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Quantum state preparation for coupled period tripling oscillators
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We investigate the quantum transition to a correlated state of coupled oscillators in the regime where they
display period tripling in response to a drive at triple the eigenfrequency. Correlations are formed between the
discrete oscillation phases of individual oscillators. The evolution toward the ordered state is accompanied by
the transient breaking of the symmetry between seemingly equivalent configurations. We attribute this to the
nontrivial geometric phase that characterizes period tripling. We also show that the Wigner distribution of a
single damped quantum oscillator can display a minimum at the classically stable zero-amplitude state.
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I. INTRODUCTION

The adiabatic theorem in quantum mechanics [1] states
that a quantum system in the instantaneous ground state of a
time-dependent Hamiltonian will approximately remain there
if the Hamiltonian changes slowly compared to the gap to the
first excited state. Recently, the adiabatic dynamics in many-
body systems has been extensively studied with arrays of
qubits [2–4]. One promising application is adiabatic quantum
computing, where the initial Hamiltonian is well understood,
so that initialization of its ground state is straightforward,
and the final Hamiltonian encodes the cost function of an
optimization problem that is hard to solve on a classical
computer [5–7].

The interest in adiabatic many-body dynamics has now
extended to systems of quantum oscillators [8–18]. This was
triggered by the observation of how, with turning on para-
metric driving close to twice the oscillator eigenfrequency,
the ground state of a single oscillator adiabatically connects
to the cat state [8,11,14,19,20] and how this can be used for
adiabatic quantum computing with oscillator arrays [21,22].
Coupled coherent parametrically driven oscillators can go
through a quantum phase transition into a correlated state (a
“time-crystal” effect with no disorder) [16].

The many-body dynamics of driven coupled oscillators
can be radically different if the driving frequency is close to
triple the oscillator eigenfrequency. An isolated oscillator can
display period tripling in this case. A particular feature of the
effect is the geometric phase [23] between the quantum states
at the minima of the effective oscillator Hamiltonian in Fig. 1,
first noticed in Ref. [24]. It can be thought of as resulting from
a “magnetic field” that pierces the oscillator phase space.
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In this paper, we study how the geometric phase of the
quantum period tripling and the high degeneracy of the
period-3 states affect the dynamics of coupled quantum os-
cillators. Specifically, we study how the system goes into
a coherent many-body state as the driving field is slowly
turned on and tuned close to resonance. The results refer to
a one-dimensional oscillator array with either attractive or
repulsive nearest-neighbor couplings. Such couplings favor,
respectively, the same or different phases of the period-3
oscillations and are analogous to ferro- or antiferromagnetic
coupling in the case of spins. The case of antiferromagnetic
coupling is particularly interesting because multiple config-
urations can lead to neighboring oscillators having different
phases.

As each “bond” between the antiferromagnetically cou-
pled oscillators gives a positive contribution to the “energy”
(defined below in the rotating wave approximation), if the
oscillators are in the same well, and the same negative con-
tribution, if they are in different wells, this is reminiscent of
the Potts model. However, our system is away from thermal
equilibrium and its quantum dynamics is different from what
is considered in the quantum Potts model. Also, the oscillator
chain cannot be simply mapped on a chain of spin-1 particles.

We also study the stationary distribution of a single weakly
damped oscillator in the ultraquantum regime to explore
whether period tripling can qualitatively change this distribu-
tion compared to what would be expected in the semiclassical
limit. The very possibility of such a change is a consequence
of the peculiar semiclassical dynamics where the unstable
period-3 states approach the stable state with the increasing
drive but do not merge with this state.

II. PHYSICAL SETUP AND HAMILTONIAN

We study arrays of N coupled driven oscillators. The
Hamiltonian

H = Hs + Hd + Hi (1)
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FIG. 1. (a) Classical energy surface of a single oscillator in the rotating frame for driving at triple the eigenfrequency. The plot corresponds
to H0, Eq. (4), in units of the Kerr parameter K ; X and Y are the scaled coordinate and momentum, r = 1.4K , and � = 0. We enumerate the
minima counterclockwise as j = 0, 1, 2 starting with the minimum on the axis Y = 0. (b) Wigner distribution in the lowest fully symmetric
eigenstate of H0 for r = 1.4K and � = 0. (c) Eigenvalues of H0 as functions of r/K where � = �ini (1 − r/rmax), �ini = 6K . For r = 0, the
spectrum is that of a weakly anharmonic oscillator and the levels are n = 3k, 3k + 1, 3k + 2, with k = 0, 1, 2, .... With increasing r/K , the
levels for each k merge into triples of tunnel-split intrawell levels of H0. As a further guide to the eye, the lines are also color coded as n = 3k
(red), 3k + 1 (blue), and 3k + 2 (green).

consists of the Hamiltonian of the undriven oscillators (Hs),
the driving term (Hd ), and the interaction (Hi). We assume that
all oscillators are identical and have inversion symmetry, and
we keep in Hs the lowest-order intrinsic nonlinearity (called
Duffing or Kerr nonlinearity). In the frame that rotates at
1/3 the drive frequency ωF and in the familiar rotating wave
approximation (RWA) [25],

Hs =
∑

n

�a†
nan + K (a†

n)2a2
n , (2)

where an and a†
n are the ladder operators of the nth oscillator.

In Eq. (2), we introduced the detuning � = ω0 − ωF /3 of the
drive with respect to the oscillator eigenfrequency ω0; K is the
nonlinearity parameter, and we set h̄ = 1.

The Hamiltonian that describes the driving

Hd = −r
∑

n

[
a3

n + (a†
n)3

]
(3)

corresponds to the energy of an oscillator in the driving field,
which is proportional to the field multiplying the cube of the
oscillator coordinate, with r being the scaled field amplitude.
The term (3) can arise also from a coupling linear in the
coordinate or momentum taking into account the oscillator
nonlinearity; cf. Ref. [23].

From Eqs. (2) and (3), we can write the RWA Hamiltonian
H0 = Hs + Hd of an individual oscillator as

H0 = 1
2�(X 2 + Y 2 − 1) + 1

4 K[(X 2 + Y 2 − 2)2 − 1]

−r(X 3 − 3Y XY )/
√

2 , (4)

where X and Y correspond to the scaled coordinate and
momentum, X = (a† + a)/

√
2 and Y = i(a† − a)/

√
2.

The classical phase-space energy surface corresponding to
H0 is shown in Fig. 1 along with an example of the Wigner
distribution. The Hamiltonian has a threefold symmetry in the
oscillator phase space, a feature of period tripling. The three
minima away from X = Y = 0 emerge for r2 > 8K (� −
2K )/9. Classically, they become stable states of the oscillator
in the presence of weak dissipation and correspond to different
phases θ = 0, 2π/3, and 4π/3 of the period-3 oscillations.
Since the oscillation period for an oscillator in any of these

states is three times the drive period, the phenomenon is
commonly referred to as period tripling.

We analyze the dynamics of coupled oscillators assuming
that the coupling between them is linear. After an RWA, it is
described by the interaction Hamiltonian

Hi = −
N∑

m �=n

Vmna†
man. (5)

To reveal the novel features of the many-body dynamics
coming from period tripling, we consider the simplest model
of the oscillator array: a nearest-neighbor coupling, Vmn =
V δm,n±1, and periodic boundary conditions. For the “ferro-
magnetic” and “antiferromagnetic” cases, V > 0 and V < 0,
respectively. Below, we loosely use the term “energy” for the
eigenvalues of the Hamiltonian H .

The Hamiltonian is invariant under simultaneous rotation
of all oscillators in phase space by −2π/3, which is realized
by the unitary operator

N3 = exp

[
−(2π i/3)

∑
n

a†
nan

]
. (6)

The other symmetry operations are translation T†anT = an+1

and reversing R†anR = aN+1−n the order of the oscillators.
In the absence of coupling, the rotation operation N3 =

exp [−(2π i/3)a†a] for a single oscillator is also a valid sym-
metry operation. As shown in Fig. 1(c), the ground state for
a single oscillator is nondegenerate. This is a consequence
of the finite overlap and the resulting tunnel splitting be-
tween the states located at the minima of different wells.
The different states are connected via N3. In the calculation
of the tunnel splitting [as well as the effect of the coupling
between the oscillators (5)], a geometric phase difference
between the intrawell wave functions must be taken into
account to establish the connection. That phase is a con-
tinuous function of the system parameters and has opposite
sign for clockwise and counterclockwise interwell rotation,
as was explicitly calculated in Eq. (17) of Ref. [23]. It is
not a geometric Berry phase or one of its variations, but
is a geometric factor that affects the overlapping of the
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intrawell states. It depends on the phase-space structure of the
Hamiltonian.

The nontrivial phase shift between the intrawell states
distinguishes the period tripling oscillator from the period
doubling oscillator, where the intrawell states can be only
symmetric by construction. For coupled tripling oscillators
studied here, it results in an energy symmetry breaking of
otherwise equivalent configurations. This interesting conse-
quence is studied in Sec. III B.

A. Measurement of states

For the classification and measurement of the states,
we use the resolution of unity with coherent states, Î =
1
π

∫ ∞
0 |α| d|α| ∫ 2π

0 dθ |α〉 〈α|, with α = |α| exp(iθ ), to define
the measurement operators

E (θ ) = 1

π

∫ ∞

0
|α| d|α|

∫ θ

−θ

dθ |α〉 〈α|, (7)

In terms of the oscillator Fock states |k〉 in the absence of
driving,

E (θ ) = 1

π

∞∑
k,k′=0

�((k + k′ + 2)/2)√
k!k′!

sin[(k − k′)θ ]

k − k′ |k〉 〈k|′,

where �(x) is the � function, and we use the convention
θ > 0. The approximate effect of E (θ ) is a projection on the
sector of phase space bounded by the polar angles −θ and
θ . As the coherent states do not form an orthogonal basis,
E (θ ) is not a projector but corresponds to a more general form
of measurement that can be described in the framework of
positive operator valued probability measures (POVMs) [26].

We define P0 = E (π/3), corresponding to the third of
phase space limited by the polar angles ±π/3. For one
oscillator, where the phase-space rotation operator is N3 =
exp[−(2π i/3)a†a], we define the rotated operators P1 =
N†

3 P0N3 and P2 = N†
3 P1N3 corresponding to, respectively, the

sectors rotated by 2π/3 and 4π/3. As P0 + P1 + P2 = Î , the
P operators form a POVM, and we define the corresponding
probabilities as pj = 〈ψ | Pj |ψ〉, where |ψ〉 is the oscillator
wave function. These definitions naturally generalize to arrays
of oscillators. For two oscillators, the probability of the first
oscillator to be in sector j and the second oscillator to be
in sector k is pjk = 〈ψ | Pj ⊗ Pk |ψ〉. In the general case,
p j1... jN = 〈ψ | 
N

n=1Pjn |ψ〉.

III. QUASIADIABATIC STATE PREPARATION

We will assume that each oscillator is initialized in the vac-
uum state, |ψ〉ini = ∏N

n=1 |vac〉n, i.e., an |ψ〉ini = 0,∀n. This is
the ground state of the Hamiltonian H for r = 0 if the initial
detuning �ini is positive and large compared to the coupling
strength [27]. We then ramp up the scaled driving amplitude r
linearly to its maximal value, r(t ) = (t/tf )rmax, where tf is the
ramp time. Simultaneously, the detuning is linearly decreased
to 0; i.e., �(t ) = (1 − t/tf )�ini. All other parameters are kept
constant. In the numerical plots, all energies and frequencies
are in units of K .

We are interested in the state of the system at the end of
the sweep. If the oscillators are uncoupled and the sweep is

fully adiabatic, the state of each of them for not too small r
will be a symmetric superposition of states |ψ〉 j ( j = 0, 1, 2)
localized on the phase plane (X,Y ) in Fig. 1 at the minima
of the Hamiltonian function H0(X,Y ) [23]. The states |ψ〉 j
correspond to classical period-3 oscillations with the phases
that differ by 2π/3 for different j. We associate j = 0, 1 and
2 with the directions 0, 2π/3 and 4π/3 on the phase plane
toward the wells of H0, respectively, or equivalently, with the
number of the well. If the oscillator is in the state j, the POVM
measurement will give the probability p j′ ≈ δ j j′ .

Coupling the oscillators leads to correlations between their
oscillation phases to minimize the coupling energy in the
rotating frame. Without the drive (r = 0), the energy of an
individual oscillator is independent of its phase, whereas
the multioscillator state is invariant only with respect to
the continuous global phase and the rotation operator
exp(−iθ

∑
n a†

nan) commutes with Hs + Hi. For r = 0 and
|V | � �ini, the energy spectrum of the oscillators is gapped,
like the energy spectrum of optical phonons in solids, with the
minimal excitation energy ∼h̄ω0 in the laboratory frame and
�ini in the rotating frame. The ground-state multioscillator
wave function is the product of the ground-state wave func-
tions of the individual oscillators, and then p j1... jN = (1/3)N .

Not only does the drive break the continuous phase symme-
try, but it also reduces the level spacing within the triples of
the neighboring energy levels of an individual oscillator; see
Fig. 1. Therefore, the oscillator coupling becomes effectively
stronger with increasing r and its effect becomes more pro-
nounced. For large r, the low-energy multioscillator states are
combinations of the products |ψ〉 j1 ... |ψ〉 jN of intrawell states
|ψ〉 jn of individual oscillators. Our measurement directly re-
veals such combinations.

A. Symmetry arguments

The multioscillator initial (r = 0) state |ψ〉ini =∏N
n=1 |vac〉n provides the totally symmetric representation of

the group generated by the operators N3, T, and R. Since
the full Hamiltonian (1) is invariant under these symmetry
operations, the state |ψ (t )〉 obtained by evolving |ψ〉ini will
remain totally symmetric. Such a state is not necessarily
the ground state of the full Hamiltonian. However, it is
the lowest-energy totally symmetric state. If the evolution
is slow on the scale determined by the gaps between the
totally symmetric states, the final state |ψ (tf )〉 will be the
lowest-energy totally symmetric state.

In Figs. 2, 3, and 4 we show, using our POVM-based mea-
surement for a system with two, three, and four oscillators,
that |ψ (tf )〉 can be indeed close to the adiabatic state.

In our simulations, the driving parameter r was ramped up
to rmax = 1.4K . As seen from Fig. 1(c), for such values of r
and for � = 0 the three lowest energies of a single oscillator
are close to each other and turn into the tunnel-split energies
of the linear combinations of the intrawell states of H0.

The products of weakly perturbed intrawell states of in-
dividual oscillators |ψ〉 j1 ... |ψ〉 jN can be denoted as { j1... jN },
where jn refers to the nth oscillator. To first order, the coupling
energy in such a state is −V

∑
m(Xjm Xjm+1 + YjmYjm+1 ), where

(Xj,Yj ) is the position of the jth minimum of H0 on the phase
plane. The operators N3,T, and R can be thought of as shift
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FIG. 2. Probability evolution and energy spectrum for period
tripling in a two-oscillator chain. The coupling is ferromagnetic in
the left column and antiferromagnetic in the right column. The pa-
rameters are |V | = 0.4K , �ini = 6K , the final scaled drive amplitude
rmax = 1.4K , and the duration of the sweep is tf = 100/K . In panels
(a) and (b), the probabilities pjk of different oscillator configurations
are encoded as black for {00} and blue for {01}. Panels (c) and
(d) show the nine lowest eigenvalues of the RWA Hamiltonian at the
end of the sweep. The lowest energy fully symmetric state is marked
black, and the first excited fully symmetric state is marked red.

operators in the space of { j1... jN },

T{ j1 j2... jN } = { jN j1 ... jN−1},
R{ j1 j2... jN } = { jN jN−1... j1},
N3{ j1... jN } = { j1 − 1... jN − 1}. (8)

The totally symmetric state of the coupled oscillators is found
in a standard way by summing the wave functions obtained by
repeatedly applying the operators T, N, and R to

∏
k |ψ〉 jk .

B. Configuration symmetry breaking in the transient regime

For the case of ferromagnetic interaction, the probability
to find all oscillators aligned along one direction in the
ground state, i.e., to be in the configuration { j j...} with j =
0, 1, or 2 for large r, is close to 1/3, independent of the
number of oscillators. This probability is indeed approached
in the sweep, as seen from the black lines in Figs. 3(a)
and 4(a).

For antiferromagnetic interaction, the situation is more
interesting, as seen from Figs. 3(b) and 4(b). For three oscil-
lators, the configuration that minimizes the antiferromagnetic
coupling energy for large r is { j1 j2 j3}, with all j1,2,3 being
different from each other. There are six such configurations.
The totally symmetric state can be obtained by applying
successively the symmetry operators (8) to the configuration
{012}. Respectively, for the adiabatic state preparation, the
probability to find the system in one of the configurations will
be 1/6. This is indeed seen in Fig. 3(b).

For four oscillators, there are two configurations that both
minimize the coupling energy for large r, to leading or-
der in Hi and neglecting tunneling. They are {0102} and

FIG. 3. Probability evolution and energy spectrum for period
tripling in a three-oscillator chain with periodic boundary conditions.
The coupling is ferromagnetic in the left column and antiferromag-
netic in the right column. The parameters are |V | = 0.4K , �ini = 6K ,
the final scaled drive amplitude is rmax = 1.4K , and the duration of
the sweep is tf = 100/K . In panels (a) and (b), the probabilities pjkl

of different oscillator configurations are encoded as black, blue, red,
and green for { jkl} = {000}, {001}, {002}, and {012}, respectively.
Because of the geometric phase, the trajectories for the configura-
tions {001} and {002} are different. From top to bottom at t/t f = 1,
the order of colors in panel (a) is black, blue, red, green; in panel
(b) it is green, blue, red, black. Panels (c) and (d) show the 27 lowest
eigenvalues of the RWA Hamiltonian (“energies”) at the end of the
sweep. The lowest-energy fully symmetric state is marked black, and
the next two lowest fully symmetric states are marked red.

{0101}, and the respective totally symmetric states built out
of them. The only difference between the configurations
{0102} and {0101} is that, in the first of them, oscillator 4
is in the well rotated clockwise with respect to the neigh-
boring oscillators, whereas in the second, this oscillator is
in the well rotated counterclockwise. The equivalence of the

FIG. 4. Probability evolution for period tripling in a four-
oscillator chain with periodic boundary conditions. The coupling is
ferromagnetic in panel (a) and antiferromagnetic in panel (b). The
parameters are the same as in Fig. 3. The configuration probabilities
pjklm are encoded by black, blue, red, green, yellow, purple, and or-
ange for { jklm} = {0000}, {0001}, {0002}, {0011}, {0012}, {0101},
and {0102}, respectively. From top to bottom at t/t f = 1, the order
of colors in panel (a) is black, blue, red, green, purple, orange,
and yellow; in panel (b), it is orange, purple, yellow, red, blue,
green, and black. The trajectories within the initially equivalent pairs
{0001}, {0002} and {0011}, {0012} are different. The effect is most
pronounced for the pair {0101}, {0102} in panel (b); see the text.
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configurations is broken by the geometric phase between the
intrawell states.

The energy splitting between the corresponding totally
symmetric states is small, leading to strong nonadiabaticity
with varying r and � and to a similar population of the
states. In turn, this leads to the strong slow oscillations of the
configuration populations in Fig. 4(b). The oscillation period
increases as the energy splitting falls off. Which of the totally
symmetric states has a lower energy depends on the values of
r and �, similar to the case of a single oscillator [23]. There
are no reasons to expect that the symmetric combination of
these states has the lowest energy.

The effect of the geometric phase is seen also in Figs. 3(a)
and 3(b). Here, the transient populations of the would-be
equivalent orientations {001} and {002} are different. The
probability oscillations are more pronounced for antiferro-
magnetic coupling, where nonadiabatic effects are stronger.

Further insight into the features of the multioscillator states
is provided by their energy spectra. The lowest eigenvalues
of the Hamiltonian of a three-oscillator array for t = tf are
shown in Figs. 3(c) and 3(d). Out of 27 states (combinations
of three intrawell states of three oscillators), one can form four
fully symmetric states. Three of them are occupied both for
ferro- and antiferromagnetic coupling. For the fully adiabatic
evolution, only the lowest energy one (the black dot) will be
occupied. To first order in the coupling, its energy is shifted
down from the energy of noninteracting oscillators by 3|V |X 2

0
and 3|V |X 2

0 /2 for the ferro- and antiferromagnetic coupling
respectively; here, X0 is the distance of the phase-space min-
ima of H0 from the origin. These expressions are an overes-
timate by ≈ 30% for r = 1.4. The excited fully symmetric
states (the red dots) are also partly occupied. In leading order,
they have the same energy for ferro- and antiferromagnetic
coupling.

As a test, we studied a frustrated triangle of oscillators,
where the first and the third oscillators are coupled antiferro-
magnetically but the second oscillator is coupled ferromag-
netically to the other two. In the absence of the geomet-
ric phase, the configurations {000}, {011}, and {022} would
be expected to have the same energy. However, we found
that, for the same parameters r = 1.4K,� = 0, and |V | =
0.4K , the symmetrized configuration {000} has the lowest
energy.

IV. OPEN PERIOD-3 SYSTEM

The peculiar features of the quantum-coherent dynamics of
period-3 oscillations is expected to have a counterpart in the
dissipative dynamics. Some aspects of this dynamics can be
revealed by studying the stationary distribution of a dissipative
oscillator in the ultraquantum regime. We assume that the
dissipation comes from a term linear in a, a† that couples
the oscillator to a thermal reservoir. The dissipation-induced
change of the density matrix ∂tρ is then described by the
standard operator L̂ρ = 1

2κ (2aρa† − a†aρ − ρa†a); here κ is
the energy decay rate, and we have set the oscillator Planck
number n̄ = 0.

The difference between the classical and quantum dynam-
ics is most easily seen from the equation for the Wigner
distribution W (α, α∗). It can be derived in a standard

FIG. 5. (a) Laplacian of the Wigner density at the origin of phase
space in the full quantum case at zero detuning, as a function of r
and κ at n̄ = 0. The green regions corresponds to positive values
of the Laplacian, which is in contrast to the classical expectation.
(b) The same Laplacian as in panel (a) at κ = 0.5K . The blue dash-
dotted line represents the classical baseline, the red full line is the
quantum result, where surprisingly a positive Laplacian is possible.
The Wigner densities at the dashed black lines for r = K , where
the difference is most striking, are shown in the lower panels for
the quantum case (c) and the semiclassical approximation (d). The
Wigner densities at r = 0.75K are given in Fig. 7 of Appendix A.

way [25],

∂tW =
[

i�∂αα + 2iK∂αα(|α|2 − 1) − i
K

2
∂2
α∂α∗α

]
W

+
[
−ir

(
3∂α (α∗)2 + 1

4
∂3
α

)

+1

2
κ

(
∂αα + 1

2
∂α∂α∗

)]
W + c.c. (9)

Here, the terms with the first-order derivatives describe classi-
cal dynamics in the rotating frame in the absence of quantum
fluctuations. For (3r/2K )2 >

√
(2 − �/K )2 + (κ/2K )2 −

2 + �/K , the classical oscillator has three stable states with
nonzero |α|; they correspond to period-3 oscillations in the
laboratory frame. The state at α = 0 is also stable.

Within the classical theory, one expects the stationary
probability density to display peaks at the stable states. A
classical description refers to the case where |α| varies on the
scale � 1 and corresponds, in particular, to disregarding the
terms with the third derivatives in Eq. (9). However, we found
that in the ultraquantum regime, where |α| ∼ 1 in the classical
period-3 states, the third derivatives change the distribution
qualitatively. The maximum at α = 0 can turn into a mini-
mum; see Figs. 5(a) and 5(b). The minimum emerges once
the drive becomes sufficiently strong and is most pronounced
for r/K ∼ 1. As for all parameters in this article, for α = 0
the eigenvalues of the Hessian had the same sign, and we can
use the sign of the Laplacian ∂α∂α∗W to distinguish whether
W is maximal or minimal at α = 0.
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The local minimum of W at the origin disappears for larger
frequency detuning, higher decay rate, or higher temperature,
where quantum effects are less pronounced; see Appendix A,
The small curvature ∂α∂α∗W (0) for large r results from the
saddle points of H0 approaching α = 0. Therefore, quantum
fluctuations become strong and wash away the classical sta-
bility of the state α = 0.

V. CONCLUSIONS

As seen from the above analysis, for period tripling, driven
coupled oscillators exhibit a quantum transition to a correlated
state that is qualitatively different from the classical transition.
For ferromagnetic coupling, with a slowly increasing drive, a
quantum system adiabatically goes from the vacuum state into
a superposition of correlated states of period-3 oscillations.
In a large system, such superposition should break up into
domains with broken symmetry, where all oscillators within
a domain have the same phase (which takes on one of the
three values that correspond to the different period-3 states).
In contrast, a classical system will stay in the zero-amplitude
state when the oscillators are at rest initially and the drives
are turned on adiabatically. Interestingly, the probabilities
of different seemingly equivalent transient quantum config-
urations are different, hinting at an effect of the intrinsic
geometric phase of the oscillators. These unusual features
of quantum oscillator arrays can be studied with coupled
nanomechanical resonators and optical cavities. A particu-
larly promising platform is provided by coupled circuit-QED
microwave cavities [21,22], as they combine strong enough
nonlinearities and long coherence times. In particular, for the
sweep experiments a coherence time longer than the sweep
time t f will be required.

A recent experiment [20] of a Kerr oscillator with ramped
up period doubling drive realized a measurement of the
Wigner density during the adiabatic evolution. In a single dis-
sipative cavity, period tripling has already been observed [28].
When considering such concrete implementations, additional
noise sources may play a role, depending on the particular
system.

Another unexpected feature of period tripling is that, in
the presence of dissipation, the stationary distributions of the
quantum and classical oscillators are qualitatively different.
In a certain parameter range, the quantum Wigner probability
distribution displays a local minimum rather than a maximum
at the classically stable zero-amplitude state.

Our results show that period tripling in quantum oscillators
allows studying new many-body phenomena far from thermal
equilibrium, which have no analog in classical systems and in
equilibrium quantum systems.
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FIG. 6. Laplacian of the Wigner density at the origin of phase
space, complementing Fig. 5 of the main text. Panel (a) is a scan as a
function of r and n̄ at κ = 0.01K and � = 0, and panel (b) is a scan
as a function of � at n̄ = 0 and κ = 0.01K .

DMR-1609326). All the quantum simulations have been per-
formed using QuTiP [29]; the semiclassical partial differential
equations were solved with numpy [30] and scipy [31].

APPENDIX A: A STRONGLY NONCLASSICAL WIGNER
DISTRIBUTION OF A DISSIPATIVE OSCILLATOR

In this Appendix, we show more detailed results on the re-
gion where the Wigner distribution has a minimum at the clas-
sically stable state of zero vibration amplitude. As explained
in the main text, in the parameter range we have explored, the
difference between the cases where the Wigner distribution
has a maximum (classical regime) or a minimum (quantum
regime) is given by the sign of the Laplacian of the steady state
Wigner distribution at the origin in the oscillator phase space.
Figure 6 shows scans of the Laplacian for variable detuning �

and variable Planck number n̄. On increasing n̄, the region of
profoundly quantum behavior (green area where ∂α∂α∗W < 0)
shrinks, as expected, since the oscillator becomes more “clas-
sical.” On increasing the frequency detuning, this area shifts
toward larger field amplitudes.

Figure 7 illustrates the Wigner density for the parameters
marked at the left dashed line of Fig. 5(b).

FIG. 7. Steady-state Wigner density of a dissipative oscillator
in the period-tripling regime for the parameters used in Fig. 5(b),
i.e., κ = 0.5K , n̄ = 0, � = 0, and r = 0.75K . (a) Solution of the
full master equation corresponding to Eq. (9). (b) Results of the
semiclassical approximation obtained by solving a Fokker-Planck
equation. As can be seen in Fig. 5(b), the Laplacian in the center
is zero for the quantum case, while the classical result show three
maxima at the period-3 states and a maximum at the origin where
the oscillator amplitude is zero.

023023-6



QUANTUM STATE PREPARATION FOR COUPLED PERIOD … PHYSICAL REVIEW RESEARCH 1, 023023 (2019)

FIG. 8. Sweep for period doubling for an array of three (upper
row) and four (lower row) coupled oscillators with periodic boundary
conditions. The coupling is ferromagnetic in the left column and
antiferromagnetic in the right column. The colors encode the proba-
bilities pjkl for { jkl} = {000} (black) and {001} (blue) in the upper
plots. In the lower plots, the probabilities pjklm of the configurations
are denoted as { jklm} = {0000} (black), {0001} (blue), {0011} (red),
and {0101} (green). From top to bottom at t/t f = 1, the order of
colors in panel (c) is black, blue, red, and green; in panel (d) it
is green, blue, red, and black. All other possibilities correspond to
one of these due to symmetry arguments. The parameters are V =
0.4K , �ini = 6K , and tf = 25/K in all plots. The maximal driving is
r = 2K .

APPENDIX B: COMPARISON TO PERIOD DOUBLING

For reference, we briefly discuss the case of period dou-
bling, where the drive Hamiltonian in the rotating frame, given
by Eq. (3) in the main text, is replaced by

Hd = −r
∑

n

[
a2

n + (a†
n)2

]
, (B1)

stemming from a parametric modulation at frequency ωF

close to twice the oscillator eigenfrequency ω0; in this case
� = ω0 − ωF /2 in Eq. (2) of the main text. Importantly, the
geometric phase in the case of period doubling is trivial, it is
equal to π , and therefore no effects related to the geometric
phase are seen in this case.

We map the states of the oscillator to a bit using the mea-
surement operators introduced in Eq. (7) with P1 = E (π/2)
on the right half-plane and P0 = exp(iπa†a)P1 on the left
half-plane. The probability pj for an oscillator in state |ψ〉
to be in bit j is then p j = 〈ψ | Pj |ψ〉, where p0 + p1 = 1 as
expected for the P operators that form a POVM.

For period doubling, the parameters are in a regime close
to the adiabatic limit, so that the maximal probabilities are al-
most reached. This maximum occurs at 1/2, except for antifer-
romagnetic coupling with an odd number of oscillators, where
the system is frustrated; in particular, for three oscillators it is
at 1/6. In the four-oscillator case, the ferromagnetic and anti-
ferromagnetic coupling are equivalent up to a basis transfor-
mation, therefore the curves in Figs. 8(c) and 8(d) are similar.

The probability for the system to remain in the lowest fully
symmetric state or to switch to higher lying fully symmetric

FIG. 9. Three-oscillator system subject to a full sweep for ferro-
magnetic coupling. The plots show the probability to end in one of
the energetically ideal configurations. Left column: case of period
doubling for r = 2K . In the upper plot �ini = 6K ; in the lower
plot tf = 12/K . Right column: case of period tripling for r = 1.4K ,
with �ini = 6K in the upper plot and tf = 30/K in the lower plot.
The oscillators are always initialized in their vacuum state, which
corresponds to the ground state only for large enough �ini. This leads
to oscillatory behavior as a function of V around �ini ≈ 0.

states crucially depends on the rate of change of the system
parameters and the energy gap to the excited states. In a
simplified picture, the system dynamics can be understood as
a series of Landau-Zener transitions occurring at each avoided
crossing the system passes through. For the Landau-Zener
Hamiltonian H = β2tσz + �σx, where β parameterizes the
sweep rate and 2� is the minimal energy gap, the transition
probability to the higher lying state at each of these crossings
is then approximately given by PLZ = 1 − exp(−π�2/β2).
In our setup, increasing � and V leads to larger energy gaps.
Together with the sweep time tf , they fully characterize a
sweep. Conveniently, we can fix rmax, as the important transi-
tions only occur during the phase transition, but not far above
threshold, where the correlations between the oscillators are
already effectively frozen. Also, we already have fixed K = 1
as a reference, as all other units are given in units of K . It is
therefore sufficient to scan the parameters (�,V, tf ). Because
of the numerical cost, we focus on the case of three oscillators.
As a function of these parameters, Fig. 9 shows the probabil-
ities of the configuration minimizing Hi for three attractively
coupled oscillators. The left panels refer to period doubling
and the right panels refer to period tripling. Note that for a
perfectly adiabatic sweep, due to, respectively, the double and
triple degeneracy, the maximal probability to be reached are
1/2 and 1/3.

Figures 9(a) and 9(b) show the threshold of coupling V and
sweep time tf for the state evolution to remain adiabatic, and
Figs. 9(b) and 9(d) show it as a function of V and �ini. While
it is always better to sweep more slowly, there is a trade-off for
the choice of the initial detuning: The optimal value for �ini

increases for larger coupling V . For both plots, we conclude
that the requirements are more demanding for period tripling
as compared to doubling.
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