
VOLUME 79, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 27 OCTOBER1997
Fluctuations, Escape, and Nucleation in Driven Systems: Logarithmic Susceptibility
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We analyze the probabilities of large infrequent fluctuations innonadiabaticallydriven systems. In
a broad range of the driving field magnitudes, the logarithm of the fluctuation probability is linear in
the field, and the response can be characterized by a logarithmic susceptibility (LS). We evaluate the
activation energies for nucleation, with account taken of the field-induced lifting of time and spatial
degeneracy of instantonlike nucleation trajectories. LS for nucleation in systems with nonconserved
order parameter is shown to be a nonmonotonic function ofv andk. [S0031-9007(97)04328-7]
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As first pointed out by Debye [1], systems with coex
isting metastable states may strongly respond to the dr
ing field through the effect of the field on the probabilitie
of transitions between the states. For classical system
the transition probabilityW is described by the activation
law, W ~ exps2RykT d. Even a relatively weak fieldh,
for which the change of the activation energyDR ~ h is
much less thanR, can strongly affectW providedjDRjykT
is not small. This effect has been investigated for vario
systems and has attracted much attention recently in
context of stochastic resonance [2]. Similarly, in extende
systems driving fields can exponentially strongly affect nu
cleation probabilities. So far most results on modulatio
of transition probabilities have been obtained for adiaba
cally slow driving, where the change of the field over th
relaxation time of the system is small and transitions occ
“instantaneously,” for a given value of the field and for th
corresponding value of the activation barrier.

The physical picture of transitions is different fornon-
adiabatic driving where, during the transition, the field
changes in time and space, and the transition rate is
determined by the instantaneous activation barrier. In th
Letter we provide an analytic solution of the long-standin
problem of large fluctuations in nonadiabatically drive
systems. We show that, over a broad range of fie
strengths, the field-induced change of thelogarithm of
the fluctuation probability is linear in the field amplitude
However, it is no longer determined by the instantaneo
value of the field. The change of the activation energyDR
can be described in terms of anobservablecharacteristic,
the logarithmic susceptibility(LS). We use LS to analyze
nucleation and escape in nonadiabatically driven sy
tems—the problem of a broad physical interest.

The notion of LS and the way to evaluate it are base
on the idea of the optimal fluctuational path which goe
back to [3]. This is the path along which the system
moves, with overwhelming probability, when it fluctuate
to a given state or escapes from a metastable state.

Optimal paths in dynamical systems driven by Gaussi
noise have attracted much theoretical interest [4] and we
recently observed in experiments [5]. The notion of a
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optimal path applies also to spatially extended syste
[6,7]. Optimal paths provide a solution to the variation
problem of finding the most probable realization of th
noise which brings the system to a given state. Th
variational problem describes dynamics of an auxilia
noise-free system, and the minimum of the variation
functional determines the logarithm of the probability o
the fluctuation.

When the initial fluctuating system is driven by an ex
ternal field, the variational functional acquires a correctio
which is linear in the field, for not too strong fields. Thi
correction, and thus the LS can be evaluated along the
perturbed trajectory of the auxiliary system. However, t
problem becomes nontrivial when nucleation or escape
analyzed, because of time degeneracy of the unpertur
trajectories.

We will consider optimal paths and logarithmic susce
tibility for systems with a nonconserved order paramet
Examples include Ising antiferromagnets and alloys whi
undergo order-disorder transition [8(a)]. In these system
fluctuations are described by the Langevin equation

≠hsx, td
≠t

­ 2
dF

dhsx, td
1 jsx, td ,

Ffhg ­
Z

dx
∑

1
2

s===hd2 1 V shd 2 hsx, tdh
∏

,

(1)

whereV shd is the biased Landau potential,hsx, td is the
ac driving field, andjsx, td is delta-correlated noise of
intensity2kT . The model (1) describes also fluctuation
of an overdamped Brownian particle with a coordinateh

(in this caseh is independent ofx).
Away from the critical region, the probability density

for the system to fluctuate to a statehf ; hfsxd at a
time tf is described by the activation law,W fhf ; tfg ~

exps2Rfhf ; tfgykT d, with the activation energyR (¿kT )
given by the solution of the variational problem [4,6]

Rfhf ; tfg ­ min
1
4

Z tf

2`
dt

Z
dx

∑
≠h

≠t
1

dF
dn

∏2

. (2)

Here, the minimum is taken with respect to the pat
hsx, td that emanate from the stable statehstsx, td at
© 1997 The American Physical Society 3113
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t ! 2`, and arrive at the final statehf sxd for t ­ tf .
For a periodic fieldh, the statehst is also periodic.

Equation (2) has the form of the action for an auxiliar
Hamiltonian system. The equations of motion for th
coordinatehsx, td and momentumpsx, td of this system
are of the form

Ùh ­ 2p 2
dF
dh

, Ùp ­ M̂p , psx, td ­
dRfh; tg
dhsxd

,

M̂psx, td ;
Z

dx0 d2F
dhsxddhsx0d

psx0, td .

(3)

The extreme pathshsx, td that minimizeR are optimal
fluctuational paths of the original system (1).

In the absence of driving (h ­ 0) the system (1) is in
thermal equilibrium, the activation energyRs0d is given by
the Gibbs distribution, and one can see from (3) that th
optimal pathshs0dsx, td are the time-reversed paths of (1
in the neglect of noise [9],

Ùhs0d ­ dFs0dydh, Rs0dfhfg ­ Fs0dfhfg 2 Fs0dfhs0d
st g

(4)

(the superscript0 refers to the caseh ­ 0).
To the first order inh, the field-induced change ofR

is given by the term~ h in the integrand in (2) evaluated
along the unperturbed optimal pathhs0d:

Rs1dfhf ; tfg ­
Z tf

2`
dt

Z
dx xsx, tf 2 td hsx, td , (5)

xsx, tf 2 td ­ 2 Ùhs0dsx, td, hs0dsx, tfd ­ hfsxd . (6)

The quantity x describes the changeD ln W ø
2Rs1dykT ~ h of the logarithm of the probability density
to reach the statehf . This change may belarge, andx

may be reasonably called the logarithmic susceptibilit
Like susceptibility in linear response theory, LS has
causal form: the probability to reach a given state at a tim
tf is affected by the values of the field att , tf . We
note that Eq. (5) suggests how tomeasureLS for various
stateshfsxd.

Of special interest are effects of the field on the prob
bility of escape from a metastable state of the system. F
a system (1) escape occurs via nucleation. Forh ­ 0, the
critical nucleushs0d

cr sx 2 xcd is the unstable stationary so-
lution of the equationÙh ­ 2dFs0dydh (the saddle point
in the functional space), and the position of the center
the nucleusxc is arbitrary.

The optimal nucleation pathhs0dsx 2 xc, t 2 tcd for
h ­ 0 is the solution of Eq. (4) which approaches th
stateh

s0d
cr sx 2 xcd as t ! `. It is a real-time instanton

(cf. Fig. 1) and, as in the case of conventional instanto
[10], the velocityj Ùhs0dj is large only within a time interval
jt 2 tcj & trel centered at an arbitrary instanttc, where
trel is the relaxation time of the system.

Translational and time degeneracy of the optimal nu
cleation paths arelifted when the system is driven by
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FIG. 1. Optimal escape paths (bold solid lines) of a period
cally driven Brownian particle, Ùh ­ h 2 h3 1 A cosvt 1
jstd, for A ­ 0.1, v ­ 2. The paths go from the stable to
the unstable periodic states shown by bold dashed lines
thin dashed lines, in the absence of driving). Thin solid line
show optimal paths in the absence of drivinghs0dst 2 tcd ­
2h1 1 expf2st 2 tcdgj21y2, with different tc. The driving lifts
the degeneracy with respect totc. The pathshs0dst 2 tcd with
the “right” tc [as given by (14)] are the ones around which th
exact paths are oscillating. For givenA, v, the linear theory
gives the decrease of the activation barrier to an accuracy 12

an external field. This is the major qualitative featur
of the problem of escape or nucleation in a driven sy
tem. The driven system has onlyoneoptimal nucleation
path (one path per period of the field, for a periodic driv
ing), and this path is close to onlyone unperturbed path
hs0dsx 2 xc, t 2 tcd, with certaintc, xc [11]. The differ-
ence from the corresponding unperturbed path is,h, as
shown in Fig. 1 for escape paths of a Brownian particl
in which caseh is a function of time only.

We obtain the correct values oftc, xc and the activation
energy of nucleation by modifying the Mel’nikov method
in the theory of perturbed Hamiltonian systems [12].
follows from Eqs. (4)–(6) that the first order correction
to the unperturbed nucleation trajectoryhs0d, p s0d ­ Ùhs0d

are of the form

Ùhs1d ­ M̂s0dhs1d 1 h 1 2
dRs1d

dh
,

p s1d ­ M̂s0dhs1d 1
dRs1d

dh
, Rs1d ; Rs1dfhs0dsx, td; tg ,

(7)

hs1dsx, td ! hs1d
cr sx, td, p s1dsx, td ! 0, for t ! ` . (8)

Here,M̂s0d is the operatorM̂ taken forh ­ 0 and the path
hs0d; for the problem (1)M̂s0d ­ 2===2 1 V 00shs0dd. In (8),
h

s1d
cr is the linear field-induced correction inhcr , and we

took into account that the momentump ! 0 as the system
approaches the critical nucleus [cf. (3)]. In other term
we are looking for a heteroclinic orbit of the Hamiltonian
system (3). We note, however, that our method makes
possible to find the whole manifold formed by the orbits (3
near the critical nucleus, where the standard perturbat
theory diverges.
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The solution of (7) near the critical nucleus can b
expanded in the eigenfunctionscnsx 2 xcd of the operator
M̂s0d

cr ; 2===2 1 V 00shs0d
cr d. The corresponding eigenvalue

problem coincides with that for the dynamical equation (
in the absence of noise, but the eigenvalues have oppo
signs. The operator̂Ms0d

cr has one nondegenerate negativ
eigenvaluel0 , 0, with the eigenfunction

c0sx 2 xcd ­ C lim
t!`

e2l0st2tcd Ùhs0dsx 2 xc, t 2 tcd .
(9)

M̂s0d
cr also has a degenerate zero eigenvaluel1 ­ 0, with

the eigenfunctionsc1a ~ ≠h
s0d
cr y≠xa sa ­ 1, 2, 3d; and

positive eigenvaluesln . 0, n . 1 [10,13].
We now expand in Eq. (7)dRs1dydh in the functions

cn. It follows from (4)–(6) that the variationdRs1dfh; tg
due to the variation ofhsxd is of the form

dRs1d ­ 2
Z t

dt0
Z

dx0 dhsx0, t0dM̂s0dhsx0, t0d , (10)

where dhsx0, t0d is the deviation from the optimal nu-
cleation pathhs0dsx0 2 xc, t0 2 tcd due to the variation
dhsxd of the statehsxd reached by this path at the instan
t. For hsxd close to the critical nucleushcrsx 2 xcd, and
for not too larget 2 t0 the solution of the linearized equa
tion (4) for dhsx0, t0d can be expressed in terms of the e
pansion coefficientsdn of dhsxd ­

P
n dncnsx 2 xcd as

dhsx0, t0d ø
X
n

dncnsx0 2 xcdelnst02td. (11)

The terms withn . 1 in this expression decay with the
increasingt 2 t0. This makes it possible to use the loca
approximation (11) when evaluating the coefficientscn of
the expansion ofdRs1dydh in the eigenfunctionscn.1:

cnstd ­ 2ln

Z t

dt0
Z

dx0 expflnst0 2 tdg

3 cnsx0 2 xcdhsx0, t0d, n . 1 . (12)

In contrast tocn.1, the expansion coefficientsc0, c1a

may not be obtained from the local approximation (11
However, they can be found directly from the explic
form of the eigenfunctionsc0, c1a and the fact thatRs1d ­
Rs1dfhs0dsx 2 xc, t 2 tcd; tg is a function of the parame-
terstc, xc of the optimal nucleation path. Therefore

c0 ­ 2Ce2l0st2tcd ≠Rs1d

≠tc
, c1a ~

≠Rs1d

≠xca

. (13)

The values oftc, xc can be found from the boundary
conditions (8) for the correctionshs1d, p s1d to the un-
perturbed nucleation trajectory. It is seen from (7) tha
since l1 ­ 0, the correctionp s1d ! 0 for t ! 0 pro-
vided only the expansion coefficientsc1a ­ 0. The co-
efficient c0 in (13) contains a growing exponential fo
t ! ` and, according to (7), it should also be equal
zero in order forhs1dsx, td to satisfy (8). Therefore, for
e

1)
site
e

t

-
x-

l

).
it

t,

r
to

the optimal nucleation pathc0 ­ c1a ­ 0. Then from
(7) hs1dstd ­ 2

Pn­`
n­2 l21

n cnstdcnsxd for t ! `. It can be
seen from (12) and (1) that this expression coincides wi
the correction to the critical nucleush

s1d
cr std.

The condition thatc0, c1a should vanish is a conse-
quence of the unperturbed system being “soft” in th
functional-space directionsc0 and≠h

s0d
cr y≠xa which cor-

respond to the shifts of the nucleation path alongt andx.
Taking account of Eqs. (5) and (13), this condition can b
written in the form

≠R
s1d
` sxc, tcd
≠xc

­ 0 ,
≠R

s1d
` sxc, tcd

≠tc
­ 0 ,

Rs1d
` ;

Z `

2`
dt

Z
dx x`sx 2 xc, t 2 tcdhsx, td , (14)

x`sx 2 xc, t 2 tcd ­ 2 Ùhs0dsx 2 xc, t 2 tcd . (15)

Equations (14) determinexc, tc for the optimal nucle-
ation path. They may have several roots which correspo
to different heteroclinic orbits of the Hamiltonian system
(3). For example, for a periodic drivingRs1d

` is a periodic
function, and it has at least one minimum and maximu
per period (it may have more minima, for nonsinusoida
driving). The physically relevant root is the one that pro
vides the absolute minimum to the nucleation barrierR ­
Rs0dfhs0d

cr g 1 DR, whereDR is the field-induced correc-
tion. According to Eqs. (5) and (14),

DR ­ min
xc ,tc

Rs1d
` sxc, tcd . (16)

Equations (14)–(16) provide the nonadiabatic theory
the nucleation rate. They have a simple physical meanin
in the presence of a time- and coordinate-dependent fie
the optimal fluctuation finds the “best” timetc and place
xc to occur. For thermal equilibrium systems,DR (16)
is the maximal work that can be extracted from the fiel
along the fluctuational path. The results apply to a broa
class of extended dynamical models, and also to t
problem of escape of a Brownian particle, in which cas
h is the coordinate of the particle (cf. Fig. 1).

One can see from (15) and (16) that, for a field o
the form of a running or standing sinusoidal wave,h ­
h0 cossk ? x 2 vtd or h ­ h0 cossk ? xd cosvt, the cor-
rection to the activation energy is negative, andDR ­
2jx̃`sk, vdjh0 provided v exceeds the nucleation rate
[x̃`sk, vd is the Fourier transform ofx`sx, td].

Since x` is large for jt 2 tcj & trel, it follows from
Eq. (16) that, for pulsed fields,DR is nonpositive as
well. If the pulse effectively lowers the nucleation barrier
the optimal fluctuation occurs where the field is “on”
otherwise it is most likely to occur where there is no field

Analytical results for the logarithmic susceptibility for
nucleationx` (15) can be obtained in limiting cases, in
particular, for a weakly asymmetric double-well poten
tial V shd ­

1
4 h4 2

1
2 h2 2 Hh, jHj ø 1. The critical
3115
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FIG. 2. Reduced absolute value of the logarithmic susce
tibility for nucleation gsq, Vd (17) in the case of a weakly
asymmetric potentialV . Inset: The peak in the frequency
dependence of the nucleation barrier forq fi 0.

nucleus in this case is a thin-wall droplet of a nucle
ating phase [10,14]. The optimal nucleation path corr
sponds to the increase of the radius of the dropletr un-
til it reaches the critical valuerc, and is described by
the time-reversed collapse [14] of the droplet in the a
sence of fluctuations. The resulting expression for th
Fourier transformx̃`sk, vd of the logarithmic suscepti-
bility x`sx, td is of the form:

x̃`sk, vd ;
6Rs0d

jHj
gsrck, r2

cvd ,

gsq, Vd ­
Z 1

0
dz

sinqz
q

e2iVzy2s1 2 zd2iVy2

(17)

(the free energy of the critical dropletRs0d and rc are
given in [10,14]).

The LS jx̃`j as given by (17) is shown in Fig. 2. For
v ­ 0 the LS becomes zero forkrc ­ 2pn: the effect of
the static sinusoidal field is averaged to zero by a thin-wa
critical nucleus with these radii. Forv fi 0, where the
field varies in time while the critical nucleus is growing
LS is finite for allk, and its frequency dependence display
broad resonant peaks, as shown in Fig. 2.

In conclusion, we have provided the nonadiabatic theo
of nucleation and escape rates in systems driven by tim
dependent fields. The effect of the field on the probabi
ties of large fluctuations and the transition rates has be
described in terms of the logarithmic susceptibility. LS
has been analyzed for systems with a nonconserved or
parameter. However, the approach is not limited to su
systems. Similar to standard susceptibility in the line
response theory, LS is expressed in terms of the char
teristics of a system (optimal fluctuation paths) in theab-
senceof the driving field. Therefore it can be calculated
for known models, in particular, the explicit form and sca
ing of LS in the nucleation problem can be obtained fo
different dynamic universality classes [8]. We note tha
3116
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as in the case of standard susceptibility, LS can be m
sured experimentally even if the underlying dynamics
the system is not known. The results can be used for
timal control, by ac fields, of activated processes such
diffusion in solids and nucleation [15].

M. I. D. acknowledges support from the NSF throug
Grant No. PHY-9722057.
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