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The probability density distribution is studied analytically and by Monte Carlo simulations for a
periodically driven chemical bistable system, described by a master equation, for the case of
low-frequency driving. The quasistationary distribution about the stable states is well approximated
by the solution of the master equation in the eikonal approximation for large volumes of the system.
For a one-component system both the exponent and the prefactor of the steady distribution are
obtained in explicit form, for an arbitrary strength of the driving and for an arbitrary interrelation
between the frequency of the driving and the probabilities of transitions between the stable states.
The results of the simulations are in good agreement with analytical results. We demonstrate the
onset of stochastic resonance for the driving frequency close to the probabilities of fluctuational
transitions between the states. ©1995 American Institute of Physics.
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I. INTRODUCTION

The term ‘‘stochastic resonance’’~SR! is used for a
group of phenomena where the response of a system
comparatively weak periodic input signal is enhanced
fluctuations, whether inherent to the system or imposed
ternally. Suggested initially1 as a possible explanation of th
ice ages,~SR! has attracted attention recently within a wid
variety of contexts~see Refs. 2 and 3 for a review!.

A simple model that displays SR and that has been
vestigated in most detail is a noise-driven bistable dynam
system. Noise gives rise to the fluctuational transitio
n
m between the stable states~n,m51, 2!. The dependence
of the transition probabilitiesWnm on the noise intensity is
often of the activation type; in particular, for a system
thermal equilibrium we haveWnm}exp(2En /T) whereEn

is the activation energy of escape from the staten andT is
temperature in energy units. The distribution of the syst
over the stable states is formed on balance of the transiti
and the ratio of the populations of the statesn1 /n2 is
} exp@(E22E1)/T#. If E2'E1 the response of the system
a low-frequencyperiodic input signal may be strong, sinc
the signal modulates the activation energies~e.g., the depths
of the potential wells that correspond to the stable states!; in
its turn, this gives rise to the modulation of the populatio
of the states. The magnitude of the response is proporti
to the difference between the values of the observed vari
in the two stable states, and therefore it can be large eve
a comparatively small signal. Clearly, the effect comes i
play when the frequency of the signalv;W12;W21. The
onset of a comparatively large response of this sort was c
sidered by Debye4 in the context of dielectric response due
reorientation of polar molecules among the equivalent st
in a unit cell. More recently it was found that not only th
signal at the output of the system, but even the signal

a!Present address: Department of Control Engineering and Science, Ky
Institute of Technology, Iizuka 820, Japan.
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noise ratio at the output can strongly increase with the i
creasing noise intensity at the input.5

SR may be expected to occur as well in bistable chem
cal systems where the densityx of a reagent takes on two
stable values for given constraints, say the flux of the rea
tants into the system. Both the external fluctuations~e.g., due
to the fluctuations in the density of the incoming flux, or i
temperature! and the internal ones can give rise to the fluc
tuational transitions between the states~i.e., to the fluctua-
tions of the molar volumes!. An external periodic field can
modulate the populations of the states, and the resulting
sponse will be large in the region of the ‘‘kinetic phas
transition’’6 where the populations are close to each oth
~we use the term ‘‘population of the state,’’ in chemical con
text, in the same meaning as it is used in the context
dynamical systems: the probability to find the system in th
stable state, not the number of species in this state!.

We are interested in internal fluctuations due to the fini
number of the molecules of the reagents. Such fluctuatio
are of particular interest for small reactors like cellula
vesicles.7 The dependence of the switching probabilities o
the average number of reacting moleculesN, or on the vol-
ume of the systemV (N}V), is exponential~see Ref. 8, and
also Ref. 9!, Wnm}exp(2Vsn) where sn depends on the
densities of the reagents and is independent of the volume
the limit of largeN. It is the volume, or the number of
molecules in the system, that play here the role of the rec
rocal noise intensity in noise-driven dynamical systems. I
teresting results on SR in a spatially uniform chemical sy
tem were obtained numerically by Leonard and Reichl,10 and
we shall discuss these later.

In the present paper we investigate steady periodic pro
ability distribution of a periodically driven bistable chemica
system described by a master equation. We provide anex-
plicit analytic solutionto this long-standing problem in the
case of low-frequency driving,without imposing a limitation
that the driving be weak~which is commonly used in the

ushu
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967Dykman, Horita, and Ross: Resonance in a driven chemical system
theory of SR!. We compare the results with the results
extensive Monte Carlo simulations. We demonstrate the
set of SR in the region where the populations of the sta
states are of the same order of magnitude and where
probabilities of the transitions are of the same order as
driving frequency.

II. EIKONAL APPROXIMATION TO THE SOLUTION OF
MASTER EQUATION

For simplicity we consider a situation where there
only one variable reagent in a spatially homogeneous rea
with the number of moleculesX, as is the case in the Schlo¨gl
model, e.g., Ref. 11. This number changes as a result o
collisions that give rise to the reactions. The collisions h
pen at random, and therefore for low densities the quan
X(t) is a Markovian random process; its probability dens
P(X,t) is described by a master equation~a birth–death
equation!,

]

]t
P~X,t !5 (

r561,62,...,
@W~X2r ,r ;u!P~X2r ,t !

2W~X,r ;u!P~X,t !#, u5vt, ~1!

whereW(X,r ;u) is the probability per unit time of the reac
tion X→X1r in which the number of the moleculesX in-
creases byr . The quantityu[vt is the phase of the externa
field that periodically modulates the density of the incomi
species, or temperature, etc. We assume that the rea
probabilities are periodic inu,

W~X,r ;u12p!5W~X,r ;u!. ~2!

In the limit of large volumeV ~large numbersX! the reaction
probabilitiesW(X,r ;u) obey the scaling

W~X,r ;u!/V5w~x,r ;u!1o~V0!, x5X/V. ~3!

Here, x is the density of the species we investigate, a
w(x,r ;u) is the reaction probability density per unit volum
it is independent ofV.

The distributionP(X,t) peaks sharply at the averag
number of moleculesX̄(t), with the characteristic width
;X̄1/2!X̄.12 The time evolution ofX̄(t) and of the average
densityx̄(t)[X̄(t)/V with the neglect of fluctuations, is de
scribed by the rate equation that follows from Eq.~1! if one
assumes that the probabilitiesW(X,r ;u) are smooth as func
tions of X and their dependence onX may be neglected
within the range whereP(X,t) is large. We have

dX̄/dt[(
X

X @dP~X,t !/dt#'(
r
rW~X̄,r ;u!,

~4!

dx̄/dt'(
r
rw~ x̄,r ;u!.

If a system is bistable in the absence of periodic driving, E
~4! have two stable stationary solutions for the densityx̄:
x̄5x1 andx̄5x2 . In the presence of driving, where the fun
tionsw explicitly depend on time, the stationary stable so
tions of Eqs.~4! are, generally speaking, periodic, and in t
simplest case with the same period as the drivi
xn[xn(u)5xn(u12p) ~SR in a dynamical system that dis
J. Chem. Phys., Vol. 10
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plays period doubling has been considered in Ref. 13!. A
characteristic ‘‘dynamical’’ relaxation timet r within which
the system approaches a stationary state may be found f
Eqs.~4! linearized about this state,

t r5maxU ]

]x (
r
rw~x,r ;u!U

xn

21

.

It follows from Eqs.~4! that t r is independent of the volume
of the system.

The stationary solution of the master equation~1!
Pst(X,t) is periodic, with the period 2p/v:
Pst(X,t)5Pst(X,t 12pv21). This solution, in the case of a
bistable system, is formed in two stages: first, over the tim
t r there are formed quasistationary periodic distributio
Pn(X,t) about the stable periodic statesXn(t),

Pn~X,t !5PnSX,t1 2p

v D ~5!

and then, over a much longer time which is determined
the probabilitiesWnm of the fluctuational transitions betwee
the states, there is formed the global distributionPst(X,t).

The quasistationary solution of Eq.~1! in the case of a
large number of moleculesX can be sought in the form of
eikonal approximation—the approach that has proven to p
vide good results in the absence of periodic driving, inclu
ing the case of systems lacking detailed balance~see Ref. 9
and references therein!.

We formally rewrite the master equation~1! for the qua-
sistationary distributionPn(X,t) in the differential form~cf.
Ref. 14!

]

]t
Pn~X,t !5(

r
~e2r ]/]X21!W~X,r ;u!Pn~X,t !,

~6!
Pn~X,t !5exp@2Sn~X,t !#.

The functionSn(X,t) is proportional to the volume of the
systemV, and the derivatives ofSn overX (X}V) are inde-
pendent of the volume, whereas (]/]X)lnW(X,r;u)}1/V.
Therefore to the lowest order inV21 we arrive at the follow-
ing equation for the eikonalSn /V:

]sn
]t

1HS x, ]sn]x
;u D50, sn[sn~x,t !5V21Sn~X,t !.

~7!

H~x,p;u!5(
r
w~x,r ;u!~erp21!.

The approximations~6! and ~7! do not apply in the vicinity
of the unstablestationary solution of Eqs.~4!, as it is clear
from the above consideration of the times that character
the kinetics: Eqs.~6! and ~7! do not allow for exponentially
large relaxation times, and the number of species h
dropped out of the equation forsn . This is why we consider
the eikonal solution for thequasistationarydistribution Pn

rather than to seek directly the stationary distributionPst

throughout the space of the variableX.
3, No. 3, 15 July 1995
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968 Dykman, Horita, and Ross: Resonance in a driven chemical system
Equation~7! is of the form of an Hamilton–Jacobi equa
tion for an auxiliary dynamical system with a HamiltonianH
that periodically depends on time; the functionsn(x,t) is the
action of this system. Since we are interested in the solu
for Pn that is periodic@cf. Eq. ~5!#, we have

sn~x,t12pv21!5sn~x,t !. ~8!

The functionsn(x,t) has aminimumat the value of the den
sity x(t) that corresponds to the stable stationary perio
state of the system,x(t)5 x̄n(t), andsn is parabolic~in x!
near the minimum, with the curvature varying periodically
time. In solving Eqs.~7! and~8! we have to allow for the fac
that the auxiliary dynamical system~7! is nonintegrable, as is
also true in the analysis of large fluctuations in continuo
systems driven by white noise.15 Therefore the paths of thi
systemx(t) encounter caustics and display a complica
behavior. However, it may be shown16 that the paths that ar
of physical significance for the initial problem of the fluct
ating system~1!, ~5! do not encounter caustics, as in the ca
of a many-variable fluctuating system without period
driving.17

III. LOW-FREQUENCY DRIVING

A. Quasistationary distribution about the stable
states

Interesting effects related to the fluctuation-mediated
riodic redistribution of the system over the stable states m
be expected in the range of frequenciesv;Wnm!t r

21 . In
this range the local behavior of the system in the vicinity
a stable state follows the drivingadiabatically, without re-
tardation: the position of the statexn and the shape of the
quasistationary distributionPn(X,t) are determined by the
instantaneousvalue of the phase of the drivingu. In con-
trast, the redistribution over the states occurs over the t
;Wnm

21;v21, and therefore in evaluating the time depe
dence of the populations of the statesnn it is necessary to
allow for the fact that the transition ratesWnm vary in time
on the time scalev21.

These arguments suggest that we may seek the qua
tionary distribution in the form

Pn~X,t !5nn~ t !F V2p
sn9~xn ;u!G1/2exp$2Vsn~x;u!%,

xn[xn~u!, u5vt,

HS x, ]sn~x;u!

]x
;u D50, sn~xn ;u!50,

F ]

]p
H~xn ,p;u!G

p50

50 ~9!

sn9~xn ;u![F ]2sn~x;u!

]x2 G
xn~u!

522F(
r
r

]w~x,r ;u!

]x G
xn

3F(
r
r 2w~xn ,r ;u!G21

.

According to our adiabatic picture we have dropped the
rivative ]sn /]t;vsn present in Eq.~7!, and we thus arrive
J. Chem. Phys., Vol. 10
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at the ‘‘time-independent’’ HamiltonianH for the conserva-
tive motion of an auxiliary system with the energy equal t
zero. The equation]H/]p50 for p50 defines the position
of the stable statexn . This position varies parametrically
with u, and the equation coincides with the correspondin
equation that follows from Eqs.~4! if one neglects
dx̄/dt;v x̄.

It is clear from~7! that Eq.~9! for sn8 is just an algebraic
equation in the one-variable case considered. The expl
solution of it can be found for some simple models ofw(x,r )
~cf. Refs. 8 and 18!; it has a particularly simple form near the
stable state:

sn~x;u!' 1
2 sn9~xn ;u!~x2xn!

2 for ux2xnu!ux12x2u,
~10!

wheresn9 is given explicitly in Eqs.~9!.
The transitions between the stable states occur whe

system, as a result of a fluctuation, goes from one state
another over the unstable stationary state~saddle point!
xs(u) that lies between the statesx1 andx2 . In what follows
we assume

x1,xs,x2 .

For Markovian systems the probabilityWnm of the escape
from the staten is given, to logarithmic accuracy, by the
probability to reach the unstable stationary state point, i.e.,
the considered case, by the valuesn(xs ;u) of the action in
the statexs . The probabilityWnm[Wnm(u) is a periodic
function of u, and thus of time, and the equation for th
populations~mole fractions! of the stable states

dn1
dt

52@W12~u!1W21~u!#n11W21~u!,

~11!
n2512n1 , Wnm~u!5Wnm~u12p!

has a periodic solution, as explained in Sec. I. The amplitu
of the oscillations ofn1,2 depends on the interrelation be
tween the values ofv andWnm . For a high-frequency driv-
ing or for very small fluctuation intensity, where
v@W121W21, the populationsn1,2 remain nearly constant,

n1.
W̄21

W̄121W̄21

, W̄nm5
1

2pE0
2p

duWnm~u!.

On the contrary, if the transition probabilitiesW12, W21 are
of the same order of magnitude as the driving frequen
v, then the modulation of the populationsn1 , n2 in time is
as strong as the modulation of the transition probabiliti
themselves. This demonstrates that by increasing fluctuati
~by reducing the number of molecules! it is possible to in-
crease the response to the periodic driving—which is t
basic feature of stochastic resonance.

B. Transition probabilities

In the case of slowly varying driving it is possible to find
not only the exponent, but also the prefactor in the expre
sion for the transition probability. We shall illustrate this with
3, No. 3, 15 July 1995
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969Dykman, Horita, and Ross: Resonance in a driven chemical system
W12 taken as an example. To findW12 we assume that the
state 1 (x1,xs) is occupied initially, whereas the state 2
empty. Over the time;t r there is formed a quasistationa
flux from the state 1 to the state 2 over the unstable stat
ary statexs . In the vicinity ofxs the quasistationary solutio
of the master equation that describes this quasistationary
is of the form

P1~X,t !5C1 exp$2Vs1~xs ;u!%E
x

`

dy

3exp$2 1
2 Vs9~xs ;u!@~x2xs!

22~y2xs!
2#%,

ux2xsu!ux12xsu, ~12!

s9~xs ;u!522F(
r
r

]w~x,r ;u!

]x G
xs

F(
r
r 2w~xs ,r ;u!G21

;

s9~xs ;u!,0.

The last inequality follows from Eqs.~4! if one allows for
the fact thatxs is the unstable stationary solution forx̄; the
quantity s9(xs ;u)[s19(xs ;u)[s29(xs ;u) is determined by
the local values of the coefficientsw(xs ,r ;u) and their de-
rivatives, and therefore is the same fors evaluated for the
state 1 or the state 2. The constantC1 can be easily found by
matching the solution~12! to the solution~9! in the range
xs2x1@xs2x@V21/2.

To express the flux out of the state 1 in terms ofP1 we
put Eqs.~12! into the master equation~6! and integrate the
latter overX from 2` to a givenX close toXs . For the
normalization ofP1 chosen in Eqs.~9! the left-hand side of
Eq. ~6! transforms, upon integration, intoV dn1 /dt, whereas
the right-hand side, to the lowest order inV21, becomes
equal to the flux into the state 1:

V
dn1
dt

52J1 ;

J15J1~x!52E
2`

X

dX (
r

~e2r ]/]X21!W~X,r ;u!P1~X,t !

'
1

2
C1 exp$2Vs1~xs ;u!%(

r
r 2w~xs ,r ;u! ~13!

@we have used here the explicit form of the actions1 near the
saddle point and allowed for the fact that forx'xs we have
( r rw(x,r ;u)'(x2xs)( r r @]w(x,r ;u)/]x# where the de-
rivative is evaluated forx5xs]. It follows from the above
J. Chem. Phys., Vol. 10
n-

ux

expression that the fluxJ1 as given by Eq.~13! is indepen-
dent of x near the saddle point—particles are not accum
lated in the vicinity of xs . The ratio of the flux density
J1 /V to the populationn1 of the stable state 1 is equal to th
transition probabilityW12, and we get

Wnm~u!5
1

4p F(
r
r 2w~xs ,r ;u!G

3$sn9~xn ;u!us9~xs ;u!u%1/2 exp@2Vsn~xs ;u!#

~14!

~the answer is written for the general case of the probabi
of then→m transition!.

C. Global distribution

We are now in a position to find not only the local shap
of the quasistationary distribution, but also the global pe
odic distribution of the system in explicit form. This distri
bution has two basic constituents:~i! the local distributions
about the states 1,2 which are given by Eqs.~9!, with the
populations of the statesn1 ,n2 given by the balance Eqs
~11!, and ~ii ! the term that describes the flux between th
states which is formed on balance of the fluxes~13! from
each of the states. It is clear from Eqs.~12! and~13! that this
term is substantial in the vicinity of the saddle point@where
the distributions~9! are small#; it can be written as

Pfl~X,t !5Cfl~ t !E
x

xs
dy

3exp$2 1
2 Vs9~xs ;u!@~x2xs!

22~y2xs!
2#%,

ux2xsu!ux1,22xsu. ~15!

The flux J as given by Eq.~13!, with P1(X,t) replaced
by Pfl(X,t), is independent of the coordinatex ~as it should
be in the quasistationary case!. The constantCfl can be found
from the fact that this flux is equal toJ5 1

2

3 Cfl(t)( r r
2w(xs ,r ;u)[2Vṅ1[Vṅ2 . Taking Eqs.~9! and

~14! into account one gets

Cfl~ t !5
V

2p
us9~xs ;u!u1/2

3$@s19~x1 ;u!#1/2exp@2Vs1~xs ;u!#n1~ t !

2@s29~x2 ;u!#1/2exp@2Vs2~xs ;u!#n2~ t !%. ~16!

The functionPfl increases exponentially fast away from th
saddle point. The form ofPfl(X,t) is Gaussian, i.e., the sam
as that of exp@2Vs1,2(x;u)# near xs . The expression for
Pfl(X,t) can be written as
Pfl~X,t !55 Cfl~ t !E
x

xs
dy exp$2V@s1~x;u!2s1~xs ;u!2 1

2 ~y2ys!
2s9~xs ;u!#%, x<xs

Cfl~ t !E
x

xs
dy exp$2V@s2~x;u!2s2~xs ;u!2 1

2 ~y2ys!
2s9~xs ;u!#%, x>xs

.

3, No. 3, 15 July 1995
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970 Dykman, Horita, and Ross: Resonance in a driven chemical system
Far from the saddle point the two expressions on the rig
hand side can be written as

~21!n21 1
2@2p/Vus9~xs;u!u#1/2Cfl~ t !

3exp$2V@sn~x;u!2sn~xs;u!#%, n51,2.

The corresponding terms should be compensated in the
cinity of the attractors, since the distribution there is given
Eqs. ~9! and ~11!. The compensating terms can be found
we notice that the master equation is linear, and so any c
bination of the solutions is a solution as well; therefore t
appropriately weighted terms exp{2Vs1,2(x;u)} can be just
added toP1,2(X,t) in addition toPfl(X,t), and they will not
affect the flux between the states. With account taken of
explicit form of the coefficientCfl(t) we arrive at the follow-
ing expression for the statistical distribution:

P~X,t !5Pfl~X,t !
1

2S V

2p D 1/2 exp$2Vsn~x;u!%

3$nn~ t !@sn9~xn;u!#1/21n32n~ t !

3@s32n9 ~x32n;u!#1/2

3exp@Vsn~xs;u!2Vs32n~xs;u!#%, ~17!

where

n51 for x<xs, n52 for x>xs;

xn[xn~u!, xs[xs~u!; u5vt.

Equation~17! provides a complete global quasistationa
probability distribution for a periodically driven system i
the case of slowly varying driving. It has the right asympto
ics ~9! near the stable states and describes the flux betw
the states. We emphasize that we have not assumed tha
driving is to any extent weak—the only assumption ma
was that it was slow compared to the relaxation of the syst
towards a stable steady state. We notice that the distribu
~17! is continuous across the saddle point. At the same tim
it is noticeably different from the corresponding solution
the stationary situation. In this latter casen1/n25 W21/W12,
and thusCfl50, so, the flux termPfl(X,t) is absent~not
surprisingly!; at the same time, the intrawell solutions~9!
match each other in the saddle point. In the next section
give the results of the Monte Carlo simulation of a chemic
system and compare them with the analytical results
tained above, applied to the same model.

IV. MONTE CARLO SIMULATION OF PERIODICALLY
DRIVEN SCHLÖGL MODEL

We consider a chemical reaction with the mechanism

A1~m21!X 

k2

k1
mX, X 


k4

k3
B ~18!

in a reactor of volumeV, where the numbers of molecules o
speciesA andB are assumed to be controlled externally.
m53, this is the Schlo¨gl model,11 and it may display bista-
bility. Under appropriate assumptions the kinetics of the s
tem is described by a birth–death master equation~cf. Refs.
J. Chem. Phys., Vol. 103
t-

i-

-
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8 and 19!. By denoting the numbers of molecules of specie
X, A, andB by the same symbols we may write this equatio
in the form ~1!, with

W~X,1;u!5k1V
2m11AX!/ ~X2m11!!1k4B,

~19!
W~X,21;u!5k2V

2m11X!/ ~X2m!!1k3X.

The functionsW(X,61;u) depend on time via~one of! the
externally controlled densitiesA or B, e.g., which are as-
sumed to be periodic functions ofu5vt.

We have performed Monte Carlo~MC! simulation of the
system ~18! and ~19! with m53, k15k25k35k451,
A51.9 V, and with the number of species
B5(0.1410.01 sinu)V periodically varying in time. The
calculations were done using Gillespie’s method20 appropri-
ately modified for driven systems. The number of Mont
Carlo steps taken per each run is 109. For the chosen values
of the parameters, and for the amplitude of the modulati
set equal to zero, the system is bistable in the limitV→`;
the characteristic relaxation timet r;1. For this set of the
parameters, and again in the absence of the modulation,
populations of the stable states with smaller and larger de
sity x5X/V are close in order of magnitude.

MC has been performed for the effective volumes of th
systemV5 400, 300, and 200~the value ofV characterizes
the total amount ofX molecules in the system!. For the
aboveV, the rates of the transitions between the states a
W[W121W21.0.0007, 0.0023, 0.0075, respectively. Th
MC demonstrates the double-peaked distributionP(X), with
the positions of the peaksx1 ,x2 given to a good accuracy by
the stable stationary solutions of Eqs.~4!.

In the presence of low-frequency driving the double
peaked structure of the stationary periodic distribution pe
sists, but the heights~the intensities! of the peaks vary in
time due to the periodic redistribution of the system over th
stable states. The evolution of the distribution with the var
ing phase of the drivingu5vt is demonstrated in Fig. 1 for
a few values of the volumeV. As expected, the redistribution

FIG. 1. Monte Carlo results on the dependence of the distribution as giv
by Eqs.~1! and ~19! on the phaseu of the periodic driving in the range of
the densities 0,x[X/V,2. The plots refer to the following parameter
values:~a! V5400,v50.01;~b! V5300,v50.01;~c! V5200,v50.01; and
~d! V5400,v50.1.
, No. 3, 15 July 1995
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of the system over the stable states becomes more and
pronounced as the transition rateW approaches the driving
frequencyv @Figs. 1~a!–1~c!#. On the contrary, if the fre-
quency is very much higher than the transition probabiliti
v@W121W21, the redistribution over the states is weak,
it is seen from Fig. 1~d!. These results are in qualitativ
agreement with the results by Leonard and Reichl10 obtained
by solving numerically the master equation for the react
A12X
3X, B1X
C.

We emphasize that in the appropriate range ofv the
strong redistribution of the system over the stable state
observed in response to driving with an extremely small a
plitude, which is a clear indication of the onset of stochas
resonance. The redistribution is further seen in Fig. 2 wh
the logarithm of theratio of the distributionP(X,t) in its
maxima atX2[Vx2 andX1[Vx1 (X2.X1) is plottedvs the
phase of the drivingu:

Ds~u![s~x2 ;u!2s~x1 ;u!5V21 ln@P~X1 ,t !/P~X2 ,t !#.
~20!

It is seen from Fig. 2 that the MC results obtained for t
frequenciesv!t r

21 are in good agreement with the theore
cal results obtained in adiabatic approximation from Eqs.~9!
@that relateP(X,t) to the populations of the stable stat
n1,2] and Eqs.~11! for the populationsn1,2(t) themselves@we
took the periodic solution of Eqs.~11! for the populations#.
The agreement is good throughout the whole range of
volumesV and the frequenciesv investigated. The compari
son with the theory is facilitated by the fact that, for th
reaction considered, the explicit solution of Eq.~9! for the
logarithm of the distribution is known:19

sn~x;u!5E
xn

x

dx8 lnFw~x8,21;u!

w~x8,1;u! G . ~21!

FIG. 2. The logarithm of the ratio of the heights of the distribution in t
stable states vs the phase of the driving for~a! V5400 ~pluses!, 300
~crosses!, and 200~squares! with v50.01 and~b! V5400 withv50.1. The
solid lines is the theory~17!, the dashed line shows the limiting result o
v→0.
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In Fig. 3 we present the MC results for the shape of
globaldistribution at a few values of the phase of the drivi
and compare them with the theoretical expression~17!. The
agreement is good for all the phases and for all frequen
and volumes investigated. We emphasize that the theory d
not contain any adjustible parameters.

V. CONCLUSIONS

It follows from the above results that the probabili
density distribution in a periodically driven spatially uniform
chemical system may be well described in the eikonal
proximation for a large enough number of molecules, b
locally ~within a range of attraction to each stable state! and
globally. In the eikonal approximation the problem of larg
fluctuations is reduced to the problem of dynamics of
auxiliary periodically driven dynamical system. For a syste
with one variable reagent the latter problem can be solve
explicit form in the limiting case of driving at frequencie
that are small compared to the reciprocal relaxation time
the chemical system in the absence of fluctuations. Both
logarithm and the prefactor in the probability density dist
bution and in the probabilities of transitions between co
isting stable states can be obtained. The analytical res
obtained for a bistable system driven at low frequency a
the data of Monte Carlo simulations demonstrate the onse
stochastic resonance: by reducing the number of molecu
and thus by increasing fluctuations, it is possible to ge
large response to a small-amplitude driving. Similar to wh
happens in fluctuating dynamical systems1,2 the response is
large when the driving frequency is of the same order
magnitude as the probabiities of the transitions between
stable states.

e
FIG. 3. The logarithm of the distribution. Pluses: Monte Carlo data; so
lines: the normalized logarithm of the global quasistationary distribut
~17!. The values ofV and v are V5400,v50.01 in ~a!, ~b!, and ~c!,
V5200,v50.01 in ~d!, ~e!, and~f!, andV5400,v50.1 in ~g!, ~h!, and~i!.
The values ofu are 0 in ~a!, ~d!, and ~g!, p/3 in ~b!, ~e!, and ~h!, and
2p/3 in ~c!, ~f!, and~i!.
3, No. 3, 15 July 1995
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