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Abstract. The scattering of two-dimensional electrons forming a Wigner crystal by vibrations 
of a medium (semiconductor or liquid helium) is considered. A method is developed that 
gives explicit expressions (including essential corrections to the Born approximation) for 
the cyclotron resonance (CR) peak shape. The halfwidth and shift of the peak are analysed 
in detail for the cases of relatively low and high electron densities (or. respectively. strong 
and weak magnetic fields). The results show that at low densities CR may be used to detect 
the short-range order in the electron system, while at high densities the transverse sound 
velocity may be determined for the Wigner crystal. The theory describes quantitatively the 
specific dependences of the CR parameters on the electron density observed experimentally 
for electrons above the liquid helium surface. 

1. Introduction 

In a number of systems (e.g., in semiconductor surface inversion layers or at the surface 
of liquid helium) the motion of carriers is quantised in one direction, and at sufficiently 
low densities and temperature the carriers behave as two-dimensional (2D) ones. Since 
the 2D carrier density "ay be varied easily, such systems are suitable for the investi- 
gation of many-electron effects. One of these effects is Wigner crystallisation of the 
carriers. In the 2D case it was considered theoretically by Crandall and Williams (1971) 
and by Chaplik (1972) and observed experimentally by Grimes and Adams (1979) for 
2D electrons above the helium surface. 

The electron-electron interaction influences not only the ground state, but also the 
scattering of electrons by medium vibrations (MV) (phonons in semiconductors or cap- 
illary waves on the helium surface) and by impurities. The influence on scattering is 
extremely strong when the quantising magnetic field H A  is applied normally to the 
electron (or hole) layer. In this case in the single-electron approximation the electron 
energy spectrum presents a set of Landau levels. Due to the discreteness of the spectrum 
elastic scattering by impurities and quasi-elastic scattering by MV are forbidden in such 
an approximation. The Coulomb interaction of 2D electrons makes their spectrum 
continuous and thus allows them to scatter elastically by outer scatterers. Such scattering 
was considered earlier (Dykman and Khazan 1979) for the low-density (or large-H-) 
range where the electron motion might be described quasiclassically using the concept 
of the drift of the cyclotron orbit centres in the electric field caused by electron-electron 
interactions. 
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In what follows the scattering by MV in transverse magnetic fields is analysed for a 
wide temperature and density range supposing that 2D electrons form a Wigner solid 
(ws). Here the problem of electron relaxation reduces to the problem of relaxation of 
the ws eigenmodes, which is specific. This follows from the explicit form of the Hamil- 
tonian of coupling to MV: 

HI = V&P, cq = b, + bI, pq = exp(iqr,). (1.1) 
4 n 

Here c, denotes the MV field operator (MV quantum numbers other than the 2D 
wavevector q are omitted for brevity); r, is the position vector of the rtth electron. For 
electrons forming a ws r, are expressed in terms of the ws phonon creation and annihil- 
ation operators aia,  aka: 

r, = R, + U, Un = Uknexp(ikR,) Uka=Akaaka+ A*kaaIka (1.2) 
k a  

(Lvand k label the phonon branches and wavevectors respectively). 
The distinctive feature of the coupling to MV obvious from equations (1,l) and (1.2) 

is its non-linearity in the ws normal coordinates Uka.  This non-linearity is strong, since 
the mean-square electron displacement (U;) diverges for a 2D solid at finite temperature. 
Therefore many ws phonons participate in each collision event and the non-linearity of 
HI in must be taken into account to all orders of perturbation theory. This removes 
divergences in the expressions for the relaxation parameters (for the Born approxima- 
tion to H, this was shown previously; see Dykman (1980a) and Eguiluz et a1 (1981)). 

Another distinctive feature of scattering of the ws phonons by MV is the non-conser- 
vation of quasi-momentum: the MV momentum may be transferred not to ws modes but 
to the electron lattice as a whole (there is an analogy with the Mossbauer effect here). 
The Umklapp processes are very essential, because for real systems the characteristic 
distance between electrons, N-'12, exceeds substantially the atomic spacing in the 
medium and therefore the MV wavenumber q may exceed the maximum ws wavenumber 
k,,, - In particular, those MV with q 9 N'12 (and thus with relatively large density 
of states) are shown below to be responsible for the cyclotron resonance broadening 
and shift in quantising magnetic fields. 

In the present paper the cyclotron resonance (CR) is analysed using the double-time 
Green functions. This method allows us to calculate the CR peak shape parameters 
taking essential corrections to the Born approximation into account. The general expres- 
sion for the CR peak shape obtained in 0 2 is used in 00 3 and 4 to analyse the halfwidth 
and shift of the peak at relatively high and low electron densities respectively. In 0 5 the 
results are illustrated for a simple coupling model. In B 6 they are applied to electrons on 
the helium surface and compared with experiment. Section 7 contains a discussion of 
our results. 

2. General expression for the CR peak shape 

2.1. Resonant conductivity of 2 0  electrons 

The Hamiltonian for 2D electrons forming a Wigner crystal and interacting with vibra- 
tions of a medium is of the form 

x = H~ + H ,  + H, H~ = 2 ukaaiaaka 
ka 

H ,  = 2 u,b;b, (5  = 1) 
4 
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where H, is given by equation (1.1); the medium is supposed to be isotropic. In the 
transverse magnetic field the ws phonon dispersion law at small k is given by 

(k 4 N"2) 

u k , - 1  = c , ~ ~ k ~ ~ ~ / w , N ' / ~  (wk. -1 wc, d / m p )  

Wk,-1 2: clk (wc'lwp mk. -1 u p )  (2.2) 

= (2ne2~3/2/m)1/2 w, = eH-/mc 

(see Chaplik 1972). Here c, and up (c, - w,/N' *) denote the transverse sound velocity 
and characteristic Debye frequency of a ws at w, = 0. The branch (Y = 1 at k 4 N' 
corresponds to magnetoplasma waves in a 2D plasma. The existence of the branch 
CY = - 1 is connected with the electron crystallisation. 

The electron conductivity a(k, o) is determined (see Zubarev 1960) by the double- 
time Green function for the momentum operator p ( k ) :  

a,,@, U) = i(e2N2s/m2u) ( ( ~ I X k ) ; p , ~ ( - k ) ) ) , - ~ o  K, K' = x , y  

(S is the area of the system, (. . .) denotes statistical averaging). 
Radiation absorption in general and CR in particular are described by Re a,,(k, w) .  

To consider CR we must find Re a,,(k, w) in the limit k +  0. In this limit the coefficient 
Akl in equation (2.3) is given by 

1 = (mu,)-' = (c/eH_)' (2.4) 

while wk.-'Ak, k5'4 (we have used here the general expressions for Aka obtained by 
Ulinich and Usov (1979)). Note that (Ns)"2Akl at k +  0 equals the matrix element of 
the coordinates of an isolated 2D electron on the wavefunctions of the ground and first 
excited Landau levels (this may be easily understood because the Coulomb interaction 
causing Wigner crystallisation should not influence the elementary excitations with 
k = 0). Since wk -IAk vanishes at k +  0, only the phonons of the branch (Y = 1 con- 
tribute to the momentum p ( k )  and hence to the conductivity a(k, U)  in the long-wave- 
length limit, 

If the CR peak halfwidth r is small compared with w,, in the range of the peak 
(U - U,), according to equations (2.3) and (2.4), we have 

Re axx( w) 2: (Ne2/2m) Q( U)  Q ( w )  = -1im Im Qk(w + io) 
k - 0  

Qk(w) = ( ( Q k i ;  0- w,. (2.5) 

To obtain (2.5) we have replaced win the denominator of expression (2.3) for a,,(k, U )  

by w, and have neglected the Green functions ( ( a k l ;  a-kl))o, ((ak;; akl))o and ( (a'kl:  
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All these functions are of order U;' at U - U,, while to zeroth order in Hi the function 
Qk(u) retained in equation (2.5) has a pole at U = u k l  --. wc(k+ 0). The coupling to MV 
transforms this pole into the peak of -1m Qk(w + io). Within the peak (iu - ucj S r) 
Q(u)  - r-' and thus all corrections to Re u,,(k, U)  omitted in equation (2.5) are of the 
order of r/uc, 1 U - w,l/wc G 1. The function Q(u)  gives the CR peak shape itself. 

2.2. Evaluation of thepeak shape 

2.2.1. Equation of motion for the Green function Qk(w). To calculate Qk(u) it is con- 
venient to single out the terms containing ukI ,  in the interaction Hamiltonian (1.1): 

H ,  = Hjl' + Hj*' H p  = c, vqc4pp 

p;(k) = X exp(iqrA + ikR,,) 

v =  1 , 2  
4 

p!' = i[(qUkl)P;(k) + (qu-kl)p;(-k)l pi2' = [I - (qukl) (qu-kl)]P;( 

P:, = Pb(0) 
n 

r; = r,, - (ukl exp(ikR,) + HC). (2.6) 

We stress that equation (2.6) is not an expansion of H, in electron displacements (such 
an expansion diverges); H, is expanded only in one Fourier component of the displace- 
ment. Since Akl r s-' * (cf equation (2.4)). only the terms up to second order in u,kl are 
taken into account in equation (2.6); the contribution to Qk(w) from the higher-order 
terms in uekl  is shown below to vanish in the statistical limit S + C O ,  

The coupling Hamiltonian Z$'] has the usual form for interacting vibrations and 
describes the decay of the ws phonon {kl} into, generally speaking, several other ws 
phonons and an MV quantum. The termZ$*) has a distinctive structure: it contains the 
addend x u k l u - k l .  Although the latter is proportional to S-'it must be taken into account, 
because in pi2) there is the addend ( p i )  which does not contain S in the denominator. 
The terms u ik l  in pi2) are omitted since their convolution with the large term p i  vanishes 
(this is obvious: the coefficient at ulkl  bears the momentum 22kwhilep; is independent 
of k ) .  

Two terms in the Hamiltonian (2.6) correspond to two Green functions on the RHS 
of the equation of motion for Qk(u) ( k  G NI/*): 

(U - U,) Q d u )  = 1 + ((A; ak;))a + ((Baki; a k ; ) ) w  

This equation is obtained by differentiating [ a k l ( t ) ,  ak;(O)] with respect to t ,  averaging, 
and Fourier transformation over t;  we have replaced lqAkliz in B by 12q2/2NS using 
equation (2.4). The Green function ~:q(qAk*1)2V4((c4piaCkl; akl))w omitted on the RHS of 
equation (2.7) vanishes for an isotropic medium in the limit k +  0, S+ m (cf the 
calculations carried out below), 

2.2.2. Calculation of((Bakl; ~ k ; ) ) ~ .  The Green function ((hakl; may be expressed in 
terms of Qk(u) strictly for arbitrary coupling. This is a consequence of the specific 
structure of B :  it presents the sum over electrons of the single-electron operators 
( 2 N S ) - ' Z ~ q * V ~ ,  exp(iqrA). Thus the operator S B  is additive. 
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It follows from equation (1.2) that 

Uk& = (NS)- '  C exp(-im,)u, 
ff n 

and therefore SAk&kff and SA$&& are also additive operators. Then to calculate 
((&akl; ak;))wwe must average the product of three additive operators S&t), S1/'akl(t) and 

The average of the product of arbitrary additive operatorsx, may be easily expressed 
Sl'%,; (0) * 

as a power series in S-' .  The beginning of this series is of the form 

(this expression is well known; it may be proved by dividing the system into a large 
number of macroscopic (and thus practically uncoupled) subsystems, see, e.g. ,  Landau 
and Lifshitz (1980)). 

The terms omitted in (2.8) are also of higher order in S-' for the case when the 
operators X i  are taken at various times. Then, taking into account that (ak l )  =( uk;) =O 
(there are no electron fluxes in the system), one obtains in the limit S-. cc 

(&t)akl(t)  a m )  = (A) ( a d 0  ak;(O)) 

and therefore 

(with accuracy to S-' the operator p; is replaced by pq here). 
is directly proportional to Q k ( o ) .  The coefficient PC2) 

is an analogue of the average coupling energy per electron; it is independent of S in the 
limit S+ W .  

Equation (2.8) allows us to show that the contribution to Qk(w)  of terms in H ,  of 
third and higher order in ukl is negligible. This is a consequence of Wick's theorem. It 
should be noted, however, that in contrast to the usual problems of interacting phonons 
the term x 1 uklI2 in the expansion (2.6) is essential for the ws relaxation. 

Thus the function ((&akl; 

2.2.3.  General expressions for the CR peak  parameters. When the condition o, P r is 
fulfilled, it is sufficient to calculate ((A; &,in the Born approximation. Then 

Q k (  W )  = ( w - W ,  - l l ( ' ' ( ~ )  - P(*)) -' U-- W ,  (2.10) 

where, in the limit k +  0, 

1 (X,( t )  X2(0))< = ZO' Tr[ expj-  Ho + iHd X1 exp( -iH$)Xt 
T i 

Zo = Tr exp( -H&') ri(o) = (exp(o/T) - I)-'. (2.11) 
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The polarisation operator I I ( ' ) (w)  is caused by the coupling I$') ,  The kernel II,(t) 
contains the product of the time correlation function of the MV coordinates q( U,, t )  with 
that of the electron density (pq(f)p-q(0))i, both calculated neglecting the electron-Mv 
interaction (strictly speaking, &(t) contains the correlator of p i (k ) ,  p14( - k )  instead of 
the correlator of p,, p-,, but in the limit k-, 0 they coincide). The approximate calcu- 
lation of the contribution of *')to Q,(w) is justified if I l c ' ) (w )  is small and smooth: 

In("( U) 1 4 w, ~an( ')(o)/dwj e 1 (w - 4. (2.12) 

It follows from equations ( 2 . 5 ) ,  (2.10) and (2.12) that at o - wc 

e(@) = r [ ( w  - 0, - P ) ~  + r2]-l 

r = -1m n( ' j (wc + io) p = pm + p(2) 

P(') = Re II(')(o, + io). (2.13) 

Thus the CR peak shape is Lorentzian. Its broadening r is due to the decay coupling 
*')while both a l l a n d  Hf2)contribute to the shift P. 

2.3. Calculation of Pi') 

The expression (2.9) for P(2)  simplifies in the actual case of low electron densities when 
the medium may be considered to be a thermostat for the electrons and the damping of 
medium vibrations due to their interaction with the ws may be neglected. In this case 
the following decoupling holds: 

i; I 
(H,) -1 dt(H-,(-it)H,(O)) 2 - IV,12j dtq(o , ,  - i t)  (P-4(-it)pq(0)) 

0 0 

A =  T-' Hq = V,C,P, 

(to calculate (H,) it is convenient to single out H,, with a given q in H, and to expand 
exp(-AX) in H, + H-,; it is sufficient to take only the linear term in this expansion into 
account and to neglect (H,(-it)H,(O)) when the MV renormalisation is neglected). In 
fact, the expansion parameter used here is the ratio of the number of 2D electrons to 
that of the molecules participating in the medium vibrations coupled to the electrons. 
Substitution of the expression for (H,) given above into equation (2.9) yields 

(2.14) 

The explicit expression (2.14) for PC2), in contrast to equation (2.11) for I I ( ' ) (w) ,  
contains the electron density time correlation function calculated with the complete 
electron-Mv Hamiltonian (2.1). In the Born approximation this correlator should be 
calculated neglecting coupling: 

(2.15) 
E. 1 =%? Pq21Vq12-/ dtq(w,,  -it) (pq(-it)p-,(0))i= -ReII(')(+iO) 

0 

(the second equality follows from (2.11) and the Kubo identity). 

be essential, i.e. the Born approximation may be insufficient for the self-energy. 
It is shown below that even for r, I Pi o, the difference between PC2)  and Pg) may 
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2 .4 .  'Single-site' approximation for the self-energy 

The electron density time correlation function for a ws isolated from the medium 
according to equations ( l . l ) ,  (1.2), (2.1) and (2.11) is given by the expression 

cq(t> = 2 exp(iqR, + Wq(Rfl,  t>> 

w,(R,, t) = - 2 /qAkaI2 [(tika + 1) (1 - exp(-iwk,t - ikR,)) 
k a  

+ h k d l  - exp(iwkd + ikR,))] j l k a  3 i( Qa). (2.16) 

It is obvious from equations (2.11), (2.15) and (2.16) that the evaluation of n( ' ) (w ) ,  
&'I includes the summation over electron sites R ,  and MV momenta q. In the present 
paper we suppose that q21Vq12/wq does not increase with decreasing q ,  and 
wc % (wq)q=Go where Go is the minimum ws reciprocal lattice vector. In quantising 
magnetic fields these conditions are satisfied very well both for 2D electrons in non-polar 
semiconductors and at the helium surface (Dykman 1978,1980b). Then it is convenient 
to sum first over q in (2.11) and (2.15). 

The addend in cq(t) corresponding to R, = 0 is of the form 

$(t> = exp(q2W(t)) 

w(t) = &((h(t)%(o))i - (U:)!) = & 2 1Aka12(Q)(uka, t) - Q)(Uka, 0 ) ) ;  (2.17) 

it falls off exponentially with q2. The main contribution to ncl)(w) results from tq( t )  with 
q -9, = U;' where U, is the electron dis lacement over the time t, equal to the duration 

with q s N"* is small, since the density of states for the corresponding MV is small. 
The contribution of the terms with R, # 0 in $(t) to n(')(u) for U - wc is shown in 

the Appendix to be exponentially small for actual systems. This estimate (equation 
(AS)) holds also for Re n(')(+iO), i.e. for f i 2 ) .  Thus the kernel II,(t) in equation 
(2.11) may be replaced by 

(2.18) 

This means the neglect of interference of short-wavelength ( q  % N1/2) vibrations of a 
medium scattered by different electrons. It should be noted that the factor exp(q2W(t)) 
in equation (2.17) is analogous to a similar factor in the theory of the Mossbauer effect. 
In both cases the momentum of the scattered particle (MV or y quantum) is transferred 
to the lattice as a whole. 

k a  

of the collision with MV: U, = (- W(t,)) 1 1  (obviously q, % " I 2 ) .  The contribution of &(t) 

l=qt )  = tq(t) Q)(Wq, t )  - cc. 

Below we shall analyse the most real and interesting case of strong magnetic fields 

0, % w, (w, = qJ> exp(wJ0 s 1 (2.19) 

when the scattering of the phonon {kl} ( k +  0) by MV is quasi-elastic (the energy hoc of 
the phonon passes into the energy of other ws phonons). 

3. CR peak halfwidth and shift at low densities 

3.1. Electron displacement correlator 
In the range of strong magnetic fields or relatively low densities where 0, 4 wc (U, = 
(2ne2N3/2/m)1/2) thewidthsofbothwsphononbranchescu = ?1 (andhence themaximum 
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frequency of the soft branch cy = - 1) are of order w$/wc. The expressions for r and 
P simplify if the vibrations of the branch cy = - 1 are classical: 

up G w, wgw, G T. (3.1) 
For ddw, G T the main contribution to the integral (2.11) over t comes from the range 
t G OJO; (see below). In this range the displacement correlator W(t)  may be expanded 
in @ k , - l t  and (wkl - wJt:  

( y , , ( k )  denote the frequencies of ws longitudinal and transverse phonons at H ,  = 0). 
We have utilised here the inequalities wk,-1 Q T, exp(wkdQ B 1 and the relationships 

following at wp Q w, from the expressions for 
(1979). 

and IAkaI2 given by Ulinich and Usov 
~ 

According to equations (2.11), (2.17) and (3.2) the momentumq, of the Mvessential 
for scattering equals I - ' ,  while the duration of the collision ts = re. The well known sum 
rule for the squares of phonon frequencies allows us to recast re as 

re = (l /c)Hl(E-')  (E- ' )  = (,7~eY2TAg)''~ 

(V, = a/aRn). (3.3) A - 1 2  - Be V n  2 2 lR, - Rml-' = 6e2N3I2 
m(m # n )  

Obviously only a few coordination spheres contribute to A. and hence to ze; the direct 
calculation gives 6 = 4.45 for the hexagonal lattice and 6 = 4.52 for the square one. 

On a vibrating electron in thews acts the electric field of other electrons. For w, + up 
it may be divided into slow and fast (in the scalew;') components. The slow component, 
E ,  at ddw, Q T < w, may be shown to have a Gaussian distribution analogous to that of 
the restoring force in the ws for T B & and H ,  = 0 (b is the Debye temperature). In 
particular (E- ' )  is given by equation (3.3). Then re should be interpreted as the time 
needed for a 2D electron to drift in the crossing fields E ,  Hl over the distance I equal to 
the characteristic MV wavelength. Obviously z, -(To;/wC)-lh G wc/u; . Thus in the 
actual range of t ( t  i t, = re) where qz I W(t) I S 1 the inequality t + wc/wi  used in 
equation (3.2) is fulfilled. 

3.2. Explicit expressions for the CR peak parameters 

To calculate the CR broadening and shift the expression (3.2) for W(t)  should be substi- 
tuted into equation (2.17). Then to integrate over t in equations (2.11) and (2.15) it is 
convenient to expand gq(t) in terms of exp(-iw,t). The main contribution to r results 
from the linear term in this expansion (the remainder give a correction of order 
exp( - of$ 4 1) and in the actual case o,re G 1 takes the form 

r = +TZ, E ( I ~ > ~ ~ v ~ ~ ~ w ; ~  exp(-+Pq2) T B ti' B os, wyw,. (3.4) 
4 
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The CR peak halfwidth (3.4) is due to decay of the long-wavelength phonon {kl} ( k +  
0) into a short-wavelength phonon of the same branch a = 1. The decay is induced by 
MV and is accompanied by the creation and annihilation of a great number 
(-wJo$te 4 1) ofphonons a =  -1. 

It is obvious from equations (3.2), (2.11), (2.13) and (2.15) that the CR peak shift P 
is determined by the terms proportional to w,z, < 1 or to (hw~wcT)”2 < 1 (i.e. by the 
quantum corrections omitted in equation (3.4)). Expanding exp(q2W(t)) in terms of 
( T ~  (up to the linear term) and in exp( -iw,t) we obtain 

P = Po + P, + P T  

F, = IV412w;’ exp(-A,) A, = tPq2 (3.5) 

(we have put q(w,, t )  = (2T/wq) - iw,t in equation (2.11)). The expression for Po is 
similar to that for the single-electron CR shift due to virtual processes of MV creation and 
annihilation without transitions between Landau levels (cf Dykman 1978). The differ- 
ence in the expressions and the addend P, are caused by many-electron effects. The 
term PT is due to virtual processes where phonons with a = 1 are created or annihilated 
together with an MV quantum. This term coincides with the corresponding term in the 
single-electron approximation because wkl =wc 4 ti’ . 

For c@wc 4 Tand wste -e 1 the CR peak halfwidth r substantially exceeds the shift P.  
Equations (3.4) and (3.5) (i.e. theBornapproximationsforrand P )  arevalidat arbitrary 
T/w,, but for Tte < 1. For T t e  S 1 the interaction between electrons may be neglected 
when the CR is considered and the single-electron strong-coupling theory (Dykman 
1978) should be used. 

4. CR halfwidth and shift at high densities 

4.1. Electron displacement correlator 

At high densities or relatively weak magnetic fields where 

up + 0, (4.1) 
the characteristic width of both ws vibrational branches is equal to up. Hence the 
spectrum of W(t) is continuous and smooth up to frequencies of order up. Therefore the 
lowest frequency singled out under the integral over t in equation (2.11) is 
Iw k w,l(/wl up), and the characteristic duration of scattering t, is equal to w;’ for 
w - 0, 4 0,. 

In the range t 6 w;’ the expression (2.17) for W(t)  takes the form 
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The relationship 

l A k  -112/Wk,-1 1 (2mNSctk2)-' ( k  << N I 2 )  (4.3) 

obtained by Ulinich and Usov (1979) and the explicit expression (2.2) for wk,-l allow us 
to show easily that the temperature-dependent correction to equation (4.2) for W(t) is 
of order T3t2/wP S T3/&q, << 1. 

It follows from equations (4 .2) ,  (2.17) and (2.11) that the characteristic momentum 
of the MV essential for scattering is equal to q-'". The parameter q is the mean-square 
electron displacement (divided by two) due to quantum (i.e. zero-temperature) fluc- 
tuations. It was calculated by Fukuyama (1976). For up % U, 

q = p/2mwp ( P -  1) qs = q-"* - (mwP)l2 .  (4.4) 

4.2.  Broadening of the CRpeak 

To calculate I I ( ' ) (w)  at /U/ > Tone should substitute W(t) given by equation (4.2) into 
equation (2.17) and then (2 ,11) ,  and expand exp(q2W(t)) in a power series in w(t) .  
Zeroth- and first-order terms yield, respectively, 

nh')(w> = I?q2IVql2 exp(- qq2) wq(02  - w$' (4.5) 
4 

+ f iq (wkn-  wq)[w2 - ( W k a -  wq>21-1) 

A, = A( wq). (4 .6)  

lo/> l- 

The imaginary part of TIL')( w, +io) yields the CR broadening To corresponding to direct 
decays of the phonon {kl} ( k +  0) into MV. For U, S U, such decays are forbidden, and 
the main contribution to r comes from II(')(w): 

r -- rl r l =  - Imn( ' ) (o ,+  io)= ( 1 6 m ~ : N ) - ' x I ? q ~ 1 V ~ 1 ~  
4 

x exp( - qq2) (2ri9 + 1 )  wp% COc+ w, (4.7) 

(we have used equations (2 .2)  and (4.3) here and neglected the corrections of order 
&Jo$), The broadening rl is due to decays of the phonon {kl} ( k +  0) under consider- 
ation into one of the phonons {k', - 1 )  with k' -- wc/ct. These decays are induced by 
coupling to a medium and are accompanied by emission or absorption of MV. 

The probability of decay into several ws phonons is small compared with rl. It may 
be calculated taking terms non-linear in w(t)  into account in the power series for 
exp(q2W(t)). The nth term yields 

(4.8) 
q'w, n - 1  r n  = [16mc:Nn!(n - l)!]- '  2 I2q4/Vq/' exp(-qq2) (2fi9 + 1 )  ( 8 m c ? N )  - 

4 

(the numerical factor of order one appearing at n - wdw, and all corrections of order 
dJo$ are omitted here). Obviously r, - ( oJwp)"- 'I-'. The numerical coefficient in rn  
decreases rapidly with increasing n ,  so that the expansion r = ZJn converges rapidly. 

4.3 .  Shift of'the cRpeak 

We begin with the calculation of P in the Born approximation (2.15). Then we should 
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find Re n( ' ) (w + io) at w = wc and w = 0. Since equations (4.5) and (4.6) are valid for 
lo/ b T ,  to find Re nc'f +io) the temperature-dependent corrections to W ( t )  omitted in 
equation (4.2) should be taken into account. They are small (- T/wF) in the actual range 
/ c l  S T-' (Re n(')(+iO) is determined by W(-it) with t S T-' according to equations 
(2.15), (2.11) and (2.17)). This may be checked directly by expanding exp(q*W(t)) in 
the expression for Re l-I(')( +io) in a series in q2( W(t) + 17). The zeroth-order term gives 
an expression for Re nc']( +io) which coincides with the RHS of equation (4.5) where U 
is put equal to zero, while the first-order term yields 

Re n(')(+iO) = -1 12q4/V,/2exp(-yq2) IAka12[(iika+ f i q  + 1) 
4 ka 

x ( U k a  + UJ' + (Flq - hk&) (wka-  UJ'- 2nkau;1]. (4.9) 

Equations (2.13), (2.15), (4.5), (4.6) and (4.9) with allowance for the ws phonon 
dispersion law (2.2) and (4.3) in the case of coupling to low-frequency MV (U, S U,) yield 
P - P , + P ,  up s U, s U, 

4 

PI  = (8mnc:N)-' 12q41Vv,/2(2ri, + 1) exp(-W? 
4 

x In(wdo) h = max(w,, T). (4.10) 
The addend Po here comes from pbz' =- Re nb')(+iO) (the term Pk'j = R e  l-I~"(w, + 
io) is omitted, Pb') -(~.$'d)Po 4 PO ). This shift is due to virtual transitions where ws 
phonons do not participate explicitly. It is interesting that the expressions (4.10) and 
(3.5) for PO, although similar in structure, contain different pre-exponential factors (qs 
in both cases is determined from the zero-temperature mean-square electron 
displacement). 

The shift P1(P1 =Re II(')(u, + io) - Re l-I!')( + io)) is due to virtual processes where 
an MV quantum and one ws phonon are created or annihilated. The term P1 is relatively 
small: PJPo - (h/w,) ln(oc/h). The expression (4.10) for PI  is valid provided T + U, 
(excluding a narrow temperature range where d?fu,T -1) or T 0, (63 should be 
replaced by wq then, but this yields inessential corrections for we B w,). For T - w, 
the expression (4.10) for PI  is applicable provided ln(wc/h) B 1. 

Only the virtual transitions where low-frequency (61 S uka s w,) ws phonons are 
created or annihilated contribute to P1. Those transitions where high-frequency phonons 
(akn + 0,) participate are inessential (their contribution is of order (u$'o.$)P P ) ,  since 
the corresponding terms in Re II(')( U, +io) and Re Hi')( + io) compensate one another. 
A similar compensation occurs for multiphonon transitions. This provides rapid con- 
vergence of the expansion of P in a number of phonons participating in a virtual 
transition, because the density of states of the low-frequency ws phonons contributing 
to P i s  small. 

It is obvious from equations (4.7) and (4.10) that the CR peak shift P exceeds 
substantially the halfwidth r for wF + U,. 

4 . 4 .  The corrections to the Born approximation 

The ws phonons contributing to the damping and frequency shift of the phonon { k l }  
(IC+ 0) are themselves renormalised due to the coupling to a medium. If this renor- 
malisation is strong, it should be taken into account when r and P a r e  calculated. 
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The self-energy nkiy(w) of an arbitrary ws phonon {ka} may be calculated in a way 
similar to that used for the phonon {kl} with k +  0 (cf Dykman (1982) where the case 
H, = 0 was considered). In the Born approximation n k X w )  is the sum of two addends 
analogous to Il(')(o), fi'). The main difference lies in the coefficient I'/NS that for 
nkdm) should be replaced by IAkalZ. Since lAk,-llz increases strongly with decreasing k 
(cf equations (4.3) and (2.2)) the renormalisation of low-lying ws phonons appears to 
be large. At wp % w % U,, when the 'single-site approximation' (2.18) is valid, the main 
term in nkiy(w) is analogous to PO in equation (4.10): 

(4.11) 

It is convenient to single out the frequency QO of those phonons whose 'bare' 

QO E u k o . - l  wko. -1  = pko. -1 . (4.12) 

According to equations (2.2), (4.3) and (4.11) QO = ~ ( P w , ) ~ ' ~  at P S wyw; ,  and 520 - 
(P34/w,)"4 at P w V 4 .  Obviously the renormalisation of the phonons with frequen- 
cies wkn 6 Qo is strong. However this renormalisation does not influence the applicability 
of the decoupling resulting in equations (2.10) and (2.11), since the contribution of the 
low-frequency ( u k a  s Qo 6 U,) phonons to n ( ' ) ( w )  is small (--Qdwp) for w - U, s R O  

(the decoupling concerned n(')(o) only). If QO b O at the same time the explicit form 
of P(') alters. 

To obtain fi2) one should use the exact expression (2.14). The result, however, may 
be understood from qualitative considerations. Indeed, it is obvious from equation 
(4.11) that the coupling to MV causes the dynamical 'hardening' of the low-lying ws 
phonons. Therefore the low-frequency cut-off parameter Ofor the phonons contributing 
to P(2) should be redefined: 

(4.13) 

The rigorous calculation (similar to that carried out at H-  = 0 (Dykman 1982)) shows 
that the expression (4.10) for P with O given by (4.13) is valid for ln(wc/O) % 1. 

Although the term P1 in P renormalised at QO % os, Tis small compared with P O ,  the 
renormalisation of PI is essential, since this term exceeds the halfwidth r of the CR peak. 

frequency Oka equals the shift Pkn: 

U = max(w,, T ,  no). 

5. CR peak halfwidth and shift for a simple coupling model 

The expressions for r and P obtained above simplify if 
' 2  -1 = s-1% 2n IVql wq 4 .  

This model is actual: for example, the deformation potential approximation corresponds 
to n = 0; for electrons above the liquid helium n = -1 at large pressing fields (see 
below). 

According to equations (3.4), (4.7) and (5.1) at low densities 
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while at high densities and relatively high temperatures 

If follows from equations (3.3), (4.4), (5.2) and (5.3) that x 9T'!2N-314W-+312 at low 
densities and CY ' ~ ITN~("+ ' ) '~HI '  at high densities. These expressions depend on N in 
qualitatively different ways (the derivatives are opposite in sign) for n > - 1; this is also 
the case for their dependence on HA. 

The shift P of the CR peak at low densities according to equations (3.5) and (5.1) is 
given by 

P f Po + PT T %  r;'9 w, 

(the terms of order dt: are neglected here). We suppose that n < 1 in equation (5.1) 
(otherwise the interaction (5.1) should be cut off at large qin order to become compatible 
with the assumption of weak CR spectrum renormalisation). Then the series (5.4) 
converges. 

At high densities and T 9 U, equations (4.10) and (5.1) yield 

P f P O + P ,  wp 9 U, % iJ 

The addend Po in equations (5.4) and (5.5) is independent of T .  At low densities 
Pox 9W-", P T X  STWl and P is independent of N .  At high densities 

It is obvious that the dependences of r and P on N and H A  are rather specific and 
sensitive to the exponent n in equation (5.1). Therefore CR may be used to investigate 
both the many-electron effects and the type of coupling to MV. Numerical examples of 
the application of the results presented above to ws on the helium surface are given in 
detail in § 6. 

p o x  CJN3("*2)'4H-land i p 1  x GJT,&T3("1)4H-1 - 1 n(wc/4.  

5.1.  Generalisation on the case of scattering by impurities 

For a typical value of the electron density N = 3 x 10" cm-' compatible with Wigner 
crystallisation in the semiconductor surface inversion layer and H -  = 50 kOe we obtain 
for the system with Si parameters wdwc 2 2 and 
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(c, is the semiconductor soundvelocity). Then equation (5.3) should be used to calculate 
the CR peak halfwidth. It yields r - 10'' s-' for T = 10 K and an effective (cf Dykman 
1978) deformation potential constant 7 eV. The value of r increases rapidly with soften- 
ing of surface phonons or increasing coupling. 

The Wigner crystal on the semiconductor surface is coupled not only to MV but also 
to impurities. The random field of impurities (in contrast to that of MV (Dykman 
1981)) results in pinning of ws. Pinning in a weak field is connected with the transverse 
deformation of the ws and takes place at arbitrary field intensity. For a weak random 
potential with a short ( d ~ ' ' ~ )  correlation range the correlation length of the pinned ws 
r,,,, may be expressed in terms of the single-electron momentum relaxation time z(5) 
calculated for H -  = 0 (is is the electron momentum): r,,,, -N-'/2(mc:t(r-'/2))''2 for 
T 6 up, d ~ w c  (cf Dykman 1981 where the case H ,  = 0 was consisered. 

Pinning causes an uncertainty of order r;Ar in the ws phonon momentum and thus 
results in an inhomogeneous broadening and shift of the CR peak of order 
o$(~,r,,,,N'/~)-' (cf equation (2.2)), which as a rule exceeds the homogeneous (decay) 
CR broadening caused by impurities. The latter is given by equations (3.4) and (4.7) with 
2 1 Vqi 'T/wq and 1 Vq I2(2riq + 1) replaced by the Fourier component of the random field 
correlator. 

6. CR of electrons above the liquid helium surface 

The relaxation of electrons above the helium surface for T < 1 K is caused by the 
coupling to ripplons (quantised waves on the helium surface). The capillary surface 
waves are slow: for electron densities N d 2 X lo9 cm-2 (at higher Nthe charged helium 
surface becomes unstable) and for reasonable H ,  ( H A  d 20 kOe) the energy hw, (in 
temperature units) does not exceed 5 X K. Therefore the scattering by ripplons is 
usually quasi-elastic and we shall suppose T % hw,. Then the coupling parameters V ,  
and ripplon eigenfrequencies wq enter the expressionsfor and Ponly in the combination 
IVq(2/huq. Using the theory of Shikin and Monarkha (1974) one obtains for 
q % lo2 cm-' 

EH = yaBe/12 aB = h2/me2. (6.1) 

Here a;isthesurfacetension, a; = 0.35 dyncm-', y-'isthelengthofelectronlocalisation 
in the direction normal to the surface and E- is the electric field 'pressing' electrons to 
the surface. The latter determines the limiting electron density: 

No( E .) = E J2m. (6.2) 

The characteristic field EH in (6.1) is small (EH S 300 V cm-' for H ,  S 20 kOe), so the 
term proportional to EH is essential only at low E,. 

6.1. CR spectrum in the low-density range 

For w, >T/h % wywc equations (3.4), (3.5) and (6.1) yield the following expressionsfor 
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the halfwidth and temperature-independent part of the shift of the CR peak: 

P o =  -- e2EH [Ei (E-  2.1) + 2 E ~ ( g ~ -  4.lE-t 4.3)] T S h/ t ,  ;’= ln(4yl) 
4<.lh as 

(6.3)  
(here the numerical coefficients are given to an accuracy of two decimal places; their 
explicit form is tedious). 

The expression for PT is also quadratic in E - ,  the term proportional to E t  being 
e 2 E ~ T / 4 d i 2 a S o c  (cf Dykman and Khazan 1979). To calculate the term proportional to 
E& in PT one should take into account that the expresssion (6.1) for 1 V ,  /*/ho, is cut off 
at q - 4y. If 8 %- 1 (the electrons may be assumed to be two dimensional onlyfor 4 y l S  1) 
the term proportional to E& is negative: it is proportional to -(Te2E$/h240c)lj3.  
Therefore for large 5 the CR peak shift P = PO + PT changes sign depending on 
E- : P < 0 for E ,  e EH&o,/T or E -  e and P > 0 at higher E,. For any E Y E H  
in the low-density range P 4 r. 

The parameter I‘ at constant N increases monotonously with E- .  If, however, the 
helium surface is charged up to saturation, N = No(Ei),  the dependence of r = Tsat on 
E ,  has a minimum. This is obvious if we rewrite the expression (6.3) for rsat taking 
equations (3.3) and (6.2) into account: 

( 6 . 4 ~ )  

( x  = E J E H ) .  

Here +’) is the value of yat E ,  = 0, = 1.3 X lo6 cm-’. To first order in E -  

(zl is small for E ,  4 Efi), since (+‘)I)* %- 1). 
The dependence of rsat on E l  is described by r’(E,,/€H). It is obviously non-mono- 

tonic with a minimum at E J E H  -- 1.5E - 2.9 (for E%-  1). Such a dependence is specific 
for the many-electron system under consideration. It was found experimentally by 
Edel’man (1979). The data were obtained at such magnetic fields and temperatures that 
T / h ,  = 0.45-0.49, +‘)I = 4.1, ER) =100Vcm-’ and y ’ ( T ,  wc)/wc = (8.1-8.4) x 
(y’( T ,  wc) - lo7 s-’). The lowest value of E -  corresponded to E,,/Eg)- 0.1. 

Equations (6.3),  ( 6 . 4 ~ )  and (6.4b) describe the experimental data both qualitatively 
and quantitatively without any adjustable parameters. This is obvious from figure 1.  The 
experimental error in the range 0.1 4 EYER) 6 0.4 is about equal to the discrepancy 
between theory and experiment. At higher E ,  the discrepancy grows, but up to 
E J E g )  -1 (in particular, near the minimum of r’(E+/€H)) remains smaller than 40% 
(the spread in experimental data also increases in this range of E,). For E J E f f )  >1.2 
the disagreement with experiment becomes appreciable; the parameter T t J h  is too 
small here, Tt$ < 2.3, and equation (6.3) is inapplicable. The shift of the CR peak in 
the range EJEE)  <1.2 was small in Edel’man’s experiment, in agreement with the 
predictions of the present theory. 
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Figure 1. The dependence of the reduced CR peak halfwidth r’ on E ,  in the low-density 
range for = 4.1. The broken curve shows Edel’man’s (1979) experimental results for the 
range EJE8)  c1.2. 

6.2. Halfwidth and shift of the ha peak in the high-density range 

In the range wp 9 w, the term proportional to EH in equation (6.1) may be neglected 
(the inequality E ,  9 EH follows from up 9 w, for H l  > 100 Oe).  Then r and Pare  given 
by equations (5.3) and (5.5) with n = -1,9 = e2 €2,/2a;: 

P = Po + PI 

Po = 
e2E: wp 

4 d w 3 c p  

(for the hexagonal ws parameter ddc:N equals about 25.6 (Bonsall and Maradudin 
1977)). Since p is constant for wp 9 wc, the halfwidth rl does not depend on the 
density N (as for an ideal electron gas). The term Po, dominating in the expression for 
the shift P for up 9 U, 9 T ,  is proportional to N3/” (Shikin (1979) approximated the CR 
peak shift empirically at arbitrary wdwc by the expression (6.5) for Po divided by two 
assuming p to be dependent on the magnetic field). With an accuracy up to a logarithmic 
factor both r and P a r e  proportional to HI’. 

The expressions (6 .5)  for r and P agree qualitatively with Edel’man’s experimental 
data for the range wp b 1.5 0,. The latter are obtained only for the saturation regime 
N = No(El) .  The quantitative agreement with experiment is achieved for rsat at p = 1. 
However, such a value of pis too small: in the Debye model p = 1.8. But the latter value 
is too large, since it ignores the essential hardening of transverse ws phonons in the 
short-wavelength range. Substituting the transverse sound velocity obtained by aver- 
aging the numerical dispersion law (given by Bonsall and Maradudin) over the Brillouin 
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r"  // / p , ,  4 0 -  

20- 
/ 

IO- 

zone into the expression for p appropriate for the Debye model one finds p = 1.4 (this 
estimate is certainly crude). 

In the experimental conditions oJop b 0.4. Therefore the corrections to Tsat due to 
decays into several ws phonons may be essential. In particular, the two-phonon decays 
according to (4.8) and (6.1) yield 

/ B 

/ 
/ 

/ 

To compare rSat = rl + r2 and P,,, with experiment it is convenient to write them in the 
following form: 

r sa t  = V(  T,  ~ c ) ~ ' ( E , / E , )  

V( T ,  U,) = 0. 26e2EzT( h2a,o,) -' r"(x) = x2(1 + 1 . 5 ~ - ~ ' ~ )  

~(0,) = 0.057e2Ef(has)-' P(x, T/hoc) = x11'4 + 2.9(T/hwc)x2 ln(wJb) 

E, = (2nho,a~e-*) '~~e/ l*  x = E./E,, op S U, (6.7) 

(the numerical coefficients are evaluated here for p = 1.4, O'dcfN =25.6; E, denotes 
the value of E ,  corresponding to a value of N0(EL) such that up = wc). 

The 'high-density' experimental data were obtained by Edel'man for 
E, = 3.7 x lo2 V cm-', 0.85 3 T/ho, B 0.45, y"(T,  uc)/wc -- (2.2 x 10-3)T/huc 
(I@ - lo8 s-') and ~ ( w , ) / u ,  = 4.8 X 10-4(x(wc) -- 5.6 x lo7 s-'). The parameter P,,Joc 
is extremely small for actual EI/Ec 6 5 ;  therefore T %- h ( P ~ , ~ u ~ / u c ) 1 ~ 4  and according to 
(4.13) 0 = T/h in equation (6.7). 

It is obvious from figure 2 that equation (6.7) describes well the experimental 
dependence of both rsat and P,,, on E ,  (the discrepancy is less than20%). The qualitative 
consequences of (6.7), the proportionality of rsar to T and the negativeness of 
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d2r,,Jd(E:)2, are confirmed by experiment. The experimental dependence of P,,, on T 
was not observed. Although Tenters the expression (6.7) for P,,, explicitly, the depend- 
ence of P,,, on Tappears to be weak numerically, and P,,, is approximately proportional 
to E\ under the experimental conditions (at the same time the temperature-dependent 
part of P,,, is not small; its contribution is about 25%). 

It should be noted that for the whole range of E,, Tinvestigated by Edel’man the CR 
broadening r exceeds 0, and thus the single-site approximation (2.17) and (2.18) is valid 
with a high accuracy. 

7. Conclusions 

It follows from the results of the present paper that the CR peak shape for a Wigner solid 
coupled to a medium is Lorentzian. In the actual case of quasi-elastic scattering, w, b os, 
the broadening and shift of the peak may be calculated within the single-site approxi- 
mation (2.18), i.e. neglecting the interference of short-wavelength MV scattered by 
different electrons. Such an approach differs from that used by Eguiluz et a1 (1981) to 
investigate the structure of the conductivity o(k, 0) at w = wq with q close to the ws 
reciprocal lattice vectors; in the present paper we have investigated o(k, w) at 
w - w, b w,, where this structure is smeared. 

At low densities or high magnetic fields where up 4 w, and T % hwyo, the shift P 
and halfwidth r of the CR peak are determined by the short-range order in the electron 
system. The CR broadening is due to the decays of the phonon {kl}, k -+ 0 (it is responsible 
for resonant light absorption) where an MV quantum and many short-wavelength ws 
phonons participate; r b P here. The results obtained in this range are valid not only 
for a ws but also for a strongly correlated electron liquid. 

At high densities, wp b w,, the transverse ws phonons with relatively long wavelength 
contribute to r and P. In particular the CR broadening is due to decays of the phonon 
{kl} ( k +  0) into the phonon {k‘, -1} (k’  = w,/ct) and an MV quantum. Thus the long- 
range ordering is apparently manifest. At high densities P 9 r, and the corrections to 
the Born approximation for P may exceed r. 

The good qualitative and quantitative agreement of the present theory, which in 
practice does not contain adjustable parameters, with the experiment confirms the 
essential role of many-electron effects in scattering by MV. At the same time it becomes 
clear that in quantising magnetic fields rigid short-range order exists up to low densities: 
e2(nN)l/*/T - 30. The value of the transverse sound velocity ct = 0.2wPN-”* obtained 
for a ws numerically by Bonsall and Maradudin (1977) appears to be compatible with 
experiment. Thus the specific dependences of the CR peak halfwidth and shift on the 
electron density, temperature and so on (parallel with traditional applications) permit 
us to use CR to detect both the short-range order in a system of 2D electrons (applying 
relatively strong magnetic fields) and the long-range one (applying relatively weak 
magnetic fields). 

Appendix 
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To estimate n( ’ ) (w,  n)  for R, # 0 it is convenient to single out in Cqn(f) the factor 
describing its oscillation and damping with q:  

Cqpn(t) = 9o,(q, t> exp(iqRn - q2qG2) R, # 0. ( A 4  

According to equation (2.16) %,,(q, t) is a smooth function of q and 
q& S (Z:knlAk,/’)-’. If the characteristic range t,, of integration over tin the expression 
for II(’)(o, n)  is not too large, so that 

f o r t <  t , q  = % s n ( X ( q , t )  =q2IVqI2dwqJ))> (A.3) 

then the coefficient at 1;4,,(f) in equation (A.l)  is a smooth function of q compared wtih 
exp(iqR,), and the integration over q in (A.l) gives a small value for n(’)(w, n) .  In 
particular, in the actual case when X ( q ,  t )  is not only smooth in the scale R;’ but varies 
slowly in the whole range q s q,,, 

4 I aX(4, t)/aq I 6 I x(430 I (A.4) 

n(’)(w, n)  - n(’)(w, 0) exp(-iq$??) ( q s r p n  a 1). (‘4.5) 

q s n ,  l S  tsn,  

the term II(’)( w, n )  is exponentially small: 

Since 4;’ substantially exceeds the atomic spacing in the medium, the functions 
q21 Vq12 and q21 Vq12/wq are smooth in the range q s qsn. Consequently the condition 
(A.4) will be fulfilled surely if 

wqt, e 1 for q d q,,. (‘4.6) 

For the few lowest R, the integration over tin I$’)( 0, n )  is similar to that carried out 
in § § 3  and 4 for II(’)(w, 0), so that t,, - t, = tso, qsn - q, = qso and (A.6) reduces to the 
inequality cost, 

For large R, the summation over k in the time-dependent terms in Wq(R,, t) (see 
equation (2.16)) is limited practically to small k d k,  = R;’, and thus effective ‘bands’ 
for the phonons contributing to these terms are narrow: wkn i wkna. The main contri- 
bution to n(’)(w, n)  for o - U, * wqw then results from the resonant term in the expan- 
sion of Cqn(t), 

1 used in § § 3 and 4. 

L$(t) = 2 IqAk1l2 exp(-iwklt - ikR,) exp(-q2qG2 + iqR,). (A.7) 
k 

This term describes the decays of the phonon under consideration (i.e. the phonon { k l } ,  
k -+ 0) into another long-wavelength ws phonon of the branch (Y = 1. It follows from 
equations (A.l)  and (2.2) that tsn is limited here to 1 wk,l -wc1-’ - w,R,N’”/~ (this 
allows us to neglect the time dependence of the contribution to $J(t) of the phonons 
with a= -1, since t snok , , - l  -(R,N’’2)-1’z 1). There is, however, another limitation 
on t,, for large R,N’”. Indeed, to estimate n(’)(o, n)  for R, # 0 by perturbation theory 
we should replace the ‘bare’ frequencies wkl at small k in equation (A.7) by 
wkl + l?’) (akl +io, 0) + P”) --. wkl + P - ir. Then t,, s r-’. ocR,N”Z/o~ and (A.3) is 
fulfilled for smooth q2 1 V,  12/wq and large R, provided 

1 u ~ + ~ , I -  wq I max(r,  w;(w,R,N’”’)-’) 6 qsw (A * 8) 

It follows from the results obtained in 96 that for 2D electrons above the liquid 
helium surface in the actual range of temperatures, densities and quantising magnetic 
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fieldstrengths oq 6 r f o r q  S qs.  Theninequalities (A.8) and(A.6)areobviouslyfulfilled 
and the exponential estimate (AS) is valid for Il(l)(o, n )  at arbitrary R,. This estimate 
also holds for typical semiconductor devices (cf 0 5 ) .  
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