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Single-electron magnetoconductivity of a nondegenerate two-dimensional electron system
in a quantizing magnetic field

Frank Kuehnel,1 Leonid P. Pryadko,2,3 and M. I. Dykman1,*
1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, 48823

2School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, 08540
3Department of Physics, University of California, Riverside, California, 92521

~Received 29 August 2000; revised manuscript received 25 January 2001; published 5 April 2001!

We study transport properties of a nondegenerate two-dimensional system of noninteracting electrons in the
presence of a quantizing magnetic field and a short-range disorder potential. We show that the low-frequency
magnetoconductivity displays a strongly asymmetric peak at a nonzero frequency. The shape of the peak is
restored from the calculated 14 spectral moments, the asymptotic form of its high-frequency tail, and the
scaling behavior of the conductivity forv→0. We also calculate ten spectral moments of the cyclotron
resonance absorption peak, and restore the corresponding~nonsingular! frequency dependence using the con-
tinuous fraction expansion. Both expansions converge rapidly with an increasing number of included moments,
and give numerically accurate results throughout the region of interest. We discuss the possibility of an
experimental observation of the predicted effects for electrons on helium.
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I. INTRODUCTION

A single-electron dynamics in the lowest Landau lev
~LLL !, broadened by a delta-correlated scalar disorder po
tial, provides the simplest framework for the analysis of t
integer quantum Hall effect~IQHE!. Wegner’s exact
calculation1 of the density of states raised hopes that
corresponding model may be exactly solvable, and much
fort was put into understanding transport in this model. Ho
ever, in contrast to the density of states, the conductivity
expressed in terms of a two-particle Green’s function, a
depends not only on the energies of single-particle states
also on their wave functions.

Nearly all single-electron wave functions of the disord
broadened Landau levels are localized. The localiza
length j strongly depends on energy. For small energieE
counted off from the Landau band center~in the neglect of
band mixing!, j diverges as a universal power2,3 of uEu.
These are the large-radius states that form the low-freque
conductivity, because it involves large electron displa
ments and small energy transfer. As a result, for Fermi
ergies close to a band center, the conductivity display
universal critical behavior at sufficiently small temperatu
and frequencies.

The width of the critical region depends on the propert
of the disorder potential and the Landau-level number.
the lowest Landau level, it is of the order of the bandwid
\g, the only dimensional parameter of the Hamiltonian p
jected on the LLL~we assume that the cyclotron frequen
vc@g). Outside the scaling region, the spatial extent of
eigenstates is small, of the order of the magnetic lengl
5(\/mvc)

1/2, and the universality is lost. Therefore, th
overall frequency dependence of the conductivity is de
mined by the disorder mechanism, and may allow one
discriminate between different mechanisms. For this rea
it is interesting to obtain the frequency dependence of
conductivity, including its universal and nonuniversal par
0163-1829/2001/63~16!/165326~14!/$20.00 63 1653
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at least for some basic models of disorder. It is also of int
est to find highly accurate numerical results, as they may
used to test various approximate analytical approaches.

In the present paper we consider frequency-depend
conductivity in the single-electron approximation. Motivate
by the experiment, and in order to make the problem tr
table, we assume that

\g!kBT, nl2!1, ~1!

i.e., the disorder-induced broadening of the lowest Land
level is small compared to temperature, and simultaneou
the filling fraction is small, so that the electron system
nondegenerate. This parameter range is of interest for sev
two-dimensional electron systems~2DESs!. In particular,
much of the experimental data on magnetotransport of e
trons on the surface of liquid helium refer to range~1!, with
typical densities beingn;108 cm22 ~see Ref. 4!. This range
is also of interest for ultraclean low-density electron syste
in semiconductors, which currently attract much attention5

In range~1! all states within a broadened Landau level a
nearly equally populated, and one no longer needs to take
Boltzmann factor into account while computing temperatu
and disorder averages using the Hamiltonian projected
that level. In spite of this simplification, we were unable
obtain an explicit solution of the problem. There are no go
~nearly conserved! quantum numbers in the disorde
broadened band~such as quasimomentum, for example!, and
no small parameters characterize the intraband electron
tion. However, as we show below, we can still accurat
calculate the frequency-dependent conductivity. This is d
by the method of moments, which was previously sugges
for this problem by one of us.6

Our present analysis applies to a short-range disorder.
such disorder, the magnetotransport of noninteracting e
trons in parameter range~1! was earlier analyzed7,8 within
the scope of the self-consistent Born approximation~SCBA!.
The SCBA ignores the interference effects which lead
©2001 The American Physical Society26-1
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electron localization and the associated scaling behavior
the Landau band center. The uncontrolled nature of this
proximation is especially evident in the static limit where t
SCBA produces a nonzero conductivity, contrary to wha
expected in the range~1! from the well-established IQHE
theory where nearly all single-particle states are localiz
From this point of view, it is important to develop a singl
electron theory of magnetotransport that will take localiz
tion effects into account, and thus extend the ideas of
IQHE physics to a different parameter range.

Another motivation for developing such a theory com
from the experiment. A single-electron SCBA was used
interpret the data on thestatic magnetoconductivity of elec
trons on helium for strong enough magnetic fields8–10 ~for a
review, see Refs. 11–13!. Short-range disorder is a goo
model of the random potential in this system.4 However,
unless the variation of this potential in time is taken in
account~this variation isveryslow, both where the potentia
is due to ripplons or helium vapor atoms!, the single-electron
conductivity should be equal to zero, in contradiction w
the observations. An important mechanism responsible
nonzero static conductivity is the electron-electron inter
tion. Our results reveal singular features of the sing
electron conductivity, and also serve as a basis for the
many-electron theory of magnetoconductivity, which allo
for strong electron-electron correlations.14

The outline of the paper is as follows. In Sec. II we c
culate the frequency-dependent conductivitysxx(v) in the
temperature range\g!kBT, exp(\vc /kBT)@1 for v!vc
~these results were previously announced in Ref. 14!. We
find the asymptotics of the conductivity at both small (v
→0) and comparatively large (g!v!vc) frequencies, and
show thatsxx(v) has a peak at a nonzero frequencyv;g.
Using an efficient diagram classification scheme, we exa
compute the first 14 spectral moments of this peak. Th
moments contain information about the short-time (;g21)
dynamics of the system. Combined with the low- and hig
frequency asymptotics, they allow us to accurately rest
the entire functionsxx(v) ~see Fig. 1!. In Sec. III we inves-
tigate the cyclotron resonance, i.e., the dissipative conduc
ity for v'vc . We calculate the first ten frequency momen
of the cyclotron resonance absorption peak, and use the
accurately restore its shape~see Fig. 2! as a function of fre-
quency detuningDv[v2vc . To do the restoration, we
also calculate the asymptotic form of the tails of the cyc
tron resonance using the method of optimal fluctuation~our
result differs from that obtained earlier by Ioffe an
Larkin15!. In Sec. IV we discuss the ways to observe t
predicted here behavior in experiment. Technical details
given in the Appendixes.

II. LOW-FREQUENCY SINGLE-ELECTRON
CONDUCTIVITY

In this section, we calculate the conductivity of a nond
generate noninteracting two-dimensional electron system
low frequencies,v!kBT/\. We consider the case of a delt
correlated disorder potential, and assume that the broade
of the Landau levelg!vc ,kBT/\ @cf. Eq. ~1!#.
16532
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In range~1! all states within the LLL are equally occu
pied, and the Kubo formula for the dissipative conductiv
can be written as a simple trace without the Boltzmann f
tor:

sxx~v!5
n~12e2bv!

\v
ReE

0

`

dteivt^ j x~ t ! j x~0!& ~2!

'
nb

2\E2`

`

dteivtTr0$ j x~ t ! j x~0!%, bv!1. ~3!

Here j x[epx /m is the one-electron current operator,b
[\/kBT, the angular bracketŝ•& denote statistical averag
ing over the states followed by an averaging over quenc
disorder, and the horizontal line denotes only the disor
averaging. The trace Tr0 in Eq. ~3! is performed over all
single-particle states of the lowest Landau level; the ener
are measured with respect to its center. Equation~2! is writ-
ten for the case of strongly quantizing magnetic field

FIG. 1. Reduced microwave conductivity@Eq. ~11!# of a nonin-
teracting 2DES at the lowest Landau level in a short-range diso
potential forv,g!kBT/\. For small frequenciesv!g, the conduc-
tivity is singular: sxx;vm. It is determined by spatially large
nearly delocalized states. Forv@g, the conductivity is determined
by large optimal fluctuations of the disorder potential, as illustra
in the inset. The optimal potentialVopt(r ) is such that\v is equal to
the energy differenceEt2Eb between the top and bottom boun
statesut& and ub&, and at the same time these states are maxim
overlapping.

FIG. 2. Reduced conductivity at the cyclotron absorption pe
@see Eq.~39!# of a noninteracting 2DES in a short-range disord
potential foruv2vcu,g!kBT/\!vc . The curve is analytic in the
center of the peak. The absorption at the tails,uv2vcu@g, is de-
termined by large optimal fluctuations of the disorder potential,
illustrated in the inset.
6-2
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SINGLE-ELECTRON MAGNETOCONDUCTIVITY OF A . . . PHYSICAL REVIEW B63 165326
exp(bvc)@1, so that only the lowest Landau level is occ
pied. However, the calculation is readily generalized to
case of arbitrarybvc by replacing Tr0 by the sum of traces
over the states of each Landau leveln, weighted with
exp(2nbvc)@12exp(2bvc)#.

Calculations within a single Landau level are conv
niently done using the formalism of the guiding center co
dinatesR[(X,Y). As explained in Appendix A, the electro
dynamics in the random potentialV(r ) is mapped onto tha
of a 1D quantum particle with the generalized moment
and coordinateX andY, and with the Hamiltonian

H5\g(
q

Ṽq exp~ iqR!, @X,Y#52 i l 2. ~4!

The guiding center velocity is determined by the poten
gradient

Ṙm52 i l 2g(
q

emnqnṼqe
iqR, ~5!

wherem,n5x,y, and emn is the unit antisymmetric tensor
exy52eyx51.

The dimensionless coefficients

Ṽq[~Vq /\g!exp~2 l 2q2/4! ~6!

are proportional to the Fourier components of the disor
potential,

Vq[S21E d2r V~r !e2 iqr, ~7!

whereS is the area of the system. For higher Landau lev
the coefficientsṼq have to be modified as explained in Ap
pendix A @see Eq.~A8!#. We will assume thatV(r ) is zero-
mean Gaussian andd-correlated,

V~r !V~r 8!5v2d~r2r 8!, ~8!

in which case the SCBA width of the lowest Landau band7

\g5(2/p)1/2v/ l .
In the simplified Kubo formula@Eq. ~3!# the temperature

dependence is factorized, and we can rewrite the lo
frequency conductivity in the form of the generalized E
stein relation

sxx~v!5
ne2D

kBT

1

8
s̃~v!, ~9!

whereD5 l 2g is the characteristic diffusion coefficient an
as discussed in Appendix A,

s̃~v![
2

l 2g
E

2`

`

dt eivtTr0$Ṙ~ t !•Ṙ~0!% ~10!

is the reduced conductivity. It depends on the ratiov/g of
the only two quantities with the dimension of frequency th
remain after projection on one Landau level.

Expression~10! can be rewritten, with the help of Eq.~5!,
as
16532
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s̃~v!522l 2gE
2`

`

dt eivt(
q,q8

~qq8!

3Tr0$ṼqṼq8exp@ iqR~ t !#exp@ iq8R~0!#%. ~11!

This form is particularly convenient for calculating the fr
quency moments of the reduced conductivity; see below
Sec. II C.

Yet another representation of the reduced low-freque
conductivity can be obtained if we describe time evolution
the electron operators in Eq.~11! using the setun& of the
eigenstates of the full electron Hamiltonian for the lowe
Landau level, and perform the time integration

s̃~v!5
4p l 2

\g (
n,m

d~En2Em2\v!u^nu“Vum&u2, ~12!

whereEn are the energies of the LLL statesun& in the po-
tential V(r ) ~again, generalization to the case of several
cupied Landau levels is straightforward!.

We emphasize that, in the chosen parameter range,
Landau-level projection resulted in expressions thatdo not
contain the usual disorder-dependent denominator, and
quenched disorder averaging can be done directly, with
invoking supersymmetry or the replica trick. Neverthele
the problem remains complicated as there are no good q
tum numbers that would characterize the intraband elec
motion.

A. Tail of the low-frequency conductivity

We begin by calculating the asymptotic form of the r
duced conductivitys̃(v) for v@g from Eq. ~12!. In the
neglect of interband mixing, the energiesEn are symmetri-
cally distributed around the Landau band center (E50). The
tails of the density of statesr(E) are known to be Gaussian
r(E)}exp(24E2/\2g2). They are determined by the prob
ability of the optimal~least improbable! potential fluctuation
VE(r ) in which the lowest or highest bound state has ene
E (uEu@g).15,1,16

If we ignore the matrix element in Eq.~12! altogether~as
we show below, this only affects the prefactor!, the tail of the
conductivity will be proportional to the probability of finding
two statesEn and Em such thatEn2Em5\v. The major
contribution comes from states at the opposite ends of
energy band with energies close toEn52Em5\v/2, giving

s̃~v!}@r~\v/2!#2}exp~22v2/g2!. ~13!

To check this approximation, we will apply the method
optimal fluctuation.17,15 The averaging over disorder in Eq
~12! will be done using the path-integral representation,

F@V#[E DV~r !F@V~r !#exp$2R@V~r !#%, ~14!

where, for a delta-correlated Gaussian potential with c
relator ~8!,
6-3
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R@V#5
1

2v2E dr V2~r !. ~15!

For largev, the leading contribution to sum~12! comes
from transitions between the statesuc t& and ucb& with ener-
gies Et and Eb at the top and bottom of the Landau ban
respectively:

Et,b5E dr V~r !uc t,b~r !u2. ~16!

To logarithmic accuracy, the conductivity is given by th
solution of the variational problem of finding the optim
potential V(r ) which minimizes the functionalR@V# and
maximizes the matrix element of the transition subject to
constraintEt2Eb5\v, i.e.,

s̃~v!}max
V

$exp@2R@V#1l~Et2Eb2\v!#

3u^c tu“Vucb&u2%, ~17!

wherel is a Lagrange multiplier. Variation with respect
V(r ) gives the equation

V~r !

v2
5l(uc tu22ucbu2)1

d

dV~r !
ln u^c tu“Vucb&u2 ~18!

~for brevity, we do not give the explicit form of the las
term!.

We have analyzed the variational problem using a sim
and tractable direct variational method, and also by find
the maximum in Eq.~17! numerically. To see the qualitativ
features of the solution, we first discuss it ignoring the co
tribution of the matrix element. In this case the Lagran
multiplier l is given by the consistency equation

\v5Et2Eb5v2lE dr ~ uc tu22ucbu2!2, ~19!

and then the conductivity@Eq. ~17!# is

u ln s̃~v!u5\2v2F2v2E dr ~ uc tu22ucbu2!2G21

. ~20!

Solution ~18! corresponds to a potential of the form of
well and a hump, far away from each other~cf. Fig. 1!. The
potential is antisymmetric, and the well and the hump ha
the same Gaussian shape@}exp(2r2/2l 2), with r counted off
from the corresponding extremum# and opposite signs. Th
wave functionsc t andcb are localized at the hump and th
well of V(r ), respectively, and are given just by the mo
‘‘localized’’ wave function of the lowest Landau leve
namely, that with zero angular momentum,c00(r )}exp
(2r2/4l 2), centered at the appropriate potential extremu
The overlap of these wave functions is negligibly small, a
Eqs.~19! and ~20! give

\v52v2lA, u ln s̃~v!u5
\2v2

4v2A
5

v2

2pg2l 2A
,

16532
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with A[*dr uc t,bu45(4p l 2)21. In this way we recover ex-
pression~13! for the conductivity tail. For higher Landau
levels (N>1), the wave functions have the form16 c t,b
}r Nexp(2iNf)exp(2r2/4l 2), in which case the correspond
ing constantAN5(4p l 2)21(2N)!/22N(N!) 2.

The prefactor in Eq.~17! prevents the well and hump o
V(r ) from being too far away from each other. The fu
variational equation~18! has a solution with an antisymme
ric optimal potentialV(r )52V(2r ) and symmetric wave
functions c t(r )5cb(2r ): Et52Eb5\v/2, respectively.
To estimate the role of the overlap integral we used the di
variational method, in which we sought the potential in t
form V(r )5Ṽ(ur2r0u)2Ṽ(ur1r0u), with Ṽ(r )5V0exp
(2r2/2l 2). The distance 2r 0 separating the hump and th
well was used as a variational parameter. Given the poten
one has to solve the Schro¨dinger equation, looking for the
wave functions projected on the lowest Landau level. W
took the functionsc t,b in the simplest form of orthogona
combinations of the zero-momentum wave functions c
tered close to6r0 ~the positions were found using a varia
tional procedure!. The distancer 0 scales logarithmically with
frequency. The overall asymptotic expression for the ex
nent in s̃ was the same as in Eq.~13!; the overlap integral
gave only a prefactor

u^c tu“Vucb&u2;~\g2/ lv!2ln~v/g!.

@An extra v-dependent contribution to the overall prefact
in s̃ comes from the prefactor in path integral~14!. It actu-
ally increases with the increasingv. However, an evaluation
of this prefactor goes beyond the scope of this paper, an
some sense is superseded by the results obtained below
the method of moments.#

To check the accuracy of the asymptotic behavior
s̃(v) further, we maximized18 the functional in Eq.~17!
numerically. We used the variational equation~18! to repre-
sent the optimal potential as a bilinear combination of
LLL wave functionsc0m(r )}r mexp(imf)exp(2r2/4l 2) with
different magnetic quantum numbersm>0:

V~r !5 (
m,m8

umm8c0m* ~r !c0m8~r !.

The corresponding eigenfunctionsc t,b were written as linear
combinations of the same functionsc0m(r ).

Both the exponent and prefactor of the variational fun
tional ~17! calculated numerically become close to the res
of the direct variational method forv/g*3. The shape of
the optimal potential found numerically for two values
v/g is illustrated in Fig. 3.

B. Conductivity at small frequencies

An entirely different set of states defines the conductiv
for very small frequencies,v!g. In this regime the con-
straint imposed by conservation of energy is not very rest
tive, and it is the matrix element that determines relat
contributions of different pairs of states. Close to the sta
limit the contribution to the conductivity increases drama
6-4
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cally with the typical size of a wave function. As a result,s̃
@Eq. ~3!# is primarily determined by a narrow energy interv
at the center of the Landau band where the states are n
delocalized. The energy of the band center (E50) is a criti-
cal energy, similar to the critical value of the control para
eter in the theory of classical percolation transition. At sm
deviations from the critical energy~parametrized by dimen
sionless energy«[E/\g) the correlation length diverges
j«; l u«u2n, where n52.3360.03 is the localization
exponent.2,3,19

Were it not for localization, propagation of a wave pack
in a random potential would be diffusive:

^DR2~ t !&;Dt. ~21!

Localization corrections are least important near the crit
energy, but even there they modify the form of a wa
packet at very large times.20 However, for not too large times
the rms displacement retains a diffusive form. This can
used to find the conductivity at small frequencies.

To this end, let us rewrite Eq.~10!,

FIG. 3. Density plot of the optimal potential forv53g ~a! and
v58g ~b!. The distances are measured in units of the magn
length l.
16532
rly

-
ll

t

l

e

s̃~v!52
2v2

l 2g
lim

d→10
ReE

0

`

dt eivt2dtTr0DR2~ t !, ~22!

in terms of the squared displacementDR2(t)[@R(t)
2R(0)#2, whereR(t)[eiHtR e2 iHt is the Heisenberg opera
tor of the guiding center. For an eigenstateun& of Hamil-
tonian ~4! randomly chosen not too far from the critical e
ergy, ^nuDR2(t)un& has a diffusive form@Eq. ~21!# at small
enought, but it eventually saturates at the distance of t
order of the localization lengthj«n

. Replacing the trace by
the integral over energy weighted with the~noncritical! den-
sity of states, we obtain the overall long-time (gt@1) rms
displacement

Tr0DR2~ t !;\gE d« r~\g«!min~Dt,j«
2!} l 2~gt !121/(2n).

~23!

This average is determined by the states with energiesu«u
&(gt)21/2n; the integral rapidly converges outside this r
gion.

With asymptote~23!, time integration in Eq.~22! gives

s̃~v!5C~v/g!m, m[~2n!21. ~24!

The same result can be obtained from the scaling form21,22

of the zero-temperature conductivity of the noninteract
system at a given chemical potential, which can be written

sxx~«,v!5
e2

\
G0S vj«

2

g l 2 D , ~25!

where the dimensionless scaling functionG0(X) rapidly van-
ishes forX→0, and approaches a constant value for largeX.
Indeed, the conductivity forbv!1 can be written as a con
volution of scaling function~25!, with the derivative of the
Fermi distribution function

s̃~v!5
8kBT

ne2l 2gE d«S 2
dnF

d« Dsxx~«,v! ~26!

@cf. Eq. ~9!#. For kBT@\g, all energies within the stripe o
width d«;(v/g)m contribute equally, and in the limitv
→0 we obtain Eq.~24!, with the coefficient

C516pmE
2`

` dX

uXu11m
G̃0~X!. ~27!

Here we have assumed that«nj«→const for«→0, and
G̃0(X)[ lim«→0G0(X «2nj«

2/ l 2). The integration converge
both at zero and infinity.

C. Spectral moments

Since the single-particle conductivity goes to zero bo
for v→0 and for v@g, its frequency dependence dis
plays a peak, with a maximum at a nonzero frequencyv
;g. Such a peak is of central interest from the point of vie
of experiment; it does not occur in the SCBA. This peak w
found and briefly discussed in our previous paper.14 Here we

ic
6-5
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FRANK KUEHNEL, LEONID P. PRYADKO, AND M. I. DYKMAN PHYSICAL REVIEW B 63 165326
present the results and provide some details of the full
culation of the low-frequency conductivity based on t
method of spectral moments. The advantageous featur
this method is that, instead of solving the full time-depend
problem of the electron motion in a random field@Eq. ~5!#,
one has to evaluate only equal-time correlation functions

We first calculate the spectral moments of the redu
conductivity s̃(v) @Eq. ~9!#. They are defined as

Mk5
1

2pgE2`

`

dv~v/g!ks̃~v!. ~28!

For v,g!kBT/\, the states within the broadened Land
level are equally populated, and the conductivity is an e
function of frequency,s̃(v)5s̃(2v). Therefore all odd
moments vanish,M2k1150. For even moments, we us
Hamiltonian~4! to obtain from Eqs.~11! and ~28!:

M2k522l 2( ~q1q2k12!Ṽq1
. . . Ṽq2k12

3†@•••@eiq1R,eiq2R#, . . . #,eiq2k11R
‡eiq2k12R.

~29!

The summation is performed over allq1 , . . . ,q2k12. Com-
mutator~29! can be evaluated recursively using

@eiqR,eiq8R#52i sinS 1

2
l 2q`q8Dei (q1q8)R. ~30!

For Gaussian random potential, the disorder averag
Eq. ~29! can be computed by Wick’s theorem. From Eq
~6!–~8!

^ṼqṼq8&5~p l 2/2S!exp~2 l 2q2/2!dq1q8,0 ,

whereS is the area of the system. Then

M2k52pS 2
l 2

2p D k12

(C($q%)
E dq1•••dq2k12C~$q%!

3~q1q2k12!expS 2
l 2

4
~q1

21•••1q2k12
2 ! D

3sinS l 2

2
q1`q2D sinS l 2

2
~q11q2!`q3D . . .

3sinS l 2

2
~q11q21•••1q2k!`q2k11D , ~31!

where the sum is taken over all (2k11)!! ways to choose
pairs out of the set of 2k12 variables, and

C~$q%![d~qi 1
1qj 1

!•••d~qi k11
1qj k11

!

is the correspondingcontractionfunction.
16532
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To classify different terms in sum~31!, it is convenient to
depict the contraction procedure graphically as illustrated
Fig. 4. ~These diagrams merely represent the contrac
function C and should not be confused with Feynman d
grams for the Green’s functions.! First we note that the se
quence ofqi , paired in a diagram, may be reversed,qi

→q2k132 i , without changing the overall value of the dia
gram. The diagrams obtained by such a reversal are equ
lent, which reduces the computation cost by a factor of t
@this reduction does not occur, however, for symmetric d
grams shown in Fig. 4~a!#. An additional simplification
comes from the fact that disconnected diagrams@Fig. 4~b!#
and the diagrams with the structure shown in Fig. 4~c! are
equal to zero. The number of diagrams of different sorts
given in Ref. 18; for example, for the 14th moment there
2027035 diagrams, out of which 5937 are symmetric, a
318631 are disconnected; the contribution of the diagra
with q152q2 is '72.559, whereas the contribution of a
other diagrams is'28.809.

Despite the reductions, the number of terms to be ca
lated remains very large for largek. Moreover, each term in
Eq. ~31! is a sum of 22k Gaussian integrals. Each integral ca
be calculated algebraically but at a high computational c
To accelerate the calculation, we have devised an effic
numeric classification scheme, which sorts diagrams in
pensively intobins according to their approximate value
calculated with double precision. A representative diagram
evaluated algebraically for each bin. Finally, the diagra
are summed up with proper multiplicity, givingexact nu-
merical values of the moments. The procedure is outlined
Appendix B. Algebraically calculating only nonequivale
Gaussian integrals reduces the computational time trem
dously. This allowed us to evaluate the moments up toM14.
For k50,1, . . . ,7, weobtain

FIG. 4. Examples of diagrams. Dashed lines indicate wh
variables are paired, and double lines represent an arbitrary inte
structure.~a! A symmetric diagram. Diagrams whose contribution
equal to zero:~b! disconnecteddiagrams, and~c! diagrams which
vanish because the associated function is odd inq2k12.
6-6
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M2k51,
3

8
,

443

1152
,
25003

38400
,
13608949709

8941363200
,
298681273551508807

66698308912435200
,
566602308094143977186611746328323669809

36033364452669289726755567308636160000
,

2589008911677049308284617052653287524724669331093372792412270459939701

40611974008223423608381355617240666314144290787406293503186042880000
, ~32!
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and the corresponding approximate values

M2k'1,0.375,0.385,0.651,1.522,4.478,15.72,63.75.

D. Reconstruction of frequency dependence

Since the conductivity is asymptotically Gaussian, one
tempted to restores̃(v) from the momentsMn in a standard
way, writing an expansion in Hermite polynomialss̃(gx)
5(nBnHn(A2x)exp(22x2). The coefficientsBn can be ex-
pressed recursively in terms of the momentsMk , k<n.
However, for moments~32!, this expansion does not con
verge rapidly; see Fig. 5. This is consistent withnonanalyt-
icity of the conductivity atv50.

Given the exponentm in Eq. ~24!, a much more rapidly
convergent expansion can be constructed in terms of a
ferent set of orthogonal polynomials. Specifically, with Eq
~13! and~24!, we write the conductivity at the lowest Landa
level as

s̃~v!5xmG~x!exp~22x2!, x[uvu/g. ~33!

The function G(x) (x>0) can be expanded in Laguer
polynomials Ln

(m21)/2(2x2), which are orthogonal for the
weighting factor in Eq.~33!. It is important that the expan
sion coefficients can also be recursively restored from
momentsM2k , k<n.

For the presently accepted value of the localization ex
nent n'2.33, the value of the conductivity exponentm is
0.215. The expansion forG converges rapidly form between
0.19 and 0.28, whereas outside this region the converge
deteriorates, as illustrated in Fig. 6. This could be conside
as an indirect indication of the consistency of our approa

FIG. 5. Approximatings̃(v) with Hermite polynomials. With
an increasing number of momentsM2k , a minimum of the conduc-
tivity develops, consistently atv50, and the expansion does n
show a fast convergence for smallv/g.
16532
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The resulting conductivity calculated withm50.215 is
shown in Fig. 1. The estimated deviation from the obtain
curve, due to the finite number of moments and also to
uncertainty in the value ofm ~its effect is discussed in Ref
18!, is smaller than the width of the line.

III. SINGLE-ELECTRON CYCLOTRON RESONANCE

Resonant single-electron absorption near the cyclot
frequency (v'vc) is determined by the correlation functio
of the Landau-level raising and lowering operatorsp6 de-
fined in Appendix A,

sc~v!5
ne2

2mE
2`

`

dt eivt^p2~ t !p1~0!&, ~34!

where we used Eq.~2!, assuming exp(\vc /kBT)@1, in which
case only the lowest Landau level is occupied for small d
sities. In fact, Eq.~34! gives not only the real part of the
diagonal conductivitysxx(v), but also the dissipative part o
the off-diagonal components of the conductivity tensor,

Im sxy~v!52Im syx~v!'Resxx~v!, ~35!

for v'vc . Therefore it determines resonant absorption
both linearly and circularly polarized light.

Relation~35! implies strong circular dichroism. In the ab
sence of disorder, because of the selection rule assoc

FIG. 6. The expansion of the prefactorG @Eq. ~33!# in Laguerre
polynomialsLn

(m21)/2(2x2) for different values of the exponentm,
depending on the total number of momentsM2k . The expansion
converges rapidly form between 0.19 and 0.28, and much mo
slowly outside this interval.
6-7



cu
tia
tio
n

th
s
b
-

e
in
bl
s
o

o

o

E

e

l

n

d
s
e
ro
n-
’’

n

the

ron

w-
cu-
the
in
of

he

of

in

II,
a-

o-

tial

the

FRANK KUEHNEL, LEONID P. PRYADKO, AND M. I. DYKMAN PHYSICAL REVIEW B 63 165326
with the angular momentum conservation, only one cir
larly polarized component is absorbed. Disorder poten
breaks the symmetry, and leads to a violation of the selec
rule. However, for weak disorder this violation is weak. A
analysis analogous to that in Appendix A shows that
absorption coefficient for the ‘‘forbidden’’ polarization i
proportional to that of the strongly absorbed one, as given
Eqs. ~34! and ~35!, but contains an extra frequency
dependent factor of orderg2/vc

2 .
If the disorder is weak,g!vc , it only weakly mixes

different Landau levels, the primary effect being to lift th
degeneracy of each level. Then the problem of optically
duced transitions between different Landau levels resem
that of transitions between degenerate electronic term
impurities in solids in the presence of the electron-phon
coupling, which gives rise to the Jahn-Teller effect.23 One of
the effective methods of the theory of absorption spectra
Jahn-Teller centers is the method of moments~MOM!.

The MOM formalism can be transferred to the case
inter-Landau-level transitions. For\g!kBT, quenched dis-
order can be described in the same way as scattering
thermally excited phonons. However, in the case of 2D
one should allow for infinite level degeneracy.

In the neglect of disorder-induced scattering betwe
Landau levels, one should keep only the partHd of the dis-
order potentialV(r ), which is diagonal in the Landau-leve
representation,

Hd5(
N

Hd
(N)PN5\g(

q
Ṽqe

iqR(
N

LNS q2l 2

2 D PN ,

~36!

whereṼq is defined by Eq.~6! andPN5PN
2 is the operator of

projection to theNth Landau level, as in Eq.~A7!. With
Hamiltonian~36!, oscillations at the cyclotron frequency ca
be singled out in Eq.~34!,

p6~ t !5e6 ivcteiH dt/\p6e2 iH dt/\. ~37!

Then, from Eq.~34!, we can write

sc~v!5
ne2

2mg
s̃c~v!, ~38!

where

s̃c~v!5gE
2`

`

dt eiDvtTr0@eiH dt/\p2e2 iH dt/\p1# ~39!

is the reduced conductivity, andDv[v2vc is the fre-
quency detuning,uDvu!vc .

The major difference of Eq.~39! from its low-frequency
counterpart@Eq. ~10!# is that the Hamiltonians for direct an
inverse time propagation~corresponding to the factor
e6 iH dt! are now different, which is again familiar from th
theory of impurity absorption spectra. The reduced cyclot
conductivity can be conveniently written in a form conve
tional for this theory by introducing the ‘‘perturbation
Hamiltonian:
16532
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n

n

dHd[Hd
(1)2Hd

(0)52\g(
q

q2l 2

2
Ṽqe

iqR. ~40!

In the interaction representation,s̃c can be then expressed i
terms of a time-ordered exponential:

s̃c~v!5gE
2`

`

dt eiDvtTr0FTtexpS 2
i

\E0

t

dt dHd~t! D G .

~41!

Here the time dependence of the operatordHd ,

dHd~t![eiH t/\dHd e2 iH t/\, H[Hd
(0) , ~42!

is generated by the disorder Hamiltonian projected on
LLL, which is given by Eq.~4! of Sec. II.

We can now define the spectral moments of the cyclot
peak as

Mk
c5

1

2pgE2`

`

dvS v2vc

g D k

s̃c~v!. ~43!

Using Eq.~41! we write

Mk
c5Tr0S i

g

d

dtD
k

TtexpS 2
i

\E0

t

dHd~t!dt D U
t50

. ~44!

We note that, similar to the case of the peak of lo
frequency conductivity discussed in Sec. II, here we cal
late the moments of the cyclotron peak only, whereas
small (}g2/vc

2) correction from the correlators neglected
obtaining Eq.~34! is projected away, as are the peaks
sxx(v) at v'nvc with nÞ1.

A. Tails of the cyclotron resonance peak

As in Sec. II let us first discuss the asymptotic form of t
cyclotron peak comparatively far from resonance,uDvu@g
~yet uDvu!vc). If we introduce the exact eigenstates
Hamiltonian~36! for the lowestu0,m& and first excitedu1,m&
Landau levels, with energiesEm

(0) andEm
(1) , respectively, ex-

pression~39! for the reduced conductivity can be written
the form

s̃c~v!52p\g(
m,n

d~Em
(1)2En

(0)2\v!u^1,mup1u0,n&u2.

~45!

As for the low-frequency conductivity considered in Sec.
the conductivity tail is determined by large optimal fluctu
tions of the disorder potential.

The problem of the optimal potential for cyclotron res
nance was previously considered by Ioffe and Larkin.15 They
used an ansatz of a rotationally symmetric optimal poten

Vopt
IL 52pV0uF0u212pV1uF1u2, ~46!

where F05c0,0(r ) and F15c1,21(r ) are the functions of
the lowest and first excited Landau levels centered at
sameorigin, with magnetic quantum numbers 0 and21,
6-8
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respectively. This resulted in the asymptotic form of the c
clotron resonance absorption peaksc}exp(28Dv2/g2) for
the range\g!kBT.

We argue that the transition probability between the sta
with energy separationEm

(1)2En
(0)5Dv1vc is exponen-

tially increased if the cyclotron orbit centers of these sta
are permitted to shift with respect to each other. This h
pens despite the associated decrease of the overlap inte

The calculation of the tails of the cyclotron resonan
absorption peak is very similar to that in Sec. II A. We beg
by writing the averaging in terms of a functional integr
@Eq. ~14!#, with the energy conservation taken into accou
using a Lagrange multiplier@as in Eq.~17!, but withdifferent
Hamiltonians forEt and Eb#. If we neglect the dependenc
of the transition matrix element onV(r ), then for the optimal
potential we obtain an equation similar to Eq.~46!. However,
in contrast to Ref. 15, we permit the centers of the wa
functionsF0 andF1 to be shifted with respect to each othe
A remarkable feature of this simplified variational problem
that, in the neglect of overlapping of the displaced wa
functions, thesamevalue of the variational functional~ex-
cept for the overlap term! is obtained for the trial wave func
tions of the first Landau level with the magnetic quantu
numbers21 or 0, i.e.,c1,21 or c1,0, or for any their linear
combination.

For a displacementR between the centers of the hump a
well of the optimal potential, the transition matrix element
u^c1up1uc0&u;exp(2R2/4l 2). The optimal distanceR2

'4l 2ln@(v2vc)
2/g2# is found by maximizing the expressio

with the matrix element present. As in the case of the lo
frequency conductivity, this distance increases as the
quency is tuned away from resonance.

The variational result for the conductivity tail is

s̃c~v!}expS 2
8

3g2~v2vc!
2D . ~47!

This tail is much broader, with the exponent reduced b
factor of 3, compared to the result of Ref. 15.

B. Center of the cyclotron absorption peak

Generally, we do not expects̃c(v) to display a nonana
lytic dip at the center of the cyclotron absorption peak.
deed, the power-law singularity@Eq. ~24!# of the low-
frequency conductivity can be associated with quant
interference, which leads to an eventual localization of
states except for one~or maybe a few! at the band center
Expression~41! for the cyclotron resonance absorption ha
structure which differs from that for the low-frequency co
16532
-

s

s
-

ral.

t

e

e

-
e-

a

-

ll

a

ductivity. In particular, it contains an extra phase factor fro
the HamiltoniandHd @Eq. ~40!# which represents the differ
ence in the random potential experienced by an electro
the two Landau levels. This phase factor should give rise
an exponential damping, and related suppression of the
terference effects at long times. Consequently, the cond
tivity is expected to be smooth nearvc .

Another way to see this is based on the following arg
ments. The suppression of the low-frequency conductiv
for v→0 may be attributed to level repulsion between ov
lapping localized states. This repulsion is comparativ
small for states of relatively large radii, with energies clo
to the band center. Indeed, only such states contribute to
low-frequency conductivity, as we saw in Sec. II B. On t
other hand, resonant cyclotron absorption is due to tra
tions betweendifferent Landau levels. Although the centra
part of the absorption peak is formed by transitions betw
strongly overlapping states, the involved states are eig
states ofdifferentHamiltonians, with random partsHd

(0) and
Hd

(1) . Their wave functions have different spatial structur
and their energies are essentially uncorrelated, except
states deep in the tails of the Landau levels. Conseque
we expect no suppression of transitions at frequencies c
to vc . This argument is in agreement with the results of t
method of moments presented in Sec. III C and Fig. 2.

C. Spectral moments of the cyclotron peak

We will now calculate the spectral moments@Eq. ~44!#.
Because all states of the lowest Landau level are equ
populated, the reduced conductivity@Eq. ~41!# is symmetric
with respect tovc , i.e.,s̃c(vc1Dv)5s̃c(vc2Dv). There-
fore, all odd moments vanish,M2k11

c 50. The structure of
the expression for even moments which follows from E
~44! is similar to that of Eq.~31!. The main difference is tha
the prefactor is now a complicated polynomial, a combin
tion of products of terms which are linear in the squar
wave numbersqk

2 .
This strongly complicated the numerical procedure.

particular, we failed to find any symmetries to reduce t
computational overhead, and graphical representations w
of little help. We were also unable to categorize differe
terms as described in Appendix B for the low-frequency co
ductivity. Instead, we developed the computer algebra pa
ageGaussInt~Ref. 24! for Mathematica, capable of handlin
the integration of high dimensional Gaussian integrals i
manageable time frame, and used the brute-force appro
calculating all terms analytically. Fork50,1, . . . ,5 we ob-
tained
M2k
c 51;

1

2
,
37

64
,
52043

55296
,
4750893001499

2488320000000
,
29694054188353275207831950716496054687

6480696333914117611721116876800000000
, ~48!

and the corresponding approximate values
6-9
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M2k
c '1.000,0.500,0.578,0.941,1.909,4.582.

The values of the moments withk50,1, and 2 were also
independently confirmed analytically.

D. Reconstruction of frequency-dependence

As a first step, we reconstructeds̃c(v) using a standard
expansion in Hermite polynomials:

s̃c~gx!5(
n

BnHn~A8/3x!exp~28x2/3!.

The coefficientsBn were expressed recursively from the ca
culated moments@Eq. ~48!#. We discovered that although th
convergence is fast far from the center of the peak, i
noticeably slower close to the center~we emphasize, how
ever, that we reached convergence, in contrast to the sim
expansion for the low-frequency conductivity in Fig.
where the convergence was not reached for 14 mome!.
Within this approach, the number of calculated moment
apparently insufficient for restoring the entire functions̃c
with desired accuracy. The corresponding result is shown
the dashed line in Fig. 7.

Much faster convergence was achieved whens̃c(v) was
restored using a continued fraction expansion. We applie
algorithm similar to that used to reconstruct the LLL dens
of states from its frequency moments for an arbitrary cor
lated random potential.25 The steps involved in this proces

FIG. 7. Approximatings̃c with continued fractions.~a! The
convergence with increasing number of momentsM2k

c is extremely
fast: the curves lie on top of each other already fork53,4, and 5.
~b! A comparison between the continued fraction~solid line! and
the Hermite polynomial approximation~dashed line! for k55. Con-
vergence is much faster with continued fractions.
16532
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are summarized in Appendix C. As one can see from Fig
the convergence is very fast. The resulting shape of the
clotron absorption peak is shown in Fig. 2. We believe t
the deviation from the exact value is within the width of th
curve.

IV. CONCLUSION

In conclusion, we have analyzed the single-electron lo
frequency magnetoconductivity and cyclotron resonance
sorption of a nondegenerate 2D electron system in a qu
tizing magnetic field. We considered the experimenta
important parameter range where the width of the Land
levels is less than temperature, so that all states within
lowest Landau level are equally populated. In this range,
combining the ideas of the scaling theory of the IQHE, t
method of optimal fluctuation, and the method of spect
moments, we obtained highly accurate numerical res
throughout the frequency domain where the conductivity d
plays peaks.

We found that, in contrast to the prediction of the SCB
or other mean-field theories,26 the low-frequency conductiv-
ity displays a peak at anonzerofrequency, as shown in Fig
1. For short-range disorder, the position of the peak is gi
by

vm'0.26g. ~49!

For v→0, the single-electron conductivity displays auniver-
sal power-law dispersionsxx}vm, which is related to the
scaling behavior of the localization length as a function
the distance in energy from the center of the disord
broadened Landau level. On the other hand, the peak of
cyclotron resonance does not display such singular beha
and is not shifted away fromvc , as seen from Fig. 2. Both
peaks have Gaussian tails, with different exponents@see Eqs.
~13!, ~47!#.

Experimentally, it may be more feasible to investigate t
magnetoconductivity at a given nonzero frequencyv as a
function of the external magnetic fieldB. The corresponding
representation of our results is given in Fig. 8 for the sca
conductivitys* (B;v),

s* [s* ~B;v!5FB0~v!

B G1/2s̃~v!

s̃~g!
, ~50!

where the scaling factor iss̃(g)'1.08. The scaling field
B0(v) is defined by the equationg5v for B5B0, which
gives B0(v)5pmct0v2/2ueu, where t0

215v2m/\3 is the
rate of electron scattering by the short-range potential@Eq.
~8!# in the absence of the magnetic field.

The magnetoconductivitysxx is related tos* (B;v) by a
factor which is independent ofB but depends onv:

sxx~v!5
s̃~g!

4p

\

kBT

ne2

mvt0
s* ~B;v!. ~51!

In the self-consistent Born approximation, the functi
s* (B;v) decays with the increasing magnetic field asB21/2,
for B@B0(v). With the localization effects taken into ac
6-10
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count, this dependence becomes steeper, withB1/2s*
}B2m/2, as illustrated in Fig. 8.

Within the single-electron approximation, the restricti
on the magnetic field from above is imposed by the condit
\g!kBT, which is equivalent tovc!t0(kBT/\)2 for the
short-range disorder potential. This inequality can be f
filled simultaneously withB@B0(v), provided \v!kBT.
The restriction on the magnetic field from below, necess
for the system to be in the lowest Landau level,\vc@kBT,
can hold for B;B0(v) and \v!kBT, provided kBT
@\t0

21.
The latter inequality is often fulfilled for electrons on

helium surface. This system displays the highest elec
mobilities observed in condensed-matter systems. We
lieve that it is important to reconcile the experimental d
on the magnetoconductivity of electrons on helium with t
theory of the integer quantum Hall effect.

For T,0.9 K the random potential experienced by ele
trons on helium is due mostly to capillary waves, ripplons
has a small correlation length and is quasistatic. For elec
densitiesn;108 cm22 andT50.7 K, the value oft0 is as
large as'231028 s ~see Ref. 11 and 27!. For lower T
'0.1 K andn'107 cm22, the mobility which corresponds
to the effectivet0'1027 s was observed by Shiraham
et al.28 In both cases,\t0

21!kBT. Therefore the results o
the present paper fully apply to electrons on helium as lo
as one can disregard the inelasticity of scattering~which is
very weak! and many-electron effects.

It follows from our results that the single-electron a
proximation does not apply to thestaticmagnetoconductivity
of a nondegenerate 2DES which has been measured for
trons on helium. This is in spite of the fact that, for suf
ciently strong magnetic fields, the effective coupling to
short-range disorder potential becomes in some sense s
ger than the electron-electron interaction. Yet it is this int
action that is responsible for the observed nonzero valu
sxx(0), at least for not too low electron densities.14

The role of many-electron effects for strongB is less im-
portant in the frequency rangev;g, and in particular near

FIG. 8. Reduced ac magnetoconductivitys* @Eq. ~50!# at a
nonzero frequencyv as a function of the reduced magnetic fie
B/B0(v)}B v22. In order to demonstrate the anomalous sing
electron behavior,s* is also plotted with an extra factor (B/B0)1/2.
For largeB, the single-electron conductivity displays a scaling b
havior: B1/2s* }B2m/2.
16532
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the peak ofsxx(v) which we predict. Observation of thi
peak and/or its counterpart in the magnetic-field depende
of the weighted ac conductivityB1/2sxx(v) ~cf. Fig. 8!
would be a clear demonstration of single-electron locali
tion effects in quantizing magnetic fields.
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APPENDIX A: GUIDING CENTER FORMALISM

Here we point out the basic expressions of the guid
center formalism needed to derive simplified expressions
the low-frequency conductivity at a given Landau level. T
time evolution of the momentum operatorp52 i\“
1(ueu/c)A in Eq. ~2! is determined by the Hamiltonian

H5H01V~r !, ~A1!

whereV(r ) is the scattering potential, and

H05\vcS p1p21
1

2D .

Here p6 are the Landau-level raising and lowering ope
tors:

p65~px7 ipy!/A2\mvc, @p2 ,p1#51.

The choice of signs corresponds toBz52uBu,0.
To evaluate Fourier-transformed current-current corre

tors like that in Eq.~2!, we make a Fourier transform~over
time! of the Heisenberg equations of motion for the operat
px andpy . This gives

F12S v

vc
D 2G^pm~ t !pn~0!&v5

iv

vc
2^]mV„r ~ t !…pn~0!&v

2
emm8
vc

^]m8V„r ~ t !…pn~0!&v ,

~A2!

where]m denotes the partial derivative with respect tor m ,
the indicesm and n enumerate the componentsx and y,
summation over repeated indices is implied, andemn5
2enm is the unit antisymmetric tensor,exy51. We use the
notation

^A~ t !B~0!&v5E
2`

`

dt eivt^A~ t !B~0!&. ~A3!

The calculation can be repeated analogously forpn(0) in the
correlators on the right-hand side of Eq.~A2!. As a result, the
entire current-current correlator can be expressed in term
the correlators of the derivatives of the potentialV ~see, for
example, Refs. 6 and 7!.

-

-
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In the low-frequency limit the terms containing the rat
v/vc!1 disappear, and the correlator of interest becom

^pm~ t !pn~0!&v5
emm8enn8

vc
2 ^]m8V„r ~ t !…]n8V„r ~0!…&v , ~A4!

which gives a direct derivation of Eq.~12!.
If the random potentialV(r ) is comparatively weak, as w

assume, mixing of electron states in different Landau lev
by this potential is small. However,V(r ) lifts the degeneracy
of each level and transforms it into a band, with a continuo
energy spectrum of a width;\g. The low-frequency con-
ductivity is determined by the comparatively slow intraba
dynamics. Thus in Eq.~A4!, in the operatorV„r (t)… we
should keep only the smooth components which vary on
time scaleg21@vc

21 . In this approximation we can identify

pm~ t !→2
emn

vc
]nV„r ~ t !…52

i emn

vc
(

q
qnVq eiqr (t), ~A5!

where on the right-hand side one should neglect the te
that contain rapidly varying factors exp(invct) with nÞ0,
associated with inter-Landau-level transitions@Vq are the
spatial Fourier components ofV(r ); see Eq.~7!#.

The slow electron dynamics within a broadened Land
level is conveniently described by the guiding center coo
nates:

R[~X,Y!: X5x1
py

mvc
, Y5y2

px

mvc
.

The components ofR commute with the momentum operat
@R,p#50, but not with each other,@X,Y#52 i l 2. In terms of
these variables the disorder potentialV(r ) can be written as

V~r !5(
q

Vq eiqR2q2l 2/4elq2p1e2 lq1p2, ~A6!

whereq65(qx7 iqy)/A2. The projection of the potentialV
onto theNth level is given by

V(N)~r ![PN V~r !PN5PN(
q

Vq
(N)eiqR, ~A7!

Vq
(N)5VqLN~q2l 2/2!exp~2q2l 2/4!. ~A8!

Here PN5PN
2 is the appropriate projection operator, a

LN(z) is theNth Laguerre polynomial.
The motion projected on theNth Landau level can be

described by applying the operatorsPN to the Heisenberg
equation of motion for the guiding center:

Ṙm~ t !52 i ~ l 2/\!emn(
q

qnVq eiqr (t).

Up to a coefficient, the projected parts in the right-hand si
of this equation and Eq.~A5! coincide with each other. This
shows that the projected parts ofp and mṘ are the same
which results in Eqs.~10! and ~11!. The correction to low-
frequency conductivity due to inter-Landau-band transitio
16532
ls
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s

s

appear only in the second order of the perturbation theo
The corresponding contribution is suppressed by the sm
parameter (g/vc)

2.

APPENDIX B: CALCULATION OF FREQUENCY
MOMENTS

Here we describe an efficient numerical procedure use
obtain exact expressions of high-order diagrams in expan
~31!. We begin by rewriting Eq.~31! as a sum of exponen
tials:

M2k522l 2S l 2

8p D k11

(C($q%)
(
$b%

~21!s($b%)

3E dq1 . . . dq2k12C~$q%!~q1q2k12!

3expS 2
l 2

4 (
m51

2k12

qm
2 1 i

l 2

4 (
m,n51

2k12

B̂mn
$b%qm`qnD . ~B1!

The inner sum is taken over all binary sequencesb
5(b1 ,b2 , . . . ,b2k), with bi50 and 1. They label possible
combinations of signs which arise from writing the sines
Eq. ~31! in terms of exponentials. The quantitys($b%)
[( ibi . The antisymmetric (2k12)-dimensional square ma
trix B̂$b% has the structure

B̂$b%5S 0 c1 c2 . . . c2k 0

2c1 0 c2 c2k 0

2c2 2c2 0

A � c2k A

2c2k 2c2k . . . 2c2k 0

0 . . . 0

D ,

~B2!

whereci5(21)bi.
Because of thed functions in the contraction function

C($q%), integration in Eq.~B1! has to be performed overk
11 independent wave vectors. Up to a prefactor (q1q2k12),
the integrand is an exponential of the quadratic fo
( l 2/2)(qi Âi j qj , where i , j 51, . . . ,k11. The matrix ele-
ments Âi j are themselves 232 matrices, Âi j 52 Îd i j

1ai j ŝy , where ŝy is the Pauli matrix, andai j 52aji 50,
61.

For a given contractionC($q%) and a given vectorb in Eq.
~B1!, i.e., for the corresponding matrixai j , the Gaussian
integrals can be evaluated exactly, giving

I @a#52
1

4k)i 51

k11

~11l i
2!21/2(

m51

k11 um,1um,x*

11lm
2

, ~B3!

whereilm are the eigenvalues of the antisymmetric matric
amn , and um,n are the components of the correspondi
eigenvectors. The subscriptx takes on the valuex5k11 if
q1 andq2k12 are independent variables in the pairing proc
6-12
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dure, whereas forq152q2k12 we should setx51, and ad-
ditionally multiply Eq. ~B3! by (21).

Given the large number of terms and the computatio
price of calculating the exact values in each term, we did
calculate each integral exactly. Instead, the value of a gi
term @specified by the choice of contractionC($q%) and the
binary sequenceb#, was calculated numerically with doubl
precision. With integer-valued matricesai j , the number of
different values was not exceedingly large, and we used
obtained approximate values@Eq. ~B3!# to assign each term
to an equivalence class. The individual weights can be p
tive or negative, depending on the parity ofs($b%). This
procedure was used instead of much more tedious ma
classification of high-order diagrams.~In addition, we
checked for several values ofk that weights corresponding t
special diagrams in Fig. 4 are indeed equal to zero!.

After the classification of diagrams was completed,
exact value of the integral in each class was obtained
taking a representative contracted matrixai j and calculating
the Gaussian integralI @a# algebraically. These integral
have rational values; the final answer forM2k was obtained
as a weighted sum of these rational numbers with their
spective bin weights. As a test, we compared the results
k50,1, and 2 with explicit analytic calculation.

APPENDIX C: CONTINUED FRACTION EXPANSION

The Stieltjes transform of the conductivitys̃c is defined
by

R~z!5
1

2pgE2`

`

dv
s̃c~v1vc!

z2 iv/g
, Rez.0, ~C1!

while the inverse transformation has the form

s̃c~v1vc!52 lim
«→01

Re@R~«1 iv/g!#. ~C2!

The functionR is related to moments~43! by the expression

R~z!5 (
k50

`

i kMk
cz2k21. ~C3!

We now construct an approximation for Eq.~C1! which
applies for an even functions̃(v1vc)5s̃(2v1vc), al-
lows for the Gaussian asymptotics@Eq. ~47!#,

lim
v→6`

g2

v2 ln s̃c~v1vc!52
1

2a
, a5

3

16
, ~C4!

and requires only a finite number of moments.
It is known29,30 that an odd functionR(z) can be ex-

panded into a Jacobi-type continued fraction,
16532
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or

R~z!5K j 51
` S D j

z D , D j>0, ~C5!

where we use the notation

K j 51
` S D j

z D[
1

z1
D1

z1
D2

z1�

~C6!

for the continued fraction with coefficientsD j and variablez.
The first J continued-fraction coefficientsD1 , . . . ,DJ are
obtained from normalized momentsM2

c , . . . ,M2J
c by ex-

panding power series~C3! into the continued fraction@Eq.
~C5!# using an efficient recursive algorithm.29 Having ob-
tained only a finite number of coefficientsD j , we need to
estimate the remaining ones. Fortunately, the asymptotic
havior @Eq. ~C4!# implies31 the following asymptotically lin-
ear growth for the continued-fraction coefficients:

lim
j→`

D j

j
5a. ~C7!

Therefore, if the firstJ coefficientsD1 , . . . ,DJ are found,
one can then construct an approximationR(J)(z) to R(z) by
linearly continuingD j for j .J,

R(J)~z!5K j 51
` S D j

(J)

z D , ~C8!

where

D j
(J)5H D j for j <J

DJ1a~ j 2J! for j .J.
~C9!

A continuous fraction with a linearly increasing coefficie
can be written in terms of the Whittaker parabolic cylind
function Dn ,

T~b,a,z![K j 51
` S b1a j

z D5
D2(b/a)21~a21/2z!

a1/2D2b/a~a21/2z!
,

which is valid if a.0, b1a.0 and Rez.0, so that we
can write Eq.~C8! as

R(J)~z!5
1

z1
D1

z1�

z1
DJ21

z1DJT~DJ ,a,z!
.

~C10!

Applying the inversion formula@Eq. ~C2!# immediately
gives the restored cyclotron resonance absorptions̃c(v), as
shown in Fig. 7.
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