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We study transport properties of a nondegenerate two-dimensional system of noninteracting electrons in the
presence of a quantizing magnetic field and a short-range disorder potential. We show that the low-frequency
magnetoconductivity displays a strongly asymmetric peak at a nonzero frequency. The shape of the peak is
restored from the calculated 14 spectral moments, the asymptotic form of its high-frequency tail, and the
scaling behavior of the conductivity fab—0. We also calculate ten spectral moments of the cyclotron
resonance absorption peak, and restore the correspofringingulay frequency dependence using the con-
tinuous fraction expansion. Both expansions converge rapidly with an increasing number of included moments,
and give numerically accurate results throughout the region of interest. We discuss the possibility of an
experimental observation of the predicted effects for electrons on helium.
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[. INTRODUCTION at least for some basic models of disorder. It is also of inter-
est to find highly accurate numerical results, as they may be
A single-electron dynamics in the lowest Landau levelused to test various approximate analytical approaches.
(LLL), broadened by a delta-correlated scalar disorder poten- In the present paper we consider frequency-dependent
tial, provides the simplest framework for the analysis of theconductivity in the single-electron approximation. Motivated
integer quantum Hall effect(IQHE). Wegner's exact DY the experiment, and in order to make the problem trac-
calculatiort of the density of states raised hopes that thel@ble, we assume that
corresponding model may be exactly solvable, and much ef-
fort was put into understanding transport in this model. How- fiy<ksT, nl*<1, @
ever, in contrast to the density of states, the conductivity is
expressed in terms of a two-particle Green’s function, and’
depends not only on the energies of single-particle states, bﬁ

also on their wave functions. . . nondegenerate. This parameter range is of interest for several
Nearly all single-electron wave fun(_:tlons of the d'sqrde_r'two-dimensional electron system@DESS. In particular,
broadened Landau levels are localized. The localization, ch of the experimental data on magnetotransport of elec-
length ¢ strongly depends on energy. For small enerdies ons on the surface of liquid helium refer to rardg with
counted off from the Landau band centar the neglect of typical densities being~10® cm~2 (see Ref. % This range
band mixing, ¢ diverges as a universal powérof |E|. s also of interest for ultraclean low-density electron systems
These are the large-radius states that form the low-frequenqy semiconductors, which currently attract much attention.
conductivity, because it involves large electron displace- |nrange(1) all states within a broadened Landau level are
ments and small energy transfer. As a result, for Fermi ennearly equally populated, and one no longer needs to take the
ergies close to a band center, the conductivity displays &8oltzmann factor into account while computing temperature
universal critical behavior at sufficiently small temperaturesand disorder averages using the Hamiltonian projected on
and frequencies. that level. In spite of this simplification, we were unable to
The width of the critical region depends on the propertiesobtain an explicit solution of the problem. There are no good
of the disorder potential and the Landau-level number. Fofnearly conserved quantum numbers in the disorder-
the lowest Landau level, it is of the order of the bandwidthbroadened ban@uch as quasimomentum, for exampknd
fiy, the only dimensional parameter of the Hamiltonian pro-no small parameters characterize the intraband electron mo-
jected on the LLL(we assume that the cyclotron frequency tion. However, as we show below, we can still accurately
w>y). Outside the scaling region, the spatial extent of thecalculate the frequency-dependent conductivity. This is done
eigenstates is small, of the order of the magnetic lergth by the method of moments, which was previously suggested
=(#/mwy)Y? and the universality is lost. Therefore, the for this problem by one of u%.
overall frequency dependence of the conductivity is deter- Our present analysis applies to a short-range disorder. For
mined by the disorder mechanism, and may allow one tesuch disorder, the magnetotransport of noninteracting elec-
discriminate between different mechanisms. For this reasoritons in parameter rangd) was earlier analyzéd within
it is interesting to obtain the frequency dependence of théhe scope of the self-consistent Born approximati®@BA).
conductivity, including its universal and nonuniversal parts,The SCBA ignores the interference effects which lead to

e., the disorder-induced broadening of the lowest Landau
vel is small compared to temperature, and simultaneously
e filling fraction is small, so that the electron system is
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electron localization and the associated scaling behavior near
the Landau band center. The uncontrolled nature of this ap-
proximation is especially evident in the static limit where the
SCBA produces a nonzero conductivity, contrary to what is
expected in the rangél) from the well-established IQHE
theory where nearly all single-particle states are localized.
From this point of view, it is important to develop a single-
electron theory of magnetotransport that will take localiza-
tion effects into account, and thus extend the ideas of the
IQHE physics to a different parameter range.

Another motivation for developing such a theory comes
from the experiment. A single-electron SCBA was used to FIG. 1. Reduced microwave conductivitizg. (11)] of a nonin-
interpret the data on thstatic magnetoconductivity of elec- teracting 2DES at the lowest Landau level in a short-range disorder
trons on helium for strong enough magnetic fiéd8(fora  potential forw, y<kgT/#. For small frequencies <y, the conduc-
review, see Refs. 11-13Short-range disorder is a good tivity is singular: oy, ~w*. It is determined by spatially large,
model Of the random potent|a| |n th|s Systénh-‘owever' neal’ly delocalized states. For> Y, the COndUCtiVity is determined
unless the variation of this potential in time is taken into_by Iarge optimal flut_:tuations of_the dis_order potential_, as illustrated
account(this variation isvery slow, both where the potential [N the inset. The optimal potentil,,(r) is such thati » is equal to
is due to ripplons or helium vapor atojnthe single-electron (e energy differencé, —E, between the top and bottom bound
conductivity should be equal to zero, in contradiction with Statesit) and[b), and at the same time these states are maximally
the observations. An important mechanism responsible fo?verlapplng.

nonzero static conductivity is the electron-electron interac- L
. . ; In range(1) all states within the LLL are equally occu-
tion. Our results reveal singular features of the single-

electron conductivity, and also serve as a basis for the fuIP'ed’ and _the Kubo fqrmula for thg dissipative conductivity
o : can be written as a simple trace without the Boltzmann fac-
many-electron theory of magnetoconductivity, which a”OWStor'
for strong electron-electron correlatioHs.
The outline of the paper is as follows. In Sec. Il we cal- n(1—e 5) _
culate the frequency-dependent conductivity(w) in the Oy 0)= = Re| dté“(j(1)j«(0)) (2
temperature rangé y<kgT, expfiw./KgT)>1 for w<w, @ 0
(these results were previously announced in Rej. We
find the asymptotics of the conductivity at both smadl (
—0) and comparatively largeyik w<w.) frequencies, and
show thato,,(w) has a peak at a nonzero frequeney 7.
Using an efficient diagram classification scheme, we exactlyiere jy=ep,/m is the one-electron current operatqs,
compute the first 14 spectral moments of this peak. Thes&#/kgT, the angular brackets ) denote statistical averag-
moments contain information about the short-timey 1)  ing over the states followed by an averaging over quenched
dynamics of the system. Combined with the low- and high-disorder, and the horizontal line denotes only the disorder
frequency asymptotics, they allow us to accurately restor@veraging. The trace Jrin Eq. (3) is performed over all
the entire functionr,,(®) (see Fig. 1 In Sec. Ill we inves-  Single-particle states of the lowest Landau level; the energies
tigate the cyclotron resonance, i.e., the dissipative conductiv@re measured with respect to its center. Equat®ns writ-
ity for o~ w.. We calculate the first ten frequency momentsten for the case of strongly quantizing magnetic fields,
of the cyclotron resonance absorption peak, and use them to

%%:dtewrom, Bo<l. (3

accurately restore its shageee Fig. 2 as a function of fre- 4
quency detunintAw=w—w.. To do the restoration, we

also calculate the asymptotic form of the tails of the cyclo- G,
tron resonance using the method of optimal fluctuatiour

result differs from that obtained earlier by loffe and 2
Larkin®®). In Sec. IV we discuss the ways to observe the

predicted here behavior in experiment. Technical details are
given in the Appendixes.

0
Il. LOW-FREQUENCY SINGLE-ELECTRON 0 L (o-opry 2
CONDUCTIVITY

FIG. 2. Reduced conductivity at the cyclotron absorption peak

In this section, we calculate the conductivity of a nonde-[see Eq.(39)] of a noninteracting 2DES in a short-range disorder
generate noninteracting two-dimensional electron system fqﬁotentiaj f0r|w—wc|,—y< kgT/h<w.. The curve is analytic in the

low frequenciesp<kgT/%. We consider the case of a delta- center of the peak. The absorption at the tdiss: w¢|> y, is de-
correlated disorder potential, and assume that the broadenimgrmined by large optimal fluctuations of the disorder potential, as
of the Landau levely<w.,kgT/% [cf. Eq. (1)]. illustrated in the inset.
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exp(Bwy)>1, so that only the lowest Landau level is occu-

pied. However, the calculation is readily generalized to the

case of arbitraryBw, by replacing Tg by the sum of traces
over the states of each Landau leuel weighted with
exp(—npawc)[1—exp(—Bw)].

Calculations within a single Landau level are conve-
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> (qq")

o(w)= —2|2yf dt et
— 00 qu’

X Tro{ VoV exdigR(t) lexdiq’R(0)]}. (11)

This form is particularly convenient for calculating the fre-

niently done using the formalism of the guiding center coor-quency moments of the reduced conductivity; see below in

dinatesR=(X,Y). As explained in Appendix A, the electron
dynamics in the random potentisl(r) is mapped onto that

Sec. II C.
Yet another representation of the reduced low-frequency

of a 1D quantum particle with the generalized momentunconductivity can be obtained if we describe time evolution of

and coordinateX andY, and with the Hamiltonian

H=fy> VeexpligR), [X,Y]=—il2 (4)
q

The guiding center velocity is determined by the potential

gradient

RM=—i|2'y§ ewqj/qeiqR, (5)

where u,v=X,y, ande,, is the unit antisymmetric tensor:
6Xy=—ey_x=1. _ N
The dimensionless coefficients

Vo=(Vq/hiy)exp —1%g%/4) (6)

are proportional to the Fourier components of the disorde
potential,

VqES*J d?r V(r)e o, 7

whereS s the area of the system. For higher Landau levels

the coefficients'\“/,]I have to be modified as explained in Ap-
pendix A[see Eq.(A8)]. We will assume tha¥/(r) is zero-
mean Gaussian angcorrelated,

V(H)V(r')y=v2s8(r—r'), (8)

in which case the SCBA width of the lowest Landau barid is
hy=(2lm) /.

In the simplified Kubo formuldEq. (3)] the temperature
dependence is factorized, and we can rewrite the low
frequency conductivity in the form of the generalized Ein-
stein relation

ne’D 1.
kot 87(@)

9

oy w)=

whereD =12y is the characteristic diffusion coefficient and,
as discussed in Appendix A,

~ 2 * . - .
o(w)= z—f dt €“'Tro{R(t)-R(0)} (10
€y ) -

is the reduced conductivity. It depends on the radigy of

the only two quantities with the dimension of frequency that

remain after projection on one Landau level.
Expression(10) can be rewritten, with the help of E¢p),
as

the electron operators in E@l1) using the setn) of the
eigenstates of the full electron Hamiltonian for the lowest
Landau level, and perform the time integration

4712

iy

7(w)=——2, 8(En—En—ho)|[(n[VVm)[?, (12

whereE,, are the energies of the LLL statés) in the po-
tential V(r) (again, generalization to the case of several oc-
cupied Landau levels is straightforward

We emphasize that, in the chosen parameter range, the
Landau-level projection resulted in expressions tthatnot
contain the usual disorder-dependent denominator, and the
quenched disorder averaging can be done directly, without
invoking supersymmetry or the replica trick. Nevertheless,
Ehe problem remains complicated as there are no good quan-
um numbers that would characterize the intraband electron
motion.

A. Tail of the low-frequency conductivity

We begin by calculating the asymptotic form of the re-
duced conductivityo(w) for o>y from Eq. (12). In the
neglect of interband mixing, the energiEg are symmetri-
cally distributed around the Landau band cente+=(Q). The
tails of the density of statgs(E) are known to be Gaussian:
p(E)xexp(—4E%h?y%). They are determined by the prob-
ability of the optimal(least improbablepotential fluctuation
Ve(r) in which the lowest or highest bound state has energy
E (| E|> ,y)'lS,l,lG

If we ignore the matrix element in EQ12) altogether(as
we show below, this only affects the prefagtdhe tail of the
conductivity will be proportional to the probability of finding
two statesg, and E,, such thatE,—E,,=#%w®. The major
contribution comes from states at the opposite ends of the
energy band with energies closeg= —E =% w/2, giving

()= p(hwl2)]Pcexp —2w? y?). (13

To check this approximation, we will apply the method of
optimal fluctuationt’*® The averaging over disorder in Eq.
(12) will be done using the path-integral representation,

AVI= [ DV AV e -RIVIOT), (14

where, for a delta-correlated Gaussian potential with cor-
relator (8),
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1 , with A= [dr|¢, p|*=(471%) 1. In this way we recover ex-
R[V]= gzj dr VA(r). (15  pression(13) for the conductivity tail. For higher Landau
levels (N=1), the wave functions have the fottny, ,

For largew, the leading contribution to surfi2) comes =T €xp(-iN¢)exp(~r7/4i?), in which case the correspond-

from transitions between the staties) and| ) with ener- NG constaniy = (412) ~1(2N)!/22Y(N1) 2,

giesE, and E, at the top and bottom of the Landau band, The prefactor in Eq(17) prevents the well and hump of
respectively: V(r) from being too far away from each other. The full

variational equatiori18) has a solution with an antisymmet-
ric optimal potentialV(r)=—V(—r) and symmetric wave
Et,b:J dr V(r)| g n(r)|%. (16)  functions ¢ (r)=y,(—r): E,=—Ep=fol2, respectively.

To estimate the role of the overlap integral we used the direct
To logarithmic accuracy, the conductivity is given by the variational method, in which we sought the potential in the
solution of the variational problem of finding the optimal form v/(r)=V(|r—ro|)=V(|r+1o]), with V(r)=V,exp
pote_nti_al V(r) Which minimizes the functi_o_naR[V] and (—r%212). The distance g, separating the hump and the
maximizes the matrix element of the transition subject to th§ye|| was used as a variational parameter. Given the potential,

constrainte,—E,=fiw, i.e., one has to solve the Schiinger equation, looking for the
- wave functions projected on the lowest Landau level. We
a(w)xmaxexd —R[V]+NE—E,—fiw)] took the functionsy , in the simplest form of orthogonal
v combinations of the zero-momentum wave functions cen-
X || VV] )| 2, (17) tered close tatr, (the positions were found using a varia-

_ o o _ tional procedurg The distance scales logarithmically with
where\ is a Lagrange multiplier. Variation with respect to frequency. The overall asymptotic expression for the expo-

V(r) gives the equation nent ino was the same as in E€L3); the overlap integral
gave only a prefactor
V(r)

0
7:)\(|¢t|2_|¢b|2)+5\/(r)|n |<¢t|vv|¢b>|2 (18) |<¢t|VV|lﬂb>|2~(ﬁ’}’2/|w)zm(W/)’)-

(for brevity, we do not give the explicit form of the last [Ar~1 extra w-dependent contribution to the overall prefactor
term). in o comes from the prefactor in path integfah). It actu-
We have analyzed the variational problem using a simplelly increases with the increasing However, an evaluation
and tractable direct variational method, and also by findingdf this prefactor goes beyond the scope of this paper, and in
the maximum in Eq(17) numerically. To see the qualitative some sense is superseded by the results obtained below with
features of the solution, we first discuss it ignoring the conthe method of moments.
tribution of the matrix element. In this case the Lagrange To check the accuracy of the asymptotic behavior of
multiplier \ is given by the consistency equation o(w) further, we maximizetf the functional in Eq.(17)
numerically. We used the variational equatid®) to repre-

(19) sent the optimal potential as a bilinear combination of the
LLL wave functionsyom(r) = r Mexpime)exp(—r2/42) with
different magnetic quantum numbears=0:

ho=E-Eymv?h [ dr(pf=psf?)”

and then the conductivitlEq. (17)] is

1

2U2fdl'(|l//t|2—|l//b|2)2 . (20 V(f>=mZm, Uiy om(T) $om: (7).

[Ino(w)|=H?w?

The corresponding eigenfunctiotig, were written as linear
combinations of the same functiogg,(r).

Both the exponent and prefactor of the variational func-
Efional (17) calculated numerically become close to the result
of the direct variational method fan/y=3. The shape of
the optimal potential found numerically for two values of
wl vy is illustrated in Fig. 3.

Solution (18) corresponds to a potential of the form of a
well and a hump, far away from each othef. Fig. 1). The
potential is antisymmetric, and the well and the hump hav
the same Gaussian shgpeexp(—r?/21?), with r counted off
from the corresponding extremyrand opposite signs. The
wave functionsy; and ¢, are localized at the hump and the
well of V(r), respectively, and are given just by the most
“localized” wave function of the lowest Landau level,
namely, that with zero angular momentunggy(r)oexp B. Conductivity at small frequencies

(~r?41%), centered at the appropriate potential extremum. An entirely different set of states defines the conductivity
The overlap of these wave functions is negligibly small, andfor very small frequenciesp<1y. In this regime the con-

Egs.(19 and(20) give straint imposed by conservation of energy is not very restric-
» 5 ) tive, and it is the matrix element that determines relative

ho=202\A, |Ino(w)|= w_ @ contributions of different pairs of states. Close to the static

’ 4v°A  2myI°A° limit the contribution to the conductivity increases dramati-
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~ 20% © o -
o(w)=———lim Re| dte“' T AR(t), (22
Y 6—+0 0

in terms of the squared displacememtR?(t)=[R(t)
—R(0)]?, whereR(t)=e"'R e "' is the Heisenberg opera-
tor of the guiding center. For an eigenstae of Hamil-
tonian (4) randomly chosen not too far from the critical en-
ergy, (n|AR?(t)|n) has a diffusive forn{Eq. (21)] at small
enought, but it eventually saturates at the distance of the
order of the localization Iengtlgsn. Replacing the trace by
the integral over energy weighted with ttroncritica) den-
sity of states, we obtain the overall long-timeté& 1) rms
displacement

TrOARz(t)~hyf de p(hye)min(Dt,£2) =1 2(yt)1 V@),
(23
This average is determined by the states with energies
<(yt)"¥?: the integral rapidly converges outside this re-
gion.
With asymptote(23), time integration in Eq(22) gives

a(w)=C(wly)*, pn=(2v) 1 (24)

The same result can be obtained from the scaling #bffn
of the zero-temperature conductivity of the noninteracting
system at a given chemical potential, which can be written as

2
%) , (25
4 2 0 2 4 7

x/1 where the dimensionless scaling funct@(X) rapidly van-

. _ ) ishes forX— 0, and approaches a constant value for latge

FIG. 3. Density plot of the optimal potential fesr=3y (@) and  |ndeed, the conductivity foBw<1 can be written as a con-
w=8y (b). The distances are measured in units of the magneti,o|ytion of scaling function25), with the derivative of the

eZ
Uxx(sfw) = %go

lengthl. Fermi distribution function
cally with the typical size of a wave function. As a resuit, Tw)= 8kgT j _ ﬁ (e,0) (26)
[Eq. (3)] is primarily determined by a narrow energy interval g ne’l?y #l 7 de | TS

at the center of the Landau band where the states are nea . . .
delocalized. The energy of the band center=(0) is a criti- ng Eq. (9)]. ForkgT>1y, all energies within the stripe of

cal energy, similar to the critical value of the control param-"idth 58;(“.’/7)M contrlt_)lrjltehequallf)f/_, and in the limié
eter in the theory of classical percolation transition. At small—0 We obtain Eq(24), with the coefficient
deviations from the critical energiparametrized by dimen-

i - ; ; = dX -
smnlessﬁsnerg)e—E/ﬁ_y) the correlqtlon length dl_verges, C=167T,uf — Go(X). 27)
&.~lle|””, where v=2.33+0.03 is the localization —eo| X[ L+
exponent:™

Were it not for localization, propagation of a wave packet €€ We have assumed that,—const fore—0, and

in a random potential would be diffusive: Go(X)=lim, _oGo(X £2"€2/1%). The integration converges
both at zero and infinity.

2 ~
(ART(D)~Dt. @) C. Spectral moments
Localization corrections are least important near the critical Since the single-particle conductivity goes to zero both
energy, but even there they modify the form of a wavefor w—0 and for w>1v, its frequency dependence dis-
packet at very large timé8.However, for not too large times plays a peak, with a maximum at a nonzero frequency
the rms displacement retains a diffusive form. This can be- y. Such a peak is of central interest from the point of view
used to find the conductivity at small frequencies. of experiment; it does not occur in the SCBA. This peak was
To this end, let us rewrite Eq10), found and briefly discussed in our previous paffdtere we
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present the results and provide some details of the full cal-

culation of the low-frequency conductivity based on the a ,,-é-\
method of spectral moments. The advantageous feature of o=l E S a
this method is that, instead of solving the full time-dependent A N Yooy
problem of the electron motion in a random fi¢Hq. (5)], KKk ——k—X
one has to evaluate only equal-time correlation functions. 4 9 9% 4y 95 94
We first calculate the spectral moments of the reduced
conductivity () [Eq. (9)]. They are defined as b ) B
I/ \\ II \\
yp— f " do(wl )% 28 ' .

oy de@lY) o(w). 28) 49 Uy Gner Dok
For w,y<kgT/#, the states within the broadened Landau c - \‘\
level are equally populated, and the conductivity is an even AN RN Y
function of frequency,o(w)=o(— ). Therefore all odd H—* x
moments vanishM,,,=0. For even moments, we use 9, 90 Doy

Hamiltonian(4) to obtain from Eqs(11) and(28): ) ) o )
FIG. 4. Examples of diagrams. Dashed lines indicate which

variables are paired, and double lines represent an arbitrary internal
2 = = structure(a) A symmetric diagram. Diagrams whose contribution is
My=—2l 2 (qlq2k+2)vq1 s 'ngk“ equal to zeroib) disconnectedliagrams, andc) diagrams which

. ) . ) vanish because the associated function is odgbjn ,.
X[[---[e%R e%RR] . ] e%1R]elt2x+2R,

(29 To classify different terms in surf81), it is convenient to
depict the contraction procedure graphically as illustrated in
Fig. 4. (These diagrams merely represent the contraction
function C and should not be confused with Feynman dia-
grams for the Green’s functiongrirst we note that the se-
[elMR gld'R]=2j Sin(}ﬂq/\qr)ei(qm’m_ (30) quence ofq;, paired in a diagram, may be reversey,
2 —0ok13-i, Without changing the overall value of the dia-
gram. The diagrams obtained by such a reversal are equiva-
For Gaussian random potential, the disorder average ifent, which reduces the computation cost by a factor of two
Eqg. (29 can be computed by Wick's theorem. From Egs.[this reduction does not occur, however, for symmetric dia-

The summation is performed over &, ... gy . COm-
mutator(29) can be evaluated recursively using

(6)-(8) grams shown in Fig. @]. An additional simplification
o comes from the fact that disconnected diagrdfig. 4(b)]
(VVy) = (ml212S)exp( —1202/2) 841 ¢ 0 and the diagrams with the structure shown in Fie) 4re
. equal to zero. The number of diagrams of different sorts is
whereSis the area of the system. Then given in Ref. 18; for example, for the 14th moment there are

‘o 2027035 diag_rams, out of which 5937 are symmet_ric, and
Motz — | — — 2 j da. - - -d ) 318631 are disconnected; the contribution of the diagrams
T G A1 Hok-+ 241 with q;=—q, is ~72.559, whereas the contribution of all
other diagrams is= —8.809.

|2

% B _2 2. g2 Despite the reductions, the number of terms to be calcu-
(GGak+2)€X 4 (G1F - +02c12) lated remains very large for larde Moreover, each term in
2 2 Eq.(31) is a sum of 2“ Gaussian integrals. Each integral can
S e be calculated algebraically but at a high computational cost.
*sin 5 ql/\qz)sm( 2 (q1+q2)/\q3) ' To accelerate the calculation, we have devised an efficient

numeric classification scheme, which sorts diagrams inex-
, (31) pensively intobins according to their approximate values

calculated with double precision. A representative diagram is

evaluated algebraically for each bin. Finally, the diagrams
where the sum is taken over allK2 1)!! ways to choose are summed up with proper multiplicity, givingxactnu-

|2

X sin E(q1+ U2t - -+ 021 \Uoks1

pairs out of the set of R+2 variables, and merical values of the moments. The procedure is outlined in
Appendix B. Algebraically calculating only nonequivalent
C({q})zé(qilJr qjl)- . 5(Qik+1+ ij+l) Gaussian integrals reduces the computational time tremen-
dously. This allowed us to evaluate the moments upliq.
is the correspondingontractionfunction. Fork=0,1,...,7, weobtain
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M _13 443 25003 1360894970929868127355150880%66602308094143977186611746328323669809
2k 718" 1152 38400 8941363200 6669830891243520036033364452669289726755567308636160000

2589008911677049308284617052653287524724669331093372792412270459939701
40611974008223423608381355617240666314144290787406293503186042880000

(32

and the corresponding approximate values The resulting conductivity calculated with=0.215 is
shown in Fig. 1. The estimated deviation from the obtained
M2x~1,0.375,0.385,0.651,1.522,4.478,15.72,63.75.  curve, due to the finite number of moments and also to the
uncertainty in the value of. (its effect is discussed in Ref.

D. Reconstruction of frequency dependence 18), is smaller than the width of the line.
Since the conductivity is asymptotically Gaussian, one is
tempted to restore(w) from the moment , in a standard 1. SINGLE-ELECTRON CYCLOTRON RESONANCE

way, writing_an expans;on in Hermite polynomiaig yx) Resonant single-electron absorption near the cyclotron
=3,ByHn(y2x)exp(-2¢). The coefficientsB, can be ex-  frequency o~ w,) is determined by the correlation function

pressed recursively in terms of the momeMs, k<n.  qf the Landau-level raising and lowering operators de-
However, for moment¢32), this expansion does not con- fined in Appendix A

verge rapidly; see Fig. 5. This is consistent witbnanalyt-
icity of the conductivity atw=0.

Given the exponent in Eq. (24), a much more rapidly
convergent expansion can be constructed in terms of a dif-
ferent set of orthogonal polynomials. Specifically, with Egs.
(13) and(24), we write the conductivity at the lowest Landau
level as

&
sw)= 2| dte¥(p (vp.(0), (34

where we used Ed?2), assuming expi{w./kgT)>1, in which
case only the lowest Landau level is occupied for small den-
~ 5 _ sities. In fact, Eq.(34) gives not only the real part of the
o(@)=x"GO)exp—2x7), x=lo|ly. (33 diagonal conductivityr,( ), but also the dissipative part of

The function G(x) (x=0) can be expanded in Laguerre the off-diagonal components of the conductivity tensor,
polynomials L~ /2(2x?), which are orthogonal for the
weighting factor in Eq(33). It is important that the expan- IM oyy(@) =~ 1M yy( ) ~Reoy(w), (35)
sion coefficients can also be recursively restored from the
momentsM ., k<n.

For the presently accepted value of the localization expo

neznt V%ﬁ‘%’ the yalufe of the conducti}g}y fexpgne,mtis Relation(35) implies strong circular dichroism. In the ab-
0.215. The expansion f@ converges rapidly for between — gonce of disorder, because of the selection rule associated
0.19 and 0.28, whereas outside this region the convergence

deteriorates, as illustrated in Fig. 6. This could be considered B
as an indirect indication of the consistency of our approach.’-2> k=7 u=030 6.75 n=0.26

for w~w.. Therefore it determines resonant absorption of
both linearly and circularly polarized light.

4 G
P
6.25 k=1 5.75 B
~ 4.25 pn=0
3.25 ‘
5 £ . 0 0.2y 04

-0.5 0 Q)/'Y 0.5

FIG. 6. The expansion of the prefaci®Br{Eq. (33)] in Laguerre
FIG. 5. Approximatings(w) with Hermite polynomials. With  polynomialsL{*~1"%(2x?) for different values of the exponent,
an increasing number of momeriik,, , a minimum of the conduc- depending on the total number of momeiMs,. The expansion
tivity develops, consistently ab=0, and the expansion does not converges rapidly for. between 0.19 and 0.28, and much more
show a fast convergence for smally. slowly outside this interval.
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with the angular momentum conservation, only one circu- q?l%.
larly polarized component is absorbed. Disorder potential SHe=H{P—HP=-ny> Tqu'qR- (40)
breaks the symmetry, and leads to a violation of the selection d
rule. However, for weak disorder this violation is weak. AN\, ihe interaction representatiom, can be then expressed in
analysis analogous to that in Appendix A shows that thgerms of a time-ordered exponential:
absorption coefficient for the “forbidden” polarization is
proportional to that of the strongly absorbed one, as given by i [t
TTEX;{ — —j dTBHd(T)) } .
fi)o
(41

Egs. (34 and (35, but contains an extra frequency- o (w)=7y f dt €2t Tr,
dependent factor of ord@vzlwﬁ. w

If the disorder is weak;y<w., it only weakly mixes
different Landau levels, the primary effect being to lift the Here the time dependence of the operataly,
degeneracy of each level. Then the problem of optically in- _ _
duced transitions between different Landau levels resembles SHy(n=eM " sHye 7" H=H{, (42
that of transitions between degenerate electronic terms of
impurities in solids in the presence of the electron-phonortS
coupling, which gives rise to the Jahn-Teller effétOne of  --
the effective methods of the theory of absorption spectra o

generated by the disorder Hamiltonian projected on the
L, which is given by Eq.(4) of Sec. II.
¢ We can now define the spectral moments of the cyclotron

Jahn-Teller centers is the method of momeiMEOM). peak as

The MOM formalism can be transferred to the case of 1 (= w—w.\ X
inter-Landau-level transitions. Fdry<kgT, quenched dis- Mi=— dw( C) oo w). (43)
order can be described in the same way as scattering by 21y ) e Y

thermally excited phonons. However, in the case of 2DE
one should allow for infinite level degeneracy.

In the neglect of disorder-induced scattering between
Landau levels, one should keep only the pgagtof the dis- Mg="Tr,
order potentiaNM(r), which is diagonal in the Landau-level
representation,

%Jsing Eq.(41) we write

BT
PRI a(7)dr
We note that, similar to the case of the peak of low-
q2I2 frequency conductivity discussed in Sec. Il, here we calcu-
Ho=2> H{VP =%y VR LN(T) Py, late the morr;ents of the cyclotron peak only, whereas the
N q N small (= y? ) correction from the correlators neglected in

(36) obtaining Eq.(34) is projected away, as are the peaks of
oy(w) at o~nw, with n#1.

. (44
t=0

whereV,, is defined by Eq(6) andPy = Pj; is the operator of
projection to theNth Landau level, as in EqA7). With

Hamiltonian(36), oscillations at the cyclotron frequency can A. Talils of the cyclotron resonance peak

be singled out in Eq(34), As in Sec. Il let us first discuss the asymptotic form of the
o , cyclotron peak comparatively far from resonani®w|> y
FlwctalHgt/h —iH4t/% . .
p.(t)=e"'?cedp e Mdit (37 (yet |Aw|<w,). If we introduce the exact eigenstates of

Hamiltonian(36) for the lowes{0,m) and first excited1,m)
Landau levels, with energids® andE'Y, respectively, ex-
pression(39) for the reduced conductivity can be written in

ne’ .
gc(w):mgc(a)), (38) the form
where go(w)=2mhyY, SEEWN—EO—%w)|(1m|p.|0n)
m,n

. . | (45)
Uc(w):'}’J_ dt e'A“’tTro[e'Hd”hp,e"Hd”ﬁer] (39)

Then, from Eq.(34), we can write

As for the low-frequency conductivity considered in Sec. Il,

the conductivity tail is determined by large optimal fluctua-

is the reduced conductivity, and w=w—w. is the fre- tions of the disorder potential.

quency detuninglA w| < w,. The problem of the optimal potential for cyclotron reso-
The major difference of Eq:39) from its low-frequency nance was previously considered by loffe and Lafkifihey

counterparfEq. (10)] is that the Hamiltonians for direct and used an ansatz of a rotationally symmetric optimal potential

inverse time propagatiorn(corresponding to the factors

e*Hd') are now different, which is again familiar from the V= 27Vo| @l 2+ 27V | D4 |2, (46)

theory of impurity absorption spectra. The reduced cyclotron

conductivity can be conveniently written in a form conven-where ® o= (r) and ®,;=4¢; _,(r) are the functions of

tional for this theory by introducing the “perturbation” the lowest and first excited Landau levels centered at the

Hamiltonian: sameorigin, with magnetic quantum numbers 0 andL,
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respectively. This resulted in the asymptotic form of the cy-ductivity. In particular, it contains an extra phase factor from
clotron resonance absorption peakx<exp(—8Aw?+?) for  the HamiltoniansH4 [Eq. (40)] which represents the differ-
the rangeh y<kgT. ence in the random potential experienced by an electron at
We argue that the transition probability between the statethe two Landau levels. This phase factor should give rise to
with energy separatiorE)~E(®=Aw+w, is exponen- an exponential damping, and related suppression of the in-
tially increased if the cyclotron orbit centers of these statederference effects at long times. Consequently, the conduc-
are permitted to shift with respect to each other. This haptivity is expected to be smooth near, .
pens despite the associated decrease of the overlap integral. Another way to see this is based on the following argu-
The calculation of the tails of the cyclotron resonancements. The suppression of the low-frequency conductivity
absorption peak is very similar to that in Sec. Il A. We beginfor «—0 may be attributed to level repulsion between over-
by writing the averaging in terms of a functional integral lapping localized states. This repulsion is comparatively
[Eqg. (14)], with the energy conservation taken into accountsmall for states of relatively large radii, with energies close
using a Lagrange multiplidias in Eq.(17), but withdifferent  to the band center. Indeed, only such states contribute to the
Hamiltonians forE; and E,]. If we neglect the dependence low-frequency conductivity, as we saw in Sec. Il B. On the
of the transition matrix element o¥(r), then for the optimal  other hand, resonant cyclotron absorption is due to transi-
potential we obtain an equation similar to E46). However, tions betweerdifferentLandau levels. Although the central
in contrast to Ref. 15, we permit the centers of the wavepart of the absorption peak is formed by transitions between
functions®, and®, to be shifted with respect to each other. strongly overlapping states, the involved states are eigen-
A remarkable feature of this simplified variational problem isstates ofdifferentHamiltonians, with random parts{” and
that, in the neglect of overlapping of the displaced waveHE,l). Their wave functions have different spatial structures,
functions, thesamevalue of the variational functiondlex-  and their energies are essentially uncorrelated, except for
cept for the overlap terjris obtained for the trial wave func- states deep in the tails of the Landau levels. Consequently,
tions of the first Landau level with the magnetic quantumwe expect no suppression of transitions at frequencies close
numbers—1 or 0, i.e.,i; _; Or ¢ o, Or for any their linear to w.. This argument is in agreement with the results of the
combination. method of moments presented in Sec. Il C and Fig. 2.
For a displacemerR between the centers of the hump and
well of the optimal potential, the transition matrix element is
[(yn|p| o) ~exp(—R%/412). The optimal distanceR?
~412In[(w—we)?/¥*] is found by maximizing the expression C. Spectral moments of the cyclotron peak
with the matrix element present. As in the case of the low-

frequency conductivity, this distance increases as the fre- We Wil now calculate the spectral momenqg. (44)].
quency is tuned away from resonance. Because all states of the lowest Landau level are equally

The variational result for the conductivity tail is populated, the reduced conductivfgq. (41)] is symmetric
with respect tavw, i.e.,0.(w.+Aw)=o0.(w.—Aw). There-
fore, all odd moments vanistM$,, ;=0. The structure of
. (47) the expression for even moments which follows from Eq.
(44) is similar to that of Eq(31). The main difference is that
E[he prefactor is now a complicated polynomial, a combina-
tion of products of terms which are linear in the squared
wave numbers)? .
This strongly complicated the numerical procedure. In
B. Center of the cyclotron absorption peak particular, we failed to find any symmetries to reduce the
~ i computational overhead, and graphical representations were
Generally, we do not expeet;(w) to display a nonana- of Jittle help. We were also unable to categorize different
lytic dip at the center of the cyclotron absorption peak. In-terms as described in Appendix B for the low-frequency con-
deed, the power-law singularityEq. (24)] of the low-  gyctivity. Instead, we developed the computer algebra pack-
frequency conductivity can be associated with quantunyge gaussint(Ref. 24 for Mathematica, capable of handling
interference, which leads to an eventual localization of alkhe integration of high dimensional Gaussian integrals in a
states except for on@r maybe a few at the band center. manageable time frame, and used the brute-force approach
Expression(41) for the cyclotron resonance absorption has acalculating all terms analytically. Fd=0,1, . ..,5 we ob-
structure which differs from that for the low-frequency con- tained

~ 8 5
o(w)oeexp — 3_,}/2((1)_(1)(:)

This tail is much broader, with the exponent reduced by
factor of 3, compared to the result of Ref. 15.

c _1_1 37 52043 47508930014999694054188353275207831950716496054687
2k 7264’ 55296 24883200000006480696333914117611721116876800000000

(48)

and the corresponding approximate values
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a) - - are summarized in Appendix C. As one can see from Fig. 7,
k=1 k=345 the convergence is very.fast. The_resqlting shape pf the cy-
clotron absorption peak is shown in Fig. 2. We believe that
the deviation from the exact value is within the width of the
curve.

IV. CONCLUSION

In conclusion, we have analyzed the single-electron low-
frequency magnetoconductivity and cyclotron resonance ab-
1 sorption of a nondegenerate 2D electron system in a quan-
(0—we)/y tizing magnetic field. We considered the experimentally
b) important parameter range where the width of the Landau
levels is less than temperature, so that all states within the
lowest Landau level are equally populated. In this range, by
combining the ideas of the scaling theory of the IQHE, the
method of optimal fluctuation, and the method of spectral
moments, we obtained highly accurate numerical results
throughout the frequency domain where the conductivity dis-
plays peaks.

We found that, in contrast to the prediction of the SCBA
or other mean-field theorié$§ the low-frequency conductiv-
ity displays a peak at nonzerofrequency, as shown in Fig.

1. For short-range disorder, the position of the peak is given

FIG. 7. Approximatingo, with continued fractions(a) The by
convergence with increasing number of momevits, is extremely
fast: the curves lie on top of each other alreadyKer3,4, and 5. wm~0.26y. (49)

(b) A comparison between the continued fracti@olid ling) and  For »— 0, the single-electron conductivity displaysiaiver-
the Hermite polynomial approximatiddashed lingfor k=5. Con- g5 power-law dispersionr,,»w*, which is related to the

(0-0.)/Y

vergence is much faster with continued fractions. scaling behavior of the localization length as a function of
. the distance in energy from the center of the disorder-
>x~1.000,0.500,0.578,0.941,1.909,4.582. broadened Landau level. On the other hand, the peak of the

cyclotron resonance does not display such singular behavior,
and is not shifted away from., as seen from Fig. 2. Both
peaks have Gaussian tails, with different expongsee Eqgs.
(13), (47)].

Experimentally, it may be more feasible to investigate the

As a first step, we reconstructed(w) using a standard magnetoconductivity at a given nonzero frequentgyas a
expansion in Hermite polynomials: function of the external magnetic fiell The corresponding
representation of our results is given in Fig. 8 for the scaled
conductivity o, (B; w),

The values of the moments witk=0,1, and 2 were also
independently confirmed analytically.

D. Reconstruction of frequency-dependence

ao(yx)= >, BhHq(y/8/3x)exp — 8x2/3).
" 127

o(w)
The coefficientd3,, were expressed recursively from the cal- 0,=0,(Bjw)= = (50)

culated momentEEq. (48)]. We discovered that although the o(7)
convergence is fast far from the center of the peak, it iSypere the scaling factor i&(y)~1.08. The scaling field

noticeably slower close to the cent@ve emphasize, how- Bo(w) is defined by the equatiog=w for B=B,, which
ever, that we reached convergence, in contrast to the Sim“"ﬁives Bo(w) = mmcrw?/2]e|, where Talzvzm/hs is the

expansion for the low-frequency conductivity in Fig. 5, rate of electron scattering by the short-range potenEa.
where the convergence was not reached for 14 moments(8)] in the absence of the magnetic field.

Within this approach, the number of calculated moments is The magnetoconductivity,, is related too, (B;w) by a
apparently insufficient for restoring the entire function  factor which is independent% but depends*orm,:

with desired accuracy. The corresponding result is shown by

the dashed line in Fig. 7. o(y) £ né?

Much faster convergence was achieved whgtw) was Oxx( @)= keT mﬂ*(Biw)- (51)
restored using a continued fraction expansion. We applied an
algorithm similar to that used to reconstruct the LLL density In the self-consistent Born approximation, the function
of states from its frequency moments for an arbitrary correo, (B; ») decays with the increasing magnetic fieldgas"?,
lated random potenti&P. The steps involved in this process for B>By(w). With the localization effects taken into ac-

Bo(w)
B
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the peak ofo,,(w) which we predict. Observation of this
peak and/or its counterpart in the magnetic-field dependence
of the weighted ac conductivitg*?o,(w) (cf. Fig. 8
would be a clear demonstration of single-electron localiza-
tion effects in quantizing magnetic fields.
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FIG. 8. Reduced ac magnetoconductivify [Eq. (50)] at a
nonzero frequency as a function of the reduced magnetic field APPENDIX A: GUIDING CENTER FORMALISM

B/Bo(w)<B w™2. In order to demonstrate the anomalous single- . . . -
electron behaviorg, is also plotted with an extra factoB(B,) /2 Here we point out the basp expressions of the gwdlng
For largeB, the single-electron conductivity displays a scaling be- CE€Nter formalism needed to derive simplified expressions for

havior: BY25, x B~ 42, the Iow-frquency conductivity at a given Landau Ie_vel. The
time evolution of the momentum operatqp=—i%V

count, this dependence becomes steeper, VBH#or, +(|e|/c)A in Eq. (2) is determined by the Hamiltonian

«B~#2 as illustrated in Fig. 8. B
Within the single-electron approximation, the restriction H=Ho+V(r), (A1)
on the magnetic field from above is imposed by the conditionwhereV(r) is the scattering potential, and
hy<kgT, which is equivalent tow.<7o(kgT/%)? for the
short-range disorder potential. This inequality can be ful- 1
filled simultaneously withB>By(w), provided w<kgT. Ho:f“”c(lmlf’fr 5
The restriction on the magnetic field from below, necessary - )
for the system to be in the lowest Landau leveh >kgT,  Herep. are the Landau-level raising and lowering opera-
can hlold for B~Bg(w) and Aw<kgT, provided kgT ~ tOrS:
>hry . _.
The latter inequality is often fulfilled for electrons on a P==(px+ipy)/V2himaoe,  [p-,p+]=1.
helium surface. This system displays the highest electrofrhe choice of signs correspondsBg= —|B|<O0.
mobilities observed in condensed-matter systems. We be- To evaluate Fourier-transformed current-current correla-
lieve that it is important to reconcile the experimental datagors |ike that in Eq.(2), we make a Fourier transforgover

on the magnetoconductivity of electrons on helium with thetime) of the Heisenberg equations of motion for the operators
theory of the integer quantum Hall effect. px andp, . This gives

For T<0.9 K the random potential experienced by elec-

trons on helium is due mostly to capillary waves, ripplons. It w\?
has a small correlation length and is quasistatic. For electro{ 1_((0_)
densitiesn~10° cm 2 andT=0.7 K, the value ofr, is as ¢
large as~2x10 8 s (see Ref. 11 and 27 For lower T €
~0.1 Kandn~10" cm 2, the mobility which corresponds -
to the effectiver,~10 ' s was observed by Shirahama

et al?® In both casesti 7, *<kgT. Therefore the results of (A2)

the present paper fully apply to electrons on helium as longvhere g, denotes the partial derivative with respectrip,
as one can disregard the inelasticity of scattefiwbich is  the indicesu and » enumerate the componertsand y,
very weak and many-electron effects. summation over repeated indices is implied, aag, =

It follows from our results that the single-electron ap- —¢ = is the unit antisymmetric tensoe,,=1. We use the
proximation does not apply to tleaticmagnetoconductivity notaltLion

of a nondegenerate 2DES which has been measured for elec-

trons on helium. This is in spite of the fact that, for suffi- o .

ciently strong magnetic fields, the effective coupling to a <A(t)B(0)>w:fﬁwdte“"%A(t)B(O»- (A3)

short-range disorder potential becomes in some sense stron-

ger than the electron-electron interaction. Yet it is this inter-The calculation can be repeated analogouslypfd0) in the

action that is responsible for the observed nonzero value aforrelators on the right-hand side of E§2). As a result, the

o4(0), atleast for not too low electron densiti&s. entire current-current correlator can be expressed in terms of
The role of many-electron effects for stroBgs less im-  the correlators of the derivatives of the potentialsee, for

portant in the frequency range~ vy, and in particular near example, Refs. 6 and).7

(PUDPLO)= A3V (D)P(O),

L, NV (1)P,(0)),

w
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In the low-frequency limit the terms containing the ratio appear only in the second order of the perturbation theory.

wl/w.<1 disappear, and the correlator of interest becomes The corresponding contribution is suppressed by the small
parameter ¢/ ).
€ 1€yt
(Pu(DPU0))y="F5"(2 V(r(1)3, V([ (0)),, (A4)
W APPENDIX B: CALCULATION OF FREQUENCY

which gives a direct derivation of E¢12). MOMENTS

If the random potentia¥(r) is comparatively weak, aswe  Here we describe an efficient numerical procedure used to

assume, mixing of electron states in different Landau levelgbtain exact expressions of high-order diagrams in expansion

by this potential is small. Howevey(r) lifts the degeneracy (31). We begin by rewriting Eq(31) as a sum of exponen-
of each level and transforms it into a band, with a continuousials:

energy spectrum of a width-#y. The low-frequency con-
ductivity is determined by the comparatively slow intraband [2\k+1
dynamics. Thus in Eq(A4), in the operatorV(r(t)) we Mx= —2|2( )
should keep only the smooth components which vary on the ¢
time scaley > wc‘l. In this approximation we can identify

> > (-1

({ap) {b;

8

XJ day - . - ddak2C(19}) (102K + 2)

€, i€,, .
Pu() == L2V (D))= —= 2 q V¥, (A5) |2 2k+2 2 22
: ¢ cod - 3 dieih S 8 ®
4 n=1 4 mih=1

where on the right-hand side one should neglect the terms

that contain rapidly varying factors explct) with n#0,  1ho inner sum is taken over all binary sequendes

associated with inter-Landau-level transitiong, are the =(by,b, boy), with b;=0 and 1. They label possible
1 1 L | L | .

spatial Fourier components ¥(r); see Eq(7)]. combinations of signs which arise from writing the sines in

Th_e slow el_ectron dyna_mics within a_bfoadened Landa_LEq_ (31) in terms of exponentials. The quantity({b})
level is conveniently described by the guiding center coordl—EE_b, The antisymmetric (R+2)-dimensional square ma-
I~

nates: o
trix B has the structure
_ ) B Py _o P
R=(X,Y): X=x+ mw,’ Y=y Mo, 0 Cq (o) ... Cy O
. —C 0 C2 Ck O
The components dk commute with the momentum operator
[R,p]=0, but not with each othefX,Y]=—il2. In terms of Bib}— —C —C 0
these variables the disorder poten¥gk) can be written as : . Cox '
_ - —Cok —Coy Ce —Coxk 0
V(f):E V, gldR—a1%4gla_pyg—la.p- (AB) 0 0
5 .

(B2)
whereq. = (gy+ iqy)/\/i. The projection of the potenti

—(_1\bi
onto theNth level is given by wherec;=(—1)™.

Because of thes functions in the contraction function
_ C({q}), integration in Eq(B1) has to be performed ovér
V(=P V() Py=Py>X V{Ve'R, (A7) +1 independent wave vectors. Up to a prefactpipy.. ),
d the integrand is an exponential of the quadratic form
VIV =V L (qA1212)expt — o?1%/4). (A8) (I2/2)Einijqj , wherei,j=1,... k+1. 'The matrix_ele-
ments A;; are themselves 22 matrices, Ajj=—16j

—p2 ; At N
Here Py=Py is the appropriate projection operator, and+aijay’ where o, is the Pauli matrix, andy; = —a;; =0,
+

Ln(2) is theNth Laguerre polynomial.

The motion projected on thaith Landau level can be For a given contractiof({q}) and a given vectadp in Eq.
described by applying the operatofy, to the Heisenberg (g1) je., for the corresponding matria;;, the Gaussian

equation of motion for the guiding center: integrals can be evaluated exactly, giving

Rﬂ(t)=—i(|2/ﬁ)ew% RVALC) Lk SE

Um,1 m,x
ITal= - — 14+ \2)~ 12 L, B3
Lal 4ki1;[1( ) mEzl l+7\ﬁ] B3)

Up to a coefficient, the projected parts in the right-hand sides

of this equation and EA5) coincide with each other. This wherei\ , are the eigenvalues of the antisymmetric matrices
shows that the projected parts pfand mR are the same, am,, and Unn are the components of the corresponding
which results in Eqs(10) and (11). The correction to low- eigenvectors. The subscripttakes on the valug=k+ 1 if
frequency conductivity due to inter-Landau-band transitiong); andq, ., are independent variables in the pairing proce-
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dure, whereas fog; = — g, » We should sek=1, and ad-
ditionally multiply Eq.(B3) by (—1).

Given the large number of terms and the computational
price of calculating the exact values in each term, we did not"
calculate each integral exactly. Instead, the value of a given
term [specified by the choice of contractiaif{g}) and the
binary sequence], was calculated numerically with double
precision. With integer-valued matrices; , the number of
different values was not exceedingly large, and we used the
obtained approximate valu¢gq. (B3)] to assign each term
to an equivalence class. The individual weights can be pos
tive or negative, depending on the parity @{{b}). This
procedure was used instead of much more tedious manu

R(z):Kf_l(ﬁ), A;=0, (C5)

z
here we use the notation

4

z

1
Ay
A
7+ —2
z+"-.

Kiz1 (Co)

z+

for the continued fraction with coefficients; and variablez.
'The first J continued-fraction coefficienta,, ... ,A; are
optained from normalized momentds, ... M5; by ex-

classification of high-order diagramdin addition, we
checked for several values bthat weights corresponding to
special diagrams in Fig. 4 are indeed equal to zero

After the classification of diagrams was completed, th
exact value of the integral in each class was obtained bg

taking a representative contracted matjx and calculating
the Gaussian integral[a] algebraically. These integrals
have rational values; the final answer #dr,, was obtained

as a weighted sum of these rational numbers with their re-
spective bin weights. As a test, we compared the results foFherefore, if the first) coefficientsA,, .

k=0,1, and 2 with explicit analytic calculation.

APPENDIX C: CONTINUED FRACTION EXPANSION

The Stieltjes transform of the conductivity. is defined
by

R(7)= 1 fw q }C(w+wc) Rez~0 -
(Z)_Zﬂ'y i Z—iwly "’ ez>0, (CD

while the inverse transformation has the form
o(w+w)=2 lim RER(e+iw/y)]. (C2

e—0+

The functionR is related to moment&t3) by the expression

o

>

k=0

R(2) ikMeEz k1, (C3)

We now construct an approximation for E1) which
applies for an even function(w+ wy)=0(— 0+ w), al-
lows for the Gaussian asymptotifsq. (47)],

52
lim —Ino(w+w)=—

w— *x

a= _—,

16 (€4

Zl
and requires only a finite humber of moments.

It is knowrf®*° that an odd functionR(z) can be ex-
panded into a Jacobi-type continued fraction,

8 nding power serie€C3) into the continued fractiofEq.
(C5)] using an efficient recursive algorithfd.Having ob-
tained only a finite number of coefficients;, we need to
estimate the remaining ones. Fortunately, the asymptotic be-

“havior[Eq. (C4)] implies™® the following asymptotically lin-

ar growth for the continued-fraction coefficients:

im—=a. (€
j—o»

.., Ay are found,
one can then construct an approximatRi(z) to R(z) by

linearly continuingA; for j>J,

()
RO(z) = Krl( %) , (C9
where
A, for j=<J
AO={" . C
! [AJ-I—a(]—J) for j>J. €9

A continuous fraction with a linearly increasing coefficient
can be written in terms of the Whittaker parabolic cylinder
functionD,,,

_D-gray-1(a” V%)
CYl/ZD —,B/a( a 1/22) !

which is valid if >0, B+ a>0 and Re>0, so that we
can write Eq.(C8) as

T(B,a,2)=K]",

B+ai)

z

1
Ay

RO(z)= (C10

z+

z+ -

: Ajg
z

T AT A a)
Applying the inversion formula[Eq. (C2)] immediately

gives the restored cyclotron resonance absorpfigiw), as
shown in Fig. 7.
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