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Fluctuations in a periodically driven overdamped oscillator are studied theoretically and ex-
perimentally in the limit of low noise intensity by investigation of their prehistory. It is shown
that, for small noise intensity, fluctuations to points in coordinate space that are remote from
the stable states occur along paths that form narrow tubes. The tubes are centered on the
optimal paths corresponding to trajectories of an auxiliary Hamiltonian system. The optimal
paths themselves, and the tubes of paths around them, are visualized through measurements
of the prehistory probability distribution for an electronic model. Some general features of
fluctuations in nonequilibrium systems, such as singularities in the pattern of optimal paths,
the corresponding nondifferentiability of the generalized nonequilibrium potential, and the fea-
sibility of their experimental investigation, are discussed.

1. Introduction

Large fluctuations, although infrequent, play a fun-
damental role in a wide range of important pro-
cesses, from earthquakes to nucleation at phase
transitions, mutations in DNA sequences, and fail-
ures of electronic devices. It has been recognized
recently that their role can sometimes be creative:
large occasional fluctuations can be used to en-
hance signals in nonlinear systems and improve sig-
nal processing through stochastic resonance [Moss
et al., 1993; Dykman et al., 1995; Bulsara &
Gammaitoni, 1996]; they may also give rise to unidi-
rectional transport in periodic structures (ratchets)
[Magnasco, 1993, 1994; Millonas & Dykman, 1994;
Leibler, 1994; Doering, 1994].

In many cases of interest large fluctuations oc-
cur in systems far from thermal equilibrium. Exam-
ples are systems driven by strong time-dependent
fields, lasers, electronic devices, and biological
systems.

Whereas, for systems in thermal equilibrium,
the stationary distribution and the probabilities of
fluctuations are known at least in principle (al-
though the problem of evaluating them is often ex-
tremely complicated, cf. [Kagan & Leggett, 1992]),
for nonequilibrium systems there are no general
relations from which these probabilities can be
obtained.

A powerful approach to the analysis of large
fluctuations in classical systems is based on the
concept of optimal path [Ventcel’ & Freidlin, 1970;
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Freidlin & Wentzell, 1984; Ludwig, 1975; Dykman
& Krivoglaz, 1984; Jauslin, 1987; Dykman, 1990;
Dykman et al., 1994a, 1994b; Maier & Stein, 1996,
1997]. This is the path along which a system moves,
with overwhelming probability, when it fluctuates
away from a stable state (an attractor in phase
space) to a given remote state. Dykman et al.
[1992] suggested how optimal paths might be ob-
served experimentally, and demonstrated the phys-
ical reality of such paths through an analog elec-
tronic experiment.

There are general arguments and experimen-
tal evidence [Dykman et al., 1992] showing that, in
thermal equilibrium systems, the optimal path to
a given state is the time-reversed dynamical path
along which the system moves from this state to
the stable state if fluctuations are neglected. So, in
thermal equilibrium, the pattern of optimal paths
is known at least in principle from an analysis of
relaxation in the absence of fluctuations [Luchinsky
& McClintock, 1997].

The above arguments do not apply to nonequi-
librium systems. There are general theoretical ar-
guments [Dykman et al., 1994b; Maier & Stein,
1996] strong numerical evidence [Jauslin, 1987; Day,
1987, 1992; Maier & Stein, 1992, 1993; Chinarov
et al., 1993] and recently some direct experimen-
tal evidence [Dykman et al., 1996] showing that the
pattern of optimal paths in nonequilibrium systems
differs qualitatively from that in the equilibrium
case. Theoretical and experimental investigations
of the pattern of optimal paths present an intrigu-
ing and important problem.

Its importance arises because knowledge of the
pattern of optimal paths provides a convenient way
— often the only known one — of calculating ba-
sic statistical quantities such as stationary proba-
bility distributions and transition probabilities (see
below); furthermore it illuminates the dynamical
processes underlying general properties of fluctu-
ations in nonequilibrium systems such as nondif-
ferentiability of the generalized thermodynamic po-
tential (see [Graham & Tel, 1984a, 1984b, 1985]).
This understanding promises to pave the way to-
wards the development of techniques for controlling
large fluctuations because, even for a small change
of parameters, a system may fluctuate to the same
point in configuration space along completely dif-
ferent paths.

An advantageous feature of optimal fluctua-
tional paths is that they can be directly observed
through investigations of the prehistory probability

distribution ([Dykman et al., 1992, 1996], see also
[Schulman, 1991]). Moreover, we expect that it will
thereby be possible to shed light on the topology
of the instantons which are considered in quantum
field theory.

In the present paper we analyze optimal paths
for large fluctuations in a dynamical system driven
by white noise and by a periodic force, and we
present the first experimental results demonstrat-
ing the existence of a pattern of optimal paths in a
thermally nonequilibrium system.

2. Formulation of the Problem

We consider an overdamped system driven by a
periodic force K(q; φ) and white noise ξ(t), with
equation of motion

q̇ = K(q; φ) + ξ(t), K(q; φ) = K(q; φ+ 2π) ,

φ ≡ φ(t) = ωt+ φ0; 〈ξ(t)ξ(t′)〉 = Dδ(t− t′) .
(1)

A simple example to bear in mind is the familiar
overdamped bistable oscillator driven by a periodic
force:

q̇ = −U ′(q) +A cosωt+ ξ(t) ,

U(q) = −1

2
q2 +

1

4
q4 .

(2)

We consider a situation that is both nonadiabatic
and nonlinear: neither Ω nor A need be small; only
the noise intensity D will be assumed small.

In what follows we investigate fluctuations in
the domain of attraction of a single attractor. In
this regime, before a large fluctuation to the point
(qf , φf ) occurs, the system fluctuates for a long
time (compared to the relaxation time τr) about
the stable stationary state whose basin of attrac-
tion contains the point (qf , φf ). The position of the

stable state q(0)(t) is a periodic function of time,

q̇(0) = K(q(0); φ), q(0)
(
t+ 2πω−1

)
= q(0)(t) .

(3)

The equations for optimal paths can be found us-
ing the eikonal approximation to solve the corre-
sponding Fokker–Plank equation, or by using a path
integral formulation and evaluating the path inte-
gral over the fluctuational paths in the steepest de-
scent approximation (for details and discussion see
[Freidlin & Wentzel, 1984; Ludwig, 1975; Graham,
1989]). The optimal path of a periodically driven
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system gives rise to a maximum in the prehistory
probability density, ph(q, φ| qf , φf ) [Dykman et al.,
1992, 1996]. This is the probability density for
a system arriving at the point (qf , φf ) at the in-
stant tf (φ(tf ) = φf ) to have passed through the
point q, φ at the instant t(t < tf ). The impor-
tant advantage of this formulation is that ph is the
physical quantity that can be measured in an ex-
periment. This approach can be extended to in-
clude analysis of singular points in the pattern of
optimal paths.

The expression for ph can be written in path
integral form ([Dykman et al., 1992],

ph(q, φ|qf , φf )

= C

∫ q(tf )=qf

q(ti)≈q(0)(ti)
Dq(t′) δ(q(t) − q)

× exp

[
−S[q(t)]

D
− 1

2

∫ tf

ti

dt′
∂K

∂q

]
, ti → −∞

φ ≡ φ(t), φf ≡ φ(tf ) .

(4)

Here, C is a normalization constant determined by
the condition∫

dqph(q, φ|qf , φf ) = 1 .

S[q(t)] has the form of an action functional for
an auxiliary dynamical system with time-dependent
Lagrangian L(q̇, q; φ):

S[q(t)] =

∫ tf

ti

dtL(q̇, q; φ) ,

L(q̇, q; φ) =
1

2
[q̇ −K(q; φ)]2 .

(5)

A theoretical analysis of the prehistory proba-
bility density (4) was given by Dykman et al. [1996].
In the range of small noise intensities D the optimal
path qopt(t|qf , φf ) to the point (qf , φf ), where ph
has a peak, is given by the condition that the action
S be minimal. The variational problem for S to be
extremal gives Hamiltonian equations of motion for
the coordinate q and momentum p of the auxiliary
system:

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

dS

dt
=

1

2
p2 ,

H ≡ H(q, p; φ) =
1

2
p2 + pK(q; φ) ,

H(q, p; φ) = H(q, p; φ+ 2π) .

(6)

The boundary conditions for the extreme paths (6)
follow from (4) and (5):

q(tf ) = qf ;

q(ti)→ q(0)(ti), p(ti)→ 0, S(ti)→ 0

for ti → −∞ .

(7)

Since the Hamiltonian H(q, p; φ) is periodic in φ,
the set of paths {q(t), p(t)} is also periodic: the
paths that arrive at a point (qf , φf + 2π) are the
same as the paths that arrive at the point (qf , φf ),
but shifted in time by the period 2π/ω. The action
S(qf , φf ) evaluated along the extreme paths is also
periodic as a function of the phase φf of the final
point (qf , φf ). The function S(q, φ) satisfies the
Hamilton–Jacobi equation:

ω
∂S

∂φ
= −H

(
q,
∂S

∂q
; φ

)
, p ≡ ∂S

∂q
,

S(q, φ) = S(q, φ+ 2π) .

(8)

It is straightforward to see that the extreme paths
obtained by solving (6) form a one-parameter set
{q(t; ∆), p(t; ∆)}. The parameter ∆ can be cho-
sen as the distance from the extreme path to the
attractor q(0)(t) for a certain large negative value of
the initial phase φ(ti) (we note that to identify the
path we have to specify the value of φ(ti) for which
∆ has been chosen). To find the value of the mo-
mentum p and of the action S for a given ∆ we note
from (7) that, for t → −∞, the extreme paths are
confined to the immediate neighborhood of the at-
tractor. Therefore Eqs. (6) can be linearized about
q(0)(t). If for a certain large negative ti the differ-
ence between q(ti) and q(0)(ti) is ∆, then the mo-
mentum p(ti) is also proportional to ∆:

q(ti) ≡ q(ti; ∆) = q(0)(ti) + ∆ ,

p(ti) ≡ p(ti; ∆) = a(φ(ti))∆ ,

S(ti; ∆) ≡ S(q(ti; ∆), φ(ti)) =
1

2
a(φ(ti))∆

2 ,

(9)

The function a(φ) can be found from the linearized
Hamilton–Jacobi equation (6), noting that the pe-
riodicity of S(q, φ) also implies the periodicity of
a(φ):

a(φ) = ω(Υ̃− 1)

[∫ 2π

0
dϕΥ(φ, ϕ)

]−1

,

Υ(φ, ϕ) = exp

[
−2ω−1

∫ φ+ϕ

φ
dφ′

(
∂K

∂q

)(0)
]
,

Υ̃ = Υ(φ, φ+ 2π), a(φ) ≡ a(φ+ 2π)

(10)
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(the derivative (∂K/∂q)(0) is evaluated for q =
q(0)(t′), t′ ≡ ω−1(φ′ − φ0)).

The formulation of the problem of fluctua-
tional paths in terms of the Hamiltonian dynamics
of an auxiliary system makes it possible to apply
powerful analytical methods developed in the the-
ory of Hamiltonian systems to the theory of large
fluctuations.

3. Discussion of Results

It is known from the theory of dynamical systems
(see for instance [Arnold, 1978]) that trajectories
emanating from a stationary state lie on a La-
grangian manifold (LM) in phase space (q, φ, p =
∂S/∂q) (the unstable manifold of the correspond-
ing state) and form a one-parameter set. The ac-
tion S(q, t) is a smooth single-valued function of
position on the LM. It is a Lyapunov function: it
is nondecreasing along the trajectories of the initial
system in the absence of noise q̇ = K(q; φ). There-
fore S(q, t) may be viewed as a generalized nonequi-

librium thermodynamical potential for a fluctuat-
ing dynamical system (see [Graham, 1989]). The
projections of trajectories in phase space onto con-
figuration space form the extreme paths. Optimal
paths are the extreme paths that give the minimal
action to a given point in the configuration space.
These are the optimal paths that can be visualized
in an experiment via measurements of the prehis-
tory probability distribution.

The pattern of extreme paths, LM, and action
surfaces for an overdamped periodically driven os-
cillator (2) are shown in Fig. 1. The figure illus-
trates generic topological features of the pattern
in question. It can be seen from Fig. 1 that, al-
though there is only one path to a point (q, φ, p)
in phase space, several different extreme paths may
come from the stationary periodic state to the corre-
sponding point (q, φ) in configuration space. These
paths cross each other. This is a consequence of
folding of the Lagrangian manifold.

A generic feature related to folding of LMs is
the occurrence of caustics in the pattern of extreme

Fig. 1. From top to bottom: action surface, Lagrangian manifold (LM) and extreme paths calculated for the system (2) using
Eq. (6) with initial conditions (9). Parameters for the system were: A = 0.264, ω = 1.2. To clarify interrelations between
singularities in the optimal paths pattern, action surface, and LM surface, they are shown in one figure: the action surface
has been shifted up by one unit, and the LM scaled by a factor 1/2 and shifted up by 0.4.
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paths. Caustics are projections of the folds of an
LM. They start at cusp points. It is clear from
Fig. 1 that the structure of an LM with two
folds merging at the cusp give rise to a locally
swallowtail-type singularity of the action surface.
The spinode edges of the action surface correspond
to the caustics. A switching line emanates from the
cusp point at which two caustics meet. This is the
projection of the line in phase space along which
the two lowest sheets of the action surface inter-
sect. The switching line separates regions which
are reached along different optimal paths, and the
optimal paths intersect on the switching line. The
intersection occurs prior to a caustic being encoun-
tered by the optimal path. The formation of the
singularities, avoidance of caustics, and formation
of switching lines were analyzed numerically by
Jauslin [1987], and a complete theory was given by
Dykman et al. [1994b]. The generic topological

features of the pattern of optimal paths have not
previously been observed in experiments; but we
now describe briefly a method of investigating the
pattern of optimal paths in thermally nonequilib-
rium systems, based on analogue electronic experi-
ments. We present our initial experimental results,
and discuss the possibility of developing the tech-
nique to reveal singularities in the pattern of opti-
mal paths.

The experimental investigation of large fluctu-
ations and optimal paths is complicated by two fac-
tors. First, by definition, these fluctuations occur
only occasionally. Secondly, in general the coordi-
nate space has two or more dimensions. An addi-
tional problem occurs when transitions between sta-
ble states are investigated: reaching a given stable
state does not necessarily means that the system
has actually switched to this state: as the fluctu-
ation of the random force decays, the decreasing

Fig. 2. Distribution of fluctuational paths which terminate inside the rectangle −0.7 ≤ qf ≤ −0.65, 9.0 ≤ tf ≤ 9.2 for the
system (2) with A = 0.264, ω = 1.2. The maxima of the distribution represent the optimal paths. The theoretical extreme
paths and the contour plot of the distribution are shown at the top.
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(but still large) force can “pull” the system back to
the initially occupied state.

The problem of statistics can be overcome, at
least in part, by using a multichannel technique.
Several dynamical variables of the system and
the external force are recorded simultaneously, and
then the statistics of all actual trajectories along
which the system moves in a particular subspace of
the coordinate space is analyzed. It is clear that
information about stochastic processes obtained in
this way is much more detailed than that obtained
by the standard method of measuring stationary
probability distributions. In our technique, not only
do we count rare events (i.e. arrivals of the system
at a given point in configuration space), but we also
learn how each of these events comes about.

The technique has been tested with an analogue
electronic circuit model of the system (2), designed
in accordance with standard techniques [Fronzoni,

1989; McClintock & Moss, 1989]. It was driven by
weak quasiwhite noise from a noise-generator, and
a periodic force from a frequency synthesizer. The
fluctuating voltage representing q(t) was digitized
and analyzed in discrete blocks of 32768 samples us-
ing a Nicolet NIC-1180 data-processor. The input
sweeps were triggered by the frequency synthesizer
so that information about the phase of the periodic
force could be retained. The analysis algorithm en-
abled an 8×8 matrix of 64 termination squares, each
centred on particular (qf , φf ) values, to be scanned.
Whenever q(t) entered one of these squares, the im-
mediately preceding section of the trajectory was
collected and stored. The trajectories that had ar-
rived in any chosen square could subsequently be
ensemble-averaged together to create the prehistory
probability distribution ph(q, φ|qf , φf ) correspond-
ing to the chosen (qf , φf ). Because the fluctuations
of interest are by definition rare, it was necessary to

Fig. 3. Distribution of fluctuational paths which terminate inside the rectangle −0.4 ≤ qf ≤ −0.35, 7.81 ≤ tf ≤ 8.08 for the
system (2) with A = 0.264, ω = 1.2. The maxima of the distribution represent the optimal paths. The theoretical extreme
paths and the contour plot of the distribution are shown at the top.
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continue the experiments for a considerable period,
typically weeks, to be able to build up reasonably
smooth distributions.

Some experimentally measured prehistory
probability distributions for arrivals at two different
points in configuration space are shown in Figs. 2
and 3. It is clear from the figures: (i) that the
prehistory probability distributions are sharp and
have a well defined ridges; (ii) that the shapes of
the ridges are very different for different final points;
and (iii) that the ridges follow very closely the theo-
retical trajectories obtained by solving numerically
the equations of motion for the optimal paths (6).

4. Conclusion

The good quantitative agreement between the-
ory and experiment shows that our experimental
technique makes it possible to investigate optimal
paths for thermally nonequilibrium systems, and
to reveal the singularities in the pattern of opti-
mal paths. These include in particular switching
lines and strong (nonanalytic in the noise inten-
sity) smearing of the prehistory probability distri-
bution near cusp points. The system we have inves-
tigated has the least number of degrees of freedom
necessary to observe these singularities, and there-
fore it is most appropriate for the analysis. De-
tailed experimental data related to the singularities
in the pattern of optimal paths, and the theory of
self-similar Lagrangian manifolds, will be presented
elsewhere.
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