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Resonant Directed Diffusion in Nonadiabatically Driven Systems
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We show that a high-frequency field magsonantlydecrease the activation energy of escape from
a potential well. For systems in spatially periodic potentials, the effect is different for the transitions
in opposite directions, which gives rise to resonantly directed diffusion (DD). DD arises in both
asymmetric and symmetric periodic potentials. It depends exponentially strongly on the field magnitude,
and its direction can be controlled by varying the field spectrum. [S0031-9007(97)03880-5]

PACS numbers: 05.40.+j, 02.50.—r, 05.20.-y, 05.60.+w

Much attention has been given recently to the occurrencef moderately strong driving fields. We show that, even
of unidirectional motion of systems which fluctuate in for the amplitude of forced vibrations about the minima
a periodic potential. This motion is superimposed onof the potentialU(g) beingsmall compared to the period
diffusion and arises if the system is away from thermall, the probabilities of transitions between potential wells
equilibrium. It is substantially due to fluctuations and candepend on the field magnituégponentiallystrongly. We
be viewed as a directed diffusion (DD). The effect wasalso show that both the direction and speed of DD depend
initially considered for potentials asymmetric within the on spectral characteristics of the driving field.
period (ratchets) [1,2]. It then became clear that DD may Interwell transitions require large fluctuations and hap-
arise also in symmetric potentials [3]. The interest in DDpen occasionally, for small fluctuation intensity. The
is stimulated by its relevance to a broad class of processegtobability densities for the system to move in a transi-
from atomic diffusion in crystals, solid surfaces, andtion along different paths are very different, and with over-
optical lattices to phase diffusion in Josephson junctionsvhelming probability it moves along the most probable
and the motion of proteins along biopolymers. For theescape path (MPEP); see [5-7].
most part, the analysis of DD has been limited to systems Qualitatively, the effect of a moderately strong driving
driven by nonequilibrium noise or by thermal noise and arfield on the escape rates can be thought of in terms of the
adiabatically slowdriving field where the diffusion rate is work the field does while the system is moving along the
determined by the instantaneous value of the field [1-3]MPEP. This work changes the activation energy of escape
The adiabatic picture does not apply if the field perigd  S,. Clearly, the changésS; may be resonantly large, for
is less than the characteristic relaxation time of the systerthe appropriate field frequencies. Since the MPEPs for the
te1. One might expect that DD will be “averaged out” escape to the right and to the left are different so may also
with the decreasingr. We show that, on the contrary, be the change8S;-. This happens if a periodically driven
the rate of DD may displayesonant peakas a function system lacks the spatiotemporal symmejry —¢q,t —
of the field frequency. t + 7r/2 considered earlier in the context of quasienergy

For small fluctuation intensity, the rate of directed states of driven quantum systems [8]; for DD induced by an
diffusion j in a periodic potentialU(g) with period /  additive driving force the criterion was earlier found in [3].
is determined by the difference between the probabilitiefVe note that the quantitieS aretime independenin
W', W~ of the transitions from a potential minimum to the nonadiabatic theory, in contrast to periodic modulation
the right and to the left, of the activation energies that occurs in the adiabatic theory

. + - [1,3].
j= 1w wo). (1) The analysis of MPEPs in classical systems driven by

The analysis of resonant DD requires general nonadigsaussian noise has much in common with the instanton
batic theory of escape rateW=. It should differ theory[9]. Both types of trajectories provide the minimato
qualitatively from the theories where the effect of acertain functionals which can be associated with mechani-
high-frequency field is described in terms of field- cal actionS[¢(¢)]. The minimum of the actior§ gives
enhanced diffusion over energy [4]. Such diffusion givesthe logarithm of the escape probabilify. In the problem
rise to the correction to the distribution over energy whichof activated escape of thermal nonequilibrium systems, the
is quadratic in the field amplitude, whereas the rates  form of the functionalS[¢] depends on the system dynam-
andW ™~ would still coincide with each other. ics and the properties of the noise [5,6].

In the present paper we provide a nonadiabatic theory To illustrate the occurrence of DD and the possibility of
of directed diffusion for the nontrivial and important casecontrolling it we will consider the simplest but nontrivial
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case of a Brownian particle with a unit mass, which iswill either come back to the stable state from which the
moving in a periodic potential/(¢) and is additionally large fluctuation started or make a transition to another
driven by a time-dependent for@gr): stable state, with a probability~-1/2. Therefore the
) ) transition probability is not synchronized with the field
1(g,q,q;1) = €(), T =g+ 2I¢+ U'g) — F(1), and does not depend on time, to logarithmic accuracy.
In contrast to the transition probabilities, the MPEPs
() = 4TkT 8 — 1), Ulg + 1) = Ulg). are synchronized with the field. It is clear from the

o . _variational problem (3) that, for a periodic fielH(r),
By generalizing the results known for stationary sys there is a set of the MPERS (r — nry) which repeat

tems [5—-7] one can show that, for small noise intensities, i . . AR .
i.e., for low temperature€, the escape probabilities * each other with the perioa;. This set is discrete, in
are described by the activation |awW= o exp(— S /KT) contrast to the set of the MPEPs in the absence of driving
The activation energieS_ are given by the solution of Q™ (r — 1) (4) which is cont|r!upust§ can be arblyrary).
the following variational problem: For a moderately strong driving field, the leading-order
: " correction toS, is linear in F. It can be found from
S =minS[¢()].  S[a()] = — f dt 124, 4.q:1). Eqg. (3) by integrating glong th_e qnp_erturb_ed trajectory
a Lg(®)] (0] 8I' J —» G.4.9:1) 0~ (t — t.) (4) the term inI1? which is linear inF (z).
It is clear from the above arguments that, since for a
— f - — 3 . . , ’
a(t) qs‘ft) or 1 < 3) driven system there is generically only one MPEP per
q(t) = g, (1) for t — . period of F(r), the value ofz, should be such that the

Here, g4 (7) is the stable state of forced vibrations abouttrajectoryQ.i(t — 1c) was close to it. 'I'_herefore“gen(?,ri-
a given minimum of U(q) in the absence of noise, cally there is only one . [modrr] that gives the “right

and ¢ (1), g7 (1) are the unstable periodic states of the€SCape trajector@=(z — r.). It was shown in [11] that
vibrations about the local maxima @f(g) to the right the corresponding. is the one that providethe minimum
and to the left from this minimum, respectively. to the field-dependent correcti@$ = (z.) to the activation

The variational problem (3) defines the most probableéEN€rgy evaluated along the pafi (+ — ). Tofirstorder
paths ¢=(¢) for escape over the nearest right or leftin F we have

potential maximum. These paths start in the vicinity of S* =AU + 857, 85* = minss=(z,),
the stable periodic state far— —o and approach the ¢ . ‘. ¢ e (5)
appropriate unstable periodic stateras . W=(F) = W=(0)exd — &S, /kT],

In the absence of periodic force, i.e., #6(:) = 0, fluc- . % . . ..
tuations of the Brownian particle satisfy detailed balancedS™ (t.) = [ dtx=(t — to)F(t), x~ (1) =—-07(1).
conditions. Inthis case the MPEPs are time-reversed paths o

from the corresponding maxima to the minimum of the (6)
potenfcial in the absence of noise [10]. They satisfy the The quantitiesy*(r) describe changes of thiega-
equation rithms of the field-dependent escape rat®s (F), which

g()p=o = 0O(1), O*(t) — 20 (t) + U'(0*) =0 are linear in the driving field", and can be calletbga-

(4) rithmic susceptibilitied11]. Logarithmic susceptibilities
. . " are expressed in terms of the characteristics of the system
with appropriate boundary conditions. One can see fro"ih the absence of driving, as are also “conventional” sus-

Eq. (3) that, for the solution (4), the activation energies tibiliti Iti f Eq. (5) that the li ]
S+ = S are given by the differencAU of the periodic ceptibilities.  Itis seen from Eq. (5) that the linear correc

; o i o tion to the escape rate corresponds to rieximalwork
potential U(g) in its maximum and minimumAU = P P

Y o . . done by the forcd (r) on the escaping particle.
U(gy;) — Ulgs). The characteristic duration of motion For gmonochromatic field () i Igl'iosm the cor-
along the path® = (¢) is of the order of the characteristic rectionssS* take the form
H H — -1 " a
relaxation time of the system; = maxXI' ™!, T'/U" (gs)}-

The effect of the periodic field on the escape rates _ . . o B i+
depends substantially on the interrelation betwggrand 6Sq = ~IX T (IF, x(Q) = ] dre™ x=(1).
the field periodrr. For 7z > 1. the transitions can be @)

considered as occurring for a given instantaneous value of
the field F(¢) in a biased potentidl/(¢q) — F(t)q, and the In the static limitQ) — 0 the spectral densitieg ()
activation energies - periodically depend on time. approacHq; — gl (cf. Fig. 1), and Egs. (5) and (7) give
In the opposite case of nonadiabatic driviag, < t.;, the minimal adiabatic activation energies over the period.
once the system has approached the vicinity of an unstabla general, the shape ¢f “ ()| depends on interrelation
periodic statey; (¢) as a result of a large fluctuation, it will between the friction coefficienf and the characteristic
stay there for a time that exceeds and perform small frequencies of intrawell vibrations of the Brownian particle
fluctuations with an amplitude: (k7)'/2. Eventually it in the absence of noise. For small damping, the function
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(here, the derivatives ovef are evaluated foE = E,,).
ForI' = 0.1, such a toothlike peak is seen in Fig. 1. Its
shape near the maximum is well described by Eq. (10).
Similar peaks arise also from the overtones with> 1,

but their widths are larger and the heights are much
smaller; cf. the spectrum fd2 > w(E,,) in Fig. 1.

It follows from (9) that| },,(Q2)| may also display peaks
near the frequenciesw (E) for which |o/(E)|~'/? has a
narrow maximum (see inset in Fig. 1); the occurrence of
the peaks in conventional susceptibility due to vanishing
) : of w/(E) was considered in [12].

0 o, 1 ©E) 2 3 In the range where the contributions from several over-
Q tones are substantial it is necessary to allow for timér-
FIG. 1. The spectral densitieby™(Q)| (solid curves) and ference The phase shifts between resonating overtones
|x~(Q)| (dashed curves) for the modulation of the rate ofwith nw(E,) = Q are different fol ¢ *(Q)| and| ¢ ~(Q)|
escape to the right and to the left from the minima ofi,the case ofan asymmetric potenti&lg). The phases of
Ea?ned ﬁgﬁg;'ié{é%f_ ;L?qu;r (r)é?:rm%qio(.)f)éng r}e:uggfr the MPEPs for the escape to the right and to the left differ
respectively. Inset: The functiohw’(E)|"/2 for the same DY 7, and in particular the cross-terms from the overtones
potential. n=1andn=2in |g*(Q)], |¥ (Q)| have opposite
signs. For the potential in Fig. 1 we hawdE,,) = 2w,.
|£=(Q)| displays sharp peaks, and in fact it may haveThis gives rise to strong interference of the pealgof(2)
multiple-peak structure as shown in Fig. 1. This structurd'eare (E,,) and the peak of,({2) near2w,. As aresult,
can be understood if one writes the velocity on the MPERhe peak ofl y "(Q)| nearw(E,,) is enhanced, and there

in the form occurs a dip iy ~(Q)| near2w.. Detailed results on the
- . . . spectroscopy of the exponential modulation of escape rates
0*(1) = P*(t) = Re Y P,[E*(t)]exd—ing™(1)], will be given elsewhere. The structure of the spectrum is
n=0 smeared with the increasing dissipation.
(8) It is seen from Fig. 1 and from Egs. (5) and (7) that

E” = TwEDIET), ¢~ ~w(E7), the field-induced modulation of the transition ratés"
wherew (E) is the eigenfrequency of the vibrations with an in an asymmetric potential is most effective if the system
energyE in the absence of dissipatiof(E) is the action is underdamped and the field is resonantly tuned. Since
for these vibrations, an#, (E) is the amplitude of theth  the direction of the diffusion (1) depends on which of the
overtone of the momentud. We dropped the termsI”  rates is larger, it is possible to change it just by varying
in the equation for the phase and fast-oscillating terms iihe field frequency.
the equation for the energy. In the case of a symmetric potenti&l(¢) the MPEPs

Resonant contributions t9™(Q)) come from vibrations Q*(r) are mirror symmetrical,Q* (1) = —Q~(¢), and
with energiesz, () for whichnw(E,) = Q. Intherange DD does not arise for a monochromatic field. This is
of QO where the contribution from an overtone with aa consequence of the spatiotemporal symmetry of the
given n is much larger than from other overtones, wedriven system. IfF(+ + 77/2) = —F(t), which is true
may approximatey = (€2) by the functiony,,(Q) calculated for a monochromatic field, it follows from Eg. (6) that
from Egs. (7) taking into account in (8) the term with one 8S™ (¢.) = 65~ (¢ — 7¢/2). Clearly, the activation en-

n only. Evaluating the integral over time in (7) by the ergies given by the minimal values 65" (z.), 85~ (z.)

steepest descent method, we obtain coincide with each other, and therefdie" = W .
2TnI(E) dw? |2 In general, for a periodic nonmonochromatic field with
|2 (Q)] = [an(E)l ’ — 5 LE . Fourier components, we have from (6) and (7)
, _ (©) 85 (t) = > ¥ (Q)F_, explinQt.).  (11)
The amplitudg P, (E)| is usually largest for the funda- n
mental moden = 1, and the peak of:(€2)| should be  For 5 symmetric potential we have* (w) = —y ()
dominating in the spectrum. In a general case where, fogq 887(1,) = —68*(z,). If the force F(¢) has both

E close to its minimal valué, = U(gu) the frequency o4 and even harmonics, then the field-induced terms
w(E) decreases anjd’(E)| increases with the increasing in the activation energy S = min8s*(r,) andss; =

energyE, this peak is sharp and strongly asymmetric,  _ maxss+(z.) are not equal to each other. Respectively,
1 ()] = A(l — Bx)0(x), x = w(E,) — Q, the escape ratég * are different and there arises DD.
Each of the functions$S=(z.) (11) may have several
A =[m/2Te'(]'V?, 20'B= —(IP,/P\|*) — »"/w’'  local minima. The physically interesting quantitiés .
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FIG. 2. The activation energie8S; (solid curve) andss;

fusion in a spatially periodic potential, depend exponen-
tially on the field amplitude. The rates display resonant
behavior as functions of the period of the field. This be-
havior is determined by the system dynamics far from equi-
librium positions in the absence of driving and can be used
to investigate this dynamics. The direction of DD can be
controlled by varying the field spectrum.
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