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We study an underdamped oscillator with random frequency jumps. We describe the oscillator spectrum

in terms of coupled susceptibilities for different-frequency states. Depending on the parameters, the

spectrum has a fine structure or displays a single asymmetric peak. For nanomechanical resonators with a

fluctuating number of attached molecules, it is found in a simple analytical form. The results bear on

dephasing in various types of systems with jumping frequency.
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Oscillators with varying frequency are studied in many
contexts. The frequency change underlies high-resolution
mass sensing with nanomechanical resonators, which is
based on the change being proportional to the mass of a
particle attached to the resonator [1–4]. It is also used in
dynamic atomic force microscopy and in high-resolution
magnetic force microscopy [5,6]. In quantum systems, the
Fock states of a vibrational mode of a trapped electron
were detected from the frequency change of a nonlinearly
coupled mode [7]. Recently it was proposed to use such
change for quantum measurements of mechanical shot
noise in an optomechanical system [8].

The change of the oscillator frequency can be often
thought of as a jump; it occurs over a much smaller time
than the oscillator decay time or the typical interjump
interval. This is the case, e.g., where the jumps result
from attachment and detachment of molecules (or nano-
particles) to a resonator [1,9,10] or from transitions be-
tween well-separated energy levels in a system coupled to
the oscillator [7,8,11]. For random jumps, the oscillator
dynamics is determined by the interrelation between the
characteristic frequency change in a jump �, the jump rate
W, and the oscillator decay rate �. Of utmost interest for
classical and quantummeasurements is the range whereW,
�, � are small compared to the oscillator eigenfrequency
!0 in the absence of jumps.

In this Letter we consider the susceptibility of an oscil-
lator with respect to resonant driving. The susceptibility is
advantageous as it can be directly measured in the experi-
ment and often gives the oscillator power spectrum. We
develop an approach that allows finding it for an arbitrary
interrelation between the relevant parameters, including �,
�, and W. The sensitivity of the spectra makes it possible
to use them for determining the characteristics of the
frequency jumps.

Random frequency jumps are noise [9,10]. They lead to
spectral broadening. This is a major dephasing mechanism
[12], and the analysis below immediately extends to sys-
tems other than the oscillator. For oscillators, the spectral

broadening due to continuous or quasicontinuous fre-
quency fluctuations has been discussed in the literature,
see [11,13–15] and references therein.
The spectral broadening should be qualitatively different

depending on the ratio �=W. For small and frequent
jumps, where �=W � 1, one can think of the jumps as
causing diffusion of the oscillator phase. The resulting
spectral broadening should be of the order of the phase
diffusion coefficient ��2=W.
The case of an arbitrary �=W is more complicated. It

was studied in the celebrated Anderson paper [16] in the
context of spectral broadening of two-level systems and a
formal solution in the matrix form was obtained. Here we
show that the problem can be formulated in terms of partial
spectra and the corresponding partial susceptibilities. Such
formulation is not limited to systems with detailed balance.
It provides a new insight into the problem of dephasing and
allows one to consider, in particular, an arbitrarily large
number of states with different frequencies N. For nano-
resonators with attaching-detaching molecules we obtain
an explicit expression for the susceptibility for an arbitrary
�=W. Our formulation reveals a connection between
dephasing and the paradox of the quantum harmonic
oscillator [17–20].
One might expect that the oscillator susceptibility �ð!Þ

is a sum of independent partial susceptibilities �ðN;!Þ in
different-frequency states N. They would be proportional
to the state populations PðNÞ, and Im �ðN;!Þ would be a
Lorentzian centered at the state frequency !0 þ�N

(j�N � �N�1j ��). However, this is the case only in the
limit of large �=W.
The inapplicability of the picture of independent partial

susceptibilities can be understood by noticing that, in order
to resolve frequencies separated by �, one should measure
the system for time * 1=�. Since the frequency changes
over time & W�1, for W * � the frequencies !0 þ�N

cannot be resolved. As we show, the susceptibility can still
be formally described as a sum of partial susceptibilities,
but the latter are no longer independent. Rather, the partial
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susceptibilities are coupled, their shape is strongly changed
compared to the �=W � 1 limit, and the overall suscep-
tibility can be described as a result of their interference.

We will consider an oscillator driven by a resonant field
F expð�i!tÞ þ c:c:, j!�!0j � !0, and weakly coupled
to a thermal bath, with the decay rate being essentially the
same for all relevant frequencies!0 þ�N,! cf. Ref. [20].
Frequency jumps will be considered as imposed externally.
This is a good approximation in many cases, molecule
attachment-detachment and nonlinear coupling to an off-
resonance mode being examples. Between the jumps and
in the absence of the driving and coupling to the bath the
oscillator is described by Hamiltonian H0 ¼ @ð!0 þ
�NÞaya which almost stepwise varies in time; here ay
and a can be defined as raising and lowering operators of
an oscillator with frequency !, if one disregards energy
corrections / ð!0 þ�N �!Þ2=!.

The driving field does not cause transitions between
different-N states. The oscillator response to the field is
thus determined by the diagonal with respect to N matrix
elements �ðNÞ of the density operator �̂ [�ðNÞ are opera-
tors with respect to the oscillator Fock states]. Changing to
the rotating frame with the canonical transformation
UðtÞ ¼ expð�i!ayatÞ and using the rotating wave ap-
proximation, we obtain the master equation

_�ðNÞ ¼ ið�!� �NÞ½aya; �ðNÞ� þ i½F0ay þ F0�a; �ðNÞ�
� �̂�ðNÞ þ Ŵ�ðNÞ;

�! ¼ !�!0; (1)

where F0 ¼ F=ð2M@!Þ1=2 (M is the oscillator mass). The

operator �̂ describes oscillator decay, �̂�¼ �ð �nþ 1Þ�
ðaya�� 2a�ay þ�ayaÞþ� �nðaay�� 2ay�aþ�aayÞ,
where �n ¼ ½expð@!0=kBTÞ � 1��1 is the Planck number.

The operator Ŵ describes transitions between different-
frequency states N,

Ŵ�ðNÞ ¼X
r

½WðN� r; rÞ�ðN� rÞ�WðN;rÞ�ðNÞ�; (2)

where r enumerates the number of states over which the
transition is made. This model refers, in particular, to
molecule attachment-detachment where molecules attach
to a narrow region on the nanoresonator. The resonator
frequency is then determined by the total number of at-
tached molecules N. If molecules do not interact with each
other, they attach or detach one by one,

WðN; 1Þ ¼ WN0; WðN;�1Þ ¼ WN;

WðN; rÞ ¼ 0 for jrj> 1; �N ¼ �N�:
(3)

Here, N0 is determined by the externally controlled
molecule flux; for molecules of mass mmol � M, � /
mmol!0=M. The oscillator velocity jump from a mass
change is small, it does not cause phase accumulation in
time and can be disregarded.

The linear response of the oscillator to the driving is
characterized by the susceptibility Xð!Þ which relates the

mean oscillator coordinate to the driving force, hqðtÞi ¼
Xð!ÞF expð�i!tÞ þ c:c: For ! close to !0 we have

Xð!Þ ¼ ð@=2M!Þ1=2hai=F, where the expectation value
of operator a is given by the stationary solution of Eq. (1).
Setting _�ðNÞ ¼ 0 in Eq. (1), multiplying this equation
by a and taking trace over the oscillator Fock states for a
given N (denoted by Tr0 below), we obtain Xð!Þ ¼
ð2M!Þ�1�ð!Þ, where
�ð!Þ ¼ X

N

�ðN;!Þ;

½�� ið�!� �NÞ��ðN;!Þ � Ŵ�ðN;!Þ ¼ iPðNÞ:
(4)

Here, �ðN;!Þ ¼ Tr0a�ðNÞ=F0, whereas PðNÞ ¼ Tr0�ðNÞ
is the stationary probability to find the oscillator in an Nth
state. From Eq. (1), PðNÞ is given by equation

ŴPðNÞ ¼ 0;
X
N

PðNÞ ¼ 1: (5)

Equation (4) describes the scaled susceptibility �ð!Þ
as a sum of complex partial susceptibilities �ðN;!Þ for
each eigenfrequency state N. These susceptibilities are
given by a set of linear equations. They are coupled to
each other, and since they are complex and the phase
relations are important, one can say that they interfere,
with �ð!Þ determined by the result of this interference.
In the absence of driving, the power spectrum of

the oscillator near its peak for ! 	 !0 is Qð!Þ ¼
��1 Re

R1
0 dt expði!tÞ ~QðtÞ with ~QðtÞ ¼ haðtÞayð0Þi.

For the considered model Qð!Þ ¼ ð �nþ 1Þ��1 Im�ð!Þ.
Correlator ~QðtÞ can be found from Eq. (1) with F0 ¼
�! ¼ 0 using the quantum regression theorem. The formal

solution is ~QðtÞ ¼ ~Q0ðtÞ ~QWðtÞ, where ~Q0ðtÞ is the correla-
tor in the absence of frequency jumps, ~Q0ðtÞ ¼ ð �nþ 1Þ�
expð�i!0t� �tÞ, whereas ~QWðtÞ ¼ P

N;N0 fexp½ð�i�̂þ
ŴÞt�gN0NPðNÞ describes the effect of frequency jumps;

matrix �̂ is diagonal with respect to N, ð�̂ÞNN0 ¼ �N�NN0 .

The factor ~QWðtÞ coincides with the Anderson result for
the power spectrum of a two-level system [16]. It can be

evaluated by diagonalizing the matrix �i�̂þ Ŵ [16].
However, direct diagonalization becomes complicated for
large characteristic N. The solution of Eq. (4), on the other
hand, is facilitated by the rapid fall-off of �ðN;!Þ for
sufficiently large N.
A simple explicit solution of Eq. (4) for large character-

istic N can be found ifWðN; rÞ and �N smoothly vary with
N and in Eq. (2) jrj � �N, where �N � 1 is the position of
the maximum of PðNÞ. This limit is of interest for nano-
resonators if the number of attached molecules is large, on
average. Considering N in Eq. (4) as a continuous variable
and expanding WðN � r; rÞ, �ðN � r;!Þ to second order
in r, one obtains

½�� ið�!� ��� �0�NÞ��� �@Nð�N�Þ �D@2N�

¼ ið�=2�DÞ1=2e��ð�NÞ2=2D;

�N ¼ N � �N:

(6)
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Here, �N is given by condition
P

rrWð �N; rÞ ¼ 0,

� ¼ �@N
X
r

rWðN; rÞ; D ¼ 1

2

X
r

r2Wð �N; rÞ;
�� ¼ � �N , and�

0 ¼ @N�N; all derivatives are calculated for
N ¼ �N, and we assume �N2 � D=� � 1, j�0j=�.

Equation (6) can be solved using the method below,

�ð!Þ ¼ i
Z 1

0
dt exp½��tþ ið�!� ��Þt�

� exp½�ðD�02=�3Þð�t� 1þ e��tÞ�: (7)

Because of the frequency jumps, the absorption cross
section Im �ð!Þ becomes substantially non-Lorentzian,
but it remains symmetric in the large- �N limit.

Another limiting case of interest is where the oscillator
frequencies in different states N are strongly different,
j�N � �N0 j � �, W for N � N0. Here, the partial spectra
�ðN;!Þ are almost independent from each other. Near
resonance, ! 	 !0 þ�N , from Eq. (4)

�ðN;!Þ 	 iPðNÞ½�N � ið�!� �NÞ��1; (8)

where �N ¼ �þP
rWðN; rÞ. From Eq. (8), Im �ðN;!Þ

has a Lorentzian peak at frequency!0 þ �N [16]. The area
of the peak is determined by the state population PðNÞ. The
half-width �N depends on the oscillator decay rate � and
the total probability to switch from state N to other states.
This is a familiar result for systems with strongly different
transition frequencies [17].

In the opposite limit of small frequency change,
j�Nj=� ! 0, all partial spectra have the same shape,

�ðN;!Þ ¼ iPðNÞð�� i�!Þ�1 ðj�Nj � �Þ: (9)

The jump rate does not affect the solution in the limit
j�Nj=� ! 0. The spectrum as a whole is Lorentzian cen-
tered at frequency !0. This is closely related to the paradox
of the quantum harmonic oscillator, which occurs in the
absence of frequency jumps [17–19]. The oscillator suscep-
tibility can be presented as a superposition of partial suscep-
tibilities corresponding to transitions between neighboring
energy levels [20]. These susceptibilities are coupled by
dissipation-induced interlevel transitions described by the

operator �̂� in Eq. (1). The role of this coupling with respect
to the oscillator Fock states is similar to that of the transitions

described by Ŵ�. For �N ¼ W ¼ 0, as a result of the
interference, all partial susceptibilities have the same shape
[20]. If the interference were disregarded as in Eq. (8), the
spectrum would have a completely different shape.

In the limit W � j�Nj, � the term Ŵ�ðN;!Þ is the
leading order term in Eq. (4) for �ðN;!Þ, and to first order
in W�1,

�ð!Þ ¼ i½�� ið�!� ��Þ��1;

�� ¼ X
�NPðNÞ;

� ¼ �þX
PðMÞ�N�Mx�ðNÞ~x�ðMÞð���Þ�1;

(10)

where x�, ~x� and �� are the right and left eigenvectors

and nonzero eigenvalues of matrix Ŵ, x� 
 ~x	 ¼ ��	

(the stability of the oscillator stationary state implies Re
�� < 0). From Eq. (10), Im �ð!Þ is again a Lorentzian

peak, but now centered at the average frequency !0 þ ��
and with half-width � that exceeds � by ��2=W cf. [16].
One of the most interesting and important for applica-

tions models of frequency jumps is the model of molecule
attachment-detachment Eq. (3). To find �ð!Þ it is conve-
nient to write �ðN;!Þ as a Fourier transform,

�ðN;!Þ ¼
Z 1

0
dtei�!t ~�ðN; tÞ; ~�ðN; 0Þ ¼ iPðNÞ:

Then Eq. (4) becomes a set of homogeneous differential-
difference equations for functions ~�ðN; tÞ. It can be solved
using the discrete Laplace transformmethod, i.e., changing
to xðz; tÞ ¼ P

Nz
N ~�ðN; tÞ. This leads to a first-order linear

partial differential equation for xðz; tÞ. Its solution imme-
diately gives ~�ðtÞ ¼ P

N ~�ðN; tÞ,
~�ðtÞ ¼ ie��tþiWN0
t exp½N0


2ð1� e�ðW�i�ÞtÞ�;
�ð!Þ ¼

Z 1

0
dtei�!t ~�ðtÞ; 
 ¼ �=ðW � i�Þ: (11)

Expression (11) for the susceptibility has the form of an
integral of an elementary function. It goes over into Eq. (7)
for N0 � 1, j�j=W. The shape of the susceptibility de-
pends on the interrelation between the frequency change
per jump �, the jump rate W, and N0. It is convenient to
analyze it by rewriting Eq. (11) as

�ð!Þ ¼ X1
k¼0

�kð!Þ;

�kð!Þ ¼ eN0

2ð�N0


2Þk=k!
� ½�� ið�!þWN0
Þ þ kðW � i�Þ��1: (12)

Formally, Eq. (12) for �ð!Þ looks like a sum of partial
spectra. However, functions �kð!Þ differ from the partial
susceptibilities �ðk;!Þ introduced earlier. They are close
only in the limit of large frequency jumps, j�j � W, as
seen by comparing Eqs. (8) and (12). In this limit Im �ð!Þ
is a set of equally spaced Lorentzian lines with half-widths
�þ ðkþ N0ÞW. From Eq. (12) it is easy to find corrections
to the line shape �W=�.
Of interest is also the limit N0j
j2 � 1 where either the

frequency shift is small, j�j � W, or the average number
of attached molecules is small, N0 � 1. Here, the leading
order term in �ð!Þ is �0ð!Þ. It gives a Lorentzian
peak of Im �ð!Þ centered at �! ¼ �ðW2=�ÞN0j
j2, with
half-width � ¼ �þWN0j
j2 cf. Eq. (10). The frequency-
jump-induced broadening can be comparable with � even
for small N0j
j2 provided � � W. For large W=j�j we
have Wj
j2 / 1=W, the jump-induced broadening be-
comes weaker with increasing W in agreement with the
picture of motional narrowing. The position of the spectral
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peak becomes �N0�, it is independent of W and linearly
increases with N0.

The evolution of the spectrum Im �ð!Þ with varying
parameters is illustrated in Fig. 1. Already for moderate
frequency jumps, �=� ¼ 3, the spectrum may display a
well-pronounced fine structure. With increasing jump fre-
quency this structure is smoothed out, but the spectrum is
asymmetric, generally. The asymmetry can be character-
ized by the distances !� between the maximum and
the half-maxima of Im �ð!Þ. The ratio ��=�þ ¼ j!� �
!þj=ð!� þ!þÞ displays a characteristic peak as function
of N0.

With the increase of W=� the spectrum becomes nar-
row. The position of the spectral peak depends on N0. The
sensitivity to N0 can be used in experiments on nanoreso-
nators, in particular, to measure the mass-dependent fre-
quency shift �, since N0 can be changed by varying the
influx of molecules.

The above analysis can be extended to other types of
systems with jumping frequency, to nonlinear response of
such systems, and to situations where the jump rates are
state dependent or the system causing the jumps has its
own internal dynamics. An example is a qubit nonreso-
nantly coupled to a cavity mode investigated in the experi-
ment [21] and analyzed in [22–24]. Here, the qubit
frequency depends on the mode state. For a driven mode,
partial susceptibilities of the qubit will have off-diagonal
components with respect to the Fock states of the mode N,
and one should characterize the qubit by �ðN;N0;!Þ. If the
mode dynamics is Markovian in slow time, one will obtain
a set of linear equations for �ðN;N0;!Þ which can be
studied numerically.

The results of this Letter provide a general method of
describing spectral broadening from discrete frequency
jumps. They give a new insight into the problem of dephas-
ing and reveal the connection between dephasing from

frequency jumps and the spectra of multilevel systems. It
is shown that, by studying coupled partial susceptibilities,
one can follow the evolution of the spectrum from well-
resolved fine structure, for comparatively large and rare
jumps, to a broadened single peak, for small and frequent
jumps or for a large number of states with different fre-
quencies. The spectrum of a nanoresonator with attaching
and detaching molecules or nanoparticles is found in
the explicit form and its sensitivity to the parameters is
analyzed.
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FIG. 1 (color online). The spectrum of the oscillator with
attaching and detaching molecules (nanoparticles) for different
scaled attachment rates W=�. The average number of attached
molecules is N0 ¼ 3, and �=� ¼ 3. Data points show the results
of numerical simulations obtained using the Gillespie algorithm
[25]. Inset: the asymmetry parameter as function of N0 for
W=� ¼ 2, �=� ¼ 3.
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