
PHYSICAL REVIEW B 92, 165419 (2015)

Spectral effects of dispersive mode coupling in driven mesoscopic systems
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Nanomechanical and other mesoscopic vibrational systems typically have several nonlinearly coupled modes
with different frequencies and with long lifetime. We consider the power spectrum of one of these modes.
Thermal fluctuations of the modes nonlinearly coupled to it lead to fluctuations of the mode frequency and
thus to the broadening of its spectrum. However, the coupling-induced broadening is partly masked by the
spectral broadening due to the mode decay. We show that the mode coupling can be identified and characterized
using the change of the spectrum by weak resonant driving. We develop a path-integral method of averaging
over the non-Gaussian frequency fluctuations from nonresonant (dispersive) mode coupling. The shape of the
driving-induced power spectrum depends on the interrelation between the coupling strength and the decay rates
of the modes involved, providing a means of characterizing these modes. The analysis is extended to the case
of coupling to many modes, which because of the cumulative effect can become effectively strong. We also
find the power spectrum of a driven mode where the mode has internal nonlinearity. Unexpectedly, the power
spectra induced by the intra- and intermode nonlinearities are qualitatively different. The analytical results are in
excellent agreement with the numerical simulations.
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I. INTRODUCTION

Mesoscopic vibrational systems typically have several
nonlinearly coupled modes. These can be flexural, torsional,
or acoustic modes in the case of nanomechanical resonators
[1–8], photon and phonon modes in optomechanics [9–14],
or modes of microwave cavities in circuit quantum electrody-
namical systems [15]. Often different modes have significantly
different frequencies, so that the interaction between them is
primarily dispersive. A major effect of such interaction is that
the frequency of one mode depends on the amplitude of the
other mode. The related shift of the mode frequency provides
a means of characterizing the coupling strength where both
modes can be accessed, cf. Refs. [3,7,16,17], and can be used
for quantum nondemolition measurements of the oscillator
Fock states [18,19].

In many mesoscopic systems only one or a few modes can
be directly accessed and controlled. The presence of dispersive
coupling to other modes and the strength of this coupling have
to be inferred from the data on the accessible modes. To the
best of our knowledge, there have been no generally accepted
means of doing this.

An important consequence of dispersive coupling is that
amplitude fluctuations of one mode lead to frequency fluc-
tuations of the other mode [20]. The amplitude fluctuations
come from the coupling to a thermal reservoir, but they can
also be of nonthermal origin. The mode-coupling-induced
frequency fluctuations broaden the spectrum of the response to
an external force and the power spectrum. Such broadening has
been suggested as a major broadening mechanism for flexural
modes in carbon nanotubes [1], graphene sheets [8], doubly
clamped beams [7,16], and microcantilevers [17].

Separating the mode-coupling-induced fluctuations from
other spectral broadening mechanisms is nontrivial; see
Ref. [21] for a recent review of the broadening mechanisms.
The most familiar broadening mechanism is vibration decay
due to energy dissipation. Another mechanism of interest for
the present paper is internal vibration nonlinearity. Because

of such nonlinearity, the frequency of a vibrational mode
depends on the mode amplitude and thermal fluctuations of the
amplitude lead to frequency fluctuations. This is reminiscent
of the mode-coupling effect, yet the nonlinearity is different.
We show below how the two nonlinearity mechanisms can be
clearly distinguished.

In this paper, we propose a means for identifying and
characterizing the mode-coupling-induced frequency fluctu-
ations. The approach is based on studying the change of the
power spectrum of the considered mode, which is due to an
additionally applied periodic driving. The approach does not
require access to other modes, in contrast to Refs. [3,7,16,17],
for example. It relies on the fact that, quite generally, frequency
fluctuations lead to the features in the power spectrum of a
periodically driven mode, which do not occur without such
fluctuations [22]. If one thinks of the driven mode as a
charged oscillator in a stationary radiation field, these features
correspond to fluorescence and quasielastic light scattering.
The absence of these effects in the case of a periodically driven
linear oscillator with constant frequency is a textbook result
[23–25].

The analysis of the power spectra of driven modes with
fluctuating frequency in Ref. [22] was phenomenological. The
results were obtained in several limiting cases and in the case of
Gaussian fluctuations. The dispersive mode coupling studied
here leads to strongly non-Gaussian frequency fluctuations.
The simplest type of such coupling corresponds to the coupling
energy ∝ q2q2

d , where q is the coordinate of the considered
driven mode and qd is the coordinate of the mode to which it
is dispersively coupled and which we call the d mode. Where
the modes are far from resonance, the frequency change of the
considered mode is proportional to the period-average value
of q2

d , i.e., to the squared amplitude of qd (t). Even where qd (t)
is Gaussian, as in the case of thermal displacement of a linear
mode [24], the squared displacement q2

d (t) is not.
The features of the spectra related to the dispersive-

coupling-induced frequency fluctuations depend on the in-
terrelation between three parameters. These are the typical
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magnitude of the frequency fluctuations �ω, their reciprocal
correlation time �d , and the decay rate of the considered mode
�. We assume that all these parameters are small compared to
the mode eigenfrequencies and their difference.

In the absence of driving, the power spectrum and the linear
response spectrum of the considered mode have the form of
a convolution of the spectrum calculated without dispersive
coupling and a function that depends on the parameter αd =
�ω/�d [26]. We call αd the motional narrowing parameter to
draw the similarity (although somewhat indirect) with the mo-
tional narrowing effect in nuclear magnetic resonance (NMR)
[27,28]. For αd � 1 the correlation time of the frequency
fluctuations is comparatively small. Then the fluctuations are
averaged out and their effect is small, as in the case of fast
decay of correlations in NMR. On the other hand, for αd � 1,
the spectrum can be thought of as a superposition of partial
spectra, each for a given value of the amplitude of qd (t). The
weight of the partial spectrum is determined by the probability
distribution of this amplitude.

In the presence of driving, the situation is different. The
first distinction is that, without the dispersive coupling, there
is no driving-induced part of the power spectrum at all, except
for the trivial δ peak at the driving frequency. Based on the
previous results [22], we expect that the driving-induced part of
the spectrum will strongly depend on the interrelation between
the rates � and �d . It is clear that it will also strongly depend
on αd , but this dependence is not known in advance.

The formulation below is in the classical terms. However,
as we explain, the results fully apply also to the case where
the considered driven mode is quantum, i.e., its energy level
spacing is comparable or exceeds the temperature. At the same
time, it is essential that the d mode is classical. The case of the
deeply quantum regime of the d mode is in a way simpler. In
this case, the power spectrum of the considered mode without
driving can have a pronounced fine structure, with different
lines corresponding to different occupation numbers of the d

mode [20]. This is similar to the spectrum of a two-level system
dispersively coupled to a quantum vibrational mode [29,30],
where the fine structure has been seen in the experiment [31].

A. The structure of the paper

An important part of the paper is the averaging over the
fluctuations of the d mode. This is an interesting theoretical
problem, with direct relevance to the experiment. It involves
an explicit calculation of the appropriate path integral. The
calculation is presented in Secs. IV and V. These sections as
well as Sec. III A can be skipped if one is interested primarily
in the predictions for the experiment. Below in Sec. II we
give a general expression for the power spectrum of a mode
driven by an external field, which applies where the field is
comparatively weak, so that the internal nonlinearity of the
mode remains small. The effect of the field is most pronounced
where it is close to resonance. In Sec. III we derive equations of
motion for weakly damped dispersively coupled modes in the
rotating wave approximation. Section VI provides the explicit
analytical expressions for the driving-induced part of the power
spectrum in the limiting cases, which refer to the fast or slow
relaxation of the d mode compared to the relaxation of the
driven mode and also to the large or small frequency shift due

to the dispersive coupling compared to the relaxation rate of
the d mode. This section also presents results of numerical
calculations of the spectra, which are compared with the
results of simulations. The last part of the section describes
the dependence of the area of the driving-induced peak on
the dispersive-coupling parameters. Section VII extends the
results to dispersive coupling to several modes. In particular,
we consider the cumulative effect of dispersive coupling to
many, but not too many modes, which may become strong
even where the coupling to each of the modes is weak.
Section VIII describes the driving-induced part of the power
spectrum for a nonlinear oscillator, where the fluctuations of
the oscillator frequency are due not to dispersive coupling
but to the internal nonlinearity. The last section provides a
summary of the results. The transfer-matrix method used to
perform the averaging over the dispersive-coupling-induced
fluctuations and an outline of an alternative derivation of the
major result are given in the appendices.

II. DRIVING-INDUCED PART OF THE POWER
SPECTRUM

Frequency fluctuations render the mode response to driving
random. Generally, the response is nonlinear in the driving
strength. Respectively, even for sinusoidal driving, the mode
power spectrum �(ω) is a complicated function of the driving
amplitude F and frequency ωF . The conventional way of
measuring the power spectrum of a driven system with
coordinate q corresponds to the definition

�(ω) = 2Re
∫ ∞

0
dteiωt 〈〈q(t + t ′)q(t ′)〉〉,

where 〈〈·〉〉 indicates statistical averaging and averaging with
respect to t ′ over the driving period 2π/ωF [sometimes the
power spectrum is also defined as �(ω)/2π ]. If the driving is
weak, one can keep in �(ω) only the terms quadratic in F ,

�(ω) ≈ �0(ω) + π

2
F 2|χ (ωF )|2δ(ω − ωF ) + F 2�F (ω).

(1)

Here, �0 is the power spectrum in the absence of driving. For
the considered underdamped mode, it is a resonant peak at the
mode eigenfrequency ω0, which is due to thermal vibrations;
the width of the peak is small compared to ω0. Function χ (ω)
is the mode susceptibility, �0(ω) = (2kBT /ω0)Imχ (ω) in the
classical limit. The term ∝ |χ (ωF )|2 describes the contribution
of stationary forced vibrations at frequency ωF .

Of utmost interest to us is the last term in Eq. (1), �F (ω).
For a linear oscillator with nonfluctuating frequency, this term
is equal to zero. Indeed, the motion of such oscillator is a
superposition of thermal vibrations and forced vibrations at
frequency ωF , which are uncoupled. Frequency fluctuations
affect both thermal vibrations, leading to spectral broadening,
and forced vibrations. The latter effect is particularly easy to
understand in the case of slow frequency fluctuations. Here,
one can think of the amplitude and phase of forced vibrations
as being determined by the detuning of the instantaneous mode
frequency from the driving frequency. Therefore they fluctuate
in time, which leads to the onset of a “pedestal” of the δ peak
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at ω = ωF in Eq. (1). Some other limiting cases have been
considered earlier [22].

III. EQUATIONS OF MOTION FOR THE SLOW
VARIABLES

We will consider the power spectrum �(ω) in the case
where the mode of interest is dispersively coupled to another
mode (mode d). The modes are weakly coupled to a thermal
reservoir, so that their decay rates are small. The mode
of interest is driven by a periodic field F cos ωF t . The
Hamiltonian of the system is

H = H0 + Hb + Hi,

H0 = 1
2

(
p2 + ω2

0q
2
) + 1

4γ q4 (2)

+ 1
2

(
p2

d + ω2
dq

2
d

) + 3
4γdq

2q2
d − qF cos ωF t.

Here, p and pd are the momenta of the considered mode and
the d mode, respectively, ω0 and ωd are the mode eigenfre-
quencies, γ is the parameter of the intrinsic nonlinearity of the
considered mode, and γd is the dispersive coupling parameter.
We do not incorporate the intrinsic nonlinearity of the d mode,
as it will not affect the results if it is small; see below.

The term Hb is the Hamiltonian of the thermal bath (each
mode can have its own bath, but we assume that in this case
the baths have the same temperature), whereas Hi describes
the modes-to-bath coupling. We assume the coupling to be
linear in the modes coordinates, Hi = qh + qdhd , where h

and hd are functions of the dynamical variables of the bath.
Such coupling is the dominant mechanism of relaxation for
small mode displacements and velocities. For Hi of this form,
the decay rate of the considered mode is [32,33]

� ≡ �(ω0) = �
−2Re

∫ ∞

0
dt〈[h(0)(t),h(0)(0)]〉eiω0t , (3)

where h(0) is function h calculated in the neglect of the mode-
bath coupling. The expression for the decay rate �d of the d

mode is similar to Eq. (3), with h(0) replaced with h
(0)
d and

ω0 replaced with ωd . Parameters �,�d correspond to friction
coefficients in the phenomenological description of the mode
dynamics

q̈ + ∂qH0 = −2�q̇ − h(0)(t). (4)

The analysis below refers to slowly varying amplitudes and
phases of the modes and applies even where the above
phenomenological description does not apply [20,32,33].

In what follows we assume that the modes are under-
damped, the nonlinearity is weak, and the driving frequency is
close to resonance,

�,�d,
|γ |〈q2〉

ω0
,
|γd |

〈
q2

d

〉
ω0

,|ω0 − ωF | � ω0,ωd,|ω0 − ωd |.

(5)

The condition on γ,γd means that the change of the mode
frequencies due to the nonlinearity is small compared to the
eigenfrequency. However, it does not mean that the effect of
the nonlinearity is small, as the frequency change has to be
compared with the frequency uncertainty due to the decay
�,�d . We assume that the nonlinear change of the d-mode

frequency, which comes from the dispersive coupling and the
internal nonlinearity of the d mode, is also small compared
to ωd .

A. Stochastic equations for slow variables

Where conditions (5) apply, the motion of the underdamped
modes presents almost sinusoidal vibrations with slowly
varying amplitudes and phases. It can be described by the
standard method of averaging, which is similar to the rotating
wave approximation in quantum optics. To this end, we change
to complex variables

u(t) = 1
2 [q(t) + (iωF )−1q̇(t)] exp(−iωF t) (6)

and similarly ud (t) = 1
2 [qd (t) + (iωd )−1q̇d (t)] exp(−iωdt).

Disregarding fast oscillating terms in the equation for u(t),
we obtain

u̇ = −[� + iδωF − iξ (t)]u − i
F

4ω0
+ f (t),

(7)

δωF = ωF − ω0, ξ (t) = 3γ

2ω0
|u(t)|2 + 3γd

2ω0
|ud (t)|2,

where f (t) = −(2iω0)−1h(0)(t) exp(−iωF t). Similarly, the
equation for ud (t) reads

u̇d = −
[
�d − i

3γd

2ωd

|u(t)|2
]
ud + fd (t), (8)

with fd (t) = −(2iωd )−1h
(0)
d (t) exp(−iωdt).

Functions f,fd describe the forces on the modes from
the thermal bath. The forces are random, and one can
always choose 〈f 〉 = 〈fd〉 = 0. Asymptotically, they are delta-
correlated Gaussian noises,

〈f (t)f ∗(t ′)〉 = (
�kBT /ω2

0

)
δ(t − t ′),

(9)
〈fd (t)f ∗

d (t ′)〉 = (
�dkBT /ω2

d

)
δ(t − t ′);

all other correlators vanish. The δ functions here are δ

functions in “slow” time compared to ω−1
0 ,ω−1

d , and the
correlation time of the thermal bath. The stochastic differential
equations (7) and (8) are understood in the Stratonovich sense:
〈u(t)f ∗(t)〉 = �kBT /2ω2

0,〈ud (t)f ∗
d (t)〉 = �dkBT /2ω2

d . These
equations were obtained and their range of applicability
established for a harmonic oscillator coupled to a bath [32,33],
but they also hold for a weakly anharmonic oscillator [20].

As seen from the definition of the complex amplitude u(t),
function ξ (t) in Eq. (7) describes a change of the frequency
of the considered mode due to the intrinsic nonlinearity and
the dispersive coupling. Because of the noise terms f,fd , the
frequency becomes a random function of time. The related
frequency noise is of primary interest for this paper.

IV. THE DRIVING-INDUCED SPECTRUM �F(ω)
FOR DISPERSIVE COUPLING

In this and the two following sections we will study the
spectrum �F (ω) in the case where the internal nonlinearity of
the mode can be disregarded; i.e., one can set γ = 0. In this
case frequency fluctuations ξ (t) ∝ |ud (t)|2 in Eq. (7) are due
only to the dispersive nonlinear mode coupling. An important
feature of this coupling is that it does not affect the frequency
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noise ξ (t) itself, as essentially was noticed earlier [26]. In other
words, fluctuations of |ud (t)|2 are the same as if the d mode
were just a linear oscillator uncoupled from the considered
mode.

The simplest way to see this is to change in the equation
of motion (8) from ud (t) to ũd (t) = K(t)ud (t) with K(t) =
exp[−3i(γd/2ωd )

∫ t
dt ′|u(t ′)|2]. The Langevin equation for

ũd is ˙̃ud = −�dũd + f̃d (t) with f̃d (t) = K(t)fd (t). From
Eq. (9), the noise f̃d (t) has the same correlation functions
as fd (t). Therefore the term ∝ γd drops out of the equation for
ũd . Since |ud |2 = |ũd |2, the term ∝ γd does not affect |ud (t)|2
either [even though it does affect ud (t)].

It is convenient to write ξ (t) in terms of the scaled real and
imaginary part of ũd = (2ω0/3|γd |)1/2(Qd + iPd ). Functions
Qd,Pd are the scaled quadratures of a damped harmonic
oscillator. They are described by the independent exponentially
correlated Gaussian noises (the Ornstein-Uhlenbeck noises)
[34]. Using the Langevin equation for ũd , we obtain

〈Qd (t)Qd (0)〉 = 〈Pd (t)Pd (0)〉 = αd�d exp(−�d |t |),
αd = 3|γd |kBT /8ω0ω

2
d�d, (10)

ξ (t) = [
Q2

d (t) + P 2
d (t)

]
sgnγd.

The frequency noise of the driven mode ξ (t) is non-Gaussian.
Parameter αd characterizes the ratio of the standard deviation
of the noise, which is equal to the noise mean value 〈ξ (t)〉 =
3γdkBT /4ω0ω

2
d , to its correlation rate �d .

Since ξ (t) is independent of u(t), the Langevin equation for
u(t) (7) is linear. Its solution reads

u(t) =
∫ t

−∞
dt ′χ∗

sl(t,t
′)[(−iF/4ω0) + f (t ′)],

(11)

χsl(t,t
′) = e−(�−iδωF )(t−t ′) exp

[
−i

∫ t

t ′
dt ′′ξ (t ′′)

]
.

Function χsl(t,t ′) describes the response of the considered
driven mode to a resonant perturbation. The coefficient at
F averaged over realizations of ξ (t) gives the resonant
susceptibility of the mode,

χ (ωF ) = i

2ω0

∫ ∞

0
dt〈χsl(t,0)〉. (12)

It determines the δ peak in the power spectrum (1). From
Eq. (11), the term �F (ω) in Eq. (1) for the power spectrum
has the form

�F (ω)= (
8ω2

0

)−1
Re

∫ ∞

0
dt exp[i(ω − ωF )t]

×
[∫ t

−∞
dt ′

∫ 0

−∞
dt ′1〈χsl(t,t

′)χ∗
sl(0,t ′1)〉−4ω2

0|χ (ωF )|2
]

(13)

(in the integral over t it is implied that Im ω → +0).
The term ∝ f (t ′) in Eq. (11) determines the power spectrum

of the mode �0(ω) near its maximum, |ω − ω0| � ω0, in the
absence of driving. Thus, Eqs. (11)–(13) give a general expres-
sion for the power spectrum of an underdamped mode with
fluctuating frequency in the absence of internal nonlinearity.

V. AVERAGING OVER THE FREQUENCY NOISE FOR
DISPERSIVE COUPLING

To find the driving-induced part of the power spectrum
F 2�F (ω), one has to perform averaging over fluctuations of
ξ (t) in Eq. (13). This calculation is the central theoretical part
of the paper. In what follows we outline the critical steps that
are involved.

The integrand in the expression for �F (ω) can be written
as

〈χsl(t,t
′)χ∗

sl(0,t ′1)〉 = e−(�−iδωF )(t−t ′)+(�+iδωF )t ′1G2(t,t ′,t ′1),

G2(t,t ′,t ′1) = 〈exp [−iφξ (t,t ′) + iφξ (0,t ′1)]〉, (14)

φξ (t,t ′) =
∫ t

t ′
dt ′′ξ (t ′′).

Here, φξ (t,t ′) is the increment of the phase of the oscillator
over the time interval (t ′,t) due to the frequency noise ξ (t).
Function G describes the result of the averaging over the noise.

Expression (14) can be slightly simplified using the re-
lation (10) between ξ (t) and the quadratures Qd and Pd .
These quadratures are statistically independent, and therefore
averaging over them can be done independently, so that

G(t,t ′,t ′1) =
〈
exp

[
i

∫ t

t0

dt ′′k(t ′′)Q2
d (t ′′)

]〉
, (15)

where t0 = min(t ′,t ′1) and in the interval t0 < t ′′ < t function
k(t ′′) is equal to 0, ± 1,

k(t ′′) =

⎧⎪⎨
⎪⎩

−sgnγd, τ � t ′′ � t ; τ = max(t ′,0);

0, τ ′ < t ′′ < τ ; τ ′ = max[min(0,t ′),t ′1];

sgn(t ′ − t ′1)sgnγd, t0 = min(t ′,t ′1) � t ′′ � τ ′.
(16)

The averaging in Eq. (15) can be conveniently done using
the path-integral technique. A theory of the power spectrum
based on this technique was previously developed for the case
where there is no driving [26]. The approach [26] can be
extended to the present problem, as discussed in Appendix B.
However, the calculation is cumbersome. Here we use a
different method, which is based on the technique [35] for
calculating determinants in path integrals.

In terms of a path integral, the mean value of
a functional L[Qd (t)] of Qd (t) can be written as∫
DQd (t)L[Qd(t)]P[Qd (t)]. For the considered exponen-

tially correlated noise Qd (t), the probability density functional
is (cf. Ref. [36])

P[Qd (t)] = exp

[
−(

4αd�
2
d

)−1
∫

dt(Q̇d + �dQd )2

]
.

To find G(t,t ′,t ′1) we need to perform averaging over the
values of Qd (t ′′) in the interval (t0,t). In a standard way, we dis-
cretize the time as tn = t0 + nε,n = 0, . . . ,N , where ε = (t −
t0)/N and N � 1. The path integral is then reduced to inte-
grating over the values of Qn ≡ Qd (tn)/(4αd�

2
dε)1/2 with 1 �

n � N followed by averaging over Q0 ≡ Qd (t0)/(4αd�
2
dε)1/2

with the Boltzmann weighting factor exp[−2ε�dQ
2
0].

In the midpoint discretization, in the integrals over time
one uses Q̇d (t) → [Qd (t) − Qd (t − ε)]/ε and f (Qd (t)) →
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[f (Qd (t)) + f (Qd (t − ε))]/2 for an arbitrary f (Qd ) [37].
Then the exponent in P[Qd (t)] becomes

− (
4αd�

2
d

)−1
∫

dt(Q̇d + �dQd )2

→ −
N∑

n=1

[
(Qn − Qn−1)2 + ε2�2

dQ
2
n

] − ε�d

(
Q2

N − Q2
0

)
.

(17)

The integral over t ′′ in Eq. (15) is similarly discretized and
goes over into 4αd�

2
dε

2 ∑
n knQ

2
n with kn ≡ k(tn). Then the

expression for function G becomes

G(t,t ′,t ′1) = I [k]/I [0],

I [k] =
∫

dQ0e
−Q2

0(1+ε�d ) (18)

×
∫ N∏

n=1

dQn exp[−Q†�̂[k]Q + 2Q0Q1].

Here, Q is a vector with components Q1, . . . ,QN . From
Eq. (17), the diagonal matrix elements of �̂[k] are �nn[k] =
2 + ε2�2

d (1 − 4iαdkn) for 1 � n � N − 1, �NN [k] = 1 +
ε2�2

d (1 − 4iαdkN ) + ε�d . The only nonzero off-diagonal ma-
trix elements of �̂ are �nn±1[k] = −1.

A. Finding the determinant

The integrals in Eq. (18) are Gaussian. Therefore the cal-
culation of G requires finding the determinants of the matrices
�̂[k] and �̂[0]. This can be done following the approach
[35]. We consider the determinant Dn ≡ Dn[k] of the square
submatrix of �̂[k], which is located at the lower right corner
and has rank N − n + 1. For example, D1 is the determinant
of the whole matrix �̂, whereas DN is the matrix element
�NN . The result of integration over Q1, . . . ,QN in Eq. (18)
for I [k], besides the Q0-dependent factor discussed below, is
πN/2/

√
D1[k].

It is straightforward to see that Dn satisfies the recurrence
relation

Dn = [
2 + ε2�2

d (1 − 4iαdkn)
]
Dn+1 − Dn+2,

(19)
1 � n � N − 2.

In the limit ε → 0, Dn[k] goes over into D(tn; k) and Eq. (19)
reduces to a differential equation for D(t ′′) ≡ D(t ′′; k),

D̈(t ′′) − �2
d [1 − 4iαdk(t ′′)]D(t ′′) = 0. (20)

The obvious boundary conditions for function D are D(t) =
limε→0 DN = 1 and Ḋ(t) = limε→0(DN − DN−1)/ε = −�d .
The quantity of interest is D1[k] ≈ D(t0; k); we will also need
Ḋ(t0; k) (see below).

The integration of the linear in Q1 term in the exponent
in Eq. (18) gives the factor exp[Q2

0(�̂−1)11]. It follows from
the above analysis that (�̂−1)11 = D(t0 + 2ε)/D(t0 + ε) ≈
1 + εḊ(t0)/D(t0). Then the result of integration over Q0 in
Eq. (18) is the factor {π/ε[�d − Ḋ(t0; k)/D(t0; k)]}1/2 in I [k].

For k = 0, we have from Eq. (20) D(t ′′; 0) = exp[�d (t −
t ′′)]. With this, the expression (18) for function G becomes

G(t,t ′,t ′1) = {2�de
�d (t−t0)/[�dD(t0; k) − Ḋ(t0; k)]}1/2. (21)

This expression is the central result of the section. It reduces
the problem of calculating the driving-induced part of the
power spectrum to solving an ordinary differential equation
(20).

B. The average susceptibility

We start the discussion of the applications of the general
result (21) with the analysis of the factor 〈χsl(t,0)〉, which gives
the average mode susceptibility, Eq. (12). Function 〈χsl(t,0)〉
is given by 〈exp[−i

∫ t

0 dt ′′ξ (t ′′)]〉, which in turn is given by
Eq. (14) with G of the form of Eq. (15) in which t ′ = t ′1 = 0
and k(t ′′) = −sgnγd . Solving Eq. (20) with k(t ′′) = constant is
straightforward, as is also finding then G(t,0,0) from Eq. (21).
The result reads

〈χsl(t,0)〉 = exp [−(� − iδωF )t]χ̃ (t),

χ̃ (t) = e�d t [cosh adt + (�d/ad )
(22)

× (1 + 2iαdsgnγd ) sinh adt]
−1,

ad = �d (1 + 4iαdsgnγd )1/2.

Equation (22) expresses the average susceptibility in elemen-
tary functions. It agrees with the result [26] for the correlation
function of the mode dispersively coupled to a fluctuating
mode.

C. The average of the product of the susceptibilities

Solving the full Eq. (20) with discontinuous k(t ′′) is
more complicated. It can be done by finding function D(t ′′)
piecewise where k(t ′′) = constant as a sum of “incident”
and “reflected” waves and then matching the solutions. The
corresponding method reminds the transfer matrix method. It
is described in Appendix A. The result reads

[G(t,t ′,t ′1)]−2

= [χ̃(τ1)χ̃ ′(τ3)]−1 −
(
�2

d − a2
d

)(
�2

d − a′2
d

)
4�2

dada
′
d

sinh(adτ1)

× sinh(a′
dτ3) exp[−�d (2τ2 + τ1 + τ3)], (23)

where τ1 = t − τ,τ2 = τ − τ ′,τ3 = τ ′ − t0; parameters t0, τ ,
and τ ′ are expressed in terms of t,t ′,t ′1 in Eq. (16), and χ̃ (t)
is given by Eq. (22). Function χ̃ ′(t) = χ̃(t) and a′

d = ad for
t ′ < t ′1, whereas χ̃ ′(t) = χ̃∗(t) and a′

d = a∗
d for t ′ > t ′1.

This expression is unexpectedly simple. We use it below
for analytical calculations, in particular for calculating the
driving-induced part of the power spectrum in the limiting
cases.

VI. DISCUSSION OF RESULTS

In this section we use the above results to discuss the form of
the driving-induced part F 2�F (ω) of the power spectrum in the
case of dispersive coupling. We give explicit expressions for
the spectrum in the limiting cases. We also present the results of
the numerical calculations of the spectrum based on the general
expressions (13), (14), and (23). These results are compared
with the simulations. The simulations were performed in a
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standard way by integrating the stochastic equations of motion
(7)–(9) using the Heun scheme [38].

As we show, the shape and the magnitude of �F (ω)
sensitively depend on two factors. One is the interrelation
between the magnitude of frequency fluctuations �ω and their
bandwidth 2�d , the motional-narrowing parameter αd defined
in Eq. (10). The other is the interrelation between �d and the
width of the mode spectrum in the absence of driving �0(ω).

The width of the mode spectrum is not given just by the
mode decay rate �. It is affected by the frequency noise and
depends on αd . This is seen from Eqs. (12) and (22) for the
susceptibility Im χ (ω); cf. Ref. [26]. The half-width of the
peak of Im χ (ω) varies with the frequency noise strength αd�d

from � + 2α2
d�d , for αd � 1, to ∼ � + 2αd�d for αd � 1 [the

peak of Im χ (ω) is profoundly non-Lorentzian for αd � 1 and
αd�d � �].

An important outcome of the analysis in the previous
sections is that the spectrum �F (ω) allows one to measure both
the strength and the correlation time of the frequency noise due
to dispersive coupling. In the first place, it allows one to directly
identify the very presence of this noise. We emphasize that the
full driving-induced term in the power spectrum F 2�F (ω) can
be seen even where thermal fluctuations of the driven mode
are weak and the peak in the power spectrum �0(ω) is too
small to be resolved.

A. The spectrum �F(ω) in the limiting cases

1. Weak frequency noise

The general expression for the spectrum simplifies in the
limiting cases where the frequency noise is weak or its
bandwidth is large or small compared to the width of the driven
mode spectrum �0(ω). In the case of dispersive coupling, the
limit of weak frequency noise is realized where αd�d � �. A
general expression for �F (ω) for weak frequency noise was
obtained earlier [22]. It relates �F (ω) to the power spectrum
of the frequency noise ξ (t). From Eq. (10), in the present case
we have 〈ξ (t)〉 = 2〈Q2

d (t)〉sgn γd = 2αd�dsgn γd , whereas the
correlation function of the noise deviation from the average
δξ (t) = ξ (t) − 〈ξ (t)〉 is 4α2

d�
2
d exp(−2�d |t |). Then, extending

the results [22] to noise with nonzero average, we obtain

�F (ω) = (
α2

d�
3
d

/
ω2

0

)
[(ωF − ω̃0)2 + �2]−1

× {[
(ω − ωF )2 + 4�2

d

][
(ω − ω̃0)2 + �2

]}−1
,

(24)

where ω̃0 = ω0 + 〈ξ (t)〉 = ω0 + 2αd�dsgnγd . This expres-
sion can be also directly obtained from Eq. (23) in the
corresponding limit.

From Eq. (24), for weak dispersive-coupling-induced noise,
the intensity of the spectrum �F (ω) is proportional to the
square of the coupling parameter. If the detuning of the driving
field frequency from the eigenfrequency of the driven oscillator
largely exceeds the half-widths of the power spectra of the both
oscillators in the absence of driving, |ωF − ω̃0| � �,�d , the
power spectrum �F (ω) has two distinct peaks. One is located
at the oscillator frequency ω̃0 and has half-width �. The other
is located at the driving frequency ωF and has half-width 2�d .
We note that the noise variance 4α2

d�
2
d is independent of �d .

For constant α2
d�

2
d , the areas of the peaks at ω̃0 and ωF are

∝ �d/�δω4
F and δω−4

F , respectively (the ratio �d/� affects
only the area of the peak at ω0). As |δωF | decreases, the peaks
start overlapping. For small |δωF | they cannot be resolved.
This behavior is general and occurs also where the frequency
noise is not weak, as we show below.

2. Broad-band frequency noise

We now consider the case of the broad-band frequency
noise, where the decay rate of the d mode �d largely exceeds
the width of the driven mode spectrum. This condition requires
that the motional-narrowing parameter be small, αd � 1. At
the same time, the contribution of the frequency noise to the
spectrum width of the considered mode does not have to be
small compared to its decay rate; i.e., the ratio α2

d�d/� can
be arbitrary. In other words, the broadening of the spectrum of
the considered mode can still largely come from the dispersive
coupling.

To describe the most pronounced peak in the spectrum
�F (ω) for large �d and small αd , one can solve Eq. (20)
in the WKB approximation, D(t ′′) ≈ exp{−�d

∫ t ′′

t
dt2[1 −

4iαdk(t2)]1/2}. Combined with Eq. (21), this solution imme-
diately gives the averaging factor G in Eq. (14) and thus the
spectrum �F . Alternatively, one can use the explicit expression
(23) for function G. Only the first term has to be kept in this
expression for αd � 1 and � � �d . Integration over time in
Eq. (13) gives

�F (ω) ≈ 2α2
d�d/�

4ω0[�̃2 + (ωF − ω̃0)2]
Imχ (ω),

(25)
χ (ω) = (i/2ω0)[�̃ − i(ω − ω̃0)]−1.

Parameters �̃ and ω̃0 are the half-width of the spectrum and
the eigenfrequency of the driven mode renormalized due to
the dispersive coupling, �̃ = � + 2α2

d�d , and ω̃0 is the same
as in Eq. (24).

Equation (25) shows that, for a broad-band frequency noise,
the spectrum �F (ω) has the same shape as the spectrum in
the absence of driving, �F (ω) ∝ �0(ω) ∝ Imχ (ω). However,
from the spectrum �0(ω), which is Lorentzian in this case,
one cannot tell whether the spectrum half-width �̃ is due
to decay or to frequency fluctuations. In contrast, �F ∝ α2

d

is proportional to the variance of the frequency noise and
has a characteristic temperature dependence (α2

d ∝ T 2 if
�d is T -independent). It enables identifying the frequency
noise contribution to the spectral broadening, as was earlier
demonstrated for a δ-correlated frequency noise [22].

Along with the comparatively narrow peak (25), for α2
d�d �

� the spectrum �F (ω) has a broad background near ω0, with
the typical frequency scale �d . To describe it one has to take
into account corrections ∝ α2

d to the leading-order term in
function G (23). For large |δωF | � �̃, the spectrum also has
a peak near ωF with width ∼ 2�d .

3. Narrow-band frequency noise

The spectrum �F (ω) has a characteristic shape also in the
opposite limit where the bandwidth of the frequency noise 2�d

is small compared to the width of the spectrum in the absence
of driving �0(ω). In this case �F (ω) displays a characteristic
peak at the driving frequency ωF , as can be already inferred
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from the weak-noise expression (24). In the overall spectrum
�(ω) it looks like a pedestal of the δ peak at ωF . The typical
half-width of the pedestal is given by �d . This allows one to
read off the decay rate of the d mode from the spectrum �F (ω)
without accessing the d mode directly. To resolve the pedestal
for large αd , where αd�d � � so that the width of the spectrum
�0(ω) is primarily determined by the dispersive coupling, we
need a comparatively large detuning of the driving frequency
from the maximum of �0(ω).

The simplest way to find �F (ω) near ωF for small �d

is based on Eq. (23). One first notices from Eq. (13) that
the major contribution to �F (ω) in this case comes from
the time range t ∼ �−1

d , whereas t − t ′,|t ′1| � |� − iδωF |−1.
Therefore in Eq. (23) one is interested in the limit of large
t but comparatively small t − t ′,|t ′1|. In the limit t → ∞ but
for fixed t − t ′, function G−2(t,t ′,t ′1) → 1/χ̃ (t − t ′)χ̃∗(−t ′1)
with χ̃ (t) given by Eq. (22). The remaining term in G−2

is ∝ exp(−2�dt). One can then write the integrand in the
expression (13) for �F (ω) as a series in exp(−2�dt). The next
simplification comes from the fact that |ad (t − t ′)|,|adt

′
1| � 1

for |� − iδωF |/|ad | � 1. Therefore one can expand χ̃(t −
t ′) ≈ [1 + 2iαd�d (t − t ′)sgnγd ]−1 and similarly for χ̃∗(−t ′1).
Ultimately, the result of integration over the times t,t ′,t ′1 reads

�F (ω) =
∞∑

n=1

∣∣∣∣ 1

n!
αn

d

∂n

∂αn
d

χ (ωF )

∣∣∣∣
2

n�d

(ω − ωF )2 + (2n�d )2
.

(26)

This expression describes the spectral peak at small |ω − ωF |
in terms of the derivatives of the susceptibility χ (ω) calculated
as a function of the motional-narrowing parameter αd . The
width of the spectral peak (26) is given by the bandwidth of the
frequency noise 2�d . The peak is generally non-Lorentzian.

B. Evolution of �F(ω) with the varying bandwidth and strength
of the frequency noise

To visualize the dependence of the spectrum �F (ω) on
the parameters of the system, we now present the results of
numerical evaluation of the general expressions (13), (14),
and (23). Figure 1 shows the evolution of the driving-induced
power spectrum �F (ω) with the varying ratio of the decay
rates �d/�, i.e., the varying ratio of the bandwidth of the
frequency noise and the decay rate of the driven mode. We use
as a scaling factor the susceptibility χ0 of the driven mode in
the absence of dispersive coupling,

χ0(ωF ) = i[2ω0(� − iδωF )]−1. (27)

In Fig. 1(a), the frequency noise bandwidth is much larger
than the width of the spectrum �0(ω) in the absence of driving.
The spectrum �F (ω) is close to a Lorentzian centered near the
shifted eigenfrequency of the driven mode, see Eq. (25); for
small αd the shift should be 2αd�d , whereas the half-width
should be close to � + 2α2

d�d [26], which agrees with the
numerics. In Fig. 1(d), on the other hand, the noise bandwidth
is small. The spectrum �F (ω) is a narrow peak near the driving
frequency ωF , see Eq. (26), with half-width ≈ �d . In Figs. 1(b)
and 1(c) the frequency noise bandwidth is comparable to the
width of the spectrum �0(ω). In this case the spectrum �F (ω)
displays two partly overlapping peaks. The overlapping can be
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FIG. 1. (Color online) The scaled driving-induced part of the
power spectrum of the driven mode dispersively coupled to another
mode, which we call the d mode. Thermal fluctuations of the d mode
lead to frequency fluctuations of the driven mode. Panels (a) to (d)
show the change of the spectrum with the varying ratio �d/� of the
decay rates of the d mode and the driven mode. The scaled strength
(standard deviation) of the frequency noise is αd�d/� = 1. The
spectrum �F (ω) is scaled using the noise-free susceptibility χ0(ωF ),
Eq. (27), �̃F = 4��F /|χ0(ωF )|2. The solid lines and the dots show
the analytical theory and the numerical simulations, respectively.
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FIG. 2. (Color online) The evolution of the driving-induced part
of the power spectrum with the varying strength of the frequency noise
due to dispersive coupling. Curves 1 to 3 refer to the scaled standard
deviation of the noise αd�d/� = 0.5, 2.5, and 12.5, respectively.
The ratio of the noise bandwidth to the decay rate of the driven
mode is 2�d/� = 1. The scaled detuning of the driving frequency
from the eigenfrequency of the driven mode is δωF /� = −5. The
spectrum is scaled using the noise-free susceptibility χ0(ωF ), Eq. (27),
�̃F = 4��F /|χ0(ωF )|2. The curves 1 and 3 are additionally scaled
by factors 3.15 and 1.3, respectively, so that the peaks near ωF have
the same height. The inset shows the spectrum �0(ω) in the absence
of driving for the same values of the frequency noise strength αd�d/�

as in the main panel. The solid lines and the dots show the analytical
theory and the simulations, respectively.

reduced by tuning the driving frequency ωF farther away from
the resonance; see below.

Figure 2 shows the evolution of the spectrum �F (ω)
with the varying strength (standard deviation) 2αd�d of the
frequency noise. The frequency noise bandwidth 2�d is chosen
to be close to the decay rate of the driven mode �. The driving
frequency ωF is tuned away from resonance so that the two
peaks of �F (ω) are well separated. An insight into the shape
of the peaks can be gained from the aforementioned similarity
of the spectrum �F (ω) with the spectrum of fluorescence
and quasi-elastic light scattering by a periodically driven
oscillating charge.

For weak frequency noise, curve 1 in Fig. 2, the peaks are
located near ωF (quasielastic scattering) and ω0 (fluorescence);
cf. Eq. (24). As the noise strength increases, the peak near ω0

becomes broader and the position of its maximum shifts to
higher frequency (if γd > 0, as assumed in the figure). This
resembles the evolution of the spectrum �0(ω) in the absence
of driving with increasing αd ; this evolution is shown in the
inset of Fig. 2. For αd > 1 the peak becomes non-Lorentzian
and asymmetric.

In contrast, the shape of the peak located near ωF stays
almost the same with varying noise strength. This is consistent
with the picture of quasielastic scattering, where the width of
the peak is determined by the frequency noise bandwidth. To
illustrate how persistent this behavior is, we scaled the spectra
in Fig. 2 so that at their maxima at ωF the spectra have the
same height for different αd .

Ω0

F

0

0.05

0.1
ΔΩF 5ΩFa

0

0.8

1.6
ΔΩF 2ΩFb

10 0 10 20
0

2

4

6 ΔΩF 10
ΩF

c

0

FIG. 3. (Color online) The evolution of the driving-induced part
of the power spectrum with the varying detuning of the driving
frequency ωF . The scaled strength of the frequency noise induced
by the dispersive coupling is αd�d/� = 2.5. The ratio of the noise
bandwidth to the decay rate of the driven mode is 2�d/� = 1.
The spectrum is scaled using the noise-free susceptibility χ0(ωF ),
Eq. (27), �̃F = 4��F /|χ0(ωF )|2. The solid lines and the dots show
the analytical theory and the simulations, respectively.

C. Effect on �F(ω) of the detuning of the driving frequency

To provide more insight into the nature of the double-peak
structure of the spectrum �F (ω) for � ∼ �d , we show in
Fig. 3 the effect of detuning of the driving frequency ωF from
resonance. Panels (a), (b), and (c) refer to the driving frequency
being red detuned, equal to, and blue detuned from the the
maximum of the spectrum �0(ω) in the absence of driving,
respectively. The results we show refer to the dispersive
coupling constant γd > 0. For γd < 0, the plots should be
mirror-reflected with respect to ω − ω0, and ωF − ω0 should
be replaced with ω0 − ωF .

The peak located near the frequency ωF is well resolved
in Fig. 3(a). It moves along with ωF as the latter varies. In

165419-8



SPECTRAL EFFECTS OF DISPERSIVE MODE COUPLING . . . PHYSICAL REVIEW B 92, 165419 (2015)

Fig. 3(a) one can also see a broader peak, which is located
close to ω0 and essentially does not change its position as ωF

changes. For small frequency-noise bandwidth, the peak at
ωF becomes narrow and is described by Eq. (26). However,
it is well resolved for large frequency detuning even where
the noise bandwidth and the width of the spectrum �0(ω) are
of the same order of magnitude. If the widths are close and
ωF is close to resonance, the peaks overlap and cannot be
identified, as seen in panel (b). The areas of the peaks are
dramatically different for red and blue detuning. This is due
to the asymmetry of the spectrum �0(ω) in the presence of
the frequency noise induced by dispersive coupling; see the
inset of Fig. 2. As seen from Fig. 1, for very small �d/� the
peak near the oscillator eigenfrequency disappears; this was
discussed earlier in the case of weak noise, but is also true in
a general case.

D. The area of the driving-induced power spectrum

The area SF of the driving-induced power spectrum �F (ω)
is defined as SF = ∫ ∞

0 dω�F (ω). The major contribution to
the integral comes from the frequency range where |ω − ωF |,
|ω − ω0| � ωF . Then integration over ω in Eq. (13) gives
a factor 2πδ(t). Further simplification comes from changing
from integrating over t ′ and t ′1 to integrating over t ′ and t ′ − t ′1
and using Eq. (12) for the susceptibility of the mode. The result
reads

SF = π

4ω0�
Imχ (ωF ) − π

2
|χ (ωF )|2. (28)

This reduces the calculation of the area SF just to finding
the susceptibility χ (ωF ) of the mode. This susceptibility with
account taken of the dispersive coupling is given by Eqs. (12)
and (22).

The behavior of the area SF can be found explicitly for
small and large αd . In the limit of small αd , where the
frequency noise is weak, from Eq. (24) SF ∝ α2

d . For large
αd , it is convenient to write χ̃ (t) in Eq. (22) as χ̃ (t) ≈
(2/

√
iαd )

∑∞
n=0 exp[−2n(iαd )−1/2 − (2n + 1)adt], where we

assumed γd > 0; the ultimate result is independent of the sign
of γd . The susceptibility χ (ωF ) is given by the integral of
χ̃ (t) over t , Eq. (12). In the limit �dα

1/2
d � |� − iδωF | from

Eq. (12) χ (ωF ) ≈ (2ω0αd�d )−1 ∑
exp[−2n(iαd )−1/2]/(2n +

1). To the leading order in 1/αd this gives

χ (ωF ) ≈
[

1

2
ln(4αd ) + i

π

4

]/
4ω0�dαd. (29)

We see from Eqs. (28) and (29) that SF ∝ α−1
d falls down with

increasing αd for large αd .
The nonmonotonic dependence of the area SF on the

parameter αd , which is expected from the above asymptotic
expressions, is indeed seen in Fig. 4(a). This figure shows the
area SF as a function of the motional narrowing parameter
αd for different �d/�. The position of the maximum of SF

sensitively depends on �d/�.
In terms of a comparison with experiment, it is advan-

tageous to scale the spectrum �F , and in particular the
area SF , by the area of the δ peak in the power spectrum
of the driven mode. This area is given by the expression
Sδ = (π/2)|χ (ωF )|2; cf. Eq. (1). The quantities measured in
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FIG. 4. (Color online) The area of the driving-induced part of the
power spectrum as a function of αd for different ratio of the frequency
noise bandwidth to the decay rate of the driven mode 2�d/�. The red
(solid), blue (dashed), and green (dotted) lines refer to �d/� = 10, 2,
and 0.1, respectively. The relative detuning of the driving frequency
is δωF /� = 5. In panel (a), the area SF is scaled using the noise-free
susceptibility χ0(ωF ), Eq. (27), S̃F = 2SF /π |χ0(ωF )|2. In panel (b),
SF is scaled by the area of the δ peak in the power spectrum of the
driven mode, Sδ = π |χ (ωF )|2/2.

the experiment are F 2SF and F 2Sδ . The unknown scaled field
intensity F 2 drops out from their ratio. From Eqs. (28) and
(29) SF /Sδ ∝ αd/ ln2 αd increases with αd for large αd . For
small αd , SF /Sδ ∝ α2

d also increases with αd . On the whole,
we found that SF /Sδ monotonically increases with αd . This
increase is seen in Fig. 4(b).

VII. DISPERSIVE COUPLING TO SEVERAL MODES

The results can be easily extended to the case of dispersive
coupling to several modes rather than a single d mode. We
enumerate the modes by the subscript � = 1,2, . . .. The modes
eigenfrequencies and decay rates are ω� and �� . The energy of
the dispersive coupling is (3/4)

∑
� γ�q2q2

� . The contributions
of different modes � to the frequency fluctuations of the studied
mode and therefore to the random accumulation of its phase
are additive and mutually independent. To describe the driving-
induced spectrum, one can use Eqs. (13) and (14) and average
over the phase accumulation in Eq. (14) independently for each
mode �. The result is the product of the averages [functions
G(t,t ′,t ′1)] calculated for each mode taken separately.

Perhaps of utmost physical interest are the cases where of
significance is either dispersive coupling to one or very few
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modes, as for example in some optomechanical systems in
which a radiation mode is dispersively coupled to a mechanical
mode [9,19], or where there is dispersive coupling to many
modes, as may be the case in carbon nanotubes or graphene
membranes [1,8]. The present paper is focused on the first
case. The second case may be simpler, since the parameters
γ� of coupling to individual modes are small; in particular,
in nanomechanical systems this is a consequence of the
difference of the spatial structure of the studied mode and
the modes �. If the number of the � modes is N , in the
thermodynamic limit, N → ∞, we would have γ� ∝ 1/N .
In this limit the spectrum of the modes � is almost continuous,
and frequency fluctuations of the studied mode come from
the coupling ∝ ∑

�,� ′ γ�� ′q2q�q� ′ . This coupling leads to
quasielastic scattering of modes � off the studied mode, which
results in a broad-band frequency noise and in the Lorentzian
spectrum �0(ω) [39,40]; the spectrum �F (ω) for a broad-band
frequency noise is discussed in Ref. [22].

A. An intermediate number of modes: Weak and effectively
strong coupling

A more interesting situation can arise in the intermediate
case of a large but limited number N of modes �. We
assume that the mode frequencies are well separated, |ω� −
ω� ′ | � ��,�� ′ , and the frequency differences do not resonate
with ω0,2ω0. Because N is large, the motional-narrowing
parameters α� = 3|γ� |kBT /8ω0ω

2
��� can be small. However,

α� are not infinitesimally small. For a large N , one can think
of a situation where the cumulative effect of the coupling to
many modes is effectively strong.

For a multimode coupling, the factor χ̃ (t) in the average
susceptibility 〈χsl(t,0)〉 (22) is given by the product of the
expressions (22) for χ̃(t) calculated for each mode � [26]. For
α� � 1

χ̃(t) ≈ exp
∑

�

g�(t),

g�(t) = − 2iα���t sgnγ� (30)

+ α2
�[1 − 2��t − exp(−2��t)].

For large N , the most simple relevant case is the case of
weak coupling, where

∑
� α2

� � 1. In this case the power
spectrum �0(ω) = (2kBT /ω0)Imχ (ω) is close to Lorentzian.
From Eqs. (12), (22), and (30), to the leading order in∑

� α2
� ,

Imχ (ω) ≈ �̃/{2ω0[�̃2 + (ω − ω̃0)2]},
ω̃0 = ω0 + 2

∑
�

α��� sgnγ�, (31)

�̃ = � + 2
∑

�

α2
���.

In contrast to the previous work [26], we do not assume here
that the half-width of the spectrum is close to �; even for
small α� the dispersive-coupling-induced spectral broadening
may become comparable to the decay rate of the studied mode
for �� � �. For �̃ − � � � one should keep in Im χ (ω)
other corrections ∝ α2

� , which make the spectrum slightly non-
Lorentzian [26].

Even where α� � 1, the sum
∑

� α2
� is not necessarily

small. We will now consider the case where
∑

� α2
��2

� greatly
exceeds the scaled squared decay rates of the involved modes
�2

�(1 + 2α� )2 (typically, this requires that
∑

� α2
� � 1) and∑

� α2
��2

� � �2. This is the case of cumulatively strong
coupling, where the coupling becomes strong because of
the large number of modes involved. One can see that
the major contribution to the Fourier transform of χ̃(t) in
Eq. (22) [and in Eq. (30), for α� � 1] comes from the
time range t � (

∑
� α2

��2
�)−1/2. In this range, χ̃(t) is given

by Eq. (30) with the exponent expanded to second order
in ��t . Then the power spectrum in the absence of driving
�0(ω) = (2kBT /ω0)Imχ (ω) has a Gaussian spectral peak.
From Eqs. (12), (22), and (30),

Imχ (ω) ≈ (
π/8ω2

0σ
2
)1/2

exp[−(ω − ω̃0)2/2σ 2],
(32)

σ 2 = 4
∑

�

α2
��2

� .

A Gaussian shape of the spectrum in the case of multimode
dispersive coupling was proposed to describe the spectra
of vibrational modes in carbon nanotubes [1]. This shape
was justified [1] in numerical simulations of a model where
all �� were the same. The numerical analysis [1] further
showed that the tails of the spectrum are Lorentzian, which is
generic for nonlinearly coupled modes [26] and is seen from
Eq. (30).

1. The driving-induced spectrum

The spectrum �F (ω) is determined by the Fourier transform
of function G2(t,t ′,t ′1) which, as indicated earlier, is given by
the product of expressions (23) calculated for each mode �.
For small α�

G2(t,t ′,t ′1) ≈ exp

[
g�(τ1) + g′

�(τ3) + sgn(t ′ − t ′1)

×
∑

�

α2
�e−2��τ2 (1 − e−2��τ1 )(1 − e−2��τ3 )

]
,

(33)

where g� is given by Eq. (30), whereas g′
� = g� for t ′ < t ′1

and g′
� = g∗

� for t ′ > t ′1; the relation between τ1,2,3 and t,t ′,t ′1
is explained below Eq. (23); see also Appendix C.

For small
∑

� α2
� and small frequency-noise-induced spec-

tral broadening,
∑

� α2
��� � � and

∑
� α2

��2
� � �2, the

driving-induced spectrum is given by Eq. (24) in which the fac-
tor α2

d�
3
d/[(ω − ωF )2 + 4�2

d ] is replaced by
∑

� α2
��3

�/[(ω −
ωF )2 + 4�2

� ] and ω̃0 is given by Eq. (31). In the case where∑
� α2

��� � �, the spectrum �F (ω) has a Lorentzian peak
near ω̃0 described by Eq. (25) in which one should use Eq. (31)
for �̃,ω̃0, and χ (ω), and should replace in the numerator α2

d�d

with
∑

� α2
��� .

The driving-induced term �F (ω) arises also in the case
of the effectively strong coupling where

∑
� α2

��2
� largely

exceeds the scaled squared decay rates �2,�2
�(1 + 2α�)2. In

this case one should keep in the exponent in G2 in Eq. (33) only
terms up to second order in τ1,τ3. Function G2 then should
be expanded in a series in

∑
� α2

��2
�τ1τ3 exp[−2��τ2]. The
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result of the calculation is given in Appendix C. The general
expressions simplify in the important case where the decay
rate of the considered mode is small compared to the decay
rates of the � modes, � � �� . In this case

�F (ω) ≈ (2�)−1Imχ (ω) Imχ (ωF ). (34)

Equations (32) and (34) show that, for frequency noise with
the correlation time small compared to the mode lifetime �−1,
the leading-order term in the driving-induced power spectrum
�F (ω) has the same shape as the peak in the power spectrum in
the absence of driving �0(ω). This behavior was found earlier
[22] for a general frequency noise provided the noise spectrum
is much broader than the width of the spectral peak of �0(ω)
and the standard deviation of the noise, in which case the
spectrum �0(ω) is Lorentzian; cf. also Eq. (25). In the present
case the coupling is strong and the width of the noise spectrum
∼ max �� is smaller than the standard deviation σ , and as
a result �F (ω) is not proportional to the squared coupling
parameter as in Eq. (25).

Other terms in the expression for �F (ω) obtained in
Appendix C show that the driving-induced spectrum is
nonmonotonic also near the driving frequency. The structure
of the spectrum sensitively depends on the coupling and the
decay rates of the � modes.

The general expressions (C1) and (C3) simplify if all
� modes have the same decay rate. In this case it is also
possible to simulate the spectra numerically. We have checked
that the analytical results are in excellent agreement with
the simulations. It is important that the dispersive-coupling-
induced term in the power spectrum of the driven mode �F (ω)
is always positive, whether the dispersive coupling is mostly
to one mode or to many modes.

VIII. POWER SPECTRUM OF A DRIVEN NONLINEAR
OSCILLATOR

An important contribution to the broadening of the spec-
tra of mesoscopic oscillators can come from their internal
nonlinearity [41]. The vibration frequency of a nonlinear os-
cillator depends on the vibration amplitude. Therefore thermal
fluctuations of the amplitude lead to frequency fluctuations.
The analysis of the spectra is complicated by the interplay
of the frequency fluctuations that come from the amplitude
fluctuations and the frequency uncertainty that comes from the
oscillator decay. Nevertheless the linear susceptibility could be
found for an arbitrary relation between the standard deviation
of the frequency �ω and the decay rate � [26]. The power
spectrum of a nonlinear oscillator in the absence of driving is
generally asymmetric and non-Lorentzian.

Finding the driving-induced terms in the power spectrum
is still more complicated. The oscillator displacement is
nonlinear in the driving field amplitude F , and the driving-
induced part of the power spectrum �(ω) is not quadratic in
F . However, if the field is weak, Eq. (1) for �(ω) applies. In
the calculation of �F (ω) one should take into account terms
in the oscillator displacement that are quadratic in F , which is
generic for nonlinear systems [42].

We assume that the nonlinear part of the oscillator energy
is small compared to the linear part. Then the nonlinear term
in the oscillator energy can be taken in the form of γ q4/4

[43]. The oscillator equation of motion in the rotating wave
approximation is given by Eq. (7) with γd = 0,

u̇ = −(� + iδωF )u + 3iγ

2ω0
|u|2u − i

F

4ω0
+ f (t). (35)

In this section we do not discuss the effect of dispersive
coupling, and the frequency noise that comes from this
coupling is not included into Eq. (35).

To find �F (ω), we first consider the dynamics of a
driven nonlinear oscillator without fluctuations and then take
fluctuations into account. The stationary solution ust of Eq. (35)
in the absence of the noise f (t) can be found by setting u̇ = 0.
For weak driving, ust is a series in F , which contains only
odd powers of F . Since we are interested in the terms which
are linear or quadratic in F , it is sufficient to keep only the
leading term, ust = F/4iω0(� + iδωF ). One then substitutes
into Eq. (35) u(t) = ust + δu(t). The deviation δu(t) is due
only to the noise,

δu̇ = − (iδωF + �)δu + 3iγ

2ω0

(|δu|2δu + 2ust|δu|2 + u∗
stδu

2

+ 2|ust|2δu + u2
stδu

∗) + f (t). (36)

Time evolution of δu(t) depends on the driving field in terms
of ust. We find this time evolution in the two limiting cases.

A. Weak nonlinearity

The analysis of the dynamics simplifies in the case of small
nonlinearity-induced spread of the oscillator frequency �ω

compared to the decay rate �. As seen from Eq. (35), in
the absence of driving the frequency shift is quadratic in the
vibration amplitude ∝ |u|2 [43], and therefore the frequency
spread is determine by the standard deviation of |u|2 due to
the thermal noise. This gives �ω = 3|γ |kBT /8ω3

0.
For �ω � �, it is sufficient to keep only the linear in δu

terms in Eq. (36) [44,45]. A straightforward calculation then
gives a simple expression for the the driving-induced power
spectrum,

�F (ω) ≈ 3γ kBT

8ω5
0

(ω − ω0)�(
�2 + δω2

F

)
[�2 + (ω − ω0)2]2

. (37)

The spectrum (37) is proportional to the derivative of
the Lorentzian spectrum of the harmonic oscillator �0(ω) ∝
1/[�2 + (ω − ω0)2] over ω. It has a characteristic dispersive
shape, being of the opposite signs on the other sides of ω0. This
is the result of the shift of the oscillator vibration frequency
∝ γF 2 due to the driving. Such shift is the main effect of the
driving for small �ω/�.

B. Large detuning of the driving field frequency

For arbitrary �ω/�, the analysis is simplified if the
detuning of the driving field frequency from the small-
amplitude oscillator frequency |δωF | � �,�ω. In this case,
one can change variables in Eq. (36) to δũ(t) = δu(t)eiδωF t .
The right-hand side of the resulting equation for δũ, besides the
noise term, has terms that smoothly depend on time on the scale
|δωF |−1 and terms that oscillate as exp(±iδωF t), exp(2iδωF t).
These oscillating terms can be considered a perturbation. To
the first order of the perturbation theory, the equation for the
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smooth terms takes the form

δ ˙̃u = −�δũ + 3iγ

ω0
|ust|2δũ

+
(

1 + 9γ |ust|2
ω0δωF

)
3iγ

2ω0
|δũ|2δũ + f̃ (t), (38)

where f̃ (t) = f (t)eiδωF t . We keep in this equation the terms
∝ |ust|2 ∝ F 2. These terms contribute to the spectrum �F (ω).
The terms of higher order in |ust|2 have been discarded.

Equation (38) has the same form as the equation of motion
for the complex amplitude u(t) in the absence of driving, i.e.,
Eq. (35) with F = 0. The noise f̃ (t) has the same correlation
function as f (t). Therefore the power spectrum of δũ(t) is
the same as the power spectrum of a nonlinear oscillator
found earlier [26], with the renormalized parameters: the
eigenfrequency is shifted by 3γ |ust|2/ω0 and the nonlinearity
parameter is multiplied by the factor 1 + 9γ |ust|2/ω0δωF . We
note that the correction ∝ |ust|2 in this factor, which comes
from the perturbation theory in 1/δωF , is small.

To find �F (ω) we have to expand the result [26] with
the appropriately renormalized parameters to the first order
in |ust|2. This gives

F 2�F (ω) = β{∂β[�0(ω − 2βδωF ; �ω(1 + 6β))]}β=0,

�0(ω; �ω) = kBT

ω2
0

Re
∫ ∞

0
dt exp{[i(ω − ω0) + �]t}

× [cosh(at) + (�/a)(1+2iαsgnγ ) sinh(at)]−2.

(39)

The parameters α and a have the same structure and the
same physical meaning as the parameters αd and ad used
before, α = �ω/� and a = �(1 + 4iαsgnγ )1/2, whereas β =
3γF 2/32ω3

0(δωF )3 is the scaled intensity of the driving field.
The major contribution to �F (ω) as given by Eq. (39)

for large |δωF |/�ω comes from the frequency shift of
the spectrum without driving �0(ω) and is determined by
−2δωF ∂ω�0(ω; �ω). Physically, this result again corresponds
to the shift of the oscillator eigenfrequency associated with the
forced vibrations, and the spectrum �F again has the character-
istic shape of a dispersive curve. To the next order in 1/δωF ,
the driving broadens or narrows the spectrum depending on
the sign of γ /δωF by renormalizing the nonlinearity-induced
standard deviation of the oscillator frequency �ω.

C. Numerical simulations

The analytical results on the spectra of the modulated
nonlinear oscillator, Eq. (39), are compared with the results of
numerical simulations in Fig. 5. The spectrum �F (ω) generally
has a positive and negative part, in a dramatic distinction from
the case of a linear oscillator dispersively coupled to another
oscillator. As �ω/� increases, the shape of �F (ω) becomes
more complicated; in particular, the positive and negative parts
become asymmetric.

The simulations were performed in the same way as for
the dispersively coupled modes by integrating the stochastic
differential equations (35). We verified that the values of the
modulating field amplitude F were in the range where the
driving-induced term in the power spectrum was quadratic in
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FIG. 5. (Color online) The driving-induced part of the power
spectrum of a nonlinear oscillator for large detuning of the driving
frequency, δωF /�ω = 40. The solid curves and the dots show the
analytical expressions and the results of simulations, respectively. The
values of the nonlinearity parameter and the scaled driving strength
for the curves 1 to 3 are, respectively, α ≡ �ω/� = 0.125, 1.25, and
5, and β ≡ 3γF 2/32ω3

0δω
3
F = 0.016, 0.004, and 0.004. The inset

shows the change of the power spectrum in the absence of driving
with varying �ω/�.

F . As seen from this figure, the simulations are in excellent
agreement with the analytical results.

In the intermediate range, where the nonlinearity is not
weak and the driving is not too far detuned, i.e., |δωF | ∼
max(�,�ω), we obtained the spectrum �F (ω) by running
numerical simulations. These results are presented in Fig. 6.
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FIG. 6. (Color online) The driving-induced part of the spectrum
of a nonlinear oscillator for small detuning of the driving frequency.
The solid curve (red) shows the analytical results for �F (ω) for
small �ω/� for the same parameters as the dotted curve 1. The dots
show the results of simulations. The scaled values of the nonlinearity
parameter, the detuning, and the driving strength on the curves 1 and
2 are, respectively, α ≡ �ω/� = 0.05 and 1.25, δωF /� = 0.5 and
5, and β ≡ 3γF 2/32ω3

0(δωF )3 = 0.64 and 0.01. The inset shows the
full spectrum for the parameters of curve 2 (blue dots, simulations);
the spectrum without driving for the same �ω/� is shown by the
solid line (analytical) and (green) dots on top of this line, which are
obtained by simulations.
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They show that the general trend seen in Fig. 5 that �F (ω)
changes signs and is asymmetric for a nonlinear oscillator
persists in this case as well.

IX. CONCLUSIONS

In terms of experimental studies of mesoscopic vibrational
systems, the major result of this paper is the suggestion of a
way to single out and characterize the dispersive (nonresonant)
coupling between vibrational modes. The proposed method
allows revealing dispersive coupling even where there is no
access to the mode coupled to the studied one. We have shown
that dispersive coupling leads to a specific, generally double-
peak extra structure in the power spectrum of a mode when
this mode is driven close to resonance. The dispersive-coupling
induced part of the power spectrum is quadratic in the driving
field amplitude. It varies significantly with the detuning of the
driving frequency from the mode eigenfrequency.

The “tune off to read off” approach, which relies on
changing the driving frequency, allows one to study separately
two effects. One is the dispersive-coupling-induced broaden-
ing of the spectral peak of the linear response, which is of
significant interest for mesoscopic modes [1,7,8,16,17]. The
other is the decay of the “invisible” mode that is dispersively
coupled to the studied mode. The double-peak structure of the
driving-induced power spectrum sensitively depends both on
the strength of the dispersive coupling and the parameters of
the invisible mode.

Another important feature of the driving-induced spectrum
is the qualitative difference between the effects of nonlinear
dispersive coupling to other modes and the internal nonlin-
earity of the studied mode. Both nonlinearities are known to
broaden, in a somewhat similar way [26], the linear response
spectrum in the presence of thermal fluctuations. However, in
the case of internal nonlinearity, the driving-induced part of
the power spectrum changes sign as a function of frequency;
i.e., it has peaks of the opposite signs and is similar (and is
close, in a certain parameter range) to the derivative of the
power spectrum without driving.

We have extended the results to the case of dispersive
coupling to several modes. The contributions of different
modes to the frequency fluctuations of the studied mode,
and therefore to the random accumulation of its phase, are
additive and mutually independent. Then the averaging over
the phase accumulation can be done independently for each
mode. The extension to the case of a few modes is therefore
straightforward. New features emerge if there are many, but
not too many modes. The cumulative effect of weak dispersive
coupling to many modes may lead to an effectively strong
coupling. As a result, the spectrum without driving becomes
close to Gaussian in the central part, as was suggested in
Ref. [1]. The driving-induced part of the power spectrum
displays a characteristic structure, which sensitively depends
both on the parameters of the dispersive coupling and the
dissipation parameters of the involved modes.

In terms of the theory, the paper describes a path-integral
method that enables finding in an explicit form the spectrum of
a driven oscillator in the presence of non-Gaussian fluctuations
of its frequency, which result from dispersive coupling to other
modes. The results apply for an arbitrary ratio between the

relevant parameters of the system. These parameters are the
magnitude (standard deviation) of the frequency fluctuations
�ω, their reciprocal correlation time, which is given by the
decay rate of the dispersively coupled mode that causes the
fluctuations, the decay rate of the driven mode itself, and
the detuning of the driving frequency.

It is the presence of several parameters that makes it
complicated to identify the broadening mechanisms from the
linear response spectra. The results of the paper show the
qualitative difference between the effects of these parameters
on the power spectrum when the oscillator is driven. This
enables their identification.

Generally, in mesoscopic vibrational systems, and in
particular in nanomechanical systems, the internal (Duffing)
and dispersive nonlinearities can be of the same order of mag-
nitude. If the studied mode has a much higher frequency than
the mode to which it is dispersively coupled, its fluctuations can
be comparatively weaker making the effect of the dispersive
coupling stronger. Also if there are several modes dispersively
coupled to the mode of interest, their cumulative effect can
be stronger than the effect of the internal nonlinearity. This
makes it even more important to be able to distinguish the
effects, which the proposed approach allows.

The results immediately extend to the parameter range
where the driven mode has high frequency and is in the
quantum regime, �ω0 > kBT . This is because, as long as the
mode itself is linear, its displacement is a superposition of the
displacement without driving, which is affected by quantum
fluctuations, and the classical driving-induced displacement.
The effect of dispersive coupling to a classical mode (�ωd �
kBT ) on the driving-induced displacement is independent of
�ω0/kBT . Dispersive coupling of a quantum mode to a clas-
sical mode is of particular interest for optomechanics, where
the high-frequency optical cavity mode can be dispersively
coupled to a low-frequency mechanical mode [9,19]. Driving
the cavity mode leads in this case to a characteristic radiation
described in this paper.
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APPENDIX A: THE TRANSFER-MATRIX-TYPE
CONSTRUCTION

The central part of the calculation of the driving-induced
power spectrum is the averaging over the frequency noise due
to dispersive coupling. Equations (14) and (21) reduce this
averaging to solving an ordinary differential equation (20) with
the coefficient that varies with time stepwise. The solution
can be simplified by taking advantage of this specific time
dependence.

From Eq. (16), the interval (t0,t) in Eq. (20) is separated
into three regions m = 1,2,3 within which the time-dependent
coefficient k(t ′′) = k̄m is constant. The boundaries between the
regions τ and τ ′ and the values of k̄m are specified in Eq. (16).
We enumerate the regions in the order of decreasing time; that
is, the region τ < t ′′ < t corresponds to m = 1, etc. In each

165419-13



YAXING ZHANG AND M. I. DYKMAN PHYSICAL REVIEW B 92, 165419 (2015)

region

D(t ′′; k) = M11(t ′′ − t0; m)Am + M12(t ′′ − t0; m)Bm. (A1)

Here, Mij are the matrix elements of the matrix

M̂(t ′′; m) =
(

cosh amt ′′ sinh amt ′′
am sinh amt ′′ am cosh amt ′′

)
,

(A2)
am ≡ a(k̄m) = �d (1 − 4iαd k̄m)1/2.

We note that, from Eq. (16), a1 = �d (1 + 4iαdsgnγd )1/2,
whereas a2 = �d ; a3 is equal to either a1 or a∗

1 depending
on whether t ′ < t ′1 or t ′ > t ′1 in the argument of the G function
in (21).

The values of A1,B1 in Eq. (A1) are determined by the
conditions D(t ; k) = 1,Ḋ(t ; k) = −�d . The values of Am,Bm

for m = 2,3 are found from the continuity of D(t ′′; k),Ḋ(t ′′; k)
at the boundaries t ′′ = τ,τ ′.

Function G(t,t ′,t ′1) in Eq. (21) is determined by D(t0; k) =
A3 and Ḋ(t0; k) = a3B3. From Eqs. (A1) and (A2) we have(

A3

B3

)
= M̂−1(τ ′ − t0; 3)M̂(τ ′ − t0; 2)M̂−1(τ − t0; 2)

× M̂(τ − t0; 1)M̂−1(t − t0; 1)

(
1

−�d

)
. (A3)

This simple relation combined with Eq. (21) give the integrand
in the expression for the power spectrum �F (ω) in a simple
form, which is convenient for numerical integration. The
expression (A3) can be evaluated in the explicit form. The
result is given in Sec. V C. It is advantageous when one looks
for the asymptotic expressions for the spectrum �F (ω).

APPENDIX B: ALTERNATIVE PATH-INTEGRAL
APPROACH TO AVERAGING OVER FREQUENCY NOISE

Here we provide an alternative approach to evaluating
function G(t,t ′,t ′1), which is defined by Eq. (15) and describes
the outcome of averaging over the frequency noise. The
method is related, albeit fairly remotely, to the method
developed for calculating the power spectrum of a nonlinear
oscillator in the absence of driving [20,26]. We start with
writing the probability density functional of the Gaussian
process Qd (t) on the whole time axes, −∞ < t < ∞, in terms
of the correlation function A(t2,t3) = 〈Qd (t2)Qd (t3)〉 and its
inverse A−1(t2,t3),

P[Qd (t)] = exp

[
−1

2

∫ ∫
dt1dt2Qd (t1)A−1(t1,t2)Qd (t2)

]
,

∫
dt2A

−1(t1,t2)A(t2,t3) = δ(t1 − t3) (B1)

(cf. Ref. [36]).
From Eq. (15), function G and its derivative ∂G/∂t can be

written as

G(t,t ′,t ′1) =
∫
D[Qd ]P̃[Qd ]∫
D[Qd ]P[Qd ]

,

(B2)
∂G

∂t
= −isgn(γd )

∫
D[Qd ]Q2

d (t)P̃[Qd ]∫
D[Qd ]P[Qd ]

,

where functional P̃ has the form

P̃[Qd ] = exp

[
−1

2

∫ ∫
dt1dt2Qd (t1)Ã−1(t1,t2)Qd (t2)

]
,

Ã−1(t1,t2) = A−1(t1,t2) − 2ik(t2)δ(t1 − t2). (B3)

Here k(t2) is a stepwise function, which is equal to 0 or ±1
in the time interval (t0,t), where t0 ≡ min(t ′,t ′1) is defined in
Eq. (16). This definition has to be extended in the present
formulation, k(t2) = 0 for t2 > t and t2 < t0.

A key observation is that functional P̃[Qd ] is also Gaussian.
One can introduce an operator Ã(t,t1) reciprocal to Ã−1,∫

dt1Ã(t,t1)Ã−1(t1,t2) = δ(t − t2). (B4)

In terms of this operator,

Ã(t,t) =
∫
D[Qd ]Q2

d (t)P̃[Qd ]∫
D[Qd ]P̃[Qd ]

. (B5)

Multiplying equation (B3) for Ã−1 by A(t2,t3)Ã(t1,t) and
integrating with respect to t1,t2, we obtain an integral equation
for Ã(t,t3),

Ã(t,t3) − 2i

∫
k(t1)Ã(t,t1)A(t1,t3)dt1 = A(t,t3). (B6)

This equation can be reduced to a differential equation by
differentiating twice with respect to t3,

∂2Ã(t,t3)

∂t2
3

− �2
d [1 − 4iαdk(t3)]Ã(t,t3) = −2αd�

2
dδ(t3 − t).

(B7)

Interestingly, Eq. (B7) has the same structure as the differential
equation for the “time-dependent” determinant found in the
other method; see Eq. (20). Thus it can be solved in a similar
fashion to that in Appendix A. The boundary conditions are
Ã(t, ± ∞) = 0. It follows from the decay of correlations of
Qd (t). At the values of t3 where k(t3) changes stepwise, see
Eq. (16), Ã and ∂Ã/∂t3 remain continuous, except t3 = t ,
where ∂Ã/∂t3 changes by 2αd�

2
d , as seen from Eq. (B7).

We can now write Eq. (B3) for function G(t,t ′,t ′1), in terms
of function Ã,

∂tG(t,t ′,t ′1) = −isgn(γd )Ã(t,t)G. (B8)

The boundary condition for this equation is G(t,t,0) = 1.
From the explicit expression for G we also have

∂t ′G(t,t ′,t ′1) = isgn(γd )Ã(t ′,t ′)G(t,t ′,t ′1),
(B9)

∂t ′1G(t,t ′,t ′1) = −isgn(γd )Ã(t ′1,t
′
1)G(t,t ′,t ′1).

The solution of these equations reads

G(t,t ′,t ′1) = exp

{
−isgn(γd )

[∫ t

t ′
Ã(t ′′,t ′′)dt ′′

−
∫ 0

t ′1

Ã(t ′′,t ′′)dt ′′
]}

. (B10)

We have checked that the expression for function G that
follows from Eqs. (B7) and (B10) coincides with the result
obtained in the main text.
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APPENDIX C: DRIVING-INDUCED SPECTRUM FOR
AN EFFECTIVELY STRONG DISPERSIVE COUPLING

TO A LARGE NUMBER OF MODES

Calculation of the driving-induced power spectrum involves
a triple integral over time, as seen from Eq. (13). It is
convenient to evaluate the integrals over t ′,t ′1 separately in three
regions, A1, A2, and A3. Region A1 corresponds to −∞ <

t ′ � t ′1, − ∞ < t ′1 � 0; then in Eq. (33) τ1 = t,τ2 = −t ′1,τ3 =
t ′1 − t ′. Region A2 corresponds to −∞ < t ′1 � t ′, − ∞ < t ′ �
0; then in Eq. (33) τ1 = t,τ2 = −t ′,τ3 = t ′ − t ′1. Region A3
corresponds to 0 < t ′ � t, − ∞ < t ′1 � 0; then in Eq. (33)
τ1 = t − t ′,τ2 = t ′,τ3 = −t ′1. Expanding the exponentials in
G2(t,t ′,t ′1) as described in Sec. VII A and integrating G2

with weight exp[−(� − iδωF )(t − t ′) + (� + iδωF )t ′1] [see
Eq. (13)], we obtain the contributions of the regions A1 and
A2 in the form

�
(A1)
F (ω) ≈ −1

2
Re

∞∑
n=0

Kn

∂nχ (ω)

∂ωn

∂nχ (ωF )

∂ωn
F

,

Kn>0 = 4n

n!

∑
�1,...,�n

α2
�1

...α2
�n

�2
�1

...�2
�n

[
2� + 2

n∑
i=1

��i

]−1

,

�
(A2)
F (ω) ≈ 1

2
Re

∞∑
n=0

Kn

∂nχ (ω)

∂ωn

∂nχ∗(ωF )

∂ωn
F

. (C1)

In this equation K0 = 1/2�. The susceptibility

χ (ω) = (i/2ω0)
∫ ∞

0
dtei(ω−ω̃0)t−�t−σ 2t2/2 (C2)

can be easily expressed in terms of the error function; ω̃0 and
σ 2 are given by Eqs. (31) and (32).

In the region A3 it is convenient first to change from
integration over t ′ to integration over t̃ ′ = t − t ′. To find
the spectrum �F , it is convenient to integrate G2 with the
appropriate weight first over t and then over t̃ ′. One should
take into account that t̃ ′ � 1/σ � 1/�� , but the range of the
values of t that contribute to the integral is not limited to �1/σ .
The result of integration reads

�
(A3)
F (ω) ≈ − Im[χ (ω)χ∗(ωF )]/[2(ω − ωF )]

+ 1

2
Re

∞∑
n=1

K′
n

∂nχ (ω)

∂ωn

∂nχ∗(ωF )

∂ωn
F

. (C3)

Here, the coefficients K′
n are given by the expression (C1) for

Kn in which 2� is replaced by −i(ω − ωF ). We note that �(A3)
F

is not singular at ω = ωF , since Im |χ (ωF )|2 = 0 and χ (ω) is
a smooth function of frequency; the corresponding term is
important primarily where either ω or ωF are on the tail of the
spectral peak �0(ω).

The series over n in Eqs. (C1) and (C3) generally converges
slowly if the decay rates of the � modes �� � �. For large n, in
Eq. (C3) the derivative ∂nχ (ω)/∂ωn should be calculated with
the decay rate � replaced with � + 2

∑n
i=1 ��i

in Eq. (C2). The
summation over the modes �i in the coefficientsK′

n should now
be extended to include the modified χ (ω), which now itself
depends on �i . We note that χ∗(ωF ) in Eq. (C3) should still be
calculated using Eq. (C2).

The overall driving-induced term in the power spec-
trum �F (ω) = �

(A1)
F (ω) + �

(A2)
F (ω) + �

(A3)
F (ω) has peaks

and, generally, more complicated features near both the
oscillator eigenfrequency and the driving frequency.
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