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Fluctuations, Escape, and Nucleation in Driven Systems: Logarithmic Susceptibility
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We analyze the probabilities of large infrequent fluctuationadnadiabaticallydriven systems. In
a broad range of the driving field magnitudes, the logarithm of the fluctuation probability is linear in
the field, and the response can be characterized by a logarithmic susceptibility (LS). We evaluate the
activation energies for nucleation, with account taken of the field-induced lifting of time and spatial
degeneracy of instantonlike nucleation trajectories. LS for nucleation in systems with nonconserved
order parameter is shown to be a nhonmonotonic function @hdk. [S0031-9007(97)04328-7]

PACS numbers: 05.40.+j, 02.50.—r, 05.20.-y, 64.60.Qb

As first pointed out by Debye [1], systems with coex-optimal path applies also to spatially extended systems
isting metastable states may strongly respond to the dri6,7]. Optimal paths provide a solution to the variational
ing field through the effect of the field on the probabilities problem of finding the most probable realization of the
of transitions between the states. For classical systemapise which brings the system to a given state. This
the transition probability¥ is described by the activation variational problem describes dynamics of an auxiliary
law, W o« exp(—R/kT). Even a relatively weak field, noise-free system, and the minimum of the variational
for which the change of the activation ener§R o h is  functional determines the logarithm of the probability of
much less tha®, can strongly affecW provided|AR|/kT the fluctuation.
is not small. This effect has been investigated for various When the initial fluctuating system is driven by an ex-
systems and has attracted much attention recently in thternal field, the variational functional acquires a correction
context of stochastic resonance [2]. Similarly, in extendedvhich is linear in the field, for not too strong fields. This
systems driving fields can exponentially strongly affect nu-correction, and thus the LS can be evaluated along the un-
cleation probabilities. So far most results on modulatiorperturbed trajectory of the auxiliary system. However, the
of transition probabilities have been obtained for adiabatiproblem becomes nontrivial when nucleation or escape are
cally slow driving, where the change of the field over theanalyzed, because of time degeneracy of the unperturbed
relaxation time of the system is small and transitions occutrajectories.

“instantaneously,” for a given value of the field and for the We will consider optimal paths and logarithmic suscep-
corresponding value of the activation barrier. tibility for systems with a nonconserved order parameter.

The physical picture of transitions is different foon-  Examples include Ising antiferromagnets and alloys which
adiabatic drivingwhere, during the transition, the field undergo order-disorder transition [8(a)]. In these systems,
changes in time and space, and the transition rate is ndéiuctuations are described by the Langevin equation

determined by the instantaneous activation barrier. In thig) ,(x 1) SF

Letter we provide an analytic solution of the long-standing PR (x.1) + £(x,1),

problem of large fluctuations in nonadiabatically driven ME; 1)
systems. We show that, over a broad range of field B 1 2 B

strengths, the field-induced change of tlegarithm of Flnl= | dx 2 (V)™ + Vin) = hix.0)m |,

the fluctuation probability is linear in the field amplitude.
However, it is no longer determined by the instantaneou
value of the field. The change of the activation enekgy
can be described in terms of abservablecharacteristic,
the logarithmic susceptibilitfLS). We use LS to analyze (in this casen is independent of).

nucleation and escape in nonadiabatically driven sys- Away from the critical region, the probability density

ter:nrﬁ—th? prot;lirg ofg ?hfoad Phtys'ca' I'”tetfe::jt- o ({or the system to fluctuate to a staig = n,(x) at a
€ hotion o and the way 1o evajuate It aré bas€timq ;  js described by the activation lawy[7;;1/] o
on the idea of the optimal fluctuational path which goes T

o \ exp(—R[n; 1,]/kT), with the activation energg (>>kT)
back to [.3]' This is th_e path an_ng which _the SyStemgiven by the solution of the variational problem [4,6]
moves, with overwhelming probability, when it fluctuates . 5
to a given state or escapes from a metastable state. Rlnsitf] = minl f / dtf dx[a_” + 5_F} )
Optimal paths in dynamical systems driven by Gaussian 4 ) at on
noise have attracted much theoretical interest [4] and werdere, the minimum is taken with respect to the paths
recently observed in experiments [5]. The notion of any(x, ) that emanate from the stable statg(x,:) at

whereV(n) is the biased Landau potentidl(x, ¢) is the
ac driving field, andé(x,r) is delta-correlated noise of
intensity2kT. The model (1) describes also fluctuations
of an overdamped Brownian particle with a coordingte
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t — —o, and arrive at the final statg,(x) for ¢ = ;.
For a periodic field:, the statey,, is also periodic.

Equation (2) has the form of the action for an auxiliary
Hamiltonian system. The equations of motion for the
coordinaten(x, r) and momentumr(x, ¢) of this system
are of the form

,'7:277_5_1:’ = M, W(X,t)zM,
on dn(x)
s2p (3)
Ma(x,t Ejdx’—ﬂ'x',t .
(x.2) snmon) "X

The extreme pathsg;(x, ) that minimize R are optimal
fluctuational paths of the original system (1).

In the absence of drivingi(= 0) the system (1) is in
thermal equilibrium, the activation ener@® is given by

the Gibbs distribution, and one can see from (3) that th?h
optimal pathsy©(x, ) are the time-reversed paths of (1) y,

in the neglect of noise [9],
70 = 8F/5n, ROnsd = FOLnsl = FOIn]
(4)

(the superscripd refers to the cask = 0).

To the first order ink, the field-induced change &t
is given by the term £ in the integrand in (2) evaluated
along the unperturbed optimal patf”:

R[] = [_:/cdt[dx/\/(x,tf —Dhx1),  (5)

xx,tp =0 ==790x0, 701 =n;x). (6)

The quantity y describes the chang&InW =
—RW/kT o« h of the logarithm of the probability density
to reach the statg,. This change may bkarge, and y

may be reasonably called the logarithmic susceptibility.f
Like susceptibility in linear response theory, LS has at

FIG. 1. Optimal escape paths (bold solid lines) of a periodi-
cally driven Brownian particle,p = n — n° + Acoswt +

&(r), for A= 0.1, ® = 2. The paths go from the stable to
the unstable periodic states shown by bold dashed lines (by
thin dashed lines, in the absence of driving). Thin solid lines
show optimal paths in the absence of drivind(r — 1.) =

{1 + exd2(t — 1)}~ "/2, with differents.. The driving lifts

e degeneracy with respectta The pathsp©@(r — .) with

e “right” r. [as given by (14)] are the ones around which the
exact paths are oscillating. For given w, the linear theory
gives the decrease of the activation barrier to an accuracy 12%.

an external field. This is the major qualitative feature
of the problem of escape or nucleation in a driven sys-
tem. The driven system has onbye optimal nucleation
path (one path per period of the field, for a periodic driv-
ing), and this path is close to onlyne unperturbed path
79(x — x.,t — 1), with certainz., x. [11]. The differ-
ence from the corresponding unperturbed path-is as
shown in Fig. 1 for escape paths of a Brownian particle,
in which casen is a function of time only.

We obtain the correct values gf, x,. and the activation
energy of nucleation by modifying the Mel’nikov method
in the theory of perturbed Hamiltonian systems [12]. It
ollows from Egs. (4)—(6) that the first order corrections
o the unperturbed nucleation trajectogy?, 7© = 7©

causal form: the probability to reach a given state at a tim@re of the form

ty is affected by the values of the field at< 7;. We
note that Eqg. (5) suggests hownteasurelS for various
statesn (x).

Of special interest are effects of the field on the proba-
bility of escape from a metastable state of the system. For 7

a system (1) escape occurs via nucleation. /e 0, the
critical nucleusn(c?)(x — x.) is the unstable stationary so-
lution of the equationj = —6F© /87 (the saddle point
in the functional space), and the position of the center o
the nucleus. is arbitrary.

The optimal nucleation patl©@(x — x.,7 — t.) for
h = 0 is the solution of Eq. (4) which approaches the
staten(o (x — x.) ast — . It is a real-time instanton

cr

(cf. Fig. 1) and, as in the case of conventional instantongapproaches the critical nucleus [cf. (3)].

[10], the velocity|n?] is large only within a time interval
|t — t.| = t.1 centered at an arbitrary instant, where
te1 IS the relaxation time of the system.

SRW
on

77(1) = M(O)n(l) + h+2

b

SRW

M = pO,0 4 R = RO[pO(x, 1): 1],

()

(100 = 0. 71— 0, forr— . (8)

Here, 1% is the operatot taken forh = 0 and the path
7©; for the problem (1@ = —V2 + V" (5©). In(8),

7Y is the linear field-induced correction ., and we
took into account that the momentum— 0 as the system

In other terms,
we are looking for a heteroclinic orbit of the Hamiltonian
system (3). We note, however, that our method makes it
possible to find the whole manifold formed by the orbits (3)

Translational and time degeneracy of the optimal nunear the critical nucleus, where the standard perturbation
cleation paths ardifted when the system is driven by theory diverges.
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The solution of (7) near the critical nucleus can bethe optimal nucleation pathy = ¢;, = 0. Then from
expanded in the eigenfunctioig(x — x.) of the operator  (7) nV(r) = — "= A, ', (t)ih,(x) for t — o=, It can be
9 = -v2 + v(u9). The corresponding eigenvalue seen from (12) and (1) that this expression coincides with
problem coincides with that for the dynamical equation (1)the correction to the critical nucleu;{?(t).
in the absence of noise, but the eigenvalues have oppositeThe condition thatcy, c;, should vanish is a conse-
signs. The operatdAwgg) has one nondegenerate negativequence of the unperturbed system being “soft” in the

eigenvaluery < 0, with the eigenfunction functional-space directiong, and anﬁ?)/axa which cor-
-0 respond to the shifts of the nucleation path aleramdx.
go(x — x.) = Clim e o) pOx — xe,t = 1). Taking account of Egs. (5) and (13), this condition can be

(9)  written in the form

(1)

(Xc,tc) _ IR

N . . (1)
9 also has a degenerate zero eigenvalye= 0, with OR= (Xete) _

the eigenfunctionsf, « an(c?)/axa (¢ =1,2,3); and X, 0, dt. 0,
positive eigenvalueg, > 0, » > 1[10,13]. %
We now expand in Eq. (7RM /87 in the functions R = f dt[ dX x=(X — X¢,t — t)h(x,1), (14)
. It follows from (4)—(6) that the variatiod RV[n; 1] e
due to the variation ofy(x) is of the form xox — xe,t — t.) = —1Ox — x.,t —1.). (15)
t
SRV = —f dﬂf dx' sn(x',Y\MOnx',¢), (10) Equations (14) determing., z. for the optimal nucle-

ation path. They may have several roots which correspond
where 87 (x’,¢') is the deviation from the optimal nu- to different heteroclinic orbits of the Hamiltonian system
cleation pathn@(x’ — x.,t' — t.) due to the variation (3). For example, for a periodic driving"’ is a periodic
8 n(x) of the staten(x) reached by this path at the instant function, and it has at least one minimum and maximum
t. Forn(x) close to the critical nucleus.;(x — x.), and  per period (it may have more minima, for nonsinusoidal
for not too larger — ¢’ the solution of the linearized equa- driving). The physically relevant root is the one that pro-
tion (4) for §n(x’, 1) can be expressed in terms of the ex-vides the absolute minimum to the nucleation barRier
pansion coefficients, of 57(x) = X, .¢m(x — x.)as  RO[n] + AR, where AR is the field-induced correc-

tion. According to Egs. (5) and (14),

S, 1) = D Suih(x = x)eM T (1) AR = minRV(x,.1.) (16)
n X, 0 crtc/ -

The terms withn > 1 in this expression decay with the

increasingg — . This makes it possible to use the local th

approximation (11) when evaluating the coefficiefjtof

the expansion 06 RV /67 in the eigenfunctions),~1:

Equations (14)—(16) provide the nonadiabatic theory of
e nucleation rate. They have a simple physical meaning:
in the presence of a time- and coordinate-dependent field,
the optimal fluctuation finds the “best” ting and place
o, , , x. to occur. For thermal equilibrium system&R (16)
calt) = _’\n] dt f dx"exg A, (1" — 1)] is the maximal work that can be extracted from the field
along the fluctuational path. The results apply to a broad
X (" = xR, =1 (12)  gass of extended dynamical models, and also to the
In contrast toc,~;, the expansion coefficients), c14 problem of escape of a Brownian particle, in which case
may not be obtained from the local approximation (11).n is the coordinate of the particle (cf. Fig. 1).
However, they can be found directly from the explicit One can see from (15) and (16) that, for a field of

form of the eigenfunctiongy, 41, and the fact thak) =  the form of a running or standing sinusoidal wavie:=
RW[nO(x — x.,r — t.);¢] is a function of the parame- hycogk - x — wt) or h = hycogk - x) cosw?, the cor-
tersz., x. of the optimal nucleation path. Therefore rection to the activation energy is negative, ah#t =
aRW aRW —|X=(k, w)|hy provided @ exceeds the nucleation rate
o= —Ce MU=t) —__ = .« . (13) [¥=(k,w) is the Fourier transform of..(x, 1)].
dte 0Xca Since y-. is large for|t — t.| < tw, it follows from

The values oft.,x. can be found from the boundary Eq. (16) that, for pulsed fieldsAR is nonpositive as
conditions (8) for the correctiong", 7 to the un-  well. If the pulse effectively lowers the nucleation barrier,
perturbed nucleation trajectory. It is seen from (7) thatthe optimal fluctuation occurs where the field is “on”;
since A; = 0, the correctionz= — 0 for r — 0 pro-  otherwise itis most likely to occur where there is no field.
vided only the expansion coefficients, = 0. The co- Analytical results for the logarithmic susceptibility for
efficient ¢o in (13) contains a growing exponential for nucleationy.. (15) can be obtained in limiting cases, in
t — « and, according to (7), it should also be equal toparticular, for a weakly asymmetric double-well poten-
zero in order fornV(x, 1) to satisfy (8). Therefore, for tial V(n) = %774 - %nz — Hn, |H| < 1. The critical
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0.1 as in the case of standard susceptibility, LS can be mea-
g 7—10.3 sured experimentally even if the underlying dynamics of
the system is not known. The results can be used for op-
4102 timal control, by ac fields, of activated processes such as
g diffusion in solids and nucleation [15].
M. I. D. acknowledges support from the NSF through
0.1 Grant No. PHY-9722057.
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