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The probability density distribution is studied analytically and by Monte Carlo simulations for a
periodically driven chemical bistable system, described by a master equation, for the case of
low-frequency driving. The quasistationary distribution about the stable states is well approximated
by the solution of the master equation in the eikonal approximation for large volumes of the system.
For a one-component system both the exponent and the prefactor of the steady distribution are
obtained in explicit form, for an arbitrary strength of the driving and for an arbitrary interrelation
between the frequency of the driving and the probabilities of transitions between the stable states.
The results of the simulations are in good agreement with analytical results. We demonstrate the
onset of stochastic resonance for the driving frequency close to the probabilities of fluctuational
transitions between the states. 1®95 American Institute of Physics.

I. INTRODUCTION noise ratio at the output can strongly increase with the in-
“ . . creasing noise intensity at the input.
The term *stochastic resonance(SR) is used for a SR may be expected to occur as well in bistable chemi-

group of _phenomena Where the response .Of a system to g, systems where the densityof a reagent takes on two
comparatively weak periodic input signal is enhanced by . .
stable values for given constraints, say the flux of the reac-

fluctuations, whether inherent to the system or imposed ex- . .
ternally. Suggested initiallyas a possible explanation of theXtants into the system. Both the external fluctuatiang., due

ice ages(SR) has attracted attention recently within a wide :Or;[]he :Il:ctr;at:](zjntshlni:lergePSI;y of thne |ri1\;:orrri1|ngt ﬂli;:’ oﬂr n
variety of contextgsee Refs. 2 and 3 for a revigw emperaturea € Internal ones can give fse 1o the Tic

A simple model that displays SR and that has been inluational transitions between the states., to the fluctua-

vestigated in most detail is a noise-driven bistable dynamicatlIons of the molar voI-ume)sAn external periodic field can
system. Noise gives rise to the fluctuational transitiondnodulate the populations of the states, and “th_e resulting re-
n=m between the stable statesm=1, 2. The dependence SPONS€ Wé" be large in the region of the “kinetic phase
of the transition probabilitiesV,,, on the noise intensity is ransition™ where the populations are close to each other
often of the activation type; in particular, for a system in (We use the term “population of the state,” in chemical con-
thermal equilibrium we hav&V,=exp(-E,/T) whereE,  ©Xt In the same meaning as it is used in the context of
is the activation energy of escape from the statend T is  dynamical systems: the probability to find the system in the
temperature in energy units. The distribution of the systen$table state, not the number of species in this state

over the stable states is formed on balance of the transitions, We are interested in internal fluctuations due to the finite
and the ratio of the populations of the states/v, is  Nnumber of the molecules of the reagents. Such fluctuations
« exd (E,— E;)/T]. If E,~E; the response of the system to are of particular interest for small reactors like cellular
a low-frequencyperiodic input signal may be strong, since vesicles’ The dependence of the switching probabilities on
the signal modulates the activation enerdies., the depths the average number of reacting moleculgsor on the vol-

of the potential wells that correspond to the stable stabes ume of the systerv (N=V), is exponentia(see Ref. 8, and

its turn, this gives rise to the modulation of the populationsalso Ref. 9, W, =exp(—Vs,) where s, depends on the

of the states. The magnitude of the response is proportionalensities of the reagents and is independent of the volume, in
to the difference between the values of the observed variablde limit of large N. It is the volume, or the number of

in the two stable states, and therefore it can be large even fanolecules in the system, that play here the role of the recip-
a comparatively small signal. Clearly, the effect comes intaocal noise intensity in noise-driven dynamical systems. In-
play when the frequency of the sighal~W;,~W,,. The teresting results on SR in a spatially uniform chemical sys-
onset of a comparatively large response of this sort was cortem were obtained numerically by Leonard and Reléfaind
sidered by Debykin the context of dielectric response due to we shall discuss these later.

reorientation of polar molecules among the equivalent states In the present paper we investigate steady periodic prob-
in a unit cell. More recently it was found that not only the ability distribution of a periodically driven bistable chemical
signal at the output of the system, but even the signal-tosystem described by a master equation. We providexan
plicit analytic solutionto this long-standing problem in the

present address: Department of Control Engineering and Science, KyusttASe Of |OV‘{'f.requenCy drivingyithoutimposing a ”mit_ation
Institute of Technology, lizuka 820, Japan. that the driving be weakwhich is commonly used in the
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theory of SR. We compare the results with the results of plays period doubling has been considered in Ref. 23
extensive Monte Carlo simulations. We demonstrate the oncharacteristic “dynamical” relaxation timg within which

set of SR in the region where the populations of the stabléhe system approaches a stationary state may be found from
states are of the same order of magnitude and where thegs.(4) linearized about this state,

probabilities of the transitions are of the same order as the

driving frequency. -t

t,=max

(72
IX . (11)
Xn

Il. EIKONAL APPROXIMATION TO THE SOLUTION OF

MASTER EQUATION It follows from Egs.(4) thatt, is independent of the volume
For simplicity we consider a situation where there isof the system.

only one variable reagent in a spatially homogeneous reactor, The stationary solution of the master equatioh

with the number of molecules, as is the case in the Sciglo  Ps(X,t) is periodic, with the period 2/w:

model, e.g., Ref. 11. This number changes as a result of thes(X,t) =Pg(X,t +2mo ™). This solution, in the case of a

collisions that give rise to the reactions. The collisions hapbistable system, is formed in two stages: first, over the time

pen at random, and therefore for low densities the quantity, there are formed quasistationary periodic distributions

X(t) is a Markovian random process; its probability densityP,(X,t) about the stable periodic stat&g(t),

P(X,t) is described by a master equati¢a birth—death

i 27
equation PA(X,D)=P| X+~ )
J
—P(X,;H)= [W(X=r,r;0)P(X=r,1) , L :
at r=+1,+2,.., and then, over a much longer time which is determined by
) B the probabilitied\,,, of the fluctuational transitions between
“WIXnOPXD], 6=t @) the states, there is formed the global distributiey(X,t).
whereW(X,r; 6) is the probability per unit time of the reac- The quasistationary solution of E€L) in the case of a
tion X— X+r in which the number of the moleculeéin-  large number of moleculeX can be sought in the form of

creases by. The quantityd= wt is the phase of the external eikonal approximation—the approach that has proven to pro-
field that periodically modulates the density of the incomingvide good results in the absence of periodic driving, includ-
species, or temperature, etc. We assume that the reactiomg the case of systems lacking detailed balafse Ref. 9
probabilities are periodic i, and references thergin

. _ i We formally rewrite the master equatiob) for the qua-

WX, 6+ 2m) = W(X,13 ). @ sistationary distributiorP,(X,t) in the differential form(cf.

In the limit of large volumeV (large numberX) the reaction Ref. 14
probabilitiesW(X,r; #) obey the scaling

W(X,r;0)/V=w(x,r:0)+0o(V%, x=X/V. 3 %Pn(x;{)=2 (e "X 1)W(X,I;0)Pn(X, 1),

Here, x is the density of the species we investigate, and 6)
w(x,r;#) is the reaction probability density per unit volume; P.(X,t)=exd — S,(X,t)].
it is independent oV.

The distributionP(X,t) peaks sharply at the average The functionS,(X,t) is proportional to the volume of the
number of moleculesX(t), with the characteristic width systemV, and the derivatives @, over X (X«V) are inde-
~XY2<x 12 The time evolution ofX(t) and of the average pendent of the volume, whereag/§X)In W(X,r;0)<1/NV.
densityx(t)=X(t)/V with the neglect of fluctuations, is de- Therefore to the lowest order M~ we arrive at the follow-
scribed by the rate equation that follows from E#). if one  ing equation for the eikonéb,/V:
assumes that the probabilitiég X,r; #) are smooth as func-

tions of X and their dependence ad may be neglected ISn 9Sn _ — —y-1
within the range wher@®(X,t) is large. We have at %o 10]=0, Si=S(XH=VIS(XD).
_ _ (7
dX/th; X [dP(X,t)/dt]%Z rW(X,r;6), H(x,p;0)=§r) Wix.r:0)(eP—1).
- - 4
dx/dt~2 rw(x,r;6). The approximation$6) and (7) do not apply in the vicinity

' of the unstablestationary solution of Eqg4), as it is clear

If a system is bistable in the absence of periodic driving, Eqsfrom the above consideration of the times that characterize
(4) have two stable stationary solutions for the density the kinetics: Eqs(6) and(7) do not allow for exponentially
x=x; andx=x,. In the presence of driving, where the func- large relaxation times, and the number of species has
tionsw explicitly depend on time, the stationary stable solu-dropped out of the equation faf,. This is why we consider
tions of Egs.(4) are, generally speaking, periodic, and in thethe eikonal solution for theuasistationarydistribution P,
simplest case with the same period as the drivingrather than to seek directly the stationary distributieg
Xn=X,(0) =x,(6+27) (SR in a dynamical system that dis- throughout the space of the variable
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Equation(7) is of the form of an Hamilton—Jacobi equa- at the “time-independent” Hamiltoniail for the conserva-
tion for an auxiliary dynamical system with a Hamiltoniein  tive motion of an auxiliary system with the energy equal to
that periodically depends on time; the functigyix,t) is the  zero. The equatiod@dH/Jdp=0 for p=0 defines the position
action of this system. Since we are interested in the solutionf the stable state,. This position varies parametrically

for P, that is periodidcf. Eg. (5)], we have with @, and the equation coincides with the corresponding
N equation that follows from Eqs.(4) if one neglects
Sn(X,t+ 27w~ ) =s,(X,t). (8) A dt~ wx.
The functions,(x,t) has aminimumat the value of the den- It is clear from(7) that Eq.(9) for s/, is just an algebraic

sity x(t) that corresponds to the stable stationary periodieequation in the one-variable case considered. The explicit
state of the systemx(t)=x,(t), ands, is parabolic(in x)  solution of it can be found for some simple modelsugk,r)

near the minimum, with the curvature varying periodically in (cf. Refs. 8 and 18 it has a particularly simple form near the
time. In solving Eqs(7) and(8) we have to allow for the fact stable state:

that the auxiliary dynamical systef¥) is nonintegrable, as is

also true in the analysis of large fluctuations in continuous — Sn(X; )=~ 3 Sn(Xq: 0)(X—Xn)?  for [Xx—X,|<|x;— x|,
systems driven by white noise Therefore the paths of this (10
systemx(t) encounter caustics and display a complicate

behavior. However, it may be shoWithat the paths that are The transitions between the stable states occur when a

of physical significance for the initial problem of the fluctu- system, as a result of a fluctuation, goes from one state to

ating systen(l),.(S) do not encpunter caustlcg, asin the.ca.seanother over the unstable stationary stésaddle point
of a many-variable fluctuating system without periodic

q/vheresﬁ is given explicitly in Egs.(9).

Xs(0) that lies between the states andx,. In what follows

17

driving. we assume

IIl. LOW-FREQUENCY DRIVING X1 < X< Xy

A. Quasistationary distribution about the stable For Markovian systems the probability,, of the escape
states

from the staten is given, to logarithmic accuracy, by the
Interesting effects related to the fluctuation-mediated peprobability to reach the unstable stationary state point, i.e., in

riodic redistribution of the system over the stable states majhe considered case, by the valsigxs; ¢) of the action in

be expected in the range of frequencies W,,<t, *. In  the statexs. The probability W,,=W,(6) is a periodic

this range the local behavior of the system in the vicinity offunction of ¢, and thus of time, and the equation for the

a stable state follows the drivingdiabatically without re-  populations(mole fraction$ of the stable states

tardation: the position of the statg, and the shape of the .

guasistationary distributiof?,(X,t) are determined by the —l=—[W12( 0) +W,( 0) vy +Way(6),

instantaneouwalue of the phase of the driving. In con- dt 1)

trast, the redistribution over the states occurs over the time a4 _

~W, 1~ 1, and therefore in evaluating the time depen- 2 1=vi, Wom(0)=Wqm(6+2m)

dence of the populations of the statesit is necessary to has a periodic solution, as explained in Sec. |. The amplitude

allow for the fact that the transition rat&¥,,, vary in time  of the oscillations ofy, , depends on the interrelation be-

on the time scale» L. tween the values ob andW,,. For a high-frequency driv-
These arguments suggest that we may seek the quasistag or for very small fluctuation intensity, where

tionary distribution in the form w>Wy,+W,,, the populations; , remain nearly constant,
\Vj 1/2 VT/ 1 )
P.(X,t)=w,(t) Fpe sp(Xn:0) | exp—Vsa(X; )}, Vl:é, anzz_ dOW, ().

Xn=Xn(0), =0, On the contrary, if the transition probabiliti®g,,, W,, are
Sn(X; 0) of the same order of magnitude as the driving frequency
H(XvT ?9) =0, S(X;6)=0, w, then the modulation of the populations, v, in time is
as strong as the modulation of the transition probabilities

d H .0 -0 9 themselves. This demonstrates that by increasing fluctuations
ap (Xn,p; 0) 70_ ©) (by reducing the number of moleculeis is possible to in-
= crease the response to the periodic driving—which is the
9°Sn(X; ) aw(x,r; 6) basic feature of stochastic resonance.

Sp(Xn; 0)=

:_2[2 , IWCri0)

X

ax?
X, (6) Xn
-1

« B. Transition probabilities

2 r2W(Xy,156)
' In the case of slowly varying driving it is possible to find
According to our adiabatic picture we have dropped the denot only the exponent, but also the prefactor in the expres-

rivative ds, /it~ ws, present in Eq(7), and we thus arrive sion for the transition probability. We shall illustrate this with
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Wy, taken as an example. To fin/;, we assume that the expression that the flu}; as given by Eq(13) is indepen-
state 1 &;<<Xg) is occupied initially, whereas the state 2 is dentof x near the saddle point—particles are not accumu-

empty. Over the time-t, there is formed a quasistationary lated in the vicinity ofxs.

The ratio of the flux density

flux from the state 1 to the state 2 over the unstable stationd; /V to the populatiorv, of the stable state 1 is equal to the
ary statexs. In the vicinity of x; the quasistationary solution transition probabilityW,,, and we get
of the master equation that describes this quasistationary flux

is of the form

Pi(X,t)=Cy eXp{_VSl(Xsia)}Jocdy
xexp{— 3 V' (Xs; 0)[ (x—Xs)— (Y —X¢)?]},

[X=Xg| <|x1 X4, (12)

oo IW(X,r;6)
S (XS,H)— 2{2 r T

-1
[2 r2w<xs,r;e)} ;

Xs

s"(xs; 60)<0.

The last inequality follows from Eq€4) if one allows for
the fact thatx, is the unstable stationary solution fey the
quantity s”(xs; 0)=s](Xs;0)=s5(Xs;6) is determined by
the local values of the coefficients(x,,r;8) and their de-
rivatives, and therefore is the same ®evaluated for the
state 1 or the state 2. The const@ntcan be easily found by
matching the solutior{12) to the solution(9) in the range
Xs— X1 > Xg— x>V 12,

To express the flux out of the state 1 in termsPgfwe
put Egs.(12) into the master equatio(®) and integrate the
latter overX from —oo to a givenX close toX. For the
normalization ofP; chosen in Eqs(9) the left-hand side of
Eq. (6) transforms, upon integration, int dv, /dt, whereas
the right-hand side, to the lowest order ¥i !, becomes
equal to the flux into the state 1:

J1=J1(X)=—Jj;dx Z (e "X 1)W(X,r; 0)P1(X,1)

1
~5C exp{—Vsl(xs;e)}Z r2w(xs,r;6) (13
[we have used here the explicit form of the actigmear the
saddle point and allowed for the fact that for x; we have
Zrw(Xx,r; 0)~(X—Xg) Z,r[ow(x,r;0)/ox] where the de-
rivative is evaluated fox=xg]. It follows from the above

Whm( 0)_

E r W(xs,r,a)}

X{Sp(Xn; 0)]S" (Xs; ) [} ex —Vsy(Xs;6)]
(14)

(the answer is written for the general case of the probability
of the n—m transition).

C. Global distribution

We are now in a position to find not only the local shape
of the quasistationary distribution, but also the global peri-
odic distribution of the system in explicit form. This distri-
bution has two basic constitueni$) the local distributions
about the states 1,2 which are given by E@®, with the
populations of the states;,v, given by the balance Egs.
(11), and (ii) the term that describes the flux between the
states which is formed on balance of the flux&s) from
each of the states. It is clear from E@$2) and(13) that this
term is substantial in the vicinity of the saddle pdinthere
the distributiong9) are smalj; it can be written as

Pa(X,t)=Cq(1) JXXS dy

Xexp{— % VS”(XS;0)[(X_Xs)2_(y_xs)2]}y

|X_Xs|<|xl,2_ Xs|- (15)

The fluxJ as given by Eq(13), with P;(X,t) replaced
by P4(X,t), is independent of the coordinate(as it should
be in the quasistationary cas&he constan€; can be found
from the fact that this flux is equal toJ= 3
X Cq(t)=,r2w(xs,r;0)=—Vv,=Vv,. Taking Eqs(9) and
(14) into account one gets

Vv
Ca(t)= 58" (x5:0)| 2

X{[S1(x1; 0)]"%exd — Vs (Xs; 6)v4(1)

—[s5(x2;0)1*%exd —Vsy(Xs; 0)Jva(1)}.  (16)

The functionPy, increases exponentially fast away from the
saddle point. The form dP;(X,t) is Gaussian, i.e., the same
as that of exp—Vs, J(x;6)] nearxs. The expression for
P4(X,t) can be written as

C““)LXS dy exp{—V[s1(x; 6) — S1(Xs; 0)— S(Y—y9?S'(xs; )T}, X=X

Pa(X,t)=

Cf'(”f:s dy exp{— V[S,(x; 6) — Sy(Xs: ) — 2(y—yo)?S"(x6: 0)1}.
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Far from the saddle point the two expressions on the right-
hand side can be written as

(=DM 2mIV]8" (x5 0)|1H2Ca(t)
Xexp{ —V[sy(X;0)—sn(Xs; 0)]}, n=1,2.

The corresponding terms should be compensated in the vi-
cinity of the attractors, since the distribution there is given by
Egs.(9) and (11). The compensating terms can be found if
we notice that the master equation is linear, and so any com-
bination of the solutions is a solution as well; therefore the
appropriately weighted terms exp{V's; 5(x; #)} can be just
added toP; ,(X,t) in addition toPg(X,t), and they will not
affect the flux between the states. With account taken of the
explicit form of the coefficienCy(t) we arrive at the follow-

ing expression for the statistical distribution:

1/2 FIG. 1. Monte Carlo results on the dependence of the distribution as given
_ . by Egs.(1) and(19) on the phas# of the periodic driving in the range of
exp{ Vs(x; 6)} the densities &.x=X/V<2. The plots refer to the following parameter
values:(a) V=4000=0.01;(b) V=300w=0.01;(c) V=200w=0.01; and
X {vn()[sn(Xn; )12+ w3 _n(t) (d) V=4000=0.1.

(c) (@)

P(X,t) = Pﬂ(x,t)i(z

X[S3-n(Xs—n; )12
8 and 19. By denoting the numbers of molecules of species

XXV &(Xs, 0) = VSs-n(Xs: O)1}, (17 X, A, andB by the same symbols we may write this equation
where in the form (1), with
n=1 for x<x, n=2 for x=Xx W(X,1;0)=k,V M IAXI/(X—m+1)! +k,B,
X =Xo(0), Xe=xX(6): 6=ot. WX, — 1:6) = koV =™ IX1/ (X — m)! +KaX. (19

Equation(17) provides a complete global quasistationary The functionsw(X,+1;60) depend on time vigone o) the
probability distribution for a periodically driven system in externally controlled densitieA or B, e.g., which are as-
the case of slowly varying driving. It has the right asymptot-sumed to be periodic functions ¢f= wt.
ics (9) near the stable states and describes the flux between We have performed Monte CarlMC) simulation of the
the states. We emphasize that we have not assumed that thgstem (18) and (19) with m=3, k;=k,=kz=k,=1,
driving is to any extent weak—the only assumption madeA=1.9 V, and with the number of species
was that it was slow compared to the relaxation of the syster8=(0.14+0.01 sind)V periodically varying in time. The
towards a stable steady state. We notice that the distributiogalculations were done using Gillespie’s mettfoappropri-

(17) is continuous across the saddle point. At the same timeately modified for driven systems. The number of Monte
it is noticeably different from the corresponding solution in Carlo steps taken per each run is’1Bor the chosen values
the stationary situation. In this latter casgv,= W, /W, of the parameters, and for the amplitude of the modulation
and thusCy=0, so, the flux termPg(X,t) is absent(not set equal to zero, the system is bistable in the lihito;
surprisingly; at the same time, the intrawell solutiof®  the characteristic relaxation timg~ 1. For this set of the
match each other in the saddle point. In the next section wparameters, and again in the absence of the modulation, the
give the results of the Monte Carlo simulation of a chemicalpopulations of the stable states with smaller and larger den-
system and compare them with the analytical results obsity x=X/V are close in order of magnitude.
tained above, applied to the same model. MC has been performed for the effective volumes of the
systemV= 400, 300, and 20Qthe value ofV characterizes
the total amount ofX molecules in the systemFor the
IV. MONTE CARLO SIMULATION OF PERIODICALLY aboveV, the rates of the transitions between the states are
DRIVEN SCHLOGL MODEL W=W,,+W,;=0.0007, 0.0023, 0.0075, respectively. The
MC demonstrates the double-peaked distributgiX), with

We consider a chemical reaction with the mechanism the positions of the peaks ,x, given to a good accuracy by

ki ks the stable stationary solutions of Ed4).
A+(m=1)X = mX X = B (18 In the presence of low-frequency driving the double-
2 4

peaked structure of the stationary periodic distribution per-
in a reactor of volumé&/, where the numbers of molecules of sists, but the height&he intensities of the peaks vary in
speciesA andB are assumed to be controlled externally. If time due to the periodic redistribution of the system over the
m=3, this is the Schigl model™ and it may display bista- stable states. The evolution of the distribution with the vary-
bility. Under appropriate assumptions the kinetics of the sysing phase of the driving= wt is demonstrated in Fig. 1 for
tem is described by a birth—death master equatidnRefs.  a few values of the volum¥. As expected, the redistribution

J. Chem. Phys., Vol. 103, No. 3, 15 July 1995



-0.015

As

Dykman, Horita, and Ross: Resonance in a driven chemical system

0 01 02 03 04 05

0121

. . L n
06 07 08 09 1

(b)

e SRS v e S A

003
0.02 -

0.01 |

[3]

008

0.02

0.01 1

(]

7 0.04

0.06

40.02

Joost-

0.02 -

0.02

0.01

971

-0.005

0 01 02 03 04 05 06 07 08 08 1 j

6/2n 0 o5 ] 75 ° 05 i 75 % 05 i (5

FIG. 2. The logarithm of the ratio of the heights of the distribution in the

stable states vs the phase of the driving faf V=400 (pluse3, 300 FIG. 3. The logarithm of the distribution. Pluses: Monte Carlo data; solid
(crossey and 200(squareswith w=0.01 andb) V=400 withw=0.1. The lines: the normalized logarithm of the global quasistationary distribution
solid lines is the theory17), the dashed line shows the limiting result of (17). The values ofV and » are V=4000=0.01 in (&), (b), and (c),
V=200w=0.01 in(d), (e), and(f), andV=400w=0.1 in(g), (h), and(i).

The values ofé are 0 in(a), (d), and (g), /3 in (b), (e), and (h), and
273 in (c), (f), and(i).

w—0.

of the system over the stable states becomes more and more

pronounced as the transition rafé approaches the driving In Fig. 3 we present the MC results for the shape of the
frequencyw [Figs. 1a)-1(c)]. On the contrary, if the fre-  g1opa) distribution at a few values of the phase of the driving
quency is very much higher than the transition probabilitiesgnq compare them with the theoretical expression. The
w>W;;+Woy, the redistribution over the states is weak, asagreement is good for all the phases and for all frequencies

it is seen from Fig. (d). These results are in qualitative ang yolumes investigated. We emphasize that the theory does
agreement with the results by Leonard and Refobibtained 1ot contain any adjustible parameters.

by solving numerically the master equation for the reaction
A+2X=3X, B+X=C.

We emphasize that in the appropriate rangewothe v cCONCLUSIONS
strong redistribution of the system over the stable states is
observed in response to driving with an extremely small am- It follows from the above results that the probability
plitude, which is a clear indication of the onset of stochasticdensity distribution in a periodically driven spatially uniform
resonance. The redistribution is further seen in Fig. 2 wheréhemical system may be well described in the eikonal ap-
the logarithm of theratio of the distributionP(X,t) in its ~ Proximation for a large enough number of molecules, both

maxima atX,=Vx, andX;=Vx; (X,>X;) is plottedvsthe locally (within a range of attraction to each stable stated
phase of the driving: globally. In the eikonal approximation the problem of large

fluctuations is reduced to the problem of dynamics of an

auxiliary periodically driven dynamical system. For a system
(200 with one variable reagent the latter problem can be solved in
) . i explicit form in the limiting case of driving at frequencies
It is seen from ﬂg 2 that the MC results obtained for they,at are small compared to the reciprocal relaxation time of
frequencieso<t, ~ are in good agreement with the theoreti- y,o chemical system in the absence of fluctuations. Both the

cal results obtained in adiabatic approximation from E85. |ogarithm and the prefactor in the probability density distri-
[that relateP(X,t) to the populations of the stable statesyion and in the probabilities of transitions between coex-
v1,7 and Eqs(1]) for the populations:, (t) themselvegwe siing stable states can be obtained. The analytical results
took the periodic solution of Eqg11) for the populations  ,ptained for a bistable system driven at low frequency and

The agreement is good throughout the whole range of thg,e qata of Monte Carlo simulations demonstrate the onset of
volumesV and the frequencies investigated. The compari- gchastic resonance: by reducing the number of molecules,

son with the theory is facilitated by the fact that, for the 5ng thys by increasing fluctuations, it is possible to get a
reaction considered, the explicit solution of Hf) for the  |5/46 response to a small-amplitude driving. Similar to what
logarithm of the distribution is knowft happens in fluctuating dynamical systefrfsthe response is

} large when the driving frequency is of the same order of

AS(0)=s(X5;0)—s(X1;60)=V " In[P(Xy,1)/P(X5,t)].

X

sn(x;0)=f dx’ In

Xn

w(x',—1;0)

X 1.0) (21 magnitude as the probabiities of the transitions between the
w(x',1;

stable states.
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