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Dynamics of Activated Escape and Its Observation in a Semiconductor Laser
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We report a direct experimental observation and provide a theory of the distribution of trajectories
along which a fluctuating system moves over a potential barrier in escape from a metastable state.
The experimental results are obtained for a semiconductor laser with optical feedback. The distribution
of paths displays a distinct peak, which shows how the escaping system is most likely to move. We
argue that the specific features of this distribution may give an insight into the nature of dropout events
in lasers.

PACS numbers: 42.60.Mi, 05.20.–y, 05.40.–a, 42.55.Px
Fluctuation-induced escape plays an important role in
many physical phenomena, from diffusion in solids and
protein folding to switching in lasers [1,2] and resonantly
driven trapped electrons [3], and to stochastic resonance
[4,5]. In the analysis of escape, it is important to be able
not only to calculate, but also to control the escape proba-
bility. To do this, one has to know how the system moves
during escape.

Escape is an example of a large fluctuation. If fluctua-
tions are small on average, for most of the time the sys-
tem wanders near the initially occupied metastable state qa

and only occasionally moves far away from it. The central
idea of the theory of large fluctuations is that paths to a
remote state qf lie within a narrow tube centered at an op-
timal path to this state qopt�t jqf , tf� [6,7], where tf is the
instant of reaching qf . Optimal paths reveal certain deter-
minism of motion in large fluctuations. They can be ob-
served [8] by analyzing the prehistory probability density
(PPD) ph�q, t j qf , tf� for a system to have passed through
a point q at time t provided the system had been fluctuat-
ing about the stable state for a long time and reached qf at
time tf . t. The PPD ph�q, t jqf , tf� should peak for q
lying on the optimal path qopt�t j qf , tf� [8]. The sharply
peaked PPDs have indeed been observed, but so far only in
analog and digital simulations [4], and for points qf lying
inside the attraction basin of qa [9].

In the present paper we analyze the dynamics of the sys-
tem during escape and, using a semiconductor laser with
optical feedback, provide the first experimental observa-
tion of the prehistory distribution. This distribution dis-
plays a distinct peak, as seen from Fig. 1. We show that
such a peak arises even for final states lying behind the
boundary of the domain of attraction to the initially occu-
pied metastable state, e.g., behind the top of the potential
barrier in Fig. 2. We reveal qualitative features of the PPD,
relate them to escape dynamics, and compare the theoreti-
cal and experimental results.

In the analysis of escape dynamics we will use a simple
model of a one-variable overdamped system which per-
forms Brownian motion in a metastable potential U�q�,
0031-9007�00�85(1)�78(4)$15.00
with equation of motion

�q � 2U 0�q� 1 j�t�, �j�t�j�t0�� � 2Dd�t 2 t0� . (1)

Here, j�t� is zero-mean white Gaussian noise. We assume
that the noise intensity D is small compared to the height
of the potential barrier DU � U�qb� 2 U�qa�; see Fig. 2
[qa and qb are the positions of the local minimum and
maximum of U�q�]. In this case the escape rate W ~

exp�2DU�D� [10] is small compared to the characteristic
reciprocal relaxation time t21

r � U 00�qa�.
On its way to a point qf behind the barrier, the system

is expected to move differently in the four regions shown
in Fig. 2. In the region A behind the barrier top it should
move nearly along the noise-free trajectory �q � 2U 0. In

FIG. 1 (color). The prehistory probability distribution of the
scaled radiation intensity I for experimentally observed dropout
events in a semiconductor laser. Inset: the PPD obtained
by simulating the motion of a Brownian particle (1), (9)
for the noise intensity D � 1�60 (DU�D � 10), qf � 1.2,
and tr � 1.
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FIG. 2. The positions of the maxima of the prehistory proba-
bility density with respect to the coordinate q for given time t
(solid line), and with respect to t for given q (triangles). The
data are obtained by simulating the Brownian motion (1), (9)
with the same parameters as in Fig. 1. The dashed line shows
the asymptotic results (4), (7) for tm�q�. Inset: Escape from a
potential well; the motion in the regions A–D is discussed in
the text.

the region B near the barrier top, where jq 2 qbj & lD

[lD � �2D�l�1�2 is the diffusion length, l � jU 00�qb�j],
the influence of noise becomes substantial. The motion
is diffusive and is controlled by average-strength fluctua-
tions. The system stays here for the Suzuki time tS �
l21 lnjqb 2 qaj�lD [11]. In the region C (jq 2 qbj ¿
lD) the system is driven by the noise j�t� against the regu-
lar force 2U 0, which requires a strong outburst of noise.
For Gaussian noise, the probabilities of different appropri-
ate realizations of j�t� differ from each other exponentially
strongly. Therefore there is an optimal realization of noise,
which is much more probable than others. It corresponds
to an optimal path of the system qopt. For fluctuations
from the attractor to an intrawell state such a path is given
by [7]

�qopt � U 0�qopt� . (2)

In the region D near the attractor, jq 2 qaj & �Dtr �1�2,
the system performs small fluctuations before a large fluc-
tuation leading to escape occurs.

Diffusive motion near the barrier top qb gives rise to a
strong broadening of the distribution of fluctuational paths.
If the destination point qf approaches qb from inside the
well, the distribution width diverges in the bounce-type ap-
proximation [8]. As we show, the divergence disappears if
one goes beyond this approximation. The analytic solution
will be obtained assuming that ln�DU�D� ¿ 1. This con-
dition is not needed for the physical picture of the escape
dynamics to apply, as we demonstrate experimentally and
through simulations.

For a Markov system (1), the PPD can be written as

ph�q, t j qf , tf� �
r�qf , tf j q, t�r�q, t, jqi , ti�

r�qf , tf jqi , ti�
, (3)

where r�q1, t1 jq2, t2� is the probability density of the tran-
sition from q2 at the instant t2 to q1 at the instant t1
(t1 . t2). We choose the initial instant ti so that W21 ¿
tf 2 ti . t 2 ti ¿ tr . In this time range the system for-
gets its initial intrawell state qi . The statistical distribution
inside and outside the well (not too far from the barrier
top) is quasistationary, r�q, t j qi , ti� � r�q�, and can be
easily calculated.

The prehistory distribution ph has a simple form for q
and qf lying behind the barrier top qb in the region A
in Fig. 2. For brevity, we give ph�q, t j qf , tf� in the case
where q, qf are both in the range where U�q� is parabolic
near qb , but qf is far enough behind qb , qf 2 qb ¿ lD .
The transition probability density r�qf , tf j q, t� for such
q, qf is known [12], and from (3)

ph�q, t jqf , 0� � �2zf�lD�r�q�elt exp�2�z 2 zfelt�2� ,
(4)

(we have set tf � 0). Here, z � z�q� � q̃�1 2 e2lt�21�2,
zf � z�qf� (note that t , 0), r�q� � exp�q̃2� �1 2

erf�q̃���2, and q̃ � �q 2 qb��lD .
For jtj & l21, the distribution (4) has a sharp Gaussian

peak as a function of q, with width ~lD . Behind the barrier,
the peak lies on the noise-free trajectory �q � 2U 0�q� �
l�q 2 qb�, which arrives at qf for t � 0.

Interestingly, the PPD peak remains sharp, with width
	lD , even where its maximum reaches the barrier top,
which happens for t � t�qb� � 2l21 ln�p1�2�qf 2

qb��lD�.
For earlier times 2t . 2t�qb�, the system is mostly

on the intrawell side of the barrier, and for large jt�t�qb�j
the peak of ph as a function of q moves away from the
harmonic range. Of interest is the position tm�q� of the
peak of ph as a function of time for given q. It shows
when the particle was most likely to pass through the point
q before arriving at qf . Inside the well, for q 2 qa ¿
qb 2 q ¿ lD , the time tm and the integral width of the
PPD g�q� � 1�ph�q, tm� are of the form

ltm � 2 ln�2�qb 2 q� �qf 2 qb��l2
D� ,

g � ejqb 2 qj .
(5)

From (5), tm depends on qb 2 q logarithmically. In con-
trast, g�q� grows linearly with qb 2 q. It becomes para-
metrically larger than the distribution width g 	 lD ~

D1�2 at the barrier top and outside the well.
Far from the barrier top in the region C in Fig. 2, the

motion of the system is determined by large fluctuations
against the force 2U 0�q�. In this region, ph�q, t jqf , tf�
can be obtained using the Smoluchowski equation which
follows from (3),

ph�q, t jqf , tf� �
Z

dq0ph�q, t jq0, t0�ph�q0, t0 j qf , tf� .

(6)

It is convenient to choose t0 in (6) so that the major con-
tribution to the integral over q0 came from q0 lying on the
internal side of the barrier close to qb and yet away from
the diffusion region, qb 2 qa ¿ qb 2 q0 ¿ lD . Then
the second integrand in (6) is given by (4).
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The distribution ph�q, t j q0, t0� as a function of q0 can
be obtained from (3) by solving, in the eikonal approxi-
mation, the Fokker-Planck equation for r�q0, t0 j q, t� �
exp�2S�q0, t0 2 t jq, 0��D�. To zeroth order in D, S
satisfies a Hamilton-Jacobi equation for the action of
an auxiliary dynamical system [7]. An appropriate
Hamiltonian trajectory of this system gives the optimal
path qopt�t0 2 t j q, 0� for a fluctuation in which the
original system (1) starts at the point q and moves farther
away from the attractor [13]. This path is given by
Eq. (2). The major contribution to the integral (6) comes
from the points q0 which lie close to this path. For
small dq0 � q0 2 qopt�t0 2 t jq, 0�, it suffices to keep
quadratic in dq0 terms in S, and then ph�q, t jq0, t0� is
Gaussian in dq0. In the appropriately chosen parameter
range, the time t0 drops out from (6), and one obtains [14]

ph�q, t j qf , 0� � �l�U 0�q��M exp�2M� , (7)

where M � M�q, t� � 2l�qf 2 qb� �qopt�2t j q, 0� 2

qb��D.
Equation (7) describes the distribution of trajectories

along which the escaping system moves inside the well.
This distribution has a distinct peak. For given q, the
peak is located for M�q, tm�q�� � 1. From (2), the po-
sition of the peak obeys the equation dtm�dq � 1�U 0�q�.
This means that, inside the potential well, the particle is
most likely to move along the optimal path (2). In a multi-
dimensional system, the peak of ph will lie on the most
probable escape path, which goes from the attractor to the
saddle point.

The distribution (7) is strongly asymmetric, both in q
and t. The integral width

g�q� � 1�ph�q, tm jqf , 0� � ejU 0�q�j�l (8)

is independent of the noise intensity and is nonmonotonic
as a function of q. It is maximal for U 00�q� � 0 where the
velocity along the optimal path is maximal. The broaden-
ing of the tube of escape paths in time comes largely from
the area near the barrier top. However, it is “amplified” as
it is carried away by the trajectories flow, and therefore it
is maximal where the flow is fastest.

As 2t increases further, the peak of the distribution
(7) approaches the diffusion region jq 2 qaj 	 �Dtr �1�2

near the potential minimum, and the peak width (8) again
shrinks down. For large 2t, the PPD (3) goes over into the
stationary distribution r�q�, which has a nearly Gaussian
peak at qa with variance Dtr .

We note that, in the most interesting region C, the posi-
tions of the maxima of ph (7) with respect to q for given
t and with respect to t for given q are different. This
indicates that there is no well-defined most probable es-
cape path in space and time, which would go from the
metastable state all the way over the barrier top. Still one
can tell when the escaped system passed, most probably,
through a given point, and where the system was most
probably located at a given time.
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The discussed qualitative features of the prehistory dis-
tribution can be seen from the results of digital simulations
for the model potential

U�q� � q2�2 2 q3�3 . (9)

The data were obtained using a standard algorithm [15],
and refer to 8000 events.

A distinct peak of the simulated ph is seen in Fig. 1.
The peak of ph as a function of q changes with increasing
jtj from narrow Gaussian near qf to broad and asymmetric
between qa and qb , and then again to comparatively nar-
row Gaussian near qa. The positions of the peak of ph with
respect to time, tm�q�, and coordinate, qm�t�, are compared
in Fig. 2. Both curves are close to each other. Outside the
well they practically coincide and closely follow the noise-
free path of the system, dtm�dq � 21�U 0�q�. The motion
displays a characteristic slowing down near the barrier top.
Inside the well the peak moves close to the optimal fluctua-
tional path �q � U 0�q�. The distribution ph becomes time
independent for large jtj. Therefore tm�q� is well defined
only for q not too close to the potential minimum qa.

The data of simulations in Figs. 1 and 2 refer to the
noise intensities D�DU � 0.1, where the asymptotic ana-
lytical theory applies only qualitatively. In particular, the
expressions (4) and (7) for ph in different ranges of q do
not merge with each other smoothly, as seen from Fig. 2.
However, there is good qualitative agreement between the
analytical and numerical data, including the position of the
peak and the integral width of the PPD.

Numerical results on the standard deviation of the PPD
s for two noise intensities are shown in Fig. 3. As ex-
pected, the distribution width reaches its maximum well
inside the well, near the inflection point U 00�q� � 0. For
higher D, the maximum is less pronounced.
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FIG. 3. Standard deviation and the position of the maximum of
the prehistory distribution at a given time, for simulated Brown-
ian motion (left panel) and a semiconductor laser with optical
feedback (right panel). Solid and dashed lines on the left panel
refer to DU�D � 10 and 3, respectively. The scales in the pan-
els are different (see the text).
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The experimental observation of the prehistory distribu-
tion was made using a semiconductor laser with optical
feedback. The setup was similar to that used before [16]
and consisted of a temperature-stabilized laser diode and
a remote flat-surface mirror. The feedback could be con-
trolled by a variable attenuator between them. Near the
solitary laser threshold, such a system is unstable: after
some time of nearly steady operation the radiation inten-
sity drops down, then it recovers comparatively quickly
to the original value, then drops down again, etc. In the
experiment, the intensity output was digitized, with time
resolution 1 ns. To obtain the prehistory distribution, the
intensity records were superimposed backward in time,
starting from the instant at which the intensity, on its way
down, reached a certain level (10% above the extreme
dropout point). The PPD obtained from 1512 events for a
reflective feedback 15.6% is shown in Fig. 1. The laser in-
jection current was maintained at the solitary laser thresh-
old value.

The mechanism of power dropouts is vividly discussed
in the literature [2,16–19]. Most authors agree that the
role of noise in this effect is crucial. A simple model
[20] describes the dropouts in terms of activation escape
of the light intensity I over a potential barrier with shape
(9). Previous observations [16] were in agreement with
this model, which motivated us to measure the prehistory
distribution for dropout events.

It is seen from Figs. 1 and 3 that the results of the ob-
servations agree with major qualitative results on noise-
induced escape. The experimental PPD displays a distinct
peak. The shape of this peak is similar to the shape of
the PPD of a noise-driven system, with the light inten-
sity I playing the role of the coordinate q (I is scaled by
its metastable value). The peak is narrow at small time
jtj, and displays a characteristic broadening at interme-
diate times. For larger jtj, the peak becomes time inde-
pendent. From the data in Figs. 1 and 3, the relaxation
time of the system is tr 
 2 ns. From the value of the
escape rate W 
 5 3 1023 ns21 found in [16], it follows
that, for the model (9), DU�D 
 3. Using an estimate
s0 
 �D�U 00�qa��1�2 for s at large 2t, one can estimate
the difference 6�DU�D�1�2s0 in the light intensity I at the
minimum and maximum of the potential (9). It then fol-
lows from Fig. 3, right panel, that the system goes through
the potential maximum for t 	 24 ns, i.e., the width s

reaches its maximum near the potential maximum. In com-
bination with larger smax�s0 compared to that in the left
panel of Fig. 3 for the same DU�D, this indicates that the
model (1), (9) is oversimplified. However, the overall form
of the PPD seen from the data provides an important argu-
ment in favor of the stochastic model for the initiation of
dropout events. We expect that it will be possible to use
high-resolution data on the prehistory distribution in order
to establish a quantitative model of the system.

In conclusion, we have analyzed the dynamics of a sys-
tem in activated escape and revealed its distinctive features
related to the occurrence of optimal paths and to the mo-
tion slowing down near a barrier top. The escape trajecto-
ries lie within a well-defined tube, and the system is most
likely to go through a cross section of this tube at a well-
defined time before it is found behind the barrier. For the
first time, a tube of escape trajectories has been observed
in experiment, by analyzing dropout events in a semicon-
ductor laser.
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