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The rates of activated processes, such as escape from a metastable state and nucleation,
are exponentially sensitive to an externally applied field. We describe how this applies
to modulation by high-frequency fields and illustrate it with experimental observations.
The results may lead to selective control of diffusion in periodic potentials, novel control
mechanisms for crystal growth, and new separation techniques.
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1. Introduction

Activated processes are responsible for large qualitative changes in broad classes of
systems. A well-known example is escape from a potential well, in which fluctuations
carry the system over a potential barrier. Activated escape underlies diffusion in
crystals, protein folding, and provides a paradigm for activated chemical reactions.
Another example is nucleation in phase transitions. It would be advantageous to
control the probabilities of activated processes by applying a comparatively weak
external force. The idea is that the force need not be solely responsible for driving
the system over the barrier; it only must appropriately influence fluctuations.

A familiar phenomenon which has elements of control of activated processes
is stochastic resonance (SR) [1]. In SR, an adiabatic modulation of the system
parameters by a slowly varying field is usually assumed. The strong effect of the
field can be readily understood in this case, if one notices that the probability of a
thermally activated process is W ∝ exp(−R/kBT ), where R is the activation energy
(the barrier height for escape from a potential well). Even a comparatively small
field-induced modulation δR of the activation energy, |δR| � R, greatly affects W
provided |δR| > kBT , with lnW being linear in the modulation amplitude.

In contrast, one might expect that a high-frequency field would just “heat up”
the system by changing its effective temperature. The rate W would then be incre-
mented by a term proportional to the field intensity I rather than the amplitude
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A ∝ I1/2. This is indeed the case in the weak-field limit [2,3]. However, one may ask
what happens if the appropriately weighted field amplitude is not small compared
to the fluctuation intensity (temperature).

Recent results [4–7] show that, counter-intuitively, for high-frequency driving
the change of ln W is linear in A, over a broad range of A. The exponential effect
of nonadiabatic driving leads to a number of new phenomena not encountered in
SR, including resonant (in the field frequency) rate enhancement. This provides
the basis for much of the selectivity and flexibility in controlling fluctuations, as we
now outline.

2. General formulation

One can effectively control activated processes because, although they happen at
random, the trajectories of the system in an activated process are close to a specific
trajectory. The latter is called the optimal path for the corresponding process [8].
The effect of the driving field accumulates along the optimal path, giving rise to
a linear-in-the-field correction to the activation energy R. It can be calculated if
the fluctuational dynamics of the system is known. Alternatively, response to the
driving can be found experimentally, and in fact used to investigate the system
dynamics away from the metastable state.

A fairly general case in which the field effect can be evaluated and insight gained
into the underlying mechanism is a dynamical system driven by a stationary col-
ored Gaussian noise f(t) with a power spectrum Φ(ω) of arbitrary shape [9]. The
Langevin equation of motion is of the form:

q̇ = K(q; t) + f(t), K(q; t) = K0(q) + F (t), F (t + τF ) = F (t), (1)

where τF is the period of the driving force F (t).
For small characteristic noise intensity D = max Φ(ω)/2, the system mainly

performs small fluctuations about its periodic metastable state qa(t). Large fluctu-
ations, like those leading to escape from the basin of attraction to qa, require large
bursts of f(t) which would overcome the restoring force K. The probability densi-
ties of large bursts of f(t) are exponentially small, ∝ exp[−(2D)−1

∫
dt dt′ f(t)F̂(t−

t′)f(t′)], and exponentially different depending on the form of f(t) [F̂(t) is given by
the Fourier transform of 2D/Φ(ω)]. Therefore for any state qf into which the sys-
tem is brought by the noise at time tf , there exists a realization f(t) = fopt(t|qf , tf )
which is exponentially more probable than the others. This optimal realization and
the corresponding optimal path of the system qopt(t) provide the minimum to the
functional

R[q(t), f(t)] =
1
2

∫ ∫
dt dt′ f(t)F̂(t − t′)f(t′) +

∫
dt λ(t) [q̇ − K(q; t) − f(t)] (2)

(the integrals are taken from −∞ to ∞). The Lagrange multiplier λ(t) relates
fopt(t) and qopt(t) to each other [cf. Eq. (1); λ(t) = 0 for t > tf ]. The activation
rate has the form

W = C exp[−R/D], R = minR. (3)
The exponent R can be obtained for an arbitrary noise spectrum and an arbitrary
periodic driving by solving the variational problem (2) numerically, with appropriate
boundary conditions [4, 9].
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We now turn to the case where the driving force F (t) is comparatively weak,
so that the field-induced correction |δR| � R. Nonetheless, |δR| may exceed D
and thus strongly change the rate W (3). To first order, δR can be obtained by
evaluating the term ∝ F (t) in (2) along the path q

(0)
opt(t), f

(0)
opt(t), λ(0)(t) calculated

for F = 0. Special care has to be taken when activated escape and nucleation
are analyzed. Here in the absence of driving, the optimal path is an instanton,
the optimal fluctuation may occur at any time tc. The field F (t) lifts the time
degeneracy of escape paths. It synchronizes optimal escape trajectories, selecting
one per period, so as to minimize the activation energy of escape R [4, 5]. The
correction δR should be evaluated along the appropriate trajectory,

δR = min
tc

δR(tc), δR(tc) =
∫ ∞

−∞
dt χ(t − tc)F (t), χ(t) = −λ(0)(t). (4)

Eq. (4) provides a closed-form expression for the change of the time-averaged
activation rate W̄ , for an arbitrary spectrum of the driving field F (t). Clearly ln W̄
is linear in F , and the corresponding coefficient χ is therefore called the logarithmic
susceptibility (LS) [4]. Because of minimization over tc, the change of ln W̄ is
nonanalytic in F (t), which leads to a number of observable consequences. The LS
has been evaluated for overdamped and underdamped white-noise driven systems
[4]. Extensive numerical and analog simulations of the escape rate in driven systems
[6] are in excellent qualitative and quantitative agreement with the theory, including
the prefactor [4, 5, 10], over a broad range of field amplitudes.

3. Dynamical symmetry breaking in an optical trap

A simple physical system which embodies a number of activated phenomena is a
mesoscopic dielectric Brownian particle trapped by a strongly focused laser beam
creating an optical gradient trap, i.e. “optical tweezers” [11]. Techniques based
on optical tweezers have found broad applications in contactless manipulation of
objects such as atoms, colloidal particles, and biological materials. Activated escape
can be studied using a dual optical trap generated by two closely spaced parallel
light beams. This was used initially to investigate the synchronization of interwell
transitions by low-frequency (adiabatic) sinusoidal forcing [12].

Quantitative characterization of activated processes requires that the double-well
confining potential of a dual trap U(r) be adequately determined. The correspond-
ing measurement, for a transparent spherical silica particle of diameter 2R = 0.6 µm
optically trapped in water, was reported recently [14].

In the experiment [14], all three coordinates of the particle are determined si-
multaneously. The double-well potential U(r) is found directly from the measured
stationary distribution ρ(r) = Z−1 exp[−U(r)/kBT ]. From the Kramers theory [13],
it is possible then to calculate the rates Wij (i, j = 1, 2) of activated transitions be-
tween the minima of U(r). For the range of U(r) in which Wij vary by nearly 3
orders of magnitude, the calculated values of Wij are in excellent quantitative agree-
ment with the results of direct measurements. This provides a direct model-free test
of the multidimensional Kramers rate theory, with no adjustable parameters.

The double-beam trap can also be used to investigate the effect of ac-modulation
on transition rates. An interesting application of this effect is to direct the diffusion
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of a particle in a spatially periodic potential [15]. For a generic periodic potential,
the ac-induced change of the activation barrier differs depending on the direction in
which the particle moves (right or left, for example). This makes the probabilities of
transitions to the right and to the left exponentially different and results in diffusion
in the direction of more frequent transitions.

An effect closely related to directed diffusion, but more amenable to testing using
optical trapping, is ac-field induced localization in one of the wells of a symmet-
ric double-well potential. Both effects should occur if the field breaks the spatio-
temporal symmetry of the system. The ratio of the period-averaged stationary
populations w̄1, w̄2 of the wells is determined by the ratio of the period-averaged
transition rates W̄ij ,

w̄1/w̄2 = W̄21/W̄12 ∝ exp([δR1 − δR2] /kBT ), (5)

where δR1,2 are the field-induced corrections (4) to the activation energies of escape
from wells 1,2.
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Fig 1. The least-squares fits to the experimentally determined instantaneous time-dependent
switching probabilities Wij(t) for a particle in the adiabatically modulated double-beam trap,
over a cycle ωF t of the modulating waveform. The phase angle between the first and second
harmonics is φ12 = π/2. When the phase angle is incremented by π, the escape rates from the left
and right wells interchange. The inset shows the instantaneous difference between the heights of
the potential barriers in the two wells.

The experimental data [7] on effective localization due to the field-induced sym-
metry breaking are shown in Fig. 1. The experiment is conducted with a symmetric
double-well potential and barrier height ≈ 7.5 kBT . The intensity of the laser beams
is then modulated so that the well depths are changed by δU1(t) = −δU2(t) =
const× [sin(ωF t)+ (1/2) sin(2ωF t+φ12)]. The modulation amplitude is ≈ 2.5 kBT .
The frequency ωF /2π varies between 1 and 100 Hz, which covers the range from
adiabatically slow to nonadiabatic modulation. Over this range, field-induced re-
population occurs between the wells for a nonsinusoidal modulation waveform, so
that w̄1 6= w̄2.
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It is the breaking of the spatio-temporal symmetry t → t + π/ωF , r → −r that
leads to the escape rate from one of the wells being on average much bigger than
from the other, as seen from Fig. 1. In turn, this leads to a higher population in one
of the wells. Not only is it observed under slow modulation, as evidenced by Fig. 1,
but a population difference of 20% is also observed far into the nonadiabatic regime.
This is sufficient to create significant directional diffusion, and demonstrates the
onset of dynamical symmetry breaking. The effect would not arise if nonadiabatic
driving led just to “heating” of the particle.

4. Conclusions

Investigation of methods to control activated processes is currently at a very excit-
ing stage. The importance of the problem and its relevance to many areas, from
condensed-matter physics to biophysics, is becoming increasingly appreciated. The
results outlined here show that there is a fairly general approach to controlling fluc-
tuations, and the first experiments on overdamped systems show that such control
can indeed be exercised. A broad range of problems remains unexplored. They
include such issues as a microscopic theory of driven many-body systems and ex-
perimental exploration of underdamped driven systems. We also envision practical
applications of these results, starting with the development of new highly selective
colloidal separation as well as crystal growth techniques.
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