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The eikonal approximation (instanton technique) is applied to the problem of large fluctuations of 
the number of species in spatially homogeneous chemical reactions with the probability density 
distribution described by a master equation. For both autocatalytic and nonautocatalytic reactions, 
the analysis of the distribution about a stable stationary state and of the transitions between 
coexisting stable states comes, to logarithmic accuracy, to the analysis of Hamiltonian dynamics of 
an auxiliary dynamical system. The latter can be done explicitly in a few cases, including 
one-species systems, systems with detailed balance, and systems close to the bifurcation points 
where the number of the stable states changes. In the last case, the fluctuations display universal 
features, and, for saddle-node bifurcation points, the logarithm of the probability of escape from the 
metastable state (per unit time) is proportional to the distance to the bifurcation point (in the 
parameter space) raised to the power 3/2. We compare the eikonal approximation for the stationary 
distribution of a master equation to Monte Carlo numerical solutions for two chemical two-variable 
systems with multiple stationary states, where none of the cited restrictions exists. For one of the 
systems in the pattern of optimal paths we observe caustics emanating from the saddle point. 

I. INTRODUCTION 

Chemical systems with ingoing and outgoing flows pro- 
vide an important class of systems far from thermal equilib- 
rium. For steady external conditions, they can display differ- 
ent types of behavior including the onset of two (or more) 
stable stationary states and states of persistent oscillations 
(limit cycles in the space of appropriate variables, e.g., con- 
centrations of species). Fluctuations about the stable states 
are mostly small, e.g., fluctuations in numbers of molecules 
are proportional to the square root of these numbers. How- 
ever, there also occur occasional large fluctuations. These are 
of particular interest for systems with coexisting stable 
states, since the transitions between the stable states are due 
to large fluctuations, and therefore large fluctuations deter- 
mine which of the dynamically stable states are globally 
stable and which are metastable. The solution to the problem 
of large fluctuations also gives the values of the parameters 
for which the probabilities of the transitions between the 
states (per unit time) are of the same order of magnitude, so 
that the populations of the two stable states are of the same 
order of magnitude and there occurs a “first-order phase 
transition.” 

Fluctuations in systems far from thermal equilibrium are 
usually described on the basis of kinetic equations (cf. Refs. 
1 and 2, and references therein). In many cases of interest, in 
particular, for the reactions in dilute solutions, these equa- 
tions are Markovian on the time scale “coarse grained” over 
the duration of an elementary reaction. The theory of large 
occasional fluctuations in systems described by kinetic equa- 
tions was first considered by Kramers3 in the context of 
chemical reaction rates for a simple dynamical system per- 

forming Brownian motion in a double-well potential. The 
statistical distribution of such a system inside a potential well 
is Gibbsian, and the probability W of the escape from the 
well per unit time is given by the Arrhenius law W  
$exp(- AU/T), where AU is the well depth and T is the 
temperature in energy units. Kramers found both the expo- 
nent and (what was more complicated) the prefactor for Win 
a broad range of parameters. 

In the general case of a system far from thermal equilib- 
rium, the problem of primary interest is to find the logarithm 
of the statistical distribution, which is in some sense analo- 
gous to the thermodynamic potential, and also to find the 
logarithm of the escape probability. The solution to these 
problems for noise-driven dynamical systems has been ob- 
tained first for the noise, being white and Gaussian, so that 
the kinetics is described by a Fokker-Planck equation with- 
out detailed balance>-” and more recently for Gaussian 
noise with a nonflat power spectrum (Lorentzian peak at zero 
frequency” and nonmonotonic spectnmr12). Chemical kinet- 
ics is described by master equations rather than by Fokker- 
Planck equations. The results immediately related to the is- 
sue of the present paper ‘have been obtained in a series of 
interesting papers.13 Matkowsky et al. 13@) considered Mar- 
kov jump processes which were described by difference 
(over time) rather than differential stochastic equations, so 
that the kinetics is described by a Kramers-Moyal equation 
whereas HI?~(~) considered the kinetics described by master 
equation. The kinetics of Markov systems with discrete time 
(noisy maps) was analyzed in Ref. 14, with account taken of 
some features of the dynamics in the absence of noise related 
specifically to the discreteness of time. The problem of large ’ 
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fluctuations for Markov chains was considered by 
Wentzell;” Maier has suggested the interesting application 
of the results to some problems of computer science, where 
the total probability per unit time of a jump is independent of 
the state of a system.16 In the context of chemical kinetics of 
multicomponent systems, the stationary non-Gaussian solu- 
tion of the master equation for spatially homogeneous non- 
autocatalytic reactions has been obtained in Ref. 17, and the 
generalization of this solution to the case of autocatalytic 
reactions on the basis of some general arguments has been 
discussed recently.‘s 

In the present paper, we investigate the probabilities of 
large occasional fluctuations and the transition probabilities 
in spatially homogeneous autocatalytic multicomponent sys- 
tems. The approach is based on the eikonal [or the Wentzel- 
Kramers-Brillouin (WKB)] approximation as applied to 
master equations for macroscopic systems. The WKB ap- 
proximation is advantageous wherever the quantity of inter- 
est is fast oscillating (as a wave function of a highly excited 
state of a quantum system in the classically available range) 
or fast decaying (as a wave function in the classically forbid- 
den range); in the case under investigation, it is the probabil- 
ity distribution that steeply falls away from the stable state. 
In Sec. II, the problem of large fluctuations is reduced, to 
logarithmic accuracy, to a first-order partial differential equa- 
tion with the appropriate boundary conditions. The concept 
of the optimal path is discussed, along which the system 
evolves, with an overwhelming probability, in the course of a 
large fluctuation to a given point remote from the stable state 
in the phase space. In Sec. III, the solution of this equation is 
considered for two simple situations and the restilts are com- 
pared with those obtained by other methods. In Sec. IV, the 
problem of transition probability is discussed briefly. In Sec. 
V, the analysis is applied to systems that are close to bifur- 
cation points where the number of the stable stationary states 
of a system changes. A system is “soft” in the vicinity of a 
bifurcation point, and fluctuations about a metastable state 
increase sharply as the parameters approach the bifurcational 
values where the state disappears. The fluctuations display 
universal features that depend on the type of bifurcation. 
lLvo general types of bifurcation points are considered- 
saddle-nbde, where a stable stationary state merges with an 
unstable one, and spinode bifurcation points (bifurcations of 
codimension 2), where two stable states and an unstable sta- 
tionary state merge together. In Sec. VI, the results of the 
theoretical analysis are applied to chemical kinetics, and the 
optimal paths and statistical distributions are evaluated nu- 
merically for the Selkov model and a two-reactor iodate ar- 
senous acid reaction model. Monte Carlo simulations are 
presented for these models and the results of the two ap- 
proaches are compared. In Sec. VII, the main results are 
summarized and some directions of future work are dis- 
cussed briefly. 

II. EIKONAL APPROXIMATION IN THE PROBLEM OF 
LARGE FLUCTUATIONS 

We consider a set of reagents i = 1,. . . ,M in a homoge- 
neous reactor with stationary external cons&air& such as in- 
flows and outflows. Due to reactions between the species, 
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their numbers X 1 ,...,X, (X+1) evolve in time. Since col- 
lisions (and thus the reactions) happen at random, this evo- 
lution is a random process, and for dilute systems, this pro- 
cess is Markovian; it is described by a master equation 

~mw 
- =C [W(X-r,r)P(X-r,t)-W(X,r)P(X,t)], at r 

x= (Xl ,...,x,>. (1) 
The function P(X,t) is the probability density for the system 
to be in the state with the numbers of species X at the instant 
t. It depends on the initial state of the system, or on its initial 
distribution; in particular, if at the instant to<t the numbers 
of the species are &, then the initial condition for Eq. (1) is 
f’(X,t,) = ax,%. The function W(X,r) is the probability of 
the transition X-+X+r [i.e., of the transition (X, , . . .,X,) 
-+(Xl+rl ,...,X,+r,)] per unit time. The values of ri 
show the changes in the numbers of the species due to el- 
ementary reactions. 

The characteristic width of the distribution P(X,t) is 
usually very much smaller than the average instantaneous 
numbers of the species Xdet=Xdet(t). Both the latter and the 
values of the probabilities W are proportional to the volume 
of the system a, whereas the characteristic fluctuations of Xi 
scale as s2”2 (we will be interested in larger fluctuations, in 
fact, but still the characteristic values of Xi will be of order 
0). With the neglect of fluctuations, the evolution of the 
average numbers of the species is described by a determin- 
istic equation which, when written in terms of the probabili- 
ties W, is seen from Eq. (1) to be of the form 

% =C rW(Xdet,r). 
r 

(2) 

The deterministic chemical kinetics is described more often 
in terms of the total rates t’(X,r) of the elementary reactions 
of the birth (tlf) and death (t;) of the species i,17,18 

+ =c [t’(Xd,t,r)-t-(Xdet,r)l [&)detslla 
r 

(3) 

The expression for W in terms of t* is of the form 

W(X,r)= C [t+(X,r)-ti(X,r)]/r;. 
i(rj#O) 

(4) 

The rates t: and t7 are equal to zero for negative and posi- 
tive ri, respectively, and therefore the probabilities W as 
given by Eq. (4) are positive (the values of W do not gener- 
ally yield the individual $). 

The stable solutions (attractors) of Eq. (2) give the num- 
bers of the species in the stable states of the system. In the 
present paper, we assume the attractors to be stationary states 
x’,:), i.e., nodes or foci in the space of the variables X. With 
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the neglect of fluctuations, the system placed initially within 
a basin of attraction of an nth stable state approaches this 
state in the characteristic relaxation time trcl equal to the 
reci rocal minimal real part of the eigenvalues of the matrix 
li(” , P 

A$‘=-~ ri[dW(X,r)ldXj]xb), St r 

2 rW(X$),r)=O. 
r 

(5) 

Since both the numbers Xi and the probabilities W(X,r) are 
proportional to the volume of the system Q for X=Xdet, the 
matrix fit”) is independent of R. Due to fluctuations, the 
evolution of the system on its way to the stable state differs 
from that described by Eq. (2); however, for large systems, 
the random trajectories X(r) form a narrow tube around 
&et(t) * 

Once an nth stable stationary state Xi:’ is reached, the 
system fluctuates about it. The characteristic scale of the 
fluctuations is of the order of IX]$z:zccti’” (Ref. 19) [the va- 
lidity of this general statement for the system under consid- 
eration can be seen from Eq. (l)1(b)]. However, occasionally 
much larger fluctuations also happen that take the system far 
from the stable state. Their probabilities are small, but these 
are large fluctuations that form the tails of the stationary 
statistical distribution; in the case of bi- or multistable sys- 
tems, they give rise to the switching of the system from one 
stable state to another. Since the switching probabilities are 
extremely small compared with the reciprocal relaxation 
time t,;;, the statistical distribution of the system about a 
stable state is quasistationary for the times in between trel and 
the reciprocal switching probability, and the switching prob- 
ability itself is determined by this quasistationary distribution 
in the vicinity of the saddle point of the system. In the 
present section, we investigate the quasistationary distribu- 
tion P(“)(X) about the nth stable state XL:‘. 

The equation for the function P(‘)(X) is of the form 

C [W(X-r,r)P(“)(X-r)- W(X,r)@)(X)]=O. (6) 
r 

In fact, Eq. (6) describes the stationary distribution of the 
system. However, the eikonal (instanton) technique we shall 
be using does not give immediately the stationary distribu- 
tion throughout the entire space of the variables in the case 
of multivariable systems without detailed balance; it gives 
the distribution only within a certain part of the, range of 
attraction to a stable state where the distribution is quasista- 
tionary (see Sets. IV and VI). We seek the solution of Eq. (6) 
in the eikonal form 

Pcn)(X)=C(“) exp[ -S,(X)], S,(X$))=O, (7) 

where Cc”) is a normalization constant which is chosen so 
that the total probability of finding the system within the 
basin of attraction to the stable state 12 is equal to 1. It is 
convenient to set S, equal to zero at X = Xi:‘, where the 
distribution P(“) is maximal. 
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When Substituting~Eq. (7) into Eq. (6), we, (i) assume 
S,(X) to be smooth, and (ii) neglect the second- and higher- 
order derivatives of S, over Xi . However, we do not assume 
the first derivatives to be small, i.e., we put 

S,(X+r)=S,(X)+(rd/dX)S,(X), jrl-14/X/. (8) 

The approximation (8) is used below to obtain a first-order 
differential equation for the function S,(X). The consistency 
of this approximation will be justified a posteriori. It will be 
seen that, for the solution obtained, the terms dropped in Eq. 
(8) are of the order of 0-r. They make the prefactor of the 
distribution X dependent. The idea behind approximation (8) 
can be understood from a simple example of the Poissonian 
distribution P&Y) =exp( -z+X In 2)/X!. For large x,X, 
the logarithm of P&T) changes by -ln(;EIX) for X chang- 
ing by 1, and this change is not small for X differing notice- 
ably from its average value 2. At the same time, the second 
derivative of In[P,(X)] over X is equal to -X-l and is 
extremely small for large X, i.e., the approximation (8) 
holds. We emphasize that since we do not suppose the first 
derivatives of S,,(X) to be small, the approximation (8) goes 
far beyond the Gaussian approximation in the master equa- 
tion and makes it possible to analyze not only the shape of 
the quasistationary distribution near its maximum, but also 
the shape of its far tails up to the range where the number of 
species differs from its value in the stable state by an order of 
magnitude: (X - X$)1 - s1 % a”‘. The probabilities of 
the fluctuations resulting in such strong deviations in ‘the 
numbers of species .are exponentially small, and so is the 
value of P@) for the corresponding X. ’ 

When substituting Eqs. (7) and (8) into Eq. (6), we as- 
sume the transition ‘probabilities W(X,r) to be smooth func- 
tions of X. They are usually polynomials in Xi .ls2,19 The 
characteristic values of the change in the number of species 
as a result of a reaction ri are of order 1. Therefore, to the 
lowest order in fiBi, we can neglect the difference between 
W(X-r,r) and W(X,r) in Eq. (6) for IX]-0. It is this feature 
of the transition probabilities that is the prerequisite for the 
approximation (8) to hold true. To this approximation, the 
equation for the function S,(X) takes the form [cf. Ref. 
Nb)l 

H(x,~s,(x)lW=O, ff(x,p)=C whf)[exp(rp)-11, 
r 

(9) 
where 

x=X/Cl, ~~(x)=S,(X)lfl, w(x,r)= W(X,r)li2 
(10) 

are the densities of the species x=(x1 , . . . ,xy), the density of 
the logarithm of the quasistationary distribution about a 
stable state n, and the density of the transition probability, 
respectively. In deriving Eq. (9), we have made use of the 
approximation (8), and it is seen from Eq. (9) that if s,(x) is 
smooth, Eq. (8) is a good approximation in the limit of large 
a. The terms neglected in Eq. (8) are of the order of CR-l. 

Equation (9) is a first-order partial differential equation 
for the function s,(x). It is immediately related to the corre- 
sponding equations that describe the statistical distribution of 
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tion (13). It is straightforward to express A(‘) in terms of the 
matrix fi(‘) that diagonalizes fi(“) and in terms of the eigen- 
values hi Of A("), 

(~cn,)-l=~cn,~cn)[(~I("))+]-l, 
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Markov jump processes13@ .and Markov chains with the total 
probability of a transition per unit time independent of the 
state of a system.16 The kinetic equation for the jump pro- 
cesses analyzed in Ref. 13(a) was a Kramers-Moyal differ- 
ential (over x) equation, and the expression for the function 
H(x,p) was given by an integral over r instead of the sum 
over r in Eq. (9); this integral goes over into a sum for 
random walk models, in particular, for one-dimensional (M 
=I), one-step (IrI =l) random walks considered in Ref. 
13(a) in more detail. Another difference between Eq. (9) and 
the equations considered in Refs. 13(a) and. 16 comes from 
the fact that, for the processes with discrete time considered 
in these papers, the total probability to change to a different 
state and to remain in the one occupied initially over a given 
time interval is equal to 1. In the notation of the present 
paper, this conditions implies 

E1l)={(~("))-ll;'(')[(~(n))~]-l}ij/(Ai+A~), 

(jp)&n))ij=hjU$y. 

The normalization constant in Eq. (7) is given in terms of the 
matrix h(n) by the expression 

Cc”)=det(~(“))/(2~~)(M’2). 

A. Hamilton equations of motion 

2 w(x,r)=const, 
r 

and by scaling time, the constant, in this equation can be 
made equal to 1. Equation (9) can then be written in the form 

A convenient approach to the analysis of the function 
s,(x) is based (cf. Refs. 4-16) on noting that Eq. (9) can be 
considered as a Hamilton-Jacobi equation for the action of 
an auxiliary system with the coordinate x and momentum p 
that has the Hamiltonian function H(x,p) and moves with the 
energy E equal to zero.“’ Hamilton’s equations of motion for 
the system (9) are of the standard form 

In C w(x,r)q(rp) =O, 
I 

@a) r 1 
which is equivalent, in fact, to that used in Refs. 15 and 16. 
In chemical kinetics, the total reaction rate depends on the 
state of the system, and the condition that the sum of w(x,r) 
be constant does not hold. The average frequency of the 
collisions between the molecules that give rise to chemical 
reactions depends on the numbers of the species involved. 
However, Eq. (9) can be written in the form (9a) with w(x,r) 
replaced by ~(x,r)/Z~tw(x,r’), and with the account taken 
of this renormalization, both of them can be used to find the 
quasistationary probability density. The eikonal approxima- 
tion for systems described by the master equation was first 
considered by Kubo et al. and by Kitahara2’ (these authors 
did not analyze the problem of large fluctuations, i.e., of the 
tail of the probability density distribution and of fluctuational 
transitions between coexisting stable states). 

The boundary condition for Eq. (9) is seen from Eq. (7) 
to be 

z&C rw(x,r)exp(rp), 
r 

i= -C [exp(rp)-.l]dw(x,r)ldx, 
r 

(14) 

and, in view of Eq. (9), the action is given by the expression 

yx(t))=j-; dtk6e/t; dt’L(x,i), (15) 

where L(x,k) is the Lagrangian of the auxiliary system 

s (xp)=O n 3 X$‘=Xpli-l. (11) 

It follows from this condition and from Eqs. (5) and (9) that 
s,(x) is quadratic in x - x$) near the stable state 

S,(X)&; -z Ali”-‘[Xi-(~‘)i][Xj-(X’,:‘)j], ‘XwXg). 
EJ 

(12) 

L(x,zi)=pi-H(x,p), p=p(x,i), L(x,Ji)SO. .W 
The function p(x,k) here is given by the first of Eqs. (14). 
The nonnegativeness of the Lagrangian L in Eq. (16) follows 
from the positiveness of w (x,r) and the inequality 9 exp 4 -I- 1 
-exp q>O, where 4 stands for rp. For systems with one 
species, expressions (9) and (16) for the Hamiltonian and 
Lagrangian of the auxiliary system go over into those ob- 
tained by Kubo et aL2’ if one replaces r, H, and L by -r, 
-H, and -L, respectively; the difference comes from the 
difference in the form of the master equation (1) and that 
used in Ref. 20, and from the fact that s,(x) as defined in 
Eqs. (7) and (lo) gives the negative of the logarithm of the 
statistical distribution. 

The matrix i@) is given by the equation 
ii(n)(~(n))-l+(~(n))-l(ii-(n))+=~(n) ’ 

(13) 
Kf~‘=,~ W(X$l ,r)rirj. ; *i 

The matrix A(‘) is positive definite, since the positiveness of 
the real parts of the eigenvalues of A(“) is the stability con- 
dition, and the matrix fi) is positive definite by construc- 

The boundary conditions for Eqs. (14) follow (cf. Refs. 
4, 5, and 7) from the underlying picture of the fluctuations. 
The quasistationary distribution far from a stable state is 
formed by occasional large fluctuations. Since the probabili- 
ties of large fluctuations are extremely ‘small, the value of 
P(“)(X) is given, to logarithmic accuracy, by the probability 
of the most “favorable” fluctuation that brings the system to 
a given point X from the vicinity of the stable point X$‘), 
where the system spends most of the time. It is just the 
function s,(x) that gives this probability, and Eq. (14) de- 
scribes the path along which the system arrives to a given x 
with an overwhelming probability, i.e., the optimal path (cf. 
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Ref. 4). The value of x(&J at the initial instant to when the 
large fluctuation starts is close to the stable position x$). It 
follows from the above picture, and also from Eq. (12), that 
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equation (6) in the important case where detailed balance 
conditions hold,1,2 i.e., 

W(X,r)P(“)(X)=W(X+r,-r)P(“)(X+r). 

x(to>+x$), for to-f-m 2 x(t)=x. (17) 

It is obvious from Eqs. (14)-(17) that the value of s,(x) 
evaluated along the optimal path defined this way is indepen- 
dent of time t, which is consistent with the fact that we 
consider a quasistationaty distribution of the system and 
therefore &s,J&=-H=O. 

The important consequence of Eqs. (14)-(17) is that 
S,(X) is a Liapunov function. From Eqs. (11) and (17), we 
see that s,*(x) is positive everywhere in the range of defini- 
tion except at the stable state x$‘, where s,(x)=O. It is 
straightforward to see also that s,(x) decreases when 
x=fiR-lX approaches the stable state along the deterministic 
path (2) because the change of the action along the determin- 
istic path13(b) 

d~,lXiet(~)l 
dt =nC [rp~(w-)ld,,=~Rc @+w-~ 

r r 

X[rp+l-exp(rp)l}det~o. (18) 

Here, the subscript det means that x is set equal to fin-lx&t, 
and we have made use of the relations ~Ys,(x)l&r=p and 
H(x,p)=O [Eq. (9)]. The term in the rectangular brackets in 
the second line of Eq. (18) becomes zero if p=O. This con- 
dition is met in stationary states only. Indeed, it follows from 
the analysis of the equations of motion (9) and (14) linear- 
ized in the vicinity of a stable stationary state [cf. Eq. (12)] 
that, in addition to the solutions of Eqs. (9) and (14) that 
describe the optimal paths and satisfy the boundary condi- 
tions (17), there is only one more set of solutions that pass 
through a stable stationary point x$‘. It corresponds to the 
deterministic paths, and along them p=O and 
x(t) =&,,(t)/fl. At the same time, the dynamical trajectories 
(9) and (14) can intersect each other in singular points only, 
and for the motion described by a nonsingular (for finite x 
and p) Hamiltonian function (9), these are fixed points that 
are singular (we do not consider other possibilities in the 
present paper). Hence, away from stationary points, we have 
p=&,(x)lc3x#0 on the optimal path. Thus, the decrease of 
the function s,(x) for x approaching x$) along the determin- 
istic path is r~notonic, and s,(x) is minimal (equal to zero) 
in the nth stable state itself. This is similar to the behavior of 
the logarithm of the quasistationary distribution of systems 
described by a Fokker-Planck equation.” 

III. OPTlMAL PATHS AND STATISTICAL 
DISTRIBUTIONS FOR PARTICULAR SYSTEMS 

A. Detailed balance and time-inversion problem 

A simple expression for the quasistationary and station- 
ary distribution P’“)(X) can be obtained from the master 

This condition implies a relation between the transition prob- 
abilities W(X,r) with the different “jump lengths” r. In par- 
ticular, it means that the ratio of the probabilities of the 
“direct” forward and backward transitions X+X-i-r and 
X+r-+X is equal to the ratio of the probabilities .ofm the cor- 
responding transitions via intermediate state(s) X+X+r’ 
+X+r and X+r+X+r’-+X, ,. 

W(X,r) WC$r’) W(&+r’,r-r’) 
W(X+ r, - r) =W(X+r’,-r’j’ W(X+r,-r+r’)’ 

When the detailed balance condition holds, the equation for 
the function s,(x) that gives the probability distribution to 
logarithmic accuracy takes on the form 

w(w9 
. W(x, -r) =exb[ -r y ]., (19) 

The solution of this equation is-trivial and we do not give it. 
An important consequence of Eq. (19) is that in systems 
displaying detailed balance, the evolution of the variables 
x=(x 1,. . . ,xicI) on the optimal path (14) follows just time- 
.inverted evolution for the deterministic path (2) 

k=-c rw(x,r)‘-idet 
r 

cm 

(cf. Ref. 17). 
In the general case, relation (20) does not hold. In a 

sense, the lack of detailed balance brings time irreversibility 
into the dynamics of the auxiliary system (14) similar to that 
brought by a magnetic field into Hamiltonian dynamics.21 To 
see this, one can make a canonical transformation to a new 
momentum rr in Eqs. (9), (14), and (15) 

1 dsn(x) ,_., 
P--+% m=p-z dx * * 

. 

The transformation of this type is used to analyze the eigen- 
values of “a Fokker-Planck equation in continuous Markov 
systems with detailed balance.22323 It follqvvs .from .Eq. (19) 
that,’ for chemical systems with detailed balance, _ 

H(x,?r)=H(x,-m), (21) 

i.e., the Hamiltonian is even in the new momentum m, 
whereas for systems without detailed balance property (21) 
does not hold, i.e., dynamics is irreversible in the general 
case. 

6. One-species systems 

The equations of motion are greatly simplified if there is 
only one species .involved in the reactions, i.e., the vectors x 
and r have only one component x and r. In this case, Eq. (9) 
becomes just an algebraic equation for the variable expp, 
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C wW>[(exp PI’- ll=O, 
r 

(22) 

which gives immediately p as a function of x,13 and there- 
fore 

I 

x 
s,(x) = cnj dx P(X). 

%t 
(23) 

In the case of the reactions where the number of the species 
changes by 1, e.g., A + (m- l)X+mX, detailed balance 
holds, and Eqs. (22) and (23) give a well-known result 

s,(x) = I 

x 
cnj dx InCw(x,--l)lw(x,l)l 

51 

I 
I 7., dx ln[t-(x)/t+(x)], (24) 

St 

The results given in Sec. II make it straightforward to 
find the switching probabilities for Markovian systems de- 
scribed by a birth-death master equation. This problem was 
considered by Landaue? for a one-component system with 
r = + 1. Because of the absence of memory, it is sufficient 
for switching that the system reach the range of attraction to 
another stable state in the course of a fluctuation. The system 
will then approach this state with a probability of order unity 
along the deterministic path (2). Therefore, to logarithmic 
accuracy, the probability W,, of the direct switching n-m 
from the nth stable state to the mth one is equal to the prob- 
ability of a transition from the initially occupied stable state 
IZ to the separatrix that separates the basins of attraction to 
this state and the state m. Moreover, it is necessary to find 
the maximum of this probability with respect to different 
points on the separatrix. 

where t’(x) ‘s are the total reactive fluxes for a given density 
x (see Refs. 2 and 24 for a review). In the case of a one- 
variable Markov process, where the value of the variable 
changes by ?l in an elementary process, the stationary dis- 
tribution and the problem of the transitions between coexist- 
ing stable states were considered by Landaue? in the con- 
text of fluctuations in bistable tunnel diodes. 

It follows from the above arguments that the value of 
In W,, is given by the minimal value of Ins,(x) for x lying 
on the separatrix. The separatrix itself is a trajectory of de- 
terministic motion towards the saddle point x,, and since 
s,(x) is a Liapunov function, it reaches its minimum on the 
separatrix right in the saddle point (cf. Ref. 7), 

When the number of X can change by 2 or more, as in 
the case of reactions with short-living intermediates, expres- 
sions (22) and (23) can be easily evaluated numerically. Even 
in this “one-dimensional” case, the optimal path as given by 
Eq. (14) is not a time-inverted deterministic path. This is in 
contrast with one-variable systems described by a Fokker- 
Planck equation where the detailed balance holds “automati- 
cally.” 

In W,,--Qs,(x,), 2 w(x,,r)=O 
r 

(25) 

IV. TRANSITIONS BETWEEN COEXISTING STABLE 
STATES 

(we do not consider special cases where there are several 
singular points on a separatrix [cf. Ref. lo(a)]}. Equations 
(14), (15), and (25) reduce the problem of calculating the 
switching probabilities to a boundary-value problem for or- 
dinary differential equations which can be solved numeri- 
cally for a particular system. Since the motion along the 
optimal path gets slowed down in the vicinity of the saddle 
point 

Many chemical systems display, for certain values of the 
constraints (control parameters), bi- and multistability. For 
given values of the parameters, they remain for a long time 
in one or another stable macroscopic state depending on how 
they have been prepared, and there arises hysteresis on vary- 
ing parameter valuesz4 Because of fluctuations, a system can 
switch spontaneously from one stable state to another. The 
probability of switching is very small; the negative of its 
logarithm is proportional to the volume of the system, and 
therefore switching in macroscopic systems occurs inhomo- 
geneously via nucleation.rg Because of switchings, a system 
eventually comes to the most “favorable” stable state. In 
thermal equilibrium systems, such a state corresponds to the 
absolute minimum of a thermodynamic potential. The abso- 
lute value of the logarithm of the probability of switching 
from this state is much higher than that from the metastable 
state that corresponds to a local (but not global) minimum of 
the thermodynamic potential. The analysis of global stability 
for nonequilibrium systems can be performed on the basis of 
switching probabilities as well. The’“globally stable” state is 
that for which the logarithm of the escape probability (per 
unit volume) is larger in absolute value. 

P-4 i-+0 for x+x,, 

it is convenient to surround the saddle point x, by a small 
area and to seek a trajectory that starts in the vicinity of the 
stable point xi:’ and arrives into this area. This algorithm is 
effective in the case of continuous Markov systems in spite 
of the fact that a caustic can emanate from the saddle point 
for system (14) without detailed balance.r’@ ‘) The application 
of this algorithm to particular chemical systems will be con- 
sidered in Sec. VI below. 

Given that the characteristic “specific activation ener- 
gies” Ts,(x,) (T is temperature in energy units) of the es- 
capes from the stable states are known, it is straightforward 
to find the distribution of the system over the stable states. 
Actually, these quantities are similar to the depths of the 
wells of thermodynamic potential in thermal equilibrium sys- 
tems that experience first-order phase transitions (cf. Refs. 7 
and 25). In the stationary regime, the system occupies, with 
an overwhelming probability, that state for which the value 
of s,(x,) is larger. The range of the phase transition corre- 
sponds to the values of the parameters of the system where 
the activation energies are equal to each other. The width of 
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FIG. 1. A schematic form of the bifurcation diagram of a two-parameter 
system. Inside the “beak,” the system has two stable and one unstable 
stationary states. Smooth lines are the saddle-node bifurcation lines. For the 
corresponding values of the parameters gI and g2, one of the stable station- 
ary states merges with the unstable one. In the spinode point K, all station- 
ary states merge together. 

this range (in the parameter space) is of order f12-l-4. Many, 
but not all phenomena arising in this range in nonequilibrium 
systems are similar to those known for thermal equilibrium 
systems.” 

V. STATISTICAL DISTRIBUTION AND ESCAPE 
PROBABILITIES NEAR BIFURCATION POINTS 

The analysis of the form of the probability density dis- 
tribution is greatly simplified in the range of the constraints 
(control parameters) close to bifurcation points. We consider 
two basic types of bifurcations in systems with coexisting 
stationary states: saddle-node, or marginal bifurcation points 
(bifurcations of codimension l), where a stable stationary 
state of the system merges with an unstable stationary state 
(a saddle point in the phase space); and spinode bifurcation 
points (bifurcations of codimension 2), where two stable sta- 
tionary states and an unstable one merge together.26 The .bi- 
furcations of the latter sort occur, generally, in systems with 
at least two control parameters (e.g., flow densities of two 
reagents). The bifurcation diagram of a two-parameter sys- 
tem is shown schematically in Fig. 1. The full lines corre- 
spond to codimension 1 bifurcations, whereas the spinode 
point corresponds to the codimension 2 one. Inside the 
“beak” formed by the curves, a system has two coexisting 
stable stationary states (in a certain area of the phase space) 
and an unstable stationary state, and it has only one stable 
state outside the. beak. 

In the vicinity of a bifurcation point, a certain type of 
motion of a dynamical system becomes slow. The slow mo- 
tion is described effectively by one variable,26 a soft mode. 
The “softness” of the motion results in a relatively strong 
response to various perturbations and is expected to result in 
large fluctuations. A sharp increase of fluctuations and of the 
probability of escape from a metastable state near bifurcation 
point has been considered for dynamical systems driven by 
external noise (see Refs. 27 and 28 and references therein). 

This increase is demonstrated in the present section to occur 
in the case of chemical kinetics too. Moreover, just as in 
noise-driven dynamical systems, fluctuations in chemical 
systems near bifurcation points of the deterministic motion 
have some universal features irrespective of whether there is 
detailed balance or not. 

A. Saddle-node bifurcations 

We start with the analysis of fluctuations near a saddle- 
node (marginal) bifurcation point 

g=g,, g=kl,gz,..*), (26) 

where gl ,g2,... is the set of the constraints (control param- 
eters of the system). These parameters enter the expressions 
for the transition probabilities in the master equation (l), i.e., 

WKr>=WX,rlgL w(x,r)=fl-lW(X,rjg)=w(x,rlg), 
(27) 

and therefore the explicit form of the statistical distribution 
of the system also depends on g. 

1. Deterministic motion 

Bifurcations are the features of the deterministic motion 
of the system described by the dynamical equation of motion 
(2). The topology of the trajectories of this equation changes 
at a bifurcation point. The bifurcation values of the param- 
eters g, can be obtained by noticing that in the saddle-node 
bifurcation point, one of the eigenvalues Xi of the character- 
istic matrix A [Eq. (5)] of the stable stationary state that 
coalesces with the saddle point becomes equal to zero. The 
resulting equations for the position xM of the stationary state 
itself and for giM follow from Eqs. (2) and (27) to be of the 
form 

2 rw(xM,rlgM)=oj Det(ACM))=O, 
P 

(28) 
A{~‘=-~ rj[aw(X,rlgM)laxj],. 

r 

Equation (28) gives an interrelation between the components 
iT,,gz 9*** and thus determines a hypersurftice in the param- 
eter space g; in the particular case of a two-parameter sys- 
tem, this is just a line on the plane (gr,ga) as shown in 
Fig. 1. 

The deterministic motion in the vicinity of a bifurcation 
point, i.e., for x and g close to xM and gM can be described in 
the standard way.26 It is convenient to place the origin of the 
variables and of the control parameters at their values at the 
bifurcation point’ and to make a transformation to new vari- 
ables so as to single out the variable (the combination of the 
concentrations of the species) which changes slowly in time 

y= 6-1(x-x,), (t i-1AcM)fi) i j=hi8i j) hl=O. 
(29) 

For small ]yi] and /g-&I, the deterministic equation for the 
slow variable y1 is of the form 
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~ . 
k i,i 

(30) 
&=:g-gM> 

whereas the equations for the remaining “fast” variables are 

); iBmxiYi+C fii)8gk+ C f~~~~2Yi,Yi,+~” 2 
k il ,& 

(Y=.deth .’ 

Here we have 

.I$‘=~ C~~‘)ii,E ~i,[~~(x~rl&~&fk~17 
T 

fi:x)=~ 1 T, (fi-1)ii,ui,jui3k~ ril dzirz!) 
‘1 rQ,Z3 P  13 

S-1, 

(31) 

(32) 

(all the derivatives are evaluated for x=xM, i.e., for y=O, 
and g=gk). 

The relaxation time of the variable yr in the stationary 
state is equal to infinity for g=gM (where yst=O). For g close 
to gM’, it is finite, but still it is very much larger than the 
relaxation times of the other variables which are of the order 
of (Re &,I) -I. & a result the fast variables yirl follow the 
variable yr adiabatically. Over a time t that is small enough, 
so that yr remains nearly constant, but is very much larger 
than max(Re hi>r)-‘, they take on their adiabatic stationary 
values for a given yl, 

y.=yp)=y;ad)(y*)- r c fg’sgk+f$y: xi. 
k 

The deterministic motion of y, is given by the equation 

(~l)det=EM-aM~~~ EM=c f’,“,‘&k, a,=-.!$?~. 
k 

(34) 

It is seen from Eq. (34) that in the range uMMEM>O, the sys- 
tem has two coexisting stationary states of deterministic mo- 
tion, one of them stable yst and the other unstable (the saddle 
point) ys, and in these states, 

AM= ( EMIUM) 
l/2 (aM&>o); 

(35) 

The parameter E, characterizes the distance to the bifurca- 
tion point in the parameter space. This parameter is supposed 
to be small. For l~M,/+l and for uMEM>O, the relaxation rate 
in the’vicinity of the stable state is of the order of AM. It is 
the inequality 

AMeRe Xi>r (36) 

that justifies the adiabatic approximation used above. For 

eM=O, the stationary states (35) merge together, and for 
u,e,<O, there are no stable states in the phase space of the 
system close to xM . 

2. Optimal paths of fluctuational motion 

The slowness of one of the variables of the system (the 
variable y r) in the vicinity of a bifurcation point makes it 
possible to solve the Hamiltonian equations (9) and (14) that 
give the exponent in expression (7) for the quasistationary 
probability density distribution. To find the solution, it is 
convenient to make a canonical transformation to new vari- 
ables y and Y, 

y= i+(x-XM), Y=pfi ( yiGT Pj”ji), (37) 

-where the matrix 6 is defined in eq. (29). The variables y 
and Y are canonically conjugate coordinates and momenta’l 
of an auxiliary system with the Hamiltonian H’, 

g!g ). $7= dH’ -- 
dY ’ 

H’=H’(~,Y)=H(~~~+xM,Y?~), H’=O. 
(38) 

The action s,(x)=S,(X)/Q that determines, to logarithmic 
accuracy, the quasistationary probability density distribution 
(7) in the vicinity of the metastable state yst is given by the 
expression 

: ’ 

s&y)= 
I 

‘Y dy. (3% 
Yst 

., : 

Since the variable yr is a “soft mode” and the two stationary 
states are close to each other, we expect the statistical distri- 
bution over yr to be comparatively flat and strongly non- 
Gaussian. The characteristic scale for y1 is given by the 
small parameter AM [Eq. (35)], whereas the characteristic 
scale for the variables yi>r is independent of EM. Therefore, 
on the scale AM, the distribution over these variables is 
nearly Gaussian near the maximum. As a whole, to describe 
the statistical distribution close to y$, the momentum of the 
auxiliary system Y can be assumed to be small and the 
Hamiltonian function H’ can be expanded both in the coor- 
dinate y and momentum Y (this will be justified a poste- 
riori). The lowest-order terms of this expansion are of the 
form 

+f~~~,j,,Yjyj’yj,,),+~ C  FiJYiYjf”’ . (46) 

Here, the coefficients j$) and f@ a!e given in Eq. (32), Ai’s 
are the eigenvalues of the matrix AIM) [Eq. (28)] (X,=0), 
and 
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fijj=X (fi-')iil 

I 

C ril '~,~d~,p) ] ujlj 7 

r 

~~~~,j,,=~ C (fr-‘)jil C  ‘i, ,“‘“d;“‘~~, 
i 

(41) 
” 

r Jl 4 1; I 

xu. a.1 .,u+ ‘II, 111 J1l II J 

All derivatives in Eq. (41) are evaluated at x”xM and’g=gM , 
and the symbol of summation without specification. means 
the sum over repeating indices. 

It follows from the equations of motion (38)-(40) that, 
since X1=0, the components y, and Yr vary slowly in time 
[the characteristic time scale for their variation is of the order 
of AM (see below)], whereas the components y i>l and Yi>r 
are fast; they vary over the time --]Xi>rlV1+AM. The solu- 
tion of Eqs. (38) is separated into “fast” and “slow” ones. 
The slow solution corresponds to the extremum of the fimc- 
tion sM(y) over the variables yi>r, i.e., to 

Yi=O, i>l 

for a given value of yr . The slow motion is effectively one 
dimensional 

1 Y1=-2F, (e&f- aMY% 

jl=-(EM-aMY~>, Yi>*=Yi(?i, 
‘(42) 

where yp$ = y$$i(y r) are given by Eq. (33), and the param- 
eters ena and aM are defined in Eq. (34). It follows from Eqs. 
(35) and (42) that then characteristic time scale for the slow 
motion is indeed given by A;‘. 

The fast solution of Eq. (38) is of the form 

Yi-C Aij(Yj-ylad’), )i,“Xi(yi-yiad’), i>l, 
j>l 

(.A-‘)ij=F,j/(Af,+Xj) (i,j>l). (43) 

The action in the vicinity of a marginal bifurcation point sM 
is given by the expression 

sM(Y)=WM(Yl)-~M(Ylst) .’ 

21r,(y)=2(Fll)-‘(~~aMy3-EMY), 
(44) 

According to Eq. (#), sM is parabolic in the fast variables, 
i.e., their probability density distribution is Gaussian. We 
note that this is true only near the maximum of the distribu- 
tion with respect to the fast variables; however, the range is 
not limited to the close vicinity of the stable state, as in Eq. 
(12). We have here a Gaussian-shaped “ridge” of the prob- 
ability density along the yr variable. At the same time, the 
distribution over the slow variable y1 is strongly non- 

Gaussian already for Iyl-ylstl-AM~l. Its negative loga- 
rithm is given by a cubic parabola with a minimum ‘m  the 
stable state ylst and with a local maximum in the unstable 
stationary state (the saddle point). The behavior of sM(y) is 
generic- the function qM contains two parameters and can 
be scaled to a function of one parameter only, this parameter 
being the square root .of the (scaled) distance to the bifurca- 
tion point in the parameter space AM, 

(45) 

It is the smallness of AM that justifies both the adiabatic 
approximation used above (the separation of variables into 
fast and slow ones) and the expansion of the Hamiltonian H’ 
in y and Y [Eq. (40)]. It follows from Eq. (44) that the 
“distance” between the minimum and the maximum of the 
distribution along y 1 is -AM, and along IyiFj 1 it is -AL, so 
that if we are interested in the values of sM not exceeding 
greatly these in the saddle point UM(yl,) -PM(ylst), it suf- 
fices to consider the range 1 Yi,r ( SAG’. 

Close to the saddle-node bifurcation point, the activation 
energy of escape from the metastable state is given by 
qM(yls) -qM(ylst). It is proportional to A&m 1 EM/a”, i.e., it 
scales with the distance to the bifurcation point as /EMM)~‘~. 
This law holds for 1~1 not too small. It is necessary that sM 
be much larger than the reciprocal total number of particles 
in the system. In the vicinity of a bifurcation point, according 
to Eqs. (42) and (43), the evolution of the variables along the 
optimal fluctuational path is just the time-inversed evolution 
along the deterministic path [Eqs. (31) and (34)]. This result 
holds in the absence of detailed balance in the system as a 
whole and is related to the one-dimensional character of the 
fluctuations and to the softness of the system. 

6. Fluctuations in the vicinity of a spinode point 

The above analysis can be generalized to bifurcations of 
a higher codimension, in particular, to the bifurcation of 
codimension 2, where two stable states and a saddle point 
coalesce together. Such a bifurcation corresponds to a spin- 
ode point on the two-branch bifurcation curve that describes 
saddle-node bifurcations in Fig. 1, and the fluctuations in the 
vicinity of the spinode point in a spatially uniform chemical 
system have much in common with the fluctuations at the 
critical point in systems that experience first-order phase 
transition as described by the mean-field theory.rg For the 
control parameters lying inside the beak, the system has two 
stable states and an unstable stationary state (the saddle 
point). The latter one merges with one or the other of the 
former ones on the branches of the bifurcation curve, 
whereas in the spinode point, all three stationary states merge 
together.26 The values of the parameters in the spinode point 
g=g, , and the position of the stationary state x, , are given, 
in terms of the eigenvalues Xi of the characteristic matrix A 
[Eq. (5)] and the functions f”’ [Eq. (32)] calculated for 
x=x, and g=gK, by the equations 
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C ~(x~,rlgd=O, X1=0, fi%=O. (46) 
f 

The deterministic motion in the vicinity of the spinode 
point can be separated, just as in the case of a saddle-node 
bifurcation, into a slow one and the remaining fast ones, and, 
by implying canonical transformation (29) with the matrix U 
evalyated for g=gK and x=x,, the equations of motion for 
y=u(x-xK) can be reduced to a form similar to Eqs. (30) 
and (31) 

The analysis of the optimal paths in the vicinity of a 
spinode point is completely similar to that in the vicinity of a 
marginal point. Here too, the optimal path for y is just the 
time-inversed deterministic path [Eqs. (47) and (48)]. The 
resulting expression for the action in the vicinity of a spinode 
point SK is of the form 

+C f~~~iY!riyj,+~ f~~~,j,,YjYj,Yj”+..’ ) 

Y” Ydet * 
(47) 

The coefficients here are given by Eqs. (32) and (41) with all 
the derivatives evaluated for x=x, and g=gK. 

In an interval of time -max(Re X-i>1)-‘, the fast vari- 
ables yi,l approach their quasistationary values (33) for a 
given y, and then the slow deterministic motion of yr is 
described by the equation 

x LTV .-Y@d’(Y I)1 I J 9 (51) 

where the matrix A is calculated for the values of the param- 
eters corresponding to the spinode point. In contrast to the 
cases considered above, SK does not vanish in a particular 
stable state. Instead Eqs. (7), (lo), and (51) describe the sta- 
tionary (not quasistationary only) statistical distribution in 
the range where two stable states are close to each other and 
the probabilities of the transitions between them can be com- 
paratively high (we have dropped an additive constant in SK 
that allows for prober normalization of the statistical distri- 
bution). 

jt,=-d~K(yl)~&l~ Yl’(Yl)det, 

zK(y)=$a4y4+$af12+aly, 

where 

a4= -f\“,‘,,-2C f\ : \ f$l lhi  (a4>0), 
C-1 

(48) 

The function sK [Eq. (51)] is parabolic in the fast vari- 
ables (the statistical distribution is Gaussian with respect to 
them near the maximum), whereas its dependence on the 
slow variable yr is substantially nonparabolic and the distri- 
bution over y 1 is non-Gaussian. For al = a2= 0, the depen- 
dence of SK on y1 near the global minimum, i.e., near the 
stable state, is of the form of yf. In the range 

al=-? f lY%k, (49) 

-4a2)<al<a(a2), a2<O, (52) 

the system has two coexisting stable states and the function 
&(y 1) has two minima. To analyze the dependence of SK on 
yr in this range, it is convenient to write it in the scaled form 

a2= --$ 

( 

f(l l l)k+2C 

c-1 

f?) a&.  

In contrast to the case of a marginal bifurcation point con- 
sidered above, in the vicinity of a spinode point, the fast 
variables influence “back” the motion of the slow one by 
renormalizing the coefficients in Eq. (49). 

The function i&(y) is a fourth-order polynomial, and 
for a,>O, it can have one or two minima that correspond to 
the stable states of the system. For a2=a1 =O, the minima 
and the local maximum between them merge together, and 
this is just the spinode bifurcation point. For a given a4, the 
interrelation between the parameters a, and a2 for the case 
where one of the minima merges with the local maximum is 
of the form 

sK(Y1 Y?dbyad) , ,.*. > 

=2F,ila~a,1~K((-a41a2)1'2yl,AK), 

The function & is the scaled effective thermodynamic po- 
tential with respect to the scaled variable y r . It contains one 
parameter only, AK. Its value determines the depths gn, 
n =l and 2, of the minima of & which are equal to the 
differences between the values of & in its lOCal maximum 
and the nth minimum. The values of 2F~11a$a;19&2 give 
the characteristic activation energies of the transitions from 
the corresponding stable states. 

For small lAKI, both minima have nearly the same depths 

Bl,2-: TAK, IAKI+l. (54) 

aiMM)(a2)= +a(a,), ‘a(a2)=2(-a2)3’2/(27a4)1’2. 
(50) 

This means that the populations of both cbexisting stable 
states are nearly equal for small IA,], i.e., the line AK=0 is 
the “phase-transition line” in the parameter space. 

Equation (50) describes the saddle-node bifurcation lines on 
the plane (al ,a2) near a spinode point sketched in Fig. 1 
(both a1 and a2 are combinations of the control parameters 
of the system measured from the spinode point taken as the 
origin). 

On the contrary, for IAKI approaching 2/3ti, i.e., for the 
parameter values approaching the bifurcation line (50), 
one of the minima becomes extremely shallow. The depen- 
dence of its depth %4.X3-5’4 (2X33’2-1Ak/)3’2 on the dis- 
tance to the bifurcation point follows the $ power 
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Iaw characteristic for a marginal point [cf. Eq. (45)-j; the 
depth of the other minimum of & approaches 314, 

VI. NUMERICAL ANALYSIS 

In this section, we apply the eikonal approximation to 
solve for the stationary distribution of the master equation 
for two problems in chemical kinetics-a spatially homoge- 
neous Selkov model and the iodate arsenous acid reaction 
run in two mass-coupled stirred tank reactors. Both systems 
are described by two variables, both systems have nonlinear 
rate kinetics and exhibit two stable stationary states for the 
parameter values chosen, and both systems lack detailed bal- 
ance. The solution to the Selkov model is discussed in more 
detail to show explicitly how the method is applied. We ob- 
tain the stationary solution to the master equation for both 
models by Monte Carlo simulations as’ well and show the 
agreement of the theory and simulations. 

The Selkov model is given by the chemical reaction 
scheme 

AZX, x+&3Y, YZB. 
k2 4 k 

The concentrations of species A and B, denoted by a and b, 
respectively (a=A/fI and b=B/S1), are held constant; and 
the concentrations of the intermediate species X and Y, de- 
noted by x and y, respectively (x=X/K& and y = Y/a), may 
vary. The concentration and corresponding generalized mo- 
mentum vectors in Eq. (9) are hence two-dimensional: 
x=&y) and p=(p, JJ,). For the values of parameters used 
kIa=106.08, k,=1.16, k,=0.0016, ~k4=0.000 22, k,=2.0, 
and k6b=5.17, the deterministic equations (3) yield two 
stable stationary states and a saddle point (unstable station- 
ary state). Steady state 1 is located at (x,y)$‘=(90.00,3.43), 
steady state 2 is located at (x,y@=(39.87,32.50), and the 
saddle point is located at (x,y),=(69.02,15.59). The transi- 
tion probability rates w(x,r) occurring in Eq. (9) are nonzero 
only when r takes on one of the six values (r, ,ry) = (l,O), 
(-l,O), (-l,l), (1,-l), (0,-l), or (0,l) corresponding to the 
six possible reactions. For r=(-l,l), e.g., the transition 
probability rate is w [ (x,y ), ( - 1, l)] = k3xy2 as terms of or- 
der (l/Q) are neglected. 

The calculation of the logarithm of the stationary solu- 
tion to the master equation is started by setting the initial 
concentrations x and y near to one of the steady state values 
(a state n, n=l and 2) and approximating the corresponding 
values of pJx,y), p,(x,y), and s,(x,y) at that point by a 
Gaussian approximation of the distribution about the steady 
state as determined by Eqs. (12) and (13). For the calcula- 
tions discussed here, the distance in concentration space of 
the initial points (x,y) from the steady state is 0.01. 

The set of Eqs. (14) for the time evolution of x(t), y(t), 
p,(t), and p,(t) is then integrated to yield what we have 
called the optimal fluctuational path of the system, i.e., the 
path the system most likely takes in fluctuating away from 
the steady state. The value of s,(x,y) is calculated along this 
path using Eq. (15), which gives to the lowest order in IR-’ 
the negative logarithm of the quasistationary distribution of 
the assumed form PII(X,Y) = Cc”) exp[ - ih,,(x,y)]. 
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x 

FIG. 2. (a) An optimal fluctuational trajectory leading from the steady state 
at (x,y@=(90.03,3.43) to the point (x,y),=(80.0,12.1); (b) the determin- 
istic trajectoj returning to the steady state. 

Figure 2 illustrates an optimal path the system takes in 
fluctuating from the vicinity of steady state 1 to a given point 
[the point (x,y)=(80.0,12.1)] as well as the deterministic 
trajectory from the given point back to the steady state. It can * 
be seen in the figure that in the absence of detailed balance, 
the optimal path differs from the deterministic path. 

Calculations of optimal fluctuational paths are repeated 
for different initial points (x,y) surrounding the steady state 
at the same distance. As the optimal trajectories starting at 
different points lead to different areas of the conc&tration 
space, the values of s,(x,y) can be mapped over the concen- 
tration plane. The procedure of calculating trajectories and 
the value of s,(x,y) along these optimal trajectories is then 
repeated using initial points (x and y) surrounding the other 
steady state. For all calculations, the value of s,(x,y) at the 
steady state is taken to be 0. 

1 
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FIG. 3. 0 
P 

timal fluctuational paths emanating from the stable stationary 
state (x,y),:)=(90.03,3.43) marked (1) in the concentration plane (x,y) for 
the Selkov model. The caustic is indicated and the arrow points to the 
limiting trajectory. s denotes the saddle point. 
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FIG, 4. Features of the concentration plane (x,y) for the Selkov model. The 
symbols denote the following: solid lines marked A denote limiting fluctua- 
tional trajectories from stable stationary states (1) and (2) to the saddle point 
s; solid lines marked B denote the continuation of the limiting trajectories 
from the saddle point region; dotted lines denote the caustics; the dashed 
line denotes the fluctuational separatrix which is the locus of points reached 
with equal probability. by a fluctuation from either stationary state; the 
dotted-dashed line denotes the deterministic separatrix. - , . ,* 

A qualitative feature of the calculations, illustrated in 
Fig. 3, is the presence of a caustic bounding the region of 
concentration space [x( t),y (t)] accessible to the optimal 
fluctuational paths originating at a given stable stationary 
state. Another caustic associated,:with the optimal flu&a: 
tional paths from the other steady state is present as well. 
While the optimal paths start at the stable stationary states, 
these caustics emanate from the saddle point and are shown 
as the dotted lines in Fig. 4. For systems described by 
Fokker-Planck equations, the caustics emanating from a 
saddle 
et al. ‘Ocbp 

oint have been found numerically by Chinarov 

Suppose one scans through all initial points (x,y) at the 
same small concentration “distance” (e.g., 0.01) from one of 
the stable stationary states. For some specific initial condi- 
tion, an optimal fluctuational path will be found that leads to 
the saddle point. As initial points approach that specific start- 
ing value from either side, the resulting optimal fluctuational 
paths will approach the limiting path, each ,of which first 
coincides with the path to the saddle point (curves A in Fig. 
4) and then deviates away from it (curves B in Fig. 4). From 
the vicinity of the saddle point onward, the limiting paths 
associated with each stable stationary point coincide with 
each other. A distinction needs to be made-the caustics (in 
fact, the switching lines emanating from the saddle point in 
addition to caustics”) bound the concentration space acces- 
sible via optimal fluctuational paths from a stationary state; 
the limiting paths from each stable stationary state bound the 
behavior of optimal fluctuational paths as their initial condi- 
tions approach those associated with the path to the saddle 
point. 

A topological perspective may provide additional 
insight.” The limiting path is the projection of the“‘cut” of 
the manifold formed by the paths emanating from a given 
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fixed point. The cuts for the two manifolds that correspond to 
the two coexisting stable states coincide with each other. It is 
straightforward to evaluate the form of the cut in the vicinity 
of the saddle point by linearizing Eqs. (14). The caustics (the 
projections of the folds) of these manifolds lie on the oppo- 
site sides of the saddle point. 

From the definition of the cut as a limiting trajectory, the 
values of the action sr(x,y) and sz(x,y) on opposite sides of 
the cut differ by a constant which is equal to the difference of 
sr and s2 at the saddle point. In the limit of large 0, the 
logarithm of the stationary probablity distribution P(X,Y) is 
given by the continuous function s(x,y). This function is 
determined on balance, so that the probability to reach the 
saddle point from state 1, weighted with its occupation wr is 
equal to logarithmic accuracy to that from state 2 weighted 
with its occupation w2. In enumerating the states, we assume 
that s1(x,,ys)>s2(x, ,y,), and thus state 1 is occupied 
predominantly: w,lw,~exp{Q[s,(x, ,ys)-s2(x, ,y,)]}+l. 
Then, 

i2-l In P(X,Y)= -s(x,y), 

i 
Slb,Y), 

(55) 

s(xyy)=mh ~2(x,Y)+~1(~s,Ys)-~2(xs,Ys). 

It is clear from Fig. 3 that the paths (x(t), y(t)) emanating 
from one stationary state may intersect each other in the 
range between the caustic and the limiting path. It is also 
possible to reach this region on an optimal fluctuational tra- 
jectory from the other stationary state. (An approximation 
including multiple path contributions to the total probability 
of observing the system in this vicinity of concentration 
space is worthy of consideration, by analogy with standard 
semiclassical techniques.) It is in this area that the line 
s1(x,y)=s2(x,y)+s1(xs,ys)-s2(xs,y,) lies. This line can 
be reasonably called the fluctuational separatrix (cf. Refs. 29 
and 30) and is shown as the dashed line in Fig. 4 for the 
Selkov model. It separates the concentration plane into two 
regions; each region corresponds to concentrations the sys- 
tem attains having most likely fluctuated from one or the 
other stable state. The fluctuational separatrix consists of two 
branches which start at the saddle point. It does not coincide, 
however, with the deterministic separatrix (the dotted- 
dashed line in Fig. 4) that separates the ranges of the deter- 
ministic motion down to one or the other stable state. Thus 
the regions of phase space to which a system arrives from a 
given stable state as a result of large fluctuations do not 
coincide with the regions from which the system approaches 
the same stable state along deterministic paths. 

To check the validity of the function P(“)(X,Y) 
= C(“) exp[ - fLs,(x,y)] obtained with the eikonal approxi- 
mation as a solution to the stationary master equation, the 
calculated values of P(“)(X,Y) for a given point (x,y) in 
concentration space for varying system sixes are substituted 
back into the right-hand side of the master equation (1) and 
divided by P(“)(X,Y). The value of the ratio (i.e., formally 
(M(!)ldt)lp@)} ought to be independent of the system size, 
and at the point (x,y)=(50,23), a point not near a steady 
state, this ratio has the values -0.26, -0.72, 0.85, and 1.61 
for KI=l, 102, 103, and 104, respectively. As expected, it is 
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tion as a whole approaches the theoretically calculated solu- 
tion as the system size increases. When the values of 
71n P(X,Y)/fi are plotted against 110, for a chosen point 
(x,y), the plot is nearly linear. The values of -In P(X,Y)Ki 
at l/0,=0 are linearly extrapolated for two values of x,y(x) 
(corresponding to the less probable steady’ state and to a 
point very’ near the saddle) and are shown on the figure by 
dark marks. The spread of the marks gives an estimate of the 
error of the Monte Carlo extrapolation. The agreement of the 
eikonal approximation and the Monte Carlo simulations is 
quite good for the Selkov model. 

The second problem we solve is for the stationary distri- 
bution of the master equation corresponding to the iodate 
arsenous acid reaction taking place in two diffusively 
coupled continuously stirred flow reactors. The reaction oc- 
curring in each tank32 is 

FIG. 5. Monte Carlo calculations of the scaled logarithm of the stationary 
probability distribution for the Selkov model along the straight line connect- 
ing the two stable steady states plotted against the value of x along this line 
for (a) n=l; (b) a=2; (c) &4; and (d) n=8. (e) The eikonal approxima- 
tion to this quantity valid in the limit of large systems. The.,marks .at 
x=39.87 and at x=69.02 are extrapolations of the Monte~Carlo simulations 
for infinite system size as explained in the text. 

nearly independent of the system size as the system size 
increases several orders of magnitude, and this indicates the 
validity of the obtained solution in regions even far from the 
steady states. The deviation of the eikonal approximation 
from the exact solution is due to the neglect of higher order 
terms in the reciprocal system size Kr, which give rise to 
the preexponential factor in the solution which depends on x 
and y. An additional error in the numerical result comes from 
the initial values of px and py not being small enough for a 
given 0,, i.e. from not starting the trajectories near enough to 
the stable steady state. 

The stationary solution to the master equation for the 
Selkov model is also obtained by performing Monte Carlo 
simulations using the method outlined by Gillespie.31 The 
random number generator used is GOSC- of the NAG 
FORTRAN Library Mark 15 and has a period of 257. The simu- 
lation involves following the reacting-system in time and 
keeping track of how much time it spends in each state 
(X, Y). The system is followed for up to 2 billion reaction 
steps. The probability distribution obtained from these simu- 
lations is normalized so that the most probable state has a 
probability of exactly 1, the same normalization we used for 
calculating the stationary distribution. We perform simula- 
tions for four different system sixes 112=1, 2, 4, and 8 in 
which the number of X and Y particles in steady state’1 are 
(X,Y)-(90,3), (i80,6), (360,12), and (720,24) respectively. 

In Fig. 5, we plot the values of -In P(X, Y)/fi obtained 
by the Monte Carlo simulations along the straight line y(x) 
connecting the two deterministic stable states against the 
value of x along this line, as well as the eikonal approxima- 
tion to this quantity. This line runs very near to the saddle 
point as well. In the limit of large systems, the ,values of 
-ln P(X, Y)/sl obtained from Monte Carlo simulations for 
differing system sixes are expected to coincide with each 
other. As can be seen from the graph, the Monte Carlo solu- 
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” IO, +3H;As03+I- -t-3H3AsG4, 

where iodate (IO;) and arsenous. acid (H3As03) are flowed 
separately into each tank and the acid concentration is in 
large excess of the iodate concentration. The reactors are 
coupled to each other and chemical species can exchange 
between the reactors through linear diffusion. 

We let X and Y represent the iodate species in reactors 1 
and 2, respectively. The equations governing the reaction, 
flow, and exchange processes after initial transients have .de- 
cayed are32 

dX 
- =.-[kl+k2(C,-X)](C,-X)X[H+]2 
dt 

+ko(Xo-X)+k,(Y-X), 

dY 
- =-[k,+kz(C,-Y)](C,-Y)Y[H+]2 
dt 

(56) 

+ko(Yo-Y)+k,(X-Y), 

where kl and k, are experimentally determined rate coeffi- 
cients describing the homogeneous chemical kinetics, k. is 
the reciprocal residence time of species in a reactor, k, is a 
measure .of,the coupling between the reactors, X0 and Y. are 
the inflow concentrations of iodate to reactors 1 and 2, re- 
spectively, and C, is the concentration of the all species con- 
taining iodine in each reactor, i.e., C,=[IO,]+[I-] in each 
tank after transients have decayed. The acid concentration in 
each tank [H+] is taken to-be in large excess of [IO;].and is 
considered a constant. 

The following “chemical mechanism:” 

ko+C,[H+12Wl+kzC,) [H++(kl +2&C,) 
X + x0, 2x + 3X, 

ko kdH+12 , 

ko+CJH’+]‘(L, +k2C,) 
X2Y, Y - ' YrJ, 

kx ,z 

W+12Uq +z$C,) 
t2y * 3Y i 

k2[ti+ j2 

consisting of five reversible reactions with the given expres- 
sions as rate constants can be written to describe the kinetics 
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of the system of interest.33 The deterministic equations de- 
rived from the reaction scheme are Eqs. (56), and the transi- 
tion probabilities w(x,r) arising in the master equation are 
derived from this mechanism as well. G 

We use the dimensional parameter values kI=4.5X lo3 . 
M-3~-1, k,=4.5X lo8 M-4s;1, k,=7.25X 1O-3 M  s-l, 
k,=2.0X10-3 M  s-r, Xo=O.98X1O-3 M, Y,=1.02X10-3 
M, [H+]=7.55X10P3 M, and C,=1.0441X10-3_M. This 
system has two stable steady states (both nodes) and a saddle 
point located at the concentrations (x,y)$)=(3.92X10-4, 
4.25 X10b4) M, (x,y)$)= (9.67X 10m4, 10.03 X 10M4) M, and 
(~,y),=(6.34XlO-~, 7.81x1O-4) M. 

The procedure of calculating the logarithm of the prob- 
ability distribution P(X,Y) is the same as that used in evalu- 
ating the distribution of the Selkov model. We calculate vari- 
ous optimal trajectories emanating from each steady state, 
calculate s,(n,y) along these. trajectories, and match the so- 
lutions. The offset value added to the values of sa(x,y) ob- 
tained from trajectories emanating from the less stable state 
(%Y)st * (2) is 2’04X 10e4. We again choose the normalization so 
that the integral over the vicinity of the most probable state 
(x,y)$) is equal to 1. 

To check the obtained solution, we substitute the solu- 
tion into the master equation and calculate the ratio of the 
right-hand side to P {i.e., formally the quantity (dPldt)lP} 
at a point not near a stable steady state for increasing values 
of 0. The point chosen is (x,y) =(5.OX1O-4, 6.7X10e4 )M. 
The values of the ratio are equal to 4.9X 10e4, 7.9X10e4, 
1.3X10V3, 1.7X10B3, and 6.3X10w3 for M=105, 106, 107, 
108, and log, respectively. As the system size increases or- 
ders of magnitude, the ratio remains largely independent of 
the system size as expected, and this fact indicates the valid- 
ity of the obtained solution. 

FIG. 6. Monte Carlo calculations of the scaled logarithm of the stationary 
probability distribution for the iodate arsenous acid reaction in coupled re- 
actors along the straight line connecting the two stable steady states plotted 
against the value of x along this line for (a) n=4X105; (b) ~=8Xld; and 
(c) a=16X105. (d) The eikonal approximation to this quantity valid in the 
limit of large systems. The marks at x=6.34X10w4 and at x=10.03~10-~ 
are extrapolations~of the Monte Carlo simulations for infinite system size as 
explained in the text. 

ries with varying initial conditions and see where they lead. 
Another potential difficulty is that if the trajectories tend to 
move strongly in one direction vs another, it may be difficult 
to calculate numerically desired trajectories which follow the 
less favored direction. 

We also perform Monte Carlo simulations3r of the 
“chemical mechanism” of interest for three system sixes 
Kl=4X105, 8X105, and 16X105 for which the numbers of 
particles in the steady state 1 are roughly (X,Y)$) 
-(160,160), (320,320), and (640,640), respectively; and we 
follow the chemical system for up to 2 billion reaction steps. 
Figure 6 displays the results of the three Monte Carlo simu- 
lations along with the theoretical solution. Again, the values 
of the scaled logarithm of the probability distribution 
-In P(X,Y)/ln along the straight line y(x) connecting the 
two deterministic stable steady states are shown as a function 
of the variable x along this line. Even though the simulations 
give a rough curve, the approach of the Monte Carlo simu- 
lations to the theoretical result is apparent with increasing a. 
The isolated marks on the figure near the minimum of 
P[X,Y(X)] and at the less probable stable state are the esti- 
mates of where the Monte Carlo simulations are converging 
from the same type linear extrapolation as used in the Monte 
Carlo simulations of the Selkov model. 

VII.’ CONCLUSIONS 

While optimal fluctuational trajectories offer several ad- 
vantages, there are also a few disadvantages in having to 
calculate them first in order to obtain the stationary solution 
to the master equation. The first inconvenience is that given 
a point (x,y), one does not know a priori which initial con- 
ditions will give a trajectory which leads to the vicinity of 
the desired point. One must simply calculate some trajecto- 

The instanton approach to the problem of large occa- 
sional fluctuations in noise-driven dynamical systems4-r6 
makes it possible to reduce, to logarithmic accuracy, the 
evaluation of the density distribution of chemical species in a 
homogeneous reactor to a problem of Hamiltonian mechan- 
ics of an auxiliary system. Both auto- and nonautocatalytic 
reactions, and both reactions with and without detailed bal- 
ance can be described this way. The Hamiltonian of the aux- 
iliary system can be expressed in terms of the probabilities of 
elementary reactions between the species involved, i.e., in 
terms of the chemical reaction rates. The logarithm of the 
statistical distribution of a chemical system is proportional to 
the mechanical action of the auxiliary dynamical system, and 
this action is a Liapunov function. The logarithm of the prob- 
ability of escape from a metastable stationary state is deter- 
mined by the action evaluated between this state and the 
saddle point in the space of the variables (the densities of the 
sceMes). These are the escape probabilities that give, on bal- 
ance, the stationary distribution over coexisting stable states. 
To the lowest order in the reciprocal volume of the system, 
the logarithm of the stationary distribution is a nonanalytic 
function of the densities of the species, in the general case, 
and special care has to be taken to describe it. 

The explicit expressions for the logarithm of the statisti- 
cal distributions and for the escape probabilities have been 
obtained for several types of systems-systems with detailed 
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balance, one-species systems (including these without de- 
tailed balance), and systems close to a bifurcation point. In 
the latter case, the fluctuations display universal behavior. In 
particular, near a saddle-node bifurcation point, the logarithm 
of the probability of escape from a metastable state scales 
like the distance to the bifurcation point to the power 312. A 
simple scaling law also holds in the vicinity of a spinode 
bifurcation point where two stable stationary states merge 
with an unstable one. Not only quasistationary statistical dis- 
tribution about a stable stationary state, but also global sta- 
tionary distribution can be obtained explicitly in this case, 
and the phase transition line is obtained where the popula- 
tions of the both stable states are equal in order of magni- 
tude. 

In prior theoretical work on the formulation of a thermo- 
dynamic and stochastic theory of nonlinear physical and 
chemical systems, there appears an excess work.17,1894 This 
excess work is a Liapunov function for the deterministic re- 
laxation towards stationary states; an affinity towards a sta- 
tionary state; a function that yields necessary and sufficient 
conditions of stability; a component of the total dissipation; 
and, in the case of systems with detailed balance, a state 
function and a solution to the stationary master equation for 
chemical systems. For nonlinear systems lacking detailed 
balance, the excess work is no longer a state function and a 
path of integration from a stationary state (x,y)$) to an ar- 
bitrary state (x,y) needs to be specified. 

For a fluctuation from (x,y)$) to (x,y), the reverse of 
the deterministic path from (x,y) to (x,y)$’ was chosen in 
Ref. 34. This choice was tested on the Selkov model for 
given parameters and found to provide a solution to the sta- 
tionary probability density. For that choice of parameters for 
the Selkov model, the eikonal approximation could not be 
evaluated numerically. Both results are due likely to very 
different time scales for the X and Y motion for that prob- 
lem. 

For the choices of parameters of the Selkov model used 
for the results in Fig. 5, the excess work evaluated along the 
reverse of the deterministic trajectory yields a probability 
distribution with inverted peak heights as those given by the 
eikonal approximation and the Monte Carlo simulations. A 
similar result is obtained for the two-tank iodate arsenous 
acid problem. The use of the reverse deterministic path in the 
evaluation of the excess work does not yield a stationary 
solution of the master equation if there is lack of detailed 
balance. 

In spatially nonuniform systems, the choice of the deter- 
ministic trajectory in the evaluation of the excess work for 
the calculation of relative stability yields results identical to 
solutions of deterministic reaction-diffusion equations.35 
The method of solution of stochastic equations for inhomo- 
geneous systems, in part for analysis of relative stability to 
be compared with experiments, needs yet to be developed. 
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