these

limits of integration the results of Equation 2.27 can be plugged into the previous expression

and simplified to

〈σ12(E)〉 =
λ2

2π
ωρ

〈
Γ1Γ2

Γ

〉
. (2.32)

It is also important to note that the quantity 〈Γ1Γ2/Γ〉 can be rewritten such that the energy

widths are independent of each other by introducing a width fluctuation correction that is

spin and parity dependent. This idea was originally proposed by Niels Bohr in 1936 [38]

when he hypothesized that a projectile nucleus that forms a compound excited system with

the target will deexcite independently of its formation and “forget” the entrance channel
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used to populate the compound nucleus. This is known as the independence hypothesis.

Thus the substitution 〈
Γ1Γ2

Γ

〉
= W12(J,Π)

〈Γ1〉〈Γ2〉
〈Γ〉

(2.33)

can be made where 〈Γ〉 =
∑
i〈Γi〉 [39]. Now Equation 2.32 can be rewritten with the angular

momentum and spins added and the substitution from Equation 2.33 for a final form of the

cross section as

〈σ12(E)〉 =
∑
J,Π

λ2

2π
ωJρ(E, J,Π)

〈Γ1,J,Π〉〈Γ2,J,Π〉
〈ΓJ,Π〉

W (E, J,Π). (2.34)

The total cross section can be written by summing over all the exit channels,
∑
i Γi = Γ,

and if we consider a case where the projectile and target have J=0 this expression is

〈σtot1 (E)〉 =
ρλ2

2π
(2l + 1)〈Γ1〉. (2.35)

where l is the orbital angular momentum of the resonance. This 〈Γ1〉 expression can be

thought of as a transmission coefficient and notice how in Equation 2.34 they are all inde-

pendent of each other. The energy widths are related to the transmission coefficients through

this relationship

T = 2πρ(E)〈Γ〉 (2.36)

and it holds true for all of the widths, Γ,Γ1 and Γ2 [39]. Using this relationship and plugging

back into Equation 2.34, the average cross section can be rewritten as the Hauser-Feshbach

equation

〈σ12(E)〉 =
λ2

4π

∑
J,Π

W12ω
T1,J,ΠT2,J,Π

TJ,Π
. (2.37)
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where W12 is the width fluctuation parameter and Ti are the transmission coefficients with

their spin and parity dependence J,Π [40]. The width fluctuation describes the non-statistical

relationship between the entrance and exit channels and are generally of importance only

at channel openings. At higher excitation energies when the statistical region for Hauser-

Feshbach is reached, the fluctuation is typically one.

The Hauser-Feshbach model is an extension of the Bohr independence hypothesis built

on the fact that the entrance and exit channels for a compound nucleus are independent.

The projectile and target nuclei will interact by scattering or absorption into an excited state

that shares energy between the nucleons. Because the energy is shared the lifetimes of the

compound nucleus are long enough that the compound nucleus decays independently of its

formation channel and “forgets” its formation.

The transmission coefficients can be expressed through the level density as shown by the

relationship in Equation 2.36. When at higher energies decaying from the continuum the

total transmission coefficient is given by

T =
cut∑
i

Ti +
∑
j

∫ Emax

Ecut
= Tj(E

′)ρj(E
′, J,Π)dE′ (2.38)

where “cut” refers to the cutoff of experimentally known energy levels. For the discrete levels

the transmission coefficient is simply T and in the continuum it depends on the level density,

ρ, up to a maximum allowed energy state. Having the correct theoretical model for the level

density is very important as it can drastically change the simulated cross sections. These

transmission coefficients are calculated by solving the Schrödinger equation with the correct

potentials. For particles it is imperative to find the correct optical model potential. The

optical model potential dictates how the nucleons interact with one another when creating
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the compound nucleus. For γ rays the Schrödinger equation is solved with various radiative

strength functions, or γ-ray strength functions. The γ-ray strength function gives the prob-

ability for each γ-ray in a cascade and defines how a compound nucleus should statistically

decay. The transmission coefficients for γ rays is

Tχλ(Eγ) = 2πfχλ(Eγ)E2λ+1
γ (2.39)

where χ denotes whether it is an electric or magnetic transition, E or M, respectively and

γ denotes the transition multipolarity or the angular momentum of the γ ray. As with the

level densities, the specific γ-ray strength function models used are very important and can

have a large effect on the final cross section. Of course there are more nuclear properties

than the level densities and γ-ray strength functions required as inputs into the Hauser-

Feshbach formulism such as masses, half-lives, and radii. For this work, the level densities

and the γ-ray strength functions were the most important parts of using the Hauser-Feshbach

formulism since the other nuclear properties involved are mostly experimentally known. The

simulations done for this work with the statistical model code RAINIER and will be discussed

further in Chapter 5.

2.7 Reciprocity Theorem

The p process is a series of photodisintegration reactions, (γ,n), (γ,p), (γ,α), which have

previously been measured directly with γ beams [41]. However, it is generally beneficial to

measure the inverse for astrophysical reactions: (n,γ), (p,γ), (α,γ). This thesis work directly

measured the inverse reactions, 84Kr(p,γ)85Rb, even though the reactions taking place in the
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stellar environment are 83,85Rb(γ, p)82,84Kr. Fortunately, the two reactions can be related

through the reciprocity theorem also known as the detailed balance theorem [42].

Let us consider an arbitrary nuclear reaction, A+a→ B+ b. At a given energy the cross

sections between this and its inverse reaction, B + b→ A + a, can be denoted with respect

to the available exit states for each channel. The states available with respect to momentum

between the left and right sides of the reaction for each process is proportional to p2 [43].

Therefore we can write

σAa→Bb ∼ p2
Bb (2.40)

and

σBb→Aa ∼ p2
Aa (2.41)

where p is the momentum. The momentum can be rewritten in terms of the de Broglie

wavelength, λ = h/p, but λ can also be written in terms of the wave number, k, as λ = 2π/k.

Equating these two expressions gives the relationship p = h̄k and then Equations 2.40 and

2.41 can be written as

k2
AaσAa→Bb
(1 + δAa)

=
k2
BbσBb→Aa
(1 + δBb)

. (2.42)

The Kronecker delta terms account for the differences between cross sections with identical

and different particles in the entrance channel and will go to zero when the particles are not

the same. This means identical particle cross section are twice those for different particles. In

order to account for particles with spin, Equation 2.42 must be modified. There are (2Ji+1)

spin states available for the particles. This factor goes to two for photons as photons only

have two different polarization states. Taking spin into account and assuming A, a, B and
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b are not photons, we get

k2
Aa(2JA + 1)(2Ja + 1)σAa→Bb

(1 + δAa)
=
k2
Bb(2JB + 1)(2Jb + 1)σBb→Aa

(1 + δBb)
(2.43)

which can be solved for the cross section ratio

σBb→Aa
σAa→Bb

=
k2
Aa(2JA + 1)(2Ja + 1)(1 + δAa)

k2
Bb(2JB + 1)(2Jb + 1)(1 + δBb)

(2.44)

which gives us the reciprocity theorem [42].

The experimental cross section in the laboratory, where both the target and projectile

are in the ground state, was derived giving Equation 2.15. However, in a stellar environment

the particles may be in low-lying excited states instead of the ground state. The probability

of a nucleus being in an excited state i is given by the ratio of the number densities as was

used in Section 2.2 to derive Equation 2.7. The ratio of the number density of a particle in

excited state i, Ni, and the total number density, N , then gives the probability of a particle

being in excited state i. The probability is given by the Boltzmann distribution

Pi =
Ni
N

=
gie
−Ei/kT∑

i

gie
−Ei/kT

=
gie
−Ei/kT

G
(2.45)

where gi ≡ (2Ji+1) is the statistical weight from spin, Ji is the spin and Ei is the excitation

energy of the state, i [44]. k is the Boltzmann constant, T is the energy of the stellar

plasma and G is the partition function that is the sum over i including the ground state.

The reaction rate for ground state nuclei, and what is measured in the lab, can therefore be
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written as

〈σv〉Aa→Bb =
∑
j

〈σv〉g.s.→jAa→Bb (2.46)

where j is the energy state in nucleus b.

As mentioned previously, in a stellar environment the reaction rates for excited nuclei,

〈σv〉∗, are of primary importance over nuclei in the ground state, 〈σv〉. Going back to our

arbitrary reaction, A + a → B + b, the reaction rate with excited nuclei is denoted by

summing over all acceptable transitions from nuclei A and a into the excited states of nuclei

B and b with the correct averaging of excited state combinations in nuclei A and a. This is

given as

〈σv〉∗Aa→Bb =
∑
i

PAi
∑
j

〈σv〉i→jAa→Bb =

∑
i gAie

−EAi/kT
∑
j〈σv〉

i→j
Aa→Bb∑

i gAie
−EAi/kT

(2.47)

where i is the energy state in nucleus A and j is the energy state in nucleus b. These two

expressions for the reaction rates have the same general form for the inverse reactions as

well.

Using Equation 2.45, stellar reaction rates can be calculated from the ground state reac-

tion rates measured in a lab through statistical model theories [14]. This ratio of reaction

rates is called the stellar enhancement factor

f∗ =
〈σv〉∗

〈σv〉g.s.
. (2.48)

Combining this definition, the expressions for the reaction rates, Equations 2.46 and 2.47,

and the expression for the probability from Equation 2.45 we get the final expression for the
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ratios of the stellar reaction rate and its inverse [1].

〈σv〉∗Bb→Aa
〈σv〉∗Aa→Bb

=
gAga(1 + δBb)G

n
AG

n
a

gBgb(1 + δAa)GnBG
n
b

(
MAMa

MBMb

)3/2

e−Q/kT (2.49)

where M is mass, Q is the Q-value of the reaction, and Gn is the normalized partition

function. It is normalized to the ground state spin: Gn =
∑

(2Jg.s.+1)e−E/kT /(2Jg.s.+1).

This thesis reaction and the p-process reactions typically involve a photon in the entrance

or exit channel; therefore, let us rewrite Equation 2.49 with a photon. Now instead of

the reverse reaction we have the decay constant, λγ . Thus the relationship between the

photodisintegration reaction and its inverse capture reaction is

λ∗Bb→Aa
〈σv〉∗Aa→Bb

=
gAgaG

n
AG

n
a

gB(1 + δAa)GnB

(
MAMa

MB

)3/2(µAakT
2πh̄2

)3/2

e−Q/kT (2.50)

where µAa is the reduced mass of nuclei A and a [45].

Figure 2.9: Figure taken from Illiadis and shows a cartoon example of a capture reaction,
1 + 2→ 3 + 4, in the (a) lab and (b) a stellar plasma. The reaction has initial energy levels,
µ, and final energy levels, ν [1].

Cross section measurements in the lab are not measuring the same cross section that

occurs in a stellar environment. However, the reverse and forward relationship between
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cross sections provides the ability to go between the two values with the stellar enhancement

factor. Figure 2.9 shows a cartoon example of a reaction, 0 + 1 → 2 + 3, in the lab and

in a stellar environment taken from Illiadis [1]. In part (a) the initial nucleus, 0, has a

ground state energy of µ0 and the final nucleus, 3, has energy levels νi. Part (b) shows how

within the stellar plasma the starting nucleus, 0, can also start with higher energy levels

µi. The ground states, marked with purple lines, in both cases are offset by the Q value of

the reaction which allows for higher energy states to be populated in the resulting nucleus,

in this case 2 + 3. For reactions with a positive Q value, the ground state contribution to

the stellar reaction rate is the largest which makes measurements in the lab on ground state

nuclei advantageous. For p-process reactions, the capture reactions generally have a positive

Q value; for example, the reactions measured in this thesis work has a Q-value of 7MeV.

After the lab measurements from the ground state are completed they can be converted

into the stellar reaction rates with Equation 2.50. These capture reaction measurements are

a better representation of the stellar reaction rates than the photodisintegration reaction

measurements.

50



Chapter 3

Experimental Techniques

3.1 Experimental Set Up: Overview

This experiment was run at the National Superconducting Cyclotron Laboratory (NSCL)

with the ReAccelerator (ReA) facility at Michigan State University (MSU). For the

84Kr(p,γ)85Rb cross section measurements, a stable Kr beam was injected into the cooler-

buncher and accelerated to the experimental setup installed on the multi purpose beam

line of the ReA experimental area. While this reaction was on a stable nucleus, future

experiments with re-accelerated radioactive beams from the Facility for Rare Isotope Beams

(FRIB), the A1900 and the gas stopper will be used with this technique to directly measure

cross sections on radioactive isotopes and will be described in more detail in Section 3.1.1.

This setup uses a new gas cell target which was designed, built, tested and placed in the

center of the Summing NaI (SuN) detector which will be discussed further in section 3.1.2

[15]. The Scintillating Cosmic Ray Eliminating ENsemble (SuNSCREEN) [46] was placed

above the SuN detector to help eliminate the cosmic ray background as a veto detector.

Eliminating the cosmic ray background is very important for these types of experiments

as it dominates the energy spectra in the sum peak region. In order to measure these

cross sections, thorough background subtraction techniques must be implemented. The

background subtraction methods used in this work will be discussed in Section 4.3. Figure
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Figure 3.1: A close up of the experimental setup. The beam went from right to left following
the green arrow. The positions of the Si and MCP detectors are shown. The SuNSCREEN
detector is not pictured here but was sitting above SuN and the gas target was at the center
of the SuN detector.

3.1 shows the experimental end station without SuNSCREEN which sat directly above SuN.

The silicon (Si) and micro channel plate (MCP) detectors were tested for future radioactive

beam experiments where the beam rates and currents are too low to measured directly off

the beam pipe. For this work, the beam currents were measured with isolating flanges off

the beam pipe which was used as a Faraday cup. The 82,84Kr beam moved from right to left

along the green arrow in Figure 3.1 and the gas cell sat in the center of SuN. At the end of

the beam pipe on the left gas was fed into the gas inlet tube to fill and empty the gas cell

with hydrogen gas.

The 84Kr(p,γ)85Rb reaction cross sections were measured at four beam energies within

the Gamow Window for each reaction: 3.7, 3.4, 3.1 and 2.8 MeV/u. Data was taken with

the gas target empty and full of hydrogen gas in order to isolate and subtract beam induced

background. To isolate the room background the beam was delivered in 100 µs pulses with
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200 ms of dead time and the room background was subtracted from the final spectra which

will be discussed in Section 4.3.

Figure 3.2: An outline of the NSCL and ReA facilities. Our beam began with injecting an
84Kr beam into the cooler-buncher before EBIT and was then accelerated to our experimental
end station shown in Figure 3.1.

3.1.1 NSCL and ReA

This experiment was performed at the ReA facility at MSU. ReA has the ability to re-

accelerate stopped radioactive beams from the NSCL and to accelerate stable beams from its

own surface ion source [47]. These beams can be accelerated from energies of approximately

300 keV/u to 6 MeV/u. For this work, a stable 84Kr beam was produced from the surface

ion source and then extracted into the electron-beam ion trap (EBIT). The EBIT converted

the 84Kr beam into a higher charge state, 27+, by stripping electrons. Once the electrons

53



are stripped, the beam is accelerated through a radiofrequency quadrupole (RFQ) and linear

accelerator (LINAC) to an energy of 3.7, 3.4, 3.1, and 2.8 MeV/u into our setup. The NSCL

and ReA facilities are shown in Figure 3.2. ReA beams are delivered into one of three beam

lines shown in the top right corner of the figure. On the left side there is a close up of the

EBIT, RFQ and LINAC that lead into the three lower energy beam lines. The experimental

end station was installed on the multi purpose beam line in the low energy area shown in

Figure 3.2. The EBIT can also provide pulsed beams into the setup which was essential for

background subtraction in the present experiment.

3.1.2 Experimental End Station

The experimental end station for this experiment consisted of four main components:

SuN, SuNSCREEN, the gas cell target and detectors to measure the beam current. This

setup was installed on the ReA multi purpose beam line as shown in Figure 3.2. This section

will go through each of these in greater detail starting with the SuN detector.

SuN is a total absorption γ-ray detector used for measuring (p, γ) and (α, γ) reaction

cross sections with the γ-summing technique [15]. This technique will be discussed in greater

detail in Section 3.2. SuN is a NaI(TI) barrel that is 16 inches in height and 16 inches in

diameter with a 1.7 inch borehole along its central axis as shown in Figure 3.3. This provides

a nearly 4π coverage for γ-rays being emitted at its center. SuN is ideal for high efficiency

measurements however, it has a lower energy resolution than other types of γ-detectors, like

germanium, which have higher resolution but lower efficiency.

There are eight optically isolated crystals in SuN and each has three photomultiplier

tubes (PMTs). The isolation of the crystals allows single segment analysis simultaneously to

the summing analysis. In this way, SuN can be used to see both the individual γ-ray energies
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Figure 3.3: A schematic of the SuN detector. SuN is a segmented total absorption γ-ray
detector made of sodium iodide. [15]

of a cascade and the energy of the levels. SuN has previously been used for froward and

inverse kinematics reaction measurements [48] [49] [50] [51] [52] [53]. The previous inverse

kinematics experiments had results with good agreement to previous data and is used in this

work as well [51]. This technique will be discussed in greater detail in Section 3.3.

For astrophysics reactions, the energy range of interest contain a large amount of cosmic

ray background. Low cross sections in the Gamow window lead to sum peaks with fewer

counts compared to the cosmic background. Sum peaks will be discussed in greater detail

in Section 4.2. Background subtraction becomes very important for the measurements and

especially for radioactive beams with lower rates than those seen in this work. For this work

two methods were used for background subtraction: SuNSCREEN and the beam timing.

More details about the beam timing will be discussed in Section 4.3.

SuNSCREEN is a set of nine plastic scintillating bars placed above SuN as shown in

Figure 3.4 [46]. This detector was used to veto cosmic events that would show up in SuN
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Figure 3.4: The SuNSCREEN detector sitting above the SuN detector from the experiment
measuring the 84Kr(p, γ)85Rb cross section. The green bricks are lead bricks to help reduce
background. The beam went through the center of SuN from left to right.

and create background counts in the energy area of interest. The PMTs are labelled 1-9

from right to left as seen in 3.4. Each bar is a 5 in x 2 in x 60 in rectangular box wrapped

with a thickness of 5.08 cm in a layer of teflon tape, aluminum foil and two layers of 0.01

in black opaque plastic [46]. The bars overlap their neighboring bars by 0.75 in to form a

roof above SuN for optimal angular rejection cover. The front PMTs are up stream and

the back PMTs are down stream towards the right side of the picture. In order to reduce

background noise from the PMTs, a coincidence is required between the front and back

PMT in the same bar. Events from the reactions of interest within SuN will not make it

into SuNSCREEN. The events in SuNSCREEN are then cosmic or room background events

and should be removed from the spectra. Thus, on an event by event basis anything in SuN

coming in coincidence with a good signal from SuNSCREEN was rejected as background.
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In tandem with SuNSCREEN, a pulsed beam from EBIT was used to eliminate most of the

remaining background. More details about this process will be discussed in Section 4.3.

The last important piece of this experiment was the hydrogen gas cell target. The cell is

shown in Figure 3.5 which shows both a front view, (a), and a side view, (b). The gas cell is

made of two plastic halves that are glued together and was designed at Hope College. The

foil on the front face of the cell in Figure 3.5.a is made of tantalum. The inside of the gas cell

is also lined with the same tantalum foil in order to shield the beam from the plastic walls

of the cell which would induce background. The inner foil is a thin 2 µm molybdenum foil

chosen for being strong enough to hold the 650 Torr pressure but a heavy enough nucleus

to minimize background from reactions with the beam. While the gas cell introduced more

complications with the analysis, it was used in order to have a pure target. With low cross

sections and low beam intensities, it is important that every beam particle that makes it

into the setup interacts with hydrogen instead of other impurities which would be present

in a solid hydrogen target. The use of the gas cell introduced new analysis difficulties from

the energy straggling through the gas cell window and the gas. The energy straggling also

changed the shape of the sum peak and the overall summing efficiency of the SuN detector.

Simulations were performed with previous SuN data for the 90Zr(p, γ)91Nb reaction in order

to create and validate a new analysis technique to extract SuN’s efficiency. These efficiency

calculations will be discussed in detail in Chapter 5.

In order to isolate the beam induced background from the cell, measurements were taken

with the cell empty and full of hydrogen gas. The statistics for each beam energy were

summed for the full cell and empty cell runs. Once summed the runs were scaled based

on the beam current deposited into the beam pipe and then subtracted. This ensured that

whatever background made from the beam interacting with the cell itself was removed from

57



Figure 3.5: Two different views of the gas cell target that was filled with hydrogen gas at
the center of SuN. (a) shows the front face of the cell and (b) shows the side of the cell.

the final spectra.

For this experiment there was a gas handling system used in order to fill and empty the

cell of hydrogen gas safely. Figure 3.6 shows (a) a schematic overview of the gas handling

system for the SuN hydrogen gas target, (b) the upper panel and (c) lower panel of the gas

handling system. The gas handling system comprises of a hydrogen gas bottle, a hydrogen

reservoir, the beam line holding the cell and the gas cell target. The hydrogen bottle is

always isolated from the rest of the system to ensure that hydrogen does not leak into the

beam line or the cell. A smaller reservoir is filled with hydrogen gas from the bottle that is

used to fill the cell with 650 Torr of hydrogen gas to make the setup “beam ready”.

The lower panel, (c) in Figure 3.6, had all the valves responsible for emptying and filling

the beam line and cell. The beam line has to be vented and pumped down simultaneously

to the gas cell to ensure that the pressure difference is never large enough to break the cell

foils. Once the beam line and the cell are at vacuum, the gas cell is filled with hydrogen

and monitored remotely with a manometer signal read through an EPICS channel controlled

by a dual-channel PDR200 unit. The upper panel, (b) in Figure 3.6, shows the flowmeters

monitoring the dry nitrogen and the hydrogen gas bottle. These should only change when

filling the reservoir or venting with dry nitrogen.
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Figure 3.6: Shows (a) a schematic overview of the gas handling system for the SuN hydrogen
gas target, (b) the upper panel and (c) lower panel of the gas handling system.

3.2 Summing Technique

SuN uses the γ-summing technique for direct cross section reaction measurements [54]

[15]. Once the beam and the target interact a compound nucleus is formed in an excited

state. This excited state has an entry state energy as seen in Figure 3.7 at the center of

mass energy plus the Q-value for the reaction, Ees = Q + Ecm. The center of mass energy

is as follows:

Ecm = Eb
mt

mb +mt
(3.1)
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where Eb is the beam energy in MeV, mb is the beam mass and mt is the target mass.

For this experiment the correction is slight since the target is hydrogen with a mass of one

making the mass fraction term close to one as well. When the compound nucleus is created

in this excited state it will emit γ-rays or particles at high enough energies enough until

the nucleus reaches its ground state or a long lived isomeric state. If this target is then

surrounded by a γ-ray summing detector it is possible to measure the emitted γ-rays and

determine how many times this nucleus was created or how often this reaction of interest

occurred.

For the summing technique, the γ-rays from the reaction are measured by a large volume

summing detector, like SuN, which almost has a 4π coverage around the target. On an event

by event basis, the γ-rays are summed into a total absorption spectra (TAS) which creates a

single sum peak corresponding to the entry state energy. This is shown in a cartoon in Figure

3.7. The top half of the right side of the Figure 3.7 corresponds to using a small sized γ-ray

detector and the bottom half corresponds to using a large volume detector like SuN. Smaller

detectors can also be used to measure single γ-rays from a cascade instead of summing.

If information is known about the nucleus and its decay it is possible to measure specific

γ-rays in a cascade and still determine how much of the compound nucleus was created.

For example, if the γ(2,1) γ-ray in Figure 3.7 was known to be a dominant transition then

measuring this γ-ray would also be a good estimate for calculating how many times this

reaction took place [55].

The Q-value for the 84Kr(p, γ)85Rb reaction is 7.016 MeV. For a beam energy of 3.7

MeV/u and using the cartoon in Figure 3.7, the entry state energy would then be 10.7 MeV.

The excited 85Rb compound nucleus would then decay from the 10.7 MeV energy state. The

γ-summing technique will show this energy level as a single sum peak, the bottom half of
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Figure 3.7: A cartoon example of the γ-summing technique. A compound nucleus will be
excited to the entry state level and de-excite via γ-ray emissions to the ground state or long
lived isomeric state. The summing technique will sum the γ-rays from each cascade into the
sum peak, at the entry state energy, shown in black.

the figure, when looking at a TAS spectrum. Since SuN has optically isolated segments, it is

also possible to look at the individual γ-rays in the cascade in a spectrum called the Sum of

Segments (SoS), the top half of the figure and similar to having a small size detector. The

most important part and the most difficult part to this analysis is estimating the summing

efficiency of the detector used and this process will be discussed in Chapter 5

3.3 Inverse Kinematics

Most of the previous p-process measurements have been done in forward kinematics. For

forward kinematics there is a light beam impinging on a heavy target. If this work was done

in forward kinematics there would have been an 84Kr target with a proton beam. However,

most of the p process reactions in the p process reaction networks are on radioactive isotopes.

Techniques using forward kinematics with proton, neutron, α and γ beams are limited to

reactions on long lived isotopes that can be fabricated into a target. Experiments with ra-

dioactive targets can be impossible to perform depending on the half life of the target. While
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running in inverse kinematics provides different challenges, it allows radioactive isotope mea-

surements to be performed. A cartoon example of an inverse kinematics experiment is shown

in Figure 3.8. This experiment provided a secondary bonus of creating a benchmark with

this new experimental technique with a stable beam before applying it to radioactive beams.

SuN has been previously used for inverse kinematics experiments without the hydrogen gas

cell with good agreement to previous measurements [51].

Figure 3.8: Shows a cartoon of an inverse kinematics setup where a heavy beam, 84Kr,
impinges a light hydrogen gas target.The red lines represent the γ-rays from the de-excitation
of the compound nucleus.

Inverse kinematics techniques have previously been used with recoil mass separators with

arrays like DRAGON at TRIUMF [56]. A heavy isotope beam impinges on a light target,

usually hydrogen or helium gas, and the reaction products and unreacted beam pass through

a series of magnets and electric fields to separate them. Measuring heavier isotopes with this

technique is harder because separation is more difficult. This technique has been used to

successfully measure (p,γ) and (α, γ) cross section reactions. Storage rings, like ESR at GSI,

can also be used to measure reactions in inverse kinematics [57]. For this technique, a heavy

isotope beam is injected into a large ring where the nuclei orbit. Within the ring, there is
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a target chamber with a hydrogen or helium target where the beam interacts. The reaction

products will have different mass and charge to the original beam and can be detected.

This thesis work uses the inverse kinematics technique but has a hydrogen gas target

placed at the center of SuN where the heavy beam interacts. This provides a new analysis

complication in the detection of the γ-rays: the Doppler effect. In forward kinematics the

beam is much lighter than the target so the products are created and decaying at a stationary

point without a recoil velocity. In inverse kinematics the beam has enough velocity that after

interacting with the light target the products do not stop. The products will have a recoil

velocity and thus the emitted γ-rays are being emitted from a moving source. Because the

γ-rays are coming from a moving sources, the γ-rays detected in the forward direction will

appear higher in energy than if emitted at rest and γ-rays in the backwards direction will

appear lower in energy than is emitted at rest. A Doppler correction must then be applied

to every γ-ray that is measured. This correction will be discussed in more detail in Section

4.2.
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Chapter 4

Calibrations and Background

Subtraction

4.1 Gain Matching and Calibrations

First part of the analysis process is gain matching the PMTs in the SuN and SuNSCREEN

detectors. SuN is gain matched with the background radiation peak from potassium-40, 40K.

Figure 4.1 shows the fitting of the 40K background peak for the bottom segment PMTs of

SuN. Background radiation is used for gain matching because it interacts with each of the

segments from the outside of the detector. This eliminates the position dependence of the

light collected by the three PMTs in each segment. If the gain matching is not done well it will

affect the energy resolution of the summed spectra because the centroids of the background

PMT peaks are slightly offset. After summation, the peaks which aren’t properly aligned

will create an artificially wider sum peak which worsens the detector’s energy resolution.

Once an hour long background run is taken the spectra are fit with a Gaussian to find the

centroid of the 40K background peak in each PMT, as shown in Figure 4.1. The centroid

from a center PMT is chosen arbitrarily as the “correct” channel and multiplicative factors

are calculated to adjust the high voltages applied to each PMT. This allows for an initial

correction in the hardware to align the 40K background peak with the high voltages and a
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more accurate correction is applied later in the software.

Once the gain matching is completed with the high voltage adjustments for each PMT,

the thresholds must also be adjusted. A 241Am source is used for this purpose because it

emits a strong low energy γ-ray at 59.6 keV. The source is placed at the center of each

segment and statistics are collected until a clear peak can be seen sitting on top of the low

energy background. No fitting is required for the thresholds and they are raised or lowered

in the hardware for each PMT in order to ensure that the entire shape of the 241Am γ-ray

can be seen above the background. If the thresholds are too low the data acquisition system

can get overwhelmed with low energy background and if the thresholds are too high it will

cut out real signals.

Everything prior to this point are adjustments made to the hardware. After those ad-

justments are made, the gain matching is redone through software and the calibrations are

applied from source measurements. After the gain matching and thresholds are complete,

the three PMTs from each segment are summed leaving eight summed segment spectra. The

calibrations for SuN are applied on a segment by segment basis from source measurements

taken from the center of the detector. Sources used for calibrations are 241Am, 60Co, 137Cs

and 228Th. 137Cs is used as a relatively low energy calibration point as it emits a single γ-ray

at 661 keV. 228Th has multiple γ-rays over a larger energy range which is useful for having

a better overall calibration. Lastly, 60Co is doubly helpful since it emits two simultaneous

γ-rays at 1173 keV and 1332 keV. This source can also be used to check the coincidence

window within SuN to be confident that the summation is working correctly. Each source

is placed in the center of SuN for a half hour to accumulate statistic. The gamma peaks

are fit with Gaussians to find the channel centroids. The channel number is then compared

to the actual energy values of each gamma ray. An example for the 60Co source spectra is
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Figure 4.1: Shows the bottom segment PMTs of SuN and their gain match fitting. Gaussians
are fit on the centroid of the 40K background peak for each PMT. The centroid of a center
PMT is chosen and multiplicative factors are calculated to shift the other PMT centroids
to the same channel. E[0][1][1] refers to a specific PMT. The first bracket is top or bottom
half, the second bracket is the segment and the last is the PMT within that segment.

shown in Figure 4.2. It is important to get sources that can span a wide energy range. With

more energy points the calibration will be more accurate. For this data a quadratic energy

calibration was used from the 241Am, 60Co, 137Cs and 228Th sources.

Once SuNSCREEN is lowered into position above SuN, it also needs to be gain matched

and thresholds need to be checked. The front side of the detector is upstream and the back

side is downstream. In order to lower the noise from the PMTs, the front PMT signals are

gated on the back PMT signals. This will also ensure that there aren’t extra veto counts.

SuNSCREEN is left on for an hour to gather background statistics and the gain matching

is applied on the low energy background peak.
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Figure 4.2: Shows the four bottom segment 60Co source runs. The two lower peaks are the
1173 keV and 1332 keV γ-rays. The higher energy peak is the occasional instance where the
two γ-rays are summed within the same crystal to see the 2505 keV γ-ray.

4.2 Sum Peak

When the beam, 84Kr, and target, hydrogen gas, interact they populate an excited

entry state within the compound nucleus, 85Rb, before it decays by emitting γ-rays which

are collected and measured by SuN. These γ-rays are summed event by event into a total

absorption spectra (TAS). In the TAS a sum peak appears at the entry state energy of the

compound nucleus. The sum peak energy and the entry state energy is the sum of the Q-value

for the reaction and the center of mass beam energy. The Q-value for the 84Kr(p, γ)85Rb

reaction is 7.0 MeV and the sum peak in this experiment was at an energy of 9 - 10 MeV

depending on the beam energy. The number of counts in the sum peak is directly related to

the cross section of the reaction since each count represents a γ-ray cascade from the excited
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85Rb nucleus. The number of counts corrected for the summing efficiency of the detector

give how many times this reaction occurred.

Figure 4.3: Shows a forward kinematics sum peak from the 60Ni(α, γ)64Zn experiment and
a reverse kinematics sum peak from the 84Kr(p, γ)85Rb experiment at 3.7 MeV.

The sum peak for the highest beam energy is shown in Figure 4.3 alongside the sum

peak from a forward kinematics experiment of the 60Ni(α, γ)64Zn reaction. Both peaks are

asymmetrical at lower energies due to incomplete summation of the γ-rays during the γ-

summing process and occurs for both forward and inverse kinematics experiments. In some

cases, generally for higher energy γ-rays, some of the energy is not deposited into the NaI

crystals and is instead scattered outside of the detector.

Because of the use of inverse kinematics in this thesis work, the sum peak for this exper-

iment was much wider than a typical forward kinematics experiment. There are two main

factors attributing to the shape of the peak: the Doppler correction and energy straggling

through the gas cell.

In inverse kinematics the compound nucleus will have a recoil velocity since the beam is

much more massive than the target. Because this compound nucleus is moving as it decays

the resulting γ-rays from the decays are being emitted from a moving source. A moving γ-ray

that is detected in the forward direction will appear to have more energy than if detected at
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Beam Energy (MeV/u) CoM Energy After Foil (MeV/u) β
3.7 3.09 0.0810
3.4 2.79 0.0759
3.1 2.48 0.0719
2.8 2.18 0.0662

Table 4.1: Shows the calculated β values using Equation 4.1 for the Doppler correction for
each beam energy and the calculated center of mass (CoM).

rest and a γ-ray that is detected in the backward direction will appear to have less energy

than if detected at rest. This is known as the Doppler effect and must be corrected for in the

analysis. This correction is applied on a segment by segment basis to the deposited energy

before summing. The shift in energy is dependent on both the initial beam energies and

the angle of the γ-ray emission. Table 4.1 shows the calculated center of mass energy of the

beam and target as well as the associated β values. β is calculated in the typical way

β =

√
1− 1

γ2
(4.1)

where γ is the center of mass energy shown in 4.1 and is calculated with Equation 3.1.

Once the original value for β is calculated it also needs to be corrected for the angle of

the incoming γ-ray. The angles used for this analysis were taken from Steven Quinn’s thesis

[2]. A set of GEANT4 simulations were performed to determine the average emission angle

for the γ-rays that deposit energy into each NaI crystal and these angles are used for the

Doppler correction. The angles for each segment are input into Equation 4.2 for each beam

energy

γ′ = γ(1− βcos(θ)) (4.2)

where γ′ is the Doppler corrected energy, γ is the original energy, β is calculated depending

on the beam energy, γ from Equation 4.1 and θ depends on the segment with the values
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listed in Table 4.2. The “Correction Factors” listed in Table 4.2 refers to the 1 − βcos(θ)

factor from Equation 4.2 which changes for each segment based on the angle. Multiplying

the original γ-ray energy by this correction factor gives the final Doppler corrected energy.

Segment Angle (◦) Correction Factors
1 2.559 1.0711
2 2.024 1.0388
3 1.118 0.9677
4 0.592 0.9358

Table 4.2: Shows the angles used in the Doppler correction from Steve Quinn’s thesis for
each segment of the SuN detector [2]. It also shows the correction values for each segment
for the highest beam energy, 3.7 MeV/u with β = 0.0810.

After applying the correction for the Doppler shift the sum peak is still wider than

a typical forward kinematics experiment because of the gas cell target. For astrophysics

experiments, the beam energies that correspond to the Gamow Window are quite low which

causes the beam to lose more energy through the gas cell window and the gas within the

cell. Figure 4.4 shows the experimental target used for this experiment which has a thick

tantalum washer on the face to stop the beam before it can interact with the plastic cell

behind the ring. The beam must go through the thin molybdenum foil and then through

the gas of the cell which was at a pressure of 650 Torr. As the beam moves through the foil

it loses energy and as it moves through the gas it will continue to lose energy. Depending

on where in the cell the reaction occurs, the entry state energy will change which causes the

sum peak to widen.

Looking back to Figure 3.7, the sum peak appears at the entry state energy of the

compound nucleus which is the beam energy plus the Q-value. The Q-value remains constant

but depending on where the beam interacts within the cell the beam energy is changing.

Instead of populating a single entry state multiple entry states are being populated which
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Figure 4.4: Two different views of the gas cell target that was filled with hydrogen gas at
the center of SuN. (a) shows the front face of the cell and (b) shows the side of the cell.

Beam Energy (MeV) After Foil (MeV) After Half the Cell (MeV) Center of Mass (MeV)
3.7 3.096 2.759 2.727
3.4 2.791 2.438 2.409
3.1 2.487 2.125 2.100
2.8 2.088 1.990 1.967

Table 4.3: Shows the energy loss of the beam through different sections of the gas cell: the
molybdenum foil window and half of the gas within the gas cell. The energy loss is directly
related to the width of the sum peak. There is also energy straggling of approximately 0.003
MeV.

leads to the wider sum peak. Table 4.3 shows the beam energies at various points through

the gas cell. The majority of the energy loss occurs when the beam passes through the thin

molybdenum foil. A 2 µm foil was chosen because it was thick enough to hold the desired 650

Torr pressure but also thin enough to reduce the energy loss. As the energy of the incoming

beam decreases the expected cross section for the reaction decreases exponentially so it is

imperative to reduce the energy as much as possible while still being able to hold pressure

within the cell. The wide shape of the sum peak for this experiment posed a new problem

for the analysis. A new analysis technique for this setup was designed and validated with

previous SuN data and will be discussed in Chapter 5.
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4.3 Background Subtraction

Background subtraction was a very important part of the analysis. For future experiments

with radioactive beams this will be even more important as beam rates and are much lower

than the rates seen for this experiment. This analysis had two types of backgrounds to

eliminate: room background or cosmic rays and beam induced background from the gas cell.

By using SuNSCREEN, a pulsed beam and running with the gas cell full and empty both

types of background could be isolated and subtracted.

SuNSCREEN is a form of active shielding for SuN developed at Hope College [46]. A

cosmic ray with enough energy will hit SuNSCREEN, escape, and hit SuN. If these two

events occur in coincidence then the event in SuN can be ignored as a cosmic ray event.

This technique reduces the overall room background by a factor of six.

The beam was pulsed for this experiment using the EBIT charge buncher [47]. Using a

pulsed beam, it is possible to isolate almost all of the room background that remains after

removing the vetoed events from SuNSCREEN. A cartoon of the beam time structure and

the gates is shown in Figure 4.5.

Figure 4.5: A cartoon of the beam time structure and the time gates to isolate cosmic
background. With time going from left to right, yellow represents the continuous cosmic ray
background, the green arrows represent the 200 ms of dead time between each blue 100 µs
beam gate. The orange boxes are the same 100 µs gates shifted in time by 100 ms which
should only be room background.

The beam was pulsed in 100 µs pulses separated by 200 ms of dead time. In Figure
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4.5, the blue rectangles are the 100 µs beam pulse gates, the green arrows are the 200 ms

of dead time, the orange rectangles are 100 µs room background gates also separated by

200 ms. The orange room background gates are the same length as the beam pulse gates

but are offset by 100 ms to ensure that they only capture room background counts and no

beam events. For every pulse cycle, represented by the green arrows, there will be two sets

of 100 µs of data collected. The blue pulses collect all the good events for the reaction with

a small amount of room background and the orange gates collect an equivalent time’s worth

of room background. Having each pulse be the same length of time ensures that the cosmic

background accumulated in each pulse should be the same magnitude. The background

counts collected in the orange time pulses are then subtracted from the counts in the blue

time pulses leaving the spectra with only the good events and beam induce background with

the gas cell.

Figure 4.6: Shows the 3.7 MeV sum peaks before and after background subtraction. The
black line is the original sum peak, red is the empty cell runs, green are the scaled empty
cell runs and blue is the fully subtracted spectra.

In order to isolate the remaining beam induced background from the gas cell two sets of
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runs were taken for each energy: full cell runs and empty cell runs. Data was taken with the

cell full of hydrogen gas and empty of hydrogen gas. All of the data for the full and empty

cell runs at each energy are summed together and then the empty cell data is scaled based on

the total amount of beam charge deposited for the full and empty runs. The beam current

was monitored for the duration of the experiment for both full and empty runs. Once the

scaling was complete the empty cell runs are subtracted from the full cell runs.

Figure 4.6 shows the spectra for the highest beam energy, 3.7 MeV. Black is the original

room background subtracted spectra with the SuNSCREEN vetos and the background gates

applied, green is the scaled empty cell runs and blue is the final subtracted spectra. When the

beam interacts with the plastic or the glue in the cell it creates a large amount of background

from fusion evaporation reactions that can hide the sum peak. After the subtraction the

shape and definition of the sum peak become more obvious.

At the low energies there are still counts present in the fully background subtracted

peak. After scaling, the two spectra are subtracted with up to as many as 106 counts per

bin. Statistical fluctuations would allow for up to 1000 counts per bin within uncertainties

but there could be other reasons for background counts. When the gas cell is empty the

energy straggling of the beam through the front foil and how the beam interacts with the cell

and the back foil will be different than when the gas cell is full. The beam will not be losing

energy through the gas and will have more energy when interacting with the cell and back

foil which will create slightly different spectra. Another possibility is that some background

is still coming in coincidence adding lower energy counts. However, in the energy region of

the sum peak the subtraction is quite good.

All of the data for each energy was analyzed with these background subtraction tech-

niques. The data for each energy for the full and empty cell runs were summed into a single
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spectra after applying the SuNSCREEN veto and the background gate subtractions. The

empty cell runs were scaled based on the total deposited beam current and then subtracted

from the full cell runs to give the final spectra for each energy. The blue line in Figure 4.6

is the fully Doppler corrected and fully subtracted sum peak for the 3.7 MeV beam energy.

The next step of the analysis process is replicating this sum peak with simulations using

RAINIER and GEANT4 in order to extract the summing efficiency of SuN for each beam

energy.
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Chapter 5

Analysis

When the compound nucleus, 85Rb, decays from its excited state it will emit a γ-ray

cascade whose energy sums to the excited entry state. These cascades can have different

multiplicities with γ-rays of various energies but they will always sum to the entry state

energy. Each γ-ray will have a different efficiency of being detected by SuN based on the

energy and the number of segments of SuN that fired and recorded the event. This relation-

ship is not known for this new experimental setup but is very well known for the typical SuN

experimental setup. Since it is not well known for this experimental setup a new simula-

tion method was developed and validated with previously published data to calculate SuN’s

efficiency.

5.1 Efficiency Validation

In order to validate this new analysis technique, it was first performed on a previously

published data set, the 90Zr(p,γ)91Nb cross section, measured with SuN that and analyzed

with the traditional efficiency technique [49]. To accurately simulate the efficiency of SuN

a two step simulation process is proposed. Using both the RAINIER and GEANT4 codes,

simulations are matched to the experimental data and the efficiency is extracted from the

simulations. RAINIER accounts for the physics of the decaying compound nucleus and

GEANT4 accounts for the detector response [58] [59].
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5.1.1 RAINIER

The first step of the simulation process is understanding the γ-ray cascades from the

excited compound nucleus as these cascades define the γ-ray multiplicity which subsequently

impacts the summing efficiency of SuN. RAINIER is a statistical model code that simulates

the γ-ray cascades from an excitation energy of the compound nucleus [58]. The resulting

energies and multiplicities of the γ-ray cascades are very important as SuN’s efficiency is

dependent on both. Figure 5.1 shows a cartoon example of various possible cascades from

a compound nucleus at an entry state energy, Ees. RAINIER must be run at the specific

excitation energy, Ees, that corresponds to the energy of the sum peak. The cascades

depend on the choice of nuclear level density and γ-ray strength function and for this reason

a systematic investigation of both parameters is required. The level densities and γ-ray

strength functions will be discussed in more detail in Sections 5.1.1.1 and 5.1.1.2.

Figure 5.1: Shows a cartoon example of the γ-ray cascades from an excited compound
nucleus. The energy and multiplicity of the cascades will change depending on the input
parameters used in RAINIER.

The first step of the new analysis technique is testing multiple input parameters in

RAINIER to find the best match for the experimental data. The most important param-

eters to change were the level density (LD) and γ-ray strength function (GSF) parameters

77



for these particular reactions. The next sections will briefly go over the various models and

their inputs.

5.1.1.1 Level Densities

The LD is a measure of how many levels there are in the compound nucleus in a certain

energy range and at a certain excitation energy. As the excitation energies increase the level

density goes from a discrete set of levels to a continuum where the levels begin to overlap.

Having an incorrect level density in the simulations would alter the multiplicities and could

change the overall shape of the sum of segments spectra. If the level density is too low there

would be more higher energy γ-rays with a lower multiplicity and if the level density is too

high there would be more lower energy γ-rays with a higher multiplicity.

There are two different models in RAINIER that can be chosen: the Constant Temper-

ature Model (CTM) or the Back-Shifted Fermi Gas Model (BSFG) [60] [61]. The simpler of

the two is the CTM which has the form

ρCTM =
ρ0

T
eE/T (5.1)

where ρ0 = (1/T )eE0/T , E is the energy and T is the temperature [18]. The temperature

and E0 can be altered to change the level density to better match experimental data for

certain nuclei. The BSFG model has the form

ρBSFG =
e2
√
a(E−E0)

12
√

2a1/4(E − E0)5/4
(5.2)

where a and E0 are free parameters that can be altered to help match experimental data.

Both of these models were examined in this work for the simulation process.
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5.1.1.2 γ-ray Strength Functions

The γ-ray strength functions determine the probability of the compound nucleus decaying

via specific γ-rays. Having an incorrect strength function will also alter the multiplicity and

energy of the γ-rays in the simulation. In RAINIER the user can select different γ-ray

strength functions: E1, M1 and E2. These transitions arise from selection rules where Ei are

electric transitions and M1 is a magnetic transition. For this reaction the E2 transitions do

not have a large effect for these reactions and were not altered from the default. E1 can be

either the Standard Lorentzian [62][63], General Lorentzian [64], the Kadmenskij Markushev

Furman model (KMF) [65] or the Kopecky Chrien model (KOP). M1 emissions are typically

described as a Standard Lorentzian with or without an upbend. Figure 5.2 shows an example

of a nucleus which has an upbend in the γ-ray strength function. This was data taken with

the SuN detector and there is a clear upward trend in the γ-ray strength function at lower

energies [16]. It is currently unknown if the upbend corresponds to an E1 or M1 transition

but in RAINIER it is assumed to be M1.

The Brink-Axel standard Lorentzian is written as a giant dipole resonance shape:

fχl(Eγ) = Kχl
σχlEγΓ2

χl

(E2
γ − E2

χl)
2 + E2

γΓ2
χl

(5.3)

where σχl is the strength, Eχl is the energy and Γχl is the width of the giant resonance and

where

Kχl =
1

(2l + 1)π2h̄2c2
. (5.4)

For the γ-ray strength functions it is important to have the correct parameters for the

strength, energy and width of the giant resonance for the compound nucleus being simulated.
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These resonances can be used for both the E1 or M1 transition but the M1 may also have

an upbend correction.

Figure 5.2: Shows the 70Ni γ-ray strength function [16]. Notice at lower energies there is an
upward trend or an upbend.

5.1.2 90Zr(p,γ)91Nb Comparison

In Figures 5.3 and 5.4, various simulation inputs from RAINIER are shown compared to

the experimental data, in black, for the 90Zr(p,γ)91Nb cross section.

Color Level Density E1 Model M1 Model
Red BSFG KOP no Upbend

Light Blue CTM KOP no Upbend
Yellow BSFG KOP Upbend

Dark Blue BSFG Standard Lorentzian no Upbend
Pink CTM KMF no Upbend

Table 5.1: Lists the input parameters for the various colors in Figures 5.3 and 5.4.
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Table 5.1 shows the input parameters used in the various colors found in Figures 5.3 and

5.4. The red line has a “default” set of simulation parameters: BSFG level density, E1 is

the KOP model and M1 has no upbend. The others are all changing one thing to show a

handful of the different options. These are not all the different inputs that were looked at

but gives a sample of the simulations.

Figure 5.3: Shows the 90Zr(p,γ)91Nb sum peak from a previously published data set with
SuN. Black is the experimental data and the colors are various input parameters with
RAINIER changing the level densities and gamma ray strength functions.

Figure 5.4: Shows the 90Zr(p,γ)91Nb sum of segments, (b), and multiplicity, (c), gated on
the sum peak in Figure 5.3 with the same colors.

For the validation process the default parameters for each model were not altered but
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for the 84Kr(p,γ)85Rb analysis they were altered and considered in more detail. The TAS

spectra shown in Figure 5.3 shows the experimental data for the 90Zr(p,γ)91Nb reaction

in black and various combinations of the previously listed simulation inputs. The peak at

approximately 7 MeV is from a background reaction with the proton beam and fluorine. It

is not relevant to the simulations as the segments and multiplicity are gated on the energy

range of the sum peak. The Sum of Segments (SoS) spectra shown in (a) of Figure 5.4 and

the multiplicity spectra in (b) are more sensitive to the level density and γ-ray strength

function. Notice in these example parameters, the simulations are too low at the higher

energies and too high around 4 MeV. This is most likely due to the simulations having a

level density that is too high. This would create more lower energy γ-rays with a higher

multiplicity than higher energy γ-rays.

After some alterations to the simulation inputs, the final cross sections were calculate

to validate the new analysis technique and compared to the previously published SuN data.

The area under the TAS sum peak is calculated for the simulation from Figure 5.3 and

compared to the number of events run in the simulation. This ratio gives the simulated

efficiency of the SuN detector which is plugged into the cross section calculations. The cross

section equation used in this work is

σ =
A

Nξ

1

Nb

I

ε
(5.5)

where A is the target mass, N is Avogadro’s number, ξ is the target thickness, Nb are the

beam particles, I is the number of times the reaction occurs and ε is the detector efficiency.

In this case the simulated cross sections are used instead of the typical technique used by

SuN described in the original 90Zr(p,γ)91Nb publication [49].
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Figure 5.5: Shows the 90Zr(p,γ)91Nb cross section from the new analysis technique, dark
blue diamonds, previously published SuN data, orange circles, previously published data
from Laird, green squares, and the theoretical NON-SMOKER values [17].

Using the new cross sections, a comparison is made with the previously measured data

and the NON-SMOKER theoretical values show in Figure 5.5 [49]. The new cross section

values from this technique are shown in dark blue diamonds, the previous SuN data is shown

in orange circles and the NON-SMOKER values are the light blue line. The cross section

values match well with each other and with the theoretical cross section values proving that

the new analysis technique works well.

5.2 GEANT4 Updates

After validating the technique changes must be made to the GEANT4 SuN geometry to

add the new hydrogen gas cell target into the center of the simulation. The code was also
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altered so that events were fired randomly from the entire volume of the gas cell instead of

the center of SuN since the beam can react anywhere within the cell.

Figure 5.6: Shows the updated GEANT4 geometry of the gas cell placed in the center of the
SuN detector. (a) shows the outside of the cell and (b) shows the inside of the cell.

Figure 5.6 shows the updated gas cell in GEANT4. (a) shows the outside of the cell

with light blue being the thin molybdenum foil, red being the tantalum washer, and dark

blue being the plastic. (b) shows the inside of the cell where yellow is the hydrogen gas

and the green lines are the events being initiated from the entire volume of the gas cell.

In order to lower the beam induced background, the inside of the cell is also coated with

a thicker tantalum foil so that the beam is shielded from the plastic and unreacted beam

cannot escape the gas cell as easily. That layer is not visible in Figure 5.6.

Lastly, the simulations were Doppler shifted since the experiment was run in inverse

kinematics. Because the beam is heavier than the target the γ-rays will hit the lighter

hydrogen nuclei and continue moving causing the γ-rays to be emitted by a moving source.

The Doppler shift is applied in the GEANT4 simulations which also helps to broaden the

simulated peaks and can be seen in (b) of Figure 5.7. (a) shows the original simulations from

GEANT4 which produces a much thinner sum peak. Figure 5.7 are only a single RAINIER

parameter set at a single energy.
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Figure 5.7: Shows the simulations (a) before the Doppler shift is applied, (b) with the
Doppler shift and (c) after it is corrected. Notice that the final simulation in (c) is wider
than the original since the correction process is not perfect.

The GEANT4 outputs shown in (b) of Figure 5.7 are then Doppler corrected in an

identical calculation as the experimental data. This process is outlined in Section 4.2. The

correction is only applied on a segment by segment basis and will not completely correct

the Doppler effect. Part (c) of Figure 5.7 shows the final corrected simulation spectra. It

is wider than the original simulated peak in (a) that was no Doppler shifted and corrected.

This step helps to identify how much of the peak width can be attributed to the Doppler

shift.
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5.3 Chi Squared Fitting

As the beam passes through the molybdenum foil it loses a large amount of energy. The

sum peak for this experiment is quite wide due to the energy loss in the target window,

hydrogen gas and the Doppler shift. The expected energy loss at various points in the gas

cell is given in Table 4.3. In order to account for the energy loss through the foil and gas

in the simulations another step is added to the analysis process for the 84Kr(p,γ)85Rb cross

section before extracting the detector efficiencies.

The initial RAINIER simulations were run at a specific entry state energy, Ees = Ebeam+

Q. Because there is a wide range of entry state energies due to the energy loss in the gas

cell, RAINIER inputs were run at 15 different energies incrementing by 0.1 MeV over the

expected energy loss range given in Table 4.3. All of these energy outputs are then run

through a χ2 minimization which simultaneously fits the TAS, SoS and multiplicity spectra.

The results shows how much each entry state energy feeds into the total spectra which defines

the simulated efficiency and recreates the wide sum peak.

Figure 5.8 shows an example of the χ2 fitting results for one set of RAINIER inputs

for the highest beam energy, 3.7 MeV. The red are the simulations and the black is the

experimental data. Notice that the TAS is zoomed in closely around the sum peak in order

to help constrain the fitting and since this is the only region of interest in this spectra. The

SoS and multiplicity spectra are gated around the same energy range shown in the TAS

spectra. This set of RAINIER parameters is the constant temperature model for the level

density and the Kadmenskij Markushev Furman model for the E1 γ-ray strength function.

Notice that this simulation has slightly too many statistics in the higher energy range of the

sum of segments spectra but overall is a good fit.
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Figure 5.8: Shows the fitted TAS spectra centered around the sum peak, the fitted sum
of segments gated on the sum peak and the multiplicity gated on the sum peak. Red are
simulations and black is the experimental data for the highest beam energy 3.7 MeV.

To create these fits, all the entry state energies are summed and the TAS, SoS and

multiplicities are fit simultaneously. The amount each of the entry state energies feeds into

these spectra is called the feeding ratio. The feeding ratios for this fit and their uncertainty

are shown in Figure 5.9. These feeding ratios are summed and multiplied by the number of

events in the simulation to get the simulated detector efficiency. This is the efficiency used
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Figure 5.9: Shows the feeding ratios for each of the entry state energies used in the simulation.
There is one feeding ratio for each of the initial entry state energies used which are all summed
to form the final spectra shown in Figure 5.8.

to calculate the final values of this cross section measurement.

5.4 Uncertainties

The calculations for the efficiency and energy uncertainties are outlined in more detail

in the following sections as they are more complex. Other uncertainties in the measurement

come from the current measurements and the gas cell pressure whose uncertainties were

defined by the detectors. The ammeter being uses for this experiment has an uncertainty

of 10−12A and the experimental currents measured were on the order of 10−7A making

the beam current uncertainties 0.001%. The noise in the ammeter was on the order a

10−15A. The pressure in the hydrogen gas cell was measured using a Baratron capacitance

manometer with an accuracy of 0.5%. The measurement at an atmosphere for the pressure

was approximately 10 Torr off from 760 Torr making the actual uncertainty around 1.5%.
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Energy Good Counts Error Empty Counts Error Subtracted Counts Statistical Error
3.7 39416 198 17299 131 22116 238
3.4 9639 98 4242 65 5396 117
3.1 12973 113 7102 84 5870 141
2.8 4936 70 1841 42 2797 82

Table 5.2: Lists the statistical uncertainties from subtracting the spectra. The Good Counts
are counts in the sum peak energy range, the empty counts are the same energy range for
the gas cell without hydrogen gas and subtracted counts are the remaining statistics.

The statistical uncertainties are outlined in Figure 5.2. The “Good Counts” are the

number of counts in the sum peak energy range for each energy when the gas cell was full of

hydrogen gas. The “Empty Counts” are the number of counts in the same energy range for

the empty cell spectra. Those errors are
√
N where N is the number of counts. The statistical

error for the subtracted spectra are given by
√

(N2
1 +N2

2 ) where Ni is the number of counts

in the sum peak and the empty sum peak energy range, respectively.

5.4.1 Efficiency Uncertainty

The fitting procedure outlined in Section 5.3 was completed for each energy level and

each level had twelve RAINIER input variations. Similar to the various inputs used with the

90Zr(p, γ)91Nb cross section, multiple inputs were considered for this calculation in order to

gauge the uncertainty in the simulation process. The final input parameters used for the

84Kr(p, γ)85Rb reaction simulations are listed in Table 5.3.

The twelve different simulations for each energy were analyzed identically. χ2 fits were

performed for each and the feeding ratios are summed to calculate the simulated efficiency

of SuN for each input. The efficiency was calculated by taking the feeding ratio sum and

multiplying by the number of events in the simulation. This efficiency was then used to

calculate the cross sections with equation 5.5 for each set of inputs and averaged to find an
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Set Number Level Density E1 Model Spin Cutoff
1 CTM Standard Lorentzian Single Particle
2 CTM Standard Lorentzian Rigid Sphere
3 CTM KMF Single Particle
4 CTM KMF Rigid Sphere
5 CTM KOP Single Particle
6 CTM KOP Rigid Sphere
7 BSFG Standard Lorentzian Single Particle
8 BSFG Standard Lorentzian Rigid Sphere
9 BSFG KMF Single Particle
10 BSFG KMF Rigid Sphere
11 BSFG KOP Single Particle
12 BSFG KOP Rigid Sphere

Table 5.3: Lists the RAINIER input parameters used for the simulations to calculate the
efficiency of SuN and quantify the uncertainty in the simulation process.

uncertainty in the simulation and fitting processes. The average change in the final cross

section was 2%.

An example for the 3.1 MeV beam energy is shown in Figure 5.4. The simulations listed

here correspond to the inputs shown in Table 5.3. Using the previously outlined procedure,

each input is fit and the cross section calculated. The percent different is shown in the last

column and comparing each to simulation 11. This input was chosen because it had the

smallest χ2 fit for the energy. The average percent difference for this energy is less than 1%

and the largest percent difference for all of the fits was 5%.

5.4.2 Effective Energy

The energy uncertainty is based on the energy loss through the molybdenum foil, the

energy straggling through the foil and the energy smearing from the Doppler shift although

the former is the dominant factor. The cross section measurement calculated in this experi-

ment has a range of entry state energies which are physically possible that correspond to the
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Simulation χ2 Cross Section (mb) Percent Difference
1 29 0.5600 1.28
2 27 0.5612 1.05
3 25 0.5544 2.27
4 23 0.5648 0.22
5 26 0.5590 1.45
6 21 0.5644 0.48
7 26 0.5631 0.72
8 26 0.5588 1.48
9 22 0.5711 0.69
10 22 0.5725 0.93
11 20 0.5672 0.00
12 20 0.5654 0.31

Average 24 0.5638 0.91

Table 5.4: Show the χ2 and associated cross sections values for the 3.1 MeV energy for
each RAINIER input listed in Table 5.3. The average for each value is also listed showing a
percent difference calculated compared to Simulation 11 since it has the lowest χ2 value.

energy loss within the gas cell. Within this range the probability that the measured cross

section came from a higher entry state energy is higher than measuring the reaction at a

lower entry state energy because the cross section increases rapidly with increasing beam

energy.

As the beam moves through the hydrogen gas target it is losing energy. Assuming a

constant stopping power within the gas cell but with a varying cross section, the yield of the

reaction is given by

Y (E0) =
1

ε(E0)

∫ E0

E0−∆E
σ(E)dE (5.6)

where Y (E0) is the energy dependent yield, ε(E) is the energy dependent stopping power,

E0 is the initial beam energy and ∆E is the energy loss in the target. For instances where

the cross section varies linearly in the energy range the previous equation can be rewritten

as

Y (E0) =
∆E(E0)

ε(E0)
σ(Eeff ) (5.7)
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Figure 5.10: Image taken from Illiadis [1] showing the comparison between (a) cross section
and (b) yield as the beam particles move through a target and loss energy. The effective
cross section in (a) corresponds to the effective energy in (b) where the yield above and
below this energy is equal.

where Eeff is the effective energy. The effective beam energy is the point at which the

total yield is 50% the yield at E0. Figure 5.10 shows the (a) smoothly varying cross sections

and (b) the corresponding yield which is the area under the curve of the cross section. The

darker region is the associated energy range within the target. Moving from right to left,

the energy begins at E0 and decreases by a total of ∆E. In (a) the effective cross section,

σeff is marked and in part (b) the corresponding effective energy is marked as Eeff . The

effective energy is a good “average” energy to consider as the yield for this energy range

above and below this point is the same. This effective energy is calculated by

Eeff = E0 −∆E + ∆E

− σ2

σ1 − σ2
+

√
σ2

1 + σ2
2

2(σ1 − σ2)2

 (5.8)

where σ1 = σ(E0) and σ2 = σ(E0 −∆E) [29].

Table 5.5 shows the starting beam energy, the energy after the foil and after the gas cell,

the total energy range of the gas cell and then the calculated effective energy using Equation

5.8. ∆E is the energy width of the gas cell and is linearly related to the position within the
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Beam Energy (MeV) After Foil (MeV) After Gas Cell (MeV) ∆E (MeV) Eeff (MeV)

3.7 3.096 2.404 0.692 2.851
3.4 2.791 2.076 0.715 2.566
3.1 2.487 1.756 0.731 2.269
2.8 2.088 1.478 0.736 1.996

Table 5.5: Shows the initial beam energy, the energy after the foil and gas cell, the energy
loss and the effective energy. The measured cross section has a higher probability of coming
from reactions at this calculated Eeff .

cell. The energy width of the gas cell ranges from the “After Foil” energy to the “After Gas

Cell” energy and the beam could have interacted at any energy range within these limits.

The effective energies listed in here are a low estimate for the energy where the yield is 50%

of the “After Foil” energy. The cross section is varying linearly but it is a steep change for

an energy range this wide. For this reason, the data is presented with the full energy range

of the gas cell shown with the effective energy and the highest “After Foil” energies listed.

5.5 Results and Discussion

The final cross section results for the 84Kr(p, γ)85Rb reaction are shown in Figure 5.11.

In blue are the TALYS calculations using the available nuclear level densities and γ-ray

strength functions and the NON-SMOKER values are shown in brown. NON-SMOKER

and TALYS are theoretical Hauser-Fesbach statistical model codes for cross sections and

reaction rates [14] [18]. TALYS was run with every various level density and γ-ray strength

function variation to create the theoretical uncertainty band for the cross section. At higher

energies TALYS has an uncertainty of approximately a factor of 10.

The results of the present work are shown in black for the energy after going through the

foil and the purple squares are the effective energies calculated in Section 5.4.2. The black

line represents the energy width of the gas cell. The energy range lower than the effective
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Figure 5.11: Shows the final cross sections and their uncertainties in black measured at the
energy after the foil and the purple squares measured at the effective emergy compared to
TALYS in blue and the NON-SMOKER theoretical values in brown [18].

energies consist of 50% of the expected yield for that beam energy.

Looking back at the chart of the nuclei zoomed into this mass region, Figure 5.12 shows

the reaction flow around the 84Kr(p, γ)85Rb reaction. The green arrows are the dominating

(γ, n) reactions, the red arrows are the (γ, p) reactions and the purple arrow is a (γ, α)

reaction. Recall that 85Rb was marked as a branching point between the (γ, n) and (γ, p)

reaction flow. If the cross sections for the 84Kr(p, γ)85Rb reaction are higher than theory, as

this measurement suggests, the reaction network would flow through the (γ, p) reaction here

over the (γ, n). Therefore the path to the p-nucleus, 78Kr, should go through the krypton

chain instead of the rubidium chain.

The measurements here match well with theory; however, the lower data points especially

seem to be slightly high. This suggests that there are possible systematic uncertainties that

need to be addressed for future experiments or in the simulation process. Some of the
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Figure 5.12: Examples for the p process reaction network with a series of (γ, n) (green
arrows), (γ, p) (red arrows) and (γ, α) (purple arrow) reactions. The red boxes and purple
boxes and branching points, the yellow box is a p nuclei.

systematic experimental uncertainties could be coming from the current measurement, the

empty cell subtraction, how the beam interacts with the gas cell and how much of the beam

makes it into the cell. There were current readings on the back flange of the beam pipe

and directly from the beam pipe. The beam pipe and the back flange were grounded from

each other and the gas cell was isolated from the beam pipe but connected to the back

flange. Current deposited into the back flange should have made it through the gas cell after

interacting with the gas and beam deposited into the beam pipe should not have interacted.

However, if the beam drifted and hit the tantalum ring that the molybdenum foil was glued

to, any part of the beam hitting the ring would not be able to make it into the gas cell

but would still be measured by the back flange. The gas cell was isolated from the beam

pipe and a tantalum foil was along the inside of the cell to ground the front face of the gas
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cell and the back of the cell which was connected to the back flange with a thin gas inlet

tube. The front face of the gas cell was touching the beam pipe so current deposited on the

tantalum foil would be read on the beam pipe. The empty cell subtraction method used

could also be a cause for systematic uncertainty. Instead of running with the cell empty for

these measurements using an inert gas should be considered. The beam will not react the

same in an empty cell as with a cell filled with gas.

5.6 Conclusions and Future Plans

The 84Kr(p, γ)85Rb cross section was directly measured for the first time using the SuN

detector in inverse kinematics. This reaction will help to constrain theory in the mass region

and helps to define the direction of the reaction flow within this energy region for the p

process. A new hydrogen gas cell target was designed and tested for this experiment as well

as a new efficiency analysis technique. This technique was validated with the previously

published 90Zr(p, γ)91Nb cross section measured with SuN [49]. The 82Kr(p, γ)83Rb data

must also be analyzed in the future for a more comprehensive examination of this reaction

chain which feeds the creation of the 78Kr p nucleus.

A new experiment using this technique was proposed and accepted for the ReA PAC

proposal to directly measure the 73As(p, γ)74Se cross section. This will be the first direct

radioactive measurement for the p process and directly effects the abundance of the lightest p

nuclei, 74Se. Some updates to the current experimental setup would be useful before running

the next experiment. Parameterizing the micro channel plate (MCP) detector designed at

Notre Dame and using it to measure the beam current upstream from SuN will be important

for a radioactive beam experiment with lower currents. It is a grid MCP designed for a high
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transmission rate and was tested during the initial phases of this work but not used for the

current readings. The empty cell spectra are scaled based on the beam current deposited

into the setup for the full cell runs. If this scaling is incorrect it would alter the final spectra.

The beam readings could be taken at faster intervals which would reduce the need to average

the measurements and the MCP would provide a continuous measurement of beam entering

the setup.

Updating the gas cell design would be useful to help both with the current and beam

transmission but also with the large energy width of the cell. Using a thinner gas cell would

provide a lower density of interacting particles but would have a thinner energy window.

However, if the molybdenum foil window diameter was reduced the same foil thickness

should be able to hold more pressure allowing for a thinner cell with the same density of

interacting particles. When redesigning a new cell, finding a way to read current off of the

front face of the cell independently of the beam pipe or back flange would be very useful

for identifying when the beam drifts and is not going through the foil window. This could

allow for more accurate beam measurements and subsequently a more accurate background

subtraction. A gas cell made of a different material other than plastic could also be useful.

If the beam interacted with the plastic in the cell it would create background whereas a cell

made of a heavier material would prevent that. Since our gas cell used tantalum foil to shield

the beam from the cell using tantalum as the cell material instead could be beneficial to the

next iteration of this experiment.
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[30] F. Käppeler and R. Gallino and S. Bisterzo and W. Aoki, “The s process: Nuclear
physics, stellar models, and observations,” Rev. Mod. Phys., vol. 83, p. 157, 2011.

100



[31] D. Kasen and B. Metzger and J. Barnes and E. Quataert and E. Ramirez-Ruiz, “Origin
of the heavy elements in binary neutron-star mergers from a gravitational wave event,”
Nature, vol. 551, p. 80, 2017.

[32] J.J. Cowan and W.K. Rose, “Production of 14c and neutrons in red giants,” Astrophys-
ical Journal, vol. 212, pp. 149–158, 1977.
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