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Detecting and characterizing frequency fluctuations of vibrational modes
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We show how frequency fluctuations of a vibrational mode can be separated from other sources of phase noise.
The method is based on the analysis of the time dependence of the complex amplitude of forced vibrations. The
moments of the complex amplitude sensitively depend on the frequency noise statistics and its power spectrum.
The analysis applies to classical and to quantum vibrations.
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I. INTRODUCTION

In recent years, there has been made significant progress
in developing micro- and nanomechanical systems that
display slowly decaying vibrations. For different types of
such systems, the ratio of the vibration eigenfrequency
to the decay rate, the quality factor Q, has reached
�105.1–3 This has allowed studying new physics, including
quantum phenomena,4,5 and opened a way for numerous
applications, like highly-sensitive mass sensing6–8 and, po-
tentially, high-accuracy nanomechanical clocks. In parallel,
high-Q modes of superconducting cavities have been used
for control and measurement of Josephson-junction based
qubits.9

An important problem in the studies of nanomechanical
vibrations and superconducting cavity modes is to understand
the mechanisms of their decay and loss of coherence. Often
one separates decay and fluctuations of the vibration amplitude
and fluctuations of the vibration phase. Phase fluctuations
are not only interesting on their own but are particularly
important for applications, as they can impose limits on the
sensitivity of a device. They can come from the thermal noise
that accompanies vibration decay and is a consequence of
coupling to a thermal reservoir. A more delicate and often more
important source is fluctuations of the vibration frequency.
They can have various origins, see Ref. 10 and papers cited
therein, with recent examples being random attachment or
detachment of molecules to a resonator that changes its
mass,7,8,11–13 molecule diffusion along the resonator,14,15 cou-
pling of the vibrational mode to two-state fluctuators,16 and,
for nonlinear vibrations, frequency modulation by fluctuations
of the vibration amplitude.17

In this paper, we suggest a simple way of separating and
characterizing frequency fluctuations in vibrational systems.
In two-level systems, frequency fluctuations lead to the
difference between the T1 and T2 relaxation times and are
routinely separated from decay using nonlinear response to an
external field.18 In contrast, the response of linear vibrations is
inherently linear, and the spectrum of the response remains a
major source of information about the dynamics. If frequency
fluctuations are the dominating factor, this spectrum reveals
some of their features.10,11,13,19 However, in many cases of
interest it does not provide enough information, and often
does not allow one to even detect frequency fluctuations at
all. For example, for broadband Gaussian frequency noise,
the absorption spectrum is Lorentzian, as if there were no

frequency noise, even though the overall width of the spectrum
exceeds the width due to decay.

We show below that frequency fluctuations can be studied
by using, in a different way, essentially the same measurement
as that used to find the absorption spectrum, i.e., by looking at
the response of a resonantly modulated oscillator. This applies
to both classical and quantum oscillators. The idea is to study
such correlators of the quadrature and in-phase components
of the oscillator displacement that are specifically sensitive
to frequency fluctuations. As we show, these are correlators
and moments of the complex vibration amplitude. They allow
one not only to reveal frequency noise, but also to study
its statistics, for both classical and quantum vibrations. The
sensitivity to the noise statistics is illustrated for important
examples of the noise.

II. EQUATION OF MOTION FOR THE QUADRATURES

We assume that the oscillator energy relaxation comes from
the coupling to a thermal reservoir, which is linear in the
oscillator coordinate and momentum and weak, so that the
decay rate � � ω0, where ω0 is the oscillator eigenfrequency
in the absence of frequency noise. With the noise the frequency
becomes ω0 + ξ (t). We assume that the frequency noise ξ (t)
is a stationary process and 〈ξ (t)〉 = 0. Of primary interest is
the case of small noise,where overall frequency fluctuations
are small compared to ω0.

Phenomenologically, the motion of the oscillator with
coordinate q and with unit mass in the presence of a driving
force F cos ωF t is described by equation

q̈ + 2�q̇ + [
ω2

0 + 2ω0ξ (t)
]
q = F cos ωF t + f (t), (1)

where f (t) is zero-mean additive thermal noise. We will
be considering this motion in the rotating frame on times
much longer than ω−1

0 . On this scale, the approximation of
Markovian relaxation of the oscillator amplitude and phase
applies even where Eq. (1) does not apply; in other words, the
assumption of Ohmic dissipation is not required.20

We assume that the typical frequencies of the noise ξ (t) are
small compared to ω0. This is the case for many systems of
current interest; coupling of the oscillator to the source of such
noise does not lead to energy relaxation via nonlinear friction21

and to random parametric excitation of the oscillator.22,23

We consider resonant driving, with frequency ωF close
to ω0, i.e., |δω| � ω0, where δω = ωF − ω0. The oscillator

144301-11098-0121/2011/84(14)/144301(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.144301


Z. A. MAIZELIS, M. L. ROUKES, AND M. I. DYKMAN PHYSICAL REVIEW B 84, 144301 (2011)

dynamics can be then conveniently analyzed by changing from
the coordinate q and momentum p = q̇ to slowly varying on
the time scale ω−1

F complex variables u(t),u∗(t),

q(t) = u exp(iωF t) + u∗ exp(−iωF t),
(2)

p(t) = iωF [u exp(iωF t) − u∗ exp(−iωF t)].

Function u(t) is the complex vibration amplitude. From
Eq. (2), Reu and Imu give, respectively, the in-phase and
quadrature components of the oscillator displacement at
frequency ωF .

On the time scale that largely exceeds the correlation
time of the thermal reservoir and ω−1

F , both a microscopic
theory for weak oscillator-to-reservoir coupling17,20,24 and the
phenomenological model of Eq. (1) lead to an equation of
motion for u of the form

u̇ ≈ −[� + iδω − iξ (t)]u − iF

4ωF

+ fu(t), (3)

where fu(t) = −(i/2ωF )f (t) exp(−iωF t); the renormaliza-
tion of ω0 due to the coupling to a thermal reservoir that
emerges in the microscopic theory has been incorporated
into ω0.

For large times compared to the decay time �−1, the
initial state of the oscillator is “forgotten” and u(t) becomes a
linear superposition of the terms that describe forced oscillator
vibrations and thermal fluctuations,

u(t) = (F/4ωF )uF (t) + uth(t),

uF (t) =
∫ t

−∞
dt1χ

∗(t − t1) exp

[
i

∫ t

t1

dt ′1ξ (t ′1)

]
, (4)

χ (t) = i exp(−�∗t), � ≡ �(ωF ) = � + iδω.

Here, uF (t) is the scaled complex amplitude of forced
vibrations; χ (t) is the scaled oscillator susceptibility in the
absence of frequency fluctuations. The term uth comes from
the additive thermal noise,

uth(t) = i

∫ t

−∞
dt1χ

∗(t − t1)fu(t1) exp

[
i

∫ t

t1

dt ′1ξ (t ′1)

]
. (5)

We are interested in the effects of frequency noise, not
additive noise. By increasing the field F , the term ∝ uF (t) in
u(t), Eq. (4), can be made larger than the typical value of uth.
However, as we will show, the contribution of additive noise
to the correlators of u(t) vanishes in the approximation used
to derive Eq. (3), which allows one to use even comparatively
weak driving fields for studying frequency noise.

III. CORRELATORS OF THE COMPLEX AMPLITUDE:
INDEPENDENCE OF ADDITIVE NOISE

The two noises that determine the oscillator dynamics,
f (t) and ξ (t), are uncorrelated, generally. The noise f (t)
results from the linear in q,p coupling to a thermal reservoir.
The major effect on the oscillator comes from the Fourier
components of f (t) with frequencies ω such that |ω − ω0| �
ω0. It was assumed in deriving the Markovian equation of
motion for u(t), Eq. (3), that the spectral density of f (t)
is smooth around ω0 and can be set equal to a constant for
|ω − ω0| � |δω|,〈ξ 2(t)〉1/2.17,20,24

In contrast, noise ξ (t) comes from either an external
nonequilibrium source or from the interaction with a thermal
reservoir that is effectively quadratic in q,p and couples the
oscillator to the degrees of freedom other than those that lead
to f (t).

An important consequence of the statistical independence
of f (t) and ξ (t) is that〈

un
th(t)

〉 = 0, n = 1,2,3, . . . . (6)

A simple way to see this is by comparing the expressions for
uth(t) and uth(t + t0) with an arbitrary t0. If one writes Eq. (5)
for uth(t + t0) and changes from integrating over t1 and t ′1 to
t̃1 = t1 − t0 and t̃ ′1 = t ′1 − t0, respectively, the expression for
uth(t + t0) becomes of the same form as uth(t), except that
the noises f (t) and ξ (t) are evaluated for the time shifted
by t0 and there emerges an extra factor exp(−iωF t0) from
the interrelation between fu(t) and f (t). For stationary noises
f (t) and ξ (t), the change of the origin of time does not affect
any average values, and therefore the only difference between
averaging uth(t) and uth(t + t0) is the factor exp(−iωF t0).
The average moments of uth(t) may not depend on t0, and
therefore they are equal to zero. So are also correlators
〈uth(t1) . . . uth(tn)〉.

From the above arguments,

〈u(t1) . . . u(tn)〉 = (F/4ωF )n〈uF (t1) . . . uF (tn)〉, (7)

and below we will be interested in calculating correlators of
uF . They are independent from additive noise, for a linear
oscillator, and therefore measuring them immediately reveals
frequency noise. We note that the nth-order correlator is
proportional to the nth power of the driving field; still the
oscillator response remains linear.

IV. QUASIWHITE FREQUENCY NOISE

The explicit expressions (4) and (7) allow one to analyze
correlators of the complex amplitude for various types of
frequency noise. We will discuss several noise models of
interest for experiment and show how by measuring the
correlators one can study the noise statistics.

One of the most important is noise with a comparatively
broad frequency spectrum, which is flat up to a characteristic
cutoff frequency ωcorr such that �,|δω| � ωcorr � ω0. Such
noise is effectively δ correlated on a time scale long compared
to ω−1

0 . It can come, for example, from quasielastic scattering
of phonons or other excitations off the oscillator,25,26 in which
case it is approximately Gaussian, or from the discreteness of
the electric current that modulates the oscillator, in which case
it is close to Poissonian, or it can come from other processes
and have a different statistics. For a δ-correlated noise, it is
convenient to do the averaging in Eq. (7) using the noise
characteristic functional, which can be written as

P[k(t)] ≡
〈
exp

[
i

∫
dtk(t)ξ (t)

]〉

= exp

[
−

∫
dtμ(k(t))

]
. (8)

Function μ(k) is determined by the noise statistics;
for zero-mean Gaussian noise of intensity D, with

144301-2



DETECTING AND CHARACTERIZING FREQUENCY . . . PHYSICAL REVIEW B 84, 144301 (2011)

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′), and for zero-mean Poisson noise
ξ (t) = g

∑
n δ(t − tn) − gν with pulse area g and pulse rate ν

we have, respectively, μ = μG and μ = μP , where27

μG(k) = Dk2, μP (k) = ν(1 − eikg + ikg). (9)

For δ-correlated frequency noise, the response of the
oscillator to the driving as a function of frequency detuning
δω = ωF − ω0 is of the same functional form as without the
noise. From Eqs. (4) and (8),

〈u〉 = (F/4ωF )〈uF (t)〉 = −i(F/4ωF )(�̃ + iδω̃)−1,

�̃ = � + Reμ(1), δω̃ = δω + Imμ(1). (10)

The noise leads to broadening of the spectrum of the response
and, generally, to the shift of the oscillator frequency. Both are
determined by the value of function μ for k = 1. In particular,
for quasiwhite noise, the increment of the half-width is given
by the noise intensity D, a well-known result, whereas for
Poisson noise this increment is ν(1 − cos g), it oscillates with
increasing g and increases with the pulse rate ν.

It follows from Eq. (10) that, from the oscillator spectrum
taken alone, one cannot tell whether there is frequency noise
at all. However, the pair correlator of the complex amplitude
makes it possible to identify the presence of the noise. A
straightforward but somewhat lengthy calculation shows that

〈u(t)u(0)〉 − 〈u〉2 = 〈u〉2 2μ(1) − μ(2)

2� + μ(2)

× exp[−(�̃ + iδω̃)t] (t > 0). (11)

Because of the frequency noise, 〈u2〉 �= 〈u〉2. From Eq. (11),
the variance of the complex amplitude u(t) is ∝ 2μ(1) − μ(2),
and is thus determined by the nonlinearity of the function μ(k).
In particular, for Gaussian and Poisson noises we have, re-
spectively, 2μG(1) − μG(2) = −2D and 2μP (1) − μP (2) =
ν[1 − exp(ig)]2. The time decay of the pair correlator of
δu(t) = u(t) − 〈u〉 is exponential, with exponent � + μ(1) ≡
�̃ + iδω̃.

Not only does the pair correlator, Eq (11), allow one to
reveal frequency noise where there are no conventional spectral
signatures of it, but it also gives an insight into the noise
statistics. More insights can be gained from the higher-order
moments of u(t). By writing

un
F (0) = n!

∫ 0

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn(−i)n

× exp

⎧⎨
⎩

n∑
j=1

[
�tj + i(n + 1 − j )

∫ tj−1

tj

dt ′j ξ (t ′j )

]⎫⎬
⎭ ,

we obtain from Eq. (8)

〈un〉 = n!

(−iF

4ωF

)n n∏
j=1

[j� + μ(j )]−1. (12)

From Eq. (12), by measuring the moments of the complex
amplitude u(t), one can find function μ(k) for all integer k and
therefore, given that this function is analytical at least near the
real-k axis, find the whole μ(k) and thus the full statistics of
the δ-correlated noise ξ (t).

V. COMPARATIVELY WEAK FREQUENCY NOISE

The presence of non-δ-correlated frequency noise can
be usually directly seen in the spectrum of the oscillator
response, if the noise is sufficiently strong. For example, the
absorption spectrum may have a fine structure or become
asymmetric.7,8,10,11,13,14 The situation is more complicated
where the noise is comparatively weak, so that the shape of
the spectrum is weakly distorted compared to the Lorentzian
contour. We now show that the moments of the complex
amplitude allow one to detect frequency noise and study its
statistics even in this case.

We will express the moments in terms of the correlators
of the frequency noise. The lowest-order correlators of a
stationary zero-mean noise are

	2(ω) = (2π )−1
∫

dteiωt 〈ξ (t)ξ (0)〉,

	3(ω1,ω2) = (2π )−2
∫

dt1dt2e
i(ω1t1+ω2t2)〈ξ (t1)ξ (t2)ξ (0)〉.

(13)

Since ξ (ti) for different ti commute with each other, we have

	2(ω) = 	2(−ω), 	3(ω1,ω2) = 	3(ω2,ω1)

= 	3(−ω1 − ω2,ω2) = 	3(ω1, − ω1 − ω2). (14)

By expanding Eq. (4) for uF to third order in ξ (t), we obtain

〈u〉
〈u〉(0)

≈ 1 −
∫

dω

�2 + ω2
	2(ω) − i

∫
dω1 dω2	

(�)
3 (ω1,ω2)

×�
(
3�2 + ω2

1 + ω1ω2 + ω2
2

)
/3, (15)

where 〈u〉(0) = −iF/(4ωF �) is the complex amplitude that
describes forced vibrations in the absence of frequency noise
and

	
(�)
3 (ω1,ω2) = 	3(ω1,ω2)(

�2 + ω2
1

)(
�2 + ω2

2

)
[�2 + (ω1 + ω2)2]

.

(16)

It is clear from Eq. (15) that, to third order in ξ (t), the effect
of frequency noise on the spectrum of the oscillator response
can be described as renormalization of the decay rate � and
the eigenfrequency ω0, and therefore from spectroscopic data
it is hard to tell whether weak frequency noise is present at all.

Frequency noise can be detected by measuring higher
moments of the complex amplitude. Keeping only the second
and third-order correlators of ξ (t), we obtain for the variance
of the complex amplitude

〈u2〉 − 〈u〉2

〈u〉2

≈ −
∫

dω

�2 + ω2
	2(ω) − i

∫
dω1dω2	

(�)
3 (ω1,ω2)

× [
2�3 + �

(
ω2

1 + ω2
2

) + iω1ω2(ω1 + ω2)
]
. (17)

Here, we have used the symmetry properties of 	2 and 	3,
Eq. (14); note that if the noise ξ (t) has time-reversal symmetry,
the term ∝ ω1ω2(ω1 + ω2) in the integrand in Eq. (17) can be
disregarded.

For weak noise ξ (t), the leading contribution to the variance
of u comes from the second-order term ∝ 	2. To reveal a
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nonzero third-order noise correlator, in addition to the variance
of u one should measure the third cumulant of u,

〈u3〉 − 3〈u〉〈u2〉 + 2〈u〉3

〈u〉3

≈ −i

∫
dω1dω2	

(�)
3 (ω1,ω2) × [

�3 + �
(
ω2

1 + ω2
2

+ω1ω2
) + iω1ω2(ω1 + ω2)

]
. (18)

One can see that, in the case of weak δ-correlated noise,
Eqs. (10)–(12) agree with Eqs. (15)–(18). However, the results
of this section are not limited to δ-correlated noise.

VI. QUANTUM FORMULATION

The above arguments can be immediately extended to the
quantum regime, since the responses of quantum and classical
harmonic oscillators to resonant modulation are the same. In
the absence of coupling to a thermal reservoir, the Hamiltonian
of the oscillator in a resonant field F cos ωF t in the presence
of weak classical frequency noise ξ (t) is

H0 = h̄[ω0 + ξ (t)]a†a − qF cos ωF t, (19)

where a = (2h̄ω0)−1/2(ω0q + ip) is the lowering operator of
the oscillator.

The effect of coupling to a thermal reservoir can be
conveniently analyzed in the rotating wave approximation by
going to the interaction representation with operator U (t) =
exp(−iωF a†at). When typical noise frequencies are small
compared to ωF , the resulting equation for the oscillator
density matrix ρ0, for a given realization of the frequency
noise, has a familiar form

ρ̇0 = i[δω − ξ (t)][a†a,ρ0] − �̂ρ0

+ i[F ′a† + F ′∗a,ρ0]. (20)

Here, F ′ = (8h̄ω0)−1/2F , operator �̂ describes oscillator
decay, �̂ρ = �(n̄ + 1)(a†aρ − 2aρa† + ρa†a) + �n̄(aa†ρ −
2a†ρa + ρaa†), where n̄ = [exp(h̄ω0/kBT ) − 1]−1 is the
Planck number; as in the classical analysis, the renormalization
of the oscillator frequency due to the coupling to the thermal
reservoir is assumed to have been incorporated into ω0. We
emphasize that the density matrix ρ0 has not been averaged
over the realizations of ξ (t), it fluctuates in time.

Equation (20) allows one to perform averaging over thermal
fluctuations of the oscillator for given ξ (t). It leads to a
chain of equations for the moments an(t) ≡ Tr[anρ0(t)] of the
operator a,

d

dt
an = −n[�∗ + iξ (t)]an + inF ′an−1 (21)

with � = � + iδω, cf. Eq. (4). If we assume that the field F

is turned on adiabatically at t → −∞, the initial condition to
Eq. (21) is an → 0 for t → −∞.

The solution of Eq. (21) is

an(t) = [a(t)]n, a(t) = F ′u∗
F (t), (22)

where uF (t) is given by Eq. (4). Therefore the averaging of
the moments of operator a over realizations of ξ (t), that gives
the mean value 〈an(t)〉, can be done in the same way as for

a classical oscillator. Hence, the results for a linear classical
oscillator immediately apply to a linear quantum oscillator.

VII. MARKOV FREQUENCY NOISE

The analysis of the effect of frequency noise is simplified
in the case where the noise is Markovian. Such noise can
be continuous, as in the case of frequency fluctuations due
to diffusion of massive particles along a nanoresonator,8,14,15

or discrete (i.e., takes on discrete values), as in the case of
random attachment or detachment of massive particles to a
mechanical resonator7,11,13 or transitions between quantum
states of a nonlinearly coupled vibrational mode of a trapped
electron.28 In both cases, its probability distribution p(ξ,t) is
described by equation ṗ = Ŵp. Operator Ŵ is independent
of time, for a stationary process. For a continuous process
ξ (t), Ŵ is a differential operator with respect to ξ ; for
example, for a diffusion process ξ (t), the equation for p

is the Fokker-Plank equation.10 For a discrete process, Ŵ

describes transitions between different discrete values of ξ ,
with appropriate transition rates.

Instead of the density matrix ρ0, which depends on a real-
ization of the noise ξ (t), for Markovian ξ (t), it is convenient
to introduce density matrix ρ(ξ,t), which remains an operator
with respect to the oscillator variables, but also depends on ξ as
a variable. For continuous ξ (t), we have ρ(ξ,t) = 〈ρ0(t)δ(ξ −
ξ (t))〉ξ , where 〈. . .〉ξ means averaging over realizations of ξ (t).
For discrete ξ (t), one should use the same definition, but with
Kronecker’s delta instead of the δ function.

The equation for ρ(ξ,t) is an obvious extension of Eq. (20),

ρ̇ = i[δω − ξ ][a†a,ρ] − �̂ρ + Ŵρ

+i[F ′a† + F ′∗a,ρ], ρ ≡ ρ(ξ,t). (23)

In this model, there is no backaction from the oscillator on
the frequency noise source, and therefore operator Ŵ does not
depend on the dynamical variables of the oscillator. Then one
can immediately write a system of equations for the moments
A(n,ξ,t) = Tr[anρ(ξ,t)] of operator a, which will now be
functions of the random variable ξ rather than functionals
of ξ (t),

∂tA(n,ξ,t) = −n[�∗ + iξ ]A(n,ξ,t) + inF ′A(n − 1,ξ,t)

+ ŴA(n,ξ,t), 〈an(t)〉 =
∫

dξA(n,ξ,t) (24)

(for discrete-valued noise, the integral over dξ should be
replaced by a sum).

For n = 1, the stationary solution of Eq. (24) was discussed
earlier for several models of frequency noise.13,14 As a function
of detuning δω, 〈a〉 gives the spectrum of the response of the
oscillator to a resonant force. As mentioned above, where the
noise ξ (t) is strong compared to � (but still weak compared to
ω0), it can significantly change the spectrum compared to the
ξ = 0 case, making it possible to detect the presence of the
noise and find some of its characteristics.

By studying the moments of the complex amplitude 〈an〉
one can extract much more information about the frequency
noise than just from the spectrum. We note that one can
think of functions A(n,ξ,t) in the stationary regime as “partial
moments” of the oscillator for a given eigenfrequency ω0 + ξ .
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Equation (24) shows that functions A(n,ξ,t) with the same n

but different ξ are coupled by the operator Ŵ . This is a direct
analog of the effect of the interference of the oscillator partial
spectra, which was discussed earlier.13,17

We will consider as an example the moments 〈an〉 for
telegraph noise. This noise takes on two values ξk (k = 1,2),
between which it switches at random at rates W12 and W21.
Respectively, in the stationary regime, A(n,ξ ) ≡ A(n,ξ,t)
has two components, A(n,ξ1) and A(n,ξ2), which can be
considered as components of a vector A(n); operator Ŵ

becomes a 2 × 2 matrix, and Eq. (24) can be written as

M̂(n)A(n) = inF ′A(n − 1),
(25)

M̂(n) = n(�∗ + iξ̄ )Î + inξcσ̂z + Ŵ ,

where Î and σ̂z are the unit matrix and the Pauli matrix,
respectively, and

Ŵ =
(

W12 −W21

−W12 W21

)
, ξ̄ = (ξ1 + ξ2)/2;

ξc = (ξ1 − ξ2)/2 is the amplitude of the frequency noise.
Equation (25) has a simple solution:

A(n) = (iF ′)n
1∏

k=n

M̂−1(k)A(0), (26)

where A(0) = (W21/W,W12/W ), with W = W12 + W21 being
the total switching rate.

For the noise amplitude |ξc|  W,� the absorption spec-
trum of the oscillator, which is given by Im [A(1,ξ1) +
A(1,ξ2)], has two distinct peaks. On the other hand, for
|ξc| � max �,W the peaks are not resolved and the spectrum
is a single-peak curve,10,29 which makes it complicated to
identify the presence of the frequency noise. The moments
of the complex amplitude are advantageous in this respect, as
discussed in the next section.

VIII. COMPARING DIFFERENT TYPES
OF FREQUENCY NOISE

We now compare the effect of different types of frequency
noise on the moments of the complex amplitude. We consider
three common types of noise, broadband Gaussian and Poisson
noises and telegraph noise; in the latter case, we choose
symmetric noise with W12 = W21 and ξ2 = −ξ1. In Fig. 1, we
show the dependence of the second moment of the complex
amplitude scaled by the squared mean amplitude on the
frequency of the driving field. It is obtained from Eqs. (12) and
(26). If there is no frequency noise, we have 〈u2〉/〈u〉2 = 1.
In the presence of noise the ratio |〈u2〉/〈u〉2| can be smaller
or larger than one. As seen from Fig. 1, this ratio displays
resonant dependence on the field frequency. It most strongly
differs from one near resonance, where ωF = ω0. As expected,
the difference increases with the noise intensity.

For weak noise, |〈u2〉/〈u〉2| is linear in the noise intensity,
and |〈u2〉/〈u〉2| − 1 ≈ Re [(〈u2〉 − 〈u〉2)/〈u〉2] is given by
Eq. (17). Out of the three types of the noise discussed in this
section, only for Poisson noise, we observe that |〈u2〉/〈u〉2| >

1 in a certain frequency range. An interesting feature of this
noise is that, even though 〈ξ (t)〉 = 0, that is, ω0 is the average
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FIG. 1. (Color online) The scaled second moment of the complex
amplitude of forced vibrations u as a function of the frequency of
the driving field, δω = ωF − ω0. The solid, short-dash and long-dash
curves show the results for the Gaussian, Poisson, and telegraph
noises, respectively. The left and right panels refer to the relative
Gaussian noise intensities D/� = 0.1 and 1; note the different scales.
For the Poisson noise on these panels, we took g = 1 and the same
intensities as the Gaussian noise, νg2/2 = D. For the telegraph noise,
we chose W12 = W21 = D and the variance ξ 2

c = 2D2.

oscillator frequency, the frequency of the driving field where
the field absorption is maximal, i.e., where Imu∗ is maximal
as a function of ωF , is located for ωF − ω0 = −ν(g − sin g),
see Eq. (10). This shift of the maximum of the absorption
spectrum is seen in the inset in Fig. 2.

Figures 2 and 3 show higher-order moments of the complex
amplitude for the two values of the frequency detuning,
δω/� = −1 and δω = 0 (exact resonance). The absorption
spectra of the oscillator for the chosen noise parameters
are shown in the inset of Fig. 2. For Gaussian and Poisson
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FIG. 2. (Color online) The real (upper panel) and imaginary
(lower panel) parts of the normalized moments of the complex
amplitude of forced vibrations. The squares, circles, and triangles
show the results for the Gaussian, Poisson, and telegraph noises,
respectively; the lines are guides for the eye. The data refer to
δω/� = −1 and the same noise parameters as in the right panel of
Fig. 1. Inset: dependence of the scaled complex amplitude Im 〈u∗

F 〉 =
(4ωF /F )Im 〈u∗〉 on the driving field frequency for the different types
of frequency noise; the plotted quantity gives the oscillator absorption
spectrum. The coding of the curves and the noise parameters are the
same as in the main figure.
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FIG. 3. (Color online) The real part and the absolute value of the
normalized moments of the complex amplitude of forced vibrations
at resonance, δω = 0. The coding of the curves and the values of the
noise parameters are the same as in Fig. 2.

frequency noises, these spectra are Lorentzian, and therefore
the presence of the noise cannot be inferred from the spectrum.
For a telegraph noise, the spectrum is non-Lorentzian, but
clearly is close to a Lorentzian curve, even though the width
of the spectral peak is increased by a factor ∼2. At the same
time, the moments of the complex amplitude unambiguously
demonstrate the presence of frequency noise.

The dependence of the normalized moments on the order of
the moment is nonmonotonic. It is very specific and markedly
different for different types of noise. This is seen both in the
real and imaginary parts of the moments and in their absolute
values. We do not show the imaginary parts of the moments
at exact resonance, since they are small there. It is seen also
that, for Gaussian noise, the moments decrease more rapidly
than for other noises we study, as it would be expected from
Eq. (12). We note that the results for the moments of the
complex amplitude of classical vibrations immediately apply
to quantum vibrations, 〈un〉∗ = (h̄/2ω0)n/2〈an〉.

Measurements of the moments and correlators of the com-
plex amplitude can be done by standard homodyne detection
in which the in-phase and quadrature components of the

oscillator displacement are recorded as functions of time. This
procedure is standard for classical oscillators. For quantum
oscillators, measuring the moments 〈an〉 is simplified by the
fact that operators an(t) with different n but the same time t

commute with each other. The moments can be immediately
found, for example, from the Wigner distribution, which can
be measured by means of Wigner tomography.30 Experimental
observation of the moments for microwave photons using a
different procedure was reported recently.31

IX. CONCLUSIONS

The results of this paper show that, for vibrational modes,
the presence of frequency noise can be revealed and the
statistics of the noise can be studied using the moments of the
complex amplitude of forced vibrations 〈un(t)〉 ∝ 〈an〉∗. The
moments can be directly measured in the experiment. In the
presence of frequency noise, they differ from the correspond-
ing powers of the average complex amplitude 〈u〉n ∝ (〈a〉n)∗.
The moments display a characteristic dependence on the
frequency of the driving field and the moment number and are
very sensitive to the noise statistics. This is illustrated using
as examples Gaussian and Poisson noises with bandwidth that
significantly exceeds the oscillator decay rate, as well as a
telegraph noise.

Explicit expressions are obtained for the moments of the
complex amplitude in the case of broadband noise with
arbitrary statistics. A general formulation is developed for
Markov noise, which reduces the problem of calculating the
moments to a set of linear equations. Explicit results for the
variance and the third cumulant of the complex amplitude are
obtained also for an arbitrary noise provided the noise is weak;
the third cumulant of the amplitude in this case is proportional
to the third cumulant of the noise. Even for weak frequency
noise, the proposed method allows revealing it irrespective of
the intensity of additive noise in the oscillator. The results
apply to both classical and quantum oscillators.
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