BARRIER-ENERGY COULOMB EXCITATION WITH SEGA-JANUS

By

Daniel Milton Rhodes

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Physics – Doctor of Philosophy

2021
ABSTRACT

BARRIER-ENERGY COULOMB EXCITATION WITH SEGA-JANUS

By

Daniel Milton Rhodes

Experimentally determined indicators of nuclear shape and collectivity are crucial benchmarks on the quest to understand the structure of exotic nuclei. In even-even nuclei, the electromagnetic $B(E2; 2^+_1 \rightarrow 0^+_1)$ transition strength is an excellent indicator of collectivity which is sensitive to nuclear deformation, shell-breaking effects, and nucleon-nucleon correlations. Describing the evolution of $B(E2)$ transition strengths with decreasing neutron number in the even-even $Z = 50^{104-130}$Sn isotopes continues to be challenging for large-scale shell-model calculations due to the strong enhancement of collectivity approaching $N = 50$. This renders measures of quadrupole collectivity near $N = Z = 50^{100}$Sn particularly interesting.

The experimental technique of subbarrier Coulomb excitation can be used to probe shape and collectivity in nuclei by providing sensitivity to both $B(E2)$ transition strengths as well as spectroscopic quadrupole moments. In this work, the results of an inverse-kinematics Coulomb excitation experiment on $N = 58, Z = 48^{106}$Cd using the JANUS setup at the NSCL’s ReA3 facility is presented. The current results further the systematic understanding of nuclear structure approaching $N = Z = 50^{100}$Sn, and they clarify discrepant results reported in the literature for 106Cd.

Shell model calculations were performed in order to understand the structure of 106Cd. An analysis of $E2$ rotational invariants allowed for a detailed comparison of experiment to theory which revealed a large degree of triaxiality in 106Cd that is not captured by the calculations. High-j neutron configurations are shown to be crucial for describing the shape of the heavier Cd isotopes, but this affect cannot explain the current results for 106Cd.

In the Appendix of this work, the analysis and preliminary results of a Coulomb excitation experiment on the unstable nucleus 80Ge is presented. This experiment also used the JANUS
setup, and it was performed in order to provide one of the first indicators of nuclear shape in the neutron-rich Ge isotopes near $N = 50$.
To my wife, Deanna.
ACKNOWLEDGEMENTS

Acknowledgements to be added.
TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... x

CHAPTER 1 INTRODUCTION ... 1
 1.1 Atomic Nuclei .. 1
 1.2 Nuclear Models ... 4
 1.2.1 The Shell Model .. 7
 1.2.1.1 The Independent Particle Model 8
 1.2.2 Collective Models .. 14
 1.2.2.1 Vibrational Nuclei .. 14
 1.2.2.2 Rotational Nuclei ... 15
 1.3 Electromagnetic Transitions ... 19
 1.3.1 Reduced Transition Probabilities 21

CHAPTER 2 COULOMB EXCITATION ... 25
 2.1 Intermediate-Energy Coulomb Excitation 26
 2.2 Barrier-Energy Coulomb Excitation 27
 2.2.1 The Reorientation Effect 30
 2.2.2 Rotational Invariants ... 33
 2.3 Semi-Classical Theory ... 34
 2.3.1 Coupled Differential Equations 35
 2.3.2 The Electromagnetic Interaction 36
 2.3.3 Orbital Motion ... 38
 2.4 Gamma Decay .. 39
 2.4.1 Nuclear Alignment ... 40
 2.4.2 Angular Correlations ... 42
 2.5 The GOSIA Code ... 43

CHAPTER 3 EXPERIMENTAL SETUP .. 46
 3.1 Charged Particle Detection .. 47
 3.1.1 Detection Principles .. 47
 3.1.2 The JANUS Silicon Detectors 49
 3.1.3 Reaction Kinematics ... 51
 3.2 Gamma-Ray Detection .. 57
 3.2.1 Gamma-Ray Interactions in Matter 58
 3.2.2 The Doppler Effect .. 61
 3.2.3 The Segmented Germanium Array 62
 3.3 Data Acquisition System ... 64

CHAPTER 4 COULOMB EXCITATION OF CADMIUM-106 69
4.1 Motivation .. 69
4.2 Experimental Details .. 72
4.3 Data Analysis .. 74
 4.3.1 High-Energy Setting ... 75
 4.3.1.1 Particle-Gamma Coincidences 76
 4.3.1.2 Doppler Correction 79
 4.3.2 Low-Energy Setting .. 83
 4.3.3 Titanium Target Setting 84
4.4 Gamma-Ray Yields .. 90
4.5 GOSIA Analysis ... 91

CHAPTER 5 RESULTS AND DISCUSSION 101
 5.1 Experimental Results .. 101
 5.2 Shell Model Calculations .. 104

CHAPTER 6 SUMMARY AND OUTLOOK 113

APPENDIX ... 115

BIBLIOGRAPHY .. 128
LIST OF TABLES

Table 4.1: Literature data for 48Ti employed during the GOSIA2 analysis. Data taken from NNDC/ENSDF [150]. ... 93

Table 4.2: Literature data for 106Cd employed during the GOSIA analysis. Data taken from NNDC/ENSDF [150]. ... 94

Table 5.1: Matrix elements extracted from the present analysis compared to literature values. 102

Table 5.2: Excited state lifetimes extracted from the present analysis compared to literature values. Since no literature lifetimes were used to constrain the GOSIA minimization, these results are independent of previous measurements. 102

Table 5.3: Excited state lifetimes extracted from the present analysis compared to the recent results from [143, 144]. ... 103

Table 5.4: Transition strengths and spectroscopic quadrupole moments determined from this work compared to shell-model predictions. 105

Table 5.5: The 106Cd ground state rotational invariants and normalized quadrupole moments determined from this work compared to shell-model calculations. The quoted uncertainties are purely experimental (see Table 5.1). 106

Table 5.6: Contribution of individual matrix element products, or "loops," to the rotational invariants. ... 107

Table A.1: The literature data employed for 196Pt during the GOSIA2 analysis. Data taken from NNDC/ENSDF [150]. ... 125

Table A.2: The experimental results for 80Ge compared to shell model calculations. The quoted uncertainties are only statistical. 126
LIST OF FIGURES

Figure 1.1: The central component of the NN interaction. Three main features are visible: a strongly repulsive core, a local minimum, and a tail with rapidly diminishing strength. The distances at which the potential can be modelled by the exchange of π, ρ, ω and σ mesons are indicated. Figure adapted from [5]. 2

Figure 1.2: The Chart of Nuclides. The y-axis is the proton number, the x-axis is the neutron number, and each square represents an individual nucleus. Figure from [7], originally adapted from [8]. 3

Figure 1.3: The total binding energy BE (lower) and binding energy per nucleon (upper) as a function of the mass number. The turning point near $A = 60$, caused by saturation, is clear in the upper panel. Stable nuclei tend to have a large BE/A [11]. Figure adapted from [11]. 5

Figure 1.4: The difference between the experimentally determined binding energy and the liquid drop energy as a function of the neutron number for nuclei with $Z \geq 8$. The parameters used for this figure are [11, 13] $a_V = 15.54$, $a_S = 17.23$, $a_C = 0.697$, $a_A = 22.6$, and $a_P = 12.0$, all in MeV. Figure from [13] with data from [14]. 7

Figure 1.5: The neutron single-particle energies in 208Pb for various mean field potentials. For each level, the number in brackets is the maximum number of nucleons allowed in that level by the Pauli principle, and the number next to the quantum numbers is a running sum of the maximum allowed nucleons. The magic numbers which result from the WS+LS potential are indicated. Figure adapted from [11]. 10

Figure 1.6: Spherical, prolate, and oblate quadrupole deformations. The contours show axially-symmetric shapes, and the region $0 < \gamma < \pi/3$ corresponds to axial asymmetry. Contours from [27]. 17

Figure 1.7: Relative energies of the excited states in a triaxial rotor model as a function of γ. The primes are used to differentiate states with the same J^π. Figure adapted from [20]. 18

Figure 1.8: The ratio $R_{4/2}$ for even-even nuclei across the nuclear chart. Dashed lines indicate the magic numbers (excluding 2 and 8). Figure adapted from [30]. 18
Figure 1.9: The first 2^+ excited state energy for even-even nuclei across the nuclear chart (left), and the $B(E2;0^+_1 \rightarrow 2^+_1)$ excitation strength as a function of N for various isotopic chains (right). Dashed lines indicate the magic numbers (excluding 2 and 8). The top right panel gives the $B(E2)$ in absolute units $e^2 b^2$, while the bottom panel uses Weisskopf units. Figures adapted from [30] (left) and [11] (right). .. 23

Figure 2.1: A depiction of the multiple excitation paths (left) and decay paths (right) possible in multiple Coulomb excitation experiments. The nuclear matrix elements responsible for a particular excitation are indicated; these same matrix elements determine the γ-ray decay properties. .. 29

Figure 2.2: The M substate splitting of an $I = 2$ excited state assuming a prolate (left) and oblate (right) shape. The substates are split in opposite directions due to the different sign of Q_x. Contours from [27] 31

Figure 2.3: Coulomb excitation cross section (solid) and excitation probability (dashed) of an excited 2^+_1 state, as a function of the scattering angle, for different excited state quadrupole moments. The reorientation effect is clear. Note the excitation cross section is given by the product of the excitation probability (dashed lines) with the Rutherford cross section (not shown). Figure taken from [87]; see [87] for details of the calculations. 32

Figure 2.4: Coordinate system "B" from [82] used to evaluate the excitation amplitudes. The positive z-axis bisects the asymptotic velocities of the projectile, the x-axis is perpendicular to the plane of orbit, and the y-axis is chosen such that the y-component of the projectile’s velocity is positive. The scattering angle ϑ is indicated. Figure from [82]. 38

Figure 2.5: Dependence of the Coulomb excitation cross section on the bombarding energy and scattering angle for an excited 2^+_1 state. GOSIA integrates this surface to obtain γ-ray yields which can be compared directly to experimental data. Figure from Ref. [85]. 44

Figure 3.1: A cartoon schematic showing the layout of JANUS. Figure adapted from [105]. 47

Figure 3.2: Segmentation of the JANUS silicon detectors. Figure adapted from [108]. 49

Figure 3.3: The two JANUS silicon detectors and the target wheel together in the mounting assembly. Note this figure shows shows the ring ring side of the silicon detectors facing the target, which is incorrect (see text). Also visible are two wires which enable a current reading from the beam-tuning apertures. Figure from [108]. 50

xi
Figure 3.4: *LAB frame angles as a function of the CM angle for the indicated two-body scattering reaction.* The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 52

Figure 3.5: *LAB frame angles as a function of the CM angle for the indicated two-body scattering reaction.* Because $m_p > m_t$, the maximum projectile scattering angle is $\theta_p^{\text{max}} = 26.9^\circ$. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 53

Figure 3.6: *Kinematic curves which result from the indicated two-body scattering reaction.* The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 54

Figure 3.7: *Kinematic curves which result from the indicated two-body scattering reaction.* The double-valued kinematic solution, which arises because $m_p > m_t$, is clear. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 55

Figure 3.8: *The projectile scattering angle as a function of the recoil angle for the indicated two-body scattering reaction.* The vertical dashed lines show the physical coverage of the downstream detector, and the horizontal shaded grey region indicates the effective coverage for the projectile gained via kinematic reconstruction. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 56

Figure 3.9: *The projectile scattering angle as a function of the recoil angle for the indicated two-body scattering reaction.* The vertical dashed lines show the physical coverage of the downstream detector, and the horizontal shaded grey region indicates the effective coverage for the projectile gained via kinematic reconstruction. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV). ... 56

Figure 3.10: *The solid angle coverage gained by kinematic reconstruction of the projectile as a function of m_p/m_T. The number by each point is the corresponding Z_P, and $E_P = E_{CB}$ for all points. This figure does not consider if the reconstructed angular range overlaps with the physical coverage of the detector.* ... 57

Figure 3.11: *The cross sections of the three γ-ray interactions in bulk germanium, plus their sum. The data is from [111].* ... 58

Figure 3.12: *An idealized spectrum emphasizing the components which result from the interactions of a mono-energetic γ-ray with $E_\gamma > 2m_e c^2$. The origins of the individual components are discussed in the text.* ... 59

Figure 3.13: *A schematic depiction of the Doppler Effect. Figure adapted from [108].* 61
Figure 3.14: Contributions to the uncertainty on E_γ from the Doppler Effect and the intrinsic resolution of a detector. For this figure the uncertainties are assumed to be Gaussian, and standard deviations are used. The parameters used to make this figure are $E_\gamma = 659$ keV, $\sigma_{\text{intr}} = 1.4$ keV, $\beta = v/c = 0.076$, and $\sigma_\beta = 0.004$. 62

Figure 3.15: A single SeGA detector. The large green cylinder is the liquid-nitrogen dewar. The germanium crystal is located in the aluminum housing at the bottom of the photo. Figure from [108]. 63

Figure 3.16: Segmentation of an individual SeGA detector. Figure from [108], originally adapted from [104]. 63

Figure 3.17: SeGA arranged in the barrel configuration at ReA3. Only six detector end-caps are visible arrayed around the beam pipe. The silicon detectors and target are inside the beam pipe. 65

Figure 3.18: The JANUS digital DAQ. The left panel shows the crate and modules which processed the silicon detector signals, and the right shows the three crates necessary for SeGA. 68

Figure 4.1: Evolution of $B(E2)$ values in the even-N $^{104-130}$Sn isotopes. The pentagons connected by dotted lines are shell model calculations from [123]. Figure adapted from [123] with data from [124, 125, 126, 127, 128, 129, 57, 130, 131, 132, 133, 134, 135, 120, 136, 137, 138, 139, 140, 141]. 70

Figure 4.2: Evolution of $B(E2)$ values in the even-A $^{100-126}$Cd isotopes. Data from Siciliano [143, 144], Benczer-Koller [145], Iliev [146], Ekstrom [147], Boelaert [148], Milner [149], and Adopted [150]. These data come from a mix of lifetimes measurements and Coulomb excitation. 71

Figure 4.3: Layout of the ReA3 facility. 72

Figure 4.4: The observed energy of α particles emitted from a 241Am source. The measurement was performed both with (red) and without (black) the target in front of the source. The energy difference between the two the measurements is the energy lost in the 48Ti target and allows for a determination of the target thickness. Note the red spectrum is broader due to energy straggling. 74

Figure 4.5: The observed kinematic curve for the higher-energy setting on the 208Pb target. The energy recorded by the sector side is used. The 106Cd and 208Pb nuclei are clearly visible and distinguishable, as are 12C nuclei from the target backing. Note that, for clarity, bins with less than five counts are excluded from this figure and a low-energy threshold has been applied. Figure adapted from [103]. 76
Figure 4.6: Identical to Fig. 4.5, except the energy recorded by the ring is used. The energy summing due to both the 106Cd and 208Pb entering the same ring is clear in the outer rings. 77

Figure 4.7: The γ-ray energy plotted against the time difference between the particle and γ ray. The gate used to select prompt γ rays is shown in red. No Doppler corrected is applied to the figure in the main panel, so room background γ rays are visible. The time walk seen at low γ-ray energy necessitates the use of a two-dimensional gate. The insets show a zoom of the region around the 106Cd $2^{+} \rightarrow 0^{+}$ transition without (a) and with (b) Doppler correction (see text). 77

Figure 4.8: Observed γ-ray correlations for the 632 keV $2^{+}_{1} \rightarrow 0^{+}_{1}$ transition in 106Cd. The left panels are not Doppler corrected, the right panels are. The top two panels show the correlation of the γ-ray energy with the angle between the particle and γ ray. The bottom panels show the correlation with the ϕ angle explained in the text. 80

Figure 4.9: Doppler corrected γ-ray spectrum compared to the uncorrected spectrum for forward-scattered 106Cd from the higher-energy setting on the 208Pb target. The resolution of the Doppler-corrected peak is 1.5% FWHM. 81

Figure 4.10: Total Doppler-corrected γ-ray spectra collected during the high-energy setting on the 208Pb target. Observed γ-ray transitions are indicated. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle. 82

Figure 4.11: Correlation of E_{γ} with θ_{Dop} for 208Pb recoils detected in rings 1 to 12 from the higher-energy setting. The left panel is not Doppler corrected, the right panel is. The effect of 106Cd slowing down in the target is clear. 84

Figure 4.12: Kinematic curve for the low-energy setting on the 208Pb target. The energy recorded by the sector is used. The 106Cd and 208Pb nuclei are clearly visible and distinguishable, as are 12C nuclei from the target backing. Note that, for clarity, bins with less than five counts are excluded from this figure and a low-energy threshold has been applied. 85

Figure 4.13: Total Doppler-corrected γ-ray spectra collected during the low-energy setting on the 208Pb target. Observed γ-ray transitions are indicated. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle. 86
Figure 4.14: Kinematic curve for the 48Ti target setting. The energy recorded by the sector side is used. Both the double-valued 106Cd kinematic curve and the recoiling 48Ti nuclei are clearly visible. Also visible are 106Cd nuclei which were scattered by the natW contamination; the recoiling natW are also observed. Note that, for clarity, bins with less than five counts are excluded from this figure and a low-energy threshold has been applied. ... 87

Figure 4.15: Total γ-ray spectra collected for target detection during the 48Ti target setting. The black spectra are Doppler corrected for 106Cd, and the red spectra are Doppler-corrected for 48Ti. Observed γ-ray transitions are indicated in black for 106Cd a red for 48Ti. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle. ... 88

Figure 4.16: Correlation of E_γ with ϕ for 48Ti nuclei detected in rings 11 to 15. The γ rays in coincidence with improperly correlated silicon events are obvious. The left panel shows the normal Doppler correction, and the right panel shows the Doppler correction with $\phi_p \rightarrow \phi_p + \pi$. ... 90

Figure 4.17: The γ-ray detection efficiency cure determined during this work for SeGA. Only the 152Eu source was used for an absolute efficiency; the data from the other two sources were scaled to the 152Eu data. 91

Figure 4.18: The levels schemes used during the GOSIA analysis for 106Cd (left) and 48Ti (right). Only γ-ray transitions observed during the experiment are indicated. States without a depopulating transition are buffer states. Energies are in keV. . 92

Figure 4.19: The final χ^2 surface from the GOSIA2 analysis with a $\chi^2 \leq \chi^2_{\min} + 1$ restriction applied. This figure has smoothing applied to remove artifacts of the GOSIA minimization. .. 95

Figure 4.20: The reproduction of the 632 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings. 97

Figure 4.21: The reproduction of the 861 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings. 97

Figure 4.22: The reproduction of the 1009 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings. 98
Figure 4.23: The reproduction of the 1084 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings. .. 98

Figure 4.24: The reproduction of the 1716 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings. .. 99

Figure 4.25: The reproduction of the 1746 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Note this transition was only observed in the 48Ti target setting. . . 99

Figure 5.1: Evolution of $B(E2)$ values in the even-A $^{100−126}$Cd isotopes with the present result indicated in red. ... 103

Figure 5.2: Calculated values of q_s (bottom) and quadrupole deformation β_2 (top) compared to experimental values for Cd isotopes (left) and $N = 58$ isotones (right). The experimentally determined value from this work is in red. The green circles are shell-model calculations from Ref [161] (see text). Figure adapted from [103]. ... 109

Figure 5.3: Calculated values of q_s (bottom) and quadrupole deformation β_2 (top) compared to experimental values for Fe isotopes. The data is taken from [164]. Figure adapted from [103]. ... 110

Figure A.1: Kinematic curve observed in the forward silicon detector. The scattered 80Ge and recoiling 196Pt are clear. It also clear there is no separation between the 80Ge and the 80Kr contamination. ... 118

Figure A.2: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 1 to 7 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 120

Figure A.3: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 8 to 14 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 120
Figure A.4: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 15 to 24 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 121

Figure A.5: The γ-ray spectrum collected in coincidence with 196Pt in rings 14 to 24 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 121

Figure A.6: The γ-ray spectrum collected in coincidence with 196Pt in rings 1 to 13 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 122

Figure A.7: The γ-ray spectrum collected in coincidence with back-scattered 80Ge. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution. ... 122

Figure A.8: The higher-energy portion of the γ-ray spectrum collected in coincidence with 196Pt recoils (all rings). Due to the low statistics, a fit was not necessary. 123

Figure A.9: The efficiency data collected for this experiment. The fitted efficiency curve used during analysis is shown. ... 123

Figure A.10: The χ^2 surface with a 1σ restriction applied. Due to the high-Z of 196Pt, significant sensitivity to both the transitional and diagonal matrix elements is achieved. ... 124

Figure A.11: The systematics of the $B(E2)$ (left) and $Q_s(2^+_s)$ (right) along the Ge isotopic chain with the results from this work in red. Literature data from: Adopted [150], Padilla-Rodal [177], and Iwasaki [178]. ... 126
CHAPTER 1
INTRODUCTION

1.1 Atomic Nuclei

An atomic nucleus is a quantum many-body system made up of Z positively-charged protons and N electrically-neutral neutrons which form a total of $A = N + Z$ nucleons. A particular nucleus is typically denoted $^A X(Z)$, where $X(Z)$ is the chemical symbol of the element with Z protons. Nuclei with the same Z, N, or A are referred to as isotopes, isotones, and isobars, respectively. Typical nuclear radii are of order 10 fm ($1 \text{ fm} = 10^{-15} \text{ m}$), indicating the quantum nature of the system. Atomic radii are of order 10 nm ($1 \text{ nm} = 10^{-9} \text{ m}$), so the nucleus makes up very little of the atomic volume. However, the nucleus contains essentially all of the mass of an atom.

Protons and neutrons are both spin-$1/2$ fermions. Notably, protons as well as neutrons are (separately) indistinguishable, and thus they obey the Pauli exclusion principle and Fermi-Dirac statistics more generally. The Pauli exclusion principle prevents two identical fermions from occupying the same quantum state, and, as will be discussed in Section 1.2, this has a significant impact on nuclear properties.

Nucleons are not fundamental particles. They are hadrons, a family of composite particles made up of quarks. A proton consists of two up quarks and one down quark, while a neutron contains two down quarks and one up quark. The quarks are bound together by the strong force, which is mediated by the exchange of gluons as described by the theory of quantum chromodynamics [1].

Despite the Coulomb repulsion between protons, the nucleons are bound together by the nuclear force to form a nucleus. The nuclear force is a residual of the fundamental strong interaction between the constituent quarks of the individual nucleons. Thus the nuclear force is analogous to the Van der Waals force between neutral atoms and molecules, which is a residual of the fundamental Coulomb interaction.

In general, there is no simple analytical form for the nuclear potential. Since nucleons are
composite particles, there are many-body forces which enter the total potential. (For example, the interaction between two nucleons is affected by the presence of a third nucleon; this is a three-body force.) However, many broad features of the nuclear force can be understood by inspecting only the two-body nucleon-nucleon (NN) potential. There are many terms which contribute to the interaction between two nucleons, including a central scalar potential, a central vector (spin-orbit) term, and a non-central tensor component. Due to the availability of precise nucleon-nucleon scattering data, the free NN interaction is well constrained [2, 3], and it is observed to be approximately charge-independent [4]. The central part of the NN potential is shown in Fig. 1.1.

As indicated in Fig. 1.1, the central component of the nucleon-nucleon interaction can be divided into three regions. At the shortest distances, the interaction is strongly repulsive, which is referred to as the "hard core." Over intermediate distances, the force is attractive, and at the longest distances there is only a rapidly diminishing attractive tail. At medium and long distances, the force can be modeled by the exchange of light mesons [6], which are particles formed by quark-antiquark
pairs. At distances larger than approximately 2.5 fm, the Coulomb force dominates.

The competition between the attractive nuclear force and the repulsive Coulomb force has a very obvious impact on which nuclei form bound systems. As the mass number increases, the nuclei must become more neutron rich to overcome the increasing Coulomb repulsion. This effect can be seen clearly in the Chart of Nuclides, shown in Fig. 1.2. For increasing Z, the extant nuclei bend away from the $N = Z$ line and move toward the $N > Z$ region.

The Chart of Nuclides depicts the nuclear landscape. The black squares represent stable isotopes, of which there are less than 300 [8]. The path through the nuclear landscape formed by these stable isotopes is referred to as the Valley of Stability. The blue squares denote the roughly 3000 isotopes known to exist [9], and the red squares show the ~ 7000 nuclei predicted to exist [10] but which have not been observed. The dashed vertical and horizontal lines show the conventional magic numbers (see Section 1.2). Clearly, the vast majority of nuclei are unstable.
against radioactive decay or fission and thus, with few exceptions, do not exist naturally on Earth.

Another consequence of the nuclear force, particularly its hard core, is nuclear "saturation," which refers to the roughly constant density inside a nucleus. Considering also the short range of the nuclear force, a single nucleon will interact most strongly with its immediate neighbors, and as the number of nucleons increases, the single nucleon will have a weaker interaction with the additional nucleons due to the increasing volume. At some point, the interaction energy per nucleon will reach a maximum, referred to as the saturation energy. While additional nucleons still contribute to the total energy, the saturation energy is the point past which increasing the nuclear mass is not energetically favorable.

The effect of nuclear saturation is clearly observed from an inspection of nuclear binding energies. The binding energy is the amount of energy required to break up a nucleus into its component nucleons, and it is a measure of the total interaction energy in a nucleus. Experimentally determined values for the binding energy are shown for many nuclei in Fig. 1.3; the effect of saturation is clear in the upper panel. The constant nuclear density also implies that the volume of a nucleus is proportional to the number of nucleons, $V \propto A$.

1.2 Nuclear Models

An overarching goal of nuclear physics is the creation of a theoretical model that can predict the properties of a nucleus based on its proton and neutron numbers. One of the earliest and simplest is the Liquid Drop Model [12], which treats a nucleus as an incompressible fluid in an attempt to calculate the binding energy. Like a liquid drop, a nucleus has a roughly constant density (the consequence of saturation) and short range interactions. Under this assumption, the binding energy can be calculated as

$$BE_{LD} = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(N - Z)^2}{A} + \delta(N, Z),$$

(1.1)
Figure 1.3: The total binding energy BE (lower) and binding energy per nucleon (upper) as a function of the mass number. The turning point near $A = 60$, caused by saturation, is clear in the upper panel. Stable nuclei tend to have a large BE/A [11]. Figure adapted from [11].
where

\[\delta(N, Z) = \begin{cases}
-a_P A^{-1/2} & N \text{ and } Z \text{ odd} \\
-a_P A^{-1/2} & N \text{ and } Z \text{ even} \\
0 & A \text{ odd.}
\end{cases} \]

(1.2)

In Eqs. 1.1 and 1.2, the dependence on Z, N, or A of each term has a clear physical motivation, and their strengths \(a_X > 0 \) can be found from fits to experimental data. The volume term \(a_V \) describes the linear increase in energy with increasing volume of the droplet, and is thus proportional to \(A \). The surface term \(a_S \) corrects for the missing interaction energy of nucleons at the surface, which depends on the surface area, so it is proportional to \(A^{2/3} \). The Coulomb term \(a_C \) arises from the electric repulsion between the protons and is proportional to \(Z^2 / R = Z^2 / A^{1/3} \).

Because nucleons are spin-1/2 fermions which each obey the Pauli principle, the energy is minimized (and binding maximized) when there is an equal number of protons and neutrons for a given \(A \). This gives rise to the anti-symmetry term \(a_A \) which penalizes proton-neutron asymmetry. The final term is motivated by the experimentally observed staggering in the binding energy for even and odd numbers of protons or neutrons (not visible in Fig. 1.3). To account for this, a pairing term \(a_P \) (contained in \(\delta(N, Z) \)) is added which is attractive for even \(Z, N \) and is repulsive for odd \(Z, N \).

The difference between the experimentally determined binding energy and the liquid drop prediction is shown in Fig. 1.4. Two features are immediately apparent. First, the Liquid Drop Model is accurate to roughly 10 MeV for most nuclei, while the average binding energy per nucleon is about 8 MeV. Second, there are regular, systematic discrepancies between the data and the model prediction. Nuclei near \(N = 28, 50, 82, \) and 126 are significantly more bound than the Liquid Drop model predicts when compared to nuclei further away from these numbers. This suggests that nuclei have internal structure which is not captured by the simplified Liquid Drop Model.

The numbers 28, 50, 82, and 126, along with 2, 8, and 20 which are not clearly visible in Fig. 1.4, are referred to as the "magic" numbers. The same pattern in the binding energy is observed as a function of \(Z \), so the magic numbers are the same for both protons and neutrons. A nucleus with
Figure 1.4: The difference between the experimentally determined binding energy and the liquid drop energy as a function of the neutron number for nuclei with $Z \geq 8$. The parameters used for this figure are $a_V = 15.54$, $a_S = 17.23$, $a_C = 0.697$, $a_A = 22.6$, and $a_P = 12.0$, all in MeV. Figure from [13] with data from [14].

either a magic N or Z is referred to as singly-magic, and a nucleus with both a magic N and Z is called doubly-magic. The observation of the magic numbers lead to the development of the nuclear shell model [15, 16].

1.2.1 The Shell Model

The nuclear shell model is a microscopic quantum description of the nucleons in a nucleus. Neglecting the Coulomb interaction and only considering two-body forces between the nucleons, the nuclear Hamiltonian for A nucleons is written as [11]

$$
\hat{H} = \sum_{k=1}^{A} \frac{p_k^2}{2m_k} + \sum_{k<l}^{A} V_{kl}(\mathbf{r}_k - \mathbf{r}_l),
$$

(1.3)
where p_k, r_k, and m_k are the momentum, position, and mass of the k-th nucleon, respectively. V_{kl} is the two-body interaction between the nucleons. Assuming the A nucleons do not interact strongly, one can consider a single-particle central potential $U(r)$ which is generated by all A nucleons. This allows Eq. 1.3 to be written as

$$\hat{H} = \left\{ \sum_{k=1}^{A} \left(\frac{p_k^2}{2m_k} + U(r_k) \right) \right\} + \left\{ \sum_{k<l}^{A} V_{kl}(r_k - r_l) - \sum_{k=1}^{A} U(r_k) \right\} \equiv \hat{H}_0 + \hat{V}_{res}. \quad (1.4)$$

In Eq. 1.4, \hat{H}_0 describes the independent motion of a particle in a mean field. The term \hat{V}_{res} is the remaining interaction between nucleons beyond what is generated by the mean field, which is called the residual interaction. In the independent particle model [17, 18], one takes $\hat{V}_{res} = 0$ and a nucleus is approximated as A nucleons moving independently in the mean field.

1.2.1.1 The Independent Particle Model

A common first choice of the mean-field $U(r)$ is the harmonic oscillator (HO) potential

$$U_{HO}(r) = \frac{1}{2} m \omega^2 r^2, \quad (1.5)$$

where m is the nucleon mass, ω is the adjustable oscillator frequency, and r is the distance from the center of the nucleus. The harmonic oscillator potential has several advantageous properties, such as analytically expressible wave-functions and the ability to separate the many-body Hamiltonian into terms only dependent on intrinsic and center-of-mass degrees of freedom. The energy levels of the HO potential depend on the radial quantum number n and orbital angular momentum quantum number l, generally redefined into the single principle quantum number $N = 2n + l$. They are given by

$$E_N = (N + 3/2) \hbar \omega, \quad (1.6)$$

where \hbar is the reduced Planck constant. It is noted that one method of specifying ω is by requiring the calculated root-mean-square charge radius matches the experimentally determined value [11].

As can be seen from the left column of Fig. 1.5, which shows the calculated energy levels for different mean-field potentials, the HO potential reproduces the first three magic numbers 2, 8, and
20, but it fails to produce the higher magic numbers. The HO potential increases to infinity with increasing r, which is markedly different than the short-range nuclear interaction (see Fig. 1.1). An improvement might be expected if a more realistic mean-field potential is chosen, such as the Woods-Saxon (WS) potential

$$U_{WS}(r) = V_o f_{WS}(r), \quad (1.7)$$
$$f_{WS}(r) = \frac{1}{1 + \exp\left(\frac{r-R_o}{a_o}\right)}. \quad (1.8)$$

In Eqs. 1.7 and Eq. 1.8 above, V_o is the potential depth, $R_o = r_o A^{1/3}$ is the nuclear radius, and a_o is the diffuseness. A typical [11, 19] set of parameters is $V_o \approx 50$ MeV, $r_o = 1.27$ fm, and $a_o = 0.67$ fm. In principle the strength V_o depends on whether one is considering protons or neutrons and is adjusted based on the proton-neutron asymmetry. Inspection of the middle column of Fig. 1.5 shows that the WS potential still fails to the predict magic numbers beyond $N,Z = 20$. This potential does, however, produce some new features, such as breaking the degeneracy of levels with the same principle quantum number N.

The crucial component of the mean-field potential is an additional strong coupling term between the intrinsic spin s and orbital angular momentum l of a nucleon. This is given by

$$U_{LS}(r, l, s) = V_{so} \frac{1}{r} \frac{df_{WS}(r)}{dr} (l \cdot s), \quad (1.9)$$

where V_{so} is the strength of the interaction. A typical value is $V_{so} = 22$ MeV. The radial dependence of U_{LS} is given by the derivative of $f_{WS}(r)$ to ensure it is surface-peaked. This is physically motivated as a nucleon in the interior of a nucleus is subjected to an equal amount of spin-up and spin-down nucleons, which leads to a cancellation of the LS interaction [11].

The third column of Fig. 1.5 shows that taking a mean-field potential of $U = U_{WS} + U_{LS}$ successfully predicts all observed magic numbers (at stability). The introduction of the LS coupling term additionally breaks the degeneracy of orbits with the same l value. As such, each orbit must be specified by the additional quantum number $j = l \pm 1/2$ which results from the LS coupling, i.e.
Figure 1.5: The neutron single-particle energies in 208Pb for various mean field potentials. For each level, the number in brackets is the maximum number of nucleons allowed in that level by the Pauli principle, and the number next to the quantum numbers is a running sum of the maximum allowed nucleons. The magic numbers which result from the WS+LS potential are indicated. Figure adapted from [11].
\mathbf{j} = \mathbf{l} + \mathbf{s}$. Note the single-particle orbit characterized by \(j_\text{>} = l + 1/2 \) is split to a lower energy than \(j_\text{<} = l - 1/2 \).

The single-particle orbits from the WS+LS potential are generally labeled using the spectroscopic notation \(nl_2j \), which is employed in Fig. 1.5. The radial quantum number \(n = 0,1,2... \) specifies the number of nodes in the radial wave-function, and the orbital angular momentum number \(l \) is represented by \(s, p, d, f, g, h... \) for \(l = 0, 1, 2, 3, 4, 5... \) The LS coupling to total angular momentum \(\mathbf{j} \) means each level \(nl_2j \) has \(2j+1 \) projections \(m_j \), with \(m_j \) running from \(-j\) to \(j \) in integer steps. Considering the Pauli exclusion principle, this implies the maximum number of nucleons in each orbit is \(2j + 1 \).

An additional quantum number conserved by the nuclear Hamiltonian is the parity \(\pi \). A parity transformation \(\mathcal{P} \) is the inversion of all spatial coordinates \(\mathbf{r} \rightarrow -\mathbf{r} \), i.e. \(\mathcal{P} f(\mathbf{r}) = \pi f(-\mathbf{r}) \). The parity quantum number of a single-particle orbit depends only on \(l \), and it is given by \(\pi_l = (-1)^l \). The parity of the entire nuclear configuration is determined by the product of the parity of all nucleons

\[
\pi = \prod_{i}^{A} \pi_{l_i}^{(i)} = \prod_{i}^{A} (-1)^{l_i}.
\]

(1.10)

It is easy to see that an even number of nucleons in any orbit will contribute positive parity. Similar to the total parity, the nuclear configuration will also form a total spin \(\mathbf{J} \) which results from coupling all \(\mathbf{j}_i \) of the nucleons, \(\mathbf{J} = \sum_{i}^{A} \mathbf{j}_i \). This leads to the common notation \(J^\pi \) used to specify a nuclear state. Pairs of identical nucleons preferentially couple to \(J = 0 \) [20], and in fact all nuclei with an even \(Z \) and even \(N \) have a ground-state \(J^\pi \) of \(0^+ \).

The independent particle shell model is particularly well-suited to predict ground-state \(J^\pi \) values for nuclei which are one nucleon away from being doubly-magic [20]. This is accomplished by placing the nucleons in the lowest lying energy level allowed by the Pauli exclusion principle. Note that since protons and neutrons are distinguishable, they each fill their own set of orbits\(^1\). Taking \(Z = 82, N = 127 \) \(^{209}\)Pb as an example, we see that the protons form a closed shell, and

\(^1\)The Coulomb interaction can be added to the mean field potential if desired, which will make a slight adjustment to the proton single-particle orbits.
there is one neutron outside the $N = 126$ closed shell which is placed in the $1g_9$ orbit. Thus, we can predict the ground state of 209Pb to have $J^\pi = 9/2^+$. In this model, excited-state configurations are also simple to construct. They are formed by promoting a nucleon from its ground-state orbit to one lying higher in energy. Taking again 209Pb as an example, we can consider the simplest reconfiguration: promoting the last neutron from $1g_9$ to $0i_{11}$. This results in an excited state with quantum numbers $11/2^+$ at an energy given by the difference between the $0i_{11}$ and $1g_9$ single-particle energies. Indeed, the ground state and first excited state in 209Pb are known experimentally to be $9/2^+$ and $11/2^+$, respectively, just as the independent particle model predicts. Nuclei with properties well-described by the independent-particle model are often called "single-particle-like" nuclei.

As discussed above, the independent particle model can predict ground-state and some excited-state properties in nuclei near the magic numbers. For quantitative predictions of more detailed nuclear structure properties, particularly in nuclei further away from the magic numbers, one must go beyond the independent particle model. This can be done by including the residual two-body interaction beyond the mean-field (see Eq. 1.4).

1.2.1.2 Configuration Interaction

Incorporating the residual interaction between nucleons prevents separating the nuclear system into A independent particles, where the total nuclear wavefunction is given by the anti-symmetric product of the single-particle wavefunctions of the individual nucleons (a Slater determinant [21]). The residual interaction introduces mixing between Slater determinants representing different configurations, hence the name configuration interaction.

In the configuration interaction shell model, the nuclear Hamiltonian is written in matrix form

$$H_{ij} = \langle \Phi_i | \hat{H}_0 + \hat{V}_{res} | \Phi_j \rangle,$$

where $| \Phi_i \rangle$ are the unperturbed many-body wavefunctions of the mean-field Hamiltonian \hat{H}_0. The total wavefunction is found by diagonalizing the Hamiltonian matrix with respect to the chosen
basis. The mean-field Hamiltonian is often already diagonal in the chosen basis, and thus the one-body matrix elements $\langle i | \hat{H}_0 | j \rangle$ define the single-particle energies discussed above. The residual interaction creates additional two-body matrix elements $\langle ij | \hat{V}_{res} | kl \rangle$ which define the nucleon-nucleon interactions.

Including the residual interaction between all nucleons for nuclei with $A \gtrsim 12$ will make the matrix dimension become intractably large for computation. In these cases it is necessary to define an inert core of A_{core} nucleons which are represented by a single Slater determinant and do not contribute to the excited state configurations; only the remaining $A - A_{\text{core}}$ active valence nucleons can be promoted out of the ground state configuration. Often, the the core is chosen to be a nearby doubly-magic nucleus. A further truncation is required to define what single-particle levels the valence nucleons can be promoted to, referred to as the valence space. The choice of an inert core and a valence space defines the model space for a shell model calculation.

The precise form of the residual interaction is not known. Accurate potentials have been derived from nucleon-nucleon scattering data [2, 3, 22]. However, directly using these potentials in the nuclear Hamiltonian will not produce accurate results if configurations from outside the model space contribute appreciably, which is often the case. There is another method of deriving the residual interaction which forgoes its connection to the individual nucleon degrees of freedom. Instead, the single-particle energies and two-body matrix elements are treated as free parameters in a fit of experimental binding energies and excited state energies [23, 24].

Effective interactions for nuclear Hamiltonians are fully defined by the fitted single-particle energies and two-body matrix elements. The interactions depend on the mass regime, and in general they can have different parameters depending on what experimental data is included in the fitting procedure. The accuracy and applicability of a particular effective interaction rapidly deteriorates if it is applied to a mass regime which is not constrained by the data used in the fit.
1.2.2 Collective Models

In many nuclei, particularly those away from magic numbers, a large number of nucleons can contribute coherently to the excited-state configurations. In these cases, macroscopic geometric models can be used which describe the collective motion of the nucleons. The most commonly considered forms of collective motion are vibrations and rotations.

1.2.2.1 Vibrational Nuclei

In a vibrational model of nuclei, a nucleus is treated as an incompressible fluid drop which oscillates about a spherical equilibrium. That is to say, a nucleus is considered to have a spherical ground state and excited-state configurations are generated by phonons, the elementary excitation in a quantum treatment of vibrations. Only considering quadrupole vibrations, the first excited state will have $J^\pi = 2^+$ and be located at the energy of a single phonon.

Higher-lying excited states are generated by multiple phonons. Due to the different possible couplings of the phonon spins, multi-phonon configurations will produce multiple excited states with different J but which are degenerate in energy. The multi-phonon state energies are simply multiples of the one-phonon energy, i.e. [20]

$$E_{\text{vib}}(N_p) = N_p E_{\text{vib}}(N_p = 1),$$

(1.12)

where N_p is the number of phonons. The allowed J^π values for a two-phonon configuration are 0^+, 2^+, and 4^+, while for three phonons they are 0^+, 2^+, 3^+, 4^+, and 6^+ [20].

In reality, no nucleus is a perfect quadrupole vibrator. However, vibrational-like behaviour can still be indicated by closely-spaced states of the correct J^π located roughly at multiples of the first excited state energy. This is most common in nuclei just outside of closed shells where the ground state is still dominated by spherical configurations but even the lowest-lying excited states will involve a reconfiguration of multiple nucleons.
1.2.2.2 Rotational Nuclei

In addition to vibrations, one can consider rotations as a form of collective motion. Quantum mechanically, an object cannot rotate about an axis-of-symmetry, so a spherically symmetric quantum object cannot rotate at all. Thus, for a nucleus to rotate, it must be deformed. Assuming only quadrupole deformation, the radial shape of the deformed object is given by [25]

$$R(\theta, \phi) = R_0 \left[1 + \sum_{\mu} (-1)^\mu \alpha_{2\mu} Y_{2\mu}(\theta, \phi) \right], \quad (1.13)$$

where $Y_{2\mu}$ are the rank-2 spherical harmonics.

The five coordinates $\alpha_{2\mu}$ specify both the quadrupole (ellipsoidal) deformation of the nucleus as well as its orientation in space in any reference frame. It is most convenient to use the instantaneous body-fixed frame (the intrinsic frame), where the coordinate axes are aligned with the principle axes of the ellipsoid. The five coordinates can then be specified by a rotation to the intrinsic frame (three Euler angles) and two parameters which define the shape. In this reference frame the radial shape is still given by Eq. 1.13, but the $\alpha_{2\mu}$ can be parametrized as

$$\alpha_{20} = \beta_2 \cos \gamma$$ \quad (1.14)

$$\alpha_{2\pm1} = 0$$ \quad (1.15)

$$\alpha_{2\pm2} = \frac{1}{\sqrt{2}} \beta_2 \sin \gamma$$ \quad (1.16)

In Eqs. 1.14 to 1.16, β_2 and γ are the Bohr parameters [25, 26] used to specify the radial the shape of a quadrupole deformed object. It is easy to see that (by definition)

$$\beta_2 = \sqrt{\sum_{\mu} |\alpha_{2\mu}|^2}$$ \quad (1.17)

and as such is a measure of the overall quadrupole deformation. The parameter γ specifies the deviation from axial symmetry, and its affect can be seen by evaluating the deviation of each principle axis of the ellipsoid from the average radius R_0. This is given by [20, 25]

$$\delta R_n \equiv R_n - R_0 = \sqrt{\frac{5}{4\pi}} \beta_2 R_0 \cos \left(\frac{2\pi}{3} n \right) \quad n = 1, 2, 3. \quad (1.18)$$

15
From Eq. 1.18 it is seen that for $\gamma = 0$, $\delta R_3 > 0$ and $\delta R_1 = \delta R_2 < 0$. For $\gamma = \pi/3$, $\delta R_2 < 0$ and $\delta R_3 = \delta R_1 > 0$.

The crucial detail from the above simple relations is that both $\gamma = 0$ and $\gamma = \pi/3$ imply axial symmetry, i.e. two of the radial deviations δR_n are equal. However for $\gamma = 0$, the ellipsoid is compressed in two dimensions and elongated in the third, while for $\gamma = \pi/3$ it is elongated in two dimensions and compressed in the third. This is the distinction between axially symmetric prolate ($\gamma = 0$) and oblate ($\gamma = \pi/3$) shapes; these shapes are shown in Fig. 1.6. The region $0 < \gamma < \pi/3$ describes a triaxial shape, with maximal triaxiality at $\gamma = \pi/6$. It can also be seen from Eq. 1.18 that all unique shapes are contained in the region $0 \leq \gamma \leq \pi/3$; all other γ values are equivalent to a redefinition of the axes.

For rigidly deformed axially-symmetric nuclei (prolate or oblate), the excited state energies are those of a quantum-mechanical symmetric top [20, 28]

$$E_{\text{rot}}(J) = \frac{\hbar^2}{2I} J(J + 1),$$

where I is the moment of inertia. While the excited state energies Eq. 1.19 are simple for axially symmetric rotors, they will have a more complicated form, with an additional dependence on γ, when axially-asymmetric shapes are allowed. The evolution of the excited state energies for a triaxial rigid rotor [29] are shown in Fig. 1.7. The presence of rotational behaviour is most common far away from the magic numbers where the number of nucleons outside of closed shells can create deformation even in the ground state.

The nuclear models discussed above are powerful tools for understanding the properties of nuclei. In particular, the energy systematics predicted by the collective models provide an exceptionally clear signature of collective vs single-particle-like behavior. A commonly used signature is the ratio of the first 4^+ energy to the first 2^+ energy, denoted $R_{4/2}$. For a spherical vibrator $R_{4/2} = 2.0$, for a maximally-asymmetric rigid rotor $R_{4/2} = 2.5$, and for a symmetric rigid rotor $R_{4/2} = 3.33$ [20]. The ratio $R_{4/2}$ is shown for even-even nuclei in Fig. 1.8.

The effect of nuclear shell structure and collectivity is clear in Fig. 1.8. Close to the magic numbers, nuclei display vibrational-like behavior. Moving further away from the magic numbers,
nuclei rapidly transition to asymmetric rotors and then to almost pure symmetric rigid-rotors at mid-shell. While these signatures help isolate the dominant nature of the collectivity, there is a strong connection between rotations and vibrations (i.e., a deformed rotor can also vibrate). The coupling of these two modes can be described using the more general Bohr Hamiltonian [25, 26].

The collective models are most naturally applied to even-\(A\) nuclei. However, they can be extended to odd-\(A\) nuclei in two related ways [20]: by considering a nucleon moving in a deformed mean-field, or by considering the coupling of valence nucleons to the collective motion of the core. The former method is often called the deformed shell model [31] or Nilsson model [32], and the latter is a particle-plus-rotor model [33]. Both are extensions of the independent-particle shell
Figure 1.7: Relative energies of the excited states in a triaxial rotor model as a function of γ. The primes are used to differentiate states with the same J^π. Figure adapted from [20].

Figure 1.8: The ratio $R_{4/2}$ for even-even nuclei across the nuclear chart. Dashed lines indicate the magic numbers (excluding 2 and 8). Figure adapted from [30].
model which explicitly incorporate collective effects.

1.3 Electromagnetic Transitions

While the energies of excited states, emphasized in the previous section, provide a first hint at the underlying nuclear structure, additional information is gained by studying their decay properties. Low-lying excited states bound to particle emission will decay primarily by emitting electromagnetic radiation (photons), commonly called γ rays. Other electromagnetic decays, such as the emission of conversion electron or internal pair production, are also possible. Neglecting the small recoil energy of the nucleus, the γ-ray energy is equal to the difference in energy between the initial and final nuclear states.

A γ-ray transition is classified by its multipolarity λ and character C, which can be either electric ($C = E$) or magnetic ($C = M$). A particular γ-ray transition is denoted $C\lambda$. Electric and magnetic γ-ray transitions carry opposite parity, which affects the possible initial and final states they can connect. For an initial state of parity π_i and a final state of π_f, this restriction is given by

$$\pi_i \pi_f = \pi_C (-1)^\lambda,$$

where $\pi_E = 1$ and $\pi_M = -1$. This means the allowed γ-ray transitions between states with $\pi_i = \pi_f$ are $M1, E2, M3, E4,...$, and states with $\pi_i = -\pi_f$ can be connected by $E1, M2, E3, M4...$ γ-ray transitions.

Along with parity, γ-ray transitions are subject to angular momentum selection rules as well. For an initial state with spin I_i and final state with I_f, the γ-ray transition must obey

$$|I_i - I_f| \leq \lambda \leq |I_i + I_f|.$$

Note that since γ rays are spin-1 bosons, an $E0$ γ-ray transition is forbidden since the γ ray must carry at least one unit of angular momentum. $E0$ transitions do occur, but they must proceed via another decay mode such electron conversion or internal pair production. There are no $M0$ transitions since magnetic monopoles do not exist.
The electromagnetic operator, which is responsible for γ-ray decay, depends on the character of the transition. For electric transitions, the operator is given by [11]

$$O(E\mu) = \sum_k e_k r_k^A Y_{\lambda\mu}(\theta_k, \phi_k),$$ \hspace{1cm} (1.22)

where the sum is over all A nucleons, e_k is the charge and (r_k, θ_k, ϕ_k) are the coordinates of the kth nucleon, respectively. The $Y_{\lambda\mu}$ are standard spherical harmonics. The magnetic transition operator is given by

$$O(M\lambda) = \sum_k \left(g_k^{(s)} s_k + \frac{2g_k^{(l)}}{\lambda + 1} r_k^A \right) \cdot \nabla \left[r_k^A Y_{\lambda\mu}(\theta_k, \phi_k) \right] \mu_N,$$ \hspace{1cm} (1.23)

where $\mu_N = \frac{e\hbar}{2mc} \approx 0.105 \, \text{e} \cdot \text{fm}$ is the nuclear magneton [11] and e is the fundamental charge. The terms $s_k, g_k^{(s)}, I_k$ and $g_k^{(l)}$ are the spin, spin gyromagnetic ratio (g-factor), orbital angular momentum, and orbital g-factor, respectively. See Sect. 2.3.2 for the origin of these operators.

In Eqs. 1.22 and 1.23, the nucleon charges and g-factors have typical "free-space" values. For neutrons, these are $e_n = 0$, $g_n^{(s)} = -3.826$, and $g_n^{(l)} = 0$, while for protons they are $e_p = 1$, $g_p^{(s)} = 5.856$, and $g_p^{(l)} = 1$ [11]. However, increased effective values can be used which account for model space truncations in a shell model calculation; the particular effective values will depend on the mass region and the severity of the truncation [11].

The transition rate from an initial state $|I_i M_i\rangle$ to a final state $|I_f M_f\rangle$ is given by a sum over all allowed transitions between those two states [34, 11]

$$W_{M_i M_f \mu} = \sum_{C, \lambda} \frac{8\pi(\lambda + 1)}{\lambda[(2\lambda + 1)!!]^2\hbar} \frac{E_\gamma}{\hbar c}^{2\lambda+1} \left| \langle I_f M_f | O(C\lambda)\mu | I_i M_i \rangle \right|^2,$$ \hspace{1cm} (1.24)

where E_γ is the γ-ray energy and c is the speed of light. Usually, M_i, M_f, μ cannot be observed in experiments. Thus it is useful to average over the initial magnetic substates M_i and sum the contributions of all projections μ to all final substates M_f [11]. This yields

$$W_{if} = \frac{1}{2I_i + 1} \sum_{M_i M_f \mu} W_{M_i M_f \mu}$$ \hspace{1cm} (1.25)

$$= \sum_{C, \lambda} \frac{8\pi(\lambda + 1)}{\lambda[(2\lambda + 1)!!]^2\hbar} \frac{E_\gamma}{\hbar c}^{2\lambda+1} \frac{\left| \langle I_f | O(C\lambda) | I_i \rangle \right|^2}{2I_i + 1},$$ \hspace{1cm} (1.26)
where the double-bar notation implies the matrix element has been "reduced" via the Wigner-Eckhart theorem:

$$\langle I_f M_f | O(C\lambda) \mu | I_i M_i \rangle = (-1)^{I_f - M_f} \left(\begin{array}{cc} I_f & \lambda \\ -M_f & \mu \end{array} \right) \langle I_f || O(C\lambda) || I_i \rangle. \quad (1.27)$$

Above, the term in parentheses indicates a Wigner $3j$-symbol. The Wigner-Eckhart theorem separates the $M_f, M_i,$ and μ dependence of the matrix element, and, notably, it implies the total transition rate W_{if} is independent of $M_i, M_f,$ and μ. This is due to the orthogonality relation

$$\sum_{M_f \mu} (-1)^{I_f - M_f} \left(\begin{array}{cc} I_f & \lambda \\ -M_f & \mu \end{array} \right) = 1. \quad (1.28)$$

Eq. 1.26 implies that the lowest allowed multipolarity decay will be dominant. For the same character of decay and a typical γ-ray energy, the lowest allowed multipolarity λ will have a decay rate roughly seven orders of magnitude larger than the next allowed multipolarity $\lambda + 2$. When an initial state can decay to a final state via both transition characters (a mixed transition), it is observed that the lowest multipolarity of each character can have comparable decay rates. Thus it is useful to define a mixing ratio given by [11]

$$\delta^2 \left(\frac{C\lambda + 1}{C'\lambda} \right) = \frac{W_{if}(C\lambda + 1)}{W_{if}(C'\lambda)}, \quad (1.29)$$

where by convention the higher multipolarity is in the numerator.

The total transition rate also determines the lifetime τ of the excited state $|I_i\rangle$, which is related to the sum of total transition rates to all possible final states

$$\frac{1}{\tau} = W_i = \sum_f W_{if}. \quad (1.30)$$

For each possible decay, one can define a partial lifetime $\tau_p = \tau/b$, where b is the branching fraction of the decay.

1.3.1 Reduced Transition Probabilities

The last factor in Eq. 1.26 is defined as the "reduced transition probability" $B(C\lambda; I_i \rightarrow I_f)$,

$$B(C\lambda; i \rightarrow f) \equiv \frac{|\langle I_f || O(C\lambda) || I_i \rangle|^2}{2I_i + 1}. \quad (1.31)$$
As seen, they depend on "off-diagonal" matrix elements \(\langle I_f || O(C\lambda) || I_i \rangle \) and thus describe how strongly two states are connected by a particular transition \(C\lambda \) (hence the name). Using Eqs. 1.26 and 1.30, the reduced transition probabilities \(B(C\lambda) \) can be related to the partial lifetime of the decay [11].

\[
B(E1) = \frac{0.629}{E_\gamma \tau_p} e^2 \text{fm}^2 \text{MeV}^3 \text{fs} \tag{1.32}
\]
\[
B(E2) = \frac{816}{E_\gamma \tau_p} e^2 \text{fm}^4 \text{MeV}^5 \text{ps} \tag{1.33}
\]
\[
B(E3) = \frac{1760}{E_\gamma \tau_p} e^2 \text{fm}^6 \text{MeV}^7 \mu s \tag{1.34}
\]
\[
B(M1) = \frac{56.8}{E_\gamma \tau_p} \mu_N^2 \text{MeV}^3 \text{fs} \tag{1.35}
\]
\[
B(M2) = \frac{74.1}{E_\gamma \tau_p} \mu_N^2 \text{fm}^2 \text{MeV}^5 \text{ns} \tag{1.36}
\]

It is common to express the \(B(C\lambda) \) transition strengths in "Weisskopf" units instead of the absolute units given in Eqs. 1.32 to 1.36. Weisskopf units are defined by [11]

\[
B_W(E1) = \frac{1}{4\pi} \left(\frac{3}{3 + \lambda} \right)^2 \left(1.2A^{1/3} \right)^{2\lambda} e^2 \text{fm}^2 \lambda, \tag{1.37}
\]
\[
B_W(M1) = \frac{10}{\pi} \left(\frac{3}{3 + \lambda} \right)^2 \left(1.2A^{1/3} \right)^{2\lambda - 2} \mu_N^2 \text{fm}^2 \lambda - 2. \tag{1.38}
\]

Weisskopf units represent an estimate of the transition strength for a single nucleon, and they correct somewhat for the natural dependence of the \(B(C\lambda) \) on the mass number.

Reduced transition strengths are excellent indicators of collective vs. single-particle-like behavior. Recalling from section 1.2.2 the emphasis collective models place on quadrupole collectivity (quadrupole vibrations, quadrupole deformation), it can perhaps be anticipated that large electric quadrupole transition strengths \(B(E2) \) provide the most direct indication of collective behavior. The right panel of Fig. 1.9 shows the evolution of \(B(E2; 0^+_1 \rightarrow 2^+_1) \) excitation strengths, which are related to transition strengths via

\[
B(C\lambda; i \rightarrow f) = \frac{2I_f + 1}{2I_i + 1} B(C\lambda; f \rightarrow i). \tag{1.39}
\]

Thus, \(B(E2; 0^+_1 \rightarrow 2^+_1) = 5B(E2; 2^+_1 \rightarrow 0^+_1) \).
Figure 1.9: The first 2^+ excited state energy for even-even nuclei across the nuclear chart (left), and the $B(E2; 0^+ \rightarrow 2^+)$ excitation strength as a function of N for various isotopic chains (right). Dashed lines indicate the magic numbers (excluding 2 and 8). The top right panel gives the $B(E2)$ in absolute units $e^2 b^2$, while the bottom panel uses Weisskopf units. Figures adapted from [30] (left) and [11] (right).

Fig. 1.9, right, shows clearly that the $B(E2)$ are minimized at the magic numbers and maximized far away from them. This indicates again the dominantly collective behavior of non-magic nuclei and the single-particle-like behavior of magic nuclei. The left panel of Fig. 1.9 shows a related signature: the energy of the first 2^+ excited state. Nuclei near closed shells tend to have a high $E(2^+_1)$, while those further away from magic numbers have a low $E(2^+_1)$. The strong correspondence of high $E(2^+_1) \leftrightarrow$ low $B(E2)$ can be understood qualitatively from Eq. 1.33, which states $B(E2) \propto E_\gamma^{-5}$.

As seen from Figs. 1.8 and 1.9, both rotational-like behavior and $B(E2)$ strengths tend to increase when moving further from the magic numbers. There is a corresponding relation in the rotational model between the quadrupole deformation parameter β_2 and the expected $B(E2)$ value. Assuming both a rigid deformation and that the protons are uniformly distributed over the nuclear volume, this is given by [35]

$$\beta_2 = \frac{4\pi}{3ZeR_0^2} \sqrt{B(E2; 0^+_1 \rightarrow 2^+_1)}. \tag{1.40}$$

Eq. 1.40 states that $B(E2)$ values are sensitive to the magnitude of deformation. However,
transition strengths alone are not sensitive to whether the excited state has prolate, oblate, or triaxial deformation, which is determined by the γ degree of freedom in the rotational model. The quadrupole moment of an excited state, which is proportional to the diagonal $E2$ matrix element $Q_s(I_f) \propto \langle I_f || O(E2) || I_f \rangle$, determines its specific shape. See Section 2.2.1 for more details on quadrupole moments.

In the triaxial rigid rotor model, Q_s depends on both β_2 and γ. For the first two 2^+ states, this model predicts [29]

$$Q_s(2^+_1) = -\frac{18}{7} \frac{ZeR_o^2}{\sqrt{5\pi}} \frac{\beta_2 \cos(3\gamma)}{\sqrt{9 - 8\sin^2(3\gamma)}} = -Q_s(2^+_2). \quad (1.41)$$

Eq. 1.41 implies that for axially-symmetric rotors ($\gamma = 0, \pi/3$), the magnitude of Q_s is maximized. This leads to the more common relation, by combing Eqs. 1.40 and 1.41, for an axially-symmetric rigid rotor:

$$|Q_s(2^+_1)| = \frac{2}{7} \sqrt{\frac{16\pi}{5}} B(E2; 0^+_1 \rightarrow 2^+_1) \quad \text{for } \gamma = 0, \pi/3. \quad (1.42)$$

While $|Q_s(2^+_1)|$ is maximized for axial symmetry, $Q_s(2^+_1) = 0$ for maximal asymmetry $\gamma = \pi/6$. However, $Q_s(2^+_1) = 0$ also for $\beta_2 = 0$ independent of γ. Because of this, small quadrupole moments can be indicative of either triaxial deformation ($\gamma \approx \pi/6$) or the absence of collective behavior ($\beta_2 \approx 0$).

The preceding sections focused on the properties of excited nuclear states and gave some simple descriptions of the underlying nuclear physics. Nothing has yet been said about any mechanism which actually causes the nucleus to become excited. Spontaneous decay processes, such as α [36] and β [37] decay, often leave the daughter nucleus in an excited state. There are also a myriad number of reactions which can cause a nuclear excitation. The reaction mechanisms can broadly be separated by whether the excitation is caused by a nuclear reaction [38], such as in nucleon knockout [39], or by an electromagnetic interaction, such as in nuclear resonance fluorescence [40] or Coulomb excitation [41]. The various reaction mechanisms carry sensitivity to different nuclear properties; this work is focused on probing collective properties using Coulomb excitation.
CHAPTER 2

COULOMB EXCITATION

The excitation of one nucleus in the electromagnetic field of another nucleus is referred to as Coulomb excitation. Since the interaction is electromagnetic, the excitation depends on the very same set of matrix elements which determine the γ-ray transition rates W introduced in Ch. 1. In Coulomb excitation, magnetic excitations are heavily suppressed at the low beam energies discussed in this work [41]. Thus matrix elements of the magnetic operator $O(M,\lambda)$ are not needed to describe the excitation process. Magnetic matrix elements do influence the γ-ray decay process, so they are still important for any experimental measurement.

In Coulomb excitation measurements, the experimental conditions are typically chosen such that the electric quadrupole ($E2$) interaction is the dominant excitation mode. In these experiments, the $E2$ operator will primarily mediate the excitation cross section of low-lying positive parity states in the yrast and yrare sequences [41]. Because of this, Coulomb excitation experiments are most commonly used to determine the quadrupole collective properties of nuclei, such as $B(E2)$ transition strengths and spectroscopic quadrupole moments Q_S. Though less common, electric dipole ($E1$) [42] and octupole ($E3$) [43, 44] excitation modes can also be observed in Coulomb excitation.

As an experimental technique, Coulomb excitation is several decades old. The first Coulomb excitation measurements employed a "normal" kinematics reaction scheme, where the nucleus of interest is made into a target which is bombarded by a projectile (the probe). These experiments were performed with beam energies below the Coulomb barrier (Section 2.2), and they were restricted to the study of stable nuclei since unstable nuclei cannot easily be made into targets.

With the advent of rare-isotope beam (RIB) facilities such as RIKEN and NSCL [45], unstable nuclei became available for experimental study. However, the normal kinematics reaction scheme had to be replaced by "inverse" kinematics, a scheme where the projectile is the nucleus of interest. The most exotic nuclei are created by projectile fragmentation and in-flight separation [46] with
energies often exceeding 100 MeV/u, which is always well above the Coulomb barrier. Using Coulomb excitation with such high-energy beams necessitated the more recent development of intermediate-energy Coulomb excitation (Section 2.1).

Irrespective of the beam energy regime, the most basic assumption in Coulomb excitation is that the interaction is purely electromagnetic. This assumption is true if the two colliding nuclei maintain a separation greater than the range of the nuclear force, which ensures the excitation cross section will not have any contribution from the nuclear potential [41]. This enables an interpretation of experimental data that is independent of any model of the nuclear force as the excitation process can be described purely in terms of the well-known electromagnetic interaction.

Systematic experimental studies of Coulomb-nuclear interference effects [47, 48, 49] have shown a conservative estimate of the minimum separation which ensures there is no interaction in the nuclear potential is given by [41]

$$R_{min} = \left[1.25 \left(\frac{A_P^{1/3} + A_T^{1/3}}{2}\right) + 5\right] \text{ fm}, \quad (2.1)$$

where R_{min} is the distance between the centers of the two colliding nuclei and the subscripts P and T refer to the projectile and target, respectively. The expression $1.25A^{1/3}$ is an approximation for the radius of a nucleus; thus the condition given in Eq. 2.1 states that the surfaces of the two nuclei remain at least 5 fm apart. In practice, there are two primary methods for ensuring Eq. 2.1 is satisfied when performing Coulomb excitation experiments.

2.1 Intermediate-Energy Coulomb Excitation

One method to ensure the colliding maintain the minimum separation of Eq. 2.1 is to restrict the scattering angle of the projectile, which is related to the impact parameter b of the reaction via

$$b = \frac{a}{\gamma \cot \left(\frac{\theta_{CM}}{2}\right)}, \quad (2.2)$$

$$a = \frac{Z_p Z_T e^2}{m_o c^2 \beta^2}. \quad (2.3)$$

In Eqs. 2.2 and 2.3, a is the half-distance of closest approach, $\gamma = \sqrt{\frac{1}{1-\beta^2}}$ is the Lorentz factor, $\beta = \frac{v}{c}$ is the velocity of the projectile relative to the speed of light, θ_{CM} is the scattering angle in
the center-of-mass frame, and \(m_o \) is the reduced mass of the system.

Using Eq. 2.2, one can ensure the nuclei maintain the minimum safe separation by restricting \(\theta_{CM} \). This is the basis of intermediate-energy Coulomb excitation [50], so-named because the energy of the incoming beam is well above the Coulomb barrier of the projectile-target combination as mentioned earlier. This technique has been used extensively to assess collectivity in a wide array of nuclei [51, 52, 53, 54, 55, 56, 57, 58, 59, 60] at beam energies of several tens to hundreds of MeV/u.

Intermediate-energy Coulomb excitation has many advantages as an experimental technique. The high beam energy increases the Coulomb excitation cross section, and use of thick, high-Z targets can further increase the luminosity; this allows experiments to be performed with very low beam rates, down to a few particles per second. The high beam energy also affects which final states can be populated. Since the interaction time is small, multi-step processes are strongly suppressed, and thus only states which can be reached in a single step from the initial\(^1\) nuclear state will be observed. The data collected from these experiments can be interpreted using the semi-classical theory of relativistic Coulomb excitation developed by Alder and Winther [62], which uses a perturbative treatment of the interaction to relate the observed cross-sections to \(B(E2) \) transition strengths.

2.2 Barrier-Energy Coulomb Excitation

Another method to ensure that Eq. 2.1 is satisfied is by limiting the kinetic energy of the projectile \(E_P \) such that the minimum safe distance corresponds to the classical turning point of the projectile’s trajectory for a head-on collision. This energy, referred to as the "Coulomb barrier" for a projectile-target combination, is given by [41]

\[
E_{CB} = \frac{e^2}{4\pi\varepsilon_0} \frac{A_P + A_T}{A_T} \frac{Z_P Z_T}{R_{min}},
\]

\[
\frac{e^2}{4\pi\varepsilon_0} \approx 1.440 \text{ MeV} \cdot \text{fm}.
\]

\(^1\) Usually, the initial state is the nuclear ground state, though it is also possible to induce Coulomb excitation from excited isomeric states [53, 61].
Experiments which satisfy $E_p \leq E_{CB}$ are referred to as barrier-energy or sub-barrier-energy Coulomb excitation [41]. In these experiments, there is no need to restrict the scattering angle θ_{CM} as is done in intermediate-energy Coulomb excitation.

As mentioned previously, Barrier-energy Coulomb excitation is a traditional experimental method which has long been used to study collectivity in nuclei. Originally, these experiments were performed in normal kinematics. However, the extension of barrier-energy Coulomb excitation to inverse kinematics was enabled by RIB facilities that provide beams at a few MeV/u. The application of inverse-kinematics barrier-energy Coulomb excitation to unstable nuclei greatly increases the experimental understanding possible for these nuclei by both expanding the number excited which can be populated as well as providing sensitivity to quadrupole moments.

Several techniques exist for producing low-energy RIBs. Isotope separation online (ISOL) facilities, such as TRIUMF-ISAC [63] and REX-ISOLDE [64], use a high-intensity proton beam to fragment a heavy production target. The fragmentation products then diffuse out of the target and are ionized and accelerated; this process generally creates a strong chemistry dependence of the available beams. The NSCL utilizes a novel and unique scheme to produce low-energy RIBS by projectile fragmentation followed by in-flight separation, thermalization of the RIB in a gas-cell, and then ionization and re-acceleration. This process is essentially chemistry-independent, and in principle any RIB can be studied if it is produced with sufficient intensity ($\geq 10^3$ pps).

The earliest barrier-energy experiments [65, 66, 67], dating to the 1950’s, studied stable nuclei in normal kinematics, and the probes used were light ions such as protons and 4He nuclei. Due to the low-Z of probes, only single-step Coulomb excitation was observed and thus an interpretation based on first-order perturbation theory was adequate [41] to extract the $B(E2)$ transition strengths. Once heavier ions, such as 16O, became available as probes, observation of "multiple" Coulomb excitation [68] became possible due to the increased strength of the electromagnetic interaction.

When high-Z probes are used, the lower bombarding energy in barrier-energy Coulomb excitation, which implies a longer interaction time, allows multi-step processes to occur. Multiple Coulomb excitation enables the study of excited nuclear states beyond those which can be reached.
Figure 2.1: A depiction of the multiple excitation paths (left) and decay paths (right) possible in multiple Coulomb excitation experiments. The nuclear matrix elements responsible for a particular excitation are indicated; these same matrix elements determine the γ-ray decay properties.

in a single step from the initial state, and it allows a particular final state to be populated via more than one excitation pathway. This situation is shown schematically in Fig. 2.1.

With the use of the highest-Z probes available, such as 208Pb, states with spins up to $30\hbar$ have been populated via multiple Coulomb excitation in highly deformed nuclei [41]. The excitation of such a large number of excited states provides experimental sensitivity to very many matrix elements; in some cases a complete set of $E2$ matrix elements can be extracted from the low-lying level scheme. Much like intermediate-energy Coulomb excitation, multi-step barrier-energy Coulomb excitation has been extensively used to determine collective properties in a wide range of nuclei [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].

The presence of multiple Coulomb excitation also complicates somewhat the interpretation of experimental data, as the number of higher-order processes and the large strength of the interaction
make a perturbative treatment not viable [80]. Instead, the semi-classical approximation [41, 81, 80, 82] is used to formulate the Schrödinger equation as a set of coupled differential equations (see Section 2.3), and computer codes [83, 84, 85] are used to solve these equations directly via numerical integration.

2.2.1 The Reorientation Effect

One particularly interesting example of multi-step Coulomb excitation is known as the nuclear reorientation effect. As the projectile impinges on the target, both nuclei are subjected to a time-dependent "orientation" energy. This is due to the interaction of their excited-state spectroscopic quadrupole moments $Q_s(I)$ with the strong electric field generated by the collision partner [86].

The orientation energy $E(t)$ is given by

$$E(t) = \frac{ZeQ_s(I)}{r^3(t)} \frac{3M^2 - I(I + 1)}{4I(2I - 1)} ,$$

where Q_s, I, and M describe the excited nucleus, Z describes the nucleus in the ground state, and $r(t)$ is the distance between the two nuclei. The spectroscopic quadrupole moment of an excited state is directly related to the diagonal $E2$ matrix element, and it is given by

$$Q_s(I) = \sqrt{\frac{16\pi}{5}} \begin{pmatrix} I & 2 & I \\ -I & 0 & I \end{pmatrix} \langle I|O(E2)||I \rangle .$$

While the $B(CA; I_i \to I_f)$, which depend on off-diagonal matrix elements, characterize transitions between two nuclear states I_1 and I_2, quadrupole moments describe transitions between the magnetic substates of a particular excited state I. Thus the reorientation effect is a two-step process in which the intermediate and final states are the same; this is represented by the curved arrows in Fig. 2.1. Spectroscopic quadrupole moments determine the character of the (LAB-frame) quadrupole deformation of a nuclear state: $Q_s < 0$ implies a prolate deformation, $Q_s > 0$ implies an oblate deformation, and a spherical configuration is indicated by $Q_s = 0$. (This can also be seen from Eq. 1.41 via the γ dependence of Q_s in a rigid-rotor model.)

Critically, the energy given by Eq. 2.5 depends on the spin-projection M of the excited state. This implies the degenerate magnetic substates are split by the presence of an electric field gradient [86].
The M substate splitting of an $I = 2$ excited state assuming a prolate (left) and oblate (right) shape. The substates are split in opposite directions due to the different sign of Q_s. Contours from [27]

As can also be seen from Eq. 2.5, the splitting of the M substates depends on both the magnitude and sign of the quadrupole moment. Thus the substates of a prolate excited state will have opposite splitting compared to an oblate state. This is shown in Fig. 2.2.

The probability of Coulomb excitation has a strong dependence on the energy of the excited state. Considering the dominance of the $\Delta M = 0$ excitation path, the substate splitting will also result in a change of the Coulomb excitation cross section. Assuming an $I = 0$ initial state, prolate excited states will have a smaller excitation cross section relative to the spherical case, as the $M = 0$ substate will be raised. Oblate excited states will have an increased cross section, as the $M = 0$ substate is lowered.

Further, the size of the splitting depends strongly on the distance between the nuclei through the $1/r^3$ term in Eq. 2.5. The distance between the nuclei is minimized, and thus the splitting is maximized, for large scattering angles (see Eq 2.2). Conversely, the splitting is minimized for small scattering angles. This creates a second-order angular dependence of the excitation cross section due to the quadrupole moment, shown in Fig. 2.3. This is the most prominent experimental
Figure 2.3: Coulomb excitation cross section (solid) and excitation probability (dashed) of an excited 2^+_1 state, as a function of the scattering angle, for different excited state quadrupole moments. The reorientation effect is clear. Note the excitation cross section is given by the product of the excitation probability (dashed lines) with the Rutherford cross section (not shown). Figure taken from [87]; see [87] for details of the calculations.

signature of the reorientation effect in barrier-energy Coulomb excitation. It can be exploited by measuring the Coulomb excitation cross sections at different scattering angles, which will provide direct sensitivity to the excited state quadrupole moment.

Another experimental signature of the reorientation effect, for example, is a change in the angular distribution of the decay γ rays. This arises because the nuclear alignment induced by Coulomb excitation depends on population pattern of the M substates, which is changed by the different substate splitting (see Section 2.4.1); this is the basis of the "reorientation-precession" technique for measuring quadrupole moments [86, 88].
2.2.2 Rotational Invariants

As mentioned above, the large number of multi-step processes which can occur in barrier energy Coulomb excitation, including the reorientation effect, provide sensitivity to a very large set of nuclear matrix elements. Quadrupole collectivity produces correlations among these matrix elements, and thus there are generally fewer significant collective degrees of freedom than there are individual matrix elements [41]. It is useful to project the collective degrees of freedom, from both data and theory calculations, to gain further insight over an inspection of the individual matrix elements. This can be accomplished by exploiting the properties of the electromagnetic operators (Eqs. 1.22 and 1.23) [41].

The electromagnetic operators are spherical tensors and as such zero-coupled products can be formed which are invariant under rotations [41, 89]. The electric quadrupole operator \(O(E2) \) can be parametrized in the intrinsic frame as [41]

\[
E(2, 0) = Q \cos \delta, \tag{2.7}
\]

\[
E(2, \pm 1) = 0, \tag{2.8}
\]

\[
E(2, \pm 2) = \frac{1}{\sqrt{2}} Q \sin \delta. \tag{2.9}
\]

The parameters \((Q, \delta)\) are analogous to the Bohr parameters \((\beta_2, \gamma)\) which describe the radial shape of a quadrupole deformed object as discussed in Section 1.2.2. The geometric interpretation of \((Q, \delta)\) is the same as the Bohr parameters, except \((Q, \delta)\) describe the quadrupole deformation only of the charge distribution.

Using the general tensor product [11]

\[
\left[T^{l_1} \otimes U^{l_2} \right]_{\lambda \mu} = \sum_{\mu_1 \mu_2} \langle \lambda_1 \mu_1 \lambda_2 \mu_2 | \lambda \mu \rangle T_{\lambda_1 \mu_1} U_{\lambda_2 \mu_2}, \tag{2.10}
\]

the two lowest-order zero-coupled products can be evaluated from Eqs. 2.7 to 2.8 as [90, 41]

\[
[E2 \otimes E2]^0 = \frac{1}{\sqrt{5}} Q^2, \tag{2.11}
\]

\[
\left\{ [E2 \otimes E2]^2 \otimes E2 \right\}^0 = \frac{\sqrt{5}}{\sqrt{35}} Q^3 \cos(3\delta). \tag{2.12}
\]
The expectation value of these invariant products for a state \(|s\rangle\) can be evaluated in the \(LAB\)-frame using an intermediate state expansion, yielding [90]

\[
\langle Q^2 \rangle = \sqrt{5} \frac{(-1)^{2I_s}}{\sqrt{2I_s+1}} \sum_r M_{sr} M_{rs} \begin{pmatrix} 2 & 2 & 0 \\ I_s & I_s & I_r \end{pmatrix},
\]

\[
\langle Q^3 \cos(3\delta) \rangle = \sqrt{\frac{35}{2}} \frac{(-1)^{2I_s+1}}{2I_s+1} \sum_{tu} M_{stu} M_{tus} \begin{pmatrix} 2 & 2 & 2 \\ I_s & I_f & I_u \end{pmatrix}.
\]

Above, the shorthand notation \(M_{sr} = \langle s||O(E2)||r \rangle\) has been employed, and the curly brackets denote a Wigner 6\(j\)-symbol. Only these two lowest-order products will be presented here. See, for example, Refs [41, 89, 90, 91] for expressions of higher-order invariant products.

The invariant sums given above are completely model-independent results which assume only the spherical tensor nature of the \(E2\) operator. They provide sensitivity to the intrinsic quadrupole deformation of a nuclear state from a set of measured \(E2\) matrix elements and provide model-independent evidence for intrinsic prolate, oblate, or triaxial shapes. Higher-order invariants can be formed which relate to the statistical dispersion of the centroids given by Eqs. 2.13 and 2.14; these determine whether the deformation is of a rigid or soft nature (see, for example, Refs. [72, 92]). Note that the triaxial rotor model, for instance, assumes a rigid deformation [29].

The number of matrix elements necessary for an accurate evaluation of the of summations increases rapidly with the complexity of the invariant product [41, 91]. In well deformed nuclei, the ground-state deformation is generally dominated by the \(\langle 0^+_1||O(E2)||2^+_1 \rangle\) matrix element, and thus the centroids of ground-state deformation parameters can often be extracted from moderate-statistics Coulomb excitation experiments [74]. However, the affects of truncation should generally be investigated when evaluating the invariant sums from experimental data. See Ref. [91] for a general discussion of convergence of the quadrupole sums for nuclei in the \(20 \leq A \leq 52\) mass range.

2.3 Semi-Classical Theory

In the semi-classical description of sub-barrier Coulomb excitation, the relative motion of the colliding nuclei, which is governed by the monopole-monopole part of the Coulomb potential, is
assumed to follow a classical hyperbolic trajectory [81]. This is well justified if the parameter \(\eta \), defined as the ratio of the half-distance of closest approach \(a \) to the wavelength of relative motion \(\lambda \), is much larger than unity, i.e. [82]

\[
\eta \equiv \frac{a}{\lambda} = \frac{Z_p Z_f e^2}{\hbar c \beta} \gg 1.
\]

Note the condition \(\eta \gg 1 \) is closely related to the requirement of a sub-barrier beam energy \(E_p \leq E_C \). For sub-barrier Coulomb excitation of heavy-ions \((Z > 10) \), \(10 < \eta < 1000 \) and thus \(\eta \gg 1 \) is easily fulfilled.

For the assumption of classical hyperbolic orbit to be valid, any nuclear excitations which occur during the reaction must not distort the orbit. This is true if [82]

\[
\frac{\Delta E_n}{E_p} \ll 1, \tag{2.16}
\]

where \(\Delta E_n \) is the energy difference between the excited nuclear state \(|n\rangle \) and the initial state. In typical heavy-ion Coulomb excitation, \(E_p \) is a few hundred MeV, while the excited states populated are typically located no higher than a few MeV in excitation energy.

Under the above assumptions of Eqs. 2.15 and 2.16, the differential cross-section for the Coulomb excitation of state \(|n\rangle \) takes an especially simple form [82]:

\[
\left(\frac{d\sigma}{d\Omega} \right)_n = P_n \left(\frac{d\sigma}{d\Omega} \right)_R \tag{2.17}
\]

\[
\left(\frac{d\sigma}{d\Omega} \right)_R = \frac{a^2}{4 \sin^4 (\theta_{CM}/2)}, \tag{2.18}
\]

where \(P_n \) is the probability of exciting the state \(|n\rangle \) and \(\left(\frac{d\sigma}{d\Omega} \right)_R \) is the Rutherford scattering cross-section.

2.3.1 Coupled Differential Equations

Using the semi-classical approximation, the time-dependent Schrödinger equation can be written in the following form [82]

\[
i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = [H_0 + V(t)] |\psi(t)\rangle, \tag{2.19}
\]
where $|\psi(t)\rangle$ is the wave-function of the excited nucleus (target or projectile), H_0 is the free intrinsic nuclear Hamiltonian, and $V(t)$ is the interaction between the monopole (unexcited) and multipole (excited) moments of the colliding nuclei. Thus excitations in the target and projectile can be considered independently, each governed by Eq. 2.19. There is in principle a multipole-multipole interaction which does not allow such a separation; this interaction is negligibly small and can be ignored [82]. Note the monopole-monopole interaction, which cannot cause a nuclear excitation, is accounted for when determining the classical trajectory of the reaction described in Sect. 2.3.3.

Expanding the time-dependent wave-function in terms of the eigenstates of H_0,

$$
|\psi(t)\rangle = \sum_n a_n(t)|n\rangle
$$

$$
H_0|n\rangle = E_n|n\rangle
$$

$$
a_n(t) = \langle n|\psi \rangle \exp\left[iE_n t/\hbar \right],
$$

one can exploit the orthonormality of the eigenstates, $\langle n|k \rangle = \delta_{nk}$, and write the Schrödinger equation as a set of coupled differential equations

$$
i\hbar \frac{d}{dt} a_n(t) = \sum_m \langle n|V(t)|m\rangle \exp\left[i(E_n - E_m) t/\hbar \right] a_m(t).
$$

The coupled differential equations in Eq 2.21 define the expansion coefficients (or excitation amplitudes) $a_n(t)$, and they can be solved assuming the nucleus is in a particular initial state $|k\rangle$ before the collision, i.e $a_n(-\infty) = \delta_{kn}$. The amplitudes after the collision determine the probability P_n of exciting the state $|n\rangle$ via [82]

$$
P_n = a_n a_n^*.
$$

2.3.2 The Electromagnetic Interaction

To solve the differential equations 2.21, the electromagnetic interaction is written as an expansion of multipole moments [82]:

$$
V(t) = \sum_{\lambda=1}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \frac{4\pi Ze}{2\lambda + 1} (-1)^\mu S_{C\lambda\mu}(t) M(C, -\mu),
$$

36
where Z is the proton number of the unexcited nucleus. The functions $S_{C,\lambda\mu}(t)$ depend on the character of the excitation. For electric excitations,

$$S_{E,\lambda\mu}(t) = \frac{Y_{\lambda\mu}(\theta_P(t), \phi_P(t))}{[r_P(t)]^{\lambda+1}}, \quad (2.24)$$

and for magnetic excitations,

$$S_{M,\lambda\mu}(t) = \frac{1}{c\lambda} \frac{d\mathbf{r}_P(t)}{dt} \left(r_P(t) \times \nabla \right) \frac{1}{[r_P(t)]^{\lambda+1}} Y_{\lambda\mu}(\theta_P(t), \phi_P(t)). \quad (2.25)$$

In Eqs. 2.24 and 2.25, the coordinates $\mathbf{r}_P(t) = (r_P(t), \theta_P(t), \phi_P(t))$ are the time-dependent spherical coordinates of the projectile in any frame of reference with the origin at the center-of-mass of the target.

In Eq. 2.23, $\mathcal{M}(C\lambda, \mu)$ is an electromagnetic multipole moment of the excited nucleus. For electric moments,

$$\mathcal{M}(E\lambda, \mu) = \int \rho(\mathbf{r}) r^\lambda Y_{\lambda\mu}(\mathbf{r}) d\tau, \quad (2.26)$$

while for magnetic moments,

$$\mathcal{M}(M\lambda, \mu) = \frac{1}{c(\lambda + 1)} \int \mathbf{j}(\mathbf{r}) r^\lambda (\mathbf{r} \times \nabla) Y_{\lambda\mu}(\mathbf{r}) d\tau. \quad (2.27)$$

The quantities $\rho(\mathbf{r})$ and $\mathbf{j}(\mathbf{r})$ are the nuclear charge and current densities, respectively, and the integration is performed over the coordinates \mathbf{r} measured with respect to the center-of-mass of the excited nucleus.

Assuming the nucleus can be described as point-charge nucleons which generate a convection current plus a magnetization current due to the dipole moments of individual nucleons [81], the charge and current densities can be written as

$$\rho(\mathbf{r}) = \sum_k e_k \delta(\mathbf{r} - \mathbf{r}_k) \quad (2.28)$$

$$\mathbf{j}(\mathbf{r}) = \sum_k e_k \left[\mathbf{v}_k \delta(\mathbf{r} - \mathbf{r}_k) \right]_{\text{sym}} + c \mathbf{g}_k^{(s)} (\nabla \times \mathbf{s}_k) \delta(\mathbf{r} - \mathbf{r}_k) \mu_N. \quad (2.29)$$

Here, \mathbf{v}_k is the velocity, and the subscript "sym" denotes symmetrization of the factors in the brackets [81]. Using the forms of $\rho(\mathbf{r})$ and $\mathbf{j}(\mathbf{r})$ given above, the multipole moments of Eqs. 2.26
Figure 2.4: Coordinate system "B" from [82] used to evaluate the excitation amplitudes. The positive z-axis bisects the asymptotic velocities of the projectile, the x-axis is perpendicular to the plane of orbit, and the y-axis is chosen such that the y-component of the projectile's velocity is positive. The scattering angle θ is indicated. Figure from [82].

and 2.27 can be evaluated [81], and one finds

$$M(C\lambda, \mu) = O(C\lambda)_\mu.$$

Thus, Eqs. 2.26 to 2.29 are the origin of the electromagnetic transition operators $O(C\lambda)_\mu$ introduced in Ch. 1.

2.3.3 Orbital Motion

The functions $S_{C\lambda\mu}(t)$ depend on time implicitly through the coordinates $r_P(t)$ of the projectile, which is assumed to following the classical hyperbolic orbit. This orbit, along with a convenient coordinate system for evaluation of the $S_{C\lambda\mu}(t)$, is shown in Fig. 2.4. The hyperbolic orbit can described by the dimensionless parameters ϵ and ω, defined by

$$\epsilon = \frac{1}{\sin(\theta/2)}$$

$$t = \frac{a}{v} \left[\epsilon \sinh(\omega) + \omega \right],$$

(2.31)
where \(v \) is the initial velocity of the projectile. The parameter \(\epsilon \) is the orbit eccentricity, and \(\omega \) is a dimensionless time.

With this parametrization, the Cartesian and spherical coordinates are given explicitly by

\[
x = 0, \\
y = a\sqrt{\epsilon^2 - 1} \sinh(\omega), \\
z = a [\cosh(\omega) + \epsilon],
\]

\[
\sin \theta = \frac{\sqrt{\epsilon^2 - 1} \sinh(\omega)}{\epsilon \cosh(\omega) + 1}, \\
\phi = \pi/2,
\]

and the functions \(S_{C\lambda\mu}(t) \) are now replaced by dimensionless "collision" functions \(Q_{C\lambda\mu}(\epsilon, \omega) \) [82, 90] given by

\[
Q_{C\lambda\mu}(\epsilon, \omega) = a^{\lambda} \frac{(2\lambda - 1)!!}{(\lambda - 1)!!} \sqrt{\frac{\pi}{2\lambda + 1}} \frac{r(\omega)}{f_C} S_{C\lambda\mu}(t(\omega))
\]

where \(f_M = \beta \) and \(f_E = 1 \).

Labeling the nuclear states by both their spin \(I \) and spin-projection \(M \), i.e. \(|k\rangle = |I_k M_k\rangle \), the coupled differential equations 2.21 can now be written explicitly as

\[
\frac{d}{d\omega} a_{I_n M_n}(\omega) = -4i \sqrt{\frac{\pi}{\hbar \nu}} Z e \sum_{C_{\lambda\mu}} f_C Q_{C\lambda\mu}(\epsilon, \omega) \frac{\sqrt{2\lambda + 1} (\lambda - 1)!!}{a^{\lambda} (2\lambda + 1)!!} \exp \{i \xi_{nm} [\epsilon \sinh(\omega) + \omega]\}
\]

\[
(-1)^{I_m - M_m} \begin{pmatrix} I_m & \lambda & I_n \\ -M_m & \mu & M_n \end{pmatrix} \langle I_m||O(C\lambda)||I_n\rangle a_{I_m M_m}(\omega),
\]

where \(\xi_{nm} = \frac{\alpha}{\hbar \nu} (E_n - E_m) \) is measure of the adiabacity of the reaction. It can be seen here clearly why magnetic excitations are negligible. The factor \(f_C \) introduces a factor of \(\beta \) to the differential amplitudes of magnetic excitation which is not present for electric excitation. To first order, this reduces the magnetic excitation probability by a factor of \(\beta^2 \), and in sub-barrier Coulomb excitation \(\beta^2 \lesssim 0.0001 \), typically.

2.4 Gamma Decay

The rate of \(\gamma \)-ray decay of a nuclear state is given in Ch. 1 by Eq. 1.30. Excited states which only decay via an electromagnetic transition typically have lifetimes approximately \(10^8 \) times longer than
the Coulomb excitation process [90]. This enables a treatment of the γ-ray decay process which is independent of the Coulomb excitation process [82].

2.4.1 Nuclear Alignment

Coulomb excitation introduces a preferential alignment of the excited nuclear state [82]. This alignment can be expressed in terms of the statistical tensor \(\rho_{kk} \) [93, 82] as

\[
\rho_{kk}(I) = \frac{\sqrt{2I+1}}{2I_o + 1} \sum_{M_o, M_M^*} (-1)^{I-M_M^*} \left(\begin{array}{cc} I & k \\ M & M \end{array} \right) a^*_I M' (I_o M_o) a_I M (I_o M_o),
\]

(2.35)

where \(I_o \) is the spin of the initial state. It is noted that Eq. 2.35 is written in very general form; it is valid irrespective of how the excitation amplitudes \(a \) are evaluated (via numerical integration, perturbation theory, etc.).

The nuclear alignment implies that the angular distribution of decay γ rays will not be isotropic. Assuming a state \(I_1 \) decays to state \(I_2 \) via transitions of multipolarities \(\lambda \) and \(\lambda' \), the probability \(P(k) \) of γ-ray emission in the direction \(k \) is given by [82]

\[
P(k) = \frac{d\Omega}{4\pi W_1} \sum_{k, \lambda, \lambda'} \sqrt{2k+1} \delta_{C\lambda} \delta_{C\lambda'}^* F_k (\lambda \lambda' I_2 I_1) \frac{\rho_{kk}(I_1)}{\rho_{00}(I_1)} D_{k0}^k (z \to k),
\]

(2.36)

where \(W_1 \) is given by Eq. 1.30 and the \(D_{k\lambda}^k (z \to k) \) are Wigner rotation functions which describe a rotation of the LAB system such that its z-axis points along the direction \(k \). The "transition amplitude" \(\delta_{C\lambda} \) is given by

\[
\delta_{C\lambda} = i^{s(C\lambda)} \sqrt{\frac{8\pi (\lambda + 1)}{\lambda (2\lambda + 1)!} \frac{E_{\gamma}}{\hbar c} \frac{2\lambda+1}{\sqrt{2I_1 + 1}} \langle I_f || O(C\lambda) || I_i \rangle},
\]

(2.37)

where \(s(E\lambda) = \lambda \) and \(s(M\lambda) = \lambda + 1 \). It is noted an equivalent definition of the transition rate (Eq. 1.26) is given by

\[
W_{if} = \sum_{C\lambda} (-1)^{s(C\lambda)+1} |\delta_{C\lambda}|^2.
\]

(2.38)
The angular correlation functions $F_k(\lambda\lambda' I_2 I_1)$ are given by [94, 82]

$$F_k(\lambda\lambda' I_2 I_1) = (-1)^{I_1+I_2-1} \sqrt{(2k + 1)(2I_1 + 1)(2\lambda + 1)(2\lambda' + 1)} \begin{pmatrix} \lambda & \lambda' & k \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \lambda & \lambda' & k \\ I_1 & I_1 & I_2 \end{pmatrix}. \quad (2.39)$$

The F_k functions are typically called $\gamma-\gamma$ correlation functions, though here they are used to describe the angular distribution of only a single γ ray. This is because the alignment induced by the Coulomb excitation process is quite similar to the alignment induced by γ-ray decay [81]. It is noted that an isotropic distribution can be generated by setting $\rho_{k\kappa} = \delta_{k0}\delta_{\kappa0}$.

If one chooses to evaluate the excitation amplitudes such that they can be expressed in a closed form, for example with perturbation theory, the statistical tensor (Eq 2.35) and angular distribution (Eq. 2.36) can be written as explicit functions. This allows the total γ-ray angular distribution $W(\theta_\gamma)$, integrated over the particle scattering angle, to be written in the more familiar form:

$$W(\theta_\gamma) = \sum_k a_k P_k(\cos(\theta_\gamma)), \quad (2.40)$$

where the P_k are Legendre polynomials. The coefficients a_k have been evaluated via perturbation theory to first and second order, as well as by a quantum-mechanical treatment, in Ref. [81].

The nuclear alignment induced by Coulomb excitation can be significantly attenuated by experimental effects. In many Coulomb excitation experiments, both the scattered projectile and recoiling target will be left in highly ionized, highly-excited atomic configurations after the collision [95]. If the ions emerge from the target into a vacuum, these excited electronic configurations will relax to the atomic ground state on a timescale similar to the lifetime of the excited nuclear states; this process produces rapidly fluctuating hyperfine magnetic fields which will be felt by the nucleus prior to γ-ray decay.

The magnetic dipole moment of the excited state will couple to the hyperfine magnetic fields, which are of order 10^4 Tesla. This interaction attenuates the nuclear alignment and is thus referred to as the "deorientation" effect. Do to the complexity of the fluctuating hyperfine fields, a simplified two-state model is often used to account for this effect [95, 96] by introducing attenuation coefficients.
\(G_k \) which modify the statistical tensor:

\[
\rho_{kk} \rightarrow G_k \rho_{kk}. \tag{2.41}
\]

The two-state model has several adjustable parameters, and default values have been obtained from fits to deorientation effect data from a range of nuclei \([90, 97]\) which account for this affect quite well [41].

2.4.2 Angular Correlations

The statistical tensor \(\rho_{kk} \) also provides a natural framework for describing the typical angular correlations observed in a \(\gamma \)-ray cascade. After the decay of state \(I_1 \), described by \(\rho_{k_1 \kappa_1} \), to the state \(I_2 \), the alignment of state \(I_2 \) is given by [82]

\[
\rho_{k_2 \kappa_2}(I_2) \frac{d\Omega}{4\pi W_1} = \sum_{k \text{ even}} (-1)^{k_1 + \kappa_1} \sqrt{\frac{(2k + 1)(2k_1 + 1)}{2k_2 + 1}} \begin{pmatrix} k_1 & k & k_2 \\ -\kappa_1 & \kappa & \kappa_2 \end{pmatrix}
\delta_{C\lambda} \delta_{C'\lambda'} F_k^{k_2 k_1}(\lambda \lambda' I_2 I_1) \frac{\rho_{k_1 \kappa_1}(I_1)}{\rho_{00}(I_1)} \mathbf{D}^{k_2 k_1}_0(z \rightarrow k). \tag{2.42}
\]

The triple correlation coefficient \(F_k^{k_2 k_1} \) is given by [82].

\[
F_k^{k_2 k_1}(\lambda \lambda' I_2 I_1) = (-1)^{\lambda' + k_2 + \kappa_1 + 1} \sqrt{(2I_1 + 1)(2I_2 + 1)}
\sqrt{(2\lambda + 1)(2\lambda' + 1)(2k + 1)(2k_1 + 1)(2k_2 + 1)} \begin{pmatrix} \lambda & \lambda' & k \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} I_2 & \lambda & I_1 \\ I_2 & \lambda' & I_1 \end{pmatrix} \begin{pmatrix} k_2 & k & k_1 \end{pmatrix}, \tag{2.43}
\]

where the factor in curly brackets is a Wigner 9\(j \)-symbol.

If the initial alignment is known, Eqs. 2.36 and 2.42 enable the calculation of both the initial \(\gamma \)-ray angular distribution and the subsequent \(\gamma \)-\(\gamma \) angular correlations for an arbitrarily long \(\gamma \)-ray cascade. The initial angular distribution is given by Eq. 2.36, the statistical tensor is then "updated" by Eq. 2.42, and the subsequent angular distribution can be generated again from Eq. 2.36 using the updated statistical tensor.
2.5 The GOSIA Code

In principle, the network of coupled differential equations (Eq. 2.34) should include all excited states, and determining the final excitation amplitudes would involve an integration of all channels over the full range of the classical hyperbolic orbit, i.e. over $-\infty < \omega < \infty$. In practice, only a subset of excited states can be considered, and the integration is performed only over a finite range of ω which can be determined by the desired accuracy [90]. Multiple computer codes have been developed for this task [84, 83, 85]; they allow, for a given set of matrix elements, a quantitative calculation of multi-step Coulomb excitation probabilities for specified experimental conditions, such as the bombarding energy and projectile scattering angle. The most commonly used code is GOSIA [90, 83].

GOSIA was designed in 1980 to facilitate the extraction of electromagnetic matrix elements from data collected during barrier-energy multi-step Coulomb excitation experiments. Typically, the primary observables from these experiments are γ-ray yields as a function of scattering angle. Because of this, evaluation of the excitation probabilities is not the only functionality of GOSIA; it subsequently calculates the γ-ray decays which will result from the excited state population distribution. The γ-ray yield calculations in GOSIA account for several effects, such as [90, 87]: γ-ray angular distributions including the effects of deorientation, $\gamma-\gamma$ angular correlations, a relativistic transformation to a common reference frame, and integration over the γ-ray detector geometry.

The yield calculations are performed for a specific bombarding energy and scattering angle, while experimental data is collected over a range of energy and angle. GOSIA accounts for this by performing the "point" calculations at user-defined energy and angle mesh points, and then the resulting surface is integrated to obtain final yields. These integrated yields can be compared directly to experimental data. An example of the energy and angle dependence of Coulomb excitation is shown in Fig. 2.5

The comparison of calculated and experimental yields provides sensitivity to the nuclear matrix elements, which govern both the excitation and decay processes. This comparison is the primary
Figure 2.5: Dependence of the Coulomb excitation cross section on the bombarding energy and scattering angle for an excited 2^+_1 state. GOSIA integrates this surface to obtain γ-ray yields which can be compared directly to experimental data. Figure from Ref. [85].

functionality of GOSIA. Using the nuclear matrix elements as parameters, GOSIA employs a least-squares search routine to find the set of matrix elements which best describe the data. A χ^2-like statistic is constructed (partially) from the agreement of calculated and experimental yields at each point in the multi-dimensional parameter space, driving the minimization.

GOSIA can consider up to 999 electric ($\lambda \leq 6$) and magnetic ($\lambda \leq 2$) matrix elements which connect up to 99 nuclear states and has been optimized to perform such high-dimensional χ^2 searches [90]. Many fast, analytical approximations are used during the search routine to make the large number of Coulomb excitation calculations feasible. To help constrain the search, GOSIA can incorporate previous experimental results, including uncertainties, for lifetimes, branching ratios, mixing ratios, and the matrix elements themselves. Agreement with these constraints is incorporated directly into the χ^2 statistic and thus they are treated on an equivalent footing as the γ-ray yields.
After convergence of the minimization, a final GOSIA calculation can be run to estimate the statistical uncertainties for the extracted matrix elements. This cannot be accomplished in the typical manner by requesting a $\chi^2_{\text{min}} + 1$ increase [90]. Instead, GOSIA defines a differential probability function dP for each parameter, and then it determines the integration range for which the integrated probability is 68.3% of the integral over the entire parameter range. This can be expressed as

$$
\frac{\int_{x_o}^{x_o + \delta x} \frac{dP(x)}{dx} dx}{\int_{x_o}^{x_{\max}} \frac{dP(x)}{dx} dx} = 0.683,
$$

(2.44)

where x is the investigated parameter with a best-fit value of x_o, δx is the diagonal upper error bar, and x_{\max} is the user-defined upper limit. GOSIA performs this search independently in each direction, which in general will result in asymmetric error bars.

The error estimation procedure is divided into two steps, both of which use a 68.3% integrated probability requirement [90, 87]. First, the parameters are sampled individually while all others are kept fixed. This results in the "diagonal" uncertainty δx. In the second step, correlations with the other parameters are accounted for. This done with a very similar integration procedure, except in this step all parameters are varied along an estimated path of maximum correlation. This correlation path is approximated as a straight line in the parameter space, and it is found by performing a one-step minimization of all other parameters while the investigated parameter is fixed at $x_o + \delta x$ [90].

The outcome of a GOSIA analysis is a set of reduced matrix elements of the electromagnetic operators that best describe the experimental data, i.e. the measured γ-ray yields as a function of scattering angle. The sensitivity to the $E\lambda$ matrix elements arises from both the Coulomb excitation and γ-ray decay processes, while sensitivity to $M\lambda$ matrix elements can be gained through the γ-ray decay process, particularly if decay branching ratios or mixing ratios are known. The estimated uncertainties, which include correlations among the matrix elements, represent the statistical precision of the measurement. Thus it is generally necessary to consider systematic uncertainties in addition to the statistical uncertainties estimated by GOSIA.
CHAPTER 3
EXPERIMENTAL SETUP

In typical Coulomb excitation experiments, a beam of nuclei is accelerated to a desired energy and impinged upon a stationary reaction target, which is surrounded by radiation detectors. During the collision, either the projectile or the target can be Coulomb excited; if the projectile is the nucleus-of-interest, the experiment is in inverse kinematics. After Coulomb excitation, the nucleus will be in an excited state which promptly decays via γ-ray emission\(^1\). Detection of the de-excitation γ rays enables the determination of which excited states were populated\(^2\), and detection of either the scattered projectile or the recoiling target can determine the reaction kinematics.

The Joint Array for Nuclear Structure (JANUS) [100] was designed specifically for inverse-kinematics sub-barrier Coulomb excitation experiments performed at the ReAccelerator facility (ReA3) [101] at the National Superconducting Cyclotron Laboratory (NSCL) [45]. The commissioning experiment was performed in January 2017 [100], and several more experiments have been performed successfully since [102, 74, 103], including the first Coulomb excitation experiment of a rare isotope at ReA3 [102].

JANUS is comprised of two primary components. It combines the Segmented Germanium Array (SeGA) [104] for γ-ray detection with two highly segmented silicon semiconductor detectors for detection of the heavy charged particles (scattered projectiles and recoiling target). The simultaneous detection of γ-rays and charged particles, enabled by these two detection systems, allows for a complete characterization of the Coulomb excitation process. A cartoon schematic of JANUS is shown in Fig. 3.1.

\(^1\)There are other decays modes, such as the emission of a conversion electron, which must be accounted for when interpreting Coulomb excitation data.

\(^2\)In experiments with light ions, it is possible to discriminate excited states using particle spectroscopy [98, 99]
3.1 Charged Particle Detection

3.1.1 Detection Principles

As a heavy charged particle moves through matter, it will undergo inelastic collisions with atomic electrons\(^3\) in the material [106]. These collisions transfer energy to the electrons from the heavy particle, slowing it down. Depending on the amount of energy transferred, atoms in the material can either be excited, where the electron is promoted to a higher orbit but is still bound to the atom, or ionized, where the electron is removed from the atom.

The cross section for the atomic collisions are quite high, so very many collisions will occur over a short distance, and each collision removes only a small portion of the heavy particle’s energy. This

\(^3\)It is also possible for the particle to interact with nuclei in the material; this is rare and not generally relevant for detection of charged particles.
makes it unnecessary to consider the collisions individually. Instead, they are treated as a single, continuous process which is characterized by the "stopping power" of the material [106, 107]. This is given by the Bethe-Bloch formula as

$$\frac{dE}{dx} = -2\pi N_A r_e^2 m_e c^2 \rho \frac{Z^2}{A \beta^2} \ln \left(\frac{2m_e y^2 v^2 W_{\text{max}}}{I^2} - 2 \beta^2 \right),$$

(3.1)

where N_A is Avagadro’s number, r_e is the classical electron radius, m_e is the electron mass, ρ, z, and A are the density, proton number, and mass number of the material, respectively, Z and ν are the proton number and velocity of the incident heavy particle, and $\beta = \nu/c$. W_{max} is the maximum energy transfer to an electron, and I is the mean excitation potential of the material, which is generally found experimentally.

The important feature of Eq. 3.1 is its dependence on z, Z^2, and $1/\beta^2$. First, an incident particle will lose more energy per unit length for an increasing proton number of the absorption material, which of course impacts what materials are used for particle detection. For a given detection material, a slower incident particle will lose energy more rapidly than a faster one due to the factor $1/\beta^2$, and a higher-Z incident particle will have more rapid energy loss due to the Z^2 dependence. The strong Z dependence in Eq. 3.1 is the foundation of most particle identification techniques in experiments where multiple different species of nuclei may be detected.

There are several methods for detecting heavy charged particles [106]. In the JANUS setup, silicon semiconductor detectors are employed. In such detectors, a bias voltage is applied across the detector which ensures the entire detector volume is depleted [106]. Ionizing radiation incident anywhere in a fully-depleted material will create free charge carriers (electron-hole pairs) that will be collected at their respective electrical contacts.

The total charge collected at the electrical contacts can be measured with e.g. charge-sensitive pre-amplifiers, and the amplitude of the signal is directly proportional to energy deposited by the incident particle. The band-gap of silicon is large enough (≈ 1.1 eV [106]) for these detectors to be operated at room temperature. Even at room temperature, random thermal fluctuations will not provide enough energy to create electron-hole pairs (due to the large band gap), and thus there are
no thermal excitations which could contribute "noise" to charge carriers created by actual incident radiation.

3.1.2 The JANUS Silicon Detectors

The two silicon detectors used in JANUS are highly-segmented, annular doubled-sided S3-type detectors manufactured by Micron Technology, Inc. Each detector has an inner radius of 1.1 cm and an outer radius of 3.5 cm, and they are approximately 300 μm thick. For experiments with JANUS, the heavy charged particles have an estimated range of ≲ 30 μm in silicon, so they will easily be stopped by the detectors, depositing all of their energy. The detectors are operated at a 40 V bias, at which point they are fully depleted.

The electrical contacts on the two surfaces of each detector have unique segmentation. On one side, there is 24-fold segmentation along the radial direction, forming rings; on the other, there is 32-fold segmentation in the azimuthal direction, forming sectors. The combination of rings and sectors forms an effective segmentation of $24 \times 32 = 768$ pixels which provide the position resolution of the detectors. This segmentation is shown in Fig. 3.2.

As shown in Fig. 3.1, the silicon detectors are placed on either side of the target and perpendicular to the incoming beam. The detectors can be mounted such that either side (rings or sectors) is facing the target. However, it was found that the radially-segmented side has a significantly thicker
dead layer than the azimuthally-segmented side. Thus the detectors are always mounted with the sectors facing the target.

In the typical configuration of JANUS, the downstream detector is separated from the target by 2.6 cm, and the upstream detector is separated by 3.4 cm. With this geometry, the downstream detector covers LAB frame scattering angles $22.9^\circ < \theta_{LAB} < 53.4^\circ$, and the upstream detector covers $134^\circ < \theta_{LAB} < 162^\circ$, providing 16.2\% and 12.7\% of 4π, respectively (both detectors have full 360\° converge in ϕ_{LAB}). The segmentation provides a localization of roughly 1.3\° in θ_{LAB} and 11.25\° in ϕ_{LAB}, which also depends on the target-detector separation. The mounting apparatus for the detectors and target is shown in Fig. 3.3.
The target wheel can hold several targets at one time, each of which can be rotated into and out of the beam path using a rod system (not shown). This allows multiple targets be used in one experiment without needing to deconstruct any part of the setup, an important feature for Coulomb excitation experiments. A positive voltage can be applied to the target frame in order to suppress secondary δ-electrons, which are created by the passage of the heavy particle through the target, from hitting the silicon detectors. The δ-electrons would otherwise constitute a source of low energy background. Also shown in Fig. 3.3 are two apertures that are used for beam tuning.

3.1.3 Reaction Kinematics

Beyond the basic principles of charged particle detection, the techniques employed with the JANUS silicon detectors rely entirely on the well-known two-body reaction kinematics of Coulomb scattering. The most natural description of a two-body reaction occurs in the center-of-mass (CM) frame of reference, and the distribution of the CM frame scattering angle is governed by the Rutherford differential cross section (Eq. 2.18). The LAB frame angles θ_p and θ_T of each particle can be calculated for a given CM angle via [90, 109, 110]

\[
\tan \theta_p = \frac{\sin \theta_{CM}}{\cos \theta_{CM} + \tau},
\]

\[
\tan \theta_T = \frac{\sin (\pi - \theta_{CM})}{\cos (\pi - \theta_{CM}) + \tilde{\tau}},
\]

where

\[
\tau = \frac{m_p}{m_T} \tilde{\tau},
\]

\[
\tilde{\tau} = \sqrt{\frac{E_p}{\tilde{E}}},
\]

\[
\tilde{E} = E_p - \Delta E \left(1 + \frac{m_p}{m_T}\right).
\]

The Coulomb excitation process is also most naturally described in a CM frame, making extraction of CM frame parameters crucial for these experiments.
Figure 3.4: LAB frame angles as a function of the CM angle for the indicated two-body scattering reaction. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV).

In Eqs. 3.4 to 3.6, m_P and m_T are the masses the projectile and target, respectively, E_P is the initial kinetic energy of the projectile in the LAB frame, and ΔE is the energy transferred to a nuclear excitation. The LAB frame scattering angles are shown as a function of the CM angle in Fig. 3.4.

The dependence of the LAB frame scattering angles on τ and $\tilde{\tau}$ has an important consequence: there can be a maximum allowed scattering angle for each particle, given by

$$\sin \theta_P^{\text{max}} = 1/\tau \quad \text{for } \tau \geq 1,$$

$$\sin \theta_T^{\text{max}} = 1/\tilde{\tau}. \quad (3.7)$$

Note $\tilde{\tau} \geq 1$ always, so the maximum recoil angle always obeys $\theta_T^{\text{max}} \leq 90^\circ$. Typically, $\tau > 1$ only when $m_P > m_T$. However, $\tau > 1$ is possible when $m_P \leq m_T$ for inelastic scattering. For $\tau < 1$ there is no bound on θ_P. An example of the angle transformations for $m_P > m_T$ is shown in Fig. 3.5.

In experiments, the angles (and all other observables) will be measured in the LAB frame, which means Eqs. 3.2 and 3.3 must be inverted. The CM angle can be related to the LAB frame...
angles via [90, 109]:

\[
\theta_{CM} = \arcsin (\tau \sin \theta_P) + \theta_P
\]

\[
= \pi - \arcsin (\bar{\tau} \sin \theta_T) - \theta_T.
\]

The \(\tau\) and \(\bar{\tau}\) dependence of the scattering angles is now more problematic, as \(\theta_{CM}(\theta_{P,T})\) can become a double-valued function. This implies that, despite the two-body nature of the reaction, an observation of only one scattering angle may not be sufficient to determine uniquely the \(CM\) angle. It is also clear from Fig. 3.5 that, for projectile scattering angles near \(\theta_P^{\text{max}}\), observation of the recoil angle \(\theta_T\) will allow the most precise determination of \(\theta_{CM}\) even when the two kinematic solutions can be discriminated.

In the considerations given above, it was assumed that the \(LAB\) frame angles were known to correspond to a particular reaction product (scattered projectile or recoiling target). In general, however, observation of the scattering angles alone is not sufficient to discriminate between the two nuclei. Beyond the \(LAB\) frame angles, each particle will also be characterized by a unique "kinematic curve," i.e. the dependence of the particle’s energy on the scattering angle. As a function
of the CM angle, the LAB frame energies E'_p and E'_T after the reaction are given by [90, 109]

$$E'_p = \left(\frac{m_T}{m_p + m_T} \right)^2 \left(1 + \tau^2 + 2 \tau \cos \theta_{CM} \right) \bar{E}, \quad (3.11)$$

$$E'_T = \frac{m_p m_T}{(m_p + m_T)^2} \left(1 + \bar{\tau}^2 + 2 \bar{\tau} \cos(\pi - \theta_{CM}) \right) \bar{E}. \quad (3.12)$$

The dependence of the energies after the reaction on the LAB frame angles is shown in Fig. 3.6 ($m_p < m_T$) and Fig. 3.7 ($m_p > m_T$).

In can be seen in Figs. 3.4 to 3.7 that, for inelastic scattering, the recoiling target also has a double valued kinematic curve, where the low-energy solution corresponds to low CM angles. For several reasons, these kinematic solutions are never of practical interest: the low CM angles $\theta_{CM} \lesssim 8^\circ$ have the least sensitivity to Coulomb excitation, the low energy of the recoil $E'_T \lesssim 5$ MeV imply they usually will be stopped in the target, and, if they do exit the target, their low energy makes them very difficult to detect.

In JANUS, particle identification is accomplished by observing the kinematic curves. Both the energy and angle of the reaction products are recorded with the silicon detectors; the angle
information is obtained from the segmentation. The combined information is sufficient to uniquely characterize a particular scattering event, i.e. to determine θ_{CM}. This enables a crucial feature of particle detection with JANUS. The detection of one reaction product is sufficient to reconstruct the trajectory of the other.

The effective coverage for both reaction products is increased by kinematic reconstruction. However, experiments with JANUS are performed in inverse kinematics, so it is more useful to consider the additional coverage of the projectile scattering angle which is gained through target detection rather than vice-versa. The relationship between the two LAB frame angles and the increase in coverage for the projectile are shown in Figs. 3.8 ($m_P < m_T$) and 3.9 ($m_P > m_T$).

As is clear from Fig. 3.8, kinematic reconstruction can provide a significant increase in coverage, particularly for experiments with $m_P < m_T$. For the typical case shown in Fig. 3.8 ($m_P/m_T = 0.51$), the angles $54^\circ \leq \theta_P \leq 104^\circ$ are gained, which is an additional 41% of 4π. From Fig. 3.9, however, it is clear that kinematic reconstruction can also provide a negligible increase in coverage, particularly when $m_P > m_T$. For the case shown in Fig. 3.9 ($m_P/m_T = 2.2$), kinematic reconstruction is
Figure 3.8: The projectile scattering angle as a function of the recoil angle for the indicated two-body scattering reaction. The vertical dashed lines show the physical coverage of the downstream detector, and the horizontal shaded grey region indicates the effective coverage for the projectile gained via kinematic reconstruction. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV).

Figure 3.9: The projectile scattering angle as a function of the recoil angle for the indicated two-body scattering reaction. The vertical dashed lines show the physical coverage of the downstream detector, and the horizontal shaded grey region indicates the effective coverage for the projectile gained via kinematic reconstruction. The left panel shows elastic scattering ($\Delta E = 0$), and the right shows inelastic scattering ($\Delta E = 2$ MeV).
irrelevant as only $\approx 1^\circ$ of converge is gained beyond the physical coverage of the detector.

The precise angular coverage gained through kinematic reconstruction depends on both the target-detector separation and the scattering system. In particular, it depends quite sensitively on the ratio m_p/m_T; this dependence is shown in 3.10. Note this figure does not consider if the reconstructed angular range overlaps with the physical coverage of the detector, as is done in Figs. 3.8 and 3.9. Taking this into account makes the reconstructed coverage drop much more rapidly with m_p/m_T, often to zero.

3.2 Gamma-Ray Detection

Similar to heavy charged particles, a γ ray can be detected when it interacts in a material, depositing some or all of its energy. However, much unlike charged particles, the energy depositions of a γ ray moving through a material cannot reasonably be treated as a single, continuous process. This is primarily due to two characteristics of γ-ray interactions: the cross sections are relatively low, allowing γ rays to have a large mean free path, and the individual interactions tend to alter
significantly the γ-ray momentum (both energy and direction). Because of this, γ-ray interactions in a material are considered individually.

3.2.1 Gamma-Ray Interactions in Matter

There are three ways in which a γ ray can interact in matter: photo-absorption, Compton scattering, and pair-production. The cross-sections for these interactions in germanium is shown as a function of the γ-ray energy in Fig. 3.11, and an idealized spectrum which displays the result of these interactions for a mono-energetic γ-ray is shown in Fig. 3.12.

Photo-absorption is the process in which a γ-ray deposits all of its energy E_γ into a material by transferring it to an atomic electron, which is then ejected from the atom. The energy E_{e^-} of the electron is given by

$$E_{e^-} = E_\gamma - E_b,$$

where E_b is the atomic binding energy which is very small (a few eV) compared to the γ-ray energy (10s of keV of more). This process results in a count in the "Full Energy Peak" component of
the spectrum shown in Fig. 3.12. Photo-absorption is the dominant interaction for γ-ray energies below approximately 100 keV.

The inelastic scattering of a γ-ray off an electron is referred to as Compton scattering. During this process, a portion of the γ-ray’s energy is transferred to the electron; the remaining γ-ray energy $E'_γ$ is given by

$$E'_γ = \frac{E_γ}{1 + \left(\frac{E_γ}{m_e c^2} \right)(1 - \cos \theta)},$$

where θ is the angle between the initial and final γ-ray momentum. Compton scattering is the dominant process for the energy regime most relevant for nuclear physics, from approximately a few hundred keV to a few MeV.

The energy transferred to the electron during Compton scattering depends on the angle θ; the
minimum energy occurs for small angles $\theta \to 0^\circ$, while the maximum occurs for $\theta = 180^\circ$. This maximum results in a sharp cutoff of the energies observed from Compton scattering, which is referred to as the "Compton Edge", shown in Fig. 3.12. The energy E_{CE} of the Compton Edge is given by

$$E_{CE} = \frac{2E_\gamma^2}{m_ec^2 + 2E_\gamma}.$$ \hspace{1cm} (3.15)

The angle-dependence in Eq. 3.14 results in smooth distribution of deposited energy due to the Compton scattering of γ rays, labeled "Compton Continuum" in Fig. 3.12. Note this continuum is not flat as the distribution of the scattering angle is not isotropic. The differential cross section for Compton scattering is given by the Klein-Nishina formula [112]

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2 E_\gamma^2}{2 E_\gamma^2} \left(\frac{E_\gamma'}{E_\gamma} + \frac{E_\gamma}{E_\gamma'} \sin^2 \theta \right),$$ \hspace{1cm} (3.16)

where $r_e \approx 2.82$ fm is the classical electron radius, and E_γ' is also a function of θ given by Eq. 3.14.

Lastly, a γ ray can undergo pair-production. This is a process in which a γ ray interacts in the electric field of a nucleus and is converted into an electron-positron pair. Due to energy conservation, this process is only possible for γ-rays with $E_\gamma > 2m_ec^2 \approx 1022$ keV. The remaining γ-ray energy beyond $2m_ec^2$ is shared between the electron and positron as kinetic energy, i.e.,

$$E_{e^-} + E_{e^+} = E_\gamma - 2m_ec^2,$$ \hspace{1cm} (3.17)

where E_{e^+} is the energy of the positron. This kinetic energy is absorbed by the detection material.

A very short time after pair-production, the positron will encounter an electron within the material, and the pair will annihilate. This creates two annihilation γ rays each with energy $E_{\gamma}^{\text{annil}} = m_ec^2 \approx 511$ keV. If both of these annihilation γ rays are fully absorbed by the detector, the full energy of the initial γ ray is recovered. If one the annihilation γ rays escapes the detector, this results in the "Single-Escape Peak" at an energy of $E_\gamma - m_ec^2$ shown in Fig. 3.12. If both of the annihilation γ rays escape, this results in the "Double-Escape Peak" at $E_\gamma - 2m_ec^2$.

60
3.2.2 The Doppler Effect

When a γ ray is emitted from a moving source, the energy of the γ ray in the LAB frame is shifted with respect to its energy in the $REST$ frame of the emitter. This is known as the Doppler Effect, and it is shown schematically in Fig. 3.13. The energy E_{γ}^{LAB} of the γ ray in the LAB frame is given by

$$E_{\gamma}^{LAB} = \frac{E_{\gamma}^{REST}}{\gamma(1 - \beta \cos \theta)},$$

where E_{γ}^{REST} is the energy of the γ-ray in the $REST$ frame of the emitter, β is the velocity of the emitter relative to the speed of light, and θ is the angle between the emitter’s momentum and the γ ray’s momentum.

When correcting for the Doppler Effect to recover the γ-ray energy E_γ, in addition to the intrinsic energy uncertainty ΔE_{intr} of the detector, the uncertainties $\Delta \beta$ on β and $\Delta \theta$ on θ also contribute to the overall uncertainty ΔE_γ. The contribution from each of these terms can be derived from Eq. 3.18 via the finite-differences derivative method; they are given by [50]

$$\left(\frac{\Delta E_\gamma}{E_\gamma} \right)^2 = \left(\frac{\beta \sin \theta}{1 - \beta \cos \theta} \right)^2 (\Delta \theta)^2 + \left(\frac{\cos \theta - \beta}{(1 - \beta^2)(1 - \beta \cos \theta)} \right)^2 (\Delta \beta)^2 + \left(\frac{\Delta E_{\text{intr}}}{E_\gamma} \right)^2. \quad (3.19)$$

These contributions are shown as a function of θ in Fig. 3.14. The Doppler effect is the primary reason such a high level of segmentation is required for both particle and γ-ray detection in Coulomb
Figure 3.14: Contributions to the uncertainty on E_γ from the Doppler Effect and the intrinsic resolution of a detector. For this figure the uncertainties are assumed to be Gaussian, and standard deviations are used. The parameters used to make this figure are $E_\gamma = 659$ keV, $\sigma_{E_{\text{intr}}} = 1.4$ keV, $\sigma_\theta = 3.5^\circ$, $\beta = v/c = 0.076$, and $\sigma_\beta = 0.004$.

excitation experiments with JANUS.

3.2.3 The Segmented Germanium Array

SeGA [104] is comprised of up to 18 individual γ-ray detectors which can be arranged in various configurations depending on the needs of a particular experiment. Each individual SeGA detector is comprised of three primary components: an active n-type High-Purity Germanium (HPGe) crystal, pre-amplifier electronics, and a liquid-nitrogen dewar. A single SeGA detector is shown in Fig. 3.15.

The HPGe crystal in each SeGA detector is a coaxial cylinder with 32-fold segmentation. The crystal is electronically segmented into eight "slices" along its axis of symmetry, and each slice is further segmented into four quadrants. A single electrical contact is placed along the inner radius of the crystal; only the electrical contacts at the outer radius are segmented. This geometry is shown in Fig. 3.16.

The inner "central" contact of each detector is sensitive to charge deposited anywhere in the
Figure 3.15: A single SeGA detector. The large green cylinder is the liquid-nitrogen dewar. The germanium crystal is located in the aluminum housing at the bottom of the photo. Figure from [108].

Figure 3.16: Segmentation of an individual SeGA detector. Figure from [108], originally adapted from [104].
crystal volume, while the segmented electrical contacts at the outer radius are only sensitive to charge deposited in a particular segment. Thus signals from the central contact provide the total energy deposited by a γ-ray, while the segment contacts provide energy and position information for individual γ-ray interactions.

For Coulomb excitation experiments with JANUS, 16 SeGA detectors are arranged in the compact "barrel" configuration, with the detector crystals concentrically surrounding the target position. This configuration, shown in Fig. 3.17, maximizes the solid angle subtended by the detectors. See, for example, Refs [5, 113] for a description of the SeGA configuration used in fast beam experiments.

Because the SeGA detectors are made of High-Purity Germanium, they must be kept at liquid-nitrogen temperatures during operation,\(^5\) roughly 100 K. This suppresses random thermal excitations which would otherwise create a significant leakage current due to the small band-gap of germanium, approximately 0.7 eV [106]. Each detector is operated at bias voltage of roughly 4000 V, which is significantly higher than the 40 V applied to the silicon detectors. The higher bias is needed to deplete fully the much larger germanium crystals.

3.3 Data Acquisition System

For the commissioning experiment with JANUS [108, 100], a hybrid data acquisition system (DAQ) was used. The silicon detectors were read-out with an analog system, while SeGA was instrumented with a digital DAQ. For all subsequent JANUS experiments, a sufficient amount of digital electronics was available to employ an entirely digital DAQ, which is a significantly simpler system to setup and operate. A digitizing module can replace several independent components of a traditional analog DAQ, such as shaping modules, discriminators, and analog-to-digital and time-to-digital converters.

A digital DAQ offers several advantages. A timestamp is included in the data structure written for every processed signal, so correlation of all signals from all detectors can be accomplished offline.

\(^5\)The SeGA detectors are always kept at LN\(_2\) temperatures, not just during operation, as repeated cooling down and warming up deteriorates their vacuum properties.
Figure 3.17: SeGA arranged in the barrel configuration at ReA3. Only six detector end-caps are visible arrayed around the beam pipe. The silicon detectors and target are inside the beam pipe.
simply by comparing their timestamps. The bandwidth provided by the digital DAQ, combined
with the low rate of JANUS experiments, allows operation of the DAQ in a "free-running" mode.
This means every channel triggers independently, and all signals are recorded and processed offline.
This is a simple and safe way of recording experimental data as there is no need to construct more
complicated "event" triggers (coincidence trigger, validation signals, etc.), which can possibly be
misconfigured. Such mistakes could take a significant amount of time to notice due to the low rates
in JANUS experiments. Due to the free-running DAQ, the acquired data mostly consists of γ-ray
background. This is actually useful for tracking the energy calibration of the SeGA detectors over
the course of the experiment.

The digital DAQ used with JANUS also enables the recording of signal waveforms, which have
applications both for particle and γ-ray spectroscopy. For the SeGA detectors, signal waveforms
can be processed in order to achieve a position resolution better than what is enabled by the physical
segmentation of the detector; this is similar to the techniques employed in γ-ray tracking arrays like
GREtINA [114, 115]. This level of resolution is not necessary for JANUS experiments, so signal
waveforms were not recorded for this work. See Ref. [13] for details of the waveform processing
algorithms used for sub-segment position resolution in SeGA.

A standard implementation of the digital DAQ commonly employed [116] at NSCL is used for
JANUS experiments. This system employs 16-channel digitizing FPGA modules, called Pixie-16
modules, manufactured by the company XIA. The Pixie-16 modules used to instrument the SeGA
detectors had a 100 MHz sampling frequency and 16-bit precision, while the silicon detectors were
read-out with 250 MHz 16-bit digitizing modules. Considering the bandwidth of both SeGA and
the silicon detectors with their corresponding preamplifiers (roughly 10 HMz for SeGA, somewhat
faster for the silicon detectors), the 100 MHz modules are sufficient for both detection systems.
The higher-frequency modules were used for the silicon detectors simply because there were not
enough 100 MHz modules available.

The Pixie-16 modules must be configured for the specific detectors used in the experiment.
For JANUS experiments, the most important settings are the parameters of the trapezoidal energy
filter used to determine amplitudes of the digitized signals. In particular, the filter’s gap length must be set according to the signal rise times, which depends on the detection system (700 ns for SeGA, ~10 ns for the silicon detectors). The filter’s integration window was set by considering the signal rise time and the leakage current from the detectors. While the Pixie-16 modules can also employ a CFD algorithm to determine timestamps, this was not used and the timestamps were determined by the leading-edge trigger. Leading-edge triggers can cause a significant "walk" of the timing response for low-energy signals from the large-volume germanium detectors, but this is easily accounted for during offline analysis.

All Pixie-16 modules must be housed in a dedicated mainframe also manufactured by XIA, called crates here. The XIA crates also hold a computer which controls the Pixie-16 modules. As multiple crates are required for the JANUS DAQ, all crates must receive a synchronized time signal to ensure proper time correlation of the collected signals. This is accomplished by linking the crates together with timing cables and configuring the system so that a single "director" module is used to distribute a global time signal to all other "recipient" modules [117].

Each crate in the JANUS DAQ produces its own independent data stream, meaning it writes its data to a unique destination not shared by the other crates. These data streams were managed by the NSCLDAQ framework [118]. NSCLDAQ provides a unified framework for accepting data from multiple sources, merging all data streams into a single output, and writing the data to disk. NSCLDAQ also sends the start and stop signals to all XIA crates, which enables them to begin and end taking data synchronously.

The SeGA detectors output 33 signals each (32 segments plus one central contact), yielding 528 signals from all 16 detectors. Each silicon detector provides 32 + 24 = 56 signals, which brings the total to 640 channels for the entire array. For this setup, 33 Pixie-16 modules are required to process all signals from SeGA, and an additional eight are used to read-out the silicon detectors. Strictly, only seven modules are needed for the silicon detectors, but using eight prevents any module from processing signals from both detectors, which is of practical convenience. Four crates are required to house all 41 modules. The JANUS digital DAQ is shown in Fig. 3.18. While slightly messy due
Figure 3.18: The JANUS digital DAQ. The left panel shows the crate and modules which processed the silicon detector signals, and the right shows the three crates necessary for SeGA.

to the high density of channels, the system is quite compact.
CHAPTER 4
COULOMB EXCITATION OF CADMIUM-106

The first multi-experiment campaign with JANUS at ReA3 took place from March to April 2018, during which time three separate experiments were performed successfully. These included a Coulomb excitation experiment of 72,76Se [102, 74], and a fusion reactions study of 46Ca [119], the first non-Coulomb excitation experiment performed with JANUS. The last experiment during this campaign was a Coulomb excitation measurement of 106Cd [103], the topic of this work.

4.1 Motivation

As discussed in Chapter 1, the electromagnetic $B(E2; 2^+_1 \rightarrow 0^+_1)$ transition strength is a clear and widely-used measure of quadrupole collectivity in even-even nuclei. $B(E2)$ values are sensitive nuclear deformation, shell-breaking effects, and nucleon-nucleon correlations. Studies of collective properties in nuclei near $N = Z = 50$ 100Sn, the heaviest self-conjugate doubly-magic nucleus known to exist, have revealed one of the most persistent puzzles in rare-isotope science. In the Sn isotopes, this transition strength has been reported from 104Sn [120, 121] to 132Sn [122], spanning a chain of 15 even-even Sn isotopes. The trend is asymmetric about mid-shell with enhanced collectivity towards 100Sn. This evolution is shown in Fig. 4.1.

Evidence has been mounting [127, 120, 142] that the asymmetric evolution and enhancement with decreasing N of the Sn $B(E2)$ values are due to proton excitations out of the magic $Z = 50$ core. Only recent large-scale shell model calculations have been able to reproduce the experimentally observed trend across the entire isotopic chain in a consistent manner [142], meaning without varying the effective charges. As even-more neutron deficient nuclei become available for study at facilities such as FRIB, there is a need for reliable measurements in order to benchmark theoretical calculations and to track the evolution of collectivity in this important region of the nuclear chart.

The $Z = 48$ Cd isotopes, located just two protons below Sn, are prime candidates for displaying the underlying nuclear physics in this region. Perhaps surprisingly, there is no evidence for proton
excitations across the $Z = 50$ shell gap in the Cd isotopic chain. Instead, the $B(E2)$ values decrease smoothly from mid shell ($A \approx 116$) out to the closed neutron shells at $A = 98$ and $A = 130$. The evolution of $B(E2)$ values of the Cd isotopes is shown in Fig 4.2.

While there is a slight asymmetry about mid shell in the Cd $B(E2)$ values, there is no sign of the strongly enhanced collectivity in the low-mass isotopes as there is for the Sn isotopic chain. The evolution of collectivity in Cd nuclei is generally well-described by conventional shell model calculations [147]; more recent calculations have attempted to capture the small asymmetry by considering the interplay of quadrupole and paring correlations [151].

Prior to this work, the known information on the lowest-lying levels in 106Cd primarily stemmed from two Coulomb excitation measurements, one performed in the 1960s by Milner et. al. [149] and another from the 1970s by Esat et. al. [98]. In 2016, an excited-state g-factor measurement of 106Cd by Benczer-Koller et. al [145] allowed for the extraction of lifetimes via the Doppler-shift-attenuation method from the observed, prominent γ-ray line shapes. The lifetime reported for the
Figure 4.2: Evolution of $B(E2)$ values in the even-$A^{100-126}$Cd isotopes. Data from Siciliano [143, 144], Benczer-Koller [145], Ilieva [146], Ekstrom [147], Boelaert [148], Milner [149], and Adopted [150]. These data come from a mix of lifetimes measurements and Coulomb excitation.

2^+_1 exited state of 106Cd from Ref. [145] was 33% below the previous literature value. As can be clearly seen from Fig 4.2, this implies a significant increase of the 106Cd $B(E2)$ value.

The results from Ref. [145] not only disagree with the prior results for 106Cd, they are also a major deviation from the systematics observed for the Cd isotopic chain. This is at odds with shell model predictions which have had success in describing the Cd $B(E2)$ values, as mentioned. Beyond the 2^+_1 excited state, several lifetimes for other excited states were reported in [145] which also disagree with the adopted values; resolving these discrepancies was also a goal of this work.

To extend the existing information on collectivity and shape to states previously out of reach, and to address the discrepancies that appeared with the most recent\footnote{The results for 106Cd from Ref. [145] were the most recent at the time the experiment discussed in this work was performed; two other experiments have been performed since [152, 144].} measurement, an inverse-kinematics sub-barrier-energy Coulomb excitation experiment on 106Cd was performed. This work is the first Coulomb excitation measurement of 106Cd which employs modern accelerator facilities and particle and γ-ray detection arrays, and it uses the highest-Z probe yet.
4.2 Experimental Details

The experiment was performed at the ReA3 [101] facility at NSCL [45]. As 106Cd is a stable nucleus, the NSCL’s coupled cyclotrons and A1900 fragment separator [153] were not needed to produce the 106Cd beam. Instead, stable 106Cd nuclei were vaporized and injected into the NSCL’s electron-beam ion trap (EBIT) [154] where they were charge bred to 37+. An EBIT facility uses an electron beam to generate an electric field which confines the trapped ions radially; an external electric field is applied which axially confines the ions. While trapped, the ions will collide with the electron beam, which removes electrons from the ions thus increasing their charge state. Once the desired charged state is reached, the axial confinement is removed and the ions can leave the trap.

After charge-breeding, the 37+ charge state was selected using a magnetic separation system and the ions were injected into the ReA3 linear accelerator (LINAC). For acceleration, ReA3 uses a room-temperature radio-frequency quadrupole followed by the superconducting LINAC. The ionized 106Cd atoms were accelerated to the desired energies and delivered to the JANUS setup located at the ReA3 general purpose beamline. An overview of the ReA3 facility is shown in Fig. 4.3.
The experiment consisted of three separate settings. Two settings used a 0.92 mg/cm² 208Pb target, while the third employed a 0.98 mg/cm² 48Ti target. For the two settings on the 208Pb target, the 106Cd nuclei were accelerated to 4.36 and 4.03 MeV/u; these energies are 99% and 91%, respectively, of the Coulomb barrier for 106Cd impinging on 208Pb. For the 48Ti target, the 106Cd beam was accelerated to 3.0 MeV/u, which is the Coulomb barrier of 106Cd on 48Ti.

The use of a 208Pb target has several advantages. Its high Z increases the Coulomb excitation cross section for the impinging 106Cd due to the strong electric field. Further, 208Pb is doubly-magic, and as such it is very difficult to excite. In fact, no γ-ray transitions from excited states in 208Pb were seen in this work. This provides an essentially background-free spectrum of γ-ray transitions from 106Cd, which simplifies the data analysis. The use of two beam energies on the 208Pb target enhances the sensitivity to the nuclear matrix elements due to the strong dependence of the Coulomb excitation cross section on the bombarding energy. The higher energy enhances the population of excited states beyond the 2^+_1, and the lower bombarding energy increases the sensitivity to the reorientation effect.

The 48Ti target provides its own, separate set of advantages. 48Ti is not a magic nucleus, so it will be appreciably Coulomb excited by the impinging 106Cd beam. As the spectroscopic data of the low-lying states 48Ti are very well known [150], the observed target excitations can be used to define an absolute normalization for the measurement. The matrix elements of 106Cd can be determined relative to this normalization without knowledge of the absolute beam rate or detection efficiencies, which significantly reduces systematic uncertainties. This analysis technique is described in more detail later in Section 4.5.

The target thicknesses were confirmed by measuring the energy loss of 4He nuclei (α particles) which passed through them. The α particles where emitted from a radioactive 241Am source, and their energies were measured both directly after emission and with the target placed in front of the 241Am source. The energy loss measurements were performed at various locations on the targets’ surfaces to confirm their uniformity, and SRIM [155] calculations were performed to extract the thickness from the measured energy loss. The spectra which resulted from an energy
The observed energy of α particles emitted from a 241Am source. The measurement was performed both with (red) and without (black) the target in front of the source. The energy difference between the two measurements is the energy lost in the 48Ti target and allows for a determination of the target thickness. Note the red spectrum is broader due to energy straggling.

Figure 4.4: The observed energy of α particles emitted from a 241Am source. The measurement was performed both with (red) and without (black) the target in front of the source. The energy difference between the two measurements is the energy lost in the 48Ti target and allows for a determination of the target thickness. Note the red spectrum is broader due to energy straggling.

4.3 Data Analysis

As mentioned in Chapter 3, the JANUS DAQ is free-running, and all recorded signals are correlated offline based on a comparison of timestamps. For this analysis, a correlation window of 10 µs was used; signals with timestamps less than 10 µs apart are grouped together to define a single event. The free-running JANUS DAQ has another significant consequence: the vast majority of data collected is room-background γ-rays recorded in SeGA. Thus, the time-correlated events were filtered such that only events which contain a signal from the Si detectors were considered.

Since the Si silicon detectors are double-sided, a single particle entering one of the detectors will create two signals: one signal from the sector side and one from the ring side. In order to utilize the segmentation of JANUS, a ring and a sector must be paired together for each incident particle. The correlation of rings to sectors was done based on the energy deposited in either segment. First, all signals were ordered by their energies. Then, starting with the highest energy segments, a ring
and sector were paired together if the ring energy was within ±10% of the energy deposited in the sector.

Due the geometry of the setup and particular kinematics of ^{106}Cd scattered by ^{208}Pb, it is possible for both the scattered ^{106}Cd and recoiling ^{208}Pb to enter the same ring for some scattering events. When this happens, the energy they deposit will be summed by the ring’s electrical contact. As the particles must emerge back-to-back in the LAB frame to conserve momentum, they will enter opposite sectors. To account for this, an additional condition was used to correlate rings to sectors. If the sum of two sector energies was found to be within ±10% of a ring energy, each sector was paired to the ring. This process recovered both the ^{106}Cd and ^{208}Pb.

4.3.1 High-Energy Setting

With the above data processing applied, the kinematic curve from the downstream silicon detector during the higher-energy setting on the ^{208}Pb target is shown in Fig 4.5. Specifically, this figure shows the energy recorded by the sector plotted against the number of its correlated ring. As can be clearly seen, the scattered ^{106}Cd nuclei are well-separated from the recoiling ^{208}Pb, and the kinematic curves follow the expected shapes. A small amount of recoiling ^{12}C nuclei are also visible; these come from a thin carbon backing used to support the target.

The observed kinematic curves enable unambiguous event-by-event particle identification and characterization of the scattering process. As discussed in Chapter 3, knowledge of the scattering angle for either reaction product is sufficient to determine the CM scattering angle and thus uniquely determine the kinematics. The energy of the particle is only used to discriminate between the two reaction products. As such, no energy calibration of the silicon detectors was necessary and the energy axis in Fig. 4.5 corresponds to the raw ADC value recorded by the digitizing modules. This is true of all PID plots shown in this work. Note particle discrimination is only necessary in the forward silicon detector as the target nuclei cannot recoil backwards.

As mentioned previously, both the ^{106}Cd and the ^{208}Pb can enter the same ring for some scattering events. Since they always enter opposite sectors, this affect is not visible in Fig. 4.5.
Figure 4.5: The observed kinematic curve for the higher-energy setting on the 208Pb target. The energy recorded by the sector side is used. The 106Cd and 208Pb nuclei are clearly visible and distinguishable, as are 12C nuclei from the target backing. Note that, for clarity, bins with less than five counts are excluded from this figure and a low-energy threshold has been applied. Figure adapted from [103].

The same kinematic curve is shown in Fig. 4.6, except in this figure the ring energies are used; the energy summing is clear in the outer rings, centered on ring 22. The combined information from the ring and sector is still sufficient to discriminate the two nuclei, so this does not hinder the data analysis.

4.3.1.1 Particle-Gamma Coincidences

Using the kinematic curves shown in Fig. 4.5, either the 106Cd or 208Pb nuclei can be selected, and one can observe the γ-rays recorded in coincidence by SeGA. While all signals must occur within 10 μs to be correlated into an event, this window is significantly larger than the timing resolution achievable for coincidences between SeGA and the silicon detectors. A further reduction of background γ rays can be accomplished by applying a time gate to the coincident γ rays; this gate is shown in Fig. 4.7.

As can be seen in Fig. 4.7, there is a γ-ray background which is uniformly distributed in time.
Figure 4.6: Identical to Fig. 4.5, except the energy recorded by the ring is used. The energy summing due to both the 106Cd and 208Pb entering the same ring is clear in the outer rings.

Figure 4.7: The γ-ray energy plotted against the time difference between the particle and γ ray. The gate used to select prompt γ rays is shown in red. No Doppler corrected is applied to the figure in the main panel, so room background γ rays are visible. The time walk seen at low γ-ray energy necessitates the use of a two-dimensional gate. The insets show a zoom of the region around the 106Cd $2^+_1 \rightarrow 0^+_1$ transition without (a) and with (b) Doppler correction (see text).
No Doppler correction has been applied for the main figure, so two background γ-rays can be seen. These are a 1460 keV γ ray, which originates from the decay of 40K into the 2_1^+ state of 40Ar, and a 2614 keV γ ray, which comes from the decay of 208Tl into the 3_1^- state of 208Pb. The large number of counts centered on a time difference of roughly 1250 ns are the "prompt" γ-rays. These γ rays are in true coincidence with the detected particle, as opposed to the time-random coincidences to either side of the prompt response. The gate drawn in red significantly reduces the time-random background in the γ-ray spectra.

In Fig. 4.7, there is a wide structure at roughly 630 keV which is also uniformly distributed in time. These are γ-rays, detected in SeGA, from the $2_1^+ \rightarrow 0_1^+$ transition in 106Cd nuclei which were not detected in the silicon detectors. Because these γ-rays are uniform in time, some will also be present in the prompt γ-ray gate. Though these background γ-rays are very apparent in Fig. 4.7, they do not contribute appreciably to the prompt γ-ray spectrum. By applying the same gate to a region away from the prompt response, it was determined that less than 3% of the total statistics collected in prompt γ-ray spectra was due to time-random coincidences.

When Doppler-correction is applied to the prompt γ-ray spectrum (see Sect. 4.3.1.2), γ rays in true coincidence with detected 106Cd nuclei will form a sharp peak. The time-random γ-rays from undetected 106Cd will be broadened as the Doppler-correction is based on a particle which did not emit that γ-ray. This is shown in the insets of Fig. 4.7. Inset (a) is a zoom of the region around the 106Cd $2_1^+ \rightarrow 0_1^+$ transition without Doppler-correction applied; inset (b) shows the same region with Doppler-correction applied. Clearly, only the true prompt γ-rays are corrected, while the time-random γ-rays are broadened. With Doppler-correction applied, much less than 1% of the statistics in the region directly around a Doppler corrected peak is due to time-random γ rays. This negligible contribution is easily accounted for when determining the background from the prompt γ-rays.

The time-random γ rays seen in Fig. 4.7 make a time gate necessary. Without this gate, the time-random contribution to the γ-ray spectra would increase roughly 20-fold and no longer be negligible. Also seen in Fig. 4.7 is a significant "walk" of the time difference for low-energy prompt
\(\gamma\) rays. This is caused by the use of a simple leading-edge trigger for timestamp determination combined with the longer rise time of low-energy signals in large-volume germanium detectors. This walk necessitates the use of a two-dimensional gate instead of simply restricting the particle-\(\gamma\) time difference.

4.3.1.2 Doppler Correction

As discussed in Chapter 3, \(\gamma\) rays emitted from a moving source will be Doppler shifted. For the higher-energy setting on the \(^{208}\text{Pb}\) target, the velocity of the \(^{106}\text{Cd}\) nuclei is in the range \(0.03 < \beta < 0.09\) depending on the scattering angle, which implies a significant Doppler shift. The Doppler effect can be seen clearly by correlating the \(\gamma\)-ray energy with two different angles, shown in Fig. 4.8 for \(\gamma\)-rays in coincidence with forward-scattered \(^{106}\text{Cd}\).

The top left panel of Fig. 4.8 shows the correlation of the \(LAB\)-frame \(\gamma\)-ray energy with the angle \(\theta_{\text{Dop}}\) between the \(^{106}\text{Cd}\) momentum and the \(\gamma\)-ray momentum; this is exactly the angle in the Doppler formula Eq. 3.18 and the angle indicated in Fig. 3.13. As can be seen, \(\gamma\)-rays emitted with \(\theta_{\text{Dop}} > 90^\circ\) are shifted to lower energies, and \(\gamma\)-rays emitted at \(\theta_{\text{Dop}} < 90^\circ\) are shifted to higher energy. The bottom panel shows the correlation with the difference between the azimuthal coordinates of the particle and \(\gamma\)-ray momentum vectors, that is \(\phi = \phi_p - \phi_\gamma\). \(\gamma\) rays emitted with \(\phi \approx \pi\) are shifted to low energy, and \(\gamma\) rays emitted with \(\phi \approx 0, 2\pi\) are shifted to high energy.

Correcting for the Doppler effect is possible with JANUS due to the high segmentation of both SeGA and the silicon detectors. The detected particle’s momentum direction is determined by the combined ring and sector information from the silicon detectors. The scattering angle, determined by the ring, is used to deduce the particle’s velocity via Eqs. 3.10 to 3.12. For this analysis, an event-by-event \(\beta\) determination was used, and a small correction was applied to account for the energy loss of the particle in the target. Since the segment centers were used for the position determination, each ring corresponds to specific \(\beta\). As such, 72 different \(\beta\) values were used: 24 for forward-scattered \(^{106}\text{Cd}\), 24 for the \(^{208}\text{Pb}\) recoils, and 24 for back-scattered \(^{106}\text{Cd}\).

The \(\gamma\)-ray momentum direction is determined by the segmentation of SeGA. Just as with the
Figure 4.8: Observed γ-ray correlations for the 632 keV $2^+_1 \rightarrow 0^+_1$ transition in 106Cd. The left panels are not Doppler corrected, the right panels are. The top two panels show the correlation of the γ-ray energy with the angle between the particle and γ ray. The bottom panels show the correlation with the ϕ angle explained in the text.

silicon detectors, the center of the segment was used to define the γ-ray position in SeGA. Due to the nature of γ-ray interactions discussed in Chapter 3, it is possible for multiple segments in a SeGA detector to record an energy deposition from the same γ ray. When this situation occurs, the segment which recorded the largest energy deposition is chosen to define the position. Note that the total γ-ray energy is always determined by the central contact; segment energies are only used to choose which segment is used for the position determination. See, for example, Ref. [115] for a description of a tracking algorithm which can be used to determine the first γ-ray interaction in segmented germanium detectors.

After determining the particle velocity and the direction of both the particle and γ-ray with
the above techniques, correcting for the Doppler effect simply entails adjusting the γ-ray energies recorded in SeGA by using Eq. 3.18. The right panels of Fig. 4.8 show the angle correlations for the Doppler-corrected γ-ray energies. As is clear, the angle-dependence of the γ-ray energy is removed by the Doppler correction, and a vertical line is visible at 632 keV, which is the energy of the $2^+_1 \rightarrow 0^+_1$ transition in 106Cd.

Fig. 4.9 shows the Doppler-corrected peak for the $2^+_1 \rightarrow 0^+_1$ transition in 106Cd compared to the non-Doppler-corrected spectrum for forward-scattered 106Cd. The energy resolution achieved in this work for the Doppler-corrected $2^+_1 \rightarrow 0^+_1$ transition is 1.5% FWHM. For back-scattered 106Cd, this resolution improves to roughly 0.8% due to the smaller velocity of the back-scattered projectiles. Marginally better resolution was achieved for the lower-energy setting on the 208Pb target, and a resolution of 1.0% was attained during the 48Ti target setting. This is again due to the velocity.

As discussed in Chapter 2, the Coulomb excitation cross section has a strong dependence on the scattering angle. As such, the sensitivity of the measurement can be increased by subdividing the data into ranges based on the particle scattering angle. For the higher-energy setting on 208Pb, the
Figure 4.10: Total Doppler-corrected γ-ray spectra collected during the high-energy setting on the 208Pb target. Observed γ-ray transitions are indicated. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle.

Forward-scattered 106Cd projectiles were divided into four angular ranges: 106Cd detected in rings 1 to 6, 7 to 12, 13 to 18, and 19 to 24. The data from recoiling 208Pb detection were divided into two ranges: rings 1 to 12 and 13 to 24. Back-scattered 106Cd nuclei were considered as a whole. The Doppler-corrected γ-ray spectra collected in coincidence with each of these angle ranges is shown in Fig. 4.10.

From a close inspection of Fig. 4.10, the angular-dependence of Coulomb excitation can be observed. As the scattering angles increases, there is an increase in the number of γ-rays detected.
from transitions depopulating states beyond the 2^+_1 state, relative to the number of $2^+_1 \rightarrow 0^+_1$ transition γ rays. For example, the $6^+_1 \rightarrow 4^+_1$ transition is not observed in panels (a) and (b); it is just barely visible in panels (c) and (d), and it is plainly visible in panels (e) to (g). This is a clear indication of the enhancement of multi-step Coulomb excitation due to the increased electric field strength and interaction times which occur for large scattering angles.

The Doppler-corrected peaks in panel (f) of Fig. 4.10 have noticeably worse resolution than in all other angle ranges. Panel (f) corresponds to detection of the recoiling 208Pb in rings 1 to 12 of the forward silicon detector. In this region, the 106Cd nuclei have scattering angles near 90°, which means they scatter essentially straight into the target material. These 106Cd nuclei will lose energy and come to a stop in the target material. Depending on the precise scattering angle, which determines the precise distance the 106Cd nuclei travel while still in the target material, the 106Cd can lose very different amounts of energy. This results in a large range of 106Cd velocities at the time of decay, including fully-stopped 106Cd. This worsens the Doppler correction for this angular range.

The affect of the 106Cd nuclei stopping in the target is shown in Fig. 4.11. In the non-Doppler-corrected correlation (left panel), the γ rays emitted from in-flight 106Cd form a curve similar to the curve shown in Fig. 4.8, while γ rays emitted from 106Cd at rest form a sharp line at 632 keV. The blurring between the stopped and in-flight components is due to the very strong dependence of the 106Cd velocity on the scattering angle, as mentioned. When Doppler-correction is applied to this angular range (right panel), the stopped component is incorrectly broadened.

4.3.2 Low-Energy Setting

The kinematic curve observed during the lower-energy setting (4.03 MeV/u 106Cd) on the 208Pb target is shown in Fig. 4.12. It is very similar to the PID from the high-energy setting except for a small shift to lower energies. This data was also subdivided into scattering angle ranges. The forward-scattered 106Cd were divided into three angular ranges: rings 1 to 8, 9 to 16, and 17 to 24. The data from target detection and back-scattered 106Cd was divided identically as in the
Figure 4.11: Correlation of E_γ with θ_{Dop} for 208Pb recoils detected in rings 1 to 12 from the higher-energy setting. The left panel is not Doppler corrected, the right panel is. The effect of 106Cd slowing down in the target is clear.

The γ-rays detected in coincidence with this data is shown in Fig. 4.13.

The details of the data analysis, kinematics, and Doppler-correction for the lower-energy setting are essentially identical to the higher energy setting, so they won’t be repeated. The dependence of the Coulomb-excitation cross section on the bombarding energy can roughly be seen by comparing Figs. 4.10 and 4.13. In the lower-energy setting, the $6^+_1 \rightarrow 4^+_1$ transition is not visible for forward-scattered 106Cd (panels (a) to (c) in Fig. 4.13), which is unlike in the high-energy setting. While the Coulomb-excitation cross section to all excited states is reduced by the lower beam energy, multi-step processes, which are necessary to populate the 6^+_1 state in 106Cd, are more severely hindered.

4.3.3 Titanium Target Setting

The final setting of the experiment impinged 3.0 MeV/u 106Cd on a 48Ti target. As discussed in Chapter 3, the 106Cd projectiles have a double-valued kinematic curve for this setting since they are heavier than the 48Ti target nuclei. The kinematic curve observed during this setting is shown in Fig. 4.14.
Figure 4.12: Kinematic curve for the low-energy setting on the ^{208}Pb target. The energy recorded by the sector is used. The ^{106}Cd and ^{208}Pb nuclei are clearly visible and distinguishable, as are ^{12}C nuclei from the target backing. Note that, for clarity, bins with less than five counts are excluded from this figure and a low-energy threshold has been applied.

As is seen from Fig. 4.14, the PID from the ^{48}Ti setting is more complicated than the previous two settings. First, the expected kinematic curves of ^{106}Cd impinged on a ^{48}Ti target can be seen. The double-valued solution for the scattered projectiles forms a rough semi-circle in the first few rings. The recoiling ^{48}Ti nuclei form the high-statistics "normal" kinematic curve.

During the experiment, by observing the PID, it was discovered that the ^{48}Ti target contained a contaminant. By inspecting the γ-rays which came in coincidence with the contaminant kinematic curves, the contamination was identified as $^{182,184,186}\text{W}$, which are the most commonly occurring isotopes of tungsten. With this knowledge, the kinematic curve above the expected ^{48}Ti recoils is identified ^{106}Cd nuclei which scattered off the $^{\text{nat}}\text{W}$. The curve at low energies in the outer rings is from the recoiling tungsten nuclei.

Several different methods were used to estimate the amount of tungsten present in the target. With knowledge of the beam rate, the number of $^{\text{nat}}\text{W}$ in the target can be inferred from the number of ^{106}Cd nuclei scattered by the contamination, since this is determined by the well-known Rutherford cross section. As the low-lying states of the naturally-occurring tungsten isotopes
Figure 4.13: Total Doppler-corrected γ-ray spectra collected during the low-energy setting on the 208Pb target. Observed γ-ray transitions are indicated. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle.

have firmly-established lifetimes and transition rates, the number of γ-rays in coincidence with the contamination was also used to estimate the amount of tungsten present. Both a simplified estimate and a full GOSIA calculation were performed. All three of these estimates resulted in a $^{\text{nat}}$W contamination of 2-3% by mass.

Beyond the estimates from the experimental data, a precise chemical analysis of the 48Ti target was performed by G. Severin and H. K. Clause. This determined that the target is composed of 3.1% tungsten by mass. This agrees well with the estimates from the experimental data and gives confidence that contamination is well understood. The contamination can largely be removed by
gating on the PID plot, and the Coulomb excitation cross-section of 106Cd scattered by the tungsten contamination is strongly suppressed as the bombarding energy is well below the Coulomb barrier. As such the contamination did not significantly impact the analysis.

Due to the kinematics of 106Cd scattered by 48Ti, both nuclei entered the forward silicon detector for nearly all recorded scattering events. As such, detection of either the scattered 106Cd projectiles or the 48Ti recoils corresponds to essentially the same CM angle range. For this data set, only γ-rays in coincidence with the target recoils were used for analysis, as the 48Ti kinematic curve can be more easily divided into angular ranges. This data was divided into five ranges: 48Ti detected in rings 1 to 5, 6 to 10, 11 to 15, 16 to 19, and 20 to 24. The γ-rays collected in coincidence with these angular ranges are shown in Fig. 4.15.

As can bee seen in Fig. 4.15, both the 106Cd and 48Ti nuclei were excited by the reaction. As discussed in Chapter 3, detection of one reaction product is sufficient to reconstruct the trajectory of the other, so Doppler correction can be applied to both nuclei. The Doppler-corrected peaks in
Figure 4.15: Total γ-ray spectra collected for target detection during the 48Ti target setting. The black spectra are Doppler corrected for 106Cd, and the red spectra are Doppler-corrected for 48Ti. Observed γ-ray transitions are indicated in black for 106Cd a red for 48Ti. Each panel corresponds to a particular angle range as described in the text, and the panels are in order of increasing CM scattering angle.
panel (c) of Fig. 4.15 have two distinct components: a sharp peak, which is the expected shape, sitting on top of a broad base. This effect is not caused by the 106Cd nuclei scattering into the target, which worsened the γ-ray resolution for target detection in the 208Pb target settings. Because $m_p > m_T$ for the 48Ti target setting, $\theta_p^{\text{max}} = 26.9^\circ$ meaning the 106Cd projectiles actually never scatter into the target.

The wide base beneath the Doppler-corrected peaks is caused by a particular feature of the reaction kinematics during this setting. As mentioned, for the large majority of recorded scattering events, both the 48Ti and 106Cd enter the silicon detector. For the angle range shown in panel (c), which corresponds to 48Ti detected in rings 11 to 15, both particles enter the detector, but they also have roughly the same kinetic energy. For some scattering events in this region, the energy deposited in the detector by each reaction product will be essentially identical, so correlating a ring to its corresponding sector becomes ambiguous.

For these particular events, it is possible that the silicon ring the 106Cd scattered into will be improperly correlated with the sector from the 48Ti implant (and vice-versa). When this happens the positions determined for the nuclei are incorrect and the Doppler correction fails; this causes the broad base in panel (c) of Fig. 4.15. Note this improper correlation does not impact the observed kinematic curves, so this effect is not visible in Fig. 4.14.

In the LAB frame, the reaction products emerge back-to-back, which means the scattered 106Cd and recoiling 48Ti will always enter "opposite" sectors, i.e. sectors which are separated by 180°. Thus the improper correlation of rings to sectors corresponds exactly to a 180° rotation of the azimuthal coordinate ϕ_p of the particles’ trajectories. The γ rays in coincidence with these events are seen clearly in Fig. 4.16, which shows the γ-ray energy plotted against the ϕ coordinate discussed earlier (see Fig. 4.8). The improperly correlated events can be successfully Doppler corrected by making the substitution $\phi_p \rightarrow \phi_p + \pi$; this is shown in the right panel of Fig. 4.16. Both the simple γ-ray energy spectrum in Fig. 4.15 as well as the ϕ correlation of Fig. 4.16 can be used to extract how many γ rays are incorrectly broadened in the angle range, so this affect was successfully accounted for.
Figure 4.16: Correlation of E_γ with ϕ for 48Ti nuclei detected in rings 11 to 15. The γ rays in coincidence with improperly correlated silicon events are obvious. The left panel shows the normal Doppler correction, and the right panel shows the Doppler correction with $\phi_p \rightarrow \phi_p + \pi$.

4.4 Gamma-Ray Yields

For all angle ranges, the peak areas of all observed transitions were extracted from the γ-ray spectra shown in Figs. 4.10, 4.13, and 4.15. In order to transform the measured peak areas into actual γ-ray yields, the detection efficiency of SeGA must be known. An efficiency calibration of SeGA was performed using three γ-ray sources: 152Eu, 226Ra, and 133Ba. As the activity of the 152Eu source was the most precisely known, only this source was used for the absolute efficiency calibration. The other two sources were used for a relative efficiency calibration to extend the range of γ-ray energies beyond what is provided by the 152Eu source. The efficiency data collected from all three sources, as well as the fitted efficiency curve, are shown in Fig. 4.17.

The detection efficiency of SeGA is well constrained for the γ-ray energies observed in this work, $600 \text{ keV} < E_\gamma < 1800 \text{ keV}$. At 1000 keV, SeGA provided an absolute γ-ray detection efficiency of 6.7% during this experiment. Note that, as mentioned, only the relative energy dependence of the detection efficiency is important; the absolute efficiency in not strictly necessary for the analysis presented in this work.
Figure 4.17: The γ-ray detection efficiency curve determined during this work for SeGA. Only the 152Eu source was used for an absolute efficiency; the data from the other two sources were scaled to the 152Eu data.

4.5 GOSIA Analysis

The γ-ray yield data was analyzed with a joint use of the GOSIA and GOSIA2 codes [90, 87]; a high-level description of GOSIA was given in Chapter 2. Along with the γ-ray yields as a function of scattering angle, GOSIA takes essentially all experimental conditions as input. These include the angular coverage of the particle and γ-ray detectors, the energy loss of the projectile traversing the target, the projectile's incident energy, and conversion-electron coefficients for the γ-ray decays.

The nuclear level schemes must also be provided as input. In analyses with GOSIA, excited states beyond the highest observed in experiment must be included in the calculations. These so-called buffer states can account for any unobserved feeding due to weak population of higher-lying states. Further, truncation of the network of coupled differential equations which govern the Coulomb excitation process results in an over-prediction of the population to the highest levels [90]; including buffer states makes this spurious numerical effect negligible. The level schemes for both 106Cd and 48Ti used during the GOSIA analysis are shown in Fig. 4.18.

Initially, the data collected on the 48Ti target was analyzed independently using the Coulomb excitation code GOSIA2, which was developed specifically for a simultaneous analysis of projectile
and target excitations. Most commonly, GOSIA2 is used to solve the common problem of defining the absolute normalization which is needed to convert the γ-ray yields into a Coulomb excitation cross section. There many effects which will introduce an overall scaling factor to the γ-ray yield data, such as absolute detection efficiency, the beam rate, how long data was collected, etc. Instead of requiring the absolute normalization, GOSIA introduces scaling factors to the yield calculations which account for these effects. Each angular subdivision of the three data sets, individually called "experiments" in GOSIA, is given its own² scaling factor which is applied to every calculated yield in that experiment. In a typical GOSIA analysis, the scaling factors are also fitted during the minimization routine and as such are additional free parameters beyond the nuclear matrix elements.

²GOSIA actually defines a unique scaling factor for every γ-ray detector in each experiment. As SeGA is always treated as "one" detector, only one normalization constant is used per GOSIA experiment.
Table 4.1: Literature data for 48Ti employed during the GOSIA2 analysis. Data taken from NNDC/ENSDF [150].

<table>
<thead>
<tr>
<th>State</th>
<th>Lifetime τ (ps)</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2_1^+</td>
<td>5.83(14)</td>
<td>$2_1^+ \rightarrow 2_1^+$ Mixing Ratio</td>
<td>0.18(3)</td>
</tr>
<tr>
<td>4_1^+</td>
<td>1.10(10)</td>
<td>$2_2^+ \rightarrow 0_1^+/2_2^+ \rightarrow 2_1^+$ Branching Ratio</td>
<td>0.0514(22)</td>
</tr>
<tr>
<td>2_2^+</td>
<td>0.039(4)</td>
<td>$\langle 2_1^+</td>
<td></td>
</tr>
</tbody>
</table>

GOSIA2 is used to constrain strictly the scaling factors which are introduced to the γ-ray yield calculations. This is accomplished by providing the measured γ-ray yields from the 48Ti target excitations along with the well-known spectroscopic data of the low-lying states in 48Ti to the GOSIA2 code. This combined information is sufficient to determine the normalization. All observed transitions from 48Ti were provided as input, though only the $2_1^+ \rightarrow 0_1^+$ transition is relevant as its yield is two orders of magnitude larger than the next strongest transition. The known lifetime of the 2_1^+ state in 48Ti defines the average absolute scale, and its quadrupole moment constrains the relative scaling of the angular ranges. The spectroscopic data used in this analysis for 48Ti is given in Table 4.1.

The matrix elements of 106Cd can be determined using the normalization constants defined by the 48Ti target excitations. For the GOSIA2 analysis in this work, the 106Cd $\langle 0_1^+||E2||2_1^+ \rangle$ and $\langle 2_1^+||E2||2_1^+ \rangle$ matrix elements were manually scanned while all other matrix elements in 106Cd were fixed. At each point in the scan, the GOSIA2 code was used to calculate the expected 106Cd yields and compare them to the measured values. The least-squares search routine was not employed for 106Cd matrix elements during the GOSIA2 analysis. This process results in a two-dimensional χ^2 surface, with the best-fit matrix elements given at the minimum χ^2 value and the 1σ uncertainties given by a $\chi^2 < \chi^2_{\text{min}} + 1$ cut. No literature constraints for 106Cd were used in this step of the analysis. The constrained matrix elements of 48Ti were allowed to vary at each point in the scan; all stayed well within the literature uncertainties give in Table 4.1.

The second step of the joint GOSIA-GOSIA2 analysis uses the original GOSIA code. The best-fit $\langle 0_1^+||E2||2_1^+ \rangle$ matrix element and its uncertainty extracted from the χ^2 surface are provided
Table 4.2: Literature data for 106Cd employed during the GOSIA analysis. Data taken from NNDC/ENSDF [150].

<table>
<thead>
<tr>
<th>Transition</th>
<th>Mixing Ratio</th>
<th>Transitions</th>
<th>Branching Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^+_2 \rightarrow 2^+_1$</td>
<td>-1.44(11)</td>
<td>$4^+_2 \rightarrow 2^+_1/4^+_2 \rightarrow 4^+_1$</td>
<td>0.611(15)</td>
</tr>
<tr>
<td>$4^+_2 \rightarrow 4^+_1$</td>
<td>-0.314(22)</td>
<td>$4^+_2 \rightarrow 2^+_2/4^+_2 \rightarrow 4^+_1$</td>
<td>0.065(17)</td>
</tr>
</tbody>
</table>

as a constraint to this full GOSIA minimization. The three experimental settings were analyzed independently to ensure consistency and then combined into a single GOSIA calculation in order to maximally constrain the matrix elements. This was also a convenient way of creating the extensive GOSIA inputs.

During the full GOISA step of the analysis, the absolute normalization for the γ-ray yields was constrained by the GOSIA2 result for the $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element; in terms of defining the normalization constants, this is equivalent to the common practice of including the lifetime of the 2^+_1 excited state. However, the GOSIA2 result is an independent measurement of the 106Cd $B(E2; 0^+_1 \rightarrow 2^+_1)$. As such this analysis does not depend on previous lifetime measurements for 106Cd at all. Considering a major motivation for this work is to resolve discrepant lifetime measurements, this is a crucial feature of the experimental scheme and data analysis procedure.

Beyond the constraint on the $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element, the full GOSIA calculation was constrained by the literature data for 106Cd given in Table 4.2. These constraints primary affect the 4^+_2 state which was not observed during this experiment; it was included due to its close proximity to the 2^+_2 state. Additionally, the result from Ref. [156] for the mixing ratio of the $2^+_2 \rightarrow 2^+_1$ transition was included to constrain the $M1$ component of the mixed γ-ray decay.

During the full GOSIA minimization, the $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element is constrained but not fixed. This is because, during the GOSIA2 analysis, the matrix elements which couple to states beyond the 2^+_1 were not correct as they had not yet been determined. These incorrect couplings have an effect on the best-fit $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element extracted from GOSIA2, and thus this matrix element should be allowed to vary during the full GOSIA minimization in order to find a solution which best balances the GOSIA2 constraint with all three data sets.
Figure 4.19: The final χ^2 surface from the GOSIA2 analysis with a $\chi^2 \leq \chi^2_{\text{min}} + 1$ restriction applied. This figure has smoothing applied to remove artifacts of the GOSIA minimization.

After convergence of the full GOSIA fit, the χ^2 surface is recreated; the matrix elements which couple to higher-lying states are now fixed at the values determined by the previous full GOSIA fit. The (more accurate) $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element from this new surface is then provided once again to a full GOSIA minimization, and this process is iterated until the results have converged [87]. The final χ^2 surface, after convergence of all matrix elements and with a $\chi^2 \leq \chi^2_{\text{min}} + 1$ restriction applied, is shown in Fig. 4.19. As is typical in the Coulomb excitation of even-even nuclei, there is a clear correlation between the $\langle 0^+_1||E2||2^+_1 \rangle$ and $\langle 2^+_1||E2||2^+_1 \rangle$ matrix elements when reproducing the γ-ray yield data (which is why a χ^2 surface analysis is used). The use of a moderately low-Z 48Ti target helps reduce this effect.

Since the result from the χ^2 surface are used only to constrain the full GOSIA minimization, the matrix elements at the minimum χ^2 value in Fig. 4.19 are not precisely the final values quoted in Chapter 5. As mentioned previously, the full GOSIA minimization considers the 106Cd γ-ray yields from all three settings. As such, 18 experiments were defined in the GOSIA calculations, and a total of 86 γ-ray yields were fitted using 24 matrix elements with 12 normalization constants as parameters. Note that many of these matrix elements, particularly those that couple to the buffer
states, had a very small impact on the γ-ray yield calculations.

In order to reduce the number of parameters included during the minimization, GOSIA provides the ability to "link" different experiments together with relative normalization constants. These can be determined from the number of particles scattered into that angular range via [87]

$$
N_i = \frac{N_p^{(i)}}{\Delta \theta_i \Delta \phi_i},
$$

where N_i is the relative normalization, $N_p^{(i)}$ is number of scattered nuclei, $\Delta \theta_i$ is the range of LAB frame scattering angles covered, and $\Delta \phi_i$ is the azimuthal coverage for experiment i. The number of detected nuclei can be determined most precisely when the 106Cd scatter into the forward silicon detector, so the seven GOSIA experiments corresponding to forward-scattered 106Cd were coupled together with the relative normalization constants given by Eq. 4.1. This reduces the number of fitted normalization constants from 18 to 12, increasing the sensitivity to the matrix elements. In particular, this increases the experimental sensitivity to quadrupole moments through the reorientation effect, as this is determined by the angular distribution of the γ-ray yields.

The reproduction of the measured γ-ray yields after convergence of the matrix elements from the iterative GOSIA-GOSIA2 analysis is shown in Figs. 4.20 to 4.25. In these figures, the x-axis is labelled "Experiment Number," which refers to a particular angle range within a specific setting; the vertical lines separate three settings. In all figures, the high-energy setting corresponds to experiment numbers 1 to 7, the low-energy setting corresponds to numbers 8 to 13, and the 48Ti setting corresponds to 14 to 18. Experiments within a setting are in order of increasing CM scattering angle, i.e. they are in the same order as the γ-ray spectra shown in Figs. 4.10, 4.13, and 4.15.

The Z-score of a yield, shown in the bottom panel of Figs. 4.20 to 4.25, is simply the difference between experimental and calculated yield divided by the experimental uncertainty. Systematic uncertainties were included when extracting the γ-ray yields, so the error bars are not purely statistical. However, the Z-score can still be interpreted roughly as the number of standard deviations separating the measured and calculated yields. As can been seen, almost all yields are reproduced within 2σ, which is to be expected for the number of fitted yields. The horizontal dashed lines
Figure 4.20: The reproduction of the 632 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings.

Figure 4.21: The reproduction of the 861 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings.
Figure 4.22: The reproduction of the 1009 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings.

Figure 4.23: The reproduction of the 1084 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings.
$^{106}\text{Cd } 2^+_2 \rightarrow 0^+_1$ transition

![Graph showing yield comparison for $^{106}\text{Cd } 2^+_2 \rightarrow 0^+_1$ transition](image)

Figure 4.24: The reproduction of the 1716 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Vertical lines separate the three settings.

$^{106}\text{Cd } 3^-_1 \rightarrow 2^+_1$ transition

![Graph showing yield comparison for $^{106}\text{Cd } 3^-_1 \rightarrow 2^+_1$ transition](image)

Figure 4.25: The reproduction of the 1746 keV γ-ray yield from GOSIA. The top panel shows the direct comparison of calculated (red) and measured (black) yields. The bottom panel shows the discrepancy normalized to the experimental uncertainty. Note this transition was only observed in the ^{48}Ti target setting.
denote the ±1σ band. Using the typical rule-of-thumb for Gaussian uncertainties, about 68% of
the yields should fall in this range. Note not all transitions were seen in all GOSIA experiments.
CHAPTER 5
RESULTS AND DISCUSSION

5.1 Experimental Results

As shown in the previous chapter, a GOSIA analysis was performed which successfully reproduced the measured γ-ray yields. The final matrix elements extracted from this analysis are given in Table 5.1, and the corresponding exited state lifetimes are shown in Table 5.2. Only matrix elements and lifetimes which were well constrained by the γ-ray yields collected during the experiment are given. The quoted uncertainties have been symmetrized and are the result of combining statistical and systematic effects. The dominant systematic error arises from the 1 mm ($\approx 3 - 4\%$) uncertainty on the separation between the reaction target and the silicon detectors.

As is apparent from Tables 5.1 and 5.2, the present work agrees well with the original Coulomb excitation data [149, 98] for all states observed, strongly supporting the adopted values over the discrepant results reported in [145]. The systematics of the $B(E2; 0_1^+ \rightarrow 2_1^+)$ excitation strength along the Cd isotopic chain is shown again in Fig. 5.1, but this time with the present result indicated in red. Again, the agreement with original Coulomb excitation data [149, 98] is clear.

Also seen in Fig. 5.1 is satisfactory agreement with the results from Siciliano et. al. [143, 144], which is a recent lifetime measurement of excited states in 106Cd using the recoil-distance Doppler-shift technique [159]. Siciliano et. al. measured several of the same lifetimes determined in this work, and a comparison of the results is given in Table 5.3. Refs. [143, 144] used two analysis techniques: the "Decay-Curve Method" (DCM) and the "Differential Decay-Curve Method" (DDCM), which are quoted separately. Further, Siciliano et. al. quotes two results from each method for the 2^+_2 state; these correspond to the two γ-ray decays from that state ($2^+_2 \rightarrow 0^+_1$ and $2^+_2 \rightarrow 2^+_1$).
Table 5.1: Matrix elements extracted from the present analysis compared to literature values.

\[
\langle J_i^\pi || E2 || J_f^\pi \rangle (eb)
\]

<table>
<thead>
<tr>
<th>(J_i^\pi)</th>
<th>(J_f^\pi)</th>
<th>This Work</th>
<th>Ref [145]</th>
<th>Ref [149]</th>
<th>Ref [98]</th>
<th>Ref [157]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>2^+</td>
<td>0.652(11)</td>
<td>0.76(3)</td>
<td>0.653(13)</td>
<td>0.620(3)</td>
<td>-</td>
</tr>
<tr>
<td>2^+</td>
<td>2^+</td>
<td>-0.25(5)</td>
<td>-</td>
<td>-</td>
<td>-0.37(11)</td>
<td>-</td>
</tr>
<tr>
<td>2^+</td>
<td>4^+</td>
<td>1.044(25)</td>
<td>0.79(2)</td>
<td>1.11(7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4^+</td>
<td>4^+</td>
<td>-0.52(24)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4^+</td>
<td>6^+</td>
<td>1.37(10)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6^+</td>
<td>6^+</td>
<td>-1.3(8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0^+</td>
<td>2^+</td>
<td>0.169(4)</td>
<td>-</td>
<td>0.190(13)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2^+</td>
<td>2^+</td>
<td>0.415(15)</td>
<td>-</td>
<td>0.49(4)</td>
<td>-</td>
<td>0.32(5)</td>
</tr>
<tr>
<td>2^+</td>
<td>2^+</td>
<td>1.33(6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
\langle J_i^\pi || M1 || J_f^\pi \rangle (\mu_N)
\]

<table>
<thead>
<tr>
<th>(J_i^\pi)</th>
<th>(J_f^\pi)</th>
<th>This Work</th>
<th>Ref [149]</th>
<th>Ref [157]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+</td>
<td>2^+</td>
<td>-0.263(17)</td>
<td>-0.39</td>
<td>-0.35(5)</td>
</tr>
</tbody>
</table>

\[
\langle J_i^\pi || E3 || J_f^\pi \rangle (eb^3/2)
\]

<table>
<thead>
<tr>
<th>(J_i^\pi)</th>
<th>(J_f^\pi)</th>
<th>This Work</th>
<th>Ref [158]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>3^-</td>
<td>0.28(14)</td>
<td>0.40(5)</td>
</tr>
</tbody>
</table>

Table 5.2: Excited state lifetimes extracted from the present analysis compared to literature values. Since no literature lifetimes were used to constrain the GOSIA minimization, these results are independent of previous measurements.

<table>
<thead>
<tr>
<th>State</th>
<th>This Work</th>
<th>Ref [145]</th>
<th>Ref [149]</th>
<th>Ref [98]</th>
<th>Ref [152]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+</td>
<td>9.5(3)</td>
<td>7.0(3)</td>
<td>9.4(4)</td>
<td>10.49(12)</td>
<td>9.9(12)</td>
</tr>
<tr>
<td>4^+</td>
<td>1.42(7)</td>
<td>2.5(2)</td>
<td>1.26(16)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6^-</td>
<td>0.54(8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2^+</td>
<td>0.50(3)</td>
<td>0.28(2)</td>
<td>0.45(7)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 5.1: Evolution of $B(E2)$ values in the even-A $^{100–126}$Cd isotopes with the present result indicated in red.

Table 5.3: Excited state lifetimes extracted from the present analysis compared to the recent results from [143, 144].

<table>
<thead>
<tr>
<th>State</th>
<th>This Work</th>
<th>Ref [143] DDCM</th>
<th>Ref [143] DCM</th>
<th>Ref [144] DDCM</th>
<th>Ref [144] DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+_1</td>
<td>9.5(3)</td>
<td>10.4(2)</td>
<td>10.7(4)</td>
<td>-</td>
<td>10.1(3)</td>
</tr>
<tr>
<td>4^+_1</td>
<td>1.42(7)</td>
<td>-</td>
<td>-</td>
<td>1.4(2)</td>
<td>-</td>
</tr>
<tr>
<td>6^+_1</td>
<td>0.54(8)</td>
<td>-</td>
<td>-</td>
<td>1.3(6)</td>
<td>1.21(15)</td>
</tr>
<tr>
<td>2^+_2</td>
<td>0.50(3)</td>
<td>-</td>
<td>-</td>
<td>0.46(10), 0.41(4)</td>
<td>0.51(2), 0.55(3)</td>
</tr>
</tbody>
</table>
5.2 Shell Model Calculations

Large-scale shell-model calculations were performed to understand both the shape and collectivity of 106Cd. A model space and Hamiltonian of a form similar to [147] was employed; this is based on an 88Sr core with the valence ($1p_{1/2}, 0g_{9/2}$) orbitals for protons and the ($0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}$) orbitals for neutrons. Effective charges of $e_p = 1.6$ and $e_n = 1.0$ were used. This will be referred to as the Sr88 shell model calculation.

The calculations were carried out with the shell-model code NuShellX [160], and they reproduce well the recently calculated $B(E2; 2^+_1 \rightarrow 0^+_1)$ values from Table VI in Ref. [147] for 102,104Cd. In order to run the 106Cd calculation, a truncation of the neutron configurations was made allowing at most two neutrons in the $0h_{11/2}$ orbital. The resulting energies are within 50 keV of those in [147], and the $B(E2; 2^+_1 \rightarrow 0^+_1)$ also agrees. For all three nuclei, the quadrupole moments Q_s from our shell-model calculations are larger by a factor of roughly 2.2 over those in [147] due to an incorrect normalization applied in [147].

Calculated transition strengths and quadrupole moments are compared to the experimentally determined values in Table 5.4. Two shell-model calculations are presented; the calculation labelled $jj45$ will be explained later in this section. The Sr88 shell-model calculation reproduces the transition strengths in the ground-state band rather well. Additionally, the experimental transition strengths of the 2^+_2 state are moderately well described. Note, however, that the shell model calculations place the calculated 2^+_2 and 2^+_3 states quite close in energy. The calculated 2^+_3 state has a lifetime, quadrupole moment, and decay pattern which are most similar to the experimental 2^+_2 state. As such, both states are included when comparing experimental and theoretical results, and the calculated 2^+_3 state should be associated with the experimental 2^+_2 state.

While the experimental $B(E2)$ transition strengths are well described by the shell model, it is also clear from Table 5.4 that the calculations do not reproduce the experimental quadrupole moments. Most significantly, the calculated $Q_s(2^+_1)$ is larger than the experimental value by roughly a factor of three. The experimentally determined quadrupole moments for all other states show a similar level of disagreement with the calculations.

Table 5.4: Transition strengths and spectroscopic quadrupole moments determined from this work compared to shell-model predictions.

<table>
<thead>
<tr>
<th>J_i^π</th>
<th>J_f^π</th>
<th>Experiment</th>
<th>jj45</th>
<th>Sr88</th>
</tr>
</thead>
<tbody>
<tr>
<td>2_1^+</td>
<td>0_1^+</td>
<td>0.085(3)</td>
<td>0.0933</td>
<td>0.0774</td>
</tr>
<tr>
<td>4_1^+</td>
<td>2_1^+</td>
<td>0.121(6)</td>
<td>0.134</td>
<td>0.111</td>
</tr>
<tr>
<td>6_1^+</td>
<td>4_1^+</td>
<td>0.145(21)</td>
<td>0.104</td>
<td>0.0906</td>
</tr>
<tr>
<td>2_2^+</td>
<td>0_1^+</td>
<td>$5.7(3) \times 10^{-3}$</td>
<td>8.65×10^{-6}</td>
<td>4.72×10^{-4}</td>
</tr>
<tr>
<td>2_2^+</td>
<td>2_1^+</td>
<td>0.0345(25)</td>
<td>7.63 $\times 10^{-6}$</td>
<td>7.27 $\times 10^{-4}$</td>
</tr>
<tr>
<td>2_3^+</td>
<td>0_1^+</td>
<td>-</td>
<td>3.46×10^{-3}</td>
<td>2.76×10^{-3}</td>
</tr>
<tr>
<td>2_3^+</td>
<td>2_1^+</td>
<td>-</td>
<td>0.0103</td>
<td>7.82 $\times 10^{-3}$</td>
</tr>
</tbody>
</table>

Spectroscopic Quadrupole Moment Q_S (eb)

<table>
<thead>
<tr>
<th>State</th>
<th>Experiment</th>
<th>jj45</th>
<th>Sr88</th>
</tr>
</thead>
<tbody>
<tr>
<td>2_1^+</td>
<td>-0.19(4)</td>
<td>-0.603</td>
<td>-0.550</td>
</tr>
<tr>
<td>4_1^+</td>
<td>-0.39(18)</td>
<td>-0.760</td>
<td>-0.687</td>
</tr>
<tr>
<td>6_1^+</td>
<td>-0.8(5)</td>
<td>-0.563</td>
<td>-0.549</td>
</tr>
<tr>
<td>2_2^+</td>
<td>1.01(5)</td>
<td>-0.345</td>
<td>-0.205</td>
</tr>
<tr>
<td>2_3^+</td>
<td>-</td>
<td>0.611</td>
<td>0.4055</td>
</tr>
</tbody>
</table>

Due to the number of well-determined matrix elements extracted from this work, a comparison of the $E2$ rotational invariants $\langle Q^2 \rangle$ and $\langle Q^3 \cos(3\delta) \rangle$ [89, 41], which were described in Chapter 2, can be made to further explore the discrepancies between experiment and theory presented in Table 5.4. Only these two lowest-order rotational invariants for the 106Cd ground state could be reliably extracted from the experimental data. To determine the quadrupole asymmetry parameter, we use the common [92, 75, 74] assumption that

$$\langle \cos 3\delta \rangle \approx \frac{\langle Q^3 \cos(3\delta) \rangle}{\langle Q^2 \rangle^{3/2}}. \quad (5.1)$$

In this work, special attention is paid to the "normalized" quadrupole moment q_S, which is
Table 5.5: The 106Cd ground state rotational invariants and normalized quadrupole moments determined from this work compared to shell-model calculations. The quoted uncertainties are purely experimental (see Table 5.1).

<table>
<thead>
<tr>
<th>Ground State Rotational Invariants</th>
<th>Invariant</th>
<th>Experiment</th>
<th>jj45</th>
<th>Sr88</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle Q^2 \rangle \ (e^2 b^2)$</td>
<td>0.454(14)</td>
<td>0.484</td>
<td>0.403</td>
<td></td>
</tr>
<tr>
<td>$\langle Q^3 \cos(3\delta) \rangle \ (e^3 b^3)$</td>
<td>-0.02(2)</td>
<td>0.265</td>
<td>0.198</td>
<td></td>
</tr>
<tr>
<td>$\langle \cos(3\delta) \rangle$</td>
<td>-0.06(6)</td>
<td>0.79</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalized Quadrupole Moment q_s</th>
<th>Experiment</th>
<th>jj45</th>
<th>Sr88</th>
<th>Ref [161]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.32(6)</td>
<td>-0.975</td>
<td>-0.976</td>
<td>-0.72</td>
</tr>
</tbody>
</table>

closely related to an approximation of the quadrupole asymmetry invariant $\langle \cos(3\delta) \rangle$ via

$$q_s = -\langle \cos(3\delta) \rangle_{2^+} = \frac{Q_s(2^+_1)}{2 \sqrt{\frac{16\pi}{5}} B(E2; 0^+_1 \rightarrow 2^+_1)} . \quad (5.2)$$

Specifically, $\langle \cos(3\delta) \rangle_{2^+}$ is the quadrupole asymmetry when only the 2^+_1 excited state is in the calculation of the ground-state rotational invariants (see Eqs. 2.13 and 2.14). Recalling the rigid-rotor model of nuclei described in Chapter 2, q_s can be recognized as the ratio of the experimental quadrupole moment to the value predicted for an axially-symmetric rigid rotor. As such, the values $q_s = -1, 1$ indicate prolate and oblate deformations, respectively, while all intermediate values $-1 < q_s < 1$ imply triaxiality.

Loosely speaking, the quantity q_s is the first-order contribution to $\langle \cos(3\delta) \rangle$. In the same manner, the "leading-order" contribution to $\langle Q^2 \rangle$ is also quite simple:

$$\langle Q^2 \rangle_{2^+} = B(E2; 0^+_1 \rightarrow 2^+_1) . \quad (5.3)$$

Clearly, $\langle Q^2 \rangle_{2^+}$ can be related to the quadrupole deformation β_2 predicted by a rigid-rotor nuclear model (see Eq. 1.40). A comparison of the experimental and theoretical rotational invariants, as well as the particularly important contribution q_s, is shown in Table 5.5.
Table 5.6: Contribution of individual matrix element products, or "loops," to the rotational invariants.

<table>
<thead>
<tr>
<th>Contributions to $\langle Q^2 \rangle (e^2 b^2)$</th>
<th>Component</th>
<th>Exp</th>
<th>jj45</th>
<th>Sr88</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_1 \rangle \langle 2^+_1</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_2 \rangle \langle 2^+_2</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_3 \rangle \langle 2^+_3</td>
</tr>
<tr>
<td>Sum:</td>
<td>0.454</td>
<td>0.484</td>
<td>0.403</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contributions to $\langle Q^3 \cos(3\delta) \rangle (e^3 b^3)$</th>
<th>Component</th>
<th>Exp</th>
<th>jj45</th>
<th>Sr88</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_1 \rangle \langle 2^+_1</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_1 \rangle \langle 2^+_1</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_1 \rangle \langle 2^+_1</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_2 \rangle \langle 2^+_2</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_2 \rangle \langle 2^+_2</td>
</tr>
<tr>
<td>$\langle 0^+_1</td>
<td></td>
<td>E2</td>
<td></td>
<td>2^+_3 \rangle \langle 2^+_3</td>
</tr>
<tr>
<td>Sum:</td>
<td>0.023</td>
<td>-0.316</td>
<td>-0.237</td>
<td></td>
</tr>
</tbody>
</table>

As discussed in Chapter 2, the converge of the invariant sums should be investigated when they are calculated from experimental data. This can be accomplished by inspecting the contribution from individual terms in the sum. The decomposition of the invariant sums, for both experiment and theory, is presented in Table 5.6. As can be seen, the $\langle Q^2 \rangle$ invariant is almost entirely determined by the $\langle 0^+_1||E2||2^+_1 \rangle$ matrix element, with only a small ($\approx 7\%$) contribution coming from the 2^+_2 state. The shell model calculations indicate that contributions from higher-lying 2^+ states are negligible. (Again, the calculated 2^+_3 state should be compared to the experimental 2^+_2 state.)

From Table 5.6, the $\langle Q^3 \cos(3\delta) \rangle$ invariant is clearly more sensitive to matrix elements other than $\langle 0^+_1||E2||2^+_1 \rangle$. In fact, all experimentally determined values contribute appreciably to the sum. This again indicates the rapid increase in experimental data necessary to evaluate the higher-order invariant products. However, the shell model calculations indicate that the contribution to
\langle Q^3 \cos(3\delta) \rangle from the experimental 2^+_3 state is small, which justifies extracting this invariant. Note the sum of the $\langle Q^3 \cos(3\delta) \rangle$ contributions must be multiplied by $-\sqrt{35/2} \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} \approx -0.837$ to determine the actual value, while the prefactor for the $\langle Q^2 \rangle$ invariant is simply $\sqrt{5} \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} = 1$.

The very good reproduction of the $\langle Q^2 \rangle$ invariant by the shell model implies that the magnitude of the deformation is well described. However, the disagreement in both $\langle \cos(3\delta) \rangle$ and q_s indicates that the type of deformation (or shape) is less well characterized; both measures imply a significant degree of triaxiality for 106Cd which appears not to emerge from the shell-model calculations. Calculated values of q_s for Cd isotopes and the $N = 58$ isotones, compared to experimental values, are presented in Fig. 5.2. The data for 102,104Cd were taken from Table V of Ref [147], while all other literature data are taken from NNDC/ENSDF [150]. Note the "leading-order" contributions β_2 and q_s are used for systematic comparisons because the actual quadrupole invariants cannot be calculated reliably from the existing data for many of the nuclei.

The discrepancy with experiment shown in Fig. 5.2 and Table 5.5 for the 106Cd q_s cannot be accounted for within the Sr88 model space. Repeating the calculations in the expanded jj45 model space, which includes the $(0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2})$ proton orbitals, we find q_s is still close to -1 (see Table 5.5). Unlike the overall deformation parameter β_2, q_s is insensitive to the effective charges since these factors mostly cancel in the ratio of Eq. 5.2 (see Fig. 5.2); thus the discrepancy in q_s cannot be improved by adjusting the effective charges.

The total effective charge is $e_p = 1 + \delta e_p$(high) + δe_p(low) and $e_n = \delta e_n$(high) + δe_n(low). The δe(high) take into account the core-polarization from $2\hbar\omega$ $1p – 1h$ admixtures that are connected to the giant quadrupole resonance. Typical empirical values in the sd [162] and fp [163] model spaces are close to δe_p(high) = δe_n(high) = 0.5. The additional δe(low) are introduced to compensate for the truncation within the $0\hbar\omega$ shell, in particular the lack of proton excitations from $0g_{9/2}$ to $(0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2})$. In our case, we used δe_p(low) = 0.1 and δe_n(low) = 0.5.

It is interesting to compare the results for $Z = 48$ Cd isotopes, located two protons below the $Z = 50$ magic number, to the same results for the $Z = 26$ Fe isotopes, which lie two protons below the $Z = 28$ magic number. This comparison is shown in Fig. 5.3. Results for Fe are obtained
with the $f7j4$ model space which consists of $0f_{7/2}$ for protons and $(0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2})$ for neutrons. This is analogous to the Sr88 model space for Cd. As can be seen again, effective charges larger than e(high) are required to reproduce the experimental deformation.

Calculations for the light Fe isotopes were also performed in fp model space [163] which includes the $(0f_{7/2}, 0f_{5/2}, 1p_{3/2}, 1p_{1/2})$ orbits for protons and neutrons. Importantly, calculations with the fp model space do not make a truncation within a major oscillator shell. As seen from Fig. 5.3, both the fp model space with only e(high) and the $f7j4$ model space with e(high)+e(low) give $q_s \approx -1$ from $N = 28 – 34$. And for $N = 30, 32$ this agrees with experiment. This demonstrates that the effect of truncation within the major oscillator shell ($\hbar \omega$) is accounted for by the additional e(low), so the increase of the experimental q_s observed for 106Cd compared to the results of the Sr88 model space is not likely due to the major-shell truncation. Note the fp model space does
Figure 5.3: Calculated values of q_s (bottom) and quadrupole deformation β_2 (top) compared to experimental values for Fe isotopes. The data is taken from [164]. Figure adapted from [103].

not give an increasing q_s with increasing N as the neutron $0g_{9/2}$ orbit is not included in those calculations.

The $f7j4$ results for Fe reveal the reason for a change in q_s at large N. The q_s values for high-j configurations j^n are very simple. They are $q_s \approx +1$ for $n = 2$ and $q_s \approx -1$ for $n = -2$, with a nearly linear decrease in between. For both Fe and Cd, the protons are in a state with $n = -2$. Thus, the result for q_s as a function of N is determined by a constant $q_s \approx -1$ contribution from the protons combined with a varying q_s contribution from the neutrons which depends on the occupancy of the high-j $0g_{9/2}$ neutron orbital in Fe. In fact, the role of high-j configurations in determining nuclear shape in well-deformed nuclei is a much-explored phenomenon [165, 166, 167].

The analogy for Cd is that q_s should start to increase as the neutron $0h_{11/2}$ orbital starts to fill,
and then decrease back to $q_s \approx -1$ as the $0h_{11/2}$ orbital becomes filled at $N = 82$. This anticipated impact of the neutron $0h_{11/2}$ orbital on the shape of Cd isotopes can indeed be seen in Fig. 5.2. The data for $N \geq 60$ show a smooth increase in q_s out to mid-shell, in line with the expectations set by the Fe calculations, though the effect is less pronounced in Cd.

Fig. 5.2 additionally includes shell model calculations from Schmidt et al. [161]. The calculations from Ref [161] are also based on an 88Sr core, but they made no truncation of the neutron $0h_{11/2}$ as was necessary for the calculations from this work. As can be seen, the calculations of Schmidt et. al. show an increase in q_s for all Cd isotopes and give good agreement with experiment at $N = 60$. The calculated q_s values from Ref [161] are larger than those from this work due to the location of the $0h_{11/2}$ single-particle energy. For 101Sn the $0h_{11/2}$ orbital comes at an excitation energy of 6.76 MeV with our Sr88 interaction; it comes at 2.47 MeV with the interaction from [161]. Thus the admixture of the $0h_{11/2}$ single-particle configuration is larger in the wave-functions from [161] compared to the those from this work. The comparison of the calculations from Ref. [161] to those from this work, as well as the complementary calculation for the Fe isotopes presented here, strongly suggest the high-j $0h_{11/2}$ neutron orbital is critically important for determining the shape of neutron-rich Cd nuclei.

What is striking in Fig. 5.2 is the rapid increase in the experimental q_s with decreasing N starting at $N = 58$ compared to the calculations. This cannot be explained by the calculations presented in this work. To explore this discrepancy further, similar calculations were performed for $N = 58$ isotones (Fig. 5.2, right). The data show a clear increase of q_s with increasing Z. Again, the calculations presented in this work do not offer an explanation; the calculated q_s for the $N = 58$ isotones show the impact of the high-j proton configurations discussed earlier. The $Z = 44$ q_s calculation may be too high due to the employed model space being inappropriate for ruthenium; however, it is not likely that the experimental value would be reproduced even with an optimized model space.

These observations suggests several further investigations. Measurements of q_s in heavy Cd and Fe nuclei could confirm the similarity of the two isotopic chains pointed out in this work,
and shell-model calculations which fully incorporate the neutron $0h_{11/2}$ for all heavy Cd isotopes could quantify the effect of this critical high-j orbital on the shape of Cd nuclei. Further, precise measurements of q_s in $^{100-104}$Cd, as well the $N = 58$ nucleus 108Sn, could determine whether the trends observed in Fig. 5.2 continue. If so, it would represent a major deviation from the configuration-interaction based models presented here in a critical region of the nuclear chart near 100Sn.
CHAPTER 6
SUMMARY AND OUTLOOK

This thesis focused on the experimental technique of barrier-energy Coulomb excitation. The analysis and results of a Coulomb excitation measurement of 106Cd using the JANUS setup at ReA3 were presented. The experimental results agree well with both older Coulomb excitation data [149, 98] and more recent lifetime measurements [152, 143, 144] for several excited states. This lends confidence to the current results and strongly disfavors the discrepant results reported in Ref. [145]. Addressing this discrepancy was a primary motivation.

Large-scale shell-model calculations performed for comparison describe well the $B(E2)$ transition strengths in 106Cd, but they fail to reproduce the quadrupole moments. An analysis of $E2$ rotational invariants extracted from both experiment and theory, including the particularly important contribution q_s, reveals a significant degree of triaxiality in 106Cd which appears not to emerge from the present shell-model calculations. It was shown that this discrepancy cannot be reconciled within the Hamiltonians presently at hand, and that it cannot be fixed by changing the effective charges. A comparison with analogous calculations for the Fe isotopes, as well as with the similar calculations of Ref. [161], show that high-j neutron configurations cause the increase of q_s for Cd isotopes with $N \geq 60$. These comparisons also show that this effect cannot explain the current result for 106Cd. The existing data for the light Cd isotopes and the $N = 58$ isotones with $Z \geq 44$ hint at a striking deviation from the presented shell-model calculations; this motivates similar measurements for more neutron-deficient Cd and Sn isotopes to explore the unexpected evolution of quadrupole moments in this critical region of the nuclear chart.

JANUS continues to be a powerful setup for nuclear structure studies of both stable and rare isotopes. Beyond the successful commissioning experiment [108, 100] and the work presented in this thesis [103], the nuclei $^{72-76}$Se [102, 74] and 46Ca [119] have been studied with the setup. In August to October of 2020, another successful campaign of Coulomb excitation experiments with JANUS at ReA3 was completed. Three separate experiments were performed which studied 80Ge,
112,116,120Sn, and 126,128Xe. The analyses of these experiments are ongoing. The data analysis and preliminary results from the 80Ge experiment is presented in the Appendix.
APPENDIX
APPENDIX

COULOMB EXCITATION OF GERMANIUM-80

A.1 Motivation

The stable to neutron-rich isotopes of germanium are a critical testing ground for nuclear models due to their detailed and rapidly changing structures. Near stability, the even-\(A\) \(^{74-78}\)Ge isotopes display triaxiality \([168, 169, 170, 73, 171]\), while both shape coexistence \([172]\) and triaxiality have been suggested for \(^{72}\)Ge \([72]\). A transition from prolate to oblate deformation occurs at \(^{70}\)Ge. Further, nuclei near the magic \(N = 50\) isotone line, such as the very neutron-rich doubly magic nucleus \(^{78}\)Ni \([173, 174]\), have recently come into reach ab-initio-type models \([175]\). This makes experimentally determined indicators of nuclear structure crucial as these models attempt to extrapolate to the even more neutron-rich nuclei which will become available at facilities such as FRIB.

Two neutrons removed from \(N = 50\), \(^{80}\)Ge is important for a systematic understanding of neutron-rich nuclei in this region. Recent beyond-mean-field calculations \([176]\), which compare well to the available data in the lighter Ge nuclei, have predicted a spherical configuration for magic \(N = 50\) \(^{82}\)Ge and a rapid onset of prolate deformation at both \(^{80}\)Ge and \(^{84}\)Ge. In order to test these recent predictions, and to further the experimental understanding of nuclear structure in a critical region of the nuclear chart, an inverse-kinematics sub-barrier Coulomb excitation experiment on \(^{80}\)Ge was performed. The primary experimental goal is measure the \(^{80}\)Ge \(Q_s(2^+)\) and as such provide of one of the first benchmarks on nuclear shape in neutron rich Ge nuclei near \(N = 50\). While the \(^{80}\)Ge \(B(E2; 0^+_1 \rightarrow 2^+_1)\) has been measured \([177, 178]\), this experiment will provide a more precise value. The \(^{80}\)Ge \(B(E2)\) and \(Q_s(2^+)\) are critical benchmarks for any theoretical model trying to extrapolate to neutron-rich nuclei such as \(^{78}\)Ni and beyond.
A.2 Experimental Details

The experiment was performed at the NSCL ReA3 facility [101]. As 80Ge is a rare-isotope, NSCL’s scheme of projectile fragmentation and in-flight separation was required to create the RIB. A primary 82Se beam was produced by the Advanced Room Temperature Ion Source (ARTEMIS) [179] and accelerated by the K500 and K1200 coupled cyclotrons. The primary beam was impinged on a thick 9Be production target to produce a "cocktail" secondary beam which consists of many different rare-isotopes. The 80Ge nuclei were selected using the A1900 fragment separator [153] and delivered to a gas-cell which is used to stop and thermalize the high-energy beam. The 80Ge nuclei were extracted from gas-cell, charge bred in an EBIT, and injected into the ReA3 accelerator chain to be delivered to the JANUS experimental setup.

The experiment consisted of only one setting. The 80Ge nuclei were impinged at 3.52 MeV/u on a 1.59 mg/cm2 196Pt target. This energy is 98% of the Coulomb barrier. The use of a 196Pt target provided target excitations which, along with its well-known spectroscopic data, were used to define the normalization necessary to measure matrix elements in 80Ge. As 196Pt is a high-Z nucleus, this method provides sensitivity to both the quadrupole moment and transition strength of the $^{2+}_{1}$ excited state in 80Ge.

At the time of the experiment, it was discovered that the 80Ge beam contained a roughly 7% contamination of stable 80Kr, though the precise amount of contamination was observed to increase over the course of the experiment. This contamination originated from the gas-cell which is used to stop and thermalize the incoming rare-isotope beam, and the contaminant 80Kr nuclei were accelerated to the same energy as the 80Ge. Since the energies and masses of both nuclei were the same, it was not possible to discriminate between the two beam species using the silicon detectors.

This contamination must be accounted for, as the 80Kr nuclei will Coulomb excite the 196Pt target. The additional yield of 196Pt γ-rays caused by impinging 80Kr will incorrectly change the normalization extracted for the 80Ge excitations unless this contribution can be removed. Because of this, a dedicated 80Kr measurement was also performed in which a pure 80Kr beam was impinged on the 196Pt target under identical experimental settings. This setting provided a direct measure of
the 196Pt γ-ray yields produced by the impinging 80Kr.

A.3 Analysis

The data analysis procedure is very similar to what was employed for the 106Cd experiment. The kinematic curves collected over the entire experiment are shown in Fig. A.1. The separation between the scattered 80Ge and recoiling 196Pt is clear. However, from Fig. A.1 it is also clear that there is no separation between the 80Ge and the 80Kr contamination; the 80Ge kinematic curve also contains the contaminant 80Kr.

To increase the sensitivity the quadrupole moment, the data were further subdivided into angular ranges. The forward-scattered 80Ge data were divided into three ranges: 80Ge detected in rings 1 to 7, 8 to 14, and 15 to 24. The detected 196Pt recoils were divided into two ranges: rings 1 to 13 and 14 to 24. The back-scattered 80Ge were considered as a whole.

The Doppler-correction is again enabled by the segmentation of both detection systems and the well-know reaction kinematics. Because the kinematics of the scattered 80Ge and 80Kr nuclei are essentially identical, the γ-rays emitted by these two nuclei can be Doppler-corrected
simultaneously.

To facilitate the data analysis of this experiment, and all other JANUS experiments, a GEANT4 simulation [180] of setup was developed [181]. Most importantly, the simulation assists in extracting γ-ray intensities by providing a realistic simulated response of the SeGA detectors which can be used to fit the experimental γ-ray spectra. By removing the full-energy peak component of the simulated γ rays, extracting peak areas amounts to taking a simple integral of the γ-ray spectrum which is above the background model. This is a simple and consistent method of extracting peak areas which is largely independent of any assumption about the shape of the Doppler-corrected peaks.

Fitting the γ-ray spectra additionally enabled the 80Kr contamination to be accounted for in a simple manner: the γ-ray spectra collected during the dedicated 80Kr setting could be incorporated directly into the fits. By scaling the dedicated 80Kr spectrum to the the amount of $2^+_1 \rightarrow 0^+_1$ transitions from 80Kr collected during the experiment, the number of 196Pt γ-rays caused by the impinging 80Kr contamination can be determined in a direct and unambiguous manner. The γ-ray spectra collected during the experiment for each angle range, along with the simulated background response used to determine peak areas, are shown in Figs. A.2 to A.7. The orange curves in these figures are the 80Kr γ-ray spectra measured during the dedicated setting, which are included in the fits.

As can be seen in Figs. A.2 to A.7, the contaminant 80Kr nuclei contributed noticeably to the observed 196Pt γ-ray yields. By using the γ-ray spectra collected during the dedicated 80Kr setting, it was determined that on average 7% of the 196Pt γ-ray yields were caused by impinging 80Kr nuclei. The precise value depends on the angle range and is determined by the number of detected 80Kr $2^+_1 \rightarrow 0^+_1$ γ-rays transitions as shown in the fits.

It is noted that some weak population of the 4^+_1 and 2^+_2 states in 80Ge was also observed in the experiment. The transitions depopulating these states are shown if Fig. A.8 for detected 196Pt recoils (all rings). A fit was not necessary for to extract peak areas from these transitions due to their low statistics and low background.

In order to transform the measured peak areas into γ-ray yields, the detection efficiency of
Figure A.2: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 1 to 7 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.

Figure A.3: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 8 to 14 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.
Figure A.4: The γ-ray spectrum collected in coincidence with 80Ge scattered into rings 15 to 24 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.

Figure A.5: The γ-ray spectrum collected in coincidence with 196Pt in rings 14 to 24 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.
Figure A.6: The γ-ray spectrum collected in coincidence with 196Pt in rings 1 to 13 of the forward silicon detector. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.

Figure A.7: The γ-ray spectrum collected in coincidence with back-scattered 80Ge. The left panel is Doppler-correct for 196Pt, the right for 80Ge. The red curves are a simulated response of the background combined with the measured contribution from 80Kr. The orange curve shows the 80Kr contribution.
Figure A.8: The higher-energy portion of the γ-ray spectrum collected in coincidence with 196Pt recoils (all rings). Due to the low statistics, a fit was not necessary.

SeGA was measured. The efficiency calibration was performed using two γ-ray sources: 152Eu and 226Ra. Only the 152Eu source was used for the absolute efficiency calibration. The 226Ra source was used for a relative efficiency calibration. The efficiency data collected from these two sources, as well as the fitted efficiency curve, is shown in Fig. A.9.
The detection efficiency of SeGA is well constrained for the γ-ray energies observed in this work, $300 \text{ keV} < E_\gamma < 1700 \text{ keV}$. During this experiment, SeGA provided an absolute γ-ray detection efficiency of 6.3% at 1000 keV, which is slightly lower than what was measured during the previous JANUS campaign. This is because SeGA was offset slightly from the target position, so the solid angle coverage of the array was reduced. Note that, as mentioned, only the relative energy dependence of the detection efficiency is important; the absolute efficiency is not strictly necessary.

A.4 Preliminary Results

The γ-ray yield data were analyzed with the GOSIA2 code. Just as in the GOSIA2 analysis of the 106Cd experiment, the 80Ge $\langle 0^+_1 || E2 || 2^+_1 \rangle$ and $\langle 2^+_1 || E2 || 2^+_1 \rangle$ matrix elements were manually scanned while all other matrix elements were fixed. At each point in the scan, the GOSIA2 code was used to determine the agreement between the measured and calculated yields with respect to the normalization determined by the 196Pt target excitations. The literature data used for 196Pt is given in Table A.1, and the χ^2 surface from the GOSIA2 analysis is shown in Fig. A.10. No literature data was used for 80Ge during the GOSIA2 analysis.
Table A.1: The literature data employed for 196Pt during the GOSIA2 analysis. Data taken from NNDC/ENSDF [150].

<table>
<thead>
<tr>
<th>State</th>
<th>τ (ps)</th>
<th>Transitions</th>
<th>BR</th>
<th>Matrix element</th>
<th>Value</th>
<th>Transition</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+_1</td>
<td>49.27(22)</td>
<td>$\frac{4^+_2 \rightarrow 4^+_1}{4^+_2 \rightarrow 2^+_2}$</td>
<td>0.17(5)</td>
<td>$\langle 2^+_1</td>
<td></td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>4^+_1</td>
<td>5.12(7)</td>
<td>$\frac{4^+_2 \rightarrow 2^+_1}{4^+_2 \rightarrow 2^+_2}$</td>
<td>0.17(2)</td>
<td>$\langle 4^+_1</td>
<td></td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>6^+_1</td>
<td>1.41(12)</td>
<td>$\frac{2^+_2 \rightarrow 2^+_2}{2^+_2 \rightarrow 2^+_1}$</td>
<td>0.39(4)</td>
<td>$\langle 6^+_1</td>
<td></td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>8^+_1</td>
<td>0.61(6)</td>
<td>$\frac{3^+_2 \rightarrow 4^+_1}{3^+_1 \rightarrow 2^+_2}$</td>
<td>0.013(4)</td>
<td>$\langle 2^+_2</td>
<td></td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>0^+_2</td>
<td>6.1(14)</td>
<td>$\frac{3^+_1 \rightarrow 2^+_1}{3^+_1 \rightarrow 2^+_2}$</td>
<td>0.044(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^+_2</td>
<td>48.8(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4^+_2</td>
<td>3.8(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6^+_2</td>
<td>1.1(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the χ^2 surface analysis are $\langle 0^+_1 || E2 || 2^+_1 \rangle = 0.408(10)$ eb and $\langle 2^+_1 || E2 || 2^+_1 \rangle = -0.59(11)$ eb; these determine both the transition strength and the quadrupole moment of 80Ge. Matrix elements which couple to states beyond the 2^+_1 were determined with the GOSIA code by using the best-fit $\langle 0^+_1 || E2 || 2^+_1 \rangle$ matrix element as a constraint. Due to the weak population of the higher-lying states, only minimal sensitivity to the other matrix elements was observed and the joint GOSIA-GOSIA2 analysis rapidly converged.

A comparison of the current results for the $B(E2; 0^+_1 \rightarrow 2^+_1)$ and $Q_s(2^+_1)$ to the systematics along the Ge isotopic chain, including the previous $B(E2)$ measurements in 80Ge, is shown in Fig. A.11. As can be seen, the current result for the 80Ge $B(E2)$ is larger than both previous measurements. However, the trend still shows a smooth decrease from midshell at $A \approx 74$ out to the $N = 50$ closed shell at 82Ge, in line with conventional shell-model arguments.
Figure A.11: The systematics of the $B(E2)$ (left) and $Q_s(2^+_1)$ (right) along the Ge isotopic chain with the results from this work in red. Literature data from: Adopted [150], Padilla-Rodal [177], and Iwasaki [178].

Table A.2: The experimental results for 80Ge compared to shell model calculations. The quoted uncertainties are only statistical.

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>jj44b</th>
<th>JUN45</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(E2; 0^+_1 \rightarrow 2^+_1)$</td>
<td>0.166(8)</td>
<td>0.188</td>
<td>0.159</td>
</tr>
<tr>
<td>$Q_s(2^+_1)$</td>
<td>-0.44(8)</td>
<td>-0.301</td>
<td>-0.300</td>
</tr>
<tr>
<td>q_s</td>
<td>-1.21(23)</td>
<td>-0.766</td>
<td>-0.830</td>
</tr>
</tbody>
</table>

A.4.1 Shell Model Calculations

Shell model calculations were performed to understand the structure of 80Ge using the NuShellX code [160]. The calculations were performed in the $jj44$ model space which consists of the $(0f_{7/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2})$ orbitals for both protons and neutrons, and effective charges of $e_p = 1.8$ and $e_n = 0.8$ were used. Two separate calculations were performed using the jj44b and JUN45 [182] interactions; these have been widely employed to study germanium nuclei [183, 184]. The comparison between the experimental and calculated results are shown in Table A.2.

As can be seen from Table A.2, the JUN45 interaction reproduces the experimental values most closely. Both interactions predict a quadrupole moment of -0.3 eb, but the jj44b interaction
over-predicts the $B(E2)$ while the JUN45 interaction reproduces the $B(E2)$ value quite well. The experimentally determined spectroscopic quadrupole moment is almost 50\% larger than the shell model prediction. As can be seen from the reduced quadrupole moment q_s, the experimental value is larger than the prediction for an axially-symmetric rigid rotor (though the error bar overlaps with the symmetric rotor value).

The magic $N = 50$ nucleus 82Ge is predicted to be spherical [176] and thus have a very small quadrupole moment. As such the experimentally determined $Q_s(2^+_1)$ for 80Ge indicates a rapid onset of essentially maximal prolate deformation just two neutrons removed from $N = 50$. As mentioned earlier, the lighter $^{72-76}$Ge isotopes have smaller quadrupole moments due to the triaxial nature of their deformation. The present experimental result is a first indication that 80Ge does not exhibit significant triaxiality and instead points to rapid structural change in the heavy Ge isotopes. Measurement of the quadrupole moments in 78,82Ge would be very beneficial to confirm and quantify this rapid evolution of shape.

The interpretation of the shell model results in comparison with the experimentally determined values is still ongoing, and as stated earlier, the quoted errors are purely statistical. Systematic effects are still being investigated. As such, the results quoted here should be considered preliminary.
BIBLIOGRAPHY
BIBLIOGRAPHY

[164] Y.Y. Sharon, N. Benczer-Koller, G.J. Kumbartzki, L. Zamick, and R.F. Casten. Systematics of the ratio of electric quadrupole moments \(Q(2^+_1)\) to the square root of the reduced transition probabilities \(B(E2; 0^+_1 \rightarrow 2^+_1)\) in even–even nuclei. *Nuclear Physics A*, 980:131–142, 2018.

