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Population extinction is of central interest for population dynamics. It may occur from a large rare

fluctuation. We find that, in contrast to related large-fluctuation effects like noise-induced interstate

switching, quite generally extinction rates in multipopulation systems display fragility, where the height of

the effective barrier to be overcome in the fluctuation depends on the system parameters nonanalytically.

We show that one of the best-known models of epidemiology, the susceptible-infectious-susceptible

model, is fragile to total population fluctuations.
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Extinction of a population is one of the major problems
of population dynamics [1,2]. It may be caused by regular
changes in the environment, but may also result from a
large rare fluctuation. Such fluctuation can be an unlikely
sequence of elementary birth-death events, for example,
and then extinction can be visualized as overcoming an
effective entropic barrier. Much work has been done on
extinction for various models of population dynamics, and
several fluctuation mechanisms have been explored [3–13].

A system of interacting populations can be thought of as
a many-body system far from thermal equilibrium.
Fluctuation-induced population extinction is closely re-
lated to a diverse group of other nonequilibrium physical
phenomena that involve large fluctuations. A well-known
example is switching between coexisting states, which is
intensively studied in modulated Josephson junctions,
nano- and micromechanical resonators, and nanomagnets
[14–19]. Because large fluctuations are rare, the rates of
extinction and switching are small. One can write the rate
asWe / expð�QÞwithQ � 1. The rate exponentQ is of
primary interest for theory and experiment. In systems
close to thermal equilibrium it is known at least in princi-
ple, Q ¼ R=kBT, where R is the free energy barrier and T
is temperature [20], but finding it for nonequilibrium sys-
tems, and, in particular, for populations, remains a major
challenge.

In this Letter we develop an optimal-fluctuation theory
of extinction in multipopulation systems. We show that
extinction displays a qualitative feature that does not gen-
erally occur in interstate switching. The extinction rate can
be fragile. A small perturbation of the system can lead to an
abrupt change of the rate exponentQ. If the perturbation is
proportional to a parameter�, the value ofQ for� ! 0 is
smaller than for � ¼ 0. Respectively, the extinction rate
We is exponentially larger than for� ¼ 0. Remarkably, the
mean-field dynamics remains unchanged. We find a gen-
eral condition for the onset of fragility and illustrate the
effect with the broadly used susceptible-infectious-
susceptible (SIS) model of epidemiology [2].

We consider extinction in a spatially uniform system of
coupled populations (species). The system state is charac-
terized by a vector X with integer components X1; X2; . . .
equal to the size of different populations. The formulation
applies also to autocatalytic stirred chemical and incapsu-
lated biochemical systems including those discussed in the
context of the origins of life [21], with X enumerating
different molecular species.
Along withX it is convenient to consider a quasicontin-

uous vector x ¼ X=N where N is the characteristic total
population N. We assume N � 1, in which case typical
fluctuations in the system are small. If we disregard fluc-
tuations, motion in x space is described by dynamical
equations [2] [cf. Eq. (3) below], and quite generally the
system has a stable state xA, which it approaches over a
relaxation time tr. For simplicity, we assume that the state
xA is stationary, although the results immediately extend to
the case of periodic xA.
Extinction occurs as a result of a large fluctuation away

from xA, in which one of the populations (labeled with an
E) disappears, xE ¼ 0. If the extinction rate is We � t�1

r ,
the probability of such a fluctuation is independent of time
for tr � t � 1=We. In analogy to the problem of switch-
ing and following Kramers [20], the rateWe can be related
to the probability current into the extinction hyperplane
xE ¼ 0. This extinction current is also independent of time
for tr � t � 1=We.
The distinction from the switching problem comes from

the facts that (i) the extinct population usually does not
emerge again, i.e., fluctuations do not remove the system
from the hyperplane xE ¼ 0, and (ii) the population size is
non-negative. As a consequence, the extinction current
terminates at xE ¼ 0. The population probability distribu-
tion accumulates in the hyperplane xE ¼ 0, whereas for
xE > 0 it is quasistationary for tr � t � 1=We. These
singular features have no analog in switching and ulti-
mately lead to fragility of extinction rates.
We describe the multipopulation system by a master

equation for the probability �ðXÞ to be in state X,
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_�ðXÞ ¼ X

r

½WðX� r; rÞ�ðX� rÞ �WðX; rÞ�ðXÞ�:

(1)

Here, WðX; rÞ is the rate of an elementary transition X !
Xþ r in which the populations change by r ¼ ðr1; r2; . . .Þ.
The condition that the system does not leave the extinction
hyperplane is

WðX; rÞ ¼ 0 for XE ¼ 0; rE � 0: (2)

If fluctuations can be disregarded, from Eq. (1) we
obtain for average scaled populations �x a mean-field equa-
tion,

_�x ¼ X

r

rwð �x; rÞ; (3)

where wðx; rÞ ¼ WðNx; rÞ=N is a transition rate per indi-
vidual. We assume that, along with an asymptotically
stable solution xA, Eq. (3) has a stationary solution xS
that lies in the extinction hyperplane xE ¼ 0 and is asymp-
totically stable with respect to xi�E but unstable for xE.
This is the extinction state, the system is ultimately brought
there by fluctuations for t * W�1

e . For tr � t � W�1
e the

distribution �ðXÞ peaks at XA ¼ NxA if the system was
close to xA for t ¼ 0.

The exponent Q in the extinction rate We can be found
either by solving the mean first passage time problem for
reaching extinction [3,4,7] or by calculating the small-XE

tail of �ðXÞ, which determines the extinction current
[9,10,12,13]. In both methods one looks for the optimal
(most probable) fluctuation that leads to extinction, and the
results coincide. Here we will study the quasistationary
distribution. In the standard eikonal approximation, to
leading order in N�1 � 1, Eq. (1) is transformed into
equations

�ðXÞ ¼ exp½�NsðxÞ�; _s ¼ �Hðx; @xsÞ;
Hðx;pÞ ¼ X

r

wðx; rÞ½expðprÞ � 1�: (4)

We took into account that, typically, jrj � N, andWðX; rÞ
depends on X polynomially, whereas � is exponential in
X. Therefore we expanded �ðXþ rÞ � �ðXÞ expð�r@xsÞ
and replaced wðx� r=N; rÞ ! wðx; rÞ.

Equation (4) reduces the problem to classical dynamics
of an auxiliary Hamiltonian system with equations of
motion

_x ¼ X

r

rwðx; rÞepr; _p ¼ �X

r

@xwðx; rÞðepr � 1Þ:

(5)

The distribution �ðXÞ is determined by the mechanical
action of the auxiliary system sðxÞ. In the quasistationary
regime _s ¼ 0; i.e., H ¼ 0 in Eq. (4). We notice thatP

rwðx; rÞr@xs � 0 for Hðx; @xsÞ ¼ 0, and therefore sðxÞ
decreases if x shifts along a mean-field trajectory (3)

(unless @xs ¼ 0) [22,23]. Since the mean-field trajectories
go to xA, action sðxÞ is minimal at xA. Respectively, �ðXÞ
is maximal for XA ¼ NxA, as expected on physical
grounds.
In the spirit of the method of optimal fluctuation [13,24–

26], the extinction rate exponent is determined by the
minimum of sðxÞ in the extinction hyperplane. From the
above arguments, the minimum is reached at the extinction
state xS. Therefore

Q ¼ N½sðxSÞ � sðxAÞ� ¼ N
Z 1

�1
dtp _x: (6)

Equation (6) corresponds to the intuitive picture in which
the most probable fluctuation leading to extinction starts
from the stable state and brings the system to the extinction
state. The respective optimal Hamiltonian trajectory,
Eq. (5), goes from the Hamiltonian fixed point (xA, p ¼
0) to the fixed point (xS , pS).
We now find the final momentum pS . Since action sðxÞ

is minimal with respect to xi�E at xS, ðpSÞi�E ¼ 0. To find
ðpSÞE we note that if wðx; rÞ smoothly vary with x, as we
presume, then from H ¼ 0 for any small jx� xSj

X

r

wðx; rÞfexp½ðpSÞErE� � 1g ¼ 0: (7)

Equation (7) has a trivial solution ðpSÞE ¼ 0. However,
there are no Hamiltonian trajectories that would go from
(xA, p ¼ 0) to (xS , p ¼ 0). Indeed, using Eq. (3) one can
show that trajectories that go to (xS , p ¼ 0) lie on the
manifold xE ¼ 0, pi�E ¼ 0 which does not contain (xA,
p ¼ 0). This is a major difference from interstate switching
in reaction systems, where the optimal trajectory goes to
the saddle point and p ¼ 0 there [23].
The trajectory that gives the extinction exponent Q

generically goes to (xS, pS) with ðpSÞE � 0. This was
found earlier for specific models [7,9,12]. Near xS the
quasistationary distribution � as a function of x steeply
varies with xE, � / exp½�NðpSÞExE�, but it is smooth with
respect to xi�E.
The above picture does not apply in some nongeneric yet

important cases where population fluctuations are effec-
tively constrained. For example, the system can have con-
servation laws so that variables xE and xi�E are not
independent, at least near xE ¼ 0. To gain intuition into
the resulting change of the formulation and its dramatic
effect on Q we will consider the problem of disease
extinction in the SIS model. In this model the numbers of
susceptible (S) and infected (I) individuals X1 and X2

change because of birth and death, with rates

WðX; ð1; 0ÞÞ ¼ N�; WðX; ð�1; 0ÞÞ ¼ �X1;

WðX; ð0;�1ÞÞ ¼ �X2;
(8)

and because of infection on contact and recovery, with
those recovered immediately becoming susceptible [2].
The corresponding rates are
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WðX; ð�1; 1ÞÞ ¼ �X1X2=N; WðX; ð1;�1ÞÞ ¼ ßX2:

(9)

Disease extinction occurs where X2 � XE ¼ 0. For the
infection reproductive rate R0 ¼ �=ð�þ ßÞ> 1, the
system has an endemic equilibrium xA ¼ XA=N ¼
ðR�1

0 ; 1� R�1
0 Þ. It coexists with the disease-free stationary

state xS ¼ XS=N ¼ ð1; 0Þ.
Much work has been done on the SIS model in the limit

� ¼ 0 where the total population does not fluctuate, x1 þ
x2 ¼ 1 [2–4,6,10]. Here, the Hamiltonian system (5) has
effectively 1 degree of freedom. A direct substitution
shows that on the optimal trajectory p2 ¼ 0 and p1 ¼
lnð�x1=ßÞ, which gives

Q �¼0 ¼ NðlnR0 � 1þ R�1
0 Þ: (10)

In this case ðpSÞE � ðpSÞ2 ¼ 0, whereas ðpSÞ1 ¼ lnR0.
This is in contradiction with the general result for optimal
extinction paths.

We now allow the total population to fluctuate, albeit
slowly; i.e., we assume that the characteristic birth-death
rate � is nonzero but small, � � ß. At the same time we
assume that it is not exponentially small, � � We, so that
the distribution is quasistationary. Then the Hamiltonian
trajectory for extinction consists of three almost straight
sections T1, T2, T3 shown in Fig. 1(b). Sections T1, T3
correspond to slow motion characterized by time ��1,
whereas motion in section T2 is fast, with typical time
ð�� ßÞ�1. A direct substitution shows that motion in
section T1 is described by equations

p1 ¼ p2 ¼ ln½1þ e�ðt�t1Þ�; x2 ¼ ep2 � R�1
0 ; (11)

while jx1 � R�1
0 j & � [t1 in Eq. (11) is arbitrary].

Motion in section T2 can be described by setting � ¼ 0
in Eqs. (5), (8), and (9). This gives

p2 ¼ lnC; p1 ¼ lnðCR0x1Þ; x1 þ x2 ¼ C; (12)

where x1 ¼ ðCfþ ßÞ=ð�þ fÞ with f ¼ exp½ð�C� ßÞ�

ðt� t2Þ� with arbitrary C, t2. If we set C ¼ R�1=2
0 , then

x1 ! R�1=2
0 , x2 ! 0, and p1 ! 0 with increasing t� t2,

and the trajectory approaches section T3 where

p2 ¼ � lnðR0x1Þ; x1 ¼ 1� exp½��ðt� t3Þ�; (13)

while jp1j, x2 ! 0 for � ! 0. The solutions (11) and (12)
match if at the end of section T1 and at the beginning of
section T2 we have p1 ¼ p2 ¼ �ðlnR0Þ=2.
At the end of section T3 we have x ! xS ¼ ð1; 0Þ and

p ! pS ¼ ð0;� lnR0Þ, as expected from the analysis of a
generic extinction problem. The extinction rate exponent is

Q �!0 ¼ NðR1=2
0 � 1Þ2=R0: (14)

This value, which is obtained in the limit� ! 0, is smaller
than Q for � ¼ 0 [cf. Eq. (10)]. The discontinuity with
respect to � shows the fragility of the result obtained by
disregarding fluctuations of the total population.
In Fig. 2 we compare the values of Q obtained for � ¼

0 and for � ! 0. Also shown are the results of numerical
simulations obtained for � ¼ 0 and for small nonzero �.
They are in excellent agreement with the analytical results.
As illustrated in Fig. 1(a), for Wet � 1 the probability
distribution accumulates (linearly in time) near x1 ¼
X1=N ¼ 1 in the extinction plane, X2 ¼ 0. Away from
the extinction plane, for discrete X2 	 1, the distribution
is quasistationary. For small X2 it has a peak along x1 at

� R�1=2
0 where the asymptotic extinction path approaches

the plane x2 ¼ 0.
The fragility in the SIS model occurs because the per-

turbation violates conservation of the total population in
the unperturbed system. We now show that, generally in
the extinction problem, a perturbation theory breaks down
if in the unperturbed system population fluctuations in the
extinction hyperplane are effectively constrained and the
perturbation lifts the constraint. Formally, because of the
constraint on fluctuations, on the optimal extinction trajec-
tory ðpSÞi�E � 0 at least for one i.
A perturbation changes the elementary transition rates in

Eq. (1), WðX; rÞ ! WðX; rÞ þ�Wð1ÞðX; rÞ, with � � 1
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FIG. 1 (color online). (a) A snapshot of the probability �ðXÞ
near the extinction plane X2 ¼ 0 for the SIS model; � is
quasicontinuous in X1=N. The data of simulations refer to �t ¼
9, R0 ¼ 4, �0 � �=ð�þ ßÞ ¼ 0:1. For t ¼ 0 the system was at
XA, and the total number of particles was N ¼ 50.
(b) Asymptotic optimal Hamiltonian trajectories for extinction
for � ! 0 (solid line) and � ¼ 0 (dashed line).
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FIG. 2 (color online). The switching exponent Q for the SIS
model of epidemics. The solid and dashed lines show the results
for � ! 0 [Eq. (14)] and � ¼ 0 [Eq. (10)], respectively. The
data points are obtained from the numerical solution of the
master equation for the total initial populations N ¼ 50 and N ¼
100, which made it possible to directly extract the exponent Q.
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for a small perturbation. The eikonal Hamiltonian [Eq. (4)]

is, respectively, modified, H ! H þ�Hð1Þ. To first order

in � the resulting change of the extinction exponent Qð1Þ
can be calculated along the trajectory xðtÞ, pðtÞ of the
unperturbed Hamiltonian [27],

Qð1Þ ¼ �N�
Z 1

�1
dtHð1ÞðxðtÞ;pðtÞÞ;

Hð1Þðx;pÞ ¼ X

r

wð1Þðx; rÞ½expðprÞ � 1�:
(15)

Because pðtÞ exponentially decays for t ! �1 (where
x ! xA), the integral over time in Eq. (15) does not diverge
at the lower limit.

We assume that the perturbation weakly changes the
mean-field dynamics and does not destroy the extinction

state. Then Wð1Þ must satisfy condition (2), and wð1Þ ¼
Wð1Þ=N ! 0 for xE ! 0 and rE � 0. Since on the optimal
extinction trajectory xEðtÞ exponentially decays for t ! 1,

the terms with rE � 0 inHð1Þ also decay, and the integral of
these terms converges on the upper limit. However, if at the
endpoint of the trajectory pi�E � 0 for some i, and be-
cause generally

wð1ÞðxS; rÞ 6�0 for rE ¼ 0; (16)

the term Hð1Þ remains nonzero for t ! 1 and overall the
integral Eq. (15) diverges.

The divergence of Qð1Þ means that the optimal extinc-
tion trajectory changes nonperturbatively, as does also the
rate exponent Q; i.e., the extinction rate is fragile with
respect to the corresponding perturbation. Population
fluctuations in the SIS model provide an example of such
a perturbation, as seen from the comparison of Eqs. (8) and
(16). We note that, in the problem of switching of reaction
systems, the perturbation theory does not diverge, since
on the optimal path p ! 0 for t ! 1 [23] and integral
Eq. (15) remains finite.

In conclusion, we have considered fluctuation-induced
extinction. We showed how to find the logarithm of the
extinction rate Q for a system of coupled populations and
how the formulation differs from the seemingly similar and
extensively studied problem of the rate of interstate switch-
ing in nonequilibrium systems. An important consequence
of this difference is the extinction rate fragility. A small
perturbation (/�) can change the rate exponentially
strongly; Q for � ! 0 differs from Q for � ¼ 0. The
fragility is related to the discontinuity of the quasistation-
ary extinction current. A general condition for the onset of
fragility is derived. Explicit results are obtained for the
broadly used SIS model of epidemiology. It is shown that
the model is fragile to fluctuations of the total population.
This limits the applicability of the disease extinction rates

obtained with the standard one-variable SIS model, where
such fluctuations are disregarded. The analytical results are
quantitatively confirmed by simulations.
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