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Resonant Directed Diffusion in Nonadiabatically Driven Systems
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We show that a high-frequency field mayresonantlydecrease the activation energy of escape from
a potential well. For systems in spatially periodic potentials, the effect is different for the transition
in opposite directions, which gives rise to resonantly directed diffusion (DD). DD arises in bot
asymmetric and symmetric periodic potentials. It depends exponentially strongly on the field magnitu
and its direction can be controlled by varying the field spectrum. [S0031-9007(97)03880-5]
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Much attention has been given recently to the occurren
of unidirectional motion of systems which fluctuate in
a periodic potential. This motion is superimposed o
diffusion and arises if the system is away from therma
equilibrium. It is substantially due to fluctuations and ca
be viewed as a directed diffusion (DD). The effect wa
initially considered for potentials asymmetric within the
period (ratchets) [1,2]. It then became clear that DD ma
arise also in symmetric potentials [3]. The interest in DD
is stimulated by its relevance to a broad class of process
from atomic diffusion in crystals, solid surfaces, an
optical lattices to phase diffusion in Josephson junction
and the motion of proteins along biopolymers. For th
most part, the analysis of DD has been limited to system
driven by nonequilibrium noise or by thermal noise and a
adiabatically slowdriving field where the diffusion rate is
determined by the instantaneous value of the field [1–3
The adiabatic picture does not apply if the field periodtF

is less than the characteristic relaxation time of the syste
trel. One might expect that DD will be “averaged out”
with the decreasingtF . We show that, on the contrary,
the rate of DD may displayresonant peaksas a function
of the field frequency.

For small fluctuation intensity, the rate of directed
diffusion j in a periodic potentialUsqd with period l
is determined by the difference between the probabilitie
W1, W2 of the transitions from a potential minimum to
the right and to the left,

j ­ lsW 1 2 W2d . (1)

The analysis of resonant DD requires general nonad
batic theory of escape ratesW6. It should differ
qualitatively from the theories where the effect of a
high-frequency field is described in terms of field
enhanced diffusion over energy [4]. Such diffusion give
rise to the correction to the distribution over energy whic
is quadratic in the field amplitude, whereas the ratesW1

andW2 would still coincide with each other.
In the present paper we provide a nonadiabatic theo

of directed diffusion for the nontrivial and important cas
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of moderately strong driving fields. We show that, even
for the amplitude of forced vibrations about the minima
of the potentialUsqd beingsmall compared to the period
l, the probabilities of transitions between potential well
depend on the field magnitudeexponentiallystrongly. We
also show that both the direction and speed of DD depen
on spectral characteristics of the driving field.

Interwell transitions require large fluctuations and hap
pen occasionally, for small fluctuation intensity. The
probability densities for the system to move in a transi
tion along different paths are very different, and with over
whelming probability it moves along the most probable
escape path (MPEP); see [5–7].

Qualitatively, the effect of a moderately strong driving
field on the escape rates can be thought of in terms of th
work the field does while the system is moving along th
MPEP. This work changes the activation energy of escap
Sa. Clearly, the changedS6

a may be resonantly large, for
the appropriate field frequencies. Since the MPEPs for th
escape to the right and to the left are different so may als
be the changesdS6

a . This happens if a periodically driven
system lacks the spatiotemporal symmetryq ! 2q, t !

t 1 tFy2 considered earlier in the context of quasienerg
states of driven quantum systems [8]; for DD induced by a
additive driving force the criterion was earlier found in [3].
We note that the quantitiesdS6

a are time independentin
the nonadiabatic theory, in contrast to periodic modulatio
of the activation energies that occurs in the adiabatic theo
[1,3].

The analysis of MPEPs in classical systems driven b
Gaussian noise has much in common with the instanto
theory [9]. Both types of trajectories provide the minima to
certain functionals which can be associated with mechan
cal actionSfqstdg. The minimum of the actionS gives
the logarithm of the escape probabilityW . In the problem
of activated escape of thermal nonequilibrium systems, th
form of the functionalSfqg depends on the system dynam-
ics and the properties of the noise [5,6].

To illustrate the occurrence of DD and the possibility o
controlling it we will consider the simplest but nontrivial
© 1997 The American Physical Society
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case of a Brownian particle with a unit mass, which
moving in a periodic potentialUsqd and is additionally
driven by a time-dependent forceFstd:

Psq̈, Ùq, q; td ­ jstd, P ­ q̈ 1 2G Ùq 1 U 0sqd 2 Fstd ,

kjstdjst0dl ­ 4GkTdst 2 t0d, Usq 1 ld ­ Usqd .
(2)

By generalizing the results known for stationary sys
tems [5–7] one can show that, for small noise intensitie
i.e., for low temperaturesT , the escape probabilitiesW6

are described by the activation lawW6 ~ exps2S6
a ykT d.

The activation energiesS6
a are given by the solution of

the following variational problem:

S6
a ­ minSfqstdg, Sfqstdg ­

1
8G

Z `

2`
dt P2sq̈, Ùq, q; td ,

qstd ! qststd for t ! 2` , (3)

qstd ! q6
u std for t ! ` .

Here,qststd is the stable state of forced vibrations abou
a given minimum of Usqd in the absence of noise,
and q1

u std, q2
u std are the unstable periodic states of th

vibrations about the local maxima ofUsqd to the right
and to the left from this minimum, respectively.

The variational problem (3) defines the most probab
paths q6std for escape over the nearest right or lef
potential maximum. These paths start in the vicinity o
the stable periodic state fort ! 2` and approach the
appropriate unstable periodic state ast ! `.

In the absence of periodic force, i.e., forFstd ­ 0, fluc-
tuations of the Brownian particle satisfy detailed balanc
conditions. In this case the MPEPs are time-reversed pa
from the corresponding maxima to the minimum of th
potential in the absence of noise [10]. They satisfy th
equation

qstdF­0 ; Qstd, Q̈6std 2 2G ÙQ6std 1 U 0sQ6d ­ 0
(4)

with appropriate boundary conditions. One can see fro
Eq. (3) that, for the solution (4), the activation energie
S1

a ­ S2
a are given by the differenceDU of the periodic

potential Usqd in its maximum and minimum,DU ­
Usq6

u d 2 Usqstd. The characteristic duration of motion
along the pathsQ6std is of the order of the characteristic
relaxation time of the systemtrel ­ maxhG21, GyU 00sqstdj.

The effect of the periodic field on the escape rate
depends substantially on the interrelation betweentrel and
the field periodtF . For tF ¿ trel the transitions can be
considered as occurring for a given instantaneous value
the fieldFstd in a biased potentialUsqd 2 Fstdq, and the
activation energiesS6

a periodically depend on time.
In the opposite case of nonadiabatic driving,tF , trel,

once the system has approached the vicinity of an unsta
periodic stateq6

u std as a result of a large fluctuation, it will
stay there for a time that exceedstF and perform small
fluctuations with an amplitude~ skT d1y2. Eventually it
is
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will either come back to the stable state from which th
large fluctuation started or make a transition to anoth
stable state, with a probability,1y2. Therefore the
transition probability is not synchronized with the fiel
and does not depend on time, to logarithmic accuracy.

In contrast to the transition probabilities, the MPEP
are synchronized with the field. It is clear from the
variational problem (3) that, for a periodic fieldFstd,
there is a set of the MPEPsq6st 2 ntFd which repeat
each other with the periodtF . This set is discrete, in
contrast to the set of the MPEPs in the absence of driv
Q6st 2 tcd (4) which is continuous (tc can be arbitrary).

For a moderately strong driving field, the leading-ord
correction toSa is linear in F. It can be found from
Eq. (3) by integrating along the unperturbed trajecto
Q6st 2 tcd (4) the term inP2 which is linear inFstd.

It is clear from the above arguments that, since for
driven system there is generically only one MPEP p
period of Fstd, the value oftc should be such that the
trajectoryQ6st 2 tcd was close to it. Therefore generi
cally there is only onetcfmodtFg that gives the “right”
escape trajectoryQ6st 2 tcd. It was shown in [11] that
the correspondingtc is the one that providesthe minimum
to the field-dependent correctiondS6stcd to the activation
energy evaluated along the pathQ6st 2 tcd. To first order
in F we have

S6
a ­ DU 1 dS6

a , dS6
a ­ min

tc

dS6stcd ,

W6sFd ­ W6s0d expf2dS6
a ykT g ,

(5)

dS6stcd ­
Z `

2`
dt x6st 2 tcdFstd, x6std ­ 2 ÙQ6std .

(6)

The quantitiesx6std describe changes of theloga-
rithms of the field-dependent escape ratesW6sFd, which
are linear in the driving fieldF, and can be calledloga-
rithmic susceptibilities[11]. Logarithmic susceptibilities
are expressed in terms of the characteristics of the sys
in the absence of driving, as are also “conventional” su
ceptibilities. It is seen from Eq. (5) that the linear corre
tion to the escape rate corresponds to themaximalwork
done by the forceFstd on the escaping particle.

For a monochromatic fieldFstd ­ F1 cosVt the cor-
rectionsdS6

a take the form

dS6
a ­ 2jx̂6sVdjF1, x̂6sVd ­

Z
dt eiVtx6std .

(7)

In the static limit V ! 0 the spectral densitieŝx6sVd
approachjq6

u 2 qstj (cf. Fig. 1), and Eqs. (5) and (7) give
the minimal adiabatic activation energies over the perio
In general, the shape ofjx̂6sVdj depends on interrelation
between the friction coefficientG and the characteristic
frequencies of intrawell vibrations of the Brownian partic
in the absence of noise. For small damping, the functi
1179
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FIG. 1. The spectral densitiesjx1sVdj (solid curves) and
jx2sVdj (dashed curves) for the modulation of the rate o
escape to the right and to the left from the minima o
the potential Usqd ­ sinq 1 0.3 sins2q 1 0.4d. The upper
and lower sets of curves refer toG ­ 0.1 and G ­ 0.4,
respectively. Inset: The functionjv0sEdj21y2 for the same
potential.

jx̂6sVdj displays sharp peaks, and in fact it may hav
multiple-peak structure as shown in Fig. 1. This structu
can be understood if one writes the velocity on the MPE
in the form

ÙQ6std ; P6std ­ Re
X
n.0

PnfE6stdg expf2inw6stdg ,

ÙE6 ø 2GvsE6dIsE6d, Ùw6 ø vsE6d ,
(8)

wherevsEd is the eigenfrequency of the vibrations with a
energyE in the absence of dissipation,IsEd is the action
for these vibrations, andPnsEd is the amplitude of thenth
overtone of the momentumP. We dropped the terms~G

in the equation for the phase and fast-oscillating terms
the equation for the energy.

Resonant contributions tôx6sVd come from vibrations
with energiesEnsVd for whichnvsEnd ­ V. In the range
of V where the contribution from an overtone with
given n is much larger than from other overtones, w
may approximatêx6sVd by the functionx̂nsVd calculated
from Eqs. (7) taking into account in (8) the term with on
n only. Evaluating the integral over time in (7) by the
steepest descent method, we obtain

jx̂nsVdj ­

∑
jPnsEdj

Ç
2GnIsEd

p

dv2

dE

Ç21y2∏
E­EnsVd

.

(9)
The amplitudejPnsEdj is usually largest for the funda-

mental moden ­ 1, and the peak ofjx̂1sVdj should be
dominating in the spectrum. In a general case where,
E close to its minimal valueEm ­ Usqstd the frequency
vsEd decreases andjv0sEdj increases with the increasing
energyE, this peak is sharp and strongly asymmetric,

jx̂1sVdj ­ As1 2 Bxdusxd, x ­ vsEmd 2 V ,

A ­ fpy2Gjv0jg1y2, 2v0B ­ 2sjP2yP1j
2d0 2 v00yv0

(10)
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(here, the derivatives overE are evaluated forE ­ Em).
For G ­ 0.1, such a toothlike peak is seen in Fig. 1. Its
shape near the maximum is well described by Eq. (10
Similar peaks arise also from the overtones withn . 1,
but their widths are larger and the heights are muc
smaller; cf. the spectrum forV . vsEmd in Fig. 1.

It follows from (9) thatjx̂nsVdj may also display peaks
near the frequenciesnvsEd for which jv0sEdj21y2 has a
narrow maximum (see inset in Fig. 1); the occurrence o
the peaks in conventional susceptibility due to vanishin
of v0sEd was considered in [12].

In the range where the contributions from several ove
tones are substantial it is necessary to allow for theirinter-
ference. The phase shifts between resonating overton
with nvsEnd ­ V are different forjx̂1sVdj andjx̂2sVdj
in the case of an asymmetric potentialUsqd. The phases of
the MPEPs for the escape to the right and to the left diffe
by p , and in particular the cross-terms from the overtone
n ­ 1 and n ­ 2 in jx̂1sVdj, jx̂2sVdj have opposite
signs. For the potential in Fig. 1 we havevsEmd ø 2ve.
This gives rise to strong interference of the peak ofx̂1sVd
nearvsEmd and the peak of̂x2sVd near2ve. As a result,
the peak ofjx1sVdj nearvsEmd is enhanced, and there
occurs a dip injx2sVdj near2ve. Detailed results on the
spectroscopy of the exponential modulation of escape ra
will be given elsewhere. The structure of the spectrum
smeared with the increasing dissipation.

It is seen from Fig. 1 and from Eqs. (5) and (7) tha
the field-induced modulation of the transition ratesW6

in an asymmetric potential is most effective if the system
is underdamped and the field is resonantly tuned. Sin
the direction of the diffusion (1) depends on which of the
rates is larger, it is possible to change it just by varyin
the field frequency.

In the case of a symmetric potentialUsqd the MPEPs
Q6std are mirror symmetrical, ÙQ1std ­ 2 ÙQ2std, and
DD does not arise for a monochromatic field. This is
a consequence of the spatiotemporal symmetry of th
driven system. IfFst 1 tFy2d ­ 2Fstd, which is true
for a monochromatic field, it follows from Eq. (6) that
dS1stcd ­ dS2stc 2 tFy2d. Clearly, the activation en-
ergies given by the minimal values ofdS1stcd, dS2stcd
coincide with each other, and thereforeW1 ­ W2.

In general, for a periodic nonmonochromatic field with
Fourier componentsFn we have from (6) and (7)

dS6stcd ­
X
n

x̂6snVdF2n expsinVtcd . (11)

For a symmetric potential we havex1svd ­ 2x2svd
and dS2stcd ­ 2dS1stcd. If the force Fstd has both
odd and even harmonics, then the field-induced term
in the activation energydS1

a ; mindS1stcd anddS2
a ­

2 maxdS1stcd are not equal to each other. Respectively
the escape ratesW6 are different and there arises DD.

Each of the functionsdS6stcd (11) may have several
local minima. The physically interesting quantitiesdS6

a
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FIG. 2. The activation energiesdS2
a (solid curve) anddS1

a
(dashed curve) for the escape to the right and to the l
from the minima of the symmetrical potentialUsqd ­ sinq
in the field Fstd ­ 2 cosVt 1 0.73 coss2Vt 1 fd, for G ­
0.1, V ­ 0.44. The ranges where the dc current flows to th
right and to the left are shown by “+” and “–,” respectively
The dotted line shows the value ofdS6

a where the current
reversal occurs.

are determined by the absolute minima of the respect
dS6stcd. Therefore, with the varying spectrum of the fiel
Fstd, the field dependence ofdS6

a will change discontinu-
ously from that for one local minimum ofdS6stcd to that
for another. This is similar to what happens at a first-ord
phase transition, withdS6

a andtc being analogs of the free
energy and the order parameter.

In Fig. 2 we illustrate the activation energiesdS6
a and

the onset of DD in a symmetric potential for a field with
two harmonics,Fstd ­ F1 expsiVtd 1 F2 exps2iVtd 1

cc. It follows from Eqs. (5) and (11) that the quantitie
dS6

a ; dS6
a sfd are periodic in the phase shift between th

field harmonicsf ­ argsF2yF1d, and also thatdS1
a sfd ­

dS2
a sf 1 pd. Therefore the curvesdS1

a sfd, dS2
a sfd

intersect each other twice within the period2p. At each
intersection the direction of diffusion changes to that fo
which the activation energy is smaller. The rate of DD
maximal wheredS6

a sfd are at their minima. The abrupt
changes in the slopes ofdS6

a sfd are also seen in Fig. 2.
However, they occur fordS1

a sfd in the range off where
dS1

a sfd . dS2
a sfd [and similarly fordS2

a sfd]. We note
that, for the chosen frequencyV , vsEmdy2, the maximal
values of jdS6

a j in Fig. 2 exceed those in the adiabati
approximation by a factor of 3. Equations (5) and (6
make it possible to optimize the shape of the periodic fie
for control purposes.

In conclusion, we have shown that, even for compar
tively weak driving fields, the rate of activated escape fro
a potential well, and, consequently, the rate of directed d
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fusion in a spatially periodic potential, depend exponen
tially on the field amplitude. The rates display resonan
behavior as functions of the period of the field. This be-
havior is determined by the system dynamics far from equi
librium positions in the absence of driving and can be use
to investigate this dynamics. The direction of DD can be
controlled by varying the field spectrum.

The work of M. I. D. was supported by NSF Grant
No. PHY-9722057.

[1] M. Magnasco, Phys. Rev. Lett.71, 1477 (1993).
[2] R. D. Astumian and M. Bier, Phys. Rev. Lett.72, 1766

(1994); J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari,
Phys. Rev. Lett.72, 2652 (1994); C. Doering, W. Hors-
themke, and J. Riordan, Phys. Rev. Lett.72, 2984 (1994);
M. M. Millonas and M. I. Dykman, Phys. Lett. A183, 65
(1994); M. M. Millonas, Phys. Rev. Lett.74, 10 (1995);
F. Marchesoni, Phys. Rev. Lett.77, 2364 (1996); A.-L.
Barabásiet al. (to be published).

[3] A. Ajdari, D. Mukamel, L. Peliti, and J. Prost, J. Phys.
I (France) 4, 1551 (1994); M. C. Mahato and A. M.
Jayannavar, Phys. Lett. A209, 21 (1995); D. R. Chialvo
and M. M. Millonas, Phys. Lett. A209, 26 (1995); Phys.
Rev. E53, 2239 (1996).

[4] A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys.
63, 317 (1986); B. I. Ivlev and V. I. Mel’nikov, Phys. Lett.
A 116, 427 (1986); S. Linkwitz and H. Grabert, Phys.
Rev. B44, 11 888 (1991);44, 11 901 (1991).

[5] M. I. Freidlin and A. D. Wentzell,Random Perturbations
in Dynamical Systems(Springer Verlag, New York, 1984);
M. I. Dykman and M. A. Krivoglaz, Sov. Phys. JETP50,
30 (1979); A. J. Bray and A. J. McKane, Phys. Rev. Lett.
62, 493 (1989); M. I. Dykman, Phys. Rev. A42, 2020
(1990).

[6] R. Graham, inNoise in Nonlinear Dynamical Systems,
edited by F. Moss and P. V. E. McClintock (Cambridge
University Press, Cambridge, 1989), Vol. 1, p. 225.

[7] R. S. Maier and D. L. Stein, Phys. Rev. Lett.71, 1783
(1993);77, 4860 (1996).

[8] M. S. Sherwin, inQuantum Chaos,edited by G. Casati
and B. Chirikov (Cambridge University Press, Cambridge,
1995), p. 209.

[9] J. S. Langer, Ann. Phys.41, 108 (1967); S. Coleman, Phys.
Rev. D15, 2929 (1977).

[10] M. I. Dykman, M. A. Krivoglaz, and S. M. Soskin, in
Ref. [6], Vol. 2, p. 347; see M. Marder, Phys. Rev. Lett.
74, 4547 (1995), and references therein, for the discussio
of optimal fluctuational paths in thermal equilibrium
systems.

[11] M. I. Dykman, H. Rabitz, V. N. Smelyanskiy, and B. E.
Vugmeister, Report No. cond-mat/970436.

[12] S. M. Soskin, Physica (Amsterdam)180A, 386 (1992).
1181


