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It is shown that the presence of unstable directions of the polarization plane of intense radiation 
may lead to a new type of optical bistability (OB) (the instability of specific directions arises in 
nongyrotropic crystals from the self-action of radiation propagating, for example, along a four- 
fold axis). The case of resonant nonlinear absorption of light is discussed in detail. An analysis is 
given for the symmetry-caused extrema of the dependence of the field strength at which new 
stationary states arise on the orientation of the plane of polarization. Near an extremum, this 
dependence may be both analytic and nonanalytic, corresponding to different mechanisms of OB. 
The stability of stationary states is discussed by taking the field inhomogeneity into consideration. 
The results are applied to specific mechanisms of nonlinearity, and in particular, to two-photon 
resonant absorption. 

The dependence of the absorption of light on its intensi- 
ty is a well-known nonlinear optical effect. Nonlinear ab- 
sorption has been observed in noncrystalline substances as 
well as in crystals (see for example Ref. 1). In crystals, this 
absorption is generally anisotropic. It is significant that such 
anisotropy, i.e., self-induced dichroism (SID), is present 
even in cubic crystals (linear not circular dichroism is con- 
sidered everywhere below; spatial dispersion is not consid- 
ered). Since cubic crystals are isotropic in weak fields, they 
are suitable for an experimental study of SID.2-4 

As in dichroism in linear optics, in SID there are isolat- 
ed limiting directions toward which the plane of polarization 
turns as radiation propagates in the crystal. It is significant, 
however, that for intense radiation propagating along an 
axis of symmetry of order higher than second, there are sev- 
eral such limiting directions. In fact, the directions obtained 
by rotation about a symmetry axis of the crystal or by reflec- 
tion in a plane passing through the axis are equivalent, and if 
one of them is a limiting direction, the others are also limit- 
ing. The rotation to one or the other of the equivalent limit- 
ing directions is determined by the initial orientation of the 
plane of p~larization.~ 

Obviously, under the indicated conditions, there are al- 
ways directions which separate the regions of "attraction" to 
different limiting directions. They are polarization-unstable: 
slight deviations of the plane of polarization from them in- 
crease with the thickness of the crystal (during fluctuation of 
polarization, however, they generally do not increase). In the 
presence of a resonator, when the transmitted radiation re- 
turns to the crystal, the fluctuational deviation from the un- 
stable direction, as will be shown below, can increase in time. 
As a result, in the steady state, the plane of polarization at 
the resonator output turns out to be deflected through a fin- 
ite angle toward either one or the other limiting direction, 
i.e., bistability takes place. 

The dichroic bistability (DOB) described is due to the 
self-induced change of radiation polarization in a nonlinear 

medium. The polarization effects in general enrich substan- 
tially the picture of optical bistability. Interesting examples 
of systems with a specific type of nonlinearity, where these 
effects are appreciable, have been discussed r e ~ e n t l y , ~ - ~  and 
the optical bistability predicted in Ref. 5 and due to the de- 
generacy of the atomic energy levels in a gas has already been 
observed experimentally.' 

In cubic crystals, the role of polarization effects is par- 
ticularly important because of the presence of unstable di- 
rections of the polarization plane (in the presence of nonlin- 
earity of both light absorption2 and refraction9). As a result, 
qualitatively new mechanisms of bistability arise, in particu- 
lar, DOB, and the threshold value of the radiatipn intensity 
sharply decreases in many cases. 

The analysis of bistability in cubic crystals can be suc- 
cessfully performed in a very general form, without specify- 
ing the nonlinearity model, by studying the polarization de- 
pendence of the field intensity at which new stationary states 
arise. As a result of symmetry, the corresponding function 
has singular points and extrema, the behavior in the vicinity 
of which determines the bistability mechanism. Such an 
analysis is given below for radiation propagating along a 
fourfold axis. The mechanism of optical nonlinearity is con- 
sidered to be resonant, and it is assumed that the absorption 
depends on the intensity, and that the nonlinearity of refrac- 
tion for linearly polarized radiation may be neglected. A ring 
cavity is chosen as the resonator model. 

Section 1 discusses the condition of appearance of sev- 
eral stationary states of the field in the cavity (the equation of 
the bifurcation surface has been derived, and in the case of 
linearly polarized radiation, the equation of a bifurcation 
curve). Section 2 gives a general analysis of self-induced 
dichroism and establishes the symmetry properties of bifur- 
cation curves. Section 3 shows that in the vicinity of symme- 
try-caused extrema bifurcation curves can be both analytic 
and nonanalytic (the second case corresponds to the appear- 
ance ofDOB). In Sec. 4, the results obtained form the basis of 
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a discussion of bistability for two specific models of nonlin- 
ear absorption. Section 5 discusses the stability of stationary 
states. Section 6 contains concluding remarks. 

1. CONDITIONS OF APPEARANCE OF SEVERAL 
STATIONARY STATES 

The field E(0) of the forward edge of the crystal in a ring 
cavity is made up of two quantities: the field E of incident 
radiation which has entered the cavity and the field E(d ) of 
radiation reflected by the mirror system at the output of the 
crystal: 

Here R is the resultant reflectance of the mirrors, and is 
the phase shift resulting from the reflections and propaga- 
tion of light through the cavity. Equation (1) is written for 
the stationary case and neglects the oppositely traveling 
wave in the cavity. 

The relationship between the field at the output E(d ) 
and input E(0) of the crystal is determined by material equa- 
tions, and is very complex when nonlinearity is considered. 
In the absence of spatial dispersion for radiation propagating 
along the [OOl] axis (z axis), this relationship can be de- 
scribed phenomenologically by means of the two transmit- 
tances T, and Ty : 

[the x, y axes in the (001) plane are chosen along symmetry 
axes of type (100) or (110)l. The transmittances T,, Ty 
depend on the field E(0) incident on the crystal and on the 
crystal thickness d. Let us emphasize that relation (2) covers 
the case of arbitrary, including strong, optical nonlinearity 
and reflects the fact that because of symmetry E,(d) = 0 
when E, (0) = 0. In strong fields, E, (d ) generally depends on 
all the components of vector E(O), and as a result of self- 
induced optical anisotropy T, # Ty . 

Equations (1) and (2) relate the field of radiation trans- 
mitted through the cavity [proportional to E(d )] to the field 
of radiation incident on the cavity (proportional to E). The 
relationship of E(d ) to E can be nonunique. The bifurcation 
values of the field at which two branches of solutions (I), (2) 
merge (or appear) are determined from the condition 

a(&%, e , > l a ( E x ( d ) ,  E , ( d )  ) =O. (3) 
If the dependence of T , ,  on E(0) is unique (i.e., there is 

no local optical bistability of the crystal), the criterion (3) 
assumes the form 

The solution of Eqs. (4) describes a surface in the space 
E,  P, @, where P i s  the slope of the major semiaxis of the 
polarization ellipse of the incident radiation relative to the x 
axis, and @ is the phase difference of the E, , E, components. 
Its form is very complex. Below we shall examine the rela- 
tively simple case of linearly polarized incident radiation 
(@ = 0), which is of independent physical interest. The radi- 
ation in the cavity may also be assumed linearly polarized. In 
the presence of self-induced anisotropy, this radiation can 

only take place if the nonlinearity of the refraction in the 
crystal is negligible. This in turn takes place in the presence 
of strictly resonant optical nonlinearity (for example, if the 
light frequency w or its overtone lies at the center of the 
extrinsic absorption band), when 

With (5) taken into account T, may be represented in the 
form 

T,=t, exp ( i (pd) ,  t,=t, ( E ,  I)), 

I)-$ ( 0 )  = m t g  [ E ,  ( 0 )  /E,(O) I ,  

where the quantities t, (E,$), ty (E,$) are real and determine 
the transmission amplitude, and the phase pd depends only 
on the crystal thickness d [and not on E (O)]. 

If the cavity is tuned to resonance (pR + pd = 2 ~ n )  and 
the incident radiation is linearly polarized, (4) reduces to the 
condition 

D-D ( E ,  $) =0, 

x [ R  sin I$- ( I - ~ t , )  cos I) I cos 

cos ++ ( l -Rt , ) s in  $ 

tz,g=t=,v(E, I ) )  ex=Ex (4-Rtx) 

These conditions describe the relationship between the 
bifurcation value of the field intensity on the front face of the 
crystal E r E  (0) and the inclination $of its polarization vec- 
tor, as well as the relationship between the bifurcation values 
of the corresponding parameters of the external field, E and 
P. When the bifurcation curve crosses E ,  (P) the number of 
stationary solutions (1) with linear polarization changes by a 
factor of two. Equation (7) also determines the region of the 
parameters of the system (crystal thickness, etc.) in which 
bistability for linearly polarized radiation is possible. 

2. SELF-INDUCED ROTATION OF THE PLANE OF 
POLARIZATION AND SYMMETRY PROPERTIES OF 
BIFURCATION CURVES 

The bistability mechanism is determined by the form of 
the transmittances t, , ty . These coefficients as functions of 
the angle $ between the field intensity vector E=E(O) and 
thex axis satisfy certain relationships which follow from the 
symmetry properties of a cubic crystal: 

[in Eq. (a), use was made of the fact that the x,y axes were 
chosen along symmetry directions in the (001) plane]. 

The simplest angular dependence of tx,y, which satisfies 
the conditions (8) and takes into account and actually deter- 
mines the self-induced dichroism, is shown in Fig. 1 (in parti- 
cular, Fig. 1 describes the microscopic models analyzed in 
Sec. 4). Let us see how the polarization plane of the radiation 
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FIG. 1. Characteristic dependence of transmittances t,, t, on the slope 
angle of the radiation polarization vector on the front face of the crystal 
relative to the axis of symmetry (see text). 

rotates in the crystal as a result of SID. We will initially 
assume that tx (E,$) in Fig. 1 is described by a solid curve, 
and t, (E,$), by a dashed curve, i.e., tx > t, when 0 < $ < 77/4. 
It is then obvious from Eqs. (2) and (6) that 

i.e., $(d ) < $(O) if 0 < $=$(0) < 7~/4. Similarly, if ?r/ 

2 > $(O) > r/4, then $(d ) > $(O). Hence the polarization vec- 
tor in this case rotates toward the closer of the axes x, y, and 
the directions forming an angle 77/4 with the axes are unsta- 
ble for the polarization plane. 

On the other hand, if the solid curve in Fig. 1 describes 
t, (E,$), and the dashed curve describes tx (E,$), then the un- 
stable directions for polarization are the axes x, y, and the 
limiting stable directions are the axes rotated through ~ / 4 .  
Let us note that when the coordinate system is rotated 
through 77/4, this case actually reduces to the preceding one. 

Thus if a given symmetry axis (x axis) corresponds to 
the unstable direction, then t, > tx when ( P (--to. In addi- 
tion, t, may exceed unity: a small field increment perpendic- 
ular to E(0) [and when $ = 0 the vector E=E(O) is obviously 
directed along thex axis] may be amplified in the crystal. At 
the same time, in the absence of additional pumping 
tx (E,O) < 1. If however the x axis corresponds to the limiting 
direction of the polarization plane, then 1 > tx > t,, on the 
axis. 

It is evident from Eqs. (7) and (8) that the function D (E, 
$) satisfies the equations 

D ( E ,  $) =D ( E ,  mI2-Q) . 

Therefore the bifurcation curves EB ($),E, (P) describing the 
solution of Eq. (7) are symmetric with respect to the values of 
$ and P which are multiples of 77/4 (i.e., relative to the axes 
of symmetry): 

3. FORM OF BIFURCATION CURVES NEAR THE SYMMETRY- 
CAUSED EXTREMA AND MECHANISMS OF OPTICAL 
BlSTABlLlTY 

Since the field at the output of the crystal is continuous- 
ly dependent on the field at the entrance, the transmittances 
tx , t, are continuous and differentiable with respect to E, $. 

FIG. 2. Angular dependence of the bifurcation value of the amplitude of 
the field E incident on thecavity at small angles Y between the polarization 
plane and the axis of symmetry of the crystal: (a) extremum corresponding 
to absorptive optical bistability; (b) extremum corresponding to dichroic 
bistability; (c) self-intersection; (d) tendency to infinity. 

Therefore, the bifurcation curves E, ($) are smooth. By vitue 
of the symmetry properties of Eqs. (9), the points $ = n ~ / 4  
are shown on the EB ($) curves (symmetric directions). In the 
most general case, when dD /dE # 0 for E = E, , $ = n77/4, 
the function EB ($) at these points has an extremum and is 
described by a parabola in the vicinity of the latter. 

On the bifurcation curve for the external field&, (P) the 
points P = n77/4 are also shown, and if E, ($) has an extre- 
mum on a given axis of symmetry, the extremum E, (P ) cor- 
responds to this extremum. It is significant, however, that in 
contrast to EB ($), the function E, (P)  near the extremum can 
be described not only by a parabola [Fig. 2(a)], but also by a 
nonanalytic curve, shown in Fig. 2(b).' The type of behavior 
of E, (P)  near the extremum (for the sake of argument, near 
P = $ = 0) is determined by the mechanism of nonlinear 
absorption. Formally, it depends on which of the two factors 
in the first term in D (E, $) in Eq. (7) becomes zero when 
$ = 0 [when $ = 0 the second term in D (E,$) becomes iden- 
tically equal to zero]. 

We will first analyze the case 1-Rt, (E,, O)#O. It is 
known to occur if the x axis is a limiting stable direction of 
polarization (then t, < yx < 1 and Rt, < 1 when [ $ I  4 1). The 
extremal values of EB (0) and E, (0) are determined in this 
case according to (7) from the equations 

Near P = 0 the bifurcation curve E, (P) is described by a 
parabola: 

A different type of extremum arises if when $ = 0 

In this case, on the E, (P) curve the point P = 0 is a turning 
point1' (spinodal point), and the dependence of E, on P is 
nonanalytic: 
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The form of curves (lob) and (1 lb) is shown in Fig. 2 (a) and 
(b). For specificity, the parameters A, and A, were chosen 
positive. 

The two indicated types of extrema of E, (Y ) correspond 
to two types of optical bistability in the vicinity of symmetric 
directions. The condition (10a) determines the threshold of 
so-called1' "absorptive" bistability. The latter arises if the 
differential transmission of the crystal at, /aE is positive and 
sufficiently high, so that the increase of the field at the en- 
trance to the crystal E (0) leads to an increase in transmission 
providing for an even greater increase of E (0) in the presence 
of feedback (longitudinal instability for the symmetric direc- 
tion of polarization). In the vicinity of the extremum point 
(E,, 0) when 

there are two stationary states of the radiation in the cavity. 
On the bifurcation curve SE = ( Y )  they merge, and when 
the sign of b [ S E ~ E ,  (P)] changes, both states disappear. 

Absorptive bistability is known for isotropic media. It 
can be observed in crystals thanks to the self-induced aniso- 
tropy of absorption, not only by changing the intensity of the 
external field E,  but also by rotating its polarization plane (by 
changing Y while E is fixed). Depending on the sign of A,b, 
the angular dependence of the field change at the cavity out- 
put SE,,, (Y ) in the vicinty of 1 Y 1 < 1, ~ S E  1 <&, is described 
either by an ellipse (when A,b<O) or by two hyperbolas 
(when Alb > 0). 

The condition (1 la) defines a new type of threshold-of 
dichroic bistabilty. For DOB, it is necessary that the condi- 
tion ty (E,O) > 1 be satisfied, i.e., that for specified symmetric 
directions (x axis) of the polarization plane, the transverse 
fluctuations of field intensity E be amplified by the crystal 
and by the cavity as a whole (transverse instability). Obvious- 
ly, DOB can only arise if the symmetry axis considered is an 
unstable direction of polarization [the instability condition 
ty (E,O) > t, (E,O) is known to be satisfied when ty (E,O) > 11. 

The dependence of the field at the cavity output on an- 
gle Y for )SEI<E~, I Y I (1 in the case of DOB is shown in Fig. 
3. At the turning point (E = E ~ ,  Y = 0), three stationary 
states of the system merge." For a small deviation from this 
point, the amplitude and polarization of the emerging radi- 
ation can have either three or one value when 

(Y ) - SE] is negative and positive, respectively. Let us 
note that an S shape arises in DOB on the angle vs angle 
curve, whereas in the case of absorptive bistability, the de- 
pendence of the field at the output on the field at the input is 
S-shaped. " 

Since it is precisely near the extremum of&, ( Y )  that the 

FIG. 3. Angular dependence of amplitude increase 6.5,,, of the field at the 
cavity output and of the angle Yo,, between its polarization plane and the 
symmetry axis of the crystal in thevicinity of the point of closest approach 
determined by symmetry: SE,,, = a,a2-'S~,,, , Yo,, = - a,ay42Y,,,,, . 
Solid curves: A2[& - E~ (O)] > 0, dashed curves - A2[& - E~ (O)] < 0 (the 
signs of SE,,, at the minima of the solid and dashed curves are opposite). 

cause of the instability is manifested in pure form, their anal- 
ysis makes it possible to classify the bistability mechanisms. 
It follows from the results cited that in crystals with nonlin- 
ear absorption, there are two main types of bistability-ab- 
sorptive and dichroic. 

4. BIFURCATION CURVES FOR SPECIFIC MECHANISMS OF 
NONLINEAR ABSORPTION. DICHROIC BlSTABlLlTY IN THE 
CASE OF CUBIC NONLINEARITY 

In order to establish on the basis of the results of the 
preceding sections whether a specific mechanism of resonant 
nonlinear absorption can lead to bistability and what type of 
bistability takes place, it is necessary to calculate explicitly 
the parameters of light transmission by the crystal, t, and ty . 
The calculation oft, ,  amounts to solving Maxwell's equa- 
tions. For slowly changing field envelopes Ex,y (z), these 
equations in the steady state are 

dE, (z)/dz=iEP,(z), E=2no/cn, ?t=x, y, (12) 

where 

The term P L1(z) has been isolated in Eq. (1 3), for the polariza- 
tion of a crystal. It describes the contribution of resonant 
processes causing nonlinear absorption of light. The param- 
eters a and n in Eqs. (12) and (13) respectively describe the 
linear absorption and refraction of light related to other 
types of processes. 

Let us first consider one of the simplest mechanisms of 
optical nonlinearity-absorption saturation; it will be as- 
sumed that the resonant absorption of the x component of 
the field is independent of they component (and vice versa), 
and can be described in terms of the two-level model. Reso- 
nance polarization is then given by l2  

An example of the physical system described by Eq. (14) is 
provided by two-level impurity centers having several equi- 
valent positions (orientations) in the unit cell of a cubic crys- 
tal. If the impurities (for example, linear molecules) are ori- 
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ented in directions of type (100) and the dipole moment of 
the impurity transition resonantly excited by the radiation is 
parallel to the axis of symmetry, the x, y axes in Eq. (14) are 
obviously directed along the [loo], [OlO] axes; if however the 
impurities are oriented in the ( 11 1 ) directions, the x ,  y axes 
in Eq. (14) are directed along [110], [ l i ~ ]  (for more detail, see 
Ref. 2). For the impurity mechanism of nonlinearity, the 
parameter C in Eq. (14) is proportional to the concentration 
of impurities, and g is determined by the times of longitudi- 
nal and transverse relaxations and can be very large. At ex- 
act resonance ImC = Irng = 0. 

From Eqs. ( 12)-( 14), taking Eqs. (2) and (6) into account, 
we find the transcendental equation for the transmission pa- 
rameters t, : 

t ,= f (Ex(O)) ,  

It is evident from Eq. (15) that optical nonlinearity (14) leads 
to self-induced dichroism (tx # ty ). The dependence of tx , ty 
on the inclination of the polarization plane $ = $(0), accord- 
ing to Eq. (15), is qualitatively described by Fig. 1 (tx being 
the solid curve, and ty, the dashed curve). The directions 
$ = nr/2 (axes x ,  y) are the limiting stable directions of the 
polarization plane, and $ = (2n + 1)r/4 are the unstable di- 
rections. * 

It can readily be ascertained that there are four solu- 
tions for the equation of the bifurcation curve (7) with Eq. 
(15) taken into account, as follows: 

E:'") ($) =E:"~) I COS 9 I -*, E:'"' (+) = E  y'zLl sin $ 1  -I, (16) 

where E r,2i (with E > E r)) are the solutions of the equation 

df (Ea) 
I-Rf (E,) -RE,---- -0. - 

aE, 

Expressions (16) and (17) have a simple physical meaning; 
indeed, in the model (14), different components of the field 
do not affect each other. Therefore, bistability arises inde- 
pendently for each of them and has an absorptive nature [an 
analysis using the model (14) in the presence of a single field 
component is given, for example, in Ref. 111. 

Consideration of self-induced dichroism substantially 
enriches the picture of optical bistability. When 
&F1)(Y) < E  < E,(Y ), the radiation in the cavity has six sta- 
tionary states. The extrema and singularities of the bifurca- 
tion curves are described by curves 2, (a), (c), (d). At the point 
Y = 0, the curves E~.~)(!P) have a minimum and are de- 
scribed near it by the parabola Scgp2)(Y) = +E$'~](O)Y~ 
(which corresponds to absorptive bistability; see Sec. 3). 
When Y-+ r/2, the functions E$.~)(!P)-+c~. The curves 
&$s4'(Y) are obtained from the curves E ~ . ~ ) ( ! P )  by reflection 
relative to the axis $ = r/4, and therefore the curves $(Y) 
and&kt2)(!P) (i = 1,2) intersect at the points !P = (2n + l ) r /  
4. Let us note that in the region of bistability, the crystal 
amplifies the counterradiation with the same wavelength, 
and this may complicate the picture. 

Another well-known mechanism of resonant nonlinear 

absorption is two-photon absorption (see for example Ref. 
13). It is described by terms cubic in the field E(z)  in the 
resonance polarization of the crystal Pf" 

P , " ' = ~ ( ~ , E , I  E l ~ y z E X X E z + y 3 E X I  E X I z ) ,  E,=E,(z) .  (18) 

In exact resonance, the parameters ylV2,, are real. From the 
condition of absence of light amplification by the crystal 
(a (E I2/dz < 0), allowing for (12), (13) and (1 8) it follows that 

yi+'lzys30, yi+yz+'/zys>O, yt+~z+y3>0. (19) 

We will hereinafter assume that y,<O (the phase difference 
of the field components Ex,  Ey does not increase with the 
crystal thickness9). 

Since according to (1 2), (1 3), (1 8) and (19) the radiation 
absorption increases with the intensity, it is obvious that ab- 
sorptive bistability in the model (18) is impossible. At the 
same time, dichroic bistability may arise under certain con- 
ditions. Self-induced dichroism is caused by the last term in 
Eq. (18) (for isotropic media y, = 0). When y, < 0, the radi- 
ation polarization plane is rotated in the crystal toward the 
nearer of the axes x, y, and when y, > 0, to the closer of the 
axes rotated through r / 4  relative to axes x , ~ . ~  Generally, as 
is evident from Eqs. (12), (13), and (18), the case y, <O is 
reduced to the case y,>O by rotating the coordinates 
through r / 4  and simultaneously replacing by 3/1,2,3, 
where 

.;,=yt+ys, rz=yz+*12y3, y 3 = - y 3 .  (20) 

The angular dependence of transmittances tx, is described 
by Fig. 1 (when y, > 0, the solid curve is ty and the dashed 
curve is tx , and when y, < 0, vice versa). 

It follows from the results of Sec. 3 that the criterion of 
appearance of DOB is determined by the transmission of the 
crystal near the unstable direction of the polarization plane 
[see (1 la)], i.e., near $ = nr/2 in the case y, > 0 and near 
$ = r(2n + 1)/4 for y, < 0. The transmittances tx,y (E,$) 
near the symmetric directions can be calculated explicitly on 
the basis ofEqs. (12), (13) and (18). Asa result, using Eq. (1 la) 
in the case y, > 0, we obtain for the threshold field E, = E, (0) 
the expression 

~ n ( 0 )  = E C  [ I -  (Rto) '-'I [ ( R t o )  z7-1]'ia ( Y ~ > O )  7 

Since the low-field transmittance to as well as the feedback 
factor R are smaller than unity, it follows from (21a), allow- 
ing for (lg), that DOB is possible [&, (0) being a real number] 
only when y < 0, i.e., 

yl+yz<O (y3>0).  (224 

When y3 < 0, the expression for the threshold field E, (r/4) is 
also given by Eq. (21a) if in the latter one replaces E, and y by 
E,  and y, where in accordance with Eq. (20) 

When y, < 0, the existence criterion for DOB becomes 
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yi+ ~ Z + ~ / Z ~ ~ < O  ('f3<0). (22b) 

It follows from (2 la) and (2 1b) that the threshold field E, 

decreases with increasing feedback factor R, and changes 
nonmonotonically (has a minimum) with crystal thickness 
d = a-' Ilnt,I. This is easy to understand, since a thin crystal 
causes a comparatively slight rotation of the plane of radi- 
ation polarization, and in a very thick crystal almost all of 
the radiation is absorbed, and the effectiveness of the feed- 
back is slight. 

Under DOB conditions in the optical nonlinearity mod- 
el (18), the bifurcation curve E,(Y) near the unstable direc- 
tions of the polarization plane and the angular dependence 
of the field at the cavity output have the shape shown in Figs. 
2(b) and 3. A complete analysis of the bifurcation curves for 
arbitrary y, ,,,, can be performed numerically. 

The relationship between the parameters y,, y,, y3 in 
two-photon resonance absorption is determined by the man- 
ner of interpreting the transformation of the states between 
which the transition takes place (see for example Ref. 13). As 
an example, we shall consider the case in which 

yz=o, y3=-y,, y,>O. (23) 

Expression (23) describes a whole series of transitions in cu- 
bic crystals [in particular, Eqs. (18) and (23) can readily be 
obtained in a standard mannerI4 for a weakly damped oscil- 
lator with frequency w, = 20, which is transformed accord- 
ing to a vectorial representation of group T, , including cubic 
anharmonicity of type Vxyz]. Obviously, relation (22b) fol- 
lows from (23), i.e., DOB is possible in the vicinity of ( 1  10) 
type directions in this case. 

It is a simple matter in the case of (23) to solve Eqs. (12), 
(13), and (18) analytically and obtain the parameters t, (E,$), 
t, (E,$) in explicit form (they are expressed in terms of ele- 
mentary functions, with the field E entering into the combi- 
nations E /Z, then to study the bifurcation curve E, (Y ). The 
form of&, (P)/Z, is determined by the unique parameter Rt, 
and is shown for different Rt, in Fig. 4. As is evident from the 
latter, DOB exists in a finite range of angles A Y: 

6 ,  ( Y )  -+w for '4 -fn/4*AY, 
(24) 

FIG. 4. Angular dependence of reduced bifurcation field i, = Z, ( I ) / E  
for two-photon absorption in the model (la),  (23). Curves 1-3 correspond 
to Rt, = 0.75, 0.5, 0.25. 

According to Eq. (24), the DOB region expands quickly with 
increasing Rt, (cf. Fig. 4). 

5. STABILITY OF STATIONARY STATES 

The dynamics of a cavity containing a nonlinear crystal 
is characterized by two times: the time T, taken by the radi- 
ation to complete a circuit of the cavity, and the polarization 
relaxation time T, of the medium (with r,, T, The 
value of r, ranges from lo-' to 10-'2s (for optically orient- 
ed tunnel centers, rr can be as long as - 1 s or longer), and 
rR - 10-8-10-10 s. One can therefore distinguish two limit- 
ing mechanisms of instability of stationary states in a cavity 
which correspond to 7, (7, and T, >r, . I 1  

The instability condition in the case where the response 
of the crystal is instantaneous, T, (T, , can easily be obtained 
if the delay (finiteness of the velocity of light) is considered in 
Eqs. (1) and (2). The fluctuational contribution to the field at 
the crystal output S E(d,t )obviously consists of the sum ofthe 
fluctuation field S E(d,t-T, ), reflected by the mirrors and 
transformed by the crystal, and fluctuation field f ( t ,~ ,  ), 
present at other points of the cavity (in the range from t-rR 
to t ) and arriving at point d at time t: 

(25) 
[E(O) and E(d ) being the stationary values of the field]. It is 
clear from Eqs. (25) and (2) that a stationary state with given 
E (0) is stable if the principal values y,,, of tensor A 

A,,,=R exp ( icpR)  d (E,(O) T,)laE,, (01, (26) 
satisfy the inequality 

lai, ~ < i .  (27) 

Let us note that the values of E (0) for which A = 1 are bifur- 
cation values: as is evident from Eq. (4), D = 0 for such E (0). 

In the case of linearly polarized radjation and purely 
dissipative nonlinearity ( 5 ) ,  the potential A is real. Then the 
inequality (27) will have to break down, and the state of the 
radiation in the cavity will turn out to be unstable if 

[D,(E,$) was defined in Eq. (7)]. 
If the external field E passes through the bifurcation 

value EB [intersects the curve EB (Y)], so that two new sta- 
tionary states appear, then as is evident from Eq. (7), the 
function D (E,$) for them has a different sign. It therefore 
follows from Eq. (28) that one of them in the case of a "lag- 
free" crystal is unstable. 

The analysis of the case of a slowly relaxing crystal, 
T, > r R ,  is substantially more complex. It essentially 
amounts to the analysis of the stability of the field distribu- 
tion in the crystal; this field is inhomogeneous, and as the 
thickness changes, there is a change not only in the ampli- 
tude but also in the direction of the plane of polarization. 
Polarization fluctuations P of the crystal are the source of 
fluctuations of the field, and it is the polarization relaxation 
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that determines the kinetics of the system. 
A very general approach to the analysis is of stability 

that makes it possible to examine a large number of systems 
will be illustrated with a simple but important model in 
which polarization fluctuations are described by the local 
equation 

(a/at)GP ( z ,  t )  =-@SP(z ,  t ) + ~ 6 E ( z ,  t ) ,  
A h 

(29) 

where the tensors M and N are dependent on the stationary 
~ a l u e  of the field E(z). The real parts of the principal values of 
M are assumed to be positive for all z, so that locally the 
fluctuations do not increase, and instability can only be due 
to feedback. Slow fluctuations of the field and polarization 
are related by the Maxwell equation [cf. Eq. (12)] 

(a /&)  SE ( z ,  t )  =iE6P ( z ,  1 )  (30) 

and satisfy the boundary condition [cf. Eqs. (I), (6), (12)] 

6E(O, t ) = R S E ( d ,  t ) ,  

R=R e x p [ i ( ~ ~ + i @ ~ ] ,  i i ) d = n ~ d / ~ .  
(31) 

In Eqs. (30) and (3 I), we neglected the delay in the cavity and 
crystal, this being valid for rr >rR , (ac)-'. 

Substituting (30) into (29) and performing a Laplace 
transformation, we obtain for the quantities 

6&(z, s )  = jdte-%E.(z, t )  (32) 
0 

an inhomogeneous system of two first-order equations. Its 
solution may be represented in the form 

SE ( z ,  s )  =w ( z )  + civ. (2,  s )  , 

where w is the inhomogeneous part, and the vi are the solu- 
tions of the homogeneous system 

av 
( s f  +&)- -iEi?v=O 

az 

( j  being a unit tensor). It is convenient to choose these solu- 
tions so that 

u , ( O , ~ ) = 6 ~ ~  ( i = l , 2 ;  x=x, y = l , 2 ) .  (35) 

The coefficients ci in (33) are detemined from the 
boundary condition (3 1). The system of equations for ci has a 
unique solution if 

p ( s )  = 1 6ix-Ruix ( d ,  s )  I +O. (36) 
If (36) is satisfied for all Re s>O, then, as is evident from 

Eq. (32), the field fluctuations attenuate with time, i.e., the 
state of the system is stable. It is easy from Eq. (36) to obtain 
the sufficient condition of insabilityin the purely dissipative 
resonance case (R = R, ImM = ImN = 0), when p(s) is real 
with Im s = 0. According to (34) and (36), in this case 
U(Z,S) = constant when S-+W and,u(s)-+(l - R )2 > 0. At the 
same time, as is evident from Eqs. (34), (29) and (30), when 
s = 0 the relationship of v(d,s) to ~(0 ,s )  is determined by the 
response of the crystal to the increase in field E-E (0): 

ui,(d, o)= 5'' Ui,, ( 0 ,  O )  a ( ~ , t , ) i a ~ , # .  
X. 

(37) 

It follows from Eqs. (36) and (37) that p(0) = D (E,$) when 

D (E,$) is defined in Eq. (7). IfD (E,$) < 0, the function&) for 
a certains becomes zero, i.e., D (E,$) < 0 is a sufficient condi- 
tion of instability. 

Thus as when rR >rr in the case of r, srR one of the two 
states with linear polarization which are formed at the bifur- 
cation point is unstable. It can be shown that this is also the 
case for models more general than Eqs. (29) and (30) [for 
example, when the terms -d8E (z,t )/at are considered in 
Eqs. (29) and (30), which is essential, for example, for systems 
with long longitudinal relaxation times]. Since the function 
D (E,$) changes sign only at the bifurcation points, a solution 
that is unstable near a bifurcation point is unstable in the 
entire region of its existence [as well as for systems described 
by ordinary differential equations and undergoing bifurca- 
tion of codimension 1 (Ref. lo)]. Let us note, however, that 
the condition D (E,$) > 0, which is satisfied for the second of 
the solutions generated at a bifurcation point, does not guar- 
antee its stability. The solution of this problem requires a 
complete calculation of the determinant p(s). 

Such a calculation is trivial in the absence of anisotropy 
in the "one-dimensional" case SE(z,t)I1E(z)l(E(O), 
ImE,E,* = 0: 

If the parameters N, M, R, ig are real and N is a function of 
constant sign, it follows from Eqs. (36) and (38) that in the 
presence of absorption bistability, one of the solutions gener- 
ated at the bifurcation point is unstable, and the other is 
stable relative to slow fluctuations of the polarization of the 
medium. 

6. CONCLUSION 

It follows from the results of this work that the self- 
induced anisotropy of nonlinear absorption of light by cubic 
(and tetragonal) crystals can lead to a new type of bistability, 
i.e., dichroic optical bistability. The latter arises when for 
specific symmetric orientations of the polarization plane, the 
transverse fluctuations of a strong field are amplified in the 
crystal. Such amplification is characteristic of a series of res- 
onance mechanisms of nonlinearity (see Sec. 4, as well as 
Ref. 2). Self-induced resonance dichroism is particularly 
pronounced for crystals with reorienting centers having sev- 
eral equivalent positions in the unit cell. Experimentally self- 
induced rotation of the polarization plane was observed in 
Ref. 3 in KC1 crystals containing FA (Li) centers, even in 
nonlaser fields. It can be shown that in this case DOB has 
practically no field intensity threshold at low temperatures. 

As a result of self-induced anisotropy in the presence of 
optical bistability, multivaluedness is manifested in both the 
intensity and polarization of the radiation at the cavity out- 
put. It can be observed by changing both the intensity of the 
incident radiation and the orientation of the polarization 
plane relative to the crystal axes. 

As a rule, because of self-induced anisotropy, it is not 
possible in complex real systems to describe analytically the 
propagation of radiation with arbitrary polarization. It is 
essential therefore that in order to establish the type of bista- 
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bility and threshold value of the radiation intensity, if suf- 
fices in the majority of cases to limit oneself to symmetric 
directions and to study the form of the bifurcation curves 
near the symmetry-determined extrema (cf. the examples in 
Sec. 4). Such analysis also makes it possible to establish the 
instability of certain stationary states. 

The authors are grateful to S. A. Akhmanov and the 
participants of his seminar for discussing dichroic optical 
bistability, and to M. A. Krivoglaz for discussing the work as 
a whole. 

"Generally speaking, the branches of bifurcation curves can intersect (or 
have singular points of higher order), and for certain $ the function 
E, ($) [and correspondingly E, ( P ) ]  may tend to infinity. Both types of 
singularities can be attributed to symmetry properties. They are then 
located on the axes of symmetry and are not shifted along $ (or along Y )  
when there is a finite change in the parameters of the system [see Fig. 2 
(c), (d) and the example in the next section]. Let us note that the self- 
intersection of s, (Y) on the axis [Fig. 2(c)] is not necessarily related to 
the self-intersection of E,($). This occurs, for example, if one of the 
functions 1 - Rt,(EB$) ( x  = xg) becomes zero when $ # n ~ / 4 .  
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