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266 M. L DYKMAN AND M. A. KRIVOGLAZ
§1 - Introduction

The relaxation of a subsystem interacting with a medium is one of the
classical problems of statistical physics. It was apparently first consid-
ered within the framework of the theory of Brownian motion [1, 2].
Several simple models were investigated, including a harmonic oscilla-
tor in a highly viscous medium.

Two approaches are possible to the analysis of Brownian motion
and of other fluctuation phenomena in vibrational subsystems. One is
semiphenomenological and is based on the description of the interac-
tion with the medium with the aid of friction forces and random
forces having various statistical properties. In the simplest most
widely used model of Gaussian 8-correlated random forces, the prob-
lem reduces to the solution of the Einstein—Fokker—Planck (EFP)
equation or of the corresponding Langevin equation.

Another approach is based on a microscopic description of the
entire system (subsystem + thermostat) with the aid of a Hamiltonian.
In a number of cases it is possible to obtain in a consistent way here,
by eliminating the dynamic variables of the medium, relatively simple
equations that contain only the variables of the subsystem, such as an
equation for its classical distribution function or density matrix. This
occurs as a rule if the interaction of the subsystem with the medium is
so weak that the characteristic relaxation times of the subsystem
exceed the characteristic reciprocal width of the thermostat spectrum.
Solution of the equation for the distribution function makes it possi-
ble to obtain the subsystem time correlation functions that describe
the statistical properties of its motion, as well as to describe the
variation of the subsystem distribution in time for given initial condi-
tions.

Actually, in cases when the characteristic frequencies of the me-
dium greatly exceed the frequencies of the subsystem, the second of
the indicated approaches can substantiate the description of the
motion of a classical subsystem with the aid of the EFP equation or
the Langevin equation, and allows us to calculate the parameters in
these equations. For an arbitrary ratio of the frequencies (but at a
weak interaction between the subsystem and the medium), the micro-
scopic approach was realized initially for one of the simplest types of

AN OSCILLATOR INTERACTING WITH A MEDIUM 267

subsystems, the classical harmonic oscillator [3]. A detailed quantum
theory of a harmonic oscillator that interacts with a thermostat was
also developed [4].

The investigation of a harmonic oscillator is greatly simplified by
the fact that the system is described by linear equations. In this case
the random oscillator motion induced by the fluctuations in the
medium is separated from the regular motion, and the time correla-
tion functions of the dynamic variables of the system decay exponen-
tially with time in a large time interval. As a result, the complete
solution of the problem can be obtained in simple explicit form.

In fact real oscillatory systems are nonlinear to some degree or
another. Even a small nonlinearity can qualitatively alter the charac-
ter of the subsystem relaxation. In terms of classical theory, the
nonlinearity causes a dependence of the frequency and of the friction
coefficient of a nonlinear oscillator on the oscillation amplitude. As a
result of this dependence, the regular and random motions are inter-
mixed, so that the damping acquires a complicated non-exponential

" character. In terms of quantum theory, the problem of the relaxation

of a weakly nonlinear oscillator is made complicated by the fact that
the energy spectrum of the subsystem constitutes an infinite set of
almost equidistant levels, i.e., even if the interaction with the thermo-

- stat is weak, and the quantum kinetic equation is applicable, it cannot

be separated into equations for an aggregate of two-level systems.
(From this point of view, the simplicity of the problem of relaxation
of a linear oscillator whose interaction with the medium is linear in
the oscillator coordinate is due to the special degeneracy of this
problem; see section 4.3.) Notwithstanding the indicated complexities
of the problem of a nonlinear oscillator that interacts with a medium,
it is possible to obtain in a number of cases simple explicit expressions
for the time correlation functions of the oscillator in a wide range of
the nonlinearity parameter both in the classical theory (Sec. 2) and in

the quantum theory (Sec. 4).

A characteristic property of classical nonlinear systems is the possi-
bility of having several stable equilibrium states. If the subsystem is in
a static potential field, the probability of its transition between
minima of the potential due to interaction with the thermostat is
proportional to exp(—AU/ T), where AU is the height of the potential
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268 M. I. DYKMAN AND M. A. KRIVOGLAZ

barrier. Several stable states can arise, however, also in the case of
nonpotential motion of the subsystem or when the subsystem moves
in an external periodic field. In particular, two stable states (and one
unstable one) arise in a certain range of parameters when a resonant
external force acts on a nonlinear oscillator. The determination of the
probabilities of transitions between stable states in this case calls for a
special treatment. If the transition probabilities are low enough, and
the random force that causes them has a Gaussian distribution,
it is convenient to calculate these probabilities by the path-integral
method. It permits the problem to be reduced to an investigation of
the extremal trajectory of a certain auxiliary dynamic system. It turns
out that the transition probability depends exponentially on the
reciprocal intensity of the random force (i.e., on T ', if the random
force is due to the interaction of the subsystem with the thermostat).
The transition probability and some related problems are considered
in Sec. 3.

At certain values of the parameters (at bifurcation points of mar-
ginal or spinodal type, respectively) one or two stable states and one
unstable state of the system merge. The anomalously large fluctua-
tions that arise in this region are also analyzed in Sec. 3.

Besides the onset of several stable states, an external alternating
field can lead also to effects of another type, due to the appearance of
additional relaxation channels. As shown in Sec. 5, in the -case of
an oscillator this can cause strong heating or cooling, as well as

“runaway” of the oscillator.

Important examples of nonlinear oscillators that interact with a
medium are local and quasilocal vibrations near defects in crystals. In
this case the characteristic features of the time correlation functions
or of their spectral representations for the nonlinear vibrations can be
directly investigated in experiment, since the spectral densities of the
cross sections for absorption and Raman scattering of light, as well as
for inelastic scattering of neutrons, are proportional to the spectral
representations of the correlators. Applications of the results of the
theory of nonlinear oscillators that interact with the medium to optics
are discussed in Sec. 6.

In the present section we shall examine qualitatively questions
concerning the relaxation and fluctuations of a harmonic oscillator
and the effects due to nonlinearity.

AN OSCILLATOR INTERACTING WITH A MEDIUM 269
1.1 Harmonic Oscillator Interacting with a Medium

Brownian motion of a harmonic oscillator can be described with the
aid of the Langevin stochastic equation (see, e.g., [5])

§+2Tq + wiq = f (1),
S fu(t)) =4TTo(t — 1').

Here g is the normal coordinate of the oscillator, w, is its ei-
genfrequency (in the absence of friction), and T is the temperature of
the medium in energy units. The random force f; (¢) exerted on the
oscillator by the medium is Gaussian and §-correlated, and presents
white noise. In the simplest model it is due to collisions of the
vibrating particle with the atoms of the medium. Equation (1.1) is
applicable also if the oscillator is acted upon not by fluctuations of an
equilibrium thermostat, but by a white noise of arbitrary nature; in
this case the parameter 4T'T must be replaced by the noise intensity
24T.

Equation (1.1) is valid if w, and T’ are small compared with the

(1Y)

characteristic frequencies of the medium, i.e., if the subsystem motion

is slow compared with the motion of the particles of the medium. In
the case when the characteristic frequencies of the medium are of the
same order of magnitude as w,, Eq. (1.1) no longer holds. If, however,
the interaction with the medium is weak enough, so that the friction
coefficient is small:

I'<wy, (1.2)

the stochastic motion of the oscillator can also be described as
Brownian motion, by changing from the normal coordinate and
momentum to “slow” auxiliary variables that vary little over time
~wg ! and characterize an oscillator motion averaged over the time
~wg . This can be illustrated with simple dynamic models of the
medium and of its interaction with the oscillator, using the aforemen-
tioned microscopic approach.

Apparently, the simplest of these models is one in which the
medium is described by a set of non-interacting vibrations of a
quasicontinuous spectrum with frequencies w, and with coordinates
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270 M. I. DYKMAN AND M. A, KRIVOGLAZ

g (k is the number of the vibration), and the interaction of the
singled-out oscillator with the medium is of the form [3]

H =364, (13)

The interaction parameters €, are proportional to N ~1/2 (N is the
number of vibrational degrees of freedom of the medium) and, in
addition, contain a small constant € that ensures satisfaction of the
condition (1.2).

By eliminating the vibrations of the continuous spectrum (for
details see Sec. 2.1), the equation of motion of the oscillator in the
time region |£|>w, ' can be represented in the form of a complex
Langevin equation

u;=(—Tsgnt+iPyu, + fi(¢),
(14)
SO FEEY = %80 ~ 1), T|P|<w, |f>eql.

Here u; = u(¢) is the complex amplitude of an oscillator (u, varies
slowly over the time ~w; ')

q(t) = mexp(ivgt) + c.c.,  §(1) = — iwo(exp(ivot) — c.c.).'

. (1.5)

The parameters I' and P in Eq. (1.4) are quadratic in ¢, (explicit
expressions (2.15) for T and P are given in Sec. 2). The random-force
correlator {fi(1)ff(¢')> in Eq. (1.4) is strictly speaking different from
zero in the finite interval |7 — 7| Swg !, In the “slow” time scale,
however, fi(#) corresponds, accurate to terms ~T /wy, to a Gaussian
d-correlated process, with Re f,(t) and Im f,(¢) statistically indepen-
dent. When the condition (1.2) is satisfied, Eq. (1.4) follows directly
from Egs. (1.1) and (1.5) (excluding the term —iPu,, which deter-
mines the renormalization of the frequency w, owing to the interac-
tion of the oscillator with the medium); in this case

\ fi(2) = (2iwg) ~'exp(— iwel) f, ().

The condition (1.2) is assumed satisfied here and elsewhere.
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The linear equations (1.4) can be easily solved and an explicit time
dependence of the oscillator coordinates can be obtained:

u(t) = exp(T|t] + iPu,(0) + £(r),  |f|>wq ',
. (16)
£(7) = exp(—T|t] + iPy) fo ‘dt, exp(T|t)| — iP1)fi(11)-

It can be seen from Egs. (1.6) and (1.5) that, in the considered linear
model, the oscillator displacement is a linear superposition of a
regular and a random part, described respectively by the first and
second term in the expression for u,(f). The regular part decays
exponentially with time.

Important characteristics of an oscﬂlator that interacts with a
medium are the time correlation function of its coordinates

Q(1) =<q(1)9(0) (1.7)

({ ... denotes statistical averaging), and its spectral representation
O(w) = - [ drexp(ion o(s). (1.8)
27 J- o

In the model considered, as follows from Egs. (1.6) and (1.5), the
time correlation function Q(#) decays exponentially (like exp(—T'|#})),
and the spectral representation Q(w) is described near the maximum
by a Lorentz function

T
Q) = 27rw0 (w—wyp —P) +T2 (9

When averaging over ¢(0), we have used here the relation {0y
~ T/w, which follows from the equipartition law (and is obtained
directly from Egs. (1.4) and (1.5) as a stationary solution for {g*)).
In quantum theory, the relaxation of a harmonic oscillator was
considered mainly for models in which the interaction with the
medium is linear in ¢ and is weak (see [4, 6, 7] and the reviews
[8-10]). For such models, the equation for the oscillator creation
operator 4% in the interaction representation, is similar to Eq. (1.4)
for u,(¢) [10}, but now the random force is an operator. Therefore, just
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as in the classical theory, the time correlation function Q(¢) for long
times decays exponentially ( Q(?) « exp(—T|¢|)), and.the peak of
Q(w) is described by Eq. (1.9), in which T/, is replaced by 7 + 1,
where 7 is the Planck number of the oscillator. This result obtained
for Q(w) by an asymptotic method with the terms ~T /w, neglected,
is confirmed by exact calculation for the model (1.3) of the interac-
tion with the medium (see Appendix A). '

Besides the direct solution of the equations of motion, the problem
of relaxation of a classical harmonic oscillator was considered by
solving the EFP equation (see [5]). In quantum theory, the analog of
the EFP-equation is the quantum kinetic equation. It was analyzed in
detail for the case of the harmonic oscillator in [11, 12].

1.2 Simple Models of Fluctuating Nonlinear Vibrational Subsystems

The investigation of the relaxation becomes much more difficult if the
oscillator is nonlinear. The reason is that in the general case it is
impossible to solve the nonlinear equations of motion in the presence
of a random external force, and hence to average over the realizations
of this force. As already noted, even a relatively weak nonlinearity
can lead to strong deviations from the exponential damping of the
correlation function Q(7); the spectral distribution Q(w) becomes
accordingly much more complicated.

Besides the change in the character of the random motion because
of the nonlinearity, the presence of even a weak random force can in
its turn alter qualitatively the character of the motion of the nonlinear
system. Thus, if the system has several stable states (corresponding,
e.g., to different amplitudes of the constrained vibrations), it would
stay in the absence of random forces for an infinitely long time in one
of these states, whereas fluctuations cause transitions between the
states and a distribution over the states is formed.

An analysis of the relaxation and of the fluctuations in nonlinear
vibrational systems is not only of general interest but is also of
importance for various applications. These include the problem of
fluctuations in autogenerators [13], lasers and masers [9, 10, 14], and a
number of other problems of radiophysics and nonlinear optics, the
problem of light-absorption spectra and neutron scattering by local
and quasilocal vibrations of impurities in crystals [7, 15, 16] (see also
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Sec. 6 below), a large number of problems of nonlinear mechanics,
acoustics, and hydrodynamics.(see, e.g., [14, 17, 18], and others). A
number of approximate methods were developed in this connection
for the investigation of random nonlinear vibrations. The most widely
used among them are the perturbation. method, in which the nonlin-
earity is regarded as weak and is taken into account by perturbation
theory, and the equivalent-linearization method, in which the nonlin-
ear system is approximated by a linear one having certain optimally
chosen parameters. The reliability of these methods can be verified by
the investigation of quite simple but nontrivial exactly solvable mod-
els. These models are as a rule also of their own interest, since their
analysis allows to reveal certain common properties of nonlinear
systems.

One of the most widely studied nonlinear vibrational systems is the
Van der Pol oscillator. The random vibrations of this oscillator are
described by the equation

§—2"q(np — ¢°) + 3= fr(t), T'<aw,. (1.10)

The model (1.10) (with insignificant modification of the nonlinear
term) is used to describe fluctuations in single-mode generators of
various types [13, 10]. It is important that the nonlinear term is not
conservative in this case, i.c., the nonlinearity concerns the effective
friction force while the potential restoring force is linear. At the same
time, the force f; () presents white noise, and it is assumed that its
intensity, just as in the case of linear friction (1.1), is independent of
the oscillator amplitude. (It should be noted that in the microscopic
model that results in an equation of motion corresponding to Eq.
(1.10) (with a nonlinear friction force), the force f; (f) is found to

 depend on the coordinate and momentum; the phenomenological

model (1.10) with force f1.(?) independent of g and ¢ does not describe
an oscillator that interacts with a system that is in thermodynamic
equilibrium.)

If in Eq. (1.10) the nonlinear friction is small, I"{g*) < w,, it is
possible to separate in the corresponding EFP equation the variables,
namely the amplitude and the phase of the oscillator. This equation
can be splved numerically [10]. As a result, it becomes possible to
obtain the eigenfunctions and the eigenvalues [10] and thus investi-
gate fully the relaxation of the Van der Pol oscillator. -

i
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The simplest but nontrivial model of a nonlinear oscillator with
conservative nonlinearity is the Duffing oscillator. Its Hamiltonian in
the absence of interaction with the medium takes the form

Hy=4(p* + w3q®) + Lv¢* (1.11)

(p is the oscillator momentum), and the Brownian motion is de-
scribed by the equation

g+ 2T g + wig + v¢° = fi.(1), () fu () =4TTé(2 = 1)),
(112)

Just as in the case of Eq. (1.1) for the linear oscillator, Eq. (1.12)
describes also the dynamics of the Duffing oscillator in the field of an
arbitrary white noise, if 4T'T is replaced by the white-noise intensity.

The problem of the Duffing oscillator in the case of weak coupling
(I’ < wy) can be solved analytically with asymptotic accuracy in both
the classical [19, 20] and in the quantum theory [21] (see Secs. 2 and
4). Thus, with this as an example, it is possible to describe completely
the relaxation and the fluctuations in the nonlinear subsystem.

1.3 Qualitative Analysis of the Dynamics of a Duffing Oscillator
that Interacts with a Medium

It can be easily seen, by changing over in Eq. (1.12) to the dimension-
less variables wyt and w,T ~'/?%, that the dynamics of the oscillator is
determined by two dimensionless parameters, a and b, or a and

T'/w,, where
St CAN Y LY (1.13)

o = ——
3r’ 4
8wy o

The meaning of these parameters becomes clear if it is recognized that
the frequency of the nonlinear oscillator depends on its amplitude. As
a result of the interaction with the medium (or of the action of a
stationary random force), a certain distribution of the oscillator in
amplitude is developed, and in the limit of weak nonlinearity (y — 0),
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as already noted, {(¢*> = T/w}. It is seen from Eq. (1.12) that the
mean squared-frequency is

w% + %y<q2> = wé(l + %b),

i.e., b characterizes the relative shift of the square of the oscillator
frequency.

The quantity 7'/w? determines not only the mean squared ampli-
tude of the oscillations, but also the width of the distribution in
amplitude. Directly connected with the latter is the width dw of the
oscillator distribution in the frequency. Obviously,

Sw~|¥|T/w5.

The frequency spread 8w due to the nonlinearity must be set in
comparison with the oscillator-frequency uncertainty I' due to the
oscillator damping. The relation between these quantities is character-
ized precisely by the parameter a. It is therefore just this parameter
which determines which of the frequency smearing mechanisms (and
consequently which of the spectral-distribution broadening mecha-
nisms) predominates.

At |a| <1 the broadening of Q(w) due to the damping predomi-
nates and the shape of peak of Q(w) is close to Lorentzian. It is
precisely in this region (and not in the entire region |b} <« 1) that the
nonlinearity, as shown in [22, 23], can be treated by perturbation
theory. Accordingly, the results of [24, 25] are applicable here.

In the region |a|>1, the dominant mechanism is the spectrum
broadening due to modulation of the nonlinear-oscillator frequency
by the amplitude fluctuations (modulation broadening). In the limit
T'—>0, the spectral distribution in the vicinity of the peak can be
calculated by assuming the oscillator motion to be quasiconservative
and by averaging the coordinate correlator, obtained at I' =0 and
f1.(8) = 0, over the oscillator energy.

The most complicated is the investigation of the case [a|~1, when
both broadening mechanisms make comparable contributions. Solu-
tion of the problem in this region makes it possible to trace how the
relaxation of the initial oscillator state becomes essentially nonex-
ponential with increasing nonlinearity, and how the shape of peak of
the distribution Q(w) becomes non-Lorentzian.
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The large change of the spectral distribution Q(w) as a result of
even relatively weak nonlinearity (6] < 1) can be easily understood
also in terms of quantum theory. To this end we express the Hamilto-
nian (1.11) in terms of the creation and annihilation operators 4% and
a:

Hy=heoi + LhVA*, #A=a%a, V=3ny/w}. (1.14)

We have discarded in Eq. (1.14) terms of the type Va*, va’a*, ... . If
the condition
V(7 + 1)< 7= fexp @ 1) 115
(n ) Wy 5 n= (exp T ) ( . )

is satisfied, these terms lead to small corrections ~iV?2/w, to the
energy. (In the limit of large T'(fw,) ' the condition (1.15) goes over
into the inequality |b| < 1.) In Eq. (1.14), w, differs from the w, in Eq.
(1.11) by V/2. In quantum theory we shall use hereafter the fre-
quency definition (1.14) (in the classical limit # — 0 the expressions for
wo and wg + V' /2 are identical).

The energy spectrum of an oscillator with a Hamiltonian (1.14) is
shown in Fig. 1. It presents a set of nonequidistant levels. The
light-absorption spectrum of the oscillator with such energy levels
(neglecting the violation of the selection rules on account of the
nonlinearity, i.e., assuming that transitions are allowed only between
neighboring levels) consists of lines at the frequencies

omy=wo+ V(n—1), n=12... (1.16)

(see Fig. 1). At a finite but sufficiently small interaction with a
medium, each line broadens, in accord with the Weisskopf-Wigner
theory [26], into a narrow peak having a width that is proportional to
the damping parameter I' and depends on the number n. With
increasing T, these peaks overlap, the structure of the spectrum
smears, and a single smooth spectrum is developed. The form of the
function Q(w) (which describes the oscillator light-absorption spec-
trum) turns out to be essentially non-Lorentzian in the case |V|=T,
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Figure 1 Energy-level scheme for nonlinear oscillator.

and the width of the peak greatly exceeds the reciprocal oscillator
lifetime T.

Study of the spectral distribution of a nonlinear oscillator makes it
possible to investigate a peculiar phenomenon, namely, the interfer-
ence of transitions. This phenomenon takes place in systems in which
either the energy spectrum constitutes a set of almost equidistant
levels, or else the levels are degenerate, so that light of a given
frequency can cause transitions between different states. Because of
the interference between the transitions, the Weisskopf—Wigner the-
ory of the spectrum shape for the nondegenerate case [26] is inappli-
cable to such systems. In particular, it is inapplicable to the harmonic
oscillator (the harmonic-oscillator “paradox,” see [11]).

The nonlinearity lifts the specific degeneracy, the equidistant char-
acter of the spectrum, which is a feature of the harmonic oscillator,
and thus suppresses the interference of the transitions. It has been
pointed out above that for |V|>T, the spectral distribution of the
oscillator presents a set of fine-structure lines at frequencies w(n), and
the shape of an individual line is described by the Weisskopf—Wigner
theory. With decreasing |V|/T the role of the interference of the
transitions increases and a smooth spectral distribution is formed
gradually, wherein the individual lines are not simply superimposed
on one another, but the shape of each of them is distorted (see Sec.
4.3). A description of this process makes it possible to analyze the
relaxation in a case intermediate between two opposite cases that
have been investigated in detail: that of a two-level system (or a
multilevel system with an essentially nonequidistant spectrum) and
that of a harmonic oscillator.
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1.4 Features of the Dynamics of a Nonlinear Oscillator in an External
Periodic Field

The behavior of a weakly nonlinear oscillator interacting with a
medium in an external field

h(t) = hcoswt (1.17)

depends essentially on the ratio of the oscillator eigenfrequency ~ g
and the field frequency w. Under resonance conditions (jo — wy| < wg)
in a certain interval of the values of the parameters 4 and w — w,, the
amplitude A4 of the constrained oscillations of a nonlinear oscillator
can take on three stationary values (see Fig. 2). The largest and
smallest of them are stable with respect to small fluctuations, and the
intermediate value (shown dashed in Fig. 2) is unstable (see, e.g., [27,
28)). The possibility of the existence of two stable states is due to the
dependence of the effective frequency of the nonlinear oscillator

Wesp = Wy + 374 2(8«)0)_]

on the amplitude (as a result, we can have both a stable state with

A

h

Figure 2 Schematic dependence of the amplitude 4 of the forced oscillations of a
nonlinear Duffing oscillator on the amplitude 4 of an external periodic force. Curves 1
to 3 correspond to different frequency detunings w — w,. Curve 2 corresponds to the
critical value of w — wy starting with which the plot of 4 vs. h becomes S-shaped. The
unstable stationary states are shown dashed.
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large amplitude, in which w; is close t0 @ ((w — wp)/y > 0) and the
resonance condition is fulfilled self-consistently, and a stable state
with low amplitude and accordingly with considerably larger differ-
ence @ — Weg).

Besides the small fluctuations, which do not take the oscillator out
of the immediate vicinity of the stable state, there are possible (but
hardly probable) sufficiently large fluctuations that lead to transitions
between the states. The transition probability W, as indicated above,
depends exponentially on the reciprocal of the random-force intensity

%
W o exp(— S/ #) ‘ (1.18)

where S plays the role of the activation energy [29] (for details see
Sec. 3). The probabilities w; of finding a system in one of two states
i=1,2 are inversely proportional to the probabilities of transition
from this state. Since the values of S, and S, for the transitions 1—2
and 2—>1 are generally speaking different and at small % their
difference '| S, — S,| > #, the values of w, and w, differ by many
times in almost the entire range of the parameter 2 and . Only at a
certain ratio of the parameters # and w, corresponding to the dashed
line of Fig. 3, do the values of w, and w, become equal. Owing to the

(CJ e wa)/ T

Figure 3 Schematic dependence of the external-field amplitude 4, at which two stable
states appear, on the relative frequency detuning (w — wg)/y. The line on which the
transition probabilities between the states are equal is shown dashed.
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strong exponential dependence (1.18) of W on the parameters, the
passage through the dashed line with changing w or % should be
perceived as causing a smeared first-order phase transition in the
subsystem. In such a transition, the amplitude of the constrained
vibrations changes sharply. Also produced in the transition region are
characteristic peculiar features of the absorption of both the field A(7)
(1.17) that produces the vibrational state of the oscillator, and of the
weak trial field. In particular a very narrow peak appears in the
frequency dependence of the absorption coefficient of the trial field.

Even in the parameter range where the nonlinear oscillator has only
one stable state (outside the region bounded by the curves of Fig. 3),
a strong external field influences substantially the oscillator eigenos-
cillations excited by a resonant trial force. The picture of the oscilla-
tor motion in an external field turns out to be qualitatively different if
the system is far from resonance, so that the field frequency « differs
substantially from w, (and from frequencies that are multiples of wg),
ie.,

I'<w,|w—wg,
L (g™ < @, 00, | — 6g|-
@o

If these conditions are satisfied and thus the intrinsic oscillator
nonlinearity is small, and if the interaction with a medium is linear
(cf. Eq. (1.3)), then the forced oscillations of the oscillator at the
frequency w have practically no effect on the eigenoscillations at
frequency wy.

The situation changes if the interaction of the medium with the
oscillator is nonlinear in its coordinate. Let, e.g., the medium consti-

‘tute a set of quasicontinuous-spectrum vibrations, and let the Hamil-

tonian of the interaction contain besides the term (1.3) also the term

H® =>e2%, . (1.19)
k :

~In the presence of an external field, g> contains the doubled product

of the regular term g,.,(#) « cos wt oscillating with the field frequency,
and a term g, that describes the random eigenoscillations. The corre-
sponding terms in (1.19) (o gog,coswr) give rise to parametric reso-
nance [27] for the eigenoscillations of the singled-out oscillator and
for those continuous-spectrum vibrations for which w, ~ | * wy|. In
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the case considered, the resonance condition is satisfied at once for a
very large number of vibrations of the quasicontinuous spectrum.
Since €2 o« N ~'/2, each of them “builds up” very weakly, whereas
the buildup of the considered singled-out oscillator at the eigen-
frequency w, can be strong [30] (see Sec. 5 for more details).

In this case, in fact, the field produces a new relaxation (or
excitation) channel for the oscillator. This can be easily understood in
quantum language. The relaxation described by the Hamiltonian (1.3)
corresponds to decay processes in which the transition between the
oscillator levels is accompanied by creation or annihilation of a
vibration of the medium at a frequency w, =~ w,. As a result, in the
absence of an external field the oscillator is imposed to the same
energy distribution as that of the vibrations of the medium having a
frequency w, &~ w,, i.e., a Gibbs distribution. In an external field,
when account is taken of the interaction (1.19), a transition between
the oscillator levels can be accompanied by creation or annihilation
of vibrations of the medium, having a frequency w; ~ | * w|. If the
amplitude of the external force is large enough, the induced decay
processes can become dominant. As a result, the stationary distribu-
tion of the oscillator is greatly altered, and approaches to the distribu-
tion of the vibrations of the medium, which take part in the decay
process, i.e., to a Gibbs distribution with temperature 7, =T -
wo/(wo = w). The oscillator can thus be strongly heated or cooled,
depending on the ratio of the frequencies w and wy. At @, = @ — @y,
i.e., when the oscillator transition to a higher energy level is accompa-
nied not by annihilation but by creation of a vibration of the medium,
the distribution of the oscillator in a certain energy range presents a
Gibbs distribution with negative temperature. It turns out that in the
latter case, when account is taken of the nonlinear friction, the
classical equation of motion for the oscillations at the frequency w,
takes the same form as in the case of a Van der Pol oscillator (1.10)
(with p, > 0).

§2 Classical Theory of a Duffing Oscillator Interacting
with a Medium

In this section we consider the relaxation and calculate the time
correlation functions and their spectral distributions for a weakly
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damped Duffing oscillator. The most complete analysis of these
questions can be carried out within the framework of various micro-
scopic models. To investigate the oscillator-relaxation specific features
that are due to the nonlinearity of the restoring force (to the internal
anharmonicity), it is expedient to consider first a very simple model.
We assume correspondingly that the elementary excitations in the
medium are vibrations that do not interact with one another and have
a quasicontinuous spectrum of the frequencies w,. The Hamiltonian
of such a medium is of the form

Hy = 5 S (pk + olgi). @1)

The interaction of the considered oscillator with the medium will be
assumed linear both in the oscillator coordinate ¢ and in the coordi-
nates g, (cf. Eq. (1.3)). The total Hamiltonian of the system is then

H=x,+ H,, Ho=H,+ H,,
(22)

. 1
Hy,= 2 (P2 + wng) + %7‘14’ H;, = é}equk

(it is shown in Sec. 4 and in Appendix F that the results obtained in
the present section are valid both for other models of the medium and

for a more general type of interaction; it is important only that
H;x g).

The dynamics of a Duffing oscillator in the absence of interaction

with a medium depend on the signs of the parameters wg and y, and
on the relation between them. At >0 and y >0, the potential
energy of the oscillator has one minimum, and the motion is finite at
all energies. At w3 >0 and y <0 the motion is finite only if the
oscillator is in the vicinity of the point ¢ =0, and its energy is less
than the height of the potential “hump” wg/4|y|. When the interac-
tion with the medium is taken into account, the motion in the case
y < 0 becomes, strictly speaking, infinite. If, however, the characteris-
tic energy obtained by the oscillator due to the interaction (it is
obviously equal to the temperature T') is small compared with wg/|v|,
ie.,

)ﬂ

T
bj<1, b= o (23)
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the oscillator will vibrate in the vicinity of the point ¢ =0 for an
exponentially long time, and the problem of fluctuations under such
oscillations becomes of physical interest. ’

It was indicated earlier (in Sec. 1.3) that even if the condition (2.3)
is satisfied, and thus the nonlinearity is small, it can influence the
relaxation quite substantially. The reason is that the oscillator energy
distribution brought about by the interaction with the medium leads,
on account of the nonlinearity, to a distribution in frequency. Al-
though the width 8w of the latter is small, when condition (2.3) is
satisfied, compared with w, (8w~|y|Twy * < w), it can exceed notice-
ably the frequency uncertainty I' due to the damping (which is small
to the extent of smallness of the interaction with the medium).

The analysis of the relaxation of a weakly damped (T" < w,) oscilla-
tor becomes most complicated in the region in which both frequency
“smearing” mechanisms make contributions of the same order,

_ 3T

a= 24y
8wl 4

|| ~1,

(8w~/|a|T). To solve the problem in the region (2.4), a special mathe-
matic method was developed [19] and is expounded in Secs. 2.1 and
2.2 below. It makes it possible to describe in a unified manner how
the initial state of the oscillator is “forgotten” both in the microscopic
model (2.2) and in the Brownian-motion model [20]. It makes it also

-possible to analyze the time correlation functions of the oscillator and

their spectral distributions in the parameter region (2.3) (see Sec. 2.3).
Appendix C (see also [20]) contains the solution of the EFP equation
for a nonlinear oscillator in the case |b| <« 1.

In the region |a|>> 1, the nonlinearity of the oscillator is relatively
large and in the calculation of the peak of the spectral distribution
Q(w) we can neglect the frequency uncertainty due to the damping.
This allows us to use in the calculation another (simpler) method [20].
The corresponding results of the calculation of Q(w) with the damp-
ing neglected are presented in Sec. 2.4. They cover not only the region
of small |b| (2.3), but also the region of arbitrary positive b.

Obviously, if b >0 and I' =0, the function Q(w) vanishes at
w < wy, since w, is the lowest of the oscillator frequencies. The
situation changes if w3 <0 (but y > 0). As seen from Eq. (2.2), the
oscillator potential has in this case (neglecting the interaction) two
minima separated by a “hump.” Near the “hump” the oscillator
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moves very slowly. As a result, the spectral distribution acquires a tail
in the region w < |wy|. As shown in Sec. 2.4, the tail'is.exponential (at
I' = 0). This form of the distribution on the tail is common to systems
with local potential maxima.

2.1  Elimination of the Continuous-Spectrum Vibrations and

Differential Equation for the Slow Variables of the Oscillator
at [b| <L

If the conditions

I'<«w,, bl < 1 2.5)

are satisfied, the oscillator motion is split into “fast” with characteris-
tic time

7, = max(wg L Leor) (2.6)

and “slow” with characteristic times ~T~ and (8w)~ .. Parameter t,
of Eq. (2.6) characterizes the decay time of the correlators of the
medium coupled to the oscillator. In the microscopic model (2.1), in
which the medium is regarded as a set of harmonic oscillators with a
continuous spectrum, f,, corresponds to the characteristic period of
medium vibrations. In the phenomenological description, 7, corre-
sponds to the characteristic random-force correlation time in the
Langevin equation (1.12) (z,,, = 0 in the §-correlated force approxi-
mation).

The “fast” motion depends substantially on the model of the
medium, on the type of the random force, and others. On the other
hand, the “slow” motion is described, as shown below, 'by equations
of quite general form which contain a small number of parameters,
and it is precisely in the “slow” motion that the specific features of
the relaxation of a weakly nonlinear oscillator manifest themselves.

2.1.1  Elimination of the Continuous-Spectrum Vibrations We con-
sider first the oscillator motion using the microscopic model (2.2). The
dynamics of a system with Hamiltonian (2.2) is described by the
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.equations of motion

G+ wig+ ¥4’ =~ D &gy,
, 2.7)
Gy + wﬁqk = —&4.

Obviously, a complete dynamic description of the system, which
reduces to the solution of N + 1 equations for N oscillators of the
medium and the singled-out oscillator, is impossible. It is possible,
however, to present a statistical description of the motion of the
singled-out oscillator. To this end we assume that at the initial instant
of time the system of vibrations of the continuous spectrum is in a
state of thermodynamic equilibrium, i.e., it is described by a Gibbs
distribution, while the state of the singled-out oscillator is strictly
determinate. As a result of the interaction with the thermostat, the
motion of the singled-out oscillator becomes randomized in the course
of time, the initial state is “forgotten,” and after a sufficiently long
time interval the oscillator arrives at a state of thermodynamic equi-
librium with the medium and is likewise described by a Gibbs
distribution function.

To cairy out the statistical description of.the subsystem it is
convenient to eliminate the dynamic variables of the continuous-
spectrum vibrations from the N + 1 equations of motion (2.7), and
thus to reduce the problem to a single equation that contains only the
coordinate of the singled-out oscillator and a certain random function
[3). To this end, we solve Eqgs. (2.7) for ¢, and change over thereby
from the dynamic variables ¢,(f) to random variables, namely the
initial amplitudes 4, and phases ¢, of the oscillators of the medium:

€ t .
Gh(£) = Acos(wt + @) = — f dt, q(t)sine (1 — 1).  (28)
% /O
It follows, from the assumption that the oscillators of the medium

have initially a Gibbs distribution, that the amplitude distribution is
of the form

w2 w2A2
w(...A,f...)=IkI§iTeXP(— ;T" ) (29)

and the phases g, are uniformly distributed in the interval (0, 2).
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Substituting Eq. (2.8) in the right-hand side of the first equation of
(2.7), we obtain for the singled-out oscillator a nonlinear stochastic
integro-differential equation

g +wiq +vq’ = f(2) + L[ q]. (2.10)
The function

f(1) = — X g A cos(wt + (2-11)
k

- describes here the random force exerted on the oscillator by the
medium, while the functional

2
t € .
L[q] =f0dt1§ w—l;q(t — 1))sinw; t; (2.12)

describes the retarded action of the gscillator “on itself” (retarded
self-action) due to the interaction with the medium, i.e., it describes in
fact the friction force. Equation (2.10) does not contain the dynamic
variables of the medium.

2.1.2  Transition to Slowly Changing Variables The stochastic equa-
tion (2.10) is most complicated, first because of the nonlinearity, and
second because of the presence of the integral term L[q). It can be
considerably simplified because processes with greatly differing char-
acteristic times take place in the system, namely fast vibrational
processes with a characteristic period #, (2.6), and slow relaxation
processes with characteristic times I' "' and (8w) . The damping I' of
the singled-out oscillator is due here to the term L[g] in Eq. (2.10),
and can be seen from Eq. (2.12) to be sufficiently small in the
considered case of weak interaction (small ¢,).

The presence of two greatly differing times permits solution of Eq.
(2.10) at relatively long times |¢|> ¢, by using the known averaging
method of nonlinear mechanics (see, e.g., [28, 31]). The method
consists of separating and investigating the slowly varying amplitude
of the oscillator and the slowly varying part of its phase. It is possible
then to take into account the perturbation with asymptotic accuracy,
L.e., the solution is not obtained in the form of a perturbation-theory
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series in the parameters T|¢| and T|at|, but is valid for arbitrary

- T + |a)).

To this end, we transform from the fast oscillating functions ¢()
and §(¢) to the smooth complex functions u,(f) and u,(¢) = uf():

g=we™ + ue” ", g =iwy(ue " — ue” )

(cf. Eq. (1.5)), and use the identity that follows from these expres-

sions:

§ + wigq = 2iwgin e = —2iwyi,e "

Substituting this identity in Eq. (2.10), we rewrite the latter in the
form

. 3y
U= — Twoyu, + fi(t) + A,[ul],

l — I,
y=uw=luf,  fit)= Ti © of(1), (2.13)

2
1 t € . .
A[u]= Tiag fodtlzk: o sin(w, 1)

X [~ uy(1 — 1)) + e¥ve o ut(t — )]

(the equation for u,(7) is the complex conjugate of (2.13)). )
In the spirit of the averaging method, we have discarded in Eq.

(2.13) the terms

— 4i 3,2i 2, —2i
o 'Yuge 4twot, o« yuje wot, o yu,use lwot’

which are proportional not only to the small nonlinearity parameter
v, but also to fast oscillating factors of the type exp(* 2iwyt). These
terms manifest themselves only at short times |7| < 7. In the investi-
gated region of long times |#|>> 1, they are of no importance, (see
Appendix B). It is shown in Appendix B that in the region |7| > ¢, we
can neglect the retardation in the functional A,[,] and taking (B.4)
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into account, rewrite Eq. (2.13) in the form

iy = — %yul +(=Tsgnt + Py, + f(f), || >, (214)

where the parameters I' and P are defined by the expressions

' 2
-7 = 1 ©8(«)
I'= 4 Z(wo)s P= 7N f PR do,
(2.15)
g (w)dw = > &/w}.
%

w<w <w+do

Thus, replacement of the variables (1.5) standard for the averaging
method has made it possible to change from the second-order integro-
differential equation (2.10) to a system of first-order differential
equations for the smooth functions u,(¢) and u,(7).

The damping of the singled-out oscillator and the renormalization
of its frequency, that are determined by the parameters I' and P
respectively, can be regarded as the result of the scattering by vibra-
tions of the medium. It is seen from Eq. (B.3) that the characteristic
duration of the scattering process is equal to the parameter #, intro-
duced in (2.6). The condition for the validity of Eq. (2.14)

Tt «1

means that the scattering probabilitit is considerably smaller than the
reciprocal scattering duration.

It is shown in Appendix C that the force fi(r) in Eq. (2.14)
constitutes, in the scale of the “slow” time 7> ¢, a §-correlated
Gaussian random process, and thus Eq. (2.14) is a Langevin equation
and u,(7) is a Markov process.

2.2 Statistical Properties of Random Motion of an Oscillator and
Averaging Over the Initial State of the Medium

2.2.1 Stochastic Integral Equation Although Eq. (2.14) is much
simpler than the initial equation (2.10), it is still complicated enough,
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since it contains in the right-hand side the nonlinear term

To solve this equation we use a certain artificial device [19]. Namely,
we regard formally the term with yu; as linear, assuming y to be a
known function, and write %, in the usual form of a solution of a
first-order differential equation: i

u()e” " = u,(Oyexp[ F(r) — T|t]] + exp[ F(1) |&(7), (2-16)

where

{0 =3 (Ba(e™ + La)e ™),

€A, _ t i . 7
£a(t) = i%:e T"'fo dtyexp| i(w, — Go)t, + Tt} — F(1,)],

(217

§a(h) =’

A
iz e‘l"ltlftdtl exp[ —i(w, — Go)t; + Tt)| — F(tl)],
4&)0 0

3iy 1 -
F(1)= Z-)%fodtly(tl), By=wo+ P.

Expression (2.16) contains y = |u,| in the right-hand side and is, of
course, not a solution of the differential equation (2.14), but merely
an integral equation obtained from it. At first glance, the latter is even
more complicated than the initial equation (2.14). Actually, however,
it is more convenient for averaging in the asymptotic time region
[t| > ¢,.

2.2.2  Probability Distribution of the Random Process §(1)

a. Distribution of Auxiliary Random Process £(r) Expression
(2.16) for u,(r) is convenient because the process £(¢) for long times is
asymptotically approximately Gaussian. It is easy to verify the distri-
bution of £(¢) would be Gaussian in the statistical limit N — oo if it
were possible to put F(¢) =0 in Eq. (2.17). Actually the quantities
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é’,d(t) (A = 1,2; the expressions for £,,(¢) and for £(¢) are obtained by
putting F(¢;) =0 in Egs. (2.17) for &,(¢) and £(¢)) do not depend on
the phases ¢,. Since ¢, with different k£ are independent and their
distribution is uniform from 0 to 2w, only the mean values of
products containing an even number of factors of the type g(t) and
5*(t) differ from zero. The parameters ¢ of the interaction of the
oscillator with the vibrations of the medium are proportional to
N ~'/2, and consequently £,(7) are also proportional to N ~!/2. There-
fore sums of the type

;ékl(t)éza(t'» gékzmé‘:z(t'), ;‘ékl(t)é'kz(t') (2.18)

are finite as N —> oo (these sums result from averaging the products
£0E*(t') and §(t)§(t’) over ¢;), while the sums containing a larger
number of factors &, with identical k vanish in the limit N —> co.
Thus, as a result of averaging over ¢, the mean value of the product
of the type £(tl) . £*(¢,) breaks up into products of sums of the type
(2.18), i.e., into a sum of products of different pair correlators. This
property of the mean values is obviously preserved also under a
subsequent averaging over the amplitudes 4,, since the averaging for
different k is carried out independently. The separation of the average
product into a sum of products of pair correlators is a known
property of Gaussian random processes [32], i.e., the distribution of
£(2) is Gaussian.

b. Gaussian Distribution of the Random Process &(f) at Long
Times The function &(7) (2.17), which determines the dynamics of
the nonlinear oscillator, is actually more complicated than §(t), inas-
much as the definition (2.17) of £,(¢) contains the quantity F(¢),
which itself is a functional. As a result, the quantities &, and the
phases ¢, are strictly speaking not statistically independent, and the
distribution of £(¢) is not Gaussian. However, if we confine ourselves
to the region of sufficiently long times |¢|>>¢., the presence of the
factor exp[— F(t,)] in the definition (2.17) for &,, does not influence
any of the calculated mean values asymptotically, neglecting the small
corrections ~1,/|t| or ~€* (€ denotes a small parameter contained in
all ¢ and determining the weakness of the interaction with the
medium). Therefore, neglecting the indicated small corrections it is
possible to regard the distribution of £(¢) as Gaussian.
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Indeed, consider first the paired correlation function
EOE ()Y

1
16w§ < kAN =12

A A exp[ —T(|t] +|7) ]
t tl/ . ~ . Lo~ ’
X j(; dtlL dti exp[l(ka - wo)tl - l(wklAI - wo)tl

+ (P — @ien) + Tl + T

—F(t) + F(t’l)]> . (2.19)

m

Here
W = W5 Wy = — Wy Pr1 = Pr» P2 = — Pk

and {...), denotes averaging over the random initial amplitudes
and phases 4, and ¢, of the medium vibrations. The main contribu-
tion to Eq. (2.19) is made b_y terms with A = X" and k = k’. Neglecting
the small corrections ~e€® (due to the presence of exp[F(¢;) — F(,)]
in these terms), we can replace (47> by 2Tw, % and transform, in
accordance with Eq. (2.15), from summation over k with weight €? /w?
to integration with respect to w with weight g (w). It is important
that the integral with respect to w determines the &-like function

8y(t, — n):
fo Pdo g (w)expi(w — Go)(1, — 17) ] = 278 (Be)81(1, — 17). (2:20)

At |#, — #j] > t., owing to the fast oscillating factor under the integral
sign, this function is ~z,|¢, — #]| !, while at |¢, — || ~t, it has a peak,
and the integral of 8,(z, — #;) with respect to 7, is equal to unity. Since
the function §,(¢, — #7) enters in (2.19) under the integral over a long
time interval (compared with the width ~¢, of the function §,), it can
be replaced, neglecting the asymptotically small corrections ~./|¢|,
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1./|¢|, or ~€, by simply the usual & function &(z, — t)). The random
function exp[F(t';) — F(t,)] therefore cancels in the integrand, and
upon integration (with account taken of tht relation between I' and
g.(wp)) we obtain

EOE() =24(1,1), :

A1) =-Lexp[ ~I(d + I#]) | [exo@Tltma) = 1], 221)
(1] :

|Zminl = min(|#],[¢')  (sgnt = sgn?).

The discarded off-diagonal terms with k% k’ or A A’ would be
equal to zero upon averaging over ¢, if F were zero. Since according
to Eq. (2.17) the expansion of F(r) contains random quantities of the
form exp[i(<pk A~ P (D65 (1), the terms with k # &’ in Eq.
(2.19) lead, in the considered case F # 0, to a nonzero result (e.g., if
k = ki and k" = k,). However, integration with respect to the frequen-
cies w, and ., just as above, lead to.the appearance of the &
functions (more accurately, the 8-like functions) & (1, — 1)8(1; — ) in
the integrand, with ¢, or #; always smaller than one of the variables 1,
or t;. Therefore the terms with k = k&’ or A % X’ lead to small correc-
tions, and they can indeed be neglected in the approximation consid-
ered, thereby justifying Eq. (2.21). It is easy to verify that in this
approximation

CEOEEYom = E (O Yo = 0. (222)

It can be shown in the same manner that when the small correc-
tions are neglected we can leave out the function F(¢) when calculat-
ing the mean value <{(z,) ... ¢*(t,)>, which determines the fourth
moment of the distribution of £(¢), as well as the mean values of a
larger number of factors that determine the higher moments. Indeed,
if certain k; = k; coincide in a 2p-fold sum over k, the summation
over these k,, Just as in (2.19), leads to the appearance of the §
function §(z, — 1;) and to cancellation of the factors exp[ F 1) — F(5)L
so that this part of the expression reduces to a (2p — 2)- fold sum and
can be treated by the method of mathematical induction. If, however,
all the k; are different then, as can be seen from the integral form
2.17) for F(z), the largest of the arguments of the functions 1)
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always exceeds all the other times that enter in the arguments of the 8
functions, i.e., in the calculation of the higher moments the presence
of the functions F(f) leads only to negligibly small corrections.

Thus, the presence of the functions F(¢) in Eq. (2.17) does not
influence asymptotically the moments of the distribution of £(¢), and
if the corrections ~e€> and tcltminl:' are neglected the distribution
of £(¢), just as the distribution of £(¢), is Gaussian with correlators
(2.21) and (2.22). This means that the probability density of the values
of &)= ¢£(¢) + i£"(r), taken at different arbitrary instants of time
t,ty - . ., L, take the form

W BE)E (1), )
= (ZW) - mlAnn'I !

m

Xexp{—% S A [EEE ) R )] @)

Here 4, = A(t,,t,) is defined in (2.21), |4,,,]| is the determinant of
the matrix ||4,,/, and 4,,,' are the matrix elements of the inverse
matrix 4~

¢. Gaussian Distribution of the Random Process §(¢) in the Phe-
nomenological Description of Brownian Motion of an Oscillator
The statistical properties of the motion of the singled-out oscillator,
which were obtained in the microscopic model, are valid also in the
phenomenological model of Brownian motion of the oscillator (1.12).

-The Langevin equation (1.12) differs from Eq. (2.10) of the micro-

scopic theory in that the operator L[g], which describes the retarded
action of the oscillator “on itself,” is replaced by the friction force
—2T'g, while the random force f(¢) is regarded as a &-correlated
Gaussian process. The transformation to slow variables in Eq. (1.12),
which is perfectly analogous to the transformation of Eq. (2.10), leads
to Egs. (2.16), where P =0 and

§0) = = 5 [{dnex[~T(t= 1) = F ] fime™  (1>0)
(2.24)

If it were possible to put F(¢;) = 0 in (2.24), the Gaussian form of
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the distribution of the random function &(¢r) would be the direct
consequence of the Gaussian distribution of the force f(r). However,
since f{(#) is 8-correlated, the presence of the factor exp[— F(t,)] in the
integrand at 7>»w; ' produces practically no changes in any of the
moments of the distribution of &(7), and consequently in the distribu-
tion itself. Indeed, since

f(yexp[ = F() P, =0 at 1, <t (2:25)

then, e.g., in the double integral with respect to dt,dr;, which deter-
mines, with allowance for Eq. (2.24), the pair correlator {&(£)E*(¢)>,,,,
there appears the & function 8(¢, — #}), so that the factors
exp[— F(t,)] and exp[F(¢})] cancel out. The result is equation (2.21)
for (§(0)§*(¢')),, at t >0 and ¢ > 0. The factors exp[ = F(t,)] cancel
out similarly also in the expressions for the higher-order correlators.

In the case of the correlators (&(H)&(¢),, and (E¥(1)E*(¢)),, there
remains, after averaging, the fast oscillating factor exp(F 2icw, - 1)
under the integral sign. At [t — 7| > w; ! these correlators are there-
fore proportional to the small parameter T'/w, and they can be set
equal to zero in the assumed approximation, just as in Eq. (2.22).

In Appendix C we analyze the EFP equation that describes Brown-
ian motion of an oscillator in the time scale > z.. This equation is
valid both in the microscopic model (2.1), (2.2), and (2.14), and in the
phenomenological model (1.12).

2.2.3  Solution of Stochastic Integral Equation To investigate the
relaxation of the singled-out oscillator and to determine the time
correlation function of the coordinates it is necessary to obtain the
oscillator complex amplitude u,(¢) (2.16) averaged over the vibrations
of the medium (for a given initial value u,(0)). This averaging reduces
to averaging Eq. (2.16) over the random process &(f) = £(¢) + i£" (7).
It is convenient to carry out the latter by the path-integral method.
From Egs. (2.21)-(2.23) it can be seen that the Gaussian random
processes £'(¢) and £”(¢) are statistically independent. In accordance
with Eq. (2.23), the functional Z [¢,£”] which describes the probabil-
ity distribution of these random functions takes the form [32]

P16, = exp{ =4 [ [andn ot (1, 0)[ €8 (1) + £ (1)E(1)] ).
(226)

AN OSCILLATOR INTERACTING WITH A MEDIUM 295

Here .« (¢,¢) is the analog of the matrix 4, (see Eq. (2.23)) in the
continual limit and is defined by the formula

f dty A(ty 1) (15, 15) = (1, — 1) 27

Since A(t,,t) = A(t,,1,), it follows that &7 (¢,,1,) = & (1,,1). Al-
though the distribution £(¢) is Gaussian, it is not 8-correlated, making
the calculations difficult.

It is seen from Eq. (2.16) that to investigate the oscillator motion
averaged over the random forces it is necessary to obtain the mean
values of the functionals exp F(¢) and £(¢) - exp F(r). This appears to
be possible because the functional F(¢) is quadratic in £ We divide
F(?) into a regular part FO(¢) that is independent of £(f), and a
random part F(D(¢):

F(t) = F(O)(t) + F(l)(l‘), F(O)(t) = % %r(O)(l _ e—ZI‘t),
' o

(2.28)

FO(t) = ["dty { m(t)Re[ exp(in(@)E*(t0)] + i) (> 0),
(2.29)

3iy
p =

-T
p(t) =2vr'/%(0)e ", = 2o,

Here (1/2)r'/%0) and ¢(0) are the initial values of the amplitude and
phase of the oscillator:

u,(0) = r'/?(0)exp(ip(0)). (2.30)

We denote the result of averaging exp F'D(¢) over &(¢) as exp 7 (2).
We get then, with allowance for Eq. (2.28),

(exp F(1)),, = exp[ FO(1) + Z (1)),
(2.31)

F (1) = FO(t)exp F () Cexp F“)(t)>m)_1

= p()Re £*(r)exp(ip(0)) + 7 [£(D))*,
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where the bar denotes averaging over £(¢) with the probability func-
tional

P1¢,8] = Z2[£,¢ Jexp FO(1).

According to Egs. (2.26) and (2.28), this functional is Gaussian and

takes the form

Ple.e] = exp{ - % f dt, d, B(1,, )| (1) — E(t)exp(ip(0)) ]

X [£5(ty) = E(1r)exp(~ ip(0)) ] } (232)
The functions #(t,,1,) and & (¢,) are defined here by the formulas
B(t,1) = A (1, 1;) = 208(1) — 1,)O(t — 1), (2:33)
t
£(t,) = 8(t — tl)fo B(t,, ty)u(ty) dty,

O(x)=1, x>0

=0, x<0
f B(1,,15)B(15, 1) dts= 8(t, — t,). (2.34)

From Egs. (2.31)-(2.34) follows di}ectly that

F (1) = p(H)E(t) + 2vB(1,1) + vEX(2). | (2.35)

The functional (2.32) makes it possible to average just as easily the
second term in the right-hand side of Eq. (2.16)

&(nexp F (1)), = &(t)exp(ip(0))exp[ FO(t) + F(1)]. (2.36)

"The calculation of the mean values reduces thus to calculation of
the functions B(2,t;) and & (¢). To calculate B(t,¢;) we substitute in
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Eq. (2.34) the expression (2.33) for Z(t5,1,):
f X (t3) (13, 1) dts— 20X (1)0(1 — 1) = 8(¢ — 1,),
(2.37)
X(£)= B(s,1).

Multiplying Eq. (2.37) by A(#, t,) and integrating with respect to ¢, we
obtain for X(¢) the more convenient integral equation

X(t)—2» fo ‘A, X (1) A1, 1) = A(1,1). (2.38)

Taking into account the expression (2.21) for A(#',t"), we rewrite Eq.
(2.38) in the form

’ T -Tr ¢
X(t)Y— = dt, sh(Tt)) X (¢t
(*) wg”e fo 1sh(I'8,) X (21)

T . ('t —Tt T -1« ’
— ZpshT¢ | dt,e "X (t,))= ——e ‘shIV. 2.39
w% J; ! () 2w§ ( )

Differentiating this equation twice with respect to ¢’ and subtracting
the initial equation multiplied by I, we can reduce the integral
equation (2.39) to the simple differential equation

a’x(r)
dt!Z

a?X(t)=0,

where the complex parameter a is equal to

2_ T 12 1/2
a= (I‘ - w_(z, I‘v) =T (1 — 4ia) (Rea >0) (2.40)
(a is defined in (2.4)).

The constants of the solution of this equation depend on ¢. They
can be determined from the requirement that the solution satisfy the

initial equation (2.39). We then obtain for X (¢')

x(ry=LL[achat + Tshar) 'shar  (1>0). (241)
@Wo
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Substituting the obtained values of X (¢) for B(¢,¢) in Egs. (2.33)
and (2.35) we can determine £ (¢) and .¥ (¢), and then % (). We
ultimately obtain, with allowance for Egs. (2.16), (2.31), and (2.36),

(uy(t)),, = uy(0)a’exp[ (T + iP)t](achat + T'shar)™>

3iy|u,(0)f shat
Xexp( 20y  achat+Tshat )

(242)

Thus, since the distribution of the random process &(¢) in the nonlin-
ear integro-differential equation (2.16) is Gaussian (albeit not §-
correlated), and the functional F(7) is quadratic in &(¢), the averaging
in (2.16) can be carried out in explicit form.

2.3 Analysis of Relaxation and Fluctuations of the Coordinates of a
Weakly Nonlinear Duffing Oscillator

2.3.1 Relaxation of Singled-out Oscillator Expression (2.42) for
{u()>,, describes the relaxation of the nonlinear oscillator, i.e., its
“forgetting” the initial value of the complex amplitude u,(0). This
expression is valid for an arbitrary ratio of the oscillator frequency
spread due to the internal anharmonicity and the frequency uncer-
tainty due to the damping.

As seen from Eq. (2.42), in the case of a linear oscillator (y = 0) the
oscillation amplitude 2{u,(¢)>,, decays exponentially with time, and
there is no relaxation of the phase for the considered model of the
interaction with the medium (linear in ¢). The oscillator nonlinearity
causes the phase to have a complicated time dependence, and the
relaxation of u,(7) becomes essentially non-exponential. Only at very
long times does {u,(?)),, relax exponentially with time:

B 442 3iy|u,(0) )
(), = uy(0) (a+—aI‘)2 exp m exp[ —(2a-T- zP)t],
(2.43)
tRea>1.

We note that although the nonlinearity of the oscillator does not by
itself lead to damping, the decrement in Eq. (2.43) does depend on y.
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It follows from Eq. (2.42) that as a result of the nonlinearity the
initial value of the oscillator amplitude 4|u,(0)|* influences explicitly
the time dependence of the relaxation. Since the parameter @ in Eq.
(2.42) is connected according to Eq. (2.40) with the intensity of the
fluctuations in the medium (o T'), the latter also influence the relax-
ation of the oscillator. The deviation of the relaxation from exponen-
tial sets in already in first order in the parameters y|u,(0)|*wy '~
and «, which characterize the indicated effects:

(uy(£))y = uy(O)exp[ =Tt + i(4al + P)t]

1- Zi(a _ 3mOF )(1 - e‘m)],

X 8uogl

(2.44)
[l
|a|, Tor'— < 1.

It is shown in Appendix C that although the nonlinearity of the
Duffing oscillator influences strongly the relaxation of the coordinates
and of the momentum (i.e., {u,(?))), at |b| < 1 the energy relaxation
(i.e., the damping of {|u,(?)[>),,) is exponential, just as in the case of
the harmonic oscillator.

2.3.2 Time Correlation Function and Its Spectral Distribution Ex-
pression (2.42) makes it easy to determine the time correlation func-
tions of the coordinates and momenta of the oscillator. An oscillator
that interacts weakly with a medium has a Gibbs stationary distribu-
tion. Upon satisfaction of the condition (2.3) that the nonlinearity be
relatively small, its influence on the stationary distribution can be
neglected. Neglecting the small nonlinearity and the weak interaction
with the medium, the energy of the singled-out oscillator is

E = 203|u,|?

(cf. Egs. (1.5) and (2.2)), so that the stationary distribution of the
quantities #} and u] (u, = u} + iu}) is Gaussian

203 203
w(u)) = W—T?exp - —Tg (u’l2 +uy?)|. (2.45)
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Calculation of the time correlation function of the coordinates of the
oscillator Q(¢) (see Eq. (1.7)) reduces to averaging of expression (2.42)
multiplied by exp(iwyf)q(0) over u3(0) and uj(0) with weight (2.45).
As a result we get [19]

0(1) = <4(1)9(0)> = L Re[exp(iolth G(I1)].  @o=wo+ P,
, e

(2.46)

VR T _ I —2ia)
(1) = e Y1), Y(t) =char + —Q shat. (247)

It is obvious from Eq. (2.47) that the correlation function Q(¢) is
expressed in terms of elementary functions. The dependence of its
“amplitude” Q(f) on the dimensionless time It is determined by the
single parameter a. As a—>0, Q(¢) decays like exp(—TI#|), and at
|a| =1 the decay of Q(¢) is substantially non-exponential.

Equations (2.46), (2.47), and (1.8) determine the spectral distribu-
tion Q(w) in the form of an integral of an elementary function.
Inasmuch as in the derivation of Egs. (2.42) and (2.47) we used
asymptotic methods in which we took into account in succession
terms containing €¢], but discarded corrections of order ~¢? which
were not proportional to the long time ¢, these expressions are valid in
the region of greatest interest, that of long times, and no longer hold
at |#] < ¢, (where Q(¢) can be easily determined by ordinary perturba-
tion theory). Expressions (1.8), (2.46), and (2.47) describe correspond-
ingly Q(w) at frequencies |w — &,| < ¢!, i.e., in the region of the peak
of the spectral distribution, but not on the far wings of the distribu-
tion |w — @|~1, ' (where Q(w) is determined with the aid of the usual
{not asymptotic) perturbation theory).

Q(w) for a nonlinear oscillator is described at finite a by a
non-Lorentzian asymmetric curve. At |a| <1 the deviations of Q(w)
from a Lorentzian appear in the second order in a, while asymmetry
appears in the third order; all that appears in first order in « is a shift
of the curve by 4al (see Eq. (2.44)). With increasing a, the deviation
of Q(w) from a Lorentzian becomes more and more strongly pro-
nounced. The Q(w) dependence for each given a can be easily
obtained by numerical integration in accordance with Egs. (2.46),
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Figure 4 Spectral distribution é(ﬂ) at different values of the dimensionless parameter
a. Curves 1-7 correspond to the values a = 0, 0.25, 0.5, 1.25, 1.75, 2.25, and 4.

(2.47), and (1.8). The results of such numerical calculations can be
conveniently represented for the quantity

0@ =22 Q(w) = 1R fo * O*(1)exp(iQr) dt,
(2.48)
Q=w_(:)0, |Q|<<w0, )

regarded as a function of the frequency detuning . These results are
given in Fig. 4, where plots of Q(SZ) are shown for different a. It is
seen from this figure that with increasing a a gradual increase takes
place in the width of the distribution (measured in units of I'),.its
height is decreased (the total area of the distribution does not depend
on a or on the temperature), its maximum shifts (towards lower
frequencies at y < 0), and the distribution becomes more and more
asymmetrical. The dependence of the position of the maximum of the
distribution ©,, and of its integral width 8w, = 0 ~'(2,,) on a are
shown in Fig. 5. At a = 0, the maximum of the Lorentz distribution is
located at w = &, (2,, = 0) and the integral width is equal to # T, while
in the limit of large |a| we have

Q, T m2a+017, 80, T~ ~2e|al(I+0.044|a| =)~ 5.44al.
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Figure 5 Dependences of the position of the maximum @, and of the integral width

8w; of the spectral distribution Q(R) on the parameter a. The dashed lines show the
asymptotes for small and large a.

In the limiting case of strong nonlinearity, when |a|>> 1, we have
fwcording to Eq. (2.40) a = 2iyi a'/?T". The spectral distribution o®)
in the region of the peak is described in this case by the strongly
asymmetric function

Q(Q)—I Iexp( 9&)9(9&) at |Q]>Tal'/?
0

0
O(Q) = M|a|™'/? at 2=0, (2.49)
Q=2al' =3yT /403, M~I1,

where ©(x) is the Heaviside function defined in Eq. (2.33).

More detailed analytic expressions for Q(SZ) at small and large «
are given in [19].

/

2.4 Spectral Distribution of the Time Correlation Function of a
Strongly Nonlinear Duffing Oscillator

The method used in Sec. 2.2 above is based essentially on the
assumption (2.3), which means that the frequency straggling dw
connected with the nonlinearity of the weakly damped oscillator is
small compared with the frequency w,, but is comparable with the
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damping T. In the case of a strongly nonlinear oscillator, the relation
between Sw and w, can be arbitrary, and this method cannot be used.
On the other hand, if the damping is not very strong, the condition

T'«dw

ie., a> 1, is satisfied for a strongly nonlinear oscillator. In this case
the broadening of the spectral distribution Q(w) of the time correla-
tion function of the coordinates is due mainly to the frequency
straggling 8w (which is due in turn to the dependence of the oscilla-
tion frequency on the amplitude (or energy) of the oscillator), while
the damping T leads only to small corrections. They can be neglected
in the calculation of the peak of Q(w) in the zeroth approximation (in
the case of |[b| < 1 this can be seen, e.g., from Eq. (2.49) by recogniz-
ing that ol is independent of T). It follows therefore, in particular,
that the peak of Q(w) is formed within a time ~(®w)~!at dw>T.

The stationary distribution of the oscillator in energy, neglecting
the interaction with the medium, is described by the expression

wst(E)=Z_lexp(— %), Z=qudpexp(— %),

(2.50)

E=ip*+}wig’ + %vqy-

Since the oscillator motion within a time ~(8w)~! is quasi-con-
servative in the case I < 8w, the time correlation function and its
spectral distribution near the maximum can be calculated by first
solving the problem of free motion of a nonlinear oscillator with a
given energy, and then averaging over the energy (and phase) with
weight (2.50).

2.4.1 Motion of Isolated Oscillator In the case y > 0 (this condition
is assumed satlsfled below), the motion of the oscillator is finite and
pernodlc. At @2 > 0, the potential energy has one minimum, and at
w? < 0, as shown in Fig. 6, the potential has two minima separated by
a barrier. Near the peak, the barrier is parabolic (the results presented
below for the spectral distribution pertaining to the case w2 < 0 were
obtained jointly with S. M. Soskm)

At positive energy E, both at w2 >0 and at wj <0, the region of
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U

Figure 6 Duffing-oscillator potential U = 1wdq? + 1 yq at w§ < 0. The height of the
potential barrier between the minima is AU = |E,,| = w8/ .

the oscillator motion is singly connected and the equation of motion

j+wig+vg’=0  (y>0) (2.51)

has the solution

¢ = 5% blwol + ¢(0),

0= E (25,

-
| (2.52)
2 1/2
R=m=Ll__9  p_[ SE E>0
2 2w lpE £ wgy ’ > N

Here cnu = cn(u | m) is the Jacobi elliptic cosine, & is the modulus (m
is a parameter), K = K(k) is a complete elliptic integral of the first
kind, and ¢(0) is the initial phase. The period of the function cnu is
4K [33]. Therefore the frequency of the nonlinear oscillator is, accord-
ing to Eq. (2.52),

w(E)= E|w0| (E >0). (2.53)

At w§ < 0 and E < 0 an oscillator can vibrate, at one and the same
energy, in the left or right potential well (see Fig. 6). Equation (2.51)
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has therefore in this region two solutions:

i
g(t) = (- (1+b)/d( @) mi=o(E) +@0), i=12,
(2.54)
Cem=— )= T |wol(1+B3)?, w3 <0, E<O,
1+ 52 2K B0

where dnu = dn(u|m) is the delta amplitude, b} is defined in Eq.
(2.52), and ;(0) are the initial values of the phases ;.

It can be seen from Egs. (2.52)—(2.54) that at w3 > 0 the frequency
w, is equal to the minimum frequency of the oscillator (it corresponds
to E = 0). At w} < 0 the frequency w(E) tends to zero logarithmically
as E—>0:

41

w(E)m;|w0|(1n%) (E > 0)

1608\~
~27r]w0|(ln I;‘i) (E<0), Y|E4i <1, 0} <0. (2.55)

Wo

That the period of the oscillations become infinite as £—0 at wi<0
is obvious from Fig. 6: as E— 0 the classical particle “sticks” to the
point g = 0.

2.4.2 Time Correlation Function of the Coordinates in the Absence of
Pamping Neglecting damping, the correlator Q(7) is

0(1) = [4(4(Q)wu(E)d4(0) dp (), (2:56)

where w (E) and g(¢) are defined by Egs. (2.50), (2.52), and (2.54).
To calculate the integral (2.56) it is convenient to transform to new
canonical variables, namely the action 7 and the phase ¢, and then to
the energy and phase, with account taken of the relations

dgdp=dldy, dl=o '(E)dE (2.57)
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(the action depends only on the energy). The averaging over the initial
coordinates and momenta in Eq. (2.56) reduces then to integration
with respect to E and with respect to the initial phase ¢(0) that enters
in Egs. (2.52) and (2.54) for ¢(?) (in the region E < 0 it is necessary to
integrate with respect to ¢,(0) and ¢,(0)). It is easy to average over
¢(0) by using the expansion of the functions cn(2Ke/7) and
dn(Ke/7) in a series in the Jacobi parameter g; (see, e.g., [33]):

cn( 271((’)) = ]3—172 n§0q2+%(1 + qyz”“)_lcos(2n + 1),

K — 2 - n n -1
dn( ;(p) = % + TW ,,§=:1 q, (1 + qf ) cos ng, (2.58)

9= g (k) = exp[ —7K'(K)/K(K)].  K'(k)= K(Y1 = k).

Substituting Eqgs. (2.52), (2.54), and (2.58) into Eq. (2.56) and
changing over to integration with respect to £ and ¢(0) we obtain as
a result of integration with respect to ¢(0), taking Egs. (2.50), (2.53),
and (2.57) into account,

0(1) = Q1) + QA (1)O(—w}),

00 = 32TWZ_lj(;oodEw(E)exp(— %)

] q2n+1
X — _cos[(2n + 1)w(E)t],
ngo (1 _|_q;n+l)2 [( ) ( ) ]

*

Q1) = ZT”Z—‘LOdEw(E)exp(— %)
w q2n )
X {1 + sgl (1#13”)2 cos[nw(E)t]}, (2.59)

Z=ZW4+ZzO®,  zM - 27rf°° w‘(lg)éxp(— %)
0

g

Z® = 4n0(-}) [CdEw"N(E)exp( - £}, E,= -1 2.
E, Y
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The terms QP (¢) and Z(V are determined by the region of positive
energies of the oscillator and contribute to the coordinate correiator
and to the partition function of the oscillator both at w§ >0 and at
w2 < 0. The terms QP (¢) and Z® are determined by the region of
negative energies (E,, is the minimum value of the energy) and
contribute only at wz < 0. We note that when no account is taken of
the relaxation and the fluctuations, an oscillator with energy £ <0
does not go over from one potential minimum to another, and
oscillates about one of two equilibrium positions

m = * ,Y—l/2|w0|.

This leads to the appearance in Q®(¢) of a term independent of the
time. When the transitions are taken into account, it will decay with
time.

It is seen from Eq. (2.52) that k* < 1/2 at &} > 0, and consequently
q; <exp(—2m)~2- 1073. The series (2.59) therefore converges very
rapidly in this case and in practice we need retain in 0P (2) only the
first term (if we are not interested in the spectrum in the region
w>w(E=T)). In the case w3 <0 the series for Q(f) converges
rapidly in the energy regions E > |E,| and E — E, < |E,|. In the
region of small |E| the series converges slowly. In this region, the
frequencies w(E) are low and the relaxation therefore turns out to be
substantial.

2.4.3 Spectral Distribution of Duffing Oscillator with Single-well Po-
tential (wf >0) The spectral distribution of the time correlation
function of the coordinates at w3 > 0 takes according to Eq. (2.59) the
form )

Q@)= 0Vw), w3>0,

00w = 1 [ e = 620 2 00— 0 B 0

~ 1819 77100 — axa(e); (2.60)

2 E,\[ do(E, - " (K
Xn(®) = (2n + 1)_ exp(— T)( d(En ) ) [1 fyq2”+(1(11 )]2 >
y n
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where k, = k(E,) and E,, is defined by the equation

w(E,) =

W
2n+1° (2:61)

According to Eq. (2.60), the function Q(w) is expressed in terms of
elliptic integrals. It is easy to obtain for Q(w) explicit expressions in
the limiting cases of small and large values of the parameter b (2.3)
(b > 0). The case bk 1 corresponds to an oscillator whose anhar-
monic part of the potential energy yg*/4 is small in the actual energy
region E~T compared with the harmonic part, while the case b> 1
corresponds to an oscillator whose harmonic part is negligibly small
compared with yq*/4.

At b< 1 in the region E S T we have b2~ 1 and k?< 1. Expres-
sion (2.60) reduces then to the formula {2.49) obtained above by
another method. At b>>1 and w*>w; we have according to Eq.
(2.52) bz > 1 and k?~ 1/2, and when account is taken of Egs. (2.53)
and (2.61) the expression (2.60) takes in the region of the maximum
(where only the term with n = Q need be retained in (2.60)) the form

0(w) = $10 (i)“exp[— %(3)4] (w4>$w8,b>>l),

y6/4 \ @ Wo

(2.62)

¢ = 1365 ch‘z(z)K3( L ) ~060, ¢, = i4K4( L ) ~0.49.
<T(3) 2/ 1\ 0\

The position w,, of the maximum of this distribution and its integral

width 6w, are given by

1/4
© =(§£) woms 1264w, 8w, ~0.746 %, .  (2.63)
2

m

From Egs. (2.63) and (2.49) it can be seen that the shift of the
maximum of the spectral distribution and its broadening are of the
same order of magnitude at |a|> 1, i.e. when they are both due to
nonlinearity.

AN OSCILLATOR INTERACTING WITH A MEDIUM 309

Qtw)

J
24,
7

W~ Wo
We "

e

Figure 7 Spectral distribution Q(w) for a Duffing oscillator with a single-well poten-
tial, neglecting damping. Curves 1-5 correspond to values b = 0.1, 0.5, 1, 3, and 10. The
ordinates of curve 1 are decreased by a factor of ten.

At arbitrary values of b, the function Q(w) can be easily obtained
numerically. Plots of this function for several values of b are shown in
Fig. 7. It is seen that with increasing b the half-width of the distribu-
tion increases, and its maximum shifts towards higher frequencies.

It should be noted that in the calculation of the spectral distribu-
tion it is correct to neglect the damping only in the frequency region
where Q(w) does not become negligibly small. The presence of even
small damping causes the increase of the distribution Q(w) on the
wings. In particular, in the phenomenological model (1.12) it falls off
at b5 1 like TT(w? — w2) 2 (Jo — w,,| > 8w;). The results are there-
fore valid only in the region where this quantity is small compared
with expression (2.60).

2.4.4 Specific Features of the Spectral Distribution of a Duffing Oscil-
lator with a Two-Well Potential (w3 < 0) in the Low-Frequency Range
In the region of temperatures considerably exceeding the height AU
of the potential barrier (see Fig. 6), i.e., at b>> 1, the maximum of the
spectral distribution Q(w) results from the motion in the region of
relatively high energies, where the form of the potential near the


bartons4


310 M. I. DYKMAN AND M. A. KRIVOGLAZ
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Figure 8 Schematic representation of the spectral distribution Q(w) for a Duffing
oscillator with a two-well potential at T >> AU. The dashed line shows the edge of the
distribution for an oscillator with a single-well potential.

minimum does not manifest itself. Therefore the resultant broad
spectral distribution near the maximum (see Fig. 8) at wj <O is
described by the same formulas (2.62) as in the case of the single-well
potential (w2 > 0) considered above. At low temperatures T <AU
(i.e., b< 1) the maximum of Q(w) is connected with the motion of the
oscillator near one minimum or the other. Near the minimum the
potential becomes weakly nonlinear, and Q(w) in the region of the
maximum is described by Eqgs. (1.8), (2.47) and (2.48) for the single-
well Duffing oscillator (interacting with the medium), but with renor-
malized parameters

wp=V2lwol, ¥ =—4y (vTwg'<1)

(the renormalization of y is connectéd with the term o (g — g, in
the potential; see [19]).

The qualitative difference between the spectral distributions Q(w)
for two-well and one-well potentials manifests itself at low frequen-
cies. Localization of an oscillator with energy E < 0 near one mini-
mum or the other leads, in accordance with Eq. (2.59), to the
appearance of a peak at zero frequency (see Fig. 8). Neglecting the

interaction with the medium the peak is 8-like (see Eq. (2.59)). The

transitions over the barrier caused by this interaction broaden the
peak. The width of the peak is proportional to the relaxation parame-
ter T, and at low temperatures T < AU contains an additional small
factor exp(—AU/T).
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Another significant feature of the behavior of Q(w) for a two-well
potential manifests itself in the region of the low-frequency wing of
the broad distribution. In the case of a single-well potential, in
accordance with Eq. (2.60), if the damping is neglected the spectral
distribution tends to zero at w — wy,—> 0 in accordance with the linear
law indicated by the dashed line in Fig. 8. In the case of the two-well
potential, however, the motion of a particle with near-zero energy in
the region of the local maximum of the potential (U(0) = 0; see Fig.
6) is slow, and the period of the oscillations is large. As a result, a
low-frequency tail appears in the spectral distribution at w < |wy|-

To calculate the spectral distribution in the region I' < w < |wg| we
can neglect, as before, the damping and use expression (2.59) for the
time correlation function. As a result we get

0(@) = 0V(@) + 0P(w),  «;<0,

) = 8_71' 2 Iwols -1
@) ( Y ) wehi(mw) 2an)) -

X > e_E"/Texp[— @(Zn + 1) |O(E,),
n=0

(2.64)
0?(0) = 5 [ aietrg @)

= (81)2 I - z!
Y / wch’(mw/2|w)

had 2
§ sl - 0o,

n=1

exp(mlwyl/w)>1, w>T.

The energies E, are determined here from the condition (2.61) at
E,>0 and from the condition w(E,)=w/n at E, <0. From Egs.
(2.55) and (2.61) it can be seen that at b>> exp(— w|wy|/w) the
energies E, are small compared with 7, and accurate to corrections
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that are exponentially small in #|wg|/w we have

Q(w) = ( ) m;:—?’;(‘f/l—woDZ"exp(— KI‘:’—O') (2.65)

According to Eq. (2.65), neglecting damping, the spectral distribu-
tion OQ(w) decreases exponentially with decreasing frequency. The
characteristic frequency that determines the rate of the decrease is
equal to Jw,| and does not depend on the nonlinearity parameter y.
The parameter |w,|> at w2 <0 is equal to the curvature of the
potential at the local-maximum point (see Fig. 6). It is precisely the
shape of the potential hump which governs the form of the distribu-
tion (2.65).

It can be shown that for an arbitrary oscillator whose potential
U(q) has a local maximum, where U(q) = —(1/2)|w,|’q> (the coordi-
nate ¢q is reckoned from the position of the maximum), the spectral
distribution on the low-frequency tail of the broad peak is propor-
tional to exp(— 7jwg|/w). In the general case, the cyclic frequency
«(E) of oscillations with energy E > 0 (the energy is reckoned from
the value of U(0)) is equal to

w(E)=w{j;:”dq[ZE—2U(q)]"'/2}_l, (2.66)

where ¢, and ¢, are the turning points that limit the motion; U(q,)
= E (i=12); ¢, <0, and ¢, > 0. At small energies the main contri-
bution to the integral (2.66) is made by the region |g| S E'/?/|w
(192> E'/?/|w,)), where the integrand is large. Integration yields

o(E)~alwln ' (C/E), C~jwlq?, E->0 (E>0). (267)

The time correlation function of the coordinates of an arbitrary
vibrating particle placed in a thermostat, neglecting relaxation, can be
represented in a form similar to (2.59):

o) = deexp( -E/T) éox,,(E)cos nw(E)t, (2.68)
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where the functions x,(E) are determined by the details of the
potential. We take the Fourier transform of Eq. (2.68) with respect to
time and transform from integration with resnect to E to integration
with respect to w(E). At small E the integrand acquires then a factor

L ~alodCo (EYexp] ~ sl /o)), E-0

This factor makes the spectral distribution in the region of small «
proportional to exp(— 7jwy|/w) (at 7jwg| > w we can neglect the terms
o exp(— nwjwg| /@) with n > 1 in Q(w), which stem from the terms-
with n > 1 in (2.68)). It is easy to verify that at small & the contribu-
tion made to Q(w) by the region E <0 is small (just as for the
Duffing oscillator).

Thus, the exponential decrease of the spectral distribution is the
result of the presence of a local parabolic maximum of the potential.
In the region where

exp(— 27wl /w) ST /jwyl  (at b~1)

the calculation must be carried out with allowance for the relaxation
processes. The latter lead, in particular, to the appearance of a wing
of the broad peak (see Fig. 8). The criterion presented means that Eq.
(2.65) is valid so long as the value of Q(w) determined by it exceeds
the contribution made to Q(w) by the relaxation processes.

2.5 Discussion of the Results of the Classical Theory of the Nonlinear
Duffing Oscillator

The foregoing analytic solution of the problem of a Duffing oscillator
interacting with a medium or acted upon by white noise makes it
possible to reveal explicitly the distinguishing features, connected with
the nonlinearity of the system, of the relaxation and of the fluctua-
tions. The relaxation of the oscillator at [bj < 1 is described by the
simple formula (2.42), from which it can be seen that even at a
relatively weak nonlinearity the damping of the initial ‘values of the
coordinate and of the momentum is not exponential and depends
substantially on the initial conditions. Under the same circumstances,
the shape of the spectral distribution of the time correlation function
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Q(w) becomes greatly distorted compared with the Lorentz distribu-
tion for the harmonic oscillator (see Eq. (2.48) and Fig. 4). In
particular, at a relatively strong nonlinearity (Ja| > 1) as can be seen
from Eq. (2.49), the spectral distribution decreases exponentially with
frequency on one side of the maximum of the peak, and vanishes
linearly on the other side (in the limit T = 0).

The results of the present section cover a large range of the two
dimensionless parameters a and b (or I' /w, and b), which characterize
the Duffing oscillator:

O<|pj<]al] <o or 0<|b<o0, T<|wg (2.69)

The results are valid both at & >0 and at a < 0 in the region {b] « 1,
but only at positive y (i.e., b > 0) at |b] = 1. In the region b= 1 the
spectral distribution was obtained for the case w} < 0 as well as for
the case w3 > 0. The region a~b~1 cannot be described with the aid
of the employed methods. Some results for this region were obtained
numerically [34] and also by expanding the spectral distributions in
continued fractions [35].

It is of interest to compare the spectral distributions Q(«w) presented
above with the distributions obtained by approximate methods. It is
easy to verify that in the region |a] < 1, where the results of [22-25]
are valid, the expressions given in Sec. 2.3 agree with these results. As
can be seen from Eqs. (2.40) and (2.47), in this region the expansion
parameter is a. In the region |a] <« 1 one can use also the equivalent-
linearization method [17], in which the nonlinear oscillator is replaced
by a linear one whose effective frequency w, is defined as the square
root of the normalized second moment of the spectral distribution
Q(w).

In the region |bj<« 1 but |a|=1, expansions in powers of the
nonlinearity parameter y (or in a) are no longer valid. At |a]= | the
broadening of the spectral distribution as a result of the nonlinearity
is of the same order as the shift of the distribution, and hence the
effective frequency w, can differ significantly from the frequency o,
of the maximum of the distribution Q(w) (e.g., at [b} <« 1 and {a|> 1
the ratio (w5 — wg)/(w,, — W) = 2, and at b>>1 we have w /0w, ~
1.4). The spectral distribution obtained from the exact solution differs
substantially in this region from the distribution obtained by the
equivalent-linearization method. :
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§3 Theory of Fluctuation Transitions Between Stable States of a
Nonlinear Oscillator

3.1 Picture of the Fluctuations in Nonlinear Systems with Several
Stable States

Nonlinear systems frequently have several stationary states or limit
cycles which are stable with respect to small fluctuations. Random
external forces due to interactions with.the medium or of some other
origin produce transitions between these states. Since large fluctua-
tions are needed for the transitiors, the probabilities of the latter in
the case of weak random forces is low. An example of a system with
several stationary states is the Duffing oscillator at w3 < 0 (see Fig. 6).
Stable equilibrium positions correspond to each of the two minima of
the potential in this case. The Duffing oscillator has also two stable
stationary states in the case when w? > 0, but the oscillator is acted
upon by an external resonant field whose amplitude satisfies certain
relations indicated in Sec. 3.2 below (see Fig. 2).

The problem of calculating the transitions, caused by interaction
with the medium, between the states separated by a potential barrier
is one of the classical problems of diffusion theory. For Brownian
motion of a particle in a static potential field, it was considered by
Kramers [36]. In this section we present and illustrate, .with the
Duffing oscillator as the example, results pertaining to the calculation
of the probability of a transition between stable states of a system in a
case when the motion is not potential or when the potential depends
periodically on the time.

The phase portrait of the simplest nonlinear system which has one
degree of freedom is possessed of two stable stationary states (in
particular, of a Duffing oscillator), is shown in Fig. 9. The dashed line
in the figure is the separatrix between the attraction regions of the foci
fi and f,; located on this line is the saddle-point s. In the absence of a
random force, the system, located at the initial instant at some
general-position point, will approach, after a characteristic relaxation
time ¢,, that focus (or node) in whose attraction region it was initially
located (examples of phase trajectories are shown in Fig. 9). In the
presence of a weak random force, the system will move, with over-
whelming probability, practically along the same trajectory. On ap-


bartons4

bartons4

bartons4


. ”’616 M. 1. DYKMAN AND M. A. KRIVOGLAZ

~

N
\\ 4
P \ u
.£\ s

Figure 9 Phase portrait of a nonlinear dynamic system with two stable states of the
focus type. The dashed line is the separatrix; s—saddle point; f;, f,—foci. The arrows
indicate the direction of the motion.

proaching the focus, the system will stay near it for a long time,
greatly exceeding 7,, and will undergo small fluctuations. Ultimately it
will experience a sufficiently large fluctuation, as a result of which the
phase trajectory crosses the separatrix (with overwhelming probabil-
ity, near the saddle; see below). After this, the system approaches
another focus over a time ~¢, and then fluctuates near it. This just
means a transition to a new stable state.

In this section we consider the probability W of such transitions in
the limiting case of a small random force, when W< t~! (this
condition is necessary for the concept of the stationary transition
probability to be meaningful). Obviously, the transitions 1—>2 and
2—1 have different probabilities. Their ratio determines the station-

ary distribution over the states. In the case of Brownian motion in an

external static potential, the distribution over the states is determined
by the Boltzmann formula. In other cases, however, the calculation of

the distribution over the states is more complicated. For weak random

forces it reduces in fact to the solution of the transition-probability
problem.

The analysis presented below for the system whose phase portrait is
given in Fig. 9 can be generalized in elementary fashion to include the
case of dynamic systems with higher dimensionality, as well as
systems having stationary states of other types or limit cycles corre-
sponding to periodic motion.
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It is known that greatest interest in the problem of the passage of a
diffusing particle over a potential barrier, at a sufficiently low transi-
tion probability W, attaches to the calculation of the argument of the
exponential, and it frequently suffices to estimate only the order of
magnitude of the pre-exponential factor. Respectively, a probability
of a transition between states of a nonequilibrium system whose
motion represents a Markov process is calculated below with logarith-
mic accuracy. To do it we, following the Feynman’s approach [32] to
fluctuations in dynamical subsystems, represent W in the form of a-
certain path integral, which is calculated by the saddle-point method
[29]. The probability of reaching the phase-space point far from
points corresponding to stable states was investigated in a mathemati-
cal paper [37] by another method for a certain type of Markov
systems. The functional-integration method makes it possible to ob-
tain in simple manner the results given in [37] and to generalize them
to include the case of Markov processes of more general type, as well
as the case ‘'of non-Markov processes. The path-integral formulation
of the problem of fluctuations was developed in [38] for the systems
described by the master equation of the Kramers—Moyal type. The
approach [38] was somewhat different from the Feynman’s one used
below, and the probability of large non-Gaussian fluctuations causing
transitions between stable states was not considered in [38].

Using certain additional relations that follow from the physical
picture of the fluctuation transition, the problem of calculating W can
be made closed. This approach is illustrated for the concrete case of
transitions between stable states of a Duffing oscillator in an external
field, where the problem of calculating W can be completely solved in
explicit form [29].

Transitions between stable states of the Duffing oscillator in an
external field are considered below in Secs. 3.2-3.4. In Sec. 3.2 using
the same approach as in Sec. 2.1 we obtain the equations of motion
for the slow variables of such an oscillator interacting with a medium.
In Sec. 3.3 is obtained an explicit expression for the probability of the
transition between the stable states of a subsystem; this expression is
later applied in Sec. 3.4 to the Duffing-oscillator problem, with
account taken of the concrete form of the equations of motion of the
latter.

For Markov processes, the value of W can be calculated also with
the aid of the Finstein—Fokker-Planck (EFP) equation (see, e.g., [10,
39]). This method is convenient if the random process is one-
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dimensional, but for multidimensional processes its realization is
usually difficult. In a number of cases the EFP equation is convenient
for the analysis of a stationary distribution over stable states (see, e.g.,
[40], as well as the reviews [10, 14, 39] and references cited there).

3.1.1 Fluctuations Near Bifurcation Points Fluctuations in a nonlin-
ear system acquire peculiar features if the system is near bifurcation
points, i.e., if its parameters are close to values at which the topologi-
cal picture of the trajectories on the phase plane changes, for exam-
ple, new equilibrium positions or limit cycles appear or vanish. The
problem of fluctuations near bifurcation points was first considered
for the systems with limit cycles. In a number of papers (see, e.g.,.[10,
13, 39, 41]) the case of the Van der Pol oscillator was investigated in
detail. The solution of this problem is greatly simplified by the fact
that in the EFP equation for the corresponding Markov process the
variables (amplitude and phase) are separable and the equation
reduces .to a one-dimensional one. This circumstance has made it
possible, in particular, to investigate in detail fluctuations in the
region of bifurcation corresponding to soft excitation of a limit cycle
(see in particular [41]). For certain concrete systems, fluctuations were
also considered near bifurcation points of another type (see, e.g.,
[42, 43)). R :

Besides the bifurcation points, at which the roots A,, of the
characteristic equation for a dynamic subsystem pass through the
imaginary axis and a limit cycle is excited, as in the case of the Van
der Pol oscillator, there are also quite general bifurcation points at
which A, =0 (A, # 0 at i # 1) and mutual annihilation or creation of
two singular points takes place in phase space, such as coalescence of
a node and a saddle (marginal points).

In the parameter range where A; <A,, A;, ... one of the motions
in the system becomes slow (a soft mode sets in [14]). This results in
the increase of fluctuations. The smallness of A; makes it possible to
use an adiabatic approximation for the description of the fluctuations
and reduce, generally speaking, the multidimensional problem to a
one-dimensional one in the bifurcation region if the random forces
are small. This approach is used in Sec. 3.5 to consider fluctuations in
Markov systems in the case when one of the points produced upon
bifurcation is stable (node or focus) and corresponds to a metastable
equilibrium state, while the other is a saddle (see also [45, 46]). In
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particular, the probability W of an escape from a metastable state
through a saddle point to some other stable state of the system is
calculated.

Since the motion near a bifurcation point can be regarded as
one-dimensional, the problem is much simpler than in the general
case considered in Sec. 3.3. It reduces in natural fashion to the known
first passage time problem in the Brownian motion theory [47]. This
simplification makes it possible to determine not only the argument of
the exponential in the expression for W (this argument depends
substantially on the distance to the bifurcation point), but also the
pre-exponential factor. In this respect the analysis of the transition
probability in the considered, generally speaking, multidimensional
systems (but located in the bifurcation region) turns out to be more
complete than in Sec. 3.3, where W is determined only with logarith-
mic accuracy. i

In two-parameter systems the curves in the plane of the parameters
¢, and c,, which describe bifurcations of the general type considered
just above, can have singular points of the form of spinodes. The
shape of the curve near the spinode K (¢, = ¢4, ¢, = C,x) is shown in
Fig. 10. In the parameter region bounded by the solid curves in Fig.
10 the system has two stable states, as well as an unstable equilibrium
state—a saddle point. As the point K is approached (in parameter
space), these states come closer together (in phase space), the proba-
bilities of the transitions between them increase rapidly, the rigidity of
the system decreases, and as a result the fluctuations in the vicinity of

Figure 10 Schematic representation of the bifurcation curves (solid lines) in two-
dimensional parameter space near the spinode point K.
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the point K -increase sharply. In a certain sense, the point K is
analogous to the critical point on the gas—liquid phase-transition
curve. ,

‘The theory of fluctuations near such a-spinode is considered in Sec.
3.6. The asymptotic form of the damping of the correlation functions
for long times is obtained. Far from the point K, where the stationary
probability-distribution function has two sharp maxima, this asymp-
totic form is determined by the probabilities of the transitions be-
tween the corresponding equilibrium positions. On the other hand, in
the region of very short distances to K, the damping decrement of the
critical fluctuations, as a function of two parameters, is investigated
numerically. In Sec. 3.7, the results of Secs. 3.5 and 3.6 are applied to
an investigation of the fluctuations of a Duffing oscillator in an
external resonant field near bifurcation points and a spinode point.

A special question is that of the absorption of an external field by a
bistable system. This question is considered in Sec. 3.8 for a nonlinear
oscillator. In the same section are analyzed the characteristic features
of the spectral dependence of the absorption (or amplification) of the
additional weak field, particularly those connected with bistability.

3.2 Forced Oscillations of a Nonlinear Oscillator that Interacts with a
. Medium in a Resonant Field

The Hamiltonian of an isolated Duffing oscillator in an external field
is of the form

H,= %‘(pz + wng) + i—yq“ — ghcoswt. 3.1

To describe the oscillator relaxation and fluctuations, which are
due to interaction with the medium, we can use the model considered
in Sec. 2, in which the medium is represented as a set of vibrations
having continuous frequency spectrum, and the interaction is linear in
the coordinate ¢ of the considered oscillator. The total Hamiltonian
of the system is then described by Egs. (2.1), (2.2), and (3.1), while the
equation of motion takes, after excluding the vibrations of the contin-
uous spectrum, a form similar to Eq. (2.10):

2
% +wpg + vg®> = heoswt + f(1) + L[ q]. (32)
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Here f(¢) is the random force exerted on the oscillator by the medium,
and L[q] is an integral operator that describes the reaction of the
medium, with retardation taken into account; the explicit forms of
f(¢) and L[q] are given in Eqgs. (2.11) and (2.12) respectively.

"Resonant phenomena manifest themselves most distinctly in the
case of weak interaction with the medium, when the characteristic
damping I' € w,. If, in addition, the nonlinearity is weak enough and
‘the resonance condition |w — wy| < w, is satisfied, it is expedient to use
the averaging method for the analysis of the motion of the oscillator
in the time region of greatest interest > wg '. In the case considered
it is convenient to introduce a slowly varying complex amplitude of
the oscillator #,(¢) with the aid of the substitution

~

= io(fhe™ — e ™), @=1df,

iwt ~  —iwt

dr

which is analogous to Eq. (1.5). In accord with the idea of the
averaging method we can discard in the equation for #, (just as in the
absence of a resonant field) the fast oscillating terms that are propor-
tional to the small parameters y and I" (see Appendix B). Transform-
ing the operator L[q] in the region ¢> ¢, (the characteristic “fast”
time ¢, is defined in Eq. (2.6)) in the same manner as was done in the
derivation of Eq. (2.14), we reduce the second-order equation (3.2) to
a first-order complex equation

dii, 3y

i _ 3y oo sy + 1 L i
= 2iw|”1|“1 (Tsgnt + idw)ii; + P e (),

(3.3)

Sw=0w—wy— P.

Explicit expressions for the damping I' and for the frequency shift P
in the model (2.1), (2.2) of interaction with the medium are given in
Eq. (2.15) (strictly speaking, when expressions (2.15) for I and P are
substituted in Eq. (3.3), w, in them should be replaced by w, but the
renormalization of ' and P can be neglected with accuracy to the
small corrections ~8w(dT(w)/dw) and Sw(dP(w)/dw)).

Besides the fast oscillating terms proportional to y and T', we
have discarded in Eq. (3.3) also the terms ~dwii, - exp(— 2iw?) and
hw ~lexp(—2iwt). The criterion for the applicability of Eq. (3.3) takes
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therefore the form:

dT(w)

< 1.
dw

dP(w
196, T, | P, [y~ < 17", | ‘ ©)

dw

We shall assume hereafter that the frequency detuning 6w differs
from zero (at 8w = 0 the oscillator has only one stable state).

3.2.1 Transition to Dimensionless Variables 1t is convenient to
choose the dimensionless variables (the time 7, the complex amplitude
u, the field amplitude 8'/2, and the relative frequency detuning @) in
the following manner:

_ (3
T=|0wlt, u= ( 2030 ) i
(3.4)
3|Y|h2 5 _ 0w
=, Q==F.
B 326%|8w|? r
In terms of these variables, Eq. (3.3) takes the form
i=0v+%f(7)
Q
v=ov(uu*)=— |—9—Isgn'r + iu(uu*sgny — sgn$) — iB'*sgnh,
(3.5)

Firy=—if —__ ]/zexp(_fif)f(L) g du
8w’T?|dw| |86] 8| /° dr
From a comparison of Egs. (3.3), (3.5) with Eqgs. (2.1), (C1) it is clear

that the random force f('l') f () + lf ”(7) is asymptotically o-
correlated, and its distribution is Gaussian. According to Eq. (C1)

Ff (ra)> = (r)f (72> = 2a8(7, — 1),
Fenfrm)y=0, a=3ly| T(8x°T) '

(36)
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Eq. (3.5) with a random force having the statistical properties (3.6),
just as Egs. (2.4) and (C1), is valid also for a Hamiltonian H, of the
interaction with the medium of more general form than that in Eq.
(2.2); all that is important is that the interaction be linear in g.

By changing from the variables ¢ and dg/dt to u and u* we can
reduce to Eq. (3.5) also the problem of forced oscillations of a
nonlinear Brownian oscillator in a field of an arbitrary (not necessar-
ily due to thermal fluctuations) random J-correlated force f; :

Zq +2r dq + wiq + v¢> = heoswt + f; (1),
12
3.7

SO f(B)) =28T8(t — ).

The parameter a = 3|y|%Z (16&°T)~! in Eq. (3.6) is now determined
by the characteristic of the noise %Z. Actually Eq. (3.5) is the Langevin
equation for a nonlinear oscillator in an external field.

3.2.2 Stable States In the absence of a random force the complex
nonlinear equation of motion (3.5) has stationary solutions (& = 0)
whose amplitudes are determined by the equation

o(lua) =0,  o(x)=x(xsgn(v¥) — 1)’ + 5’% -B (398

(the stationary points on the phase plane («/,u”) correspond to limit
cycles on the phase plane (g,dq/dt)). Equation (3.8) has three solu-
tions if B8 and ¢ in Fig. 11 are located in the region bounded by the
solid curve, and one solution if 8 and § are located outside this
region. The boundaries of the region of existence of three solutions
are described analytically by the following equations (equations of the
bifurcation curves):

B = [1+40725(1-387Y)"),  Gseny>B. (39)

The spinode point K corresponds to the values ") xSgny =3 and
Bx=8/217.

The dependence of the reduced amplitude 2|u | of the oscillator
oscillations on the reduced amplitude B'/? of the resonant field
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Figure 11 Region of existence of two stable states of a nonlinear oscillator. The
bifurcation points lie on the solid lines, K is the spinode point. The dashed curve
corresponds to the parameter values at which the probabilities of the transitions 1—>2
and 2—> 1 are equal.

(B < h?) at fisgny >3 is S-shaped (cf. Fig. 2). In the region where
three solutions exist, two of them are stable with respect to small
fluctuations (with the largest and smallest amplitude 2|u|), while the
third corresponds to a saddle point. On the phase plane (u',u”)
(u = o’ + iu”) a separatrix passes through this point (see Fig. 9). If the
fluctuations are not taken into account, hysteresis is present in the
system: If B increases from zero, then u also increases remaining on
the lower branch of the amplitude versus field characteristic (see Fig.
2). Next, when B goes through the value B§>($), where d|u,|/dB
= 00, u, goes over jumpwise to the upper branch. When S decreases
from large values, |u | varies along the upper branch of the character-
istic, and at B = B§V({) it goes over jumpwise to the lower branch.

Even a small random force in Eq. (3.5) leads to randomization of
the motion. This causes the relatively rare fluctuation transitions
between stable states, which are discussed in Sec. 3.1 above, and after
a time of the order ~W ™' the system “forgets” the initial state,
hysteresis effects no longer appear, and a stationary distribution of
the probabilities over the stable states is formed. As a result, the
dependence of (Juy|> on B becomes single-valued (in contrast to the
ambiguous dependence at times < W ™! at which the hysteresis
phenomena manifest themselves).
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3.3 ' General Expression for the Transition Probability

We consider the probability density w(u,; u,; 7, — 7,) of the transition
of the system from a certain point u, = u/ + iu] on the phase plane,
in which the system was located at the instant of time 7,, to a point u,
at the instant 7,. With an aim at calculating the probability of a
transition between stable states, we shall assume that the point u, is
located in the vicinity of one of the foci (for example f;), and u, is
located near a separatrix. It is convenient to express the function
w(u,;u,; 1, — 7,) in the form of a path integral

Wty 1y 3Ty — T,) = fu . D (P[ f(7)]8(u(75) — up)

U

-1

<{[2f »?[F (] (3.10)

In the calculation of the path integral with respect to the complex
functions f(T) (.@f('r) = .@f’('r)_@f”('r)) it is assumed that at 7 =17,
the system is located at the point u,. As seen from Eq. (3.10),
contributions to the path integral are made only by such realizations
of the random force f(T) which transfer the system over a time 7, — 7,
from the state u, into the state u,.

The functional Z | f] determines the probability distribution of the
random function f(f). It is known (see [32]) that for a random
function of the white-noise type with correlators (3.6) we have

7[f()]= exp[ - ﬁﬂf(r)ﬁdf]. (3.11)

We shall regard hereafter in' this section the parameter «, which
characterizes the intensity of the random force, as small. '

It is of interest to calculate the probability density (3.10) in the
range of times

W|de| '>1,—1,>1 (%— ta>>|6w]_l),
where W is the probability of the transition from the focus f; to

another focus f, per unit time. In this case the system approaches
after the dimensionless time 7 — 7,~1 the focus f; and forgets the
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initial state u,. The “hop” into the point », from a certain point in the
vicinity of the focus f; is also rapid, within a dimensionless time ~1
(but has low probability).

If u, lies near a separatrix and the criteria indicated below are
satisfied, then the probability density of the transition (3.10) is expo-
nentially small. It contains a small parameter « in the denominator of
the argument of the exponential. Performing the calculation with
logarithmic accuracy, we shall determine only the argument of the
exponential and ignore the pre-exponential factor, which depends on
a weakly. In Eq. (3.10), following [32], it is convenient to change from
integration with respect to the random force & f~(fr) to integration with
respect to the trajectories Yu(r) of the nonlinear oscillator. As seen
from Eq. (3.5), the Jacobian for the transformation is independent of
a and influences only the pre-exponential factor, which is of no
interest to us. Within the adopted accuracy, it suffices also to separate
in the path integral the main exponential factor, which corresponds to
the extremal path. The probability density (3.10), with allowance for
Egs. (3.11) and (3.5), is then equal to

52
w(uy, s u, ; T, — T,) = const X maxexp(— %—5 ),
S= f dr £ (u,i), (3.12)
L(ua) =i —o(wu*)f, w(r)=u, u(1)=1u,.

Here 7, is the instant of time when the large fluctuation starts, that

_transfers the system into u,, , is a point in the immediate vicinity of
the focus (Ju, — ”j,|2 <S a), and the maximum is taken with respect to
the possible paths and with respect to 7, — 7,. In fact, it would be
necessary to integrate in Eq. (3.12) with respect to u, with an appro-
priate distribution function as a weight, but this integration would
influence only the pre-exponential factor.

The quantity .#“(u,u) in Eq. (3.12) can be regarded as the
Lagrangian of a certain auxiliary particle, and S as its action. Since
- does not depend explicitly on the time, it follows that 0.5/dr =
— E, where E is the particle energy (see [27]), and the condition that
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S in Eq. (3.12) be extremal with respect to 7, — 7, reduces to the
equality

E = |uf* — Jo(u,u*)* = 0. (3.13)

The probability W of the transition between states in the vicinities
of the foci f; and f, is determined, accurate to a factor ~1/2, by the
integral of the expression (3.12) with respect to the points u, in the
vicinity of the separatrix, and in the approximation adopted it is
necessary to find the extremum with respect to u, in this vicinity.
Since 9S/0u, = 0.2 /34, it follows that

88 = (4* — v*)duy + (4 —v)duf .

When the point u, is shifted along the separatrix we have du,/v
= duj /v*; therefore, taking Eq. (3.13) into account, 8S = —|i — o]
v~ '8u,. If the point u, shifts in the direction of the saddle, then
v~ '8u, > 0, and consequently from among the paths that terminate
on the separatrix, the extremal ones are those that pass through the
saddle point u,. At this point v =0, and according to Eq. (3.13) the
particle moves slowly near it (1, — 7,—> 00 as ¥, —> ). In the vicinity
of the saddle point, an important role is assumed by small fluctua-
tions about the extremal trajectory, which carry the system through
the separatrix within a time A7~1 with probability > 1/2. Therefore,
accurate to the pre-exponential factor, we can write W in the form

Q.

a

W = const X exp( - ), 0, = %szinffdfrl | —of,
o

(3.19)
u(0)~ uy, u(T)~u.

The criterion for the applicability of Eq. (3.14) is the inequality
Q,>a. (3.15)

It can be seen from Egs. (3.13) and (3.14) that calculation of the
probability of a transition between stationary states of a Duffing
oscillator has reduced to the solution of the variational problem of
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finding a minimum of the action

f‘ra"r1 | — o
0

for an auxiliary particle with zero energy, moving from the point u,
into u,. It is important that this particle is two-dimensional: it has
coordinates ¥’ and #” and corresponding momenta #’ — v’ and #” —
v” (v=1v"+ iv"”), ie., this particle has twice as many degrees of
freedom as the considered oscillator.

The only characteristic parameter of the §-correlated random force,
its intensity, enters in expression (3.14) for the transition probability
as the factor ! in the argument of the exponential. In the case of a
nonlinear oscillator interacting with a medium, as can be seen from
Eq. (3.6), a « T, i.e., the probability of the transition depends expo-
nentially on 7' ~! (with activation energy Q,7T/a). This result is valid
also for other subsystems that interact weakly with the medium.

%

3.4 Probabilities of Transitions Between Stationary States of a
' Duffing Oscillator at Relatively Large Frequency Detuning

The activation energy @, in expression (3.14) for the transition
probability depends only on the dynamic characteristics of the subsys-
tem. In the considered case of a nonlinear oscillator, in accordance
with Egs. (3.5) and_(3.14), Q, is a function of two dimensionless
parameters, 8 and . For any concrete values of 8 and Q we can
calculate Q, by solving numerically the Euler equation for the varia-
tional problem (3.14), (3.13). In the limiting cases it is possible to
~ obtain for Q,(B,) explicit analytic expressions. This can be done if
|| > 1 or if the values of B and { are close to the bifurcation values
and lie in the vicinity of the solid lines of Fig. 11. These limiting cases
are considered respectively in this subsection and in subsection 3.7.

Since two stable states exist only at y& >0, and Q, does not
depend on the signs of y and A, we shall assume hereafter that y >0,
>0 and A > 0. In terms of the real variables

u = Reu, " =Imu
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expressions (3.14) for O, and (3.13) for E take the form

2 2
(u' + ag” +eu’) + (12” - —ai, +eu”) },

du du

2

2
E=i+ i - (.37‘1 eu’) - ( o —a) =0 (316)

g(u/,u//) = %(u/2 + u//2 _ 1)2_ ul‘/f R €= Q—l’

and the extremal trajectories are described by the following Euler
equations:

The latter can be written in the form

dw _ du” AU d” du w5 L AU _g
de d’T eff a u 0 d1'2 eff a 7" ’
(3.18)
2 d 2 ‘
Uu, u”)———(ag,,+u)—-%(af, —-eu”), Koz = —Ag.

Equations (3.18) can be regarded as the equations of motion of a
charged two-dimensional particle with potential energy U(u/,u”) in a
transverse magnetic field whose intensity is proportional to 72 =
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~Ag. From the definition of the potential it can be seen that
U(w',u”) < 0. The shape bf the potential is quite complicated; at large
distances from the origin U(u/,u”) decreases rapidly (as —(u” +
u”?)?), while in the region (u + u”?)~1 the function U(«’, U”) has
three domes. The maximum value of U(u/,u”) is reached at the peaks
of the domes and equals zero. The peaks of the domes are located at
points corresponding to the foci f,, and to the saddle point of the
Duffing oscillator (this can be seen from the relation U(w',u")=
—(1/2)|o(w’ + iu",w — iu”)|*, where v(u, u*) is defined in Eq. (3.5)).

The complicated shape of the potential and the presence of a
coordinate-dependent magnetic field make it practically impossible to
describe analytically the motion of the auxiliary particle in the general
case of arbitrary B8 and §}. The character of the motion becomes
simpler in the case of a relatively large detuning of the external field
frequency relative to the eigenfrequency of the oscillaror, 3>1. In
the zeroth approximation in € = (1=, Egs. (3.17) have a solution that
corresponds to “fast” motion along a closed trajectory. This trajectory
is described by the equation g(u’,u”) = const. Motion over a closed
trajectory is in a certain sense degenerate: the periods of the oscilla-
tions are the same for ' and u”.

In Appendix D we obtain a self-similar solution to Egs. (3.17) with
the aid of an asymptotic perturbation theory (in the region 7~¢ ")
with- account taken of the degeneracy of the “fast” motion. In this
case the first-order corrections in € are determined from the secular
equation obtained when terms of second order are considered. As a
result we obtain for the quantity Q,, which determines according to
Eq. (3.14) the transition probability, the expression (D.13) in the form

of quadratures. It can be represented in analytic form at small 8.

According to Egs. (D.13) and (D.15),.the values of Q,, for a transition
from the focus f; (corresponding to the smaller oscillator amplitude),
and of Q,, for a transition from the focus f,, are given by the
formulas

Qu=1-8BYY  Q,=2/B, E<B<l (319

The constant {’ here is a quadrature of an elliptic integral, {’ ~0.98.
The dependence of Q,, on f8 in the region of small 8 (but B > €*)
is very steep. If the parameter B is not small (but, as before, € = ™!
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Figure 12 Dependences of the activation energies 0, and @, on B for the transitions
1>2and2—>1at Q> 1. :

<), then Q,, and Q,, can be calculated numerically from Egs.
(D.11) and (D.13). The results of the corresponding calculations are
given in Fig. 12 (the dashed curves are plots of the expressions (3.19)).
From Egs. (3.14), (D.13), and (3.19) and from Fig. 12 we can see the
dependence of the argument Q,/a of the exponential on the oscillator
parameters. Q,/a depends on the external field amplitude only in
terms of the parameter 8 o h%|8w| ™3, and Q,, decreases monotoni-
cally with the field, while Q,, increases. The frequency detuning 6w
enters in both 8 and (, and at fixed B we have according to Eq.
(D.13) Q, « |8w|. The damping parameter T’ at I' <|8w]| drops out
completely from the expression for Q,/a. In the considered case
€< 1, the values of Q,/a are proportional not only to a”!'>1 but
alsotoe™'> 1.

Special consideration must be given to the regions of 8 close to the
bifurcation values (3.9), ie., B~ €e?< 1 or (4/27)— B~€. In the
region B ~ €%, Eq. (3.19) for Q,, is not applicable, since the focus f, is
too close to the saddle point. To calculate Q,, we can use formula
(3.44) obtained in Sec. 3.7 for the transition probability near a
bifurcation point (this formula describes also Q,; at 8~4/27). Ac-
cording to Eq. (3.44), Q,, depends here on the relation between the
two small parameters 8 and e.

The expressions obtained for the transition probabilities W enable
us to determine the probabilities w, , of finding the system near the
foci f,,. The ratio of the probabilities w, and w,, taking Eq. (3.14)
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into account is equal to

w Wy 0ot — Qa2

™ = W, = = const X exp —"a—“ . (3.20)
With logarithmic accuracy, as seen from Fig. 12, at B, — B> ae
(Bo~0.013) we have w, < w,~ 1, and w, <w,~1 at B — B> ae.
In the region | B — Byl ~ ae the probabilities of both states are of the
same order of magnitude.

3.5 Probability of Escape of a System from a Metastable
Equilibrium State Located Near a Saddle Point

If a dynamic system is near a bifurcation point, the stochastic motion
of the system acquires a universal character and depends only on the
type of the bifurcation, but not on the details of the system. This
leads, in particular, to a simplification of the expressions for the
probabilities of the transitions between different states.

We consider a multidimensional dynamic system acted upon by
small random §-correlated (in time) forces f;(f) which have a Gauss-
ian distributions. The equations of motion for the dimensionless
dynamic variables x; of the system are

dt = P,(c,X) + fi(x, 1)

OO0 S 1Yo = 24,5, X)3(1 — 1),

Here ¢ = {c;} denotes the set of parameters of the system. Near the
bifurcation points ¢ = ¢, which correspond to emergence of a stable
stationary state and a saddle peint_(marginal points), we can trans-
form the variables in Egs. (3.21) in such a way that the functions
P,(¢c,x) acquire the form

(321)

Py(c,x) = ¢(c) — ZByx,x + -
P(c,x)= —;x; +2B],xx, (i>2), (322

o >0, lel < &, loj| <« 7, A/ =Red;
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(cf. [44], where analogous expressions in the absence of random forces :
are given). The parameter €, vanishes here at the bifurcation points,
and the variable x; describes slow motion of the system in the
bifurcation region (|x,| are assumed to be small). In Secs. 3.5 and 3.6
we shall choose the time scale such that min.&/; ~1.

In the absence of random forces in the region of small |x;| the
motion of the system has the following character: over a time ~¢,
(to=min// ~1) the variables x; with i > 2 relax to the values
x; = X,(c, x,), which at a given x, are stationary. Motion along x, is
substantially slower. Therefore in the region ¢ > t, it can be described
in the adiabatic approximation, assuming that x;, = X,(c,x,) (i=2).
Thus, the problem becomes one-dimensional.

It is shown in Appendix E that in the time range 7>z, a multidi-
mensional Markov random process x(¢) near a bifurcation point is
also described by a one-dimensional equation (cf. Eq. (E.9)). The
adiabatic approximation used in the derivation of Eq. (E.9) is valid in
the most favorable case ¢, = 0 accurate to corrections ~a'/>. The
EFP equation (E.9) corresponds to the Langevin equation

&z _dUsf7),  UE)=2(3b2~ k)  (323)
where
z= ¢31|_1/3xl N 7= a}/3t, b, = a1_2/3€1 R
b,= By,, a; = a;,(0,0), (3.24)
Ay = a0, i) fi(ma)> = 28(7i = 7).

In the absence of a random force, Eq. (3.23) has at by > 0 a stable
stationary point z = z, and a saddle point z = z;:

b \1/2 b\ 1/2
) ) e

which correspond to a local minimum and maximum of the potential
U(z) (sec Fig. 13; it is assumed for the same of concreteness here and
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U@

S ¥

Figure 13 The potential U(z) near the metastable equilibrium state.

below that b, > 0). Obviously, the state z, is metastable at sufficiently

small b.

The one-dimensional Markov process (3.23) can be investigated by

standard methods. In particular, it is of interest to determine the
probability W_ . of the escape of the system from the metastable
equilibrium state at b,>> b}/ In this case W, is small compared
with the reciprocal characteristic time |b,z,| of the motion of the
system near the equilibrium position:

Wm.s.<< IbZZOI = (b0b2)l/2'

As a result, the duration of the transition process itself is small
compared with_W . The probability W, ; is equal to the reciprocal
average time (7')"! durmg which the system stays near the equilib-
rium position. The quantity 7’ can be characterized by the average
time 7'(z, z,) required for the system (initially located at some point z
in the attraction region of the metastable equilibrium position) to
reach the boundary point z, chosen in a certain conventional way (see
Fig. 13). Starting from physical reasons, it is necessary to choose the
position of the boundary point z, such that the probability of return-
ing to the attraction basin of z, from the region z < z, be negligibly
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small. Therefore z, should be far enough to the left of the saddle point
z, corresponding to the maximum of U(z). Since far enough to the left
of z, the system “rolls off” rapidly, the time 7'(z,2,) depends weakly
(non-exponen’ually) on z.

The function 7'(z, z,) satisfies a known equation [47] for the average
time of the first passage through the boundary in the theory of
Markov processes (see also [46])

827(2,2,,) U A7 (2,2;) )
T E —az— +1="0. (3.26)
The boundary conditions for the function 7'(2, z,) follow from physi-
cal grounds. First, from the definition of the function 7(z, zb) as the
average time of first reaching the point z, (starting from 2z), it is clear
that

T (2y,2) = 0.

In the region of large positive z, the function 7(z,2,) tends to a
constant, and consequently

37 (2,2,)/9z>0  at z—>o0.

The last relation follows from the fact that in the region of large b,z
(and large |0U/9z|) the fluctuations have practically no effect on the
motion of the system. Therefore the time of motion from the point z
to z, (z > z,>> z,) is, according to Eq. (3.23), approximately equal to
by '(z; ' — z™") and remains finite as z —> co. Taking these boundary
conditions into account, we can write the solution of Eq. (3.26) in the
form

T (2,2) = f dx eV f dx’ e~ U (3:27)

The integral (3.27) for the potential (3.23) under consideration can be
calculated asymptotically at b3/2>> bl/? (ie., at a, < €/?B;'/?) by
the saddle-point method. The prmmpal exponential term is of the
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form
7 (2,2) = Wae= ——e%,
Vbob,
| (3.28)
3/2 32 "
_4ab” _4 s« :
Qe 32 3 a;B}/? (Qa>1).

In this approximation 7'(z, z,) is independent of z and of zp.

The argument of the exponential Q. in the expression for the
probability W,_ . of leaving the metastable state varies with the
distance to the blfurcatlon point (along the axis ¢,) like €3/2, and with
the fluctuation intensity like 1/a, (the argument of the exponential in
Eq. (3.14) is also inversely proportional to the intensity of the ran-
dom-force fluctuations).

The parameters ¢,, B,; in Egs. (3.22) are expressed in simple fashion
in terms of the set of parameters ¢ = {¢;}, which enter in the function
P,(c,x) in the initial equations (3.21) (before the latter are reduced to
standard form (3.22)). The bifurcation values ¢; = c;; are determined
from the condition det|| Py|| = 0, where P; = (9P, /dx ()x=x, aNd Xp are
. the coordinates of the statlonary point. The quantities —.«/; in Eq.
(3.22) are the eigenvalues of the matrix || P;||, with «'(cy) = 0 (some
M, can be complex). We denote by A the matrix that diagonalizes

= || Pl at ¢ = cp:

RPATY = -5,

Expanding the functions P, in Eq. (3.21) in powers of ¢ — ¢z and
X — Xop (Xop is the value of x, at ¢ = ¢p) and transforming from the
variables x to new variables A(x — o) (Which coincide, accurate to
€;, with the variables in Eq. (3.22)), we obtain
3P(c,x)
€= E.Aljja—c (C — CB),
J

e B
Byy=- ZmZHJAle Amla ox. (3:29)

a=ap = 2 A;05(Xop > XoB) Ay 5

where the derivatives are calculated at x = xo and ¢ = cg.
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Equations (3.28) and (3.29) yield a simple expression for the proba-
bility of escape from the metastable state in the general case of a
multidimensional and a multiparameter system (situated, however,
near the bifurcation curve in the parameter space). An example of the
application of these formulas to a nonlinear Duffing oscﬂlator will be
presented in Sec. 3.7 below.

3.6 Fluctuations Near the Coalescence Point of Two Stable States
of a Dynamic System

Near the spinode point on the bifurcation curve, at which the stable
states coalesce (the point K in Fig. 10), the coefficient B,;; in Eq.
(3.22) tends to zero. Accordingly, the right-hand sides of the equa-
tions of motion (3.21) at ¢ = ¢, (the values of the components of ¢
correspond to the point K) and at stationary values of the variables x
(which are assumed equal to zero at the point K) satisfy, after the
variables are transformed in a way similar to the one used above, the
relations

P,
(Pi)K=0, (a—xj) - .2/,81], J{1=0,
(3:30)
o’P
Reo;5; >0, (—‘) =0.
K

xi

Near the spinode point K, just as in the case considered in the
preceding section, the motion of the system can be divided into fast,
with a characteristic time ~min(.«/;/ "), and slow. In the region of

-long times the slow motion is one-dimensional and, as shown in

Appendix E, is described by a one-dimensional EFP equation. Ac-
cording to Eq. (E.10), this equation is of the form

(a_w) %;2‘%, U(z)=z( dyz° —5d,z do),

(331)

z=a; *,, T =al’%, d; >0
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(expressions that relate d,, d,, and d; to the values of the derivatives
of the functions P;(c, x) at the point K and to the distance to the point
K in the space of the parameters ¢ are given in Eq. (E.11)). The error
due to the use of the adiabatic approximation at the point K is of the
order of a]/*.

At sufficiently long times, the probability distribution tends to a
stationary solution w(z) of Eq. (3.31):

we(z) = Z 'exp(— U(z)), Z= f_ wwdz exp(— U(2)). (3:32)

Depending on the relation between the parameters d,, 4, and d; the
potential U(z) in Eq. (3.32) can have one or two minima correspond-
ing to one or two stable equilibrium positions of the system in the
absence of a random force. The conditions for the existence of two
minima of U(z) (separated by a region in which U(z) has a local
maximum corresponding to a saddle point) are the inequalities

_ 3(3d;)'"d

<
d, >0, JA<1, 2T

(3:33)

~ The region of values of ¢ where the inequalities (3.33) are satisfied is

bounded by the curves in Fig. 11. In this region, wy(z) has two
maxima corresponding to the minima of U(z), and outside this region
it has one maximum.

The character of the fluctuations in the system depends essentially
on the distance to the point K, which determines the depths of the
minima of the potential U(z). At d,>> d1/? the minima of U(z) are
deep, and the maxima of w,(z) are exponentially sharp respectively.
In this case, if |A] < 1, the system stays relatively long near one of the
stationary states, experiencing small fluctuations, and only rarely goes
over to another state. The ratio of the populations of the states is in
this case, with logarithmic accuracy,

w, ‘
— =expdU, sU=U,—- U,
W
(3:34)

Ui, =U(21) ( %’g )z=zl~z= 0.

It is convenient, taking Eq. (3.34) into account, to represent the
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potential difference 6U in the form
8U = 8Ud%d; ",
where 8U = §U (A) is a function of a single parameter A, and

at Ak,

(3.35)
80 = % A[l— 3a —|A|)] at 1— A<

We have assumed here z, > z,. It is seen from Eq. (E.11) that A does
not depend on a,, while U ac a; .
The probability W,, of the transition from the state 1 into 2 can be

determined with logarithmic accuracy in the same way as in Sec. 3.5:

W, = const X exp(— Q,,)
(3.36)

Oun=U—-U;= —8U1s(A) U, = U(zy).

The posmon of the saddle point z, is defined here as the middle root
of the equation dU/9dz = 0. The functlon 8U,, (D), just as 3U(D), is a
function of one parameter A and takes in the limiting cases the form

SUIS(A) = + BTA at IA' < 1,

8U1S(A)=%[1—-(1 )] at 1-A<1, (337
80, (0)= 10 (1+4P2  at 1+A<L
276

The argument of the exponential in the expression for the transition
probability W),, can also be represented in the form (3.36), and it is
clearly from symmetry arguments that 8U23(A) 8U,,(—A). AtA=0
the probabilities W, and W,, are equal. It is obvious that W,/ W,
= w,/w,. Since the problem has been reduced to one-dimensional
and the motion is potential, expression (3.36) for W, (just as (3.28)) is
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of the same style as the expression for the probability of the escape of
a Brownian particle from a potential well, given in the well known
paper of Kramers [36].

In the region of the values of the parameters d, << dJ/2 the maxima
of the function w,(z) cease to be sharp, and the concept of the
probability of a transition between equilibrium positions becomes
meaningless. In this case the dynamics of the system in the region of
long times 7/ >> .o/ "' is characterized by the time correlation func-
tions of the type (z(7)z(0)) for the slow variable z = a; /*x,. It is
convenient to determine such correlators by starting from Eq. (3.31).
Carrying out in Eq. (3.31) the standard separation of the variables
(see, e.g., |41, 48, 49)

wzr)=3 C,,e—"-"exp[ -1 U(z)]\p,,(z), (338)

we obtain an eigenvalue equation for the functions ,(2):

d%, [14d%U _1({dUy
Tt ) e 0w

This is a Schrodinger equation with a potential that presents,
according to Eq. (3.31), a polynomial of sixth degree in z (cf. [49]).
The lowest eigenvalue in Eq (3.39) is A, =0. It corresponds to the
eigenfunction Yo(z) « exp[—(1/2)U(z)}, which has no nodes (the
stationary distribution w (z)  $3(2)).

The behavior of the time correlation functions at large 7’ is deter-
mined by the lowest nonzero eigenvalue A;:

(z(1")2(0)) x exp(— A7) = exp(—Aja(’%), >

The dependence of A,d; /2 on the parameters d,d; /2 and dody™'/*
was determined by numerically solving Eq. (3.39). The results are
shown in Fig. 14 (the sign of the quantity plotted as abscissa in the
analogous figure 3 of [46] must be reversed). In particular, at the
spinode point itself, i.e. at dy = d, = 0, we have

A~ 1.37d272,
(340)

{z(1)z(0)) exp[ - l.37(d3a,)'/zt], (dsa))'’t> 1.
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0
J’J:.‘____.

Figure 14 Dependence of the decrement A, on the parameter d,d; '/%. Curves 1-4
correspond to the values of the parameter dody '/* —0, 2, 5, and 10.

We note that at large |dg|d; '/* the dependence of A,d; '/? on
d,d;'/? has a rather sharp maximum and a relatively smooth mini-
mum. The maximum is located at positive 4, in the region where the
dynamic system has one stationary state. Analytic expressions for A,
can be easily obtained at large —d,d; '/? or at large |dpld; '/%. In
both cases, the potential in the Schrodinger equation (3.39) has one
deep minimum and is described near the minimum by a parabola. As
a result of a simple calculation we obtain for the energy of the first
excited level

A\ = —d, +3d,'dy + 3did %d,

at (= dd; V2> ldofds V4 —didy V>,

,

A =3d2Pd}3+ dy at |do|dy V4> |ddy PP, |dldy V4> L

It is seen from these expressions that in the region of negative
d,d; '/? with large absolute values the curves in Fig. 14 take the form
of the straight line A, d;" /2 = —d,d;" '/, and at large |d,|d; '/* and
small |d,d;”'/?| the dependence of A, on d, has a positive slope.
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3.7 Fluctuations Near the Bifurcation Points of a Nonlinear Duffing
Oscillator in a Resonant Field

3.7.1 Marginal Points The bifurcation of a Duffing oscillator in a
resonant field, as is clear from the results of Sec. 3.2, pertain to the
types considered in Secs. 3.5 and 3.6. When the lines BB(Q) described
by Eq. (3.9) are intersected on the ( 8,%) plane (see Fig. 11), a new
stable and unstable equilibrium state appear (or vanish) (bifurcations
of codemension 1, see [44]). At the point K, the three equilibrium
positions coalesce (bifurcation of codimension 2).

Since bifurcations arise only at y2 > 0, this inequality is assumed
hereafter to be satisfied and we put for convenience ¢ >0and k>0
The equations of motion (3.5) of the considered Duffing oscillator,
now expressed in terms of real variables

d ! d ” 1 .l
d_';=“§—u (luf* - D+&f ()

d i ” 4 ~l/
B = (P — 1) = B+ (),

(3.41)

r=|8a|t, T>0,

are similar in form to Egs. (3.21). The stationary values of u’ and u”
at the bifurcation values of the parameters 8 and § are

un=B5 p(p— 1) uip=—Bs 0",

p = (o) + (e = (1= 30797 (14 8723 B5). 342)

Bs= B 1.2)(;‘;)

(the parameters B and §? are connected by relation (3.9) and lie on
the solid curves of Fig. 11).

It is easy to verify that near the bifurcation points the variable «” in
Eq. (3.41) describes the slow motion: the terms linear in (4’ — ugg)
and (u” — ufy) drop out of the equation for &#” (this is the conse-
quence of the choice of the phase of the external field in Eq. (3.1)). It
is therefore easy to reduce Egs. (3.41) far from the point K to the
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standard form (3.22) with coefficients
B — Bs(®)
2 Bu(]"”

By, = p[ Bo(®)]™[5p — 3+ 32 - )'(p - V]

Substituting expression (3.43) in Eq. (3.28) and recognizing that in the
considered case a; = of2 2 in accordance with Egs. (3.6), (3.21), and
(3.24), we find that the argument Q; of the exponential in the
expression for the probability of the escape of the nonlinear oscillator
from the metastable equilibrium state is of the form

€ =¢(B, Q) =
(3.43)

G,(& ~
0= %9 5 gy,
5 (3.44)
~ 02
G, (§) = Tz $

1B B

The dependence of the coefficient Ga(ﬁ) on the dimensionless fre-
quency detuning is shown in Fig. 15, where curves 1 and 2 correspond

tn Gy

Figure 15 Dependence of the coefficient G,({) in the expression for the Duffing-
oscillator transition probability (from the metastable state) near the bifurcation point
on the dimensionless frequency detuning. Curves 1 and 2 correspond to the lower and
upper curves of Fig. 11, respectively.

e, . g i+ A AT B e
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respectively to the function B{Y() and B(2) (3.9). At small €~ we
have asymptotically G D)~ (2/3)F and GO() ~ 4.5 (expression
‘ (3.44) coincides at > 1 with the results obtained in [29] by an
essentially different method). With increasing (-1, the functions
G!Y(Q) and GP(Q) first decrease sharply and approach each other.
In the immediate vicinity of the spinode point K (@' =1 / V3) they
increase, owing to the vanishing of the coefficient B, (&) at &' =

1/V3.

3.7.2  Spinode Point To consider the motion of a nonlinear oscilla-
tor at values of 8 and  in the vicinity of the point K on Fig. 11
(Bx=8/27, 9} = V3 ) it is convenient to transform in Eq. (3.41) from
the variables ' and u” to the new variables x; and x, introduced
above in Egs. (3.22) and (3.30) for the description of the slow and fast
motion, respectively, in the vicinity of the spinode point

1
V3

Y A N ” ”
X, =u ug, Xy =u' —ux + (" — ug),

(3.45)
uk:—i, u}é:—i.

2

Neglecting in the equation obtained in this manner for x; at 7>> 1 the
small terms ~x3 and xix, (|x,| < |x,|), we can rewrite this equation
in the form

ﬁ=— x3+c§‘x +dy+ L
ar 3%+ ayxy +d ﬁf(T)’

- 9B(B-Bx)+4&~-0)
122 ’

(3.46)

The EFP equation corresponding to (3.46) is of the same form as Eq.
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(3.31) in which, taking (3.6) into account

L (3Y" - 93 (B Be)+ 42— L)
0= (_) - 25/231/4,3/4 ’ a7
. 6-8
dy=+]3 d=>""X.
o (3a)1/2

Thus, the fluctuations of the oscillator in the vicinity of the point K
of Fig. 11 are described by Egs. (3.34)—(3.37) (see also Fig. 14), which
were obtained for the general case of systems situated near a spinode
point. The dependences of the parameters A, d;, and d; in these
equations on the characteristics of the dynamic subsystem, i.e., on the
frequency detuning and the amplitude of the resonant field in the
concrete case of a Duffing oscillator, are determined by Egs. (3.33),
(3.46), and (3.47). Expressions (3.36), (3.37), and (3.47) for the proba-
bility of the transitions between the stable states of the Duffing
oscillator could have been derived also using the independent method
[29], which is described in Secs. 3.3 and 3.4 (and is not connected with
the proximity to the bifurcation point), and solving explicitly Egs.
(3.17) for the vicinity of the point K.

As the point K is approached, the characteristic activation energy
of the transitions 1 >2 or 2— 1 between the oscillator states, as can
be seen from Egs. (3.36) and (3.47), decreases like (& — & «)*- The line
Bo(2) (in the space of the parameters 8 and Q), where the populations
of the stationary states w, and w, are equal, is determined in the
vicinity of the point K from the condition A =0, i.e., dy = 0 (see Eq.
(3.33)), whence

Bo(ﬁ) ~ Bx{l - ‘\/g; (Q - QK)]

Using this result for the segment of the curve BO(Q‘z) adjacent to
¢ =8, and the value of B, obtained in Sec. 3.4 at $~'—0, and
taking into account the monotonic character of the dependence of S,
on £~2 (which is obvious from qualitative arguments), we can obtain
the interpolation curve for Bo(ﬁ"z) shown dashed in Fig. 11.
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3.8 Features of Resonant-Field Absorption

A nonlinear Duffing oscillator in a resonant field was recently investi-
gated in connection with nonlinear-optics problems. For example,
using the Duffing-oscillator model to describe the medium, it is
possible to analyze within a unified approach optical bistability, phase
conjugation in reflection from a nonlinear medium, and a number of
other effects [50]. In the context of optics problems, it is of interest to
calculate the absorption of intense radiation by a nonlinear medium,
and also to calculate the response of a nonlinear nonequilibrium
" medium to an additional weak signal. Analysis of the absorption of a
strong and an additional weak field can be applied also to other
systems simulated by a Duffing oscillator.

Without account of the fluctuations, when the dependence of the
oscillator amplitude on the field becomes S-shaped (see Fig. 2), the
field dependence of the absorption coefficients exhibits hysteresis.
When account is taken of the fluctuations, the hysteresis vanishes (in
the quasistationary regime, i.e., at a sufficiently long observation time
compared with the characteristic time W,;' + W,;' within which the
distribution over the equilibrium states f, and f, is established).
Although the dynamic characteristics of the oscillator become single-
valued, they have peculiar features when the relation between the
field & and the frequency detuning dw is such that S~ 6(,(9) ie.,
when the probabilities w, and w, of the occupation of the stable states
are comparable. v

3.8.1 Strong-Field Absorption We consider first the absorption of a
strong resonant field by a Duffing oscillator. The power / drawn from
the field, upon averaging over the period 27w ™' and over the realiza-
tions of the random force, is given by

I= d"h’ ——h2 Imi 348
={ 5 heoswr ) = wiglw,. mii, (348)

Equation (3.48) is valid in the case of sufficiently weak random
forces, when the fluctuational variations of #, about the stable station-
ary values i, are in the main small (compared with l@ - A small
fluctuational straggling of the amplitude near the foci f, , necessitates
corrections ~a to Eq. (3.48). These corrections are of a type similar
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to those considered in Sec. 2 for the equilibrium oscillator (there,
however, a was not assumed small and the corrections were suostan-
tial, whereas here they can be disregarded). The populations of the
states w; have a non-analytic dependence on « (like exp( Q,;/a), so
that perturbation theory in a cannot be used to calculate w; and the
special methods considered in Secs. 3.3, 3.4, and 3.7 must be used.
Equating v(u, u*) in Eq. (3.5) to zero we can, taking Eq. (3.4) into
account, express @), in terms of |uf| where |uj|2 is the smallest (at
i = 1) and largest (i = 2) root of the cubic equation (3.8) (the interme-
diate root corresponds to a saddle point). After this we obtain for the
quantity p = 21/h? which determines the absorption coefficent,

»= I2( wilug [ + wilug ). (3.49)

28|

At small & and accordingly at small 8 we have w, > w, (cf. Egs. (3.19)
and (3.20)) and

p=———ly j,!z B < B

2ﬁ|8 28|80

(at B < B§ (&) there exists on the whole only'one equilibrium state).
Using Eq. (3.8), we easily verify that |u, I’8 ! increases monotonically
with increasing B. Therefore p also increases monotonically and
smoothly at 8 < B,. In the region 8~ fB,, at a relatively small change
(proportional to the small parameter a) of the parameters h or dw, the
expression in the parentheses in Eq. (3.49) changes abruptly (at an
exponential rate in accordance with Eq. (3.20)) from ju,|” to Ju;J* or
vice versa (when k is increased and 8w is fixed, the transition is
precisely from |u,]> to |u’). A somewhat blurred kink appears
therefore on the plot of p(h) in the vicinity of 8 =~ B, (see Fig. 16). To
the right of the kink

p= “lza B>B0'

e
zp'swlZ T2

At B, > -2 the value of p decreases withiincreasing B to the right of
the kink because of the decrease of |u|’8 ~'.
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I

h, h

Figure 16 Schematic representation of the dependence of the strong-field absorption
coefficient g on the field amplitude k. At h = h, the populations of the stationary states
of the Duffing oscillator are equal.

3.8.2 Absorption of Additional Weak Field Besides the investigation
of the absorption of a strong field at frequency w, it may be of interest
to study the absorption of an additional weak field &’ at another
frequency «’. To determine the corresponding quantity ' = 21’/h
in the resonance region o’ — w|~|w — wy| We can include in Eq. (3.2)
a term h'cosw’t and solve Eq. (3.3) (in the absence of the random
force) with account taken of the term o #’, by linearizing this
equation with respect to 8i; « h’. Then

1+ (&= & — 20w, ) — PJuy)*

2
= 2 Wip'; > I"i, = A - =
i=1 2r (V12 — 9/2)2 + 4072

(3.50)

=14+ QP3lult -4y +1)  (@>0).

According to expressions (3.50), the spectrum u’(ﬂ’) consists of two
partial spectra p, whose intensities are comparable at 8 = f,. The
structure of the spectra /() is determined by the values of |uf]2 At

€2|uf‘_|2 >1
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the spectrum y,(SZ) has two maxima (which are generally speaking
broad), between which there exists a region in which g/ <0, ie., the
weak field is enhanced by the strong one (but the absorption inte-
grated over the frequency ' is positive and is equal to «/2).

Thus, at a strong-field amplitude / corresponding to B ~ 8, we can,
by slightly changing A, not only alter greatly the absorption coeffi-
cient w’ (by going from the region § < S,t0 8 > BO, i.e., from p’ =~ p;
to w' =~ p5), but even reverse the sign of p’, ie., transform from
absorptlon to enhancement of the weak field. If |uf|29>>1 (in this
case 2> 1), the function p; has relatively narrow peaks at the
frequencies ' ~ = »,. The widths of these peaks are ~1 (of the order
of T in frequency units), and the distance between them is considera-
bly larger (~,). One of the peaks corresponds to-absorption and the
other to enhancement of the additional weak field.

3.8.3 Narrow Absorption Peak of Additional Weak Field In the
region |& — w|~ W21 + W,, there is produced, besides the absorption
(or enhancement) ', which is described by Eq. (3.50) and is due to
the small-amplitude oscillations about the equilibrium positions f, ,,
induced by weak field #’, also an additional absorption i’ due to the
field-induced redistribution over the states f) ,. This redistribution can
be easily calculated in the case

lo" — w| < T, |86 (3.51)

In the absence of an additional weak field, the populations of the
stable states w, and w, satisfy the balance equation

% = —Wpw + Wyw,, wi+wy,=1. (3.52)
The transition probabilities W depend on the strong-field amplitude A
as a parameter (obviously, W is independent of the rapidly changing
phase of the strong field). If the condition (3.51) is satisfied, the
presence of the additional weak field can be interpreted as slow time
modulation of the strong field: 4 is replaced in Eq. (3.3) by

h(t)=h+ I exp|i(e/ — w)t].
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Since the duration of the transition process is ~|w|~ Vor ~T7! (~1
in the scale of the dimensionless time 1), the field h(t) can be regarded
as constant during the time of the transition itself if (3.51) is satisfied.
However, the time dependence of h(¢) leads to a parametric depen-
dence of W on the time. Recognizing that W is the function of only
|A| (e., B?), we obtain in first order in A’

oW,
Wy(1)= W, +2 8,81 VBB’ cos(e’ — w)t,

(3.53)
3|v|A?

EWij(:B), B'=W'

The dependence of the transition probability on the time leads to
time-dependent addition to the populations w, and w,. In first order
in A’ it follows from Eqs. (3.52) and (3.53) that

WZI

= (0 ’ 0) —
w;=wi’+ w wp =
’ W+ Wy~

(3.54)

exp[i(w’ - w)t]
Wi+ Wy +i(w —w)’

w3 W
w/1 = =2 Bﬁl 21 i( 12)

Wi+ Wy a8\ Wy

Expression (3.54) can be transformed by taking into account the
relation (3.14) W;;  exp(— Q,;/ @) (Q,; is the activation energy of the
transition from the state 7). Since Q,; > a, we have

aVVijN_laQai
B~ o OB

and

V .3,3 a Wi W, CXP[’.(“’, - “’)t]

(Qal Qa2) W + W21 Re

(3.55)

W12 + W21 + i(w’ - w) ’
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The expression for the power I’ drawn from the weak field on
account of the redistribution over the oscillator states, which is
induced by this field, may be easily shown to be

- 2
I'= —h’wlmigl(z'i,)fi[w;(t)]w,exp[—i(w’ —w)t]  (3.56)

(the brackets [...], indicate that it is necessary to retain in the
corresponding quantity only the term o exp[i(«w’ — w)t]). Taking Eqgs.
(3.54) and (3.55) into account, we find, that in addition ' to the
absorption coefficient is

- ‘/E WiaW

Y Y
B7 7 2afba] Wi+ Wy, aB(Q“' Quz

Wit Wy +i(0 —w)

)Im

(3.57)

The absorption fi’(w’) has a very sharp maximum (with a width
~(Wy+ W), that is much smaller than the characteristic width I’)
in the region &' = 0 (|’ — | < ). In the vicinity of the point 8 = B,,
where W, ~ W,,, the height of the peak of i’ is independent of W
and is proportional to the large quantity Q,/a, i.e., it exceeds the
absorption (3.50). Outside the vicinity of the point 8 = S,, the height
of the peak of ji’ is proportional to the ratio of the smaller transition
probability W to the larger, ie., it is exponentially small. The
presence of such a specific absorption peak in the vicinity of a
“first-order kinetic phase transition” (8~ B,) makes it possible to
observe the transition itself. The peak is of interest also from the point
of view of applications: it makes it possible to compare with high
accuracy the frequencies of the strong and weak fields. The frequency
error is ~ W, and thus can be smaller by many orders of magnitude
not only than the frequency w of the strong field itself, but also than
the small damping decrement I'. If the oscillator Hamiltonian con-
tains a term o ¢° the average static dipole moments of the stable
states are different and an analogous relaxation-type peak occurs at
low frequencies

&S W, + Wy
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§4 Quantum Theory of Nonlinear Oscillator Interacting with a -
Medium

The classical theory of relaxation of a nonlinear oscillator interacting
with a medium, developed in the preceding sections, is obviously
applicable only at sufficiently high temperatures. At low temperatures
there appear specific quantum effects connected with the discrete
character of the energy spectrum. For example, since the levels of the
nonlinear oscillator are not equidistant (see Fig. 1), a fine structure
appears in the spectral distribution Q(w) of the correlator of the
coordinates in the case of small damping. The individual lines of the
structure correspond to transitions between various neighboring lev-
els.

The standard method of describing relaxation in quantum statisti-
cal physics is the method of the quantum kinetic equation (QKE). It
is usually employed for systems with a small number of levels, since
the number of relaxation parameters increases rapidly with increasing
number of levels. An oscillator is in this sense a singular system, since
it-has an infinite number of levels, while the damping is described by
a small number of parameters. Frequently only one parameter is used
at all: in the classical limit this parameter corresponds to the coeffi-
cient of proportionality of the friction force to the velocity (see Eq.
(1.1)).

The relaxation described by linear friction is due to decay processes
(see below), in which the oscillator goes over from one level to a
neighboring one. Since the energy spectrum of a harmonic oscillator
is equidistant the energy change in such transitions is the same for all
levels. It is this which allows us to introduce one damping parameter.
Since the spectrum is equidistant, the matrix elements p(m, n; t) of the
density matrix with identical m — n oscillate with the same period
(like exp[— iwy(m — n)t]). They are therefore coherent and become
mixed with one another in the course of relaxation. This complicates
significantly the problem of oscillator compared with the case of a
two-level system or a system with an essentially nonequidistant spec-
trum. At the same time, the total degeneracy of the Bohr frequencies,
which is a characteristic of the harmonic oscillator, makes it possible
to obtain a simple solution of the problem in the case of linear friction
[4, 11, 12].

The anharmonicity of the oscillator makes the energy spectrum
nonequidistant. This suppresses partially the mixing of the off-
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diagonal matrix elements p(m, n; ). Obviously, the degree of suppres-
sion depends on the relation between the non-equidistance of the
energy levels (see Fig. 1) and the reciprocal relaxation time T. If
| V| <« T, the matrix elements p(m,m + n) (with different m) manage
to die down within the time necessary for their phases to become
mismatched as a result of anharmonicity, i.e., the anharmonicity has
practically no effect and the solution obtained for the harmonic
oscillator can be used. If, on the contrary, |V|>T, the variation of
the phase difference is fast compared with the relaxation (at the same
time the frequency w, can exceed | V| considerably, i.e., the nonequi-
distance” of the levels is small), and the damping has the same
character as for a system with a strongly non-equidistant spectrum.

At |V|~T the problem differs qualitatively from the completely
degenerate problem of the harmonic oscillator and, at the same time,
the multilevel character of the system manifests itself strongly. This
intermediate case is the most complicated and most interesting. In the
general case of arbitrary relation between ¥ and T’ it appears to be
possible [21] to obtain for the problem with linear friction, in quan-
tum as well as in classical theory, an explicit expression for the time
correlation function Q(#). Its form at |V|=T differs substantially
from the simple exponential function that describes the relaxation of
a harmonic oscillator.

At |V|>T the spectral distribution Q(w) of the time correlation
function has a clearly pronounced fine structure. The individual lines
(partial spectra) correspond to transitions between different neighbor-
ing levels of the oscillator (see Fig. 1), and are spaced in frequency
~ | V| apart. With decreasing | V| the lines overlap. However, a formal
representation of the spectral distribution of Q(w) in the form of a
sum of partial spectra corresponding to the individual transitions
turns out to be possible also at |V| ST, but here the partial spectra
are distorted by the interference between the different transitions that
make up the spectrum Q(w) (corresponding to the interference of the
off-diagonal matrix elements of the density matrix).

The character of the oscillator relaxation depends not only on the
nonequidistance of the energy levels, but also on the form of the
effective friction force determined by the interaction with the me-
dium. If the friction force has a nonlinear dependence on the oscilla-
tor velocity, the damping of the correlation function Q(#) becomes
nonexponential, and the peak of Q(w) has a non-Lorentz shape even
if the energy levels are equidistant (' = 0). The reason is the depen-
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dence of the effective damping decrement on the vibration amplitude
in the case of nonlinear friction, as a result of which the decrement
changes with changing amplitude, and the damping on the whole is
nonexponéntial. In contrast to the internal nonlinearity of an isolated
oscillator, the nonlinearity of the friction does not lead to the onset of
a fine structure of the spectrum.

In Sec. 4.1 and in Appendix F below we shall obtain and solve, by
the generating functions method, a generalized quantum kinetic equa-
tion for a nonlinear oscillator with linear friction. These results are
used in Sec. 4.2 to determine its time correlation function, and an
analysis of the spectral distribution Q(w) is given. The results of Sec.
4.1 are used also in Sec. 4.3 to investigate the effects of interference of
transitions, and the paradox of the harmonic oscillator is analyzed
from this point of view. In Sec. 4.4 the results of Secs. 4.1-4.3 are
generalized to include the case of an oscillator with nonlinear friction;
in particular, the role of nonlinear friction is discussed in the classical
limit.

4.1 General Expressions for the Time Correlation Functions of a
Quantum Oscillator Interacting with a Medium

4.1.1 System of Differential-Difference Equations Describing the Re-
laxation of an Oscillator The Hamiltonian of a Duffing oscillator
interacting with a medium, expressed in terms of the creation and
annihilation operators 4* and 4 for the oscillator oscillations and 4,
and 4, for the continuous-spectrum vibrations, takes the form

H=Xy+H,, y=Hy+H,, Hy=wh+iVi’ hAi=ad+a,

4.1

H, =S wdté, H=2¢(ow) "a+a")a+a}), h=1
k k

Here, as in the preceding sections, the medium is simulated by a set of
vibrations of a quasi-continuous spectrum. The interaction H, in Eq.
(4.1) is chosen linear both in the coordinates of the Duffing oscillator
and in the coordinates of the oscillators of the media (a more general
case is considered in Appendix F and in Sec. 4.4).
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In quantum theory, the time correlation function of the operators L
and M, which depend on the dynamic variables of the singled-out
oscillator, is defined by the formula

(L(OM(0)) = Z ~'Tr(eLe™H'Me=H/T), Z =Trexp(— H/T).
4.2)

The functions of such type, on the one hand, describe the relaxation,
and on the other they determine the linear response to external
perturbations of various types and can therefore be directly measured
in a number of cases. Greatest interest attaches to calculation of the
time correlation functions in the region of relatively long times

1> 1, = max(w; o, )

(w, is the characteristic frequency at which the density of states of the
medium, weighted with allowance for the interaction, has a maxi-
mum.) The behavior of the correlators in the region > ¢, in the
considered case T'r, < 1 determines the shapes of the peaks of their
spectral distributions.

To calculate the correlators, it is convenient to transform to the
interaction representation and to introduce the operator

A i i ! 7
U(t) = e oleH1 = tlexp[ —ij(; dt, Hi(tl):l’
(4.3)
H(1) = e™v'H e~

where T, is the chronological-ordering operator. Then, recognizing
that L and M act only on the wave functions of the singled-out
oscillator, we can rewrite Eq. (4.2) in the form

(L(H)M(0)) = Tro[ e™oLe™MF, (1],
(4.4)
Fy(t)= Z7'Tr, [ U()Mexp(— H/T)U'(2)]

Here Tr, and Tr,, are respectively the traces over the wave functions
of the isolated oscillator and of the medium.



bartons4


356 M. 1. DYKMAN AND M. A. KRIVOGLAZ

It is seen from Eq. (4.4) that F,,(¢) is an operator in the oscillator
wave-function space. This operator describes the oscillator relaxation
due to the interaction with the medium, and is a generalization of the
density matrix. The elimination of the vibritions of the continuous
spectrum as dynamic variables, carried out by introducing the opera-
tor F,(f), is analogous in a certain sense to elimination of the
oscillators of the medium in the classical theory (see Sec. 2.1). It is
shown in Appendix F that F, (¢) satisfies the quantum kinetic equa-
tion (F.14) written in operator form.

For concrete calculations it is convenient to transform from the
operator F,,(f) to its matrix elements

Fyg(mm3 1) = (n|Fy (1)), (45)

taken on the wave functions |n), which are the eigenfunctions of
fi=a%*a (i.e., the eigenfunctions of the harmonic oscillator). From the
operator equation (F14), with allowance for the relation

(nl@(t)lm) = m'/%

n+1,m

exp[ —iwgt — iV (m — )t]
(46)
(d(2) = exp(ic’yt)d exp(— it o 1)),
follows a system of differential-difference equations for Fy,(n, m;1):

F )y (n,m; 1)

31 = %:dj(n, m)exp[ —iVy(n— m)t]FM(n +j,m+ j; 1),
(4.7)
where - _
do(n,m) = —T(n) = T(m) = i(n — m)P,
48)
der(mm)=2A+4+4)[(n+ 4= 3)(m+3£1)]"
4=0 at |j|>2 (4.9)

T(n)=[nQA+1)+A]T, 7=7(w), A(w)=[exp(w/T)—1]".

(4.10)
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The expressions, for the damping parameter I" and for the frequency
shift P in Egs. (4.8) and (4.10) coincide with Eq. (2.15) in the
considered case of bilinear interaction (4.1), and are determined by
formula (F.15) in the more general case of the interaction (F.11). For
Eq. (4.7) to be valid it is necessary that the interaction be weak and
that the relaxation parameters have a smooth dependence on the
oscillator frequency, as well as that the oscillator nonlinearity be small
enough ‘

: T,|P|<wy,w,,T,
@4.11)
<1, Wenen<r

dr

du,

drP

dw,

>

J The initial condition for Eq. (4.7) takes according to Eq. (F10) the
form :

Fp (n,m;0) = Zg 'M,,.exp(—wgm/T), M, = (n|M|m),
(4.12)

Zy=7+1.

In addition to the corrections ~I'/ T omitted here we have discarded
in the argument of the exponential the term (1/2)Vm?/T as com-
pared with wgm/T; this is valid for actual m <7 by virtue of the
condition (4.11).

Equation (4.7) demonstrates the connection, which is typical for the
oscillator problem, between the matrix elements F, (n,m;f) and
Fy(n+ j,m+ j; t). In contrast to the case of the harmonic oscillator,
however,sthe coefficients in Eq. (4.7) depend explicitly on the time.

4.1.2 The Method of Generating Functions Obviously, the function
Fy(n,m; 1) is linearly related to the matrix elements of the operator
M. It is convenient to single out this relation explicitly by introducing
the Green’s function G(n,m; m’,n’; t) for Eq. (4.7) with the aid of the
-formula

Fy(n,m;t)y =3 G(n,m;m',n';1)Zg 'M,,,,.exp(—wom’/T) (4.13)

m',n
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Obviously the Green’s function G(n,m;m’,n’; t) satisfies Eq. (4.7);
all that changes is the form of the initial condition. Taking Eqs 4.7,
(4.12), and (4.13) into account we have

0G(n,m;m’,n’; t) ) ‘
a7 = %dj(n,m)exp[ —iV,(n — m)t]

XGn+jm+jm,n; 1),
, (4.14)
G(n,m;m’,n’;0) = X

nn mm

The system (4.14) of differential-difference equations for the
Green’s function G(n,m;m’,n’;t) can be solved for arbitrary |V|/T
by the method of generating functions (a similar method was used in
[11] to solve the kinetic equation in the case of a harmonic oscillator).
We introduce the function

1'2! 1/2
-7—'——’) G(n,m;m',n’;t)e” ™
1 .

' o
G (x,t;m',n)= >, (
=0

X exp[ —iPlt + Li(m* — n®) Vt],
(4.15)
m= min(m, n), 1, = max(m, n), l=m—n.

From Egs. (4.14) and (4.8)-(4. 10) we obtain a partial differential
equation for the function G,(x,#; m’,n’):

3G, (x, 1) G, (x, 1)
ot I ax

Ci=2e*—[(1 — e )i+ 1]T + iV, (4.16)
C, = [2(|1] + 1) (e~ — 1) = |I|]T + Lill| V.

The initial condition for this equation takes according to Eq. (4.14)

= GG (xt)  (G(x1)= Gy(x,t;m,n')),.
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the form

G, (x,0;m',n") = GO (x; m’, "),
1 !

1 /2 ,

Ny =min(m’,n’), 0, =max(m’,n’).

The first-order partial differential equation (4.15) is solved by the
method of characteristics. The result is

—-1

2Q2a+ 1)I' — 4ne™ T — ilv
shayt

2q,

G, (x,t;m',n’) = cha;t +

xexp[(T - %ilV)t]G,(O)(x(O) sm',n’),

x@ = xO(x, 1),

(4.18)
s _ ¢ Lon = yuexpQat) ]| — ynyu[1 - expap)]
e"‘[l — exp(2a,t)] - [y,2 - y“exp(Za,t)] ’
where
a?=T2—il2n+ )TV —L1I*V*  (Reg, > 0),
(4.19)

22n+ I — ilV * 24,
nz2= 4T 7 .

Expressions (4.17)-(4.19) describe completely the relaxation of the
nonlinear oscillator in the case when the interaction with a medium is
linear in its coordinates, and reduces in classical terms to a friction
force proportional to the velocity. Together with Eqs. (4.13), (4.4), and
(4.5) these expressions make it possible, neglecting the small correc-
tions (4.11), to obtain the time correlation function for arbitrary
operators. In the classical region (7> 1; m’,n’ > 1; x < 1) the func-
tion G,(x,t;m’,n) goes over into the generating function for the
solution of the EFP equation (see Appendix C).
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4.2 Analysis of the Time Correlation Function for Annihilation and
Creation Operators and of Its Spectral Distribution

When developing a quantum theory it is convenient to express the
time correlation function of the oscillator coordinates in terms of the
correlator Q’(¢) of the annihilation and creation operators d and 47 :

(1) =<q9(nq(0) = (2%)_1[ Q'(H)+ ’_l”%l Q’*(t)], >,
(4.20)

0'(n =@ (@ maOp~Is ).

n+1
Taking into account the smallness of the interaction with the medium
and of the nonlinearity, we have discarded here the correlators
{&(H)a(0)> and {a* (¢r)a* (0)), and used the relation
g=(2wo)” (@ +a").
Putting L =éand M=4* in Eqgs. (4.4) and (4.7) and calculating

Tr, in Eq. (4.4) for the wave functions |n), we can, taking Egs. (4.6)
and (4.13) into account, express Q'(¢) in the form

0'(1) = 325 'exp( — - ) + )2 + 1)

X G(n+ l,n;n',n" + 1; t)cxp[ —iwgt — i(n+ %)Vt] (4.21)

Thus, the quantity Q’(¢) is determined by the value of the generating
function Gy(x,t;n’,n’+1) (4.15) at /= —1 and x =0. From Egs.
(4.21) and (4.17)—(4.19) we obtain

Q'(1)= (7 + V)exp[ —i(wo+ P~ 1¥)1] 0*(1), O(t)= ey (1),

U(t) = chat + [1 — ik @i- 1)] Lshar, (4.22)

2 . ~y— 1 21/2
aEa1=[F —z(2n+1)I‘V—ZV]
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(For convenience in comparing the classical and quantum expressions
for the time correlation functions, the quantities ¢(#) and a in Eq.
(4.22) are defined to be the complex conjugates of the corresponding
quantities . (¢#) and a, in [21] and of Y(¢) and a in [S51]. The
quantities G,(x,¢; m’,n") and g, correspond to the quantities f*(e ™", ¢;
m’,n’) and g in [51].)

It is easy to verify that Egs. (4.20) and (4.22) go over into the
formulas (2.46), (2.47), and (2.40) of the classical theory for the time
correlation function of the coordinates in the limit as #2—>0. To this
end, we reveal the constant % explicitly in the formulas (we have
chosen above in this section units in which % = 1) and recognize that
according to Eq. (1.14)

y=3m

4u5
i.e., the nonlinearity parameter V is indeed proportional to % and
consequently |V| <« T as h—0. We can therefore regard the condi-
tions

T>wg, |V|<T,

to be satisfied in the classical limit, and thus replace 7 by T/w, and
discard the last term in Eq. (4.22) for a. The expressions (4.20) and
(4.22) then coincide with Eqgs. (2.46), (2.47), and (2.40) of the classical
theory.

It is seen from Egs. (4.20) and (4.22) that in quantum theory, just as
in the classical theory, the time correlation function Q(#) is expressed
in terms of elementary functions, i.e., it is determined in explicit form
for an arbitrary ratio of V' and T. Its spectral representation Q(w) is
expressed according to Egs. (1.8), (4.20), and (4.22) in quadratures,
and for any concrete set of parameters it can be easily determined by
numerical integration, just as in the classical theory. However, while
the equations of the quantum theory for the envelope Q(7) of the
correlator Q(¢) are formally of the same form as :in the classical
theory, they are in fact much more productive and can yield, in
particular, spectral distributions with fine structure.

The integral that determines Q(w) can be calculated analytically in
the limiting cases of large and small ratios of the parameters V and T'.
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In the case of strong nonlinearity, when the condition

[V|>@ra+ 1T (4,.23)“

is satisfied, the nonequidistance of the levels of the singled-out oscilla-
tor is substantial, and the spectral distribution has a pronounced fine
structure. Expanding a in Eq. (4.22) in powers of T'/| V| and retaining
the quadratic terms of the expansion, and also expanding the last
factor in expression (4.22) for Q(t) in powers of exp(— ar) and taking
Egs. (1.8), (4.20) and (4.22) into account, we can represent the
spectral distribution

N

0(©) = 5, Q') = %( +1) (@),

(4.24)
Q) = —Ref die@X1).,  Q=w—w,— P+ 1V
as a set of relatively narrow almost equidistant lines
= 1 == 2
Qn—w—w0~P—(n— 5)V—8nn(n+ 1)7,
I,=T(n)+T(n—-1)= [2n(27 + 1) — l]I‘, (4.26)

a, —4 (n—1—2n)

At small T'/|V| and not very large n we can put cose, ~ 1 and
sina, ~0. The individual lines are then Lorentzians having widths
2T,. It is easy to verify that the T', are equal to the sums of the
reciprocal lifetimes I'(n — 1) and T'(n) of the levels n — 1 and n,
between which the corresponding transition takes place. This agrees
with the Weisskopf and Wigner general theory of spectral line widths
[26]. The widths of the individual lines increase linearly with the line
number n and increase with rising temperature.

At sufficiently large n, the widths I', become comparable with the
distance | V| between the lines, and the lines should overlap. At very
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low temperatures (7 < w,) the spectrum contains only one line (cor-
responding to n = | in Eq. (4.25)). At somewhat higher temperatures
there appear first very weak lines corresponding to n=2,3,... .
With further rise in temperature, the number of lines of noticeable

intensity and their widths increase, and the fine structure begins to

smear out. At sufficiently high temperatures it vanishes completely.
Thus, the fine structure can manifest itself only in a limited interval of
intermediate temperatures.

To illustrate the temperature-dependent smearing of the fine struc-
ture, Fig. 17 shows the spectral distribution Q(SZ) at different tempera-
tures. It can be seen how the contribution of the maxima of higher
order increases with rising temperature, and the intensity oscillations
decrease. ‘

In the opposite limiting case of relatively strong interaction with the
medium, when .

V| &T,

there is no fine structure in the spectrum (the spectral distribution is
smooth). Expanding a and /(7)) in Eq. (4.22) in powers of V' /T up to
terms of second order inclusive, and substituting the result of the
expansion in Eq. (4.24), we can obtain in this case an analytic

il L —
20 60 100
Q/T—»

Figure 17 Fine structure of the spectral dlstrlbuuon Q~(ﬂ) for V' =28T at different
temperatures. Curves 1-3 correspond to i= 23, 1, and 1 (T/w,—0.77, 0.91, and 1.44).
Curve 3 passes higher and curve 1 lower than curve 2 near the third peak (/T ~ 80).
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expression for the spectral distribution:

I S S
7|2+ Q2 2r?

o) = a(a+ 1)

2T(I2 - 9%)
T2+ Q% 9Ir2+Q% T+ 927)2

T 3r

(4.27)
Qr=Q— (27 + 1)V.

This expression agrees with an equation derived for the case of small

|V|/T by the Green’s-function method [22].

4.2.1 Case of Nonequilibrium Oscillator The results presented above
pertained to the case when the nonlinear oscillator was in thermody-
namic equilibrium with the medium. The method of quantum kinetic
equation and the explicit solution of the quantum kinetic equation
(4.18) makes it also possible to analyze a nonequilibrium nonlinear
oscillator that interacts with the medium. Such an analysis was
carried out in [51] for the case when the thermodynamic equilibrium
is upset by an intense pulsed external force (the pulse duration is
<t,, and the interval between pulses is large) that acts upon the
oscillator. The response of a nonequilibrium nonlinear oscillator to an
additional weak periodic field has a number of peculiarities compared
with the response of an equilibrium oscillator (which is described by
the function Q(w)). Thus, under nonequilibrium conditions the fine
structure of the spectral distribution usually manifests itself much
more strongly, since the broadening of the lines (4.26) is relatively
small at low temperatures of the medium, and at the same time the
occupation of the excited levels of the oscillator is determined by an
external non-thermal action and can be large. At sufficiently large
|¥|/T, when the fine structure is pronounced, a nonequilibrium
oscillator amplifies, in a certain frequency range, the weak resonant
field (to obtain amplification in the stationary regime, in the case
when the external force constitutes shot noise, it is necessary that the
average frequency of the pulses exceeds 2I' [51]). We note that the
response of a nonequilibrium oscillator depends on its initial state
only in the presence of nonlinearity.

AN OSCILLATOR INTERACTING WITH A MEDIUM 365

4.3 Representation of the Spectral Distribution in the Form of a Sum of
Partial Spectra, and the Harmonic-Oscillator Paradox

Besides the generating-function method used in Sec. 1 to calculate the
correlators <I:(t)]l7[ (0)> and their spectral distributions, the quantum
kinetic equation (4.7) can be investigated by an alternate method
based on an analysis of the equations for the partial spectra. This
method makes it possible, in particular, to consider a problem of an
oscillator with a more general (nonlinear in g) interaction with-the
medium, as well as certain problems with a more complicated energy
spectrum, the solution of which by the method of generating func-
tions does not lead to simple results.

The spectral distribution Q’(w) of the time correlation function
Q’(t) of the operators 4(¢r) and 4*(0) can be represented, with
allowance for expressions (4.4)—(4.6), in the form [52]

0'(6) = 1Re 3 o(n,0)

(4.28})
o(n,w) =f0°°dtn1/2Fa+ (n,n— l;t)exp[i(w —wy— (n - %)V)t}

(a}ccording to Eq. (4.20) the operator F,, in Eq. (4.4) is taken for
M=a%).

The individual terms 7~ 'Re¢(n,®) in expression (4.8) for Q'(w)
can be interpreted as the partial spectra that correspond to a transi-
tion from the level n — 1 to the level n (see Fig. 1). The system of
equations for the functions @(n,®) is obtained by taking the Fourier
transform of the differential-difference equation (4.7):

-6 n 172 .
(2, — T )o(n,0) + jgoag.(n,n - l)( - +j) o(n+j,0)
= —(@+ 1) 'nexp[ —(n— Dwo/T], (4.29)

G,=w—wy— P—(n—1)V

(the quantity T, is defined in Eq. (4.26)).
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that the boundary condition for Egs. (4.29) is of the form
(0, 0) = p(00,w) =0. (4.30)

It can be seen from Eq. (4.29) that in the oscillator problem the
functions ¢(n, w) with different n, which describe the partial spectra,
are interrelated. Since these functions are complex and the phase
relations between them are important, it can be stated that Eq. (4.29)
describes interference of the transitions between the oscillator levels.
The interference causes the shape of the partial spectrum Reg(n, w)
to be, generally speaking, non-Lorentzian. ;

Interference of transitions between almost equidistant levels is a
comimon phenomenon inherent in multilevel systems. The corre-
sponding interrelated partial spectra are described by a system of
linear algebraic equations of the type (4.29) (but with other, generally
speaking much more complicated, coefficients). Analytic solutions of
these systems are possible only in some limiting cases. However, since
the inhomogeneous terms in systems of equations of this type de-
crease exponentially rapidly with increasing number of the level (since
the level population decreases with the energy), they are very conve-
nient for numerical computer solutions. Examples of a numerical
analysis of the problem of a Duffing oscillator with nonlinear friction
and of the problem of a triply degenerate nonlinear oscillator by the
method of partial spectra are given in Secs. 4.4 and 6.2.2.

The system of equations (4.29) can be solved analytically in several
limiting cases, without specifying the expressions for IT', and 4; (but
recognizing that d~T,). Thus, if the condition (4.23) is satisfied, the
peaks of the partial spectra for several lowest transitions (with small
n) are separated in frequency by a distance ~|V| greatly exceeding
their widths 2T',. To describe the shape of an individual peak in the
zeroth approximation,-we can discard in Eqgs. (4.29) the terms with
Jj # 0. As a result we obtain

(n— Dy T,
r }Fiﬂii’

Reg(n,0)=0,%,), @&, = = expl -

(4.31)

2. ST, <|7Vl,
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ie., the standard equation known from the Weisskopf and Wigner
theory (the parameter T, is equal to the sum of the reciprocal lifetimes
of the oscillator in the states |n) and |n — 1)).

In first-order perturbation theory in the parameter I', /| V| we have
in the region |Q,| < |V]

@,
Reg(n,w) = @n(ﬂn)(l - ),

n

. n+j\'?dmtj,n+j—1) Q,
Reg(n + J,w)=( —/ ) / 7 T 2:(%)
(J#0 @)
Q=0—0 —P—(n—l)V .
n 0 2

LS idmn-1d_m+jn+j-1,
V %o

=L S n'2n+ )2 d(n,n ~ l)exp(-— ﬂj).

vV <o T
It can be seen from Eq. (4.32) that, owing to the interference of the
transitions, in the frequency region |Q,|~T,, which corresponds to
the transition n — 1> n, a contribution to the peak of the spectral
distribution is made not only by the partial spectrum ¢ (7, ), but also
by the partial spectra ¢(n + j, w) for the neighboring transitions. Their
role increases with increasing d;/|V|. The “interference interaction”
of the transitions with nearby frequencies, as can be seen from Eq.
(4.32), leads to distortion of individual partial spectra and to the onset
of their shift and asymmetry. In the particular case of linear friction,
the partial spectra (4.32) taken together lead to the distribution (4.25)
(multiplied by = (7 + 1)).

The system (4.29) can be solved analytically also in the case of low
temperatures, when only several partial spectra with small n are of
importance (see [52]). The summary spectrum consists then either of
several peaks that differ noticeably in intensity (at large |V]), or
constitutes a single but asymmetric peak (at smail |V]).
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A special case in which the system (4.29) has an exact solution is
that of a linear oscillator (¥ = Q) that interacts linearly. with a
medium. In this case, as seen from Eq. (4.22), the correlator of the
coordinates decays exponentially in time, and its spectral distribution

Q’(w) has a Lorentz shape. Equation (4.29) takes in this case, accord-

ing to Egs. (4.8)-(4.10), the form
[iﬂ — (4nfi + 2n — I)F](p(n,w) +2Tn(7Ai + Do(n + 1,0)

_ _ 1 (n— Doy
+2lnAp(n — L,w)y= —(n+ 1) ‘nexp| — — | ;
433
Q=w—wy— P. (433)

It is easy to verify directly that the system (4.33) has the following
solution:

(4.34)

(n,0) = (7 + 1)"neXp[ _(n= Do ] T+i0

T 2+’

ie, all the partial spectra have the same shape and a common
maximum, and differ only in intensity.

Each of the partial spectra (into which the resultant spectrum is
subdivided conventionally), and consequently also the entire distribu-
tion as a whole, has the same width 2T. This width does not depend
on the number 7 and does not coincide with the value 2T, obtained
from the formulas of the Weisskopf-Wigner theory for nondegenerate
systems [26]; this just constitutes the known ‘“harmonic-oscillator
paradox” (see, e.g., [11]). In fact, however, the results of the Weiss-
kopf-Wigner theory are directly applicable only when the frequency
of the considered transition differs noticeably from the frequencies of
the other quantum transitions in the system. In the problem of the
singled-out oscillator, this situation arises for an essentially nonlinear
oscillator with noticeable nonequidistance of the levels. The degener-
acy is absent here, and, as noted above, the results agree fully with
‘those of the Weisskopf—Wigner theory. If the nonlinearity decreases,
the problem becomes almost degenerate (in the case of a linear
singled-out oscillator it is completely degenerate in the transition
frequencies) and it is necessary to take into account the interference
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between the transitions. This leads naturally to a substantial change
in the spectral distribution, and in the limit as ¥ — 0 to the formation
of the simple distribution (4.34).

Thus, by using Eq. (4.29) we can investigate the distortion of the
shapes of the individual partial spectra, which arises due to the
interference of the transitions when the peaks come closer with
decreasing nonlinearity, and the onset of a single Lorentz distribution
as V—->0.

4.4 Effect of Nonlinear Interaction with the Medium\(Nonlinear
Friction) on the Spectral Distribution of the
Singled-Out Oscillator

4.4.1 Kinetic Equation for an Oscillator with Nonlinear Friction The
previously considered interaction (4.1) or (F.11) with the medium was
linear in the coordinates of the singled-out oscillator and corres-
ponded, in terms of classical mechanics, to linear friction (the friction
force is proportional to the velocity, with a proportionality coefficient
independent of the amplitude). New effects arise if the friction is
nonlinear, i.e., if H; contains terms proportional to q2 or to higher
powers of g. Since in this case the friction coefficient depends on the
amplitude and consequently varies with time, the relaxation process
becomes more complicated, and the decay of the correlator Q(7)
becomes nonexponential and the spectral distribution Q(w) becomes
non-Lorentzian even for a linear singled-out oscillator (neglecting the
interaction).

The simplest interaction that leads to nonlinear friction is described
by the Hamiltonian

y_ 2)2
Hf )_%el(c 7,

X (g = Qo) V(@ +8"),q, = Qo) V@ + 87)),  (435)

which is added to the Hamiltonian (4.1). Substituting the total Ham-
iltonian of the interaction in the operator kinetic equation (F.9) and
integrating with respect to ¢,, just as in the case of an interaction
linear in the ¢, we obtain the system of differential-difference equa-
tions (4.7) for the matrix elements F,,(n,m;t). Now, however, the
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right-hand side contains terms with j = *+2, corresponding to a
change of the quantum number of the oscillator by 2. The coefficients
of these terms are equal to

d.o(n,m)=2n,+ 3+ 3)
X[(nt1)(n+1£1)(m= ym+1x1)]/T,

(4.36)

o ‘ 2 _ -
ny = n(20p) = 2r'zn+ T o = 8Lw§ Ek:(elg)) wp '8(200 — 63)-

The parameter I'?, as seen from Eq. (4.36), determines the probabil-
ity of the decay process, at which a transition between oscillator
levels, whose numbers differ by 2 and energies differ accordingly by
= 2w, is accompanied by creation or annihilation of a vibration of
the medium.

The interaction (4.35) causes also adding to dy(n, m) in Eq. (4.8) the
term

1. .
- it(n2 —mA) VD —i(n— m)P?,

v —yp L e(»%—l(i_l), 4.37
IS L b il Gl

' 4Ri(w) + 1 4R(w) +3
PO — —v.p.—1—2 S (el(cz))zwk_l{ (@) 7(wy) L4 }
8wy x :

2w — @, 2w+ Wy

and the renormalization of the expressions for the level half-widths
T'(n) and I'(m) contained in dy(n, m):

T(n)=[n27 + 1)+ AT +[27y(n* + n+ 1)+ n(n - 1) |T®.
(4.38)

It is seen directly from Egs. (4.8) and (4.37) that the term oc P®
reduces to a renormalization of the frequency shift P; we assume
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hereafter this renormalization to be performed. It is easy to verify also
that the term o V? in dy(n,m) leads to a renormalization of the
nonlinearity parameter V,

VoV+v®, (4.39)

The system .of differential-difference equations (4.7) for the prob-
lem with nonlinear interaction (4.35) differs from the analogous
system for the problem with interaction (4.1) because of the appear-
ance of terms with j = +2 and of terms o I'? (quadratic in n and m)
in dy(n,m). When these terms are taken into account, it is inexpedient
to solve Egs. (4.7) and (4.14) by the method of generating functions,
since for G,;(x,t;m’,n") a second-order partial differential equation is
obtained here. To analyze the problem with nonlinear interaction we
can transform from the. differential-difference equations (4.7) to dif-
ference equations for the Fourier transforms of the functions F,,(n,
m; t). Such equations were discussed in Sec. 4.3. They are convenient
for numerical calculations and for the analysis of limiting cases.

In particular, in the case when the oscillator levels are relatively
strongly nonequidistant, i.e. when |V|>>T,, the spectral distribation
Q’(w), just as in the problem with linear friction, presents a set of the
weakly overlapping peaks (4.31) and (4.32), but the parameters in
Egs. (4.31) and (4.32) are now determined by expressions (4.8), (4.36),
and (4.38). At low temperatures, when the terms o exp(—w,/ 7)) can
be neglected, the nonlinear friction, as seen from Eqgs. (4.29), (4.36),
and (4.38), does not influence Q'(w), since Q’(w) is formed as a result
of only a transition from the ground state to the first excited level,
while the considered nonlinear interaction, which causes decays
in which the oscillator energy changes by ~2w,, cannot lead at
exp(—wo/ T) < 1 to decay of the first excited state.

4.4.2 Classical Limit When account is taken of the nonlinear fric-
tion, Egs. (4.7) and (4.29) contain three dimensionless parameters:
V/T, TP /T, and T/w, These parameters determine the entire
manifold of the spectra of the nonlinear oscillator, including the
spectra with fine structure.

The dynamics of an oscillator with nonlinear friction and its
spectral distribution turn out to be simpler in the region of high
temperatures, when there is no fine structure of the spectrum and the
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classical approximation can be used. An analog of the quantum
kinetic equation in the classical case is the Einstein—Fokker—Planck
(EFP) equation. In this case the Green’s function G(n,m;m’,n’;1)
introduced in Eq. (4.13) corresponds to the classical probability
density w(r, @; 7(0), ¢(0); £) of the transition from a state {r(0),9(0)}
at the instant ¢ = 0 into a state {r,¢} at the instant # (¢ denotes the
phase of the oscillator and r is proportional to the harmonic part of
the energy). The EFP equation can be obtained by going to the
classical limit in the quantum equation (4.14). It can be obtained also
directly in classical theory by starting from the Langevin equation for
a nonlinear oscillator interacting with a medium. To derive the
Langevin equation in the case of an interaction described by formulas
(4.1) and (4.35), it is convenient to use the method developed in Sec.
2. The stochastic differential equation obtained in this manner for the
complex amplitude u,(¢) introduced in Eq. (1.5) and varying slowly
over times ~,, is a generalization of Eq. (2.14):

U = - [(T + 4T goo|uy[P)sgn t — iP]ul

~

37
Tieog s Puy + fi(2) + ut fP(),

(4.40)
F=y+ 2.

Here P includes the term P®; f,(¢) and f{*(r) are independent

Gaussian 8-correlated (in a scale of times that are long compared with
t.) processes

CHOREY = W) = @I = SPOFPE)» =0,

(4.41)

KO = F—ZTS(t =), POy = ma(t )
wg @o

Corresponding to the Langevin equation (4.40) for a nonlinear
oscillator with nonlinear interaction with the medium, with account
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taken of Eq. (4.41), is the EFP equation

ar wg 0z dwir dgp?

aw
ot

+ 4T L L 23w 492, + T
larlad o 405 3¢

3¥r\a . )
— (P + Z)-O‘ ) % s w = W(",<P,"(O),(P(O)’t)' (442)

The variables in this equation are
r=|uP=1(F+w;q"), g=argu,. (4.43)

In the absence of nonlinear friction, Eq. (4.42) coincides with the EFP
equation (C.5). Just as in Appendix C, the initial condition and the
normalization condition are of the form

w(r,9;r(0)9(0); 0) = 28(7 — r(9)¥(9 =~ #(0).
(444)

% fdrd(pw(r,q); r(0),¢(0); ) = 1.

It can be seen from Eq. (4.40) that decay processes with transfer of
an energy = 2w, to the medium, which lead to a damping oc I¥?,
correspond in terms of classical theory to a regular friction force that
has a nonlinear dependence on u,. Also connected with such pro-
cesses is the random force uff{?(¢) in Eq. (4.40), which is propor-
tional to the oscillation amplitude. In the phenomenological descrip-
tion, the nonlinear friction force in Eq. (4.40) results from a friction
force o qzq. in the equation of motion (1.10) of a Van der Pol
oscillator. The fluctuations of a nonequilibrium Van der Pol oscillator
were investigated in [10, 41, 13] by using a model in which the
random force in Eq. (1.10) was assumed independent of g and 4, i.e.,
the term uff{?(r) was disregarded in Eq. (4.40). We note that this
term is necessary for the description of the fluctuations of an oscilla-
tor that is in thermodynamic equilibrium with the medium: without it
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the term o I'® in Eq. (4.42) would take the form

81'(2)90 % (r’w)

(cf. {10, 13]), and therefore the Gibbs distribution

26 20r
wa(7, @) = T exp( - F ) (4.45)

would not be a stationary solution of the EFP equation (even if the
intensity of the random force f,(f) were to differ from I'T/w?).
Thus, analysis of the microscopic model of a nonlinear oscillator
whose interaction with the medium is quadratic in ¢ enables us to
investigate equilibrium fluctuations of both the Duffing oscillator and
of the Van der Pol oscillator. These fluctuations, as seen from Egs.
(4.42) and (4.45), are described in the classical limit by two parame-
ters, which can be chosen to be
Rl (4.46)

o= 2rdT
T = » 3
wpl

)

&:

[ J[*™)

4.4.3 Spectral Distribution of Time Correlation Function of the Coordi-
nates for an Oscillator with Nonlinear Friction In the presence of
nonlinear friction, the attempts to obtain an analytic solution of the
EFP equation (4.42) failed. The task.of calculating the peak of the
spectral distribution Q(w) of the time correlation function of the
coordinates with the aid of a series of transformations of the EFP
equation can be reduced to the solution of a second-order ordinary
differential equation. This equation can be obtained also directly
from the system of equations (4.29) for the functions ¢(n,w) that
describe the partial spectra in quantum theory. In the classical limit
the main contribution to Eq. (4.28), which connects Q’(w) (or Q(w) in
~accordance with Eq. (4.24)) with ¢(n,w), is made by the terms with
large n. This makes it possible to introduce in place of the discrete
variable n the continuous variable R = wyn/ T, and to obtain for the
function W(R, )= (w,/T)p(n,w) of this variable, in place of the
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difference equation (4.29), the differential equation
@p d°W 2) aw
2R(T + I‘TR)W +2R[T+TP(1 + R)] R

+[i(@ - 26TR) + T —TP(1 - 3R)|W = —Re™ ",
(4.47)
W(0,w) = W(oo,w) = 0.

In this approximation, when account is taken of Egs. (4.24) and
(4.28), we have

0©) = 4 Q@) = 51 0@, 0@ = T Re[TdRW(Rc).
(4.48)

Equation (4.47) was solved numerically [52] for different sets of
parameters 4T /T and TP /T and at different @/T¢?, and it was this
which made it possible to investigate the spectral distribution Q(w) in
the classical limit. For the case of linear friction (I? = 0) the results
agreed with those discussed in Sec. 2.3.2. In the opposite case of
purely nonlinear friction (T' =0, I’ #0), the numerically obtained
spectral distributions for different &I'/T%? are shown in Fig. 18. It can
be seen from this figure that even if the levels are equidistant (& = 0),
in the case of nonlinear friction the spectral distribution, being
symmetrical, differs substantially from a Lorentz distribution (which
corresponds to linear friction). Although curve 1, just as the Lorentz
curve, decreases at large [©| in accordance with the law

(2)
o)~ % (191>1P, TP >T), (4.48a)

in the central part of the spectrum it is much narrower and higher
than a Lorentz curve. The height of the maximum of curve 1 is
1.67/7 (as against 1/ for a Lorentzian), and its width at half

maximum is half as large as for a Lorentz curve. The narrowing of the
central part of the spectrum in the case of nonlinear friction is the
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T i i T

Figure 18 Spectral distribution Q(f) in the classical limit in the case of purely
nonlinear friction. Curves 1-6 correspond to the parameter values al'/T¥? =0, 0.25,
0.5, 1, 1.5, and 2.5. The dashed line corresponds to a Lorentz curve having the same
area and the same asymptote at large |Q| as curves 1-6.

consequence of the fact that, as can be seen from Eq. (4.40) small-
amplitude oscillations decay slowly (the friction force tends to zero as
|u,|*—0), and therefore the contribution of such oscillations to Q()
is described by a narrow peak. With increasing parameter &T" (or V),
which determines the nonequidistance of the levels, the spectral
distribution broadens and its maximum shifts. Expression (4.48a)
remains valid in this case on the wings.

For the general case, when both linear and nonlinear friction are
present, the parameters that characterize the width, asymmetry, and
deviation from Lorentzian of the distributions Q(w) as functions of
the ratio I'? /T (at different GT /T?’) were also calculated in [52]. It is
interesting that these parameters reach the asymptotic values corre-
sponding to the limit I%? /T — oo only at very large T%? /T ~10%.

The foregoing results are generalized in [52] also to include the case
of several singled-out oscillators. The role of nonlinear friction corre-
sponding to decay processes with participation of different oscillators
can be quite substantial in this case, and if the oscillator frequencies
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differ strongly the correlators can be calculated analytically (see also
Sec. 6.2.2b below). From the formal point of view, nonlinear friction
includes also friction due to quasielastic scattering of the vibrations of
the medium by the oscillator (see Sec. 6.2.1).

4.4.4 Time Correlation Function of the Occupation Numbers and Its
Spectral Distribution Besides the investigation of the influence of
nonlinear friction on the coordinate correlators, it is of interest to
analyze its influence on the time correlation function .4 (¢) of the
oscillator occupation numbers and its spectral distribution ¥ (w):

H ()= GOAO) — )y, A (@)= 5= f_wwdte"w'/t/(t). (4.49)

In the case of weak nonlinearity, the function .4 (), as seen from Eq.
(4.1) determines also the oscillator-energy correlator.

Putting L=+#and M=n—7 in Egs. (44) and (4.5), we can
represent ./ () in the form

[o o}

‘/V(t) = z nX(n> t)’ X(n, t) = F,;_,-,(n,n; t), (450)

n=0

where the function x(#,?) is a solution of Eq. (4.7) (cf. Egs. (4.7) and
(4.12)): :

ax(n,
X(at 2 ;‘%‘("’")X(" tr0

(4.51)
x(n,0) = (7 + 1) '(n — A)exp(—won/ T).

Using the explicit form (4.8) and (4.36)—(4.38) of the coefficients
a&(n, n) in Eq. (4.51), we can easily show that

i x(n,t)=0. (4.52)
n=0

In the absence of nonlinear friction (I? =0) we can calculate
() by using the explicit expression, obtained in Eq. (4.18), for the
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generating function G,(x,; m’,n’)

0

./V(t) =(A+ 1)_1n§=:0(n — ﬁ)exp(— w—; n)(— % Go(x,t;n,n))x=0
=a(A+ Dexp(—2T7), >0 (TP =0) (4.53)

(the connection between .4 (¢) and G,(x,t; m’,n’) was obtained from
expressions (4.13), (4.15), and (4.50)). Thus, weak internal anharmon-
icity does not influence the damping of the correlator .4 (). (Expres-
sion (4.53) for the occupation-number correlator for an oscillator
interacting with a medium can also be obtained by the Green’s-
function method [53].)
In the presence of nonlinear friction we did not succeed in obtain-
ing a general solution of Eq. (4.51). In the case of small TP /T the
~ correlator .#(¢) can be calculated by using the method of moments,
transforming from Eq. (4.51) to the system of equations for the
functions

X(t) = ngonkx(n, 1).

At T® =0 the function x, () turns out to be connected only with
functions x,.(¢#) having k&’ < k, while the presence of the terms oc I'®
leads to coupling to the succeeding moments. Solving the equation for
the moments x,(?) by iteration with respect to I'® /T, we obtain

N () =A(A + 1)e 2" — 167,(7 + 1)°’TPpe =20,
(4.54)
1 _
' «T, ﬁ>t>>w0 1

According to Eq. (4.54), when nonlinear friction is taken into account
() decreases with time non-exponentially (faster than exp(—2T?)).
The non-exponential decay of .#”(r) and the non-Lorentz character
of A4 (w) manifest themselves particularly noticeably in the case of
appreciable nonlinear friction. At sufficiently high temperatures the
function .#” (w) can be calculated in the classical-limit approximation,
when the difference equations (4.51) reduce to a differential equation
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Figure 19 Spectral distribution .# (w) in the classical limit. The ordinates are the
values of the function N(w) = 2(wy/ T)%# (). Curves 1-4 correspond to the values
TP /T =0, 2, 10, and 100. The figure shows only the left or the right parts of the
symmetrical curves.

of the type (4.47), and the function .4 (w) itself contains only one
parameter I'? /T (see Ref. 52). The results of the numerical calcula-
tions are shown in Fig. 19. It can be seen from this figure, in
particular, that for large nonlinear friction (I'? > T) the .#" () peak
is much narrower than a Lorentz peak with the same asymptotic form
in the region of large |w| which corresponds to I'{? = 0.

§5 Heating and Cooling, by an External Periodic Field, of an
Oscillator Nonlinearly Interacting with a Medium

In the analysis of the relaxation of eigenoscillations of the oscillator,
as well as in the analysis of its motion in a resonant field (of
frequency w =~ wy), we used in the preceding sections the fact that the
motion of a weakly nonlinear oscillator could be divided into fast and
slow. It is important that the fast motion of an isolated oscillator was
characterized by one frequency, namely the eigenfrequency w, of the
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oscillations. As a result, the damping could be described with the aid
of two parameters, the coefficients I and I? of linear and nonlinear
friction. These coefficients are determined (see Egs. (2.15) and (4.36))
by the probabilities of the decay processes whereby the oscillator
transfers to the medium an energy w, and 2w,, respectively (% = 1).

A different situation arises in the analysis of the dynamics of an
oscillator in a periodic field whose frequency w differs substantially
from w, (but is also “fast”):

o, |0 — wo| >T, TP, | V|27 + 1). [ERY)

In this case the “fast” motion of the oscillator is characterized by two
frequencies, w, and w, and in addition to the decay processes indi-
cated above it is possible to have decay or scattering processes in
which energies w, 2w, as well as w + wy and |w — w,| are tranferred to
the medium. The processes of the last two types, just as nonlinear
friction, are due to nonlinearity of the interaction with the medium
with respect to the oscillator coordinates, and describe in fact the
eigenoscillation (of frequency w,) relaxation due to the forced oscilla-
tions at the frequency w. It is important that the corresponding
damping can be “negative” and describe the buildup of eigenoscilla-
tions.

The possibility of such an instability can be easily understood in
the case when the medium constitutes an assembly of vibrations with
a quasicontinuous spectrum of frequencies w,. The field can then
induce either processes of the type shown in Figs. 20a and 20b, which
correspond to decay of the oscillator (to a transition to a lower level)
accompanied by creation or annihilation of a “photon” (of energy )
and excitation of a vibration of the medium, or processes in which the
energy balance is described by the relation w = w, + w, (see Fig. 20c).
Processes of the last type correspond to decay of a “photon”
with production of a vibration of the medium and with transition of
the oscillator to a higher energy level, ie., to excitation of the
oscillator (“negative” damping). Since the transition probability,
which is determined by the oscillator-coordinate matrix element,
increases with the number of the level, the excitation probability is
higher the higher the oscillator energy is, and if the mechanism
indicated in Fig. 20c dominates, “runaway” sets in—the energy of the
eigenoscillations of the oscillator increases with time.

AN OSCILLATOR INTERACTING WITH A MEDIUM 381
-r——1- —r—————
(4 W,
(73]
&)K PG SN [A]
“ L
K
a b c

Figure 20 Scheme of decay processes induced by a field of frequency w. The solid
lines show neighboring energy levels of the oscillator (w, is its eigenfrequency and w;
are the vibration frequencies of the continuous spectrum). The energy balance for the
processes a—c is described by the equations

Wy + w=wy; Wp— W =W ; w=wy+ w .

We obtain below (see also [30]) a quantum kinetic equation for an
oscillator in an external field (Sec. A) and analyze its solution (Secs. B
and C). In Sec. C it is shown, in particular, that no “runaway” occurs
if the nonlinear friction is taken into account. In Sec. D we discuss
the response of the oscillator to an additional weak field.

5.1 Change of the Oscillator Relaxation Parameters in an
External Field

5.1.1 General Description of Oscillator Motion in a Nonresonant Field
The Hamiltonian of a Duffing quantum oscillator nonlinearly inter-
acting with a medium and acted upon by an external force h(t) takes,
in the case when the medium constitutes a set of vibrations of a
continuous spectrum, the form

H(t)=241)+ #,, Ho(t)=Hyt)+ H,, 2 =H+H®,
(52)

Hy(f) = woh + L VA — gh(r),  A=4%a.

Here H, and H® are determined by Egs. (4.1) and (4.35). It is
assumed hereafter that the force h(f) is quasimonochromatic and
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nonresonant (see (5.1)):

h(t) = hy(t)exp(—iwt) + c.c.,
(5-3)

ﬁ«m, t, = min(w, @, [@ — W, w,)
dt t. ¢ > e

(w, denotes the characteristic reciprocal damping time of the correla-
tions in the medium).

When conditions (5.1) and (5.3) are satisfied, the motion of an
oscillator isolated from the medium (it is described by the Hamilto-
nian Hy(#)) constitutes a superposition of eigenoscillations at the
frequency ~ w,, and of forced oscillations at the frequency w, accu-
rate to small corrections of the order of

1A

* o= ool

(54

Vv V 21,3
Wyt @ "‘w—3w0"|Vhlltc

and also neglecting terms ~#A {(woh) "' Indeed, the equation of
motion for the annihilation operator 4 of the isolated oscillator

d - .
= @=—ila(, Hyn)] (5-5)
has, neglecting the corrections (5.4), a solution

a(r) = do(He " + vy(1), 66)
hy(t)e ™" N h¥(t)e™ .

Wy — Wy + w

0() = (2w) ™'/

’

where the operator dy(7) describes the eigenoscillations and satisfies
the equation

ddy(t 2(w0® + )1y (D))
;§)=—iV %+ﬁ0+ ( o) 1(2) ay(t),  fy=dy+ 4.
w(wg—wz)

(5.7)

It is obvious that dy(#) varies slowly over a time ~,.
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In the case of an oscillator interacting with the medium; Egs.
(5.5)-(5.7) correspond to the interaction representation. The transfor-
mation to the interaction representation is effected with the aid of the
operator

S(t,10) = T,.exp[—i ft:dt,%o(t,)}. (5.8)

Here T, is the chronological-ordering symbol. The initial instant ¢, is
chosen generally speaking arbitrarily (in particular, it can be chosen
to precede the instant when the force is turned on, i.e., #,(¢) may be
supposed to vanish at ¢ < #;). Obviously, in the interaction representa-
tion (5.8) the initial condition for Eq. (5.7) is of the form

do(to) = [ & —v1(t) Jexp(iwgte)  (@(to) = &). 5.9

The Hamiltonian of the interaction of the oscillator with the
medium, in the interaction representation (5.8) with allowance for
Egs. (5.6), (4.1), and (4.35), is equal to

Ht)y= St (L1 S(t.ty), ()= + " + H,”,

# = Daanidn, 2" = Zea0a0)
z (5.10)
7. = o))" Revr() Z[& () + &),

&()y=¢ + & &”Rev ()= ¢ + 2519(‘*’3 - wz)_lh(t),
@o

where

qo(1) = (2w0) ™'/ do(t)exp(— iwgt) + H.c.],
(5.11)

Ge(t) = o)~ ?[ dpexp(—iw (1 — o)) + Hec.]

The term 27’ in Eq. (5.10) determines the interaction with the
medium, linear in the coordinate ¢, (g, describes the oscillator oscilla-
tions at the eigenfrequency). It can be seen from Egs. (5.10) and (5.6)
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that in an external nonresonant field the parameters of the linear
interaction & (f) depend periodically on the time, owing to the nonlin-
earity of the total Hamiltonian of the interaction 5¢°; with respect to
g. It is this which makes possible the decay processes shown in Fig.
20. The term 2¢,” in Eq. (5.10), just as the Hamiltonian H(® (4.35) in
the absence of a field, describes decay processes with participation of
two isolated oscillator quanta. The term 22°;"” in Eq. (5.10) describes
the time-dependent shift of the equilibrium positions of the oscillators
of the medium. '

5.1.2. Quantum Kinetic Equation for a Singled-Out Oscillator The
dynamics of a nonequilibrium oscillator interacting with a medium is
described by its density matrix p(f). It is most convenient to calculate
p(t) in the interaction representation:

o() = S(11)pS (1), B(t) = Tr,[ U(t.10)p (1) U8, 10) -
(5-12)

where p'® is the density matrix of the “oscillator + medium” system,
and

U(t,10) = T,'exp{ —i f dt, 9{4@,)]. (5.13)

The operator (7(:, 1p) is a generalization of the operator f](t) intro-
duced in Eq. (4.3), to include the case of an oscillator with a
Hamiltonian that depends explicitly on the time. As regards p O (1o),
we shall assume either that at ¢ < f, the force k() =0 and at the
instant of time f, the system is in a thermodynamic-equilibrium state

p(to)=Z 'exp(—H/T), Z=Trexp(—H/T),

or that at ¢ = ¢, the operator p'® represents the product of the density
matrix of the equilibrium medium by the density matrix of the
singled-out oscillator (actually, in the case of weak interaction, the
first model is a particular case of the second, accurate to small
corrections ~T'/ T). The equation for §(r) in the region ¢ — 1,> ¢,
then takes the same form as Eq. (F.9) for Fy, (7).

It is convenient to calculate the matrix elements p{(f) using the
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eigenfunctions |n) of the occupation-number operator A(f,) of the
eigenoscillations of the singled-out oscillator (it is seen from Eq. (5.7)
that when the corrections (5.4) are neglected. 7, is independent of
time). According to Eq. (5.7), the matrix elements of the annihilation
operator dy(f) on the functions (n|,|m) are equal to:

(1l 1)lm) = 8, im"/expt = V| (m = 1 )(t = o)

N 2(«.»5 + w2)

wo(w(z, - w2)2

&
fdt. fhy(t)P
(]

(5.14)

We note that the functions |n) at h(#;) # O are not eigenfunctions of
the Hamiltonian Hy(f;). .
When account is taken of Eq. (5.14), the kinetic equation of ty
(F.9) for p(1), after integration with respect to f, using expressions
(5.7), (5.10), (5.11), and (B.3), reduces to a system of differential-
difference equations for p(n, m; t), similar to the system (4.7):

ap(n,m;t
_ﬂ(%__) = %dj(h)(n,m)exp[ —iVj(n — m)(t — to)]

Xp(n+jm+jt),
(5.15)
p(n, m; t) = (n|p(t)|m).

For the considered Hamiltonian of the interaction quadratic in the
coordinates ¢ of the oscillator, only the coefficients d'* with |j| < 2
differ from 0 in the sum (5.15) over j. Since the nonresonant field
does not influence the probability of decay processes in which the
oscillator energy is changed by 2w, (see expression (5.10) for 5#7;”), it
follows that d{%)(n,m) coincides with d.,,(n,m), where d.,(n,m) is
defined by Eq. (4.36). The coefficients d{* (n, m) with | j| < 1 depend
explicitly on A(#) because the field influences the probabilities of the
decay processes in which the energy of the eigenoscillations is
changed by w, (this is seen from Eq. (5.10) for 5#°;"). The expressions
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for d{®(n,m) and d{")(n,m) are obtained from equations (4.8) and
(4.38) for dy(n,m) and d_ ,(n,m) by making in the latter the substitu-
tions

I'->T,, A->n,, PP, (5.16)
where

T,=T+T,+I_-T,,

Wlhl(t)l2 2 _
= " " 2(6,9)) Wy 18((.00 * w0 — ),
wo(wy —w?) K

I+

(5.17)
alhy() 2
Lo = s D7) o 80 — w0 — @),
wo(wp — @) *
n, = [ﬁ(wo)I' + A(wy + W)y +A(we— @)
+(mw—w@+lﬂqr;l
P,=P+P®+P _+P_,
(5.18)
_ 2|}‘1(’)|2 2 2 271
P,=vp————— z(ek ) [(wo * )" — wk]

wo(wg - wz) k

(T, P, and P® are defined in Egs. (2.15) and (4.37); the definitions of
the parameters I', and T, differ by a coefficient o |,(¢)|* from those
used in [30)).

Thus, the influence of an external nonresonant field 4(z) on the
oscillations of the singled-out oscillator at the eigenfrequency reduces
to a renormalization of the linear-friction coefficient, on the Planck
number for the oscillator, and also of the shift of its eigenfrequency.
Expressions (5.15)—(5.18) are valid at arbitrary |, — T|/T, |7, —
fi|/#A, and |(P, — P)/P|, i.e., the renormalization of the relaxation
parameters can be strong; it is necessary only that the conditions for
the applicability of a kinetic equation of the type (4.11) be satisfied
for T, P,, and 7,
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5.2 Stationary Distribution of Oscillator in the Absence of Nonlinear
Friction. The “Runaway” Effect

5.2.1 Effective Temperature of Eigenoscillations It can be seen from
Eq. (5.17) that the linear-friction coefficient I',, which describes the
damping of the eigenoscillations of the oscillator in an external
nonresonant field, is the sum of the friction coefficient in the absence
of a field T and of the coefficients I', and —T,, which are propor-
tional to the field intensity |A,(¢)]>. The coefficients T and T', deter-

_mine the probabilities of the decay of the oscillator with transfer of an

energy w, and w,* w to the medium, respectively, while I', deter-
mines the probability of the field-induced oscillator excitation with
transfer of an energy w — w, to the medium (see Fig. 20); the quantity
T, is therefore subtracted from I' + T', in the expression for I';.

The total probabilities of the transitions between the oscillator
levels depend not only on the coefficients T, I'.., and T, but also on
the occupation numbers of the vibrations of the medium at the
corresponding frequencies. Since the transition probabilities are addi-
tive, it is easy to verify that the ratio of the total probabilities of the
oscillator transitions “up” and “down” is equal to 77, (7, + 1)~ !, where
7, is the effective Planck number of the oscillator and is defined in
Eq. (5.17). )

The field-induced decay processes can, according to Eq. (5.17)
increase as well as decrease the characteristic relaxation time. The role
of such processes is easiest to trace in the simplest case, when the
nonlinear friction is negligible, e.g., because the density of states of
the medium at the frequency 2w, is small (I® < |T,|), and the force
h(?) is strictly periodic (h,(f) = const). In this case the relaxation
parameters T, 7,, and P,, and consequently also the coefficients
d®(n,m) in the quantum kinetic equation (5.15) are independent of
time. We consider first the case I', >0, i.e., i, > 0. In this case a
stationary distribution of the oscillator is established within a time
At~T;!. According to Eq. (5.15) it takes the form of a Gibbs
distribution with an effective temperature T}, :

h‘,,+1)‘1

po(n,m) =234, (7, + 1)_lexp(——w0n/ T,), T, = wo(ln =
b

(5.19)
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It is seen from Eq. (5.19) that at ', > 0 the nonresonant external field
does not cause a buildup of regular (coherent) eigenoscillations of the
oscillator. According to Egs. (5.6), (5.12), (5.19), and (5.14) we have

<@ty = Tro[d(1)3(1)] = vi(1),

i.e., only regular oscillations at the field frequency are present.
Oscillations at the eigenfrequency, just a$ in the absence of a field,
are stochastic. Their effective temperature 7,, however, can differ
substantially from the temperature of the medium. Thus, if the main
contribution to the damping I, is made by one of the terms T, , then
@o
T,=T , T.>T. (5-20)

Wyt w

Equations (5.20) and (5.19) are easy to understand: the oscillator
distribution in the energy of the eigenoscillations coincides with the
energy distribution of those continuous-spectrum vibrations that
cause the relaxation. Thus, with the aid of an external field it is
possible to heat strongly the singled-out oscillator (at T_ >T,T, and
Wy > wy— w), as well as to cool it strongly at (T, >T,T_ and
wo K wy + w). The processes described by the term T, in Eq. (5.17)
also lead to heating of the oscillator at T, > 0.

The possibility of decreasing the population of the excited level of a
two-level system with the aid of an external high-frequency field was
discussed in [54, 55]. In the case of an oscillator, according to Eq.
~ (5.19), the distribution in the occupation numbers is exponential, i.e.,
the introduction of the effective temperature turns out to be not a
mere formality. In an external field, the distributions of several other
multilevel systems with equidistant energy spectrum have a similar
form (e.g., those of spin systems with s > 1/2 [56]). It is shown in [30]
that the effective temperature 7}, can differ substantially from T even
in relatively weak fields A(¢).

5.2.2. Oscillator Instability in the Case of a Negative Friction Coeffi-
cient It is seen from Eq. (5.17) that in a sufficiently strong external
field that leads to simultaneous excitation of the oscillator and of a
continuous spectrum vibration (v = w, + w,), the linear-friction coef-
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ficient T, can become negative (if I, >T+ T, ). A system with
negative friction is unstable. For such a system, 77, < — 1 according to
Eq. (5.17), i.e., the probability of a transition to a higher energy
(o T, %,) is larger than of a down transition ( T, (7, + 1)). The result
is the “runaway” effect.

These qualitative considerations are confirmed by direct calculation
of the change of the average energy of the eigenoscillations w7,y
with time. From Egs. (5.15), (5.16) and (4.8) at T® = 0 we obtain for
{#iyy the equation

d<£o> = T, ((Agy — ), Aoy = Trg(Ag(£)B(1)) Eg np(n,n; 1),

(5.21)

from which it is seen that at T', <O the average energy wo(ny>
increases like exp(2|L,|).

The “runaway” of the oscillator consists of a transfer of the
excitation to increasingly higher levels of the eigenoscillation energy
in the course of time. This transfer can be easily tracked in the
simplest case when I and T, are equal to zero, and

I,=-T,, 7i(w — wo) = 0. (5.22)

€

In this case, according to Eq. (5.17), i, = — 1. If only the lowest level
is filled at the initial instant

p(n,n;t5) = 8,4,
then the solution of (5.15) takes the form
B(n,n; 1) = exp| —2T,(t — to) | {1 — exp[ —2T(t — 1) ]}". (5.23)

It can be seen from Eq. (5.23) that p(n,n;£)—>0 as t—> oo for any
finite n, but p(n, n; ) increases with time in a certain time interval that
depends on the number n. The maximum of the distribution (5.23),
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which is located at
nmaxzexp[2re(t - to)] -1,

shifts towards larger n with increasing ¢ — #,. As a result, no station-
ary distribution is established (this is clear also from Eq. (5.19): since
m, < —latT, <O, it follows that T, < 0 and the distribution (5.19) is
not normalizable, ie., the formal stationary solution (5.19) of Eq.
(5.15) has no physical meaning).

In the region

. ar,

the nonequidistance of the oscillator levels does not influence practi-
cally the average energy of the eigenoscillations and, what is more,
the diagonal elements of § at all, see Eq. (5.15). At the same time the
nonequidistance alters qualitatively the character of the time depen-
dence of the amplitude of the regular oscillations of the oscillator at
the eigenfrequency w,. It was shown above that at T, > 0, when the
stationary distribution is of the form (5.19), there are no stationary
regular oscillations at the eigenfrequency. The case T, < 0 calls for a
special analysis, since Eq. (5.19) cannot be used here.

The amplitude of the regular oscillations at the eigenfrequency is,
according to Egs. (5.6), (5.12), and (5.14),

Areg(1) = % |Trol do(1)B(1) ]|

—ﬁ— n|dy(t)|n p(n ;
e lzn)( ldo()|n + V)p(n + Lnsr)|.  (5.24)

In the calculation of 4,(7) it is convenient to express p(n + 1,n; ) in
terms of the Green’s function of Eq. (5.15), and use for the latter the
explicit solution (4.18) obtained for Eq. (4.14), which is similar to Eq.
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(5.15). In the region of long times the result takes the form

o, — i(V+ V@) |~

2a,

Areg(t) & Areg(tO) 1-

X exp[ — (IT4] + 2lgjl)(t — 1) ],

r,<o, IT,(t — 1) > 1,

I(V + Vs, |~ <exp[ 2IT,(1 — 1) ] (5-25)
21172
@, =[T} — iV + VO)2R, + 1) = {(V + V?) |

T, <0, a, =Rea, <0.

According to Eq. (5.25), the regular (coherent) eigenoscillations of a
nonlinear oscillator decay exponentially at long times even under
“runaway” conditions. -

A limiting transition to the case of the harmonic oscillator (V +
V@ = 0) is impossible in Eq. (5.25); in particular, as ¥V + V® -0
the pre-exponential factor diverges. A direct calculation of 4,.(?) in
the case of a harmonic oscillator leads to a qualitatively different
result, the exact opposite of .(5.25): .

Ao (1) < A, (10)exp| [T4l(2 — 1) ]
(5.26)

T —t)>1, V+VP®=0 T,<0,

According to Eq. (5.26) the amplitude of the regular oscillations at the
frequency «, increases exponentially with time.

Such a difference between the harmonic and weakly-nonlinear
oscillator at T, < 0 is due to the fact that the initial eigenoscillation
excitation, which corresponds ‘to excitation of transitions between
some low-lying neighboring levels, is transferred in the case of the
harmonic oscillator resonantly and coherently (on account of the
interference of the transitions) to higher-lying levels and the ampli-
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tude of the oscillations increases. In the case of a nonlinear oscillator,
since the levels are not equidistant, the energy interval between
sufficiently high levels differs strongly from the interval between
low-lying levels even at small [(V + V®)I';!|. This suppresses the
interference of the transitions. As a result, transitions between high-
lying levels are not excited practically, and the amplitude of the
oscillations decays (for details see [30]).

Energy runaway, in contrast to runaway in the amplitude of the
coherent eigenoscillations, is due to incoherent transitions from level
to level, and therefore the small nonequidistance of the Duffing-
oscillator levels does not stop the energy runaway in the case of linear
friction. Only the strong nonlinearity, which always takes place in real
vibrating systems at high energies, stops the runaway.

3.3 Suppression of Energy “Runaway” in Systems with Nonlinear
Friction

3.3.1  Gaussian Stationary Distribution in the Case of Weak Nonlinear
Friction The role of nonlinear friction increases with increasing
oscillator energy; e.g., according to Eq. (4.38) the contribution of the
nonlinear friction to the expression for the level half-width I'(n) at
large n increases like n?, while the contribution of the linear friction
increases like n. Therefore, if T® 5 0, the nonlinear friction exceeds
the linear at sufficiently high energies of the eigenoscillations, and in
the case when the linear friction is “negative” and energy “runaway”
sets in, the nonlinear friction stabilizes the system. As a result, a
stationary distribution of the oscillator develops in a monochromatic

field. It was analyzed in [30] by the generating-function method and it

was shown there that at sufficiently low I'? /T, population inversion
sets in in a definite energy region.

Since the expression obtained in [30] for the generating function in
terms of a confluent hypergeometric function is not convenient for
analysis, we consider below the stationary distribution of the oscilla-
tor in the limiting cases of weak nonlinear friction (I® < |T,|) or high
temperatures (T, |T,| > w,).

At T® «|T,| and T, <0, the oscillator “runs away” from the
low-energy region, where the nonlinear friction is negligible (see Eq.
(5.23)), and in the stationary regime it occupies mainly the states for
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which the negative linear friction and the positive nonlinear friction
cancel each other. The numbers n of the corresponding levels are
large; as seen from Egs. (5.16) and (4.38),

n~|T,|/T® > 1.

The distribution of the oscillator over the levels g (n,n) depends
smoothly on the level number » near the maximum. We can then
expand py(n + j,n + j) (|j] <2) in Eq. (5.15) in powers of j and, just
as the derivation of Eq. (4.47), it suffices to retain the terms quadratic
in j. As a result, Eq. (5.15) is reduced in the stationary case to the
form

~

d
4 _ e 5, o]
E{n[n(2n2+1)+§ '2m, +11] 52 +n(n 28 )pn}—O,

(5:27)

2
5n555t(n’n)’ 8=WE— Fh s 8<<1, n>>1

In Eq (5.27), besides the higher-order derivatives such as d°p,/dn®
etc., we have discarded terms proportional to lower powers of n and
8L

Using the condition that p(n,n) vanish as n—> o0, we can find
from Eq. (5.27) that g (n, r) is described by a curve with a maximum
located at

n=n,=28"", (5.28)
and the distribuiion near the maximum is Gaussian:

(n— nm)2

n, 7 (T)

>

Ps(n, n) = const X exp{ —

(5:29)
H(T)=2Q2n, + 1) + |27, + 1], |n—n,|<n,5(T)

Thus, for all the oscillator levels with n < n,, the population g (n, n)
increases with the increasing number of the level, i.e., population
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inversion is present. In the region of relatively low temperatures,
where k(T)~1, the width of the maximum of the distribution is
~n)/?; it is small compared with 7, ie., the peak of g (n,n) is
narrow at I'® «|T,|. With increasing temperature, the width in-
creases quite rapidly (like (7 + |T,)'/? at T, |T,| > wg).

At low temperatures, the expression (5.29) and Eq. (5.27) are not
valid on the distribution wings, since p (n,n) changes relatively
strongly there when n is changed by unity, and it is incorrect to
change over from the difference equation (5.15) to the differential
equation (5.27). A more complete investigation of the dynamics of an
oscillator in a nonresonant field is possible in the region of relatively
high temperatures,

T > 20, [T > g, (5.30)

when the classical description of the oscillator motion is valid. We
note that, as can be seen from the definition (5.19), (5.17) of the
effective temperature 7),, the second inequality in (5.30) can hold
even at small T/(w — wy), if |T,| is small compared with T, i.e., the
field A(¢) is not too strong (but at the same time ', >T + T, ie,
T, <0).

5.3.2  Classical Description of the Dynamics of an Oscillator in a
Nonresonant Field. Comparison with the Van Der Pol Oscillator At
high temperatures we can analyze the dynamics of an oscillator by

- using a classical approach. Just as in the absence of a nonresonant

field, it is convenient to describe the oscillations at the eigenfrequency
with the aid of a complex amplitude u,(¢) that varies slowly over a
time ~wy ' and |w — wy|~!. This amplitude can be introduced in our
case, in analogy with Eq. (1.5), in the following manner

(1) =[ug(r)e’* + c.c] + (wg — wz)_l[hle“"“" +cc.],
(5.31)
§(1) = il up(t)e™” — cc.] — iw(wf — o) " [ e ™ — cc.]

Eliminating from the classical equation of motion for the oscillator
the.continuous-spectrum vibrations (see Sec. 2.1) and neglecting the
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corrections (5.4), we can obtain for uy(r) a stochastic diffcrential
equation (cf. Egs. (2.14), (4.40)) that takes into account the spontane-
ous decay processes as well as those induced by an external field:

, N 3y
iy = — [(I‘h + 4T gy — zPh]uo - 2—1.2::; |uaolto

+h(0) + i f(1), uo= uo(t). (5:32)

Here the damping T, and the frequency shift P, are defined by Egs.
(5.17) and (5.18), while the random forces f,(r) and f{*(¢) constitute
independent Gaussian §-correlated processes (in the “slow” time
scale), with

TThg o — g
GOR ) = =15t 8( = 1),

0

(5.33)
SE@IP ) =L 8~ 1)
o

Strictly speaking, the right-hand side of Eq. (5.32) contains also a
term

_ -2
~iy|hfPwg 1(“’3 - ‘*’2) Uy,

which describes the Stark shift of the frequency of the nonlinear
oscillator, cf. Eq. (5.7); it is regarded below as included in P,.
Equation (5.32) differs from the analogous equation (4.40) in that
the parameter T, that describes the linear friction in (5.32) can be
negative, and the effective temperature 7}, that determines the inten-
sity of the random force f,(f) is not equal to the temperature T of the
medium (and is likewise negative if I, < 0; at the same time, as seen
from Egs. (5.19) and (5.17), the random-force intensity o< I', T}, > 0).
Neglecting the fluctuations, the equation for the squared amplitude
of the eigenoscillations r,/4 takes according to Eq. (5.32) the form

i'o = _2(Fh + 4r(2)030r0)r0 ) g = |u0|2. (5.34)
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At T, < 0 the stable stationary solution of Eq. (5.34) is

r
To=Tg, To= Ol (T, <0). (5.35)
4T g

Thus, in the classical case, just as in the quantum case, the nonres-
onant field that induces decay processes with excitation of the oscilla-
tor leads to buildup of its eigenoscillations. The mean squared ampli-
tude, according to Eq. (5.35), is proportional to absolute value of the
negative linear friction coefficient I', and is inversely proportional to
the nonlinear friction coefficient IT'®.

Equation (5.34) for r, coincides with the equation for the squared
amplitude of the Van der Pol oscillator (see Eq. (1.10)).

It is convenient to analyze the fluctuations of a classical oscillator
in.an exciting nonresonant field by using the EFP equation that
corresponds to the Langevin equation (5.32). From a comparison of
Egs. (5.32), (5.33) with Egs. (4.40), (441) it is clear that the EFP
equation for the case investigated here differs from the EFP equation
(4.42) for an oscillator in the absence of the external fields only in
that T, I'T, and P in Eq. (4.42) must be replaced by T, I', T,,, and P,
respectively. The stationary solution of the EFP equation, which
describes the distribution function of the oscillator in the steady state,
is of the form

- [T ¢ 202r,
W0, 90) = Zo ](Zo+ ro—Th—) exP(— ——; 9 ),

| (5.36)
2021, | T, VAN 205r,
) aeefoforl o )

The distribution (5.36) has a maximum at ry, = r, and is Gaussian
near the maximum (cf. Eq. (5.29); the variable r, in the classical
theory corresponds to (2wy) " 'n in the quantum theory at n>>1). On
the tail, however, the distribution (5.36) decreases like exp(—2wdro

_/T), ie., just as the distribution of an oscillator that interacts with a
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medium in the absence of a nonresonant force. It is this which
manifests the difference of the results of the microscopic model
considered here from the results of the phenomenological model of a
random force as white noise independent of the coordinates [10, 13].
In the latter model w,, decreases at large r, like exp(— Ar)).

The form of the distribution (5.36) as a whole also differs from the
distribution of a Van der Pol oscillator in the indicated phenomeno-
Jogical model, and only near the maximum do the distributions have
the same form. If the maximum is narrow,

@it

e (5:37)

then the results of the linearized theory [10, 13} are applicable to a
considerable extent to the model considered here. In the general case,
however, the character of the fluctuations in the microscopic model
(5.2), (4.1), and (4.35) turns out to be entirely different from that in
the indicated phenomenological model. In particular, near the excita-
tion threshold (T, = 0) the distribution w,, is described in the phenom-
enological model by the function exp(— Ar3); in the model considered
here the parameter t,| 7| in Eq. (5.36) turns out to be finite as I', >0
(T, < T; ! at small T,)) and the distribution (5.36) differs substantially
from Gaussian.
If we replace in Eq. (5.36) the parameter { by

~ ngl’o Th
f= =2 (7 - 1), (5.38)

the expressions (5.36), (5.35), and (5.38) describe the distribution of
an oscillator in a nonresonant field at T, > 0. In this case the function
w(ro» @) decreases monotonically with increasing ro. At T,>T®,
when the nonlinear friction is weak, the distribution wg(ro, ®o) in the
vital region r,<1oT,/T is close to a Gibbs distribution with an
effective temperature 7}, (see Eq. (5.19)).

It follows from Egs. (5.36) and (5.38) that both at T', <0 and at
T, >0 the oscillator does not perform regular oscillations at the
eigenfrequency. Even when the condition (5.37) is satisfied, and the
spread of the amplitude of the eigenoscillations is small, the phase of
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the oscillations remains random. The phase-diffusion coefficient is in
this case

. TOTr | T )

and decreases both with decreasing temperature and with increasing
nonresonant field intensity (an increase of T', leads according to Egs.
(5.19) and (5.17) to a decrease of |T,|/T at T, < 0).

5.4 Spectral Distribution for an Oscillator in a Nonresonant Field.

The relaxation-parameter changes due to the nonresonant field result
in alteration the time correlation functions of the singled-out oscilla-
tor and their spectral distributions. If the field h(¢) is strictly peri-
odic and a stationary regime is realized, the density matrix of the
“oscillator + medium” system also depends periodically on the time,
with a period 27 /w, while the two-time correlation functions can be
represented in the form

LM (1)) = ni]w Xew (1 = 13 n)e™. (5.39)

In this representation one can explicitly separate the periodic depen-
dence of the double-time correlators on one of the arguments.

For a number of applications (see [30, 56]) it is of interest to
calculate the correlators averaged over the period 27 /w:

LML)y = Xeas (1~ 1'50) (5.40)

(the subscript av denotes averaging over the period). Transforming
with the aid of Eq. (5.8) to the interaction representation, we can
reduce these correlators to a form similar to (4.4) and reduce next the
problem to a solution of the quantum kinetic equation, as was done in
Sec. 4.1. In particular, the expression for the spectral representation
0;(w) of a double-time correlation function of the annihilation and
creation operators in the frequency region o’ &~ w, can be written,
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taking Egs. (5.6), (5.7) and (5.14) into account, in the form
’ A 1 © iw't /s A INAF g
0;(«) = Ef_wdte B(t+ 1Ya* ()Dn

1 o iw'tyyr ’
= ;Re’[(; dte ! h(t)’ W Wy,
(5.41)

(1) = e ¢ N pl/2exp| — iV n— L1\ |p nn—1;0),
h ~ ) a

=wy + 2V|h,|2(o.>2 + wg)wo_'(wz - wﬁ)—z

The function F{¥(n,n — 1;¢) is here the solution of Eq. (5.15) (in
which we must put m = n — 1), with the initial condition

F®P(n,n—1;0)=n'5(n—1,n—1). (542)

The quantities F{’(n,n — 1; ¢) are similar to the matrix elements (4.5)
of the operator F,,(?) (M = 4*), which describes the damping of the
correlator Q’(¢) in the absence of an external field; at A = 0 expres-
sion (5.42) goes over to Eq. (4.12). '

From a comparison of Eq. (5.15) and Eq. (4.7) it follows that in the
case of weak nonlinear friction (I® «T)) and at T, > 0, when the
stationary distribution takes the form (5.19), the function Q;(?) is
described by formula (4.22), if we replace T, P, and 7 in the latter by
I, P,, and 7, (and @, by «p). This enables us to analyze the
dependence of the form of the spectral distribution Q}(«w’) on the field
h(r) and on the type of the field-induced decay processes. In the case
of the decays shown in Figs. 20a and 20b, the broadening T, increases
with the field. If, however, 7 > 1 and |V + V?|>T,, then the total
width of Q;(«w) can decrease in a cooling field (I, >T_,T,), inas-
much as in this case transitions from a smaller number of levels take
part in the formation of Q,(w’), and the nonequidistance of the
oscillator energy levels has a weaker effect. At |V + V®|<T, a
decrease of the width of Qj;(«w’) (which is approximately equal to T,)
takes place in the field if ', > I', . With decreasing T',, however, the
effective temperature of the oscillator increases, and at T',~7,|V +
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V| the distribution Q;(«’) begins to broaden with increasing field
on account of the nonequidistance of the levels.

In the general case of arbitrary T, and T® an analysis of Q}(w")
can be performed by taking the Fourier transform of Eq. (5.15) for
F®(n,n — 1; ) and by representing Q; ("), with Eq. (5.41) taken into
account, as a sum of partial spectra Reg,(n,»"). These spectra are
similar to those in Eq. (4.28) and correspond to transitions between
neighboring levels of the oscillator. At [V + V®|>|T,|,T?, the
spectra overlap little and the intensity of the nth spectrum is propor-
tional to the population of the (n — 1)-level g (n —~1,n —1). If I', <0
and population inversion is present in a definite region of n, the
intensities of the partial spectra in this region increase with n. There-
fore the coefficient of the absorption of the additional weak resonant
field with frequency o’ ~ w, by the oscillator, which is proportional to

;Reqoh(n, w)pg'(n—1,n— 1)[551(71 -Ln—-1- [o’st(n,n)],

appears to be negative in the corresponding frequency region, i.e., the
oscillator can amplify a weak resonant field at the expense of a strong
nonresonant field. Since the absorption coefficient integrated over the
frequency w’ (in the region '~ w,) is positive for the oscillator, the
case of a pronounced fine structure is most favorable for obtaining
large amplification coefficients in a certain frequency interval.

§6 Spectral Distributions of Lecal and Quasilocal Vibrations

Among the physical systems described by the model of a Duffing
oscillator interacting with a medium are local and quasilocal vibra-
tions in imperfect crystals. Local vibrations arise, e.g., near light
impurity atoms or those strongly bound to the crystal. The frequen-
cies of these vibrations are outside the phonon-frequency bands of a
perfect crystal and therefore, in the harmonic approximation, they do
not propagate in the crystal and are localized near the defect. Quasilo-
cal (or resonant) vibrations arise, e.g., near heavy or weakly bound
impurity atoms. Their frequencies are located in the phonon-
frequency band of the perfect crystal, but lie in a region with low state
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density. The state density of an imperfect crystal has narrow peaks at
the frequencies of the quasilocal vibrations, and the amplitude of
atom vibrations at the corresponding frequencies has a sharp maxi-
mum (in space) near the defect. Quasilocal vibrations can actually be
regarded as excitations that are localized near a defect and decay
slowly into waves propagating through the crystal. A particular case
of local or quasilocal vibrations are the intramolecular modes of
weakly bound impurity molecules, whose frequencies fall respectively
in forbidden or allowed regions of the spectrum of the perfect crystal.

The damping of the local and quasilocal vibrations is due to their
interaction with other modes of the crystal. Greatest interest attaches
to the case when the interaction is weak enough, so that the lifetimes
are long. Therefore the local and quasilocal vibrations are examples
of oscillators that interact weakly with the medium, and analysis
given in the preceding sections can be applied to them. In most cases
the amplitudes of the vibrations of the atoms that take part in the
localized modes are low, and therefore the nonlinearity is likewise
relatively small. This allows us to limit the expansion of the potential
energy up to the terms of fourth order in the coordinates, i.e., to
reduce the problem to that of Duffing oscillators. Usually several
localized modes arise near the defects, so that in contrast to the
single-oscillator case discussed above, we must consider the more
general case of a small number of interacting nonlinear oscillators.
Allowance for the nonlinearity (even if it is relatively small) appears
to be necessary for the interpretation of the number of results on the
spectra of infrared absorption and Raman scattering of light by local
and quasilocal vibrations, since, as follows from the results of Secs. 2
and 4, even a weak nonlinearity leads to a qualitative change of the
spectral distributions.

6.1 Hamiltonian of an Imperfect Crystal in the Presence of
Local and Quasilocal Vibrations

We confine ourselves to the case when the crystal contains one defect.
We shall label the local and quasilocal vibrations by the index « and
denote by ¢, and p, their normal coordinates and momenta. We
consider first the case when the frequencies w, are not close to one
another and, as a consequence of the symmetry, there are no terms
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cubic in ¢, in the Hamiltonian H|, of the “isolated” localized vibra-
tions (i.e., of those whose interaction with the vibrations of the
continuous spectrum is neglected),

-

B 1 .
Hy= 5 (P2 +0lgd) + 5 Sradi+ % g,m/qfq? (6.1)

The parameters v, with k 7 k' determine the nonlinear interaction of
the different singled-out (local or quasilocal) vibrations with one
another.

In quantum theory it is cenvenient to express the Hamiltonian H,
in terms of the annihilation and creation operators 4, and 4,

- At A 1 A A
Hy=>wdld + 3 > VA,
K K,k

K K

fo= 028, q.=Qo)TV(8+8E), V=3

Here, just as in Eq. (1.14), we have discarded nonresonant terms of

the type 434, 4242, etc., which are of no importance in what follows,

and have renormalized the frequencies w, to the quantities ~V,..
The total Hamiltonian which describes the singled-out vibrations

and the continuous-spectrum vibrations can be written in the form

H=H0+Hm+Ht’ Hm=zwkaAk+ﬁk,

H=H"® +H® + H® + H®, HO =SV, e4,
K,k

. (63)
2 _ A A A 3 1 AAA
H® = > V,bll,, HP= 3 > Vewlibile s
P K.k, k'
4 _ 1 A A A A A +
H® = 3 Z Vil by s t=4+4a".
[ XN N4

We have discarded in the Hamiltonian H(® the terms that describe
the decays with participation of three singled-out vibrations or three
continuous-spectrum vibrations.
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If we choose the coordinates ¢, and ¢, to be the true normal
coordinates of an imperfect crystal, then the term H{" in Eq. (6.3)
vanishes. This choice is convenient for local vibrations. In the case of
quasilocal vibrations (e.g., intramolecular vibrations whose frequen-
cies fall in the region of low state density) it may turn out to be more
convenient to start from approximate normal coordinates (e.g., those
of the intramolecular vibrations of the impurity and of the crystal
vibrations). In this case the term HS" differs from zero and describes
the transformation of a quasilocal vibration into a delocalized vibra-
tion having the same frequency.

6.2 Infrared-Absorption Cross Section

The cross section 6(w) for the absorption of polarized light of fre-
quency ¢ by a single optically active impurity center is expressed in
terms of the spectral representation of the time correlation function of
the dipole-moment operator M (cf. [15, 57]):

o) = ps [1 - (- ) [ <M MO,

(6.4)
(M, M), = - f * dt e™'( M, (1) M, (0)>.
27 J— oo ‘
Here ¢ is the velocity of light in vacuum, n(w) is the refractive index;
the electric field in the wave is parallel to the x axis. The operator M,
can be expanded in powers of ¢, and &. For the investigation of a

narrow peak of o(w) in the region w~ w, it suffices to retain this
expansion only the linear terms

M, =S me+ > mc, (6.5)
C 3

and the main contribution to the cross section is made by the term
with the given «:

o(w) = %’)— [1 - exp(— %)]mex’(w), W, ,

/(@) = 5 |7 dieca nar
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6.2.1 Relaxation Parameters According to Eq. (6.6) the cross sec-
tion for the light absorption is proportional to the spectral distribution
Q/(w) of the time correlation function of the coordinates of the local
or quasilocal vibrations (the parameter m> determines the oscillator
strength of the transition). In the case when there is only one
singled-out mode, the function Q/(w)= Q’(w) was analyzed in detail
for the Duffing-oscillator model in Secs. 2 and 4. For the interaction
Hamiltonian H; = H/V we have obtained the explicit expressions
(4.22) and (4.24) for Q'(¢) and Q’(w). The form of the obtained
spectral distribution depends on the values of the damping parameter

. =T and of the nonequidistance of the oscillator levels V, = V.
The formulas given in Sec. 2 for T, which correspond to the interac-
tion H("V and determine the probability of decay of a quasilocal
vibration with creation of one continuous-spectrum vibration, de-
scribe with sufficient accuracy the damping of the low-frequency
quasilocal vibrations. In the case of local vibrations, the interaction
H{Y is absent and under certain conditions the main contribution to
T, is made by the interaction H®, which describes the decay or
scattering - of a singled-out vibration with participation of two
phonons (it can play an essential role also for high-frequency quasi-
local vibrations). The resultant damping I", connected with the inter-
action HV + H® which is linear in c,, is described according to Eq.
(F.15) by the formula

T, =7 Vid(e, — @)
K

+ % 1% V,fkk,[(r_lk + 1y + 1)8(w, — @, — @)

+2(ﬁk' - ﬁk)S(wK - wk + wk/)],

(6.7)

i, = Ti(0)-

The first term in Eq. (6.7) is independent of temperature [58, 59],
while the second term [7, 53, 60] is proportional to 7 at high
temperatures.

The term H ® determines the nonlinear friction. Its role was
analyzed in Sec. 4.4. The interaction H{? was not considered above.
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It leads to a certain renormalization of the nonlinear-friction constant
(on account of decays of the type 2w, = w, * w,). In addition, it leads
to a specific damping which is not connected with the finite lifetime
(with the energy relaxation time) and is of modulation origin. This
damping is due to quasielastic scattering of the vibrations of the
continuous spectrum by a local or quasilocal vibration. At arbitrary
values of the other relaxation parameters and nonlinearity parame-
ters, this process causes in the expression for the time correlation
function an additional factor

exp(—TP]e)), (6-8)
where

TP =47 V2 (e + 1)8(w — o) (6.9)
ok

(a more complete expression for Q’(¢), which takes into account the
renormalization of w, and V,, as a result of the interaction H?, is
given in [21]). The resultant spectral distribution is therefore a convo-
lution of the distribution Q’(w) investigated above with a Lorentz
distribution of width 2I'”. The broadening I is particularly sub-
stantial in the case of high-frequency local vibrations, when the
conservation laws make decay processes resulting in the damping

_ (6.7) impossible (see [22, 61]).

The results of Sec. 4 for Q’(w), together with Egs. (6.6)—(6.9),
determine in explicit form the shape, the fine structure, and the
temperature dependence of the light-absorption spectra in the case of
one local or quasilocal vibration. When account is taken of the
second term in Eq. (6.7) and of T'» (6.9), which are due to the
anharmonicity of interaction with a medium, the fine structure is
smeared with increasing temperature both as a result of the increase
of 71, (see Fig. 17) and of the increase of I', and T'". At sufficiently
high temperatures Q/(w) is described by the results of the classical
theory, i.e., by the smooth asymmetric non-Lorentzian curves of Fig.
4 in the case of linear friction or by the curves of Fig. 18 in the case of
nonlinear friction.

6.2.2 Spectra for Several Interacting Nonlinear Singled-Out Vibrations
a. Nondegenerate Vibrations The structure of the spectral distri-


bartons4


406 M. I. DYKMAN AND M. A. KRIVOGLAZ

tion of the absorption coefficient becomes more complicated when
there are several interacting local and quasilocal vibrations in the
vicinity of the impurity center. If the effects of nonlinear friction can
be neglected, expression (4.22) for the time correlation function can
be generalized in simple fashion to include the case of interacting
nonlinear oscillators [21]

0:(t) =<&,(na; (0))
Q*(H) = (A + l)exp[ (w + P — %ZVKK')t]
X' (1) [T exp (Tt )i (2),

- where P, is the renormalization of the frequency of the oscillator «,
due to the interaction with the medium (see [21]),

Yot) =chagt +|1—i 2Vr (27, + 1) f sha,.1,
(6.11)
a2, =T% —i(2h, + )TV, —LV2%.

The cross section for the absorption of the light can be determined
from Egs. (6.6), (6.10), and (6.11) by numerical integration. In the
numerical calculations it may be convenient also to solve a system of
difference equations for the partial spectra, similar to the equations
(4.29) for one nonlinear oscillator and considered in the case of
interacting oscillators in [52].

Explicit analytic expressions for Q4w) (i.e., for 6(w)) can be ob-
tained for the case of several interacting oscillators in the limit of
large or small ratios V. /T,. If the nonequidistance is large enough
and the condition

[V > (1 +2R,)T,, (6.12)

is satisfied, then, neglecting nonlinear-friction effects, it follows from
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Egs. (6.10) and (6.11) that

0:(@) =y oxp( 7 ) L+ D)™

WM, ) T cosa, —Q,sina,,

X > 0n,cexp( -> KT

U . = K I‘i,,‘*'w,?,,
(6.13)
Here
Q., =0 n, )—w—w—P+ V —2 e
—42n (g + (1 +2n, — 8, 2V,
T,=T(...n )
=> [(1 +2n,— 8, )1 +27,)— l]I‘K, , (6.14)
a,=a.. )= 42[ — 7, (1+8“)]I‘K,VK:,1.
The spectral distribution (6.13) corresponds to a fine structure, in
which each of the lines n, = 1,2, . . . gives rise to a series of lines with
n.=0,1,2,... spaced a distance |V, | apart. The line widths are

determined by the values of T',, of all the singled-out vibrations and
depend linearly on n, and 7,.. The individual lines are asymmetric in
shape, and the parameters a,,, which characterize the asymmetry,
depend linearly on the ratios T,/ ¥,,.. We note that if |V, |<T, for
certain singled-out vibrations, these vibrations drop out of the sums
(6.13) and (6.14).

In the opposite limiting case, when

l VKK’] < rx’

for all the vibrations, the fine structure of the spectrum vanishes and
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the spectral distribution turns out to be smooth. An explicit expres-
sion for Q/(w) in this case (similar to Eq. (4.27)) is given in [21].

b. Effects Due to Nonlinear Friction In the case of several sing-
led-out vibrations, the nonlinear friction described by the interaction
Hamiltonian H?, can play a more significant role than in the case of
one singled-out vibration, since additional relaxation channels appear
as a result of decay or scattering processes of the type w, = |w, * w|.
If the singled-out vibrations k and «’ have high frequencies (w, w,
> T), it is easy to verify (cf. [22]) that the spectral distribution is
described by Egs. (6.6), (6.10), and (6.11) for the linear friction
problem. In the considered case in these equations there i is added to
the damping I, (6.7) the term

T=ST® (0,0, >T),
" (6.15)

= 47r2 mk[(ﬁk + 1)8 (0, — 0y — @) + Ad(w — 0 + @) -

In addition, the parameters P, and V., become renormalized (see
[21]; in the notation of Sec. 4, the expression of [21] for P? cor-
responds to P? — V ?/2). If all the singled-out oscillations have
high frequencies, the spectral distribution Q/(w) constitutes a Loreniz
peak of width 2(T, + ['?).

The interaction H? influences the spectral distribution in a more
complicated manner if the frequencies of some of the singled-out
vibrations that contribute to the nonlinear friction are of the order of
T. An analytic expression for the time correlation function Q/(¢) can
be obtained if the high-frequency singled-out vibration k (0, > T)
decays into a relatively low-frequency singled-out vibration «’ (o,
<< T) and a vibration of the continuous spectrum k. In this case, as
shown in [52], the function Q/(?) is described by Egs. (6.10) and
(6.11), in which it is necessary to make the substitution

Ve Vo + iT2 (6.16)
and multiply the resultant expression for Q/(¢) by
exp(—=T%)  (1>0). (6.17)

The corresponding spectral distribution has at large |V,.| (com-
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pared with T, T',,, and T', ) a pronounced fine structure consisting of
the lines n, = 0,1,2, . . . with half-widths

T, =T, +TY + (1 +27)(1+ 20T + (1 + 7)TD T,
- (6.18)
In the opposite limiting case ¥, = 0 there is no fine structure, the

spectral distribution is symmetric, but has an essentially non-Lorentz
shape. In particular, at T{2>> T, and ¥V, = 0 we have

® T, + (n.+ HI'2
Ql(w)= l(ﬁk + 1)_1 > ( ) : e~ /T,
4 n=0 QL+ [T, + (n,+ Hre]
(6.19)
U=w—w—-P — Ly .
K K K 2 KK

The central part of this distribution is narrower and sharper than a
Lorentz curve having the same integral intensity and the same inten-
sity on the wings.

c. Degenerate Vibrations with Cubic Symmetry The case of de-
generate local or quasilocal vibrations arising near high-symmetry
centers calls for a special treatment. In this case the structure of the
spectral distribution becomes more complicated, since the nonlinear-
ity not only makes the spectrum of a singled-out vibration nonequi-
distant, but also lifts partially the level degeneracy that takes place in
the harmonic approximation. To calculate Q/(w) it is therefore neces-
sary to take into account the complicated interference of the transi-
tions between the produced multiplets of the energy levels.

In the case of triply degenerate oscillations with cubic symmetry in
the presence of a symmetry center, the Hamiltonian H, of the
oscillations in the absence of interaction with the medium takes the
form

wOZn + = V12ﬁ2+ v, > Ad
2 kFK

+3Vs S (@) (6:20)

K=K
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Here x = 1,2,3. The spectral distribution Q/(w), as in the case of
nondegenerate oscillations, can be represented as an assembly of
partial spectra (4.28). Now, however, the set of quantum numbers that
enumerate the levels between which the transitions take place include,
besides the principal quantum number, also additional numbers that
enumerate the levels within the multiplet. A system of equations for
the partial spectra, similar to (4.29), was analyzed in [62] for a
problem with the Hamiltonian (6.20). For transitions between levels
whose random deneneracy is completely lifted by the anharmonicity,
the half-widths of the lines in a spectrum with a pronounced fine
structure are determined by the formula

T, =[ (27, + 1)2n — 1) + 65,]T,., (6:21)

where n is the principal quantum number of the level to which the
transition takes place. The spectral distributions for the general case

&
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(4] 50 {00
<
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/T,
Figure 21 Spectral distribution Q,’(w) for degenerate oscillators with spherical symme-
try; V,/T, =45 Q' =w—w,—~ P.—~3V,. Figures a, b, and ¢ correspond to the
values T/wy=0.67, 1, and 2.
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were calculated numerically. Figure 21 illustrates the smearing of the
fine structure for an oscillator with spherical symmetry 2V, =3V,
= 6¥;) when the temperature is raised (in the figure captions of [62]
the parameters V', V,, and V; are replaced by 1 V,, 1(V, — V,) and
1V¥3). A comparison of Figs. 21 and 17 shows that when the non-
equidistance parameters of the lowest levels have close values the
structure of the spectra is richer and manifests itself more distinctly in
the case of spherical oscillator than in the case of one nondegenerate
oscillator.

d. Examples of Experimental Investigation of the Fine Structure
and of the Broadening Due to Nonequidistance of the Levels Exper-
imentally pronounced fine structure was observed [63] in the spectra
of absorption of IR light by nondegenerate quasilocal vibrations of
Euw’* impurity centers in MnF, crystals. As seen from Fig. 22, the

Absorption Coefficient (cm™%)

17 18 19
Frequency {cm™)
Figure 22 Spectra of infrared light absorption by quasilocal vibrations in the system

MnF, : Eu?* at different temperatures. Curves I-II1 correspond to T =2, 15, and
25 K, respectively.
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absorption spectrum contains at 7 = 2 K only one line corresponding
to a transition from the ground state to an excited level. At a
temperature 7 = 15 K, when 7, = 0.3 (wo~ 16 cm™!) the spectrum
shows, in accord with Eq. (4.25), two maxima corresponding to
transitions from the levels n =0 and n = 1, and at 25 K (7, ~0.66) a
third peak appears on the distribution wing. The transformation of
the experimental spectrum in Fig. 22 with rising temperature recalls
the picture shown in Fig. 17 and obtained by calculation by formulas
(4.22) and (4.24). The ratio of the widths (at half-maximum) of the
first and second peaks at T =15 K (when the fine structure is most
pronounced), calculated from Eq. (4.26), amounts to 0.4, in agree-
ment with the experimental value 0.5 (taking into account the pres-
ence of apparatus broadening). In this case ¥, = 1.3 cm ™' exceeds T,
(0.1 cm ™) considerably.

Broadened smooth distributions ¢(w) having strongly temperature-
dependent widths, much larger than the possible values of I',, were
observed at T =, in a number of studies (see the review [64]). They
result from overlap and interference of the partial spectra of the
nonlinear oscillators at relatively small values of |V, |/T,, as well as
nonlinear friction processes. For example, in NaCl crystals containing
Cu* impurity centers, the spectrum of the absorption by quasilocal
vibrations becomes very broad and noticeably asymmetic in the
temperature region T~w, [65]. Similar effects were observed [66] in
the CsI: T1* system.

The modulation broadening, discussed above, of the spectral distri-
butions of the high-frequency local vibrations due to their nonlinear
interaction with low-frequency local vibrations was observed [67] in
KCl crystals containing complexes of SO}~ ions with Ca’>* or Ba’*.

6.2.3 Spectral Distributions at Multiple and Combination Frequencies
Besides the already considered light-absorption peaks at the funda-
mental frequencies of the singled-out vibrations there exist in nonlin-
ear systems also weaker peaks at multiple and combination frequen-
cies. Peaks at doubled frequencies appear only for defects that have
no symmetry centers [68]. The Hamiltonian H,, of the corresponding
vibrations contains terms cubic in ¢,, and the expansion of the dipole
moment M, in powers of g, contains quadratic terms. As a result, the
formula (6.4) for o(w) contains, besides the spectral distributions of
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the correlators {q,(#)q,(0)> (cf. Eq. (6.6)) also terms proportional to
1 © iwi
Q@) = 5 [ 41 <q.(1)4:(1)4:(0)4.(0))-

The corresponding spectral distributions of the coefficient of light
absorption at the combination frequencies w, * w,’ were considered in
[68-72, 23]. Using the methods described in Secs. 2 and 4 it appears
to be possible to obtain explicit expressions for o(w) for the nondegen-
erate problem and carry out a sufficiently complete analysis of the
fine structure of the spectra at low temperatures, as well as of the
smooth distributions resulting in the classical limit [71, 72]. In a
number of cases, simple relations exist between the parameters of the
spectra at the fundamental and at the doubled or combination
frequencies. Thus, if the nonequidistance of the levels makes no
contribution to the spectrum broadening and the latter is due only to
the damping T, and T¥ (6.7) and (6.9), the half-width T,_ at double
the frequency is '

T, = 2T, + 4T,

In the case of a pronounced fine structure in the spectrum of one
singled-out oscillator, the distance between its lines is twice as large
near the doubled frequency than for the spectrum at the fundamental
frequency, the line halfwidths are larger by a factor (1 + 27 )T, +
3T™, and the fine structure is more strongly pronounced. In the
classical limit, at |V |7, >T, the integral width of the smooth
strongly asymmetric distribution at double the frequency is e ~2.72
times larger than at the fundamental frequency.

We note that the presence of cubic terms in the Hamiltonian H,,
does not affect the shape of peaks of the spectral distributions, and
only causes renormalization of the nonlinearity constants V..

6.2.4 Integral Intensities of Absorption Peaks Besides broadening
and shifting the infrared absorption (or emission) lines at the ei-
genfrequencies of the local and quasilocal vibrations, the interaction
with the vibrations of the continuous spectrum leads also to the
appearance of relatively broad wings and changes in the integral
intensities of the peaks. The absorption coefficient on the wings has a
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complicated (nonmonotonic) frequency dependence. Therefore, un-
less the peak is &8-like, it cannot be singled out in the spectrum
directly. If, however, ‘the characteristic width of the peak is small
compared with the characteristic width of the wings and with the
distance from the peak to the absorption maxima on the wings, it is
possible to indicate a procedure allowing one to single out the peak
uniquely [73, 74]. This makes it possible to investigate the temperature
dependence of the peak intensity. Analysis shows, in particular, that
in a number of cases, e.g., in the case of low-frequency quasilocal
vibrations of a weakly bound impurity the integral intensity of the
peaks can depend weakly on the temperature, despite the strong
temperature dependence of the peak widths, which is due to the
nonlinearity influence considered above (such an effect was observed
in experiment [6]).

§7 Conclusion

It follows from the presented results that both in classical and in
quantum theory it-is possible to obtain a sufficiently complete solu-
tion of the problem of fluctuations and relaxation of a Duffing
oscillator interacting with a medium, in a wide range of relations
between the nonlinearity and damping parameters. In the case of
linear ‘friction, the simple expressions (2.46), (2.47) and (4.20), (4.22)
are obtained for the time correlation function Q(?) of the coordinates.
In the more general case of nonlinear friction (nonlinear interaction
with ‘the medium) the determination of the spectral representation
Q(w) reduces to solution of the linear system of difference equations
(4.29), which is convenient for numerical computations.

These results enable us to investigate the influence of the nonlinear-
ity on the spectral distfibution Q(w) and trace the gradual transition
from the case of a fully degenerate (in the Bohr frequencies) linear
oscillator to the case when the degeneracy no longer manifests itself
and the essentially multilevel problem reduces in fact to a two-level
one. Since the interference of transitions that are almost degenerate in
frequency is suppressed even at the small degree of nonequidistance
of the levels (of the order of their width), even a relatively small
nonlinearity influences strongly the behavior of the function Q(¢) and
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the form of the spectral distribution Q(w). Whereas in the absence of
nonlinearity Q(w) is described by a Lorentz function, in the case
when the nonequidistance of the levels exceeds their widths the
spectral distribution has in a definite temperature interval a fine
structure, and in the classical limit the distribution is smooth but
strongly asymmetric (see Figs. 4, 7, and 17).

A nonlinear interaction with the medium (corresponding to a
friction force that is cubic in the amplitude of the vibrations, i.e., to
the Van der Pol oscillator model) leads also to a non-Lorentz form of
the spectral distribution. The influence of the nonlinear friction force
on the form of the distribution Q(w), however, turns out to be
substantially different from the influence of the nonlinearity of the
restoring force (cf. Figs. 4 and 18).

The model of a Duffing oscillator interacting with a medium makes
it also possible to investigate another group of problems, namely,
those connected with fluctuation transitions between different stable
states of a classical subsystem. Two stable states appear in this model
in the presence of an external resonant field.

To solve the problem of the fluctuation transitions it is convenient
to use the path-integral method. It makes it possible to show that in a
quite general case the transition probability in a nonequilibrium
subsystem depends exponentially on the reciprocal temperature of the
medium. In the case of a Duffing oscillator in a resonant field, the
corresponding activation -energy can be calculated in explicit form.
The transition probabilities W depend very strongly on the parame-
ters of the problem. A smeared-out kinetic first-order transition,
corresponding to an abrupt change of the populations of the equilib-
rium states, should therefore appear in a narrow interval near certain
values of the parameters (see Figs. 11 and 16). In this range of
parameters, the coefficient of absorption of the additional weak field
by the oscillator has a peak of width ~W.

The investigation of fluctuation transitions (and of fluctuations in
general) becomes simpler (and universal) if the subsystem parameters
are located in the vicinities of bifurcation points. This simplification is
due to the fact that it is possible to separate in the system the slow
motion, and to describe the fluctuations by using a certain adiabatic-
approximation analog. This makes possible a complete analysis of the
fluctuations near the bifurcation points.

In contrast to the resonant field, a nonresonant external field does
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not lead to the appearance of several stable states of the oscillator. It
can, however, influence substantially the relaxation parameters. The
oscillator distribution in the energy levels is strongly changed thereby.
Under certain conditions, population inversion can set in several
low-lying levels.

Appendix A: Spectral Distribution of Linear Oscillator in the Case of
Harmonic Interaction with the Vibrations of the Medium

To calculate the spectral distribution Q(w) of the time correlation
function Q(¢) of the oscillator coordinates it is convenient to use the
method of Eiouble:time Green’s functions. The Green’s function of the
operators L and M is determined with the aid of the relation (see, e.g.,

[75)
LMy, = = 5o [Tate™ (L, MO, =1 (A1)

It is easy to verify that the function Q(w) is expressed in terms of the
oscillator-coordinates Green’s function as follows [75]:

Q(w) = —2[A(w) + 1]Im<g; ¢>Dusi0- (A2)

The Hamiltonian of an oscillator interacting with the vibrations of
the medium takes in the case of the harmonic interaction (1.3) the
form '

"H=Hy+H,+H,, Hy=wd*4, H,=Suwd}s,
k
(A3)
H =

i

[N

}k}ek(wowk)—'/z(é +a%1)(d + &F).

Here 7 =1 and the standard relation is used between the normal
coordinates and the creation and annihilation operators:

g=(Qw) Ha+a%), g =Qu) (& + 4’

When Egs. (A.1)-(A.3) are taken into account, the equations of
motion for the Green’s functions of the considered singled-out oscilla-
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tor take the form

(= wo){B;d +47 ),

1 1 & A At | A A4
==+ K+ 6 ;a+8%5),,
2 oy (A4)

(0 +wo)a*;d+a%))

=-L_ 1S % s +ariavaty,.
k

VWoWy

The Green’s functions in the right-hand side of Eq. (A.4) satisfy in
turn the equations :

A A A € A At . A A+
w— )G ;a+8 ), = Ka+a*r;a+a*>,,
Y
(A.5)
(@ + @)EF 58 +8% D), = — —*((a+a5a+a% D,

2Vwg,

The system of Eqgs. (A.4) and (A.5) yields the following exact expres-
sion for the Green’s function of the singled-out oscillator (cf. [7]):

1 A AFL A At 1 1
; o - + ; + © =
KGP)a= 5,2 CE+AT58+87 ), =30 5 o~ 200k (@)
(A.6)
The polarization operator R(w) in Eq. (A.6) is équal to
€
R@=3 ——— (A7)

% 2w0(w2 - w,f)
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Equations (A.2), (A.6), and (A.7) determine in explicit form the
oscillator spectral distribution in the case of harmonic interaction
with the vibrations of the medium. If the interaction is weak enough,
so that the damping T < w,, the peak of Q(w) is described by a
Lorentz distribution:

_n+1l r
Q(w) = Y, e PP iT R |0 — wol €wy - (A.8)

Tm damping I' and the frequency shift P are determined here by
the imaginary and real parts of the polarization operator R(w, + i0):
r=723 % 5( P 1 % (A9
= > —8(wy— w), =vVp.=— D, —— .
4oy &y~ 0 k) P 2wy, Ek: W — W} (A9)

(the symbol v.p. in front of the sum over k means that the principal
value of the corresponding integral with respect to «, must be

_calculated). Expressions (A.9) for I' and P coincide with the equations
obtained for the case considered here in Sec. 2 and in Appendix F by
other methods.

Appendix B: Transformation of Integral Operator A, [«,]

The operator A,[u;] in Eq. (2.13) is a sum of two terms:

Al[ul} = A(ll)[ul] + A(,z)[ul],

AP[wy] = L fdt e~y (t — ty)sinwt,, (B.1)

20kwk

AP[u,] = 21’0 _2"""‘2 fdt ey (t — ty)sin eyt .

It can be seen from Eq. (2.13) that #, is proportional to the small
quantities y and €2, i.e., u,(f) varies slowly with time,

PARYA [ (B2)

AN OSCILLATOR INTERACTING WITH A MEDIUM 419

At the same time the functions u,(f — #,) and uf(¢ — ¢,) in Ea. (B.1)
are additionally multiplied by fast oscillating functions of ¢;. In the
calculation of A,[u,] we can therefore expand u,(r — tl) and ujf(t — t))
in series in #;. Using the relation

1- exp[ —i(wy * wk)t]
I(wg = wy)

= 78 (wy — w)sgn’ — i(v.p. o i o ), lt|>¢ (B.3)

(v.p. is the principal-value symbol) and retaining only the zeroth term
of the expansion of u,(¢ — ), we can represent the functional A{"[«,]
in the form

A[u] = (~Tsgnt + iPyu(t),  |i|>1,, (B4)

where T and P are defined in Eq. (2.15).

For the expansion of u,(f — ;) in a series in #; to be valid it is
necessary not only that the parameters I'z, and |P|¢, be small, but
also that the weighted state density g.(w) of the vibrations of the
medium be smooth in the vicinity of w,. Indeed, the linear term of the
expansion of u,(f — ) in terms of ¢, adds to A{"[«,] a correction

—ial(t)zéjg [~Tsgnt + iP].

This correction is small compared with (B.4) if

aB

Wy

dar

- <1 (B.5)

<1, I

The condition (B.5) and the analogous conditions for the higher-order
derivatives mean that «, must be located far enough from singulari-
ties of the spectrum of the medium (for example, the distance from
wo+ P to the end point of the spectrum should exceed T(1 + |a|)
considerably).

The main difference between the functionals A{®[«,] and A{P[u,]is
due to the presence of the additional factor exp(—2iwyf) in the
former. This factor is contained, in particular, also in the expression
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of type (B.4) for A{?[u,]. The reason for discarding in Eq. (2.14) the
fast oscillating terms proportional to the small parameters T, P, and y
is that upon integration with respect to time over the region ¢, where

a7 T > s> wg !,
they lead to corrections ~I'/w,, |P|/w,, and |a|T'/w,, whereas the

contributions from the smooth terms are much larger (~T'6¢, | P|&t,
and |a|T'8¢).

Appendix C: Einstein—Fokker-Planck Equation for a Weakly
Nonlinear Duffing Oscillator

In the microscopic model (2.2) of the interaction with the medium the
random motion of a Duffing oscillator is generally speaking not of the

Markov type. However, the change of the complex amplitude u,(¢) of

the oscillations, described by Eq. (2.14), over times much longer than
t., is a Markov process. This follows from the form of the distribution
of the random force f,(¢) that enters in Eq. (2.14).

Using the same arguments as in the analysis of the dlstnbutlon of
the function £(t) we can easily verify that the distribution of fi(#) is
Gaussian. When account is taken of Egs. (2.13), (2.11), (2.15), and
(2.9), the paired correlators for f;(¢) can be expressed in terms of the
§-like function §,(¢ — ¢’) introduced in Eq. (2.20). Since the character-
istic time scale in Eq. (2.14) for the slow variable u, is large compared
with ¢,, it is necessary in accord with the idea of the averaging
method, to “coarsen” the obtained expressions over a time interval
much longer than the characteristic width ¢, of the function 8,(¢ — ¢)
(but small compared with T™'). As a result, the function 8,(¢ — ') is
transformed into 8(¢ — ¢’), and neglecting the small corrections ~I'z,
we have .

SORED =380 =1, AORD=0. (€D

The random force f,(f) is thus 8-correlated in the “slow” time scale.
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It is known from the theory of random processes (see, e.g., [10])
that the Langevin equation (2.14), in which the random force fi(?) is
Gaussian and §-correlated, describes a Markov process. Correspond-
ing to this stochastic complex nonlinear equation is the Einstein—
Fokker—Planck (EFP) equation, which takes, with allowance for Eq.
(C.1), the form:

%_W_ = ai. H(I‘ iPyu, — 3:) ufuz]w}

+L{[(r+zp)u2 ;Z)ulug]w}+rT B _ (c2)

du, -'q,—g du,0u,

Here w = w(u,,u,;u;(0),uy0);7) is the probability density of the
transition of a Duffing oscillator from a state with coordinates u,(0),
u5(0) (u,(0) = uf(0)) at the instant ¢ = 0 into a state u,,u, (4, = uf) at
the instant ¢. Since the 8-correlation condition (C.1) is satisfied for
“slow” time, Eq. (C.2) is valid at 7> ¢, and the function w itself
describes the transition probability density “smoothed” over a time

~t1,. The initial condition for Eq. (C.2) is

w(uy ,uy ;4 (0), ux(0); 0) = 8(u; — u)(0))8(ui — uj (0))
w=uf=u +iuj. (C3)

In the case of a harmonic oscillator (y = 0) Eq. (C.2) can be solved
exactly (see, e.g., [5], where a solution of the EFP equation is given for
the distribution function of a harmonic oscillator over coordinate and
momentum). It is easily understood that at y = 0 the distribution w is
Gaussian: as seen from Eq. (2.14), u,(¢) and u§(¢) are linear function-
als of the random forces f,(¢) and f}(¢). Since the distribution of the
latter is Gaussian, the distribution of u,(7) and u§(7) should also be
such.

In the case of a nonlinear oscillator (y # 0) the distribution w
differs substantially from Gaussian. To solve Eq. (C.2) in this case it
is convenient to change from the complex variables u, and u, to the
real variables r and ¢:

uy=r'/%®,  u,=r%" (C4
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In these variables Eq. (C.2) takes the form

w _ Fw 1w
a1 =2Tw+ wg( 2 + == 8r +4r 8@2)

ow aw _3_7_ aw
+2T'r = P —P 30 T r oy (C5)

The function w is obviously periodic in ¢ with a period 27. The
solution of Eq. (C.5) can therefore be expanded in the series

w(r,@, )= w(r,e;r(0),9(0)1)= 3, wi(r,f)e ™. (C6)
I=—o0
Since the coefficients in Eq. (C.5) do not depend on ¢, the equations
that follow from (C.5) for w,(r,¢) (with different /) are found to be
uncoupled. It is convenient to solve the one-dimensional diffusion
equations for the functions w;(r, f) by the generating-function method
(ct. Sec 4.1.2). We introduce the generating function

W(x, 1) = fo dre=~r'%exp(—ilPtyw,(r,1), 1>0 (C.7)

According to Egs. (C.5)-(C.7), the function W,(x 1) satisfies the
equation
aw; T

W——-—wo [(1+1)W',+x

oW,
ax
oW, iyl OW,

with an initial condition
W (x,0) = 1 ((0))“exp( — xr (0))exp(ilp(0)),

(C9)
r0) = [ (0)f,  @(0) = argu,(0),

that follows from Egs. (C.3), (C.6), and (C.7).
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The first-order linear differential equation (C.8) can be solved by
the method of characteristics. A direct check demonstrates that the
solution of the equation is

W, (x0) = L ((0)) exp(itp(0))at "

+1)
X erT[a,cha,t + I‘(l + Ix )sh a,t]

wh
xacchat — (T + 3iyl /2wy)sh gt
X exp| — r(0) —— ( 2") 2 (c10)
achayt + T(1 + Tx/wy)shat
where
, 1/2
= r2—3’—7T—rf) =T(1 — 4iad)"/>. (C.11)
47 ,

Expression (C.10) for the generating function makes possible a
direct determination of the mean values of various powers of the
dynamic variables. For example, recognizing that according to Egs.
(C4), (C.6), and (C.7)

Wiy =1 [drdypr'/%e mw (r,.1) = =W, (0, nyexp(ilPr),  (C.12)

we can obtain immediately the quantity {u/(#)> by putting x =0 in
Eq. (C.10). It follows similarly from the equality

Cul(tyuf(r)y = wfdrr("k)/zrkw,_k (I>k) (Cl13)
that

Wik (x:0)

a
(uf(Dyuy (1)) = 7(— 1)"( T) exp[i(/ - k)Pt]. (C.14)

It is seen in particular from Egs. (C.14) and (C.10) that weak
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nonlinearity of the oscillator does not influence the damping of the
quantities {u! (t)u2(t)> (for example, of the energy).

The explicit expressions (C.12) for the mean values (u{(f)> make it
easy to determine the double-time correlation functions of the type
{uj(H)ui(0)> for arbitrary / by integrating with respect to the initial
coordinates u,(0) with the statistical weight (2.45):

Cul (Dyud(0)) = ( z )exp(I't+tht)[z[/,(t)] D

(C.15)
Y (£) = chayt + (1 — 2iad) 5 shayt.
(]

The spectral representation of the correlator (C.15) describes, in
particular, the susceptibility of a nonlinear oscillator near the /th
overtone. At /=1 formula (C.15) goes over into formula (2.47) for
Q(1) (the coefficient (T/ 2w§)exp(~iPt) is singled out in Eq. (2.47)
as an additional multiplier for Q(r)). Explicit expressions can be
obtained in similar fashion for correlation functions of the type
(ul(tyuk (t)uk (0)ul(0)), in terms of which the double-time correlators
of arbitrary powers of the coordinate and momentum, ¢(¢) and
dq(t)/ dt, are expressed according to Eq. (1.5).

Appendix D: Solution of Euler Equation for the Auxiliary Problem
of the Degenerate Nénlinear Oscillator

It is convenient to construct an asymptotic solution of Egs. (3.17) by
starting from the functions X and Y satisfying the equations

> _ _ _ 9 ; _9g
X=—-g&v=—33, Y=&=3%, g=gX7Y)
(D.1)
~dr’ ~dr

It is easy to verify that in the zeroth approximation in e the
substitution ¥’ = X and ¥” = Y yield the solution of Eq. (3.17). It is
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important that this substitution cancels out in the integrand that
determines Q, all the terms that are not proportional to the small
parameter e.

Equations (D.1) have the form of the Hamilton equations for a
particle performing one-dimensional finite motion with a Hamilto-
nian g. This motion is periodic with a frequency w(g)~1 and is
described by functions that are periodic in the phase y:

X=X(g¥)=X(g¥+2m), Y=Y(g¥)=Y(gy+2n),
g = const, ¥ = o(g)-

We shall seek below a self-similar solution of Egs. (3.17) (at € = 0)
by supposing

u=X(gy), u=Y(gY):

i.e., we shall assume that «’ and u” do not depend explicitly on 7, and
that all the time dependences are determined by the variation of g
and ¢ with time. This means in fact the transformation known from
the theory:of nonlinear oscillations (see, e.g., [28], [44]) to the energy
(g) and phase () as the variables, with both the energy and the
addition to phase varying slowly with time (g < ¢, ¥ — w(g) < e). We
note that the system described by Eq. (D.1) is itself strongly nonlinear
(i.e., the expansions of the functions X and Y in terms of exp(iw(g)7)
contain a large number of terms of the same order of magnitude), and
the self-similar solution #’= X and u” = Y is degenerate at e =0,
namely the periods of the oscillations for »’ and for 4" are identical.
Allowance for the terms ~e lifts the degeneracy.

We introduce auxiliary functions 4 and B with the aid of the
-equalities

W=X=w(g)X,—eX+ed(g¥), (X, = g
(D.2)

W=Y=0(g)Y, — ¥ +eB(g¥), DY, =g«
We shall obtain below for the functions 4 and B equations whose

solution in the zeroth approximation in € contain an arbitrary func-
tion (this is the manifestation of the degeneracy). This function will be
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determined such that no secular terms of the type e} appear in 4 and
B in the higher orders of perturbation theory in e.

We express X and Y in Eq. (D.2) in terms of gand ¥, and take into
account the identity

XYy~ XY, =07 (8)(geK, + 8 Y) =07 (). (D)
Then
g=eo(g)[(4 - X)Y, - (B-Y)X,],
b =w(g) + ea(g)[(B = Y)X, — (4 - X)Y,]
Differentiating expressions (D.2) with respect to time, with allowance

for Eq. (D.4), and substituting in Eq. (3.17), we obtain equations for
the functions 4 and B:

(D.4)

(g)Ay = 2XYA+(3X*+ Y> — )B= —Ag — A, (¥ — w(g)) + e4,
\ (D.5)
«(g)B, — (X>+3Y>—1)4 +2XYB = — B,g — B,(¥ — «(g)) + €B.

Substituting Eq. (D.2) in formula (3.16) for E, we can find an
additional relation between 4 and B. This relation is one of the
integrals of the equations of motion (D.5) with a constant correspond-
ingto E=0:

2874 —2gxB=¢[(A—-X) '+ (B~ Y)' - X*-Y?] (Ds6)

We can seek the solution of Eqs. (D.5) and (D.6) in the form of a
series in e:
A=A°+eAv'+-~-, B=B°+eB'+ ---

To find the lowest terms of the series, namely the functions 4° and
B %, it is convenient to use Eq. (D.6) to eliminate from the first and
second equations of (D.5) the functions B and A, respectively. We
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then obtain for 4° and B° linear partial differential equations of first
order. The coefficients of these equations can be transformed with the
aid of Egs. (3.16) and (D.2)—(D.4). As a result we can find an explicit
solution of the equations for 4° and B®. This solution contains one
arbitrary function F(g):

A°=F(g)Y,, B°=-F(g)X,. (D.7)

The function F(g) is determined from the condition that the second-
order terms in e4 and eB contain no terms that are secular in ¥, i.e.,
that these terms remain small up to times 7~€¢~ ' > @~ (g)~1. In the
second-order approximation it is necessary to replace 4 and B in the
right-hand sides of Egs. (D.5) and (D.6) by 4° and B° from Eq. (D.7).
Expressing B’ in terms of 4’ with the aid of Eq. (D.6) and substituting
in the first equation of (D.5), we obtain a linear equation for 4"

w(g)Ay — &(g)Y, 'Yy d' =Y, P,
P=— Y;‘[e—lAg"g +e )¢ —w(g)) - A]
+ gxx (28x Y, )_ 'Z, (D8)
R = (4%’ + (B% —24°% - 2B°Y
= FX(g)(X) + Y} ) — 2F(g)(XY, — YX,).
Here g and y are described by formulas (D.4) and (D.7).

Equation (D.8) can be solved by the method of variation of the
arbitrary constant Z = Z(g,{)

4= D(g)Y,,  w()dT =P (D:9)

Since X and Y are periodic in ¢, it follows that all the terms in P are
also periodic. For A4’ not to contain terms secular in y it is necessary,

according to Eq. (D.9), to satisfy the condition P =0, where the
superior bar denotes averaging over ¢ from 0 to 2«. Expression (D.8)
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for P can be represented, after cumbersome transformations with
allowance for Egs. (D.4), (D.7), and the identity (D.3), into the form

0Z(g. ¥
Q?—lw(g)%‘—?+—g¢—l. (D.10)

We do not need the explicit form of the function Z(g,y), since it
drops out upon averaging over . Then the condition P = 0 leads to a
simple equation for %, with a solution % = Cgu( 2.

To find the constant C,, we note that in the € = 0 approximation
the stationarity conditions from which the positions of the foci and of
the saddle point of the Duffing oscillator are determined take the
form g, =0 and g, = 0. The frequency w( gp) of the oscillations in the
vicinity of the focus equals ( gXXgYY)f (the subscript f means that
the corresponding function is calculated at the focus f). It is easy to
verify that w(gy) # 0. As g— g, the left-hand side of Eq. (D.6) tends
to zero if A" and B’ are finite. At the same time the right-hand side,
with an accuracy to corrections of higher order of smallness in ¢, is
equal to eZ%. Consequently % vanishes as g— g, i.e., the coefficient
C, in the relation Z = Cyw(g) is zero.

From the expression (D.8) for & it follows that

Z(g) = F¥(g)m —2F(gmy, m=m(g)=X2+712,
(D.11)
m,=my(g)= XY, — YX,.

This shows that the condition # = 0 leads to two possible values of
F(g) and accordingly to two values of ¢ in Eq. (D.4):

Fi(g)=0, F)g)=2m,/m,, g12= Few(g)m,. (D.12)

According to Egs. (D.7) and (D.2), the solution F,(g)= 0 describes
the motion in the absence of a random force from the saddle point to
the focus: sgn gl —sgn(g; — gy, inasmuch as according to Egs.
(D 3) and (D.11)

my(g) = 2wa_l(g1)dg1
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(we have used here the relation XY, —YX, = —(X,Y,-Y, X))

= w~!(g)). Obviously, the boundary conditions (3.14) are satisfied by
the second solution of Eq. (D.11), F,( g), which corresponds to motion
from the focus to the saddle point. For the quantity Q, defined in Eq.
(3.14) we have in this case, according to Eqs. (3.16), (D.2), (D.7), and
(D.12)

= —fd'rle(g)(X2+ ¥2)= lf w(g)ml —2 _dg (D.13)

Here g, is the value of g at the saddle point, and in the transition to
integration with respect to g (g~ g) we used the equality (D.12).

Taking into account the definitions (D.11) for m, and m, and Egs.
(D.2) for w(g)X, and w(g)Y,, we can express m, Jw(g)m; in Eq.
(D.13) in the form

my[o(g)m ] ™' = (XY - YaX)| P(—gydX + ged¥)|

=2 faxay| [ [agaxay]"

(D.14)
Ag=gxx + gyy =4R>-2.

Here R?2= X2+ Y? and the double integrals are taken over the
region bounded by the trajectory g(X, Y) = const.

Explicit expressions for m,fe( g)ml]_l can be obtained at small 8.
At €2 < B < 1, according to Eq. (D.1) (with allowance for expression
(3.16) for g), we have g; ~ 1 /4 g~ — gfzz\/? (the positions of the
foci and of the saddle are shown in Fig. 23). At 8 <1 the trajectories
g(X, Y) = const, that correspond to values of g between g; and g, are
almost circular (see curve 1 of Fig. 23). The square of the trajectory
radius depends on the polar angle ¢ in the following manner:

/
R2=1~2[g+\/§(1—2\/§)1/2cos¢]1 ’

At g < g <g, the trajectories have the shape of a very narrow
horseshee surrounding the circle R =1 (see curve 2 of Fig. 23).
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thure 23 Phase trajectories (solid lines) of auxnllary nonlinear system with effective
Hamiltonian g(X, Y). The circle X2+ Y2 =1 is shown dashed. The positions of the
foci f) and f, and of the saddle s for a Duffing oscillator are indicated.

Therefore, transforming in Eq. (D.14) to polar coordinates, we obtain
for trajectories 1 and 2, respectively,

e )1=~W[f02"d¢(g+¢§cow)‘”J

w(g)m,

( “’(Z)zml )2 =1

-1

(D.15)

(the expression for my[w(g)m,]”! is written for the region g<1,.

which is the most significant at 8 < 1).

Appendix E: Adiabatic Approximation for the Einstein—Fokker—
Planck Equation Near Bifurcation Points

The EFP equation for the transition probability density w(...x
., 1) of the multidimensional random process (3.21) is of the form

a_w_z yaxax Za (PiW). (E.D)
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It is assumed here that «;(0,0) = a; # 0 and, at the same time, that
the coefficients a;; are small enough and depend smoothly on x and x’
in the region where x and x’ are small (the dependence of the
distribution function W on x is much stronger). The terms propor-
tional to the derivatives of a;(x,x’) have therefore been discarded.

It was indicated in Sec. 2.5 that in the case when the coefficients P;
are of the form (3.22), the motion with respect to the variables x; and
i>1 is rapid and have a characteristic time f,=max(%/;)"". It
follows from Eqs. (E.1) and (3.22) that the distribution over variables
with i > 1 also evolves within a time ~#, and acquires then a
characteristic width ~a]/? (it is assumed that the parameters a; do
not exceed a, = a,; in order of magnitude). The maximum of the
distribution corresponds to the quasistationary values x; = X;(c, x)),
where the functions X;(c, x,) are defined by the equations

Pyc,x;,X;) =0, X< |x| <1 (E2)

Here and elsewhere i and j take on the values 2,3, . .. (it can be seen
from Egs. (3.21) and (E.2) that x; = X;(c,x,;) are solutions of the
equations x; = 0 at fixed x, in the absence of a random force).

The distribution in x,

w(xy,t) = f (%, )y dyds . (E3)

evolves within a time much longer than #,, and is substantially
broader. To determine this distribution in the time region ¢>> ¢, and
to check on the validity of the statements made concerning -the
distributions in x; (i > 1), we can use the method of moments.
Integrating Eq. (E.1) with respect to x,,x3, ..., we obtain

ow 9w

oW _ o OW
ot "ox?

i>1

(c,xl,O)w+2( ) xy+ -+
Xi X;=X3 - =0
(E4)

x> =fx1w"(x, Ndxydxs . .., a =ay.
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Multiplication of Eq. (E.1) by x; and integration lead to the following
equations for the moments {x,):

(x;» 82<xi> ow
a7 = a o —2a 1’8 + Py(¢,x;,0)w — M(x)
-9 1p (e, x;,0)<x;>
axl 1A B i

+3(5m] e ] (E5)

We have used here the expansion (3.22) for P;(c,x) in powers of x;.
The equations for the moments {x,x;) etc. are similar in form.

The chain of equations for the moments can be decoupled at times
t> 1, in the region of small |x,|< 1 and for a sufficiently smooth
function w(x,,?):

w
xi

x| <1, o <w, I%—Vt" <w  (t>»1~1). (E6)

It can be seen from Egs. (E.5) that the moments (x;) relax after a
characteristic time #,= /', and at > ¢, it suffices to restrict
oneself to the quasistationary solution of the equations (if w changes
little over the time ~1#,). The appfoximate form of this solution is

(x> =7 Py(c,x,,0)w — 2011,a

2a,;
= X(e,x w— — ~—. (E7)

Account was taken here of Eq. (E.2). It is easy to verify with the aid
of a simple iteration that when the conditions (E.6) and (E.2) are
satisfied the terms discarded in Eq. (E.5) lead to a small correction in
Eq. (E.7).

Substituting Eq. (E.7) in Eq. (E.4) and discarding the term with «,;,
which is small as compared with the first term in the right-hand side
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of Eq. (E.4), we obtain the EFP equation for one-dimensional motion:

dw _ w3
. ax} x (PCxo)»),

(E.8)
P(x;) = Py(¢, x;, X;(C, xy))-

Near a marginal bifurcation point (singularity of the codimension
1), according to Egs. (3.22) and (E.2), we can put X; =0 in P(x,)
neglecting quantities of higher order of smallness. A transformation
from x, and ¢ to new variables z and 7/, and allowance for Eq. (3.22),
enables us to write the EFP equation (E.8) in the form

dw _ 0w ' B w
o’ 9z% [( nz’ =& 2/3) ]
(E9)

= y—1/3 = 41/3
zZ=q /xl, T =t

In the vicinity of the spinode point K in Fig. 10 (singularity of the
codimension 2) we can determine the functions X;(c,x,) and P(x,) by
expanding P,(c,x) and P;(c,x) in powers of x and ¢ — ¢, and taking
into account the relations (3.30) for the expansion coefficients. As a
result it follows from Eqgs. (E.2), (E.8), and (3.30) that

0w — % 4 B [(d* — dyz - dow),

o7 2 ,
T (E.10)
) z=a1_1/4x1, ST —all/2,
where
apP
dy= a_3/4—cl(c—c,<),
L1 &P
dy=a;'? S0, (c—¢x)
2
_ 1 0P, 9P
ta 3 o axlalx. 3 (€ ) (E1D
1 @°P, a’p, %P

__ 195 1 1
= 6 ax} 2z o; 3x,0x; ax?
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All the derivatives are taken here at ¢ = ¢, and x = 0. The condition
d; > 0 is the condition for the existence of a stable equilibrium state
for the point K.

From the adiabaticity condition [dw/3¢| < w it follows according
to Eq. (E.8) that |P(x,)| <« 1 and |dP(x,)/dx,| <« 1, i.e., that for the
adiabatic approximation to hold the condition |¢ —¢z| <1 must be
satisfied.

Appendix F: Quantum Kinetic Equation for a Nonlinear Oscillator

In the case when the interaction of the nonlinear oscillator with the
medium is weak enough, a quantum kinetic equation for the operator
F,,(f) (4.4) can be obtained at a sufficiently general form of the
interaction Hamiltonian H,. If the characteristic relaxation parame-
ters I' and P are small compared with 7, we can replace exp(— H/ T)
by exp(— 57/ T) in expression (4.4) for F,,(r). Here 2#y= Hy+ H,,
(see Eq. (4.1)). Then F,,(?) takes the form

Fo(t) = Tr, 7y (1),
(F.1)
Fu(t)=Z '0()Mexp(—2#,/T)U* (1)
From the definition (4.3) of the operators U (¢) follow the relations

F ()= F1s(0) — ifo'art1 [A(t). F ()]
= Fu(0) - ifo’dt, [A (1)), 7 (0]
—fotdt,fo"dtz [A(t), [ B (1) F u(t)]]

=... ' (F.2)

Since the operators M and H, do not depend on the dynamic
variables of the medium, it can be seen from Egs. (F.1) and (F.2) that
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averaging over these variables reduces to calculation of meun values
of the type

f dt, . ..dt,(H (1) - Hi(6)om (F.3)
where
(0>, =2Z;"Tr,Oexp(— H,,/T),  Z,=Tr,exp(—H,/T).
(F.4)

Without loss of generality it can be assumed that
{H>,=0. (F.5)

Since the off-diagonal matrix elerents of the operator Ii,-(t) oscillate
rapidly with a characteristic time ~¢, (z, = max(w, ', w, '), see Eq.
(2.6)), the pair correlators

CHA(t)Hi(t)dm

also oscillate rapidly as functions of ¢; — t,, and the main contribu-
tion to the integral

f f dt, dty CH () H (1)),

is made by the region |t; — f,| <t (the region of integration with
respect to each of the arguments ¢; and ¢, is of the order 1> 7).
Analogously, the main contribution to the multiple integrals (F.3) is
made by integration regions in which the times ¢; break up into pairs
such that the time differences within the pairs are ~z_, while the
intervals between different pairs are ~¢. Since the correlation van-
ishes after times ~t¢,, it is possible to replace in this case the mean
value of the product of n operators in (F.3) by the product of n/2
mean values of the separate pairs. This approximation, which is
asymptotically valid at

t>t, T« (F.6)
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makes possible the decoupling

Tr,, fotdtl H () H(1)F u(t) = ,I(;tdtl CHO) () mTrmZ m(1)-
(F.7)

In the language of diagram technique, this approximation corre-
sponds to allowance for diagrams with lines that do not intersect and
are not imbedded in one another [76, 77].

The main contribution to the integral in the right-hand side of Eq.
(F.7) is made by the region |r— #|~1,, in which the operator
Tr,,F 4 (1)) = Fy(¢,) remains practically unchanged, and can conse-
quently be replaced by F,, (). Therefore, applying the operation Tr,,
to Eq. (F.2) and taking the condition (F.5) into account, we obtain
the integral operator equation

Fyy(t) = Fyy (0) — fo dt, fo “dt,

5 . B H
x Tr,,,{ [H,»(-tl), [H,-(tz),zm texp( ~ )FM(tl)H} (F5)

Corresponding to it is the differential equation

% _ _fo'dt]Trm{ [ﬁi(z),[lfi(tl),zm—‘exp(— %)FMU)H},

(F.9)

which is the analog of the quantum kinetic equation. Obviously, this
is a Markov equation.

Neglecting corrections of order ~|P|T ~!, the initial condition for
Eq. (F.9) is according to Eq. (F.1)

. H, H
Fpy(0)= Zg 1Mexp( - ) Z,= Troexp( - ) (F.10)

In the considered long-time region (F.6), the integration with re-
spect to ¢, and. the averaging over the variables of the medium in Eq.
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(F.9) can be carried out explicitly for various concrete forms of the
interaction Hamiltonian. We shall do this for the case when the
interaction is linear in the coordinate of the singled-out oscillator and
has an arbitrary dependence on the dynamic variables of the me-
dium:

H,=(4+a*)h. (F.11)

Here h: is an arbitrary function of the operators 4, and 4, (or of the
creation and annihilation operators of other quasiparticles of the
medium) and does not depend on d* or 4.

To integrate with respect to time in Eq. (F.9), we use an explicit
expression for the evolution of the operator d(¢) in the interaction
representation

a(t) =aexplifwg+(A—3V|(— 1)
(1) = d(yexp{ifwo+ (A —)V](t - 1)} E12)
(@(r) = exp(iHt)dexp(— iHot), i = 3*d),
which follows from Eq. (4.1) for the Hamiltonian H,. If the actual

occupation numbers of the oscillator and the parameter of its nonlin-
earity are not too large, i.e.,

L|V|2n + 1)1,

we can neglect in the region |¢ — #,|~1, the terms proportional to. V in
the argument of the exponential in Eq. (F.12). The integrals with
respect to time in Eq. (F.9) (in the case of H, in the form (F.11)) are
then simplified. For example,

Jan<a* h@a)h().
= a* (na(y) fo ‘dt, el B (YR ()
=a* (0a(r) fo dt, ey (1) (O))
(F.13)
(h:(t) = exp(iH, t)hexp(— iH,t)).

Since the integrand in Eq. (F.13) decays within a time ~17_, the upper
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integration limit in the last expression in (F.13) can be allowed to tend
to infinity.

When account is taken of the relations such as (F.13), the kinetic
equation (F.9) is transformed into

oF

—% = —[(F + 1)(@*GF), — 2aFyd" + Fyyd*d)

o + (83" Fy — 28" Fyd + Fy da* )T

—i[a*a,F,,P. ‘ (F.14)

All the operators are referred here to the instant of time 7, while I' and
P are given by

I'=Re [ “dte™ ([ A (1), i(0) >
(F.15)

P =Tm [ “dte™s =R B(O)]p (> +0)

Expressions (F.15) coincide with those obtained in [4] for the damp-
ing parameter and the frequency shift, while Eq. (F.14) itself (without
the shift term o P) for the density matrix of a harmonic oscillator
was considered phenomenologically in [11, 12].

In Athe particular case of the bilinear interaction Hamiltonian (4.1)
(the h; depend linearly on d, + 4, ), Egs. (F.15) go over into formulas
(2.15) of the classical theory. Another derivation of the generalized
kinetic equation for this case is given in [21]. A convenient method
(based on the use of superoperator theory) of obtaining the quantum
kinetic equation for a nonlinear oscillator, and of analyzing the
correlation functions, has been developed in [78].
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