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Activated escape of periodically driven systems
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We discuss activated escape from a metastable state of a system driven by a time-periodic force. We
show that the escape probabilities can be changed very strongly even by a comparatively weak
force. In a broad parameter range, the activation energy of escape depends linearly on the force
amplitude. This dependence is described by the logarithmic susceptibility, which is analyzed
theoretically and through analog and digital simulations. A closed-form explicit expression for the
escape rate of an overdamped Brownian particle is presented and shown to be in quantitative
agreement with the simulations. We also describe experiments on a Brownian particle optically
trapped in a double-well potential. A suitable periodic modulation of the optical intensity breaks the
spatio-temporal symmetry of an otherwise spatially symmetric system. This has allowed us to
localize a particle in one of the symmetric wells. ZD01 American Institute of Physics.
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Fluctuation-induced escape from a metastable state is at
the root of many physical phenomena, from diffusion in
crystals to protein folding, and is closely related to nucle-
ation in phase transitions and activated chemical reac-
tions. In all these phenomena it would be advantageous to
control the escape probability by applying an external
force. The problem of escape of driven systems has there-
fore attracted much attention in diverse contexts, a recent
application being stochastic resonancé.We show that
this problem can be solved in a very general form for a
broad range of driving field frequencies, which goes far
beyond the adiabatic limit. The analytic theory is com-
pared with the results of analog and digital simulations.
We then discuss experiments on controlling escape in
modulated optical traps. An important application of the
results is the possibility of selective control of particle
diffusion in a periodic potential, including both the rate
and direction of the diffusion.

I. INTRODUCTION

nonlinear response is usually associated with a sharply reso-
nant excitation of the system. However, the effect of external
driving may also be extremely large for an important and
wide class of phenomena related to large fluctuations, includ-
ing escape from a metastable state and nucleation in phase
transitions.

The mechanism responsible is readily understood for
adiabatically slow driving, where the driving frequency is
small compared to the relaxation rate in the absence of fluc-
tuations and the system remains in quasiequilibrium. For sys-
tems in thermal equilibrium, the fluctuation probabilities are
given by the activation lawVxexp(—R/kgT). For large in-
frequent fluctuations, which are discussed in the present pa-
per, the probabilitiedV are much less than all frequencies
and relaxation rates. We will be specifically interested in ac-
tivated escape, in which castis the activation energy of
escape. The driving force modulates the valueRofjuasi-
statically and, even where the modulation amplityidR| is
small compared td, it may still substantially exceeklsT,
in which caseW will be changed very strongly. We empha-
size that the change of the activation energliriear in the

The question of how a system responds to an externdleld amplitude, for SR|<R.
field is one of the fundamental problems of physics. Astrong  For higher field frequencies, where the driving becomes

nonadiabatic, the expected major effect of the field would be

dAuthor to whom correspondence should be addressed. Electronic maif0 ‘heat up” the system by Changing its effective tempera-
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ture. Indeed, in the weak-field limit, the escape réfeis
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known, theoreticallfand experimentall§,to be incremented moves along the corresponding optimal path, giving rise to a

by a term proportional to the fielatensity I rather than the |inear-in-the-field correction to the activation energy of es-

amplitude A<1Y2.2 However, one may ask what happens if cape.

the appropriately weighted field amplitude is not small com- A natural theoretical approach to the escape problem is

pared to the fluctuation intensityemperaturg and whether  based on the path-integral technique. We will give a formu-

an exponentially strong change of the escape rate will occuration which is based on this technique and allows one to find
Theoretical analysis of nonadiabatically driven systemshe logarithm of the escape rate forperiodically driven

is complicated, since one may no longer assume that theystemWe consider a general case where fluctuations in the

system is in thermal equilibrium. Whereas for equilibrium system are caused by a stationary colored Gaussian noise

systems the exponent in the escape rate can be found, at leagt) with a power spectrumib(w) of arbitrary shapé®?°

in principle, as the height of the free-energy barrier, for non-The Langevin equation of motion is of the form
equilibrium systems there are no universal relations from

which it can be obtainefithe situation with the prefactor is q=K(a;t)+f(t), K(a;t+7e)=K(q;1), (€
even more complicatetMuch effort has been put into solv- where ¢ is the period of the driving field. The noise is fully

ing the nonadiabatic response problem, in diverse contextgyaracterized by its correlation functig#(t) = (f(t)f(0)) or

and numerical results have been obtained for specific mode@y ®(w), the Fourier transform of(t). The characteristic
(see, e.g., Refs. 6 ahd-7 o noise intensity iD = max®(w)/2.

~ Recent theoretical resufts show that, counter- If the noise is weak then, over the noise correlation time
intuitively, for high-frequency driving the change & is  {  and the characteristic relaxation time in the absence of

proportional to the field amplitude, i.e., Wiis linear inA,  noiset . the system will approach the metastable periodic
over a broad range @&&. The proportionality coefficient was stateq,(t) and will then perform small fluctuations about

called the logarithmic susceptibilitft.S). Just like the con- i 21 14 escape from the basin of attraction of this state, the

ventional linear susceptibility, the LS relates the response 0fystem should be subjected to a sufficiently large pulse of the
the system in the presence of external driving to its dynamlc%rcef(t)_ Various realizations of(t) (the pulse shapgsan

in thermal equilibrium in the absence of the driving field. We regit in escape. Their probability densities are given by the
emphasize that the amplitude is a nonanalytic characteristig,,ctionaf?

of the field, as it is obtained by taking the square root of the
period-averaged squared field. We are therefore talking abo 1 , n , ,
a nonanalytic field dependence of the escape rate, and f(t)]=ex;{—ﬁj J dtdt’ 1) F=tHi(t") |, 2
need to determine a mechanism that would lead to such a -
dependence. where F{(t) is a reciprocal of the noise correlation function

In Sec. Il we provide a general formulation which allows ¢(t), fdt; F(t—t;)¢(t;—t’)=DS(t—t’). For white noise,
one to find, for a periodically driven system, the activation F(t) = ¢(t)/4D = 5(t)/2.
energy of escape induced by Gaussian noise with an arbitrary We assume that the noise intensity contains a small
power spectrum. In Sec. Il we outline the theory and anaconstant, which is the small parameter of the theory. This
lyze the frequency dispersion of the LS. We then discuss thparameter guarantees that the functici@lis exponentially
results on the prefactor in the escape rate of a drivemall for all pulsesf(t) which can give rise to escape. In
system? and analyze the full time-dependent as well as theaddition, its values differ exponentially for different appro-
time-averaged escape rate, including both the exponent argtiate f(t). Thus there exists a realizatiof(t) = f ,(t)
prefactor. In Sec. IV we present the results of analog angvhich is exponentially more probable than the others. This
digital simulations of driven systems. These results provide @ptimal realization provides the maximum7subject to the
full qualitative and quantitative confirmation of the theory, constraint that the system(1) actually escapes. The path
and also reveal the underlying physics explicitly. In Sec. VQopt(t) along which the system moves when driven by the
we describe the experimental observations of the activategptimal forcef ,(t) is the optimal fluctuational patloy(t).
escape of particles in modulated optical traps. Section VI From (2), the pathsgqp, fop provide the minimum to
contains conclusions and a discussion of unsolved problemge functional
in activated escape, including the problem of statistical re- 1
construction of the dynamical model of a fluctuating system. ” , 5 / ,

y 9sy R[q(t),f(t)]—zf f_wdtdt f()Ft—t")f(t')

Il. GENERAL FORMULATION OF THE ESCAPE - : .
+ dtA(t K(g;t)—f(t)]. 3
PROBLEM j " (OIg=K(g;t) —f(1)] 3

The idea underlying the theory of the #%is that, al- They can be obtained from the corresponding variational
though the motion of the fluctuating system is random, in aequations of motion. The Lagrange multiplie(t) relates
large rare fluctuation from a metastable state to a remoté,,(t) andq,,(t) to each other.
state, or in a fluctuation resulting in escape, the system is The boundary conditions for the escape problem follow
most likely to move along a particular trajectory known asfrom the fact that the system starts from the periodic attractor
the optimal path(see Refs. 11-19 and references therein q,(t) =q,(t+ 7z) in the distant pastion the time scale
The effect of the driving field accumulates as the systeni.,,, t,), with f=0 asymptotically, and that, as the force
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decays after having driven the system away from the attracany timet., in the absence of periodic driviigne can think
tor, the system should not be brought back to the initiallyof t. as the “center” of the instanton whef&(©)(t)| reaches
occupied basin of attraction. The latter condition is onlyits maximuni.

satisfied® if, for t—o, the system is approaching the un- The fieldF(t) lifts the time degeneracy of escape paths.
stable periodic statg,(t)=q,(t+ 7=) on the boundary of It synchronizegsptimal escape trajectories, one per period, so
the basin of attraction tqu(t), as to minimize the activation energy of escdpeThe field-

¢ ‘ . induced change oR should be evaluated along such a tra-

(=0, Mt)—0 for t— o, jectory, i.e.,

q(t)—da(t) for t——o, q(t)—agp(t) for t—co. SR=min R(t,),

The time-averaged escape rate has the form fe

W=Cexd —R/D], R=minR. (5) 5R(tc):J7 dt x(t—=to)F(t)
The exponenR can be obtained for an arbitrary noise spec-
trum and an arbitrary periodic driving by solving the varia- => Y(nwp)F,expinogt,), 8
tional problem(3) and (4) numerically. In particular, in the n
case of white noise, whet&(t) = 5(t)/2, the Lagrange mul- () =—1O)t),

tiplier and the forcef(t) can be easily eliminated from the
variational equations, X(t)=f(t)=g—K, and the varia- Wherex(w)=/"_dtx(t)exp(wt), andF is thenth Fourier
tional functional R for the escape problem takes the form cOmponent of the field? A complete derivation for a white-
(cf. Ref. 9 noise driven system is discussed in Ref. 9; for the general
case discussed here it will be given elsewhere. We note that
1= . ) Eq. (8) has a particularly simple form for sinusoidal driving,
Rla®I=7 fﬁxdt[q—K(q,t)]z. ©) whereF (t)=Acoswet. In this caseSR= — | (wg)|A.
The change of the activation energfR, and therefore

I . bl h ; hi o dri the logarithm of the escape rat¥, are linear in the field
are usually nonintegrable. In the case of a white-noise MVER (1), The coefficienty(w) is the logarithmic susceptibility

system this was pointed out by Graham arid "feseneri- (LS).8° The functiony is a characteristic of the system, as
cally there are sevgral solut|_ons which start from the attracto(rﬂe’ for example, the polarizability and other standard linear
for t— —c and arrive to a given stat at a given timés. g seonyibilities. It can be calculated for a given model or
T.he physically meapnjgful observablg squt|c21351pt(t) Pro-  easured experimentally.
vides theabsolute minimunto the functionalR. _ Unlike the standard linear susceptibility which, by cau-
The prefactoc in the escape rate) apd the fe|§t'0” of sality arguments, is given by a Fourier integral over time
Wto a dlrectl.y observab!e quantlty, the time-periodic currenty. (o to, ¥(w) is given by an integral from- = to %. The
from the basin of attraction, are discussed below. analytic properties 6§(w) therefore differ from those of the
standard susceptibility and, in particular, their high-
frequency asymptotics amgualitatively different. The stan-
IIl. THE LOGARITHMIC SUSCEPTIBILITY dard susceptibility for a damped dynamical system decays as
a power law for largew [e.g., as JU"(q,) —iw], for the
We now turn to the case where the driving foleét) is  model(7)]. In contrast, from(8) the LS decreasesxponen-
additive, tially, ¥(w)=Me~ /™o, wherer,=Imt,, andt,% i)s the pole
e 1) _ or the branching point of the functio\®(t). The
Kla)=—U@+F(O, Flt+re)=F(1), @ asymptotic behavior of(w) is different, of course, ifr,
and only weakly perturbs the system dynamics; in particular=0, i.e.,\(9)(t) has a singularity for real time. This happens,
it does not change the number of attractors or saddle statefar example, if the potentidl(q) has singularities encoun-
Even in this case the effect &f(t) on the escape probability tered by the optimal path. Therefore it does not typically
may be exponentially strorfty!° because it is determined by occur in dynamical systems.
the ratio of the field-induced incremenéR of the escape The LS takes a particularly simple form for a white-
activation energy to small noise intensiy. We note that noise driven system. Froi(®), (7),
U(q) can be thought of as a metastable potential in which . _ ,
the system moves in the absence of periodic driving. x()==2t)= —qg%{(t), qg%%:U (qg%b' ©)
To first order inF, the correctionsR can be obtained In this case, the explicit form of, and the prefactoM in
from the variational functiona(3) by evaluating the term Y(w) are determined solely by the singularities Wf(q).
«F(t) along the zeroth-order patf)(t), f)(t), AO(t).  They were obtained in Ref. 24.
However, special care has to be taken of the fact that th
optimal escape path is anstanton® In particular, the func-
tion A(©(t) is other than zero within a time interval of width The notion of the LS makes it possible to find not only
~teoms trer @nd is exponentially small otherwise. At the samethe exponent, but also the prefactor in the escape rate, and
time, the optimal fluctuation leading to escape may occur athus to obtain a complete nonadiabatic solution of the escape

The variational equations of motion for the problé&)

%_ Complete nonadiabatic escape theory
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FIG. 2. Optimal escape pathbold solid line$ of a periodically driven
Brownian particle,7=7— 7°+ A coswt +f(t), for A=0.1, =2 (from
Ref. 9; » and w correspond t@ and wg in the present paper, respectively
The pathggiven by Eqs(4)—(6)] go from the stable to the unstable periodic
0 2 4 6 8 10 states shown by bold dashed lingy thin dashed lines, in the absence of
A/D driving). Thin solid lines show optimal paths in the absence of driving
7O(t—to)=—{1+exd2(t—ty)]} Y2 with differentt, . The driving lifts the
degeneracy with respect tg. The pathsy(¥(t—t.) with the “right” t. [as
given by(8)] are the ones around which the exact paths are oscillating. The
linear nonadiabatic theory gives the decrement of the activation barrier to an
accuracy 12%.

FIG. 1. The logarithm of the average escape faf as a function of the
scaled amplituded/D of a sinusoidal field for the potentidl(q)=qg2/2
—q%3 (Ref. 10. The curvesa to d refer to the dimensionless frequency
wg=0.1,0.4,0.7,1.2. Inset: time dependence of [dgarithm of the instan-
taneous escape rate for the same frequencie\dDéd- 10 (¢ = wet), illus-

trating loss of synchronization of escape events with increasing . . . .
particular with the frequency and amplitude of the driving

force, were analyzed in Refs. 10 and 26. The explicit form of
problem for dynamically weak driving. Since the celebratedthe probability distribution in the vicinity of the boundary
Kramers papef; the calculation of the prefactor has been gy (t) was obtained in these papers, too. One of the conclu-
one of the central problems in escape rate theory. For a p&ions which follows from the results is that the prefactor in
riodically driven system, the escape r&t) is periodic in  the expression for the curreift) calculated right on the
time. It can be introduced as a currgrdway from the meta- boundaryq,(t) has a totally different form from that in the
stable state, which is measureell behindthe boundaryy,  current well behindg,(t), which gives the observable rate
of the attraction basiffor the modek7) with F=0, q, isthe  W(t) (10). This is in contrast with what happens in the case
position of the local maximum of the potentid(q) ]. In the  of nondriven overdamped systeﬁ?s.
range|U’(q)|>F the current scales with as Calculating the current at the periodic boundgg(t)
; _ _ _ / was the goal of the recent papers by Lehmatml"’ As
@ H=Wt~t4(@)], dta/da=—1U"(q). (10 noted before, the functional form of this current differs from
Equation(10) provides a meaningful definition of both that of the coordinate-independent instantaneous escape rate.
instantaneous and time-averaged escape rates. For weak drji-their analysis, Lehmanat al. adopted the ide&? Fig. 2,
ing, the values of the escape rate at different paingiffi-  of synchronization of optimal paths by a periodic field. The
ciently far behindagp(t) differ only by a phase shifty(d),  evaluation of the prefactor in Ref. 27 is based on an addi-
which makes it possible to make a sensible measurement @bnal specific conjecture. Most of the specific results refer to
W(t)=W(t+ 7¢). For a white-noise driven system, an ex- a singular potential U(q) in Eq. (7): it consists of two
plicit expression for the time-dependent escape Wf#)  opposite-sign parabolas matched between their extrema.
and forW was obtainetf by combining the results on the LS However, the nonanalyticity of this potential should give rise
with the integral representation of the time-dependent probto a deviation from the linear amplitude dependence of the
ability density neaqy . In particular, it was shown that activation energy(8) for comparatively small amplitudes of
o o the driving periodic force. The deviation will be strong
W/WO:(ZqT)‘lf d¢ exd — SR(¢/ wg)/D], (11 where the amplitude of forced vibrations becomes compa-
0 rable to the distance from the extremaldfq) to the singu-
whereW, is Kramers’ escape rate in the absence of modulalar point where the parabolas are connected, as was indeed
tion for an overdamped systefthe type of systems which ©Observed in Ref. 27. However, as we showed earlier by solv-
we discuss in this papgrand SR(t.) is given by Eq.(8). ing the variational problents), (6) exactly’ (cf. Fig. 2, for
Since 5R(t,) is a zero-mean periodic functiony al-  9eneric an.alytlc potentials .the activation energy Qf escape is
ways exceedsV,. For smallF/D, the correction to, is well described by the LS in a broad range of field amp_ll-
quadratic inF/D (cf. Ref. 2. In the opposite limit of large tudes. We demonstrate this below by analog and digital

F/D, the escape rate is changed exponentially, witsimulations.

IN[W/Wo]~—D~*min 8R(t), which coincides with Eqs(5)  |v. ANALOG AND DIGITAL SIMULATIONS

and(8). The dependence of the escape rate on time and the

parameters of the system for a simple metastable potential é

illustrated in Fig. 1. To test the relevance of the LS and to investigate its
The time dependence of the escape M#g) and the properties, we have built an analog electronic m&biefl the

change of its form with varying parameters of the system, irsystem(1) for the double-well Duffing potential

Measuring the logarithmic susceptibility
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FIG. 3. The average escape raefor a sinusoidally driven Duffing oscil-

lator (12) as a function of the field amplitudg, W, is the escape rate for £ 4. The dependence of the activation eneRygn the amplitudeA of

A=0. The driving frequency isug=1.2, the white-noise intensity i® the sinusoidal driving force witlwg= 1.2 for the Duffing oscillator as de-

=0.03. Solid line: the theoretical expressitii); filled and empty circles  termined by electroni¢open circles and numericalfilled circles simula-

are the data from analog and digital simulations, respectively, with no adgions and Eq.(11) (solid lin® (Ref. 24. The data of analog and digital

justable parameters. simulations refer to the noise intensities 0.648<0.036 and 0.02@D
<0.028, respectively. The inset shows the absolute value of the LS of the
system|y(w)| measuredopen and filled squares for analog and numerical
simulations, respectivelyand calculated fronil3) (full curve) as a function

U(g)=— %q2+ %q“. (12 of frequencyw.
We drive it with zero-mean quasiwhite Gaussian noise from

a shift-register noise generator, digitize the responde, i i i ) )
and analyze it with a digital data processor. We have als¢flions. Itis also seen from Fig. 3 that simulations vilttas
igh as 0.03 still give the correstopeof SR vs A for large

carried out a complementary digital simulation see Ref. 2 -
" L iser A, and thus the corredy/.

for details on the algorithm used and the noise generatio

The analog and digital measurements involved noise intensi- 1" frequency dependence pf(w)|, a fundamental
ties in the range® =0.021—0.04 and =0.007—0.030, re- characteristic of the original equilibrium system, is compared
spectively, in dimensionless units ' with the theoretical predictiofil3) in the inset. As expected,

For escape from the stat,=—1 of the white-noise the LS falls off exponentially at high frequencies, whereas

driven Duffing oscillator, Eqs(9) and (12) give the LS as the limit of y(w) for «—0 corresponds to adiabatic driving
and can be obtained from the Kramers theory. We note that,

X(w)=7 YT[(1-i0)2]T[(2+iw)/2], (13 generally, the LS is not a monotonic function of frequency:
whereT'(x) is the gamma function. For sinusoidal driving, for underdamped systems, it displays resonant piaks.
the measured time-averaged escape rate is compared with tBe switching between optimal paths
expressiong11) and (13) in Fig. 3. We emphasize that the . L .
data refer to a strongly nonadiabatic drivingst,,= 0.6 [for We now tum to th_e investigation of a _sp_eC|f_|c featl_Jre of
the model(12), t=1/U"(q,)=1/2], and cover the range the escape rate that is related to the minimization oyémn
from weak fields,A<D, to A/D=10. The corresponding (8). It is expected to arise for a nonsinusoidal field, and in
change of 5R|/D=’|')}(w,;)|A/D was=4.2 The data and the Particular for a biharmonic orfeHere, the periodic function
theory are in full agreement, without any adjustable param9R(tc) may havetwo minima per period. However, the ac-
eters. It is seen from the data that, fj(wg)|A/D>1 the tivation energy will always correspond to taésolutemini-

— ) mum of §R(t;). For a certain relation between the param-
dependence of W/ on A becomes linear, as expected. We eters, the values ofR(t.) at the two minima are equal. The

note that a qualitatively similar dependence ofllron the iy ation is then similar to the first-order phase transition
dr!vmg amplitude can pe seen in the experimental data ofhere two minima of the free energy are equally deep. On
driven Josephson junctioris. _ the opposite sides of the phase transition line the system is in
~InFig. 4 we show the data on the LS for several noiseyjterent states. In the present case, if the parameters pass
intensities. The activation energywas obtained by measur- through critical values where the minima @R(t,) are

ing the slope of IV vs 1D. From(8), the slope oR vsSA  equally deep, switching will occur from one minimum to the
yields the absolute value of the LS. The difference betweeyther.

the measured and calculatBdarises from the noise intensity For biharmonic driving, a convenient control parameter
being not too smal(D~0.020—0.036 for the data points in s the phase differenag,, between the field componerfts,

Fig. 4), or in other words, comes from the field dependencer,. In the simulations we used the Duffing oscilla(d®)

of the prefactor in the expression for the escape VdteAs  driven by the fieldF(t) =0.1 cos(1.2) + 0.3 cos(2.4+ ¢1,).

seen from Fig. 3, when the latter is taken into account, ther&or such a field, the functiodR(t;) (8) has two minima.

is full quantitative agreement between the theory and simuTheir relative depths depend a@hy,.
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FIG. 5. (a) The activation energR as a function of phase differeneg;, FIG. 6. (Color onling Rendering of two focused laser beams, the equilib-
with wg=1.2 for the Duffing oscillator driven by the biharmonic force rium positions of the particlérings), and a transitional path between the
F(t)=0.1 cosft)+0.3 cos(et+¢y,). Calculations based oi8) (full beams.

curve are compared with data from electroriapen circles and numerical

(filled circles simulations.(b) Relative numbers of escape trajectories fol-

lowing each escape path in the electraffiiked circles and numericalopen . . . . .
circles experiments compared to the calculated relative probabilifighs An important experiment with a particle in a double-well

curve. (c) Measured escape trajectories for the electronic metteh  trap is a measurement of the transition rate in a stationary

jagged linepwith the critical phase differencg,,= ¢¢,~3.57, comparedto  potential. Such an experiment can provide a rigorous test of

the calculated optimal patt{sircles and triangles solid lines are periodic  tha multidimensional Kramers rate theory with no adjustable

states of(1), (7) in the absence of noise. The data were obtained with the L .

noise intensityd = 0.028. parameters. Quantitative measurements require that the con-
fining potential be adequately characterized. This can be
done by measuring directly the full three-dimensiof&D)

The increment of the activation energfR—min sR(t)  Stationary probability distributiop(r) of a trapped Brown-
as a function of;, obtained from analog experiments and ian particle??
numerical simulations is compared to theoretical predictions A stable three-dimensional trap is produced by two fo-
in Fig. 5(@). For the critical valuep;,= ¢, SR has a cusp. Ccussed laser beams as a result of the electric field gradient
On the opposite sides of the cusp it is determined by differforces exerted on a transparent dielectric spherical silica par-
ent minima of SR(t,). Relative numbers of escape eventsticle of diameter R=0.6 um. Displaced typically by 0.25
along the paths corresponding to these minima are shown ii® 0.45um, the beams create a double-well potential, with
Fig. 5b). The data clearly show that the contribution from the stable positions of the particle centered,aandr,. The
one of the minima dominates everywhere except within sstability perpendicular to the beam axis is due to the trans-
narrow vicinity of ¢, where the contributions from both Vverse beam profile gradient; in the beam direction the poten-
minima are of the same order of magnitude. tial gradient is derived from the strong focusing of the ob-

In F|g 5(0) we compare observed and predicted escapdﬁctive Ien53.° Relatively infrequent thermaIIy activated
paths for¢,,= ¢ (in the calculations, account was taken of random transitions between the potential wells occur through
the field-induced correctionsThe coexistence of the two @ saddle point ats as depicted in Fig. 6. The experimental
escape paths per period is clearly seen, and agreement wiggtup and the measurement technique have been discussed

theory is excellent. elsewheré?
The full double-well confining potentidl (r) is deter-

mined from the measured stationary distributip(r) as
U(r)=—kgTInp(r). From the depths and curvatures of the
potential wells and the curvature bf(r) at the saddle point

A simple physical system which embodies fluctuation-rg, it is straightforward tocalculate the Kramers escape
induced escape is a mesoscopic particle suspended in a liguidtes. These rates can also be measured directly by placing
and confined within a metastable potential well. The particlehe particle into one of the wells and measuring the average
moves at random within the well until a large fluctuation time it takes to switch to the other well. The potentifr),
propels it over an energy barrier. An optically transparentand the barrier height in particular, can be systematically
dielectric sphere can be readily trapped with a strongly fovaried by changing the beam intensities. This results in an
cused laser beam, creating an optical gradient trap, i.e., “opexponential change of the escape rate, thus making it pos-
tical tweezers.?° Techniques based on optical tweezers havesible to compare theory and experiment over a wide range of
found broad applications in contactless manipulation of obthe escape rates. Extremely good agreement is obtained, as
jects such as atoms, colloidal particles, and biological mateseen from Fig. 7.
rials. Fluctuation-induced escape can be studied using a dual The double-beam trap can also be used to investigate the
optical trap generated by two closely spaced parallel ligheffect of ac-modulation on transition rates. An interesting
beams, as illustrated in Fig. 6. Such trap was implementedpplication of this effect is tdirectthe diffusion of a particle
initially to study the synchronization of interwell transitions in a spatially periodic potentidF It follows from the results
by low-frequency(adiabati¢ sinusoidal forcing': of Sec. Il that, for a generic periodic potential, the ac-

V. DYNAMICAL SYMMETRY BREAKING IN A
MODULATED BISTABLE OPTICAL TRAP
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W TS (5'] } mined instantaneous time-dependent switching probabilities for a particle in

the adiabatically modulated double-beam trap, over a cygle of the

FIG. 7. (Color onling Comparison of the measured transition raf@&eas modulating wave form. The phase angle between the first and second har-
monics is ¢q,= m/2. When the phase angle was incrementedhythe

and the rates calculated from the three-dimensional Kramers thédty, ] he left and righ s i h 4. withi . |
using the measured curvatures of the potential wells. The squares repres&?tcape rates from the left and right wells interchanged, within experimenta

escapes from the well at and the triangles represent escapes from the well€TOr !nset showg the instantaneous difference between the heights of the
atr, in Fig. 6. The line of slope one indicates the result expected if thepotentlal barriers in the two wells.
three-dimensional Kramers theory correctly predicted the measured transi-
tion rates(Ref. 32.
wave form, there is only one optimal escape path per period,

for each well, and no switching between the paths occurred

. L S . with varying ¢-,.
induced change of the activation barrier differs depending on As shown in the inset to Fig. 8, the difference between

the d|rept|on(r|ght or I?ﬁ’ for examplgin Wh.'(?’h the partlclgl the barrier heights in the two wells varies asymmetrically
moves in escape. This makes the probabilities of transitions, " o cycle. It depends afy, and can be inverted if the
. 12

;{r? :jr:f?ursl?:r: ?nn(tjh? éﬂié(teigne);??ggl?rly ngnetrtergtnzirt'% r:zsunsphase angle is shifted by. In other words, the modulated
q " potential is not invariant undet—t+ 7/ wg, X——X, y

An effect closely related to directed diffusion, but more —.—y (with x, y measured from the symmetry planes paral-
amenab!e tc_) testing using optical trapping, is.ac-field induceﬁjel to the bea,lm axes, see Fig). 6t is this breaking of the
localizationin one of the wells of a symmetric double-well patio-temporal symmetry that leads to the escape rate from

potential. We expect _both these effects to occur if the applie@ne of the wells being on average much bigger than from the
field breaks the spatio-temporal symmetry of the systéfn. other, as seen from Fig. 8. In turn, this leads to a higher

The ratio of the stationary populatios ,w, of the wells is population in one of the wells. Not only has the effect been

determined by the ratio of the period-averaged raigsof  gpserved for slow modulation, as evidenced by Fig. 8, but a
the interwelli — | transitions, population difference of 20% has been observed deeply in
W1/W2=V_V21/V_Vlzoc exp([ SRy — SR, ]/kgT), (14) thg nonadia_lbatic regime, \.Ni'&.bF/27T.=.20 Hz, for the r_nodg—

lation amplitude used. This is sufficient to create significant

where 5R1’2 are field-induced corrections to the activation directional diffusion, and demonstrates the Onsauy]fami_
energies of escape from wells 1. cal symmetry breaking. The dependencevef/w, on the

The experiment was conductdor equal static barrier phase shifi, is in agreement with the theory of Sec. 1.
heights in the two welldU;=AU,=AU, with AU, set at
~7.5gT. The intensity of a laser beam was then modulatec{l
by an electro-optic device, giving rise to modulation of
AU/kgT with an amplitude~2.5. The modulation fre- We have shown theoretically, by analog and digital
quency wg/27 was varied between 1 and 100 Hz, which simulations, and by optical trapping experiments that fluc-
covers the range from adiabatically slow to nonadiabatiduations in driven systems, and in particular escape from a
modulation(the relaxation time i$,,~10 2s). This may be metastable state, can be effectively controlled by an external
compared to the mean unmodulated transition rélg  field. The field gives rise to a change of the activation energy
~0.1s % Over this range, field-induced repopulation wasof escape, which can be much bigger than the characteristic
observed between the wells for a nonsinusoidal modulatiomoise intensity(temperaturg even for comparatively weak
wave form, so thaiv; #ws,. fields. Over a broad range of field amplitudes, this change is

The results on the instantaneous escape k&tg&) and  linear in the field even where the driving frequency exceeds
W,4(t) for an adiabatic modulation o(z/27r=1 Hz) are the reciprocal relaxation time of the system and substantially
shown in Fig. 8. The barrier heights in the two wells wereexceeds the escape rate. The effect is described by a physi-
modulated in counter phase. The form of the modulation wasally observable quantity, the logarithmic susceptibility. The
SAU(t) = consfsin(wet) +(1/2)sin(2et+ o) ].  For  this LS relates the probability of large fluctuations in the pres-

|. CONCLUSIONS AND OPEN QUESTIONS
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