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Abstract. We investigate the stochastic extinction processes in a class of
epidemic models. Motivated by the process of natural disease extinction in
epidemics, we examine the rate of extinction as a function of disease spread. We
show that the effective entropic barrier for extinction in a susceptible–infected–
susceptible epidemic model displays scaling with the distance to the bifurcation
point, with an unusual critical exponent. We make a direct comparison between
predictions and numerical simulations. We also consider the effect of non-
Gaussian vaccine schedules, and show numerically how the extinction process
may be enhanced when the vaccine schedules are Poisson distributed.
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1. Introduction

One of the major goals of the studies of stochastic population dynamics, especially
in modeling epidemic spread in a population, is that of predicting finite extinction
times when one or more components of the population goes to zero. Practically all
diseases of interest exhibit randomness resulting in observed fluctuations. Childhood
diseases [1]–[3], meningitis [4], dengue fever and malaria [5] are but a few examples where
incidence rates fluctuate with significant amplitude. These fluctuations arise from random
contacts within a population, uncertainty in epidemic parameters, and stochastic flux
changes from external coupled populations [6, 7]. As diseases evolve in large populations,
there is the possibility of finite time extinction and reintroduction of the disease [8, 9].
Extinction occurs where the number of infectives becomes so small that there is insufficient
transmission to keep the disease in its endemic state [10]–[12]. Therefore, in the absence
of disease reintroduction, the epidemic dies out.

A common mathematical approach to modeling the dynamics of disease spread is
to compartmentalize the population into susceptibles (S), infectives (I), and possibly
recovered (R). Often it is assumed that there is strong mixing in the system, that is,
all species interact with all species, and therefore the species densities do not depend on
spatial coordinates. In these models, called SIS or SIR models [13], the disease spread can
be characterized by the reproductive rate of infection, R0. In its deterministic form, R0

can be defined so that, for an endemic state to exist along with the disease-free equilibrium
(DFE), R0 > 1. When R0 < 1, the DFE is globally stable and the disease becomes extinct.
For appropriate parameters where the two states coexist, the DFE is unstable and the
endemic state is attracting. In the models we consider here, it is assumed that the endemic
state is globally attracting when R0 > 1.

In the presence of random fluctuations, the situation becomes more complicated.
Fluctuations cause the disease-free state to be reached, albeit for a limited time, as
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indicated by both numerical [14]–[17] and analytic [18, 19, 13, 20, 21] results for various
models. Such an extinction process occurs even when R0 is greater than unity.

A major characteristic of fluctuation-induced extinction in the SIS stochastic model
for large populations is the extinction rate, or the reciprocal mean first time the number of
infectives approaches zero. It has been studied by approximating the full two-dimensional
stochastic system (or, more precisely, the system with two dynamical variables) as a
continuous one, with fluctuations induced by noise in the Langevin approach. Recently,
Doering et al [21] investigated a discrete birth–death SIS model and compared it to a
continuous model. The analysis referred to a one-variable model, which allows one to
obtain an explicit solution in various regimes of R0. However, this model does not reveal
some generic features of the full discrete SIS system related to the lack of detailed balance.

It is the purpose of this paper to analyze the general SIS discrete model, and obtain
explicit scaling behavior of the extinction rate in the neighborhood of disease onset;
i.e., when the reproductive rate is greater than but close to unity. To make clear the
assumptions we use for the description of the extinction process, we will include the
theory presented in [27]. Using the scaling results, we will compare theory and numerical
computations for the extinction rate exponents. Since disease extinction is a goal of
vaccine control, and vaccine scheduling is inherently random despite the best policy
controls, we numerically examine the case where the vaccine schedule is a Poisson process.
A direct comparison between the non-vaccine and vaccine cases will be made numerically.

2. The discrete model

We consider a model where susceptibles (S) are born at rate μ, both susceptibles and
infectives (I) die at the same rate μ, and infectives recover at rate κ and immediately
become susceptible. If susceptibles contact infectives, they may become infected at rate
β. We follow and reproduce the model and notation given in [27].

Since the numbers of susceptibles S and infectives I are integers whereas the events
of birth, death, and contact happen at random, we describe the process by the master
equation. We introduce vector X = (X1, X2) with components X1 = S, X2 = I and vector
r = (r1, r2) with integer components r1 and r2, which give, respectively, the increments
in S and I in a single transition. The quantity of interest is the probability ρ(X, t) to
have given S and I at time t. If transitions are short and uncorrelated, X(t) is a Markov
process, and the evolution of ρ(X, t) is described by the equation

ρ̇(X, t) =
∑

r

[W (X− r; r)ρ(X− r, t) − W (X; r)ρ(X, t)] . (1)

In the absence of vaccination the transition rates W (X, r) are

W (X; (1, 0)) = Nμ, W (X; (−1, 0)) = μX1,

W (X; (0,−1)) = μX2, W (X; (1,−1)) = κX2,

W (X; (−1, 1)) = βX1X2/N,

(2)

where N is the scaling factor which we set equal to the average population, N � 1.
For sufficiently large S, I ∝ N , fluctuations of S, I are small on average. If these

fluctuations are disregarded, one arrives at the deterministic (mean-field) equations for
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the mean values of S, I:

Ẋ1 = Nμ − μX1 + κX2 − βX1X2/N,

Ẋ2 = −(μ + κ)X2 + βX1X2/N.
(3)

These are standard equations of the SIS model [1]. For R0 = β/(μ + κ) > 1 they have
a stable solution XA = NxA with x1A = R−1

0 , x2A = 1 − R−1
0 . It describes the endemic

disease. In addition, (3) have an unstable stationary state (saddle point) XS = NxS with
x1S = 1, x2S = 0. This state corresponds to extinction of infectives.

For N � 1, the steady state distribution ρ(X) has a peak at the stable state
XA with width ∝N1/2. This peak is formed over a typical relaxation time tr =
max[μ−1, (β−μ−κ)−1], which is much smaller than the extinction time. We are interested
in the probability of having a small number infected, X2 � X2A. It is determined by the
tail of the distribution. The tail can be approximated by seeking the solution of (1) in
the eikonal form,

ρ(X) = exp[−Ns(x)], x = X/N,

ρ(X + r) ≈ ρ(X) exp(−pr), p = ∂xs.
(4)

For time independent parameters W this formulation was used in a number of papers [20]–
[27]. The function s(x) gives the logarithm of the stationary distribution scaled by the
average population, and is given by ṡ = −H(x, ∂xs; t). The function s(x) is the effective
action, and H the auxiliary Hamiltonian.

Following the standard approach of classical mechanics, we can find the action s(x)
from classical trajectories of the auxiliary system,

H(x,p; t) = μ(ep1 − 1) + μx1(e
−p1 − 1) + μx2(e

−p2 − 1)

+ κx2(e
p1−p2 − 1) + βx1x2(e

p2−p1 − 1) (5)

that satisfy equations

ẋ = ∂pH(x,p; t), ṗ = −∂xH(x,p; t). (6)

3. Disease extinction

In this section we analyze the stationary distribution using the eikonal approximation
developed in the previous section for the case where fluctuations are from random contacts.
We begin by noting that H = 0, which in turn is a consequence of the condition ∂ts = 0.
The function s(x) has the form [25, 27],

s(xf ) =

∫ tf

−∞
p ẋ dt, H(x,p) = 0. (7)

Here, the integral is calculated for a Hamiltonian trajectory (x(t),p(t)) that starts at
t → −∞ at x → xA,p → 0 and arrives at time tf at a state xf . The corresponding
trajectory describes the most probable sequence of elementary events X → X+r bringing
the system to Nxf . It provides the absolute minimum to s(xf ), and s(xf ) is independent
of tf . The quantity Ns(x) gives the exponent in the expression for the mean first-passage
time for reaching Nx from the vicinity of the attractor XA [28].
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Figure 1. 3D projections of the optimal extinction trajectory in (6) and (B.2) in
scaled coordinates x̃2 = x2/(R0−1), p̃2 = p2/(R0−1), x′

1 = (1−x1)/(R0−1), p̃1 =
(μ/β)(R0 − 1)2p1. Panels (a) and (b) show x1, x2, p1 and x1, x2, p2 projections.
The trajectory goes from point A that corresponds to the stable state of the
system with coordinates xA and zero momentum to point S that corresponds to
extinction of the disease, with coordinate xS and with non-zero momentum p.

From equation (4), the extinction rate is determined by s calculated for x2 → 0, i.e.,
by the probability density for reaching the disease-free state. It is easy to see that the
minimum of s(x) over x1 for x2 → 0 is reached at the saddle point xS of the fluctuation-
free motion. Thus the entropic barrier for extinction is Nsext = Ns(xS), and the typical
extinction time is τ ∝ exp(Nsext).

The Hamiltonian trajectory xext(t),pext(t) that gives s(xA) is the optimal extinction
trajectory. One can show that it approaches xA as t → ∞. This is similar to other
problems of an optimal trajectory leading from a deterministic stable state to a saddle
point [25, 29]. However, in contrast to the more common situation, for t → ∞ the
momentum pext does not go to zero. Instead pext(t) → pS, with pS = (0,− lnR0).
This is in spite of the fact that, along with (xS,pS), the Hamiltonian H has a ‘standard’
fixed point (xS,p = 0). A proof is given in appendix A.

An explicit analytical solution for the Hamiltonian trajectories can be obtained close
to a bifurcation point where the number of the stationary solutions of the deterministic
equations changes [25, 27]. In the present case it corresponds to 0 < η � 1, η = β−μ−κ ≡
β(R0 − 1)/R0. For η � 1 the mean-field value of x2 in the stable state x2A = η/β � 1
is close to x2S . The relaxation time of x2 near the stable state is η−1. It is much longer
than the relaxation time of x1, which is μ−1, i.e., x2 is a soft mode. Coordinate x1 follows
x2 adiabatically on the timescale that largely exceeds μ−1. See appendix B for details.

The solution (B.2) in appendix B describes in particular the optimal extinction
trajectory as depicted in figure 1. The full Hamiltonian equations (5) and (6) were also
solved numerically to get the optimal path from the attractor to the extinct state. The
solution is compared with the adiabatic solution in figure 2, where the control parameter,
η, is small.
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Figure 2. Time series of the heteroclinic orbits. The time series in bold represents
those of the adiabatic equations in (B.2). The dashed lines were computed using
the full Hamiltonian system (6), where time was scaled to the period of a long
period approximating orbit to the heteroclinic orbit. The parameter values in
the numerical computations were μ = 0.02, κ = 100.0, β = 100.05, η = 0.0308.

From (7) and (B.2), we derive one of our main results,

sext = s(xS) = η2/2β2 = (R0 − 1)2/2R2
0. (8)

The entropic barrier for extinction Nsext scales with the distance to the bifurcation point
η ∝ R0 − 1 as η2. This is in contrast to the case for standard scaling of the activation
energy of escape near a saddle–node bifurcation point, where the critical exponent is
3/2 [25]. Such unusual scaling is related to pS being non-zero. It emerges also in the SIR
model [30].

4. Numerical simulations

In this section, we wish to compute the effective exponents which yield the scaling
dependence on R0 given in (8). Following the Monte Carlo algorithm in [31], we simulate
the system described by the master equations (1) and (2) for a population of size N .
In figure 3, the data represents the average time to extinction, τ , over 1000 realizations.
Black dots denote the mean for a given R0 over the range of population sizes listed in the
caption, and the error bars measure deviation from the mean in the data. To compare
and contrast the change in the extinction time over the range of R0, we have shifted
the data vertically by 0.0675 to overlay the results from (8) where R0 − 1 is small. For
small R0 − 1, the asymptotic scaling theory and numerical results for the exponent of the
extinction rates agree. The actual range of agreement occurs up to R0 ≈ 2, after which
the results begin to deviate from the asymptotic theory.

Numerically, the simulations may be used to explore the geometry of the path to
extinction in the two-dimensional SIS model. For each run, we examine trajectories
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Figure 3. The logarithm of the extinction time τ scaled by the population size, N .
Black dots are the average over N of log(τ). The dashed line is the extrapolation
of equation (8). The fixed parameters are: μ = 0.02 (1/year), κ = 100 (1/year),
and N = 20, 30, 40, 50, 60, 70, 80 (people). We vary β to adjust R0.

Figure 4. A pre-history histogram plot in the state space of (S, I). The endemic
state is represented by the star, while the filled circle locates the DFE. The
grayscale denotes the number of points that occur at a given discrete value of
(S, I) over 5000 realizations. The segment of the optimal path to extinction
can be seen along the peak of the distribution. Parameters: μ = 0.02 (1/year),
β = 110 (1/year), κ = 100 (1/year), and N = 1000 (people).

leading to extinction at the DFE. We then reverse time along the orbit until we reach a
neighborhood of the endemic state. In figure 4, a plot is shown of the averaged pre-history
realizations projected onto (S, I) state space. Notice in the figure that the peak of the
distribution lies along a curve approximating the optimal path segment from the endemic
state to the DFE, given by the adiabatic approximation in normalized coordinates as
x2 = 1 − x1.
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Figure 5. A comparison of theoretical extinction time predictions between one-
and two-dimensional SIS models. The black dots are numerically simulated as in
figure 3. The dashed (red) line is given by equation (8) for the two-dimensional
SIS model extrapolated to the range of non-small R0 − 1. The dotted (blue) line
is the prediction of [21].

5. Conclusions and discussion

To summarize, we have considered fluctuations in the full two-variable SIS model and
found the rate of extinction. The problem has been reduced to the analysis of dynamics
of an auxiliary Hamiltonian system, with non-trivial boundary conditions. Where the
reproductive rate of infection R0 is close to 1, the extinction rate displays scaling with R0

with the logarithm of the rate being ∝(R0 − 1)2.
An interesting feature that we have found is that, as R0 increases, the normalized

extinction barrier sext grows much more slowly than in the one-dimensional SIS, where
sext scales as log R0 [21]. In figure 5 we compare the one-and two-dimensional theoretical
extinction results with the mean of the data presented in figure 3. Clearly, the
difference between one- and two-dimensional systems becomes significant already for
R0 > 2.

One of the important results that our research provides is the general theoretical
framework that can be used to measure how vaccines may enhance extinction rates. In
particular, the scaling laws can be used specifically to compare extinction rates in the
presence of fine resources. For example, it may be possible to vaccinate a limited fraction
of new susceptibles every year, but maybe apply it more frequently. Conversely, it may
be possible to implement one mass vaccination per year (a current approach for most
childhood diseases). Other approaches for ‘slow’ diseases may require vaccination that is
intermittent.

Vaccination is intrinsically random. We model it by a Poisson process. The vaccine
modifies the transition rate of susceptibles, now given by W (X; (1, 0)) = N [μ− ξ(t)]. The
time dependent vaccination of incoming susceptibles reduces their probability to become
infected at rate ξ(t).

In simulating a vaccination event in a finite population, we use a Poisson distribution
of short rectangular pulses with intensity (area under the pulse) g and frequency ν.

doi:10.1088/1742-5468/2009/01/P01005 8
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Figure 6. (a) A simulation (black dots) of an extinction event in the presence of
vaccination. The epidemic parameters are the same as in figure 4 and the vaccine
parameters are gN = 10 and ν = 12. The vaccination pulses shift the times series
left, as shown by the horizontal lines. The (red) star shows the location endemic
state. (b) The corresponding histogram plot of response to vaccine in state space
of (S, I) over 1000 realizations.

That is, the number of people removed from the incoming susceptible population per
pulse is gN . A sample trajectory is depicted in figure 6. We use the same epidemiological
parameters as in figure 4, with vaccine parameters gN = 10 and ν = 12 per year. As
before, we examined the pre-history of the trajectories leading to extinction averaged
over 1000 realizations. We note that, even where we look at a trajectory that leads to
extinction and starts near the endemic state, it spends a comparatively long time near
the endemic state going back and forth. For convenience, we examine the pre-history up
to the last time the infectives reach a threshold that corresponds to the endemic state.
The results are depicted in figure 6. Notice that the mean paths to extinction show the
effect of reducing the susceptibles discretely. That is, every time the vaccine is pulsed to
remove a fraction of the population, the pre-history curves are shifted to the left. The
result is a population with fewer susceptibles, and therefore, the mean time to extinction
is reduced.

Generalizing over a range of frequency and vaccine amplitude, we can quantify how
strongly the vaccine enhances the extinction rate. The ratio of the mean extinction times
without and with the vaccine gives the vaccine extinction factor Aext. The results are
displayed in figure 7. As expected, more frequent vaccinations at higher removal rates
increase the rate of extinction, as illustrated by the increase in extinction factor. For
slowly propagating diseases where R0−1 is small, an explicit expression for the extinction
factor can be obtained [27].

In conclusion, we have shown that the problem of extinction in a finite population SIS
model may be analyzed using an optimal path approach. In the absence of vaccination,
we have shown analytically that the effective entropic barrier for extinction scales as the
square of the distance to the bifurcation point. In the presence of vaccination, we have
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Figure 7. Vaccine-induced change of the entropic barrier for extinction
(log Aext)/N computed using the Monte Carlo simulation from. The parameters
used are μ = 0.02, κ = 100.0, β = 110.0, N = 1000.

defined and computed an extinction factor, which measures the increased rate of extinction
as a function of the Poisson frequency and amplitude of vaccination.

The current model used for analysis is an overdamped vector field. Future work
based on the current analytical and numerical schemes will be extended to more general
models such as SIR, SEIR, and MSI models [32], which are typically underdamped. Other
aspects critical to understanding the vaccine application are models of epidemic spread in
seasonally changing environments, and we will extend our results to those as well. These
are challenging problems of noise in the important area of understanding and control of
epidemics.
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Appendix A

In this appendix we show that the occurrence of an optimal extinction path with non-zero
momentum at the extinction state is indeed a feature of the system under consideration.
We note that the optimal extinction trajectory should lie on the stable manifold of the
appropriate fixed point. It is straightforward to show that the stable manifold of the
‘wrong’ fixed point (xS,p = 0) lies in the plane x2 = p1 = 0. An optimal path does not
reach this plane in finite time. From (6), x2 approaches zero exponentially as t → ∞,
but for t → ∞ the system as a whole approaches a fixed point. Therefore the optimal
extinction trajectory does not lie on the stable manifold of (xS,p = 0). It may only lie
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on the stable manifold of the fixed point (xS,pS), which is not confined to a plane in the
(x,p) space. An alternative argument is provided in [27].

The situation where an auxiliary Hamiltonian system has two fixed points with the
same xS was first noticed for a system described by the Fokker–Planck equation with
a singular diffusion matrix at xS [18], and the ‘right’ point was chosen on the basis of
numerical simulations. This situation was also found for a system described by a one-
variable master equation, where the Hamiltonian dynamics is integrable [20]; it occurs
also in a two-variable susceptible–infected–recovered (SIR) model concurrently studied by
Kamenev and Meerson [30].

Appendix B

The solution of Hamiltonian equations (6) in the adiabatic approximation is simplified by
the fact that x2 � 1 and |p2| � 1. To leading order in η we have x1 = 1−x2, p1 = βx2p2/μ,
while the equations for slow variables x2, p2 have the Hamiltonian form

ẋ2 = ∂Had/∂p2, ṗ2 = −∂Had/∂x2, (B.1)

with Hamiltonian Had = ηx2p2 − βx2p2(x2 − p2). The Hamiltonian trajectory is

p2(t) = x2(t) − η

β
, x2(t) = x2A

(
1 + eη(t−t0)

)−1
. (B.2)
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