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We calculate both the exponent and the prefactor in the nucleation rate of a periodically driven
system. Nucleation dynamics is described by the Fokker—Planck equation for the probability
distribution of the nuclei over their size. This distribution is found using the concept of the most
probable(optimal) nucleation path. The results apply in a broad range of driving force amplitudes,
from weak to moderately strong forces where the nucleation rate is changed exponentially strongly,
and also in the broad range of the driving frequencies, from low-frequency driving, where the
system follows the force adiabatically, to high-frequency nonadiabatic driving. For strong driving
forces, the time dependence of the nucleation rate changes from strongly nonsinusoidal to a weak
with the increasing frequency of driving. The response of the nucleation rate to the driving force is
described in terms of logarithmic susceptibilityS), which can be obtained from the optimal
nucleation path in the absence of the driving. LS is a smooth function of frequency, and therefore
even a driving force with comparatively high frequency can change the modulation rate
exponentially strongly. LS and the Faraday current are calculated for simple models of
electrochemical systems, where the ac driving is produced by modulation of the electrode potential.
We also suggest how to find LS from measurements of the average nucleation rai€990
American Institute of Physic§S0021-960699)50121-9

I. INTRODUCTION system and controls the size of a critical nuclgtis In what
- ) . follows we call Suy supersaturation.
The_ initial stage of electrochemmal growth is oft_en For nuclei of a subcritical sizeg<g*, the free energy
nucleation of a sufficiently large atomic cluster of deposﬂedq)o(g) increases with increasirg The sizeg* of the critical

metal (a_ critical nucl_eu)s wh|ch then spontaneously grow. nucleus corresponds to the maximumdag(g). The super-
Nucleation occurs via fluctuational attachment of atoms to

. . . . critical nuclei withg>g* grow spontaneously. The quantity
the growing nucleus accompanied, in case of overpotential , o .2 .
=®(g™) is the activation energy for nucleation.

deposition, by electric discharge of metal ions on the metal ° ; . .
surface. In this paper we will analyze the problem of nucleation
OAn systems driven by a time-periodic force. The results will

A simple theoretical approach to nucleation is based . L .
the assumption that the state of the nucleus is fully charact-_)e applied to nucleation in electrodeposition for an ac poten-

terized by the number of atoms in @, This approach has tial. Analysis of the effects of ac driving on electrochemical

been broadly used in literatdr@ and has been demonstrated deposmon has been .done. so far for Weak' ac potentials, in

to account for many qualitative features of the nucleationVich case the quantity of interest was the impedance of the

process in various physical systems electric double layer between the electrode surface and the
. 7 '

In quasi-equilibrium conditions, at constant pressure an@'ectrolyte. Some results have also been obtained on the

temperature, growth of a nucleus of sigés determined by effects of very strong ac driving forces where there arise

its Gibbs free energs,(g). In general®,(g) can be writ-  SPatially nonuniform macroscopic flows, as in convection-
ten in the form limited growtHf and ultrasonically induced cavitatidn.

We will consider the case where the ac driving force is
Dy=—Sugg+A(Q), (1) relf':\tively weak, so t_hat it does npt give rise to spatially non-
uniform macroscopic flows, yet it modulates the nucleation
where the first term is the volume energy and the seconbarrier and thus may very strongly change the nucleation
term is the surface energy of the nucleus. The deviadipp  rate. The effect of barrier modulation is very general and is
(8up>0) of the chemical potential from its equilibrium not limited to electrochemical systertfsHowever, electro-
value is determined by the deviatiop, of the actual elec- chemical systems are advantageous for analysis of this ef-
trode potential from the Nernstian equilibrium potential, fect, since the ac driving force can be easily produced by
Suo=|Zeny|, where—Ze is the charge of cations in elec- varying the electrode potential. There is experimental
trolyte. The value o5u, determines the driving force in the evidencé! that the nucleation rate in an electrochemical sys-
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tem may indeed be strongly changed by a relatively weak ac To 1
driving. fo(@)="31g) ddordg: 19~ 9" 1=(DBH™
We will assume that the ac driving force is sufficiently 0

slow as compared to the RC time of the electric double layer.  g* =—1/®{(gs), ®"=d*d/dg?.

Yet the period of forcdl =27/ w may still be comparable to

the characteristic decay tim& of a subcritical nucleus.

Time 7* describes the collective motion gf~g* > 1 atoms,

and therefore it largely exceeds the characteristic dynamic

times of individual atoms, like the period of atomic vibra-

tions (~107'°+10"**s). In this case the attachment/ 7 —Bjexg—®%/D], ®i>D,

detachment rates for individual atoms satisfy the detailed

b . — * * -1/2 (7)
alance condition, and the free energy of the clugtég,t) Bo=noa(g*)(2wp*D) ™%

follows the driving forceadlaba'glcally_, e, vynhout a time where8* is defined in Eq(6). Expressior(7) is the central
lag, as 'also does the cIugter>S|ze*d|str|but|on. However, foFesult of the classical droplet theory of nucleation which was
the driving fprce frequencies=1/7" one may not thmk of obtained in Ref. (a) (see also Refs. 2 and 3 for detaiés an
the nuc_leatlon rate as Fhe ratg for a g|vé>r(g,t), since application of the Kramers theory of escape rafes.
retardation of the <_:o||ect|ve motion of nucleating monomers For periodically driven systems, after transient time the
becomes substantial distribution functionf(g,t) depends on time periodically,

¢ TTIe e_xprels)sicl)zn f(ljrl?(g,th). ir? 5an_a§c dri\{enhsy_stem is with the period of the driving, and so does the steady-state
ormally given by Eq(1) in which 6= du(t) is the instan- .\, 1oation rate. For a sufficiently large driving force the

taneous chemical potent_igl .Of the adatoms on the sunc"’m\'?ariation in time of®(g,t) can exceed; then the effect of
counted off from the equilibrium value, the driving force on the distribution function and nucleation
rate will be exponentiallystrong. Unlike the stationary case,
Su(t)=duo+h(t), h(t)=> hexpiont). (2)  flux j(g,t) periodically depends on time; it also depends on
n#0 . . . . .
the size of the nuclei. This dependence is well understood in
Here,h,, are complex amplitudes of the Fourier harmonics ofthe limit of low frequencies of the driving force where the
the periodic driving forcén(t). We assume that(t) has no  system adiabatically follows the force, and the nucleation
time-independent componerttiy= 0. rate is described by the Frenkel-Zeldovich theory wijk,
For sufficiently low supersaturation, wheféuq| <kT, replaced by the instantaneodga(t). A step toward analysis
and for large critical nucleug* > 1, nucleation kinetics can of the effect of nonadiabatic driving was made in Ref. 13 for
be described by the Fokker—Planck equatiBRE for the  a specific model wheré(g) is an infinite parabolic barrier,

(6

Flux J, is equal to the rate of production of sufficiently large
supercritical nuclei which most likely will not collapse, i.e.,
Ip the nucleation rate. The value ¢§ is given by the acti-
vation law(cf. Refs. 1-3

distribution functionf(g,t) of the nuclei over their sizg, and atoms are “injected” at somgat a constant rate.
) In what follows we provide a general explicit solution of
ﬂ: _ ﬂ &) the problem of the nucleation rate in ac driven electrochemi-
dt a9’ cal systems, including both the exponent and the prefactor.

The solution describes the nucleation rate and Faraday cur-
rent in a broad range of driving force frequensyWe con-

_ BT} af(g,t) sider a steady regime where the nucleation rate is periodic in

j=—a(g)| -~f(g.0+D , D=kgT. (4 time with period 2r/w. Aperiodic transients decay within the

g 79 C Y L
characteristic relaxation time*, which is closely related to

Here,Da(g) is the rate of attachment of monomers to thethe induction time previously studied in transient nucleation
nucleus of sizey, and it corresponds to the diffusion coeffi- with constant supersaturation.
cient in g-space. In Sec. Il we formulate the problem and relate the nucle-

In the steady stateb(g,t)=®(g) is time independent; ation rate in a periodically driven system to the current in the
then Egs.(3) and (4) go over into the familiar Zeldovich— supercritical region. In Sec. Il we derive the expression for
Frenkel equation of the classical nucleation théohy.Ref.  the nucleation rate to logarithmic accura@glculate the ef-
1, the steady-state distribution of subcritical nuclei is close tdective activation energy of nucleatipim the case of a high-

with the fluxj(g,t) given by

the Gibbs distribution, frequency(nonadiabatit driving force using the WKB-type
. B approach to the FPE. In Sec. IV A we calculate explicitly the
fo(@)=noexf = Po(9)/D], exponential factor in the nucleation rate in the case where the
DE—dy(g)>D, DE=dy(g*), S dr_iving force is not very strong, and yet it affects_the nucle_-
ation rate exponentially strongly. We show that this occurs in
whereng is the number density of free monomers. a broad range of amplitudes of the ac driving force where the

On the other hand, the distribution in the critical andvariation of the logarithm of the nucleation rate is simply
supercritical regions is strongly nonequilibrium and corre-linear in the driving force and therefore can be described by
sponds to a constant flyxg) = 7, over the free-energy bar- logarithmic susceptibility(LS). In Sec. IV B we obtain the
rier. For supercritical nuclei away from the critical region, explicit expression for the nucleation rate, including the pref-
the diffusion component of flux Eg4) can be neglected, and actor, in the cases of nonadiabatic and adiabatic driving, and
the steady-state distribution has the form analyze the crossover between the two regimes. In Sec. V we
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calculate LS for several nucleation models relevant to 2D K (g,t)

nucleation in electrochemical deposition. We also analyze Kg(t)= 79 for g=g*(t). (12
how spectral properties of LS affect the nucleation rate and

suggest a simple method of experimental analysis of LS. In  To gain a better understanding of expressi@@), we
Sec. VI we calculate the Faraday current for several modeléxpand in FPE3) the drift force K(g,t) and a(g) in the

of electrochemical nucleation. Section VII contains conclud-deviation from the critical state=g—g*(t). In variables
ing remarks. z,t FPE takes the form

, T(zH="f(g* (1) +2),

af(z,t) 3] (z,t)
II. NUCLEATION RATE: GENERAL FORMULATION =— P

at
We start with the analysis of the nucleus dynamics in the

neglect of fluctuations. In this case, time variation of the size ~ ok ke s gt (z,1)
of nuclei g(t) is described by the drift term in the FRE) 1z 1)=[zKs =Dag (O] (z)=Da*() —-—, (13
and(4). Using the explicit form ofP in Egs.(1) and(2), we .
obtain N . . da(g*(t))
a*(t)y=a(g* (1)), ang-
9(=K(g,t), K=a(g) ou(t)~ @} ®) For large enouglz, the periodic fluxj(z,t) is given by the

This equation has an unstable periodic solution: expressioricf. Eq. (10]

g* (D) =g* (t+T). 9 T(zty=zK: (Of(z1), z>(Dp*)Y2 (14)

If at time t a nucleus has a sizg<g* (t), it will collapse, = From Egs.(14) and(12) we see that
whereas ifg>g*(t), it will grow. Thus g* (t) corresponds -
to a time-dependent size of the critical nucleus. In the limit AzH=i(z1), (15
of weak driving amplitude,/h(t)/Suo|<1, the value of je. the nucleation rate is given by the periodic probability
g* (t) is close to critical size for the undriven system. flux J (z,).
In the presence of fluctuations, a nucleus wigh In the supercritical range>(D 8*)Y2 one can neglect
. ; . X
<g*(t) can grow, in which case the fluctuation works e giffusion term in Eq(13), and then the distribution func-
against the drift forcdl(g,t). To do this the fluctuation has tionF(z,t) can be calculated along the trajectories &y.of
to be sufficiently large. However, once the nearly critical Sizedetermi,nistic growth. These trajectories emanate—at—-oo

i —_q* — *\1/2 :
is reached|g—g* (1) .(D'B )75 the_ dritt forc_e becomes from the unstable state=0. From Eq.(13) we obtain:
small, and the dynamics of nuclei is determined by small

fluctuations. With probability~1/2 the nucleus can go onto ~ 1

either side ofg*(t). As a result, it will either collapse or fs(z,t)%EH(zu(t,O)),

grow. For the nuclei that at some instameach a superecriti- (16)
cal sizeg—g*(t)>(DB*)Y? the diffusion component of , t .

the flux in Eq.(4) becomes negligible and they will most ~ U(b't )=exr{—ft,Kg(7)dr

likely increase in size following the deterministic growth law ) . ) o
Eq.(8), i.e., wherelI(x) is an arbitrary function. Substituting the above

_ 12 expression in Eq(12), we obtain the steady-state nucleation
j(@.H~K(g.Hf(g.t), g-g*(t)>Dp*)"> (10  rate in the form

From Eq.(10), the instantaneous nucleation rate can be e

) . B =KZ(DII t,0)). 1
defined as the rate at which there emerge large enough su- Az =Ky (HIT(zU1,0)) (17
percritical nuclei. Consider at some timhéhe number den- The time dependence of the nucleation raféz,t)

sity n(z,t) of supercritical nuclei with sizeg=g* (t)+z. comes from the factoh(; and the functiodI(c). The latter
We choose the offset to be sufficiently large, so that it is function is constant along the deterministic growth paths
unlikely that any of these nuclei will collapse. However, we z(t,c)=cu~*(t,0) given by Eq.(8), but it varies from path
will assume thatr is small compared to the nonlinear scale of to path. We note that this function cannot be found just from
the problem given by critical sizg* (t). We then define the the solution of Eq(13) in the supercritical range; It is deter-
rate of nucleation7(z,t) as mined by the values of the distribution function at snmll

~ (D B*)¥2 where the diffusion is important. To find it one

J(z,t)= on(zt) , has to match solutioiil6) in the supercritical region to the
Jt time-periodic distribution function obtained by the solution
oo (1) of FPE in the entire regiog=<g* (t).
n(z,t)= fg*(t)ﬂdgf(g,t), g*>z>(Dp*)Y2 The boundary condition to FPE) on the smallg side

_ _ can be established by noticing that the time-dependent driv-
It can be immediately seen from Ed8), (4), and(11) that,  ing Eq.(2) affects the volume energy of the nucleus, but not
for smallz/g*, one obtains its surface energy(g),

j(z,t)%Kg(t)Zf(g*(t)+z,t), A(g): ’ygl_lld (18)
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where vy is the effective surface tension adds the dimen- JR JR
sion of the nucleus. For nuclei much smaller than the critical ot +H| g, @t) =0,
sizeg* (t) [more precisely, than the minimal value gf (t) 22)
per period, the surface energy exceeds the volume energy,
and the effect of ac driving is not important. H(g.p.t)=K(g,t)p+a(g)p?, p= 79"
Therefore in the time-periodic regime the distribution of
small nuclei is close to the Gibbs distribution H§), whereK(g,t) is defined in Eq(8).
) Equation (22) has the form of the Hamilton—Jacobi
f(g,t)=noexd —A(g)/D], g<ming*(t). (19 equation for an auxiliary mechanical system with coordinate
i g, momentump, and HamiltonianH(g,p,t).?° The activa-
irrespective of driving. tion energyR(g,t) corresponds to the mechanical action of

the auxiliary system.
The Hamilton-Jacobi Eq(22) can be solved by the

method of characteristics. The equations for the characteris-
The distributionf(g,t) depends on time periodically, tics have the form
and the left hand side of E@3) equals zero after averaging

Nucleation rate averaged over the period of
modulation

over the periqd of 'Fhe driving force. Therefore the time- 9= ﬁ:KJFZap, (239
averaged fluxj(g,t) is constant in steady state. Then, ac- ap
cording to Eq.(11), the average nucleation ratgjust equals JH IK Ja
the average flux and does not depend on the choice of the p=—-—=——p-—p? (23b)
boundary of the supercritical region, 99 99 99

T=(T2,))={(z,t))=const, (20) s=gp—H, s(t)=R(g(t),1). (239
Where(. > means averaging over the driving force peﬁbd The phySical meaning Of the CharaCteI’iStiCS can be un-

We note that thez dependence of the instantaneousderStOOd as follows. A nuclei of SI@ at the instantf has
nucleation rate7(z,t) is due to the dependence arof the ~ been formed as a result of a large fluctuation. Most probably,
duration of motion tog* (t) +z along the deterministic tra- in this fluctuation the size of the nucleus was evolving in a
jectory Eq.(8) from the vicinity of g* (t) (where the popu- Way close to some optimal way which correspondg t@ry-
lation periodically varies in time Clearly, thez dependence ing along the optimal fluctuational pati(t), which arrives

disappears upon time averaging_ atg; for t=t;. It is this path that is described by E@3)
We note that the optimal path begins at some instant of time

to whereg(ty) corresponds to a microscopic nucleus and in
the continuous theory, is set equal to zeye; 0.

From boundary condition§l9) and Eq.(21) it follows
that R(g,t)~A(g) for smallg. Using this relation and Egs.

IIl. EXPONENT FOR THE NUCLEATION RATE AND
THE DISTRIBUTION FUNCTION OF NUCLEI

A. The eikonal approximation. Optimal fluctuational (22) and(23), we find the explicit form of the characteristics
paths in the smallg range,
For small fluctuation intensitie®, function f(g,t) is 9(t) dg
concentrated mostly in the range of small nuclei size where t—1g i ————, g<<ming*(t),
o a(g)Aq(9) ¢

®(g)~D<®d*. Distribution of the nuclei in the range 24
>D i ions. i 4

where ®(g) .D is formed by Iargg fluctuat|o_ns In this p=A4(@), R(g,1)~A(Q).

range the tail off(g,t) is exponentially steep iy, for g

<g*(t). To determine the distribution of large subcritical The Hamiltonian equation§23) and the initial condi-

nuclei we will look for the solution of Eq(3) in the form tions (24) define a set of characteristics,

f(g,t)=C(g,t)exd —R(g,t)/D], R>D. (22) g=9g(t,tg), p=p(t,ty), s=s(t,ty), (25

This form is analogous to the Gibbs distribution in equilib- that can be parameterized by one parameter, the ingtant
rium systems Eq(6), with R(g,t) being the “activation en- The set is periodic iniy, with periodT, because the charac-
ergy” of fluctuations to the state with the nucleus sggat teristics witht, andty+ T coincide with each other.

the instant. Equation(21) is similar to the eikonal approxi- We emphasize that, in the present paper, we investigate
mation in optics or the WKB approach in quantum mechanthe case wherg, is finite, i.e., integral24) converges. This
ics. This approach or the equivalent path-integral techniquease is of interest for many models of nucleation. Analysis
was applied to analysis of large fluctuations in noisy dynamican be generalized to the case whigre> —. In this latter

cal systems far from equilibrium, including station¥r*°  case the problem of nucleation becomes very similar to the
and periodically driven system&2°-2|t was also used in problem of activation escape of a periodically driven Brown-
chemical kinetic$* The idea of the approach is that, as aian particle?®

first step, one should substitute EQ1) into FPE (3) and The activation energyR(g;,t;) equals the action
keep the terms of the leading order h This gives the s(t;,tg) in Eq. (23) along the characteristic E(R5) with t
following equation forR(g,t): given by the boundary condition at the end poigt i),
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1t 1 . ) reacheddR(g* (t),t)/dt=a* p>=0, shows that the optimal
R(gs.tr) = —f o [9—K(g(t))]7dt, path of interest hap—0 when it approacheg* (t). It fol-

4 Ji,alg(t))

26 lows from Eq.(23b) that the momentum may become equal
(26) to zero only asymptotically as—«, in agreement with the

9(t))=0, g(ty)=0s. =3 : _
Generically, the functiorty=to(gs.t;) is multivalued [cf, qualltat.Ne 'arguments discussed .above. For such a trajectory,
the activation energy for nucleation,

Ref. 22a) where a related effect was observed for a periodi-
cally driven dynamical systemThis means that, for given R(g*(1),t)=R,, (28
0s,t;, there are several characteristics in E2p) with dif-
fergnt values of aqd with different momentum at the final To analyze pathg(t),p(t) near the critical nucleus, we
point p(tr o). In this case one has to choose the value Ofinearize ing— g* (t) andp the coefficients in the equations-
to=1, that provides trléeastactions(tf o), and the corre-  5f.motion (23) and keep only the quadratic terms [z
sponding pathg=g(t,ty) will be the “true” optimal path  =g—g*(t) in the Hamiltonian Eqs(22),

for reaching sizey; att=t;. The paths that do not corre-

is indeed independent of

spond to the global minimum of action E@6) areextreme H(z,p,h=H(g* (1) +z,p,t)=a* () p>+K;(t)pz. (29)
paths of the integral over time in E(6) considered as a Solving the corresponding linear equations we obtain
functional of the pathg(t). Different extreme paths give

different values to the actioR(g;,t;) in Eq. (26), which p(t,to) =k(to), (309
then becomes a multivalued fyngtlon of the end_pomt,(f) 9(t,te) —g* ()= — B(H)p(t,to) + S(to)u~L(t,ty),

(see Sec. IVA The least actiolR(qs,t;) =s(t;,ty) corre- . .

sponds to the lowest sheet of this function. lg—g*|<g*, |pl<|dul, (30D

The prefactorC(g,t) in Eg. (21) can be found next to \yheret, is the parameter of the set of extreme paths intro-

the leading order approximation Bby substituting Eq(21)  duced in Eq(24), the functionu(t,t’) is given by Eq.(16),
into FPE(3). Using Eqg.(23) and the fact that Eq21) should  gnd

match the Gibbs distribution E@5) at smallg, one obtains, ) ot
after a straightforward calculation, _ J' * 2
B(t) 1_U2(T,0) ¢ a (T)U (Tat)dT- (31)

tf
C(9r,tr)=no exp{—ft r(g(t,to),t)}dt, [We note thatB(t) is periodic, with periodT.] Coefficients
° k(ty) and &(tg) in Egs. (30) are “global”; they cannot be
@ . At
ound from local analysis near the unstable periodic orbit and
» 9t to) =0 require integrating Eq€23) in the region far away from this
orbit, where Egs(23) may not be linearized.

In Eq. (30), the functionu(t,ty) decays exponentially in
the limit of larget —ty, and so does the momentyp(t,t,).
Therefore in the expression fay(t) —g* (t) the first term
«p(t,tg) decays at large times, whereas the second term

The activation energy of nucleation is determined by thegrows exponentially. This latter term corresponds to purely
probability density of reaching critical sizg* (t). Once the deterministic paths in E8) that diverge from the unstable
nucleus size has approached critical value, it has a probabiperiodic stateg=g* (t). Due to the admixture of this term
ity ~1/2 to grow to a supercritical size as a result of a smalthe characteristics, in general, willissthe unstable periodic
fluctuation; large fluctuations are no longer needed. Respewrbit. However, the characteristic that satisfies the condition,
tively, the activation energy is given bg(g*(t),t). Intu- S(t5)=0 (32
itively, one may expect that the latter quantity is independent 0 '
of time in the general case of nonadiabatic driving describeavill not diverge; it will approach the periodic orbit asymp-
by Egs. (23). This is related to the slowing down of the totically for t—e. This characteristic corresponds to the
motion of the system as its size approach&ét). This size  most probable nucleation patMPNP) g(t,t5) along which
corresponds to the unstable periodic state of the system ithe system is most likely to evolve when the critical nucleus
the neglect of fluctuations; the closer the system ig*ét) is formed.
the slowerg—g™ () changes in time, according to the deter-  rp 4ciyation energy for nucleatid®), is determined by
ministic equation(8). As we show below, slowing down also the action along the MPNP
occurs for the optimal fluctuational trajectory for nucleation
(this is a very general feature known in the escape problem f*(t)<exd —R,/D],
and is not limited to Markov processé#). Over a long time 1= 1
of motion nearg* (t), small fluctuations will “smear” the Rn:_f ———[g—K(g(t))]?dt, (33
distribution and makeR time independent. 4 Jigalg()

The latter arguments can be put on quantitative basis if %1 *
one notices that the activation energy of nucleation is given 9(tg)=0, g(t=)=g" (V).
by the extremumof R(g* (t),t). The condition forR to be In general, Eq(32) will have several roots per period of
extremal with respect to the instanwhere the critical size is  driving force T. The MPNP corresponds to rot§ which

KialD
Yog

[cf. Refs. 18, 2f); and 27; the integral in Eq27) is taken
along the optimal path that arrives at end poigt,t;) .

J
r(g,t)za

B. Activation energy of nucleation
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amplitude can still be sufficiently strong to change the acti-

is a periodic set of MPNPs which repeat each other with thevation energy by an amount greater tHanthat is,

period of the forceg(t,t§)=g(t+nT,t5+nT).
Equation (33) provides the basis of theonadiabatic

theory of nucleation rate in periodically driven systems. An
important feature of this theory is the time independence otl_
the nucleation rate, despite the fact that the MPNPs are sy

chronized with the driving force, as discussed abdel

Refs. 10, 20, 211 One can expect, however, that the effect of
the driving force on the nucleation rate substantially depends

on the interrelation between the force peribdnd the char-
acteristic relaxation time of the nuclei of a nearly critical

n_

R(g,t)=®,(9) +AR(g,1),
|AR|<®,, ex{d|AR|/D]>1.

herefore the ac modulation makes exponentiallystrong
effect on the distribution functiof(g,t) and the nucleation
rate J.

In the absence of drivingh(t)=0), Eq. (23) for the
optimal fluctuational paths has solutions which are just the
time-reversed paths of the deterministic dynamics of nuclei

(36)

in the neglect of fluctuations E@8). Time-reversal symme-
try between fluctuational and deterministic paths is a generic
property of thermal equilibrium systerf$The unperturbed
optimal pathg=gq(t—ty) depends on the initial instant of
growth ty only through the elapsed tinte-t,,

go(t—-tp) dg ddy(g)

size.

Indeed, for nucleus sizg close to the critical value
g*(t), the deviationg—g* (t) varies in time exponentially
[cf. Egs.(8), (30)], and generically a nucleus will leave the
vicinity of g* (t) [where|g—g* (t)| <(8* D)¥?] over a char-
acteristic relaxation timer~1/K; . On the other hand, the —t j
nuclei are “|n!ected” _|nto.th|s vicinity along the MPNPs 0 0 Ko(9)' dg
g(t,t5 +nT) with the time interval equal to period of the . S )
driving force. If this period is small, =T, then the number Note that this expression is similar to E@4) for the opti-
of nuclei with g~g(t) only slightly oscillates in time, and Mal paths at smalj where instead of free energly,(g) we
the value off*(t) is determined to logarithmic accuracy by Used surface energi(g). o .

R, in Eq. (33). To the first or.der. inh(t), the drlvmg—fo'rce—lnC?uced
For smaller frequencies of the driving force, the nucleichange ofR(gs 1) is given by the termsch(t) in the inte-
that reached critical size along the MPNP will have left thedrand in Eq.(26) evaluated along the unperturbed optimal

vicinity of g* (t) before the next MPNP arrives. As a result, Path,
the amplitude of the oscillations of the population of the t .
critical size f*(t) (and therefore the nucleation rateill AR(gfvtf):_f h(t)go(t—to)dt,
increase as the driving frequency decreases. Eventually there fo
90(0)=0, go(ts—to)=0s.

will be reached a completely adiabatic regime where the
As in the case of the activation energy for a large fluc-

population of the critical size at an instdris determined by
the optimal path that has come closesgtdt) within a time : o . ;

P P sgrdt) tuation, the driving-force-induced correction to the prefactor
of the distributionC(g,t) Eq. (27) is «<h; however, in con-

interval ~t,<T, i.e., for a given instantaneous value of the
{rc:;f;ﬁtl::;ﬁzgﬁgtl\\//:llgétgf tﬂZiii?g;;ﬁ%g%ﬂgg”ow the trast to thg expone.nt. of the distribution, the.corr.ection to the
prefactor is not divided by the small noise intensiiy
q>0(§*(t)) L Therefore, for comparatively weak driving force E@5),
keT g the prefactorC(g,t) changes only slightly. Function(g,t)
in Eq. (27) vanishes for the unperturbed optimal path Eq.
The time dependence of the distribution of supercritical(37), and thusC=n, for h— 0. Therefore, for arbitrarin/D
nuclei also depends extremely strongly on the driving fredut for smallh/su, the steady-state distribution of subcriti-
guency. Supercritical growth does not require large fluctuaeal nuclei takes the form
tions and therefore deep in the nonadiabatic redfifegt)
only weakly depends on time fay—g* (t)>(8*D)Y2 In f(g.t)=noexd —R(g,t)/kgT],
contrast, in the adiabatic regime whdig(t) is oscillating in ~ whereR(g,t) is determined in Eq¥36) and (38).
time exponentiallystrongly, the distribution of supercritical
nuclei does likewise.

Ko(9)=—a(9g) (37

(38

0.

Jo(t)ex exp{ — (39

L=§*<t>

(39

A. Nonadiabatic theory of nucleation rate: The
activation energy

In the absence of driving, the activation energy of nucle-
ation 3 as calculated along the optimal pai(t—to) is
independent of the instat§ when nuclei start to grow. The

In this section, the central section of the paper, we in-driving force lifts this time degeneracy. As discussed in Sec.
vestigate the case in which the ac component of supersatlH B, in general there will be only one most probable nucle-
ration Su(t) is comparatively small, so that in E(R) ation path (MPNP) per force period, with appropriatg,

=t3 . This path will asymptotically approach the critical

[Nt/ Spol <1. (35 nugleus, whereas other patfwith to#t5) will miss it. Be-

In this case the ac driving-force-induced chamddge(g,t) of  cause of that, the direct perturbation expansion of the char-
the activation energy is much less than activation energwcteristics Eq(25) in powers of the driving force will also
®,(9) in the absence of force. However, the modulationdiverge near the unstable periodic state. Physically, this is a

IV. NUCLEATION RATE FOR MODERATELY STRONG
ac MODULATION
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consequence of the slowing down of motion near the peri- ot

odic state, which gives rise to accumulation of the effect of KkK*= & exgA* 7],
perturbation. Formally, this can be seen from E@§) and

(3D. . (o 1 1

~ Function u(t,to) in Eqg. (30) grows exponentially in T —JO dg a(0)dPo(0)/dg M (g% —9) | (44)
time, and so does the second term in the expression for

g(t,to), which iss 8(to). The first term in this expression is Function x= x(») in the expression folU(t) is the

«p(t,ty) and decays in time exponentially. Therefore it is logarithmic susceptibility for nucleatiol?:?° It describes the
the second term which describes the deviation of the patfrequency-dependent change of the activation energy of
from the MPNP. This term is due to the ac driving force; it is hucleation, which is linear in the driving force amplitude, as
equal to zero foh(t)=0, because the unperturbed optimal discussed in Sec. V,

paths Eq(37) approach critical sizgg for all values oft,.

The perturbation expansion of patlit,ty) in h(t) becomes x(w)=— J’wdt'go(t)exqmt]dt, (45)
inapplicable for sufficiently largé where both terms in Eqg. 0
(30b) are of the same order of magnitude. whereg,(t) is the unperturbed optimal nucleation path de-

Based on the results of Refs. 10 and 20 express®®s  fined in Eq.(37).

for the characteristics in the vicinity of the unstable periodic |t js seen from Eqs(42) and (43) that sufficiently close
state can be written in explicit form. We note first that, to theyg the critical state|g—g*|~|h|Y2 the first and second

first order in the driving force amplitude, the unstable state iserms in the expression fa(t,t,) in Eq. (42b) are of the

given by the expression same order of magnitude, which explicitly shows where the
h perturbation theory ith does not apply.
g*(t):gg+a*2 —" _expliwnt). (40) Function R(g,t) can now be found froms(t,t;) and
nz0 lon—A g(t,ty) using Egs.(230, (42), and (43). In the region

_ _ . _ |g—g*|>|h| Y2 the first term in Eq(42b) largely exceeds the
To zeroth Srderllrh, the functionu(t,t’) in Eq.(30) is equal  gecond term, an®(g,t) is given by the perturbation theory
to exg —A*(t—t’)], whereas the functio8(t) Eq. (31) is Eq. (38). However, in the regiofig— g* |~ |h|2 the equa-

equal to*, where tion g=g(t,to) has more than one rotg for giveng,t. This
1 gives rise tomultivaluednessof the function R(g,t) as
—=—®J(gk), N*=-—a(gk)Ds(gl), (41) p_ointed in Sec. A, The form of actioR_(g,t) in this re- '
B gion can be conveniently studied by making a transformation

with a* being the critical nucleus size in the absence of th to new canonical variables, where the coordinate corresponds
% 9 %o the “old” momentump. The relation betweeR(g,t) and

ac driving force,®,(gg)=0. : . ; ;
> L . actionW(p,t) in the new variables is
The idea of the calculation is to solve the equations for (p.t)

the characteristics Eq$23) and (24) perturbatively inh(t) R(g,t)=p[g—g*(t)]+W(p,t),

in the region far from the critical nucleus. On the other hand, (46)
we already know the solution E€B0) for the characteristics g—g*(t)=— IW(p.1) ’ — IR(9.1) ,

in the region where deviatiog* —g is much less thag™*. ap 79

This solution applies for all driving forces. We can now where p(g—g* (1))
match these two solutions in the range of small, but not t0Q,4sformatior?®
small, g;—g, where they both apply. Finally, we obtain to
the leading order in the driving force amplitude

is the generating function of the

In the new variables, actioV(p(t,tg),t)=w(t,tg) on
the characteristics Eq42) can be found directly, because
R(g(t,tg),t)=s(t,tg) is known from Eq.(420. Moreover,

— * CONK
p(t,to)—k eXF[ AF(t to)], (423) the equatiorp= p(t,to) has a single roct, for givenp,t, and
g(t,te) —g* (t)=—B*p(t,ty) + 8(to)exd A\ * (t—to)], therefore

* 1
(42b) W(p,t):(l)é-l-%pz-i-u t+ )\—*In<kﬂ*)) (47)
* ﬂ* 2
S(t,to) = P5 = 5 P(Lto) + U(to), (420 The dependence of the actist(p.t) on p for a givent

is shown in Fig. 1. The functiokV(p,t) is single valued; in
where the limit of smallp it oscillates with a nearly constant am-
plitude and with the frequency which diverges logarithmi-
_ ; cally asp—0. In order to determin®(g,t) one has to ex-
U(tO)_n#O Max(nw)explineto), press p in terms of g from the equationg—g*(t)
=—oW(p,t)/dp, and then put it into Eq(46). Because
1 . function U(ty) is periodic, with the period 2w, it is clear
(o) = Wu(to)’ (43 that there will be infinitely many rootq,, which scale ap-
proximately asgp,<exd —2#n\/w] for largen. Eachp,, cor-
and responds to the extreme pajk-g(t,tg), with the initial in-
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Monochromatic driving

2L
For sinusoidal modulation of the chemical potential,
oS Su(t)=Sug+28u, coswt, (51
|
2 the functionU(t,) takes a simple form,
® U((to) =28u1| x(@)| cof wto+argx(w)], (52

and the initial instantj at which the MPNP starts is equal to

1
ta‘zz[ﬂ'(Zn%—l)—argx(w)]. (53

/B

FIG. 1. Solid curve: action functiow/(p,t) vs momentunp in the presence
of the driving, for a given time (units are arbitrary Dashed curve: action
function W(p,t) for zero driving.

The driving-force-induced change of the logarithm of
distributionf(g,t) for the critical nucleus sizg* (1),

5, omlx(@)]
D D

is linear in the driving force, which explains why we call
(w) the logarithmic susceptibilityL. S).1%%°

Inf*(t)~— (54

stantty which is equal to the argument bfin Eq. (47) for a
givenp,. All of these paths come through the same pgint X
at the instant, but with different momenta,,, and they also
provide different values to the actioR(g,t). As we dis-

cuss.ed in Sec. lllA, one needs to select the mptwhich The prefactor Analysis of the prefactor in the nucleation
provides the global minimum tB(g,t).

We will not investigate here the detailed structure of thera.te requires calculation of the p_robgtyhty fljg. 1) Eq' (4) .
- . — with account taken of the periodic driving. To do this we will
surface of the_ m|n|.mum actpR(g,t) (see Refs. ?3' 21 analyze the distribution function in the vicinity of critical
Instead, we will be interested in the valueR(g,t) directly  stateg* (t) using the results of the previous section and Eq.
at the periodic unstable statg=g*(t). This value ofR  (13) for the functionf (z,t)=f(g* (t) + z,t). Equation(13) is
gives the nucleation rate, to logarithmic accuracy, cf. Ejinear inz and this allows us to seek its solution using the
(28). From conditiong=g* (t) and Eq.(46), it follows thatp | aplace transformation,

is given by the condition

B. Nonadiabatic theory of nucleation rate: The
prefactor

~ +oo 1
f(z,t)= fo dp ex;{— 5(pZ+V(p,t)) .

We need to find the root of this equation that provides thepye agssume that ekp V(p,)/D] does not diverge fop—0
global minimum toW(p,t) and, from Eq.(46), the minimal  and decays sufficiently fast far— = (these assumptions will
value of W(p,t) is equal toR(g*(t),t). It immediately fol-  be verified latex. From Eqgs.(13) and (55 we obtain the
lows from the form ofW(p,t) in Eq. (47) (see also Fig. 1  following equation for the functio¥(p,t):

JW(p,t)/9p=0. (48) (55

that the global minimum ofW(p,t) is achieved in the
asymptotic limit ofp— 0 where the second termp? can be
neglected. TheWV(p,t) becomes minimal wherd is mini-
mal, that is for

oV

——KX*(t) ﬂ+a*(t) 2=Da*(t) (56)
o KaWp p g(Dp.

We are looking for a time-periodic solution of EG6),

V(p,t)=V(p,t+27/w). The boundary conditions for
V(p,t) can be found by matching distributidi{z,t) to the
which precisely corresponds to the condition for the MPNPasymptotic expression Edq21). The matching should be
g(t,t¥) as given by Eqgs(42b), (43), and(32). done in the region where, on the one hajdis sufficiently
The corresponding activation energy for nucleation islarge so that the integrand in EG5) is a steep function of
(cf. Refs. 10, 20 and the integral ovep can be evaluated by the steepest de-
scent method, but on the other hafzl<g*(t), so that Eq.
U*=minU(to)=U(tg). (50) (13 is still applicable.
to If the integral overp Eq. (55 can be evaluated by the
The quantityU* gives the driving-force-induced correc- Steepest descent, then
tion to the nucleation barrier. It immediately follows
from Eq. (38) that this quantity is just equal to
lim_.. AR(go(t,t5),t) evaluated along the unperturbed op-

u(tg)=0, (49

R,=®§ +U*,

f(zpn=C exr{ - %(me+V(pm,t)) :

timal path with the appropriate initial instati . ~ 27D \1?

By construction, functior(ty) in Eq. (43) is periodic, CZ(W) ' (57)
with force periodT and zero mean. Therefore its minimal
value is negativeJ* <0, which means that ac modulation _ V(p,t)

A : for p= z|<g*).
always exponentiallyncreasesnucleation raté?2° op O P=Pm (I2/<g")
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Here p,,=pm(z,t) is the position of the global maximum of in the presence of ac modulation of the chemical potential. In
the integrand in Eq(55) for given z andt, and the prefactor the case of not very strong driving, the effect of modulation
C is evaluated ap=py,. manifests itself entirely through the factor ¢xpJ/D] in the
Functionf(z,t) in Eq. (57) has exactly the same form as Intégrand, wher&) =U(to) is defined in Eq(43) and is pro-
that given by Eqs(39) and (46). In particular, it is immedi- portional to the driving ampl|tude.~ln the limit of very weak
ately seen that the relation between functioR¢g,ty  driving, [U/D|<1, the distributionf(z,t) in Eq. (61) goes
=R(z,t) andV(p,t) in the exponents of the expressions for Over into the stationary distributiofy(z) near the critical
T corresponds to the canonical transformation @6) to the nupleus known from the classical droplet theory of nucle-
basis wherep equals to the momentum. This means that ation (cf. Refs. 1-3
V(p,t)=W(p,t), with an accuracy to the termsD.
It follows from the canonical transformation E¢6)  Time-averaged nucleation rate

that functionW(p,t) obeys the Hamilton—Jacobi equation A sufficiently strong driving, for whichU|/D>1 in Eq.
dW oW (61), results in the exponentially strong change of the nucle-
W-ﬁ-ﬁ( —%,p,t> =0, (58)  ation rate. Using Eq(61) one can obtain the distribution

function averaged over the force period, and also the average

where the Hamiltonian near critical statég—g* (t),p,t) is  value of fluxj(g,t). Averaging of the integrand in E¢61)
given by Eq.(29). Clearly, the equations fow(p,t) and overt gives a factor
V(p,t) coincide in the neglect of the small terfha;p<D A= (e~U(ID) 63)
in Eq. (56). This means that, in fact, we know the solution of '
Eq. (56), as functionsV(p,t) andW(p,t) can differ only by ~ which can be taken outside the integral. For sufficiently
a constant and, from the matching condition, this constangtrong driving it can be evaluated by the steepest descent
should go to zero aB—0, so that we can write method. The dominant contribution to E@3) is given by

the value oft which corresponds to the MPNP. The result

V(p,t)=W(p,t)—DIncg. (59

has the form
Constant, can be determined by matching the prefactors in

Egs.(57) and(39). With account taken of the explicit form (f(9.))=Afo(2), 64

of W(p,t), this gives ( omD |2 p( uU* )
* |\ 112 ~l | exXp - — |2 L
CO:nO(Zl[jT_D) | (60) TU(t5) b

. ) ) whereTo(z) is the stationary distribution function fdr(t)
The above expression, combined with E@S5), (59, _q [it can be obtained by settinig=0 in Eq.(61)]. Distri-

and (47), explicitly determines the steady-state distributiony, o £q.(64) differs from this stationary distribution by an

nea[lltzhe. critical nucle_us. After. changing tg=(D/ exponentially large factor; so does the average nucleation
B*) ~“p in Eq. (55), we finally obtain

rate, 71 7= A.
~ 2\ z¢ 1, In the case of monochromatic drivingy(t)=2h;
f(z)=1g P fo déex _5_55 X cost), from Egs.(52) and(63) we obtain for the average

nucleation rate

1 ( 1 ~

Xexg—=Ult—7 +—In§) , (61) J 1 D

p[ D N —=A=Io(— P . (653
1 Jo €1 2hy[x(w)|
n
fé‘:—oex;{——d)g : € |2 1

2 D A~ E ex E_ , 61<1, (65b)

Here, f§ is the concentration of the critical nuclei in the ' 5

iVi h 1)

absence of driving, whereas A~1+ —5=1+ 1|XD( )|) e, (650

1
ZD:(DB*)UZ! TDZT*+—|n

AN (62) wherel y(x) is the modified Bessel functic.

Zp . : .
] o ) Equation (658 determines the average nucleation rate
critical nucleus where the motion is dominated by small fluc-ngpjinear growth law Eq(37). The average rate depends on
tuations. Timerp gives the characteristic timte-t, it takes 5 gingle dimensionless parametey, in which the only

for the nucleating system to reach regigfi(t)~9~2p  model-dependent factor is the absolute value of the logarith-
moving along the optimal path. This time is the sum of theyy;c susceptibilityy(w) Eq. (45).

“fast” time 7* defined in Eq(44), which corresponds to the

motion far from the critical stateyy —g>zp, and the char- c

acteristic duration of motion near the critical state.
Expression(61) is one of the central results of the paper. In this subsection we consider the distributib(,t)

It gives the nuclei distribution function in the critical region =f(g*(t) +z,t) in the region dominated by small fluctua-

93) de]

. Distribution function for nuclei of the critical size



J. Chem. Phys., Vol. 110, No. 23, 15 June 1999 Smelyanskiy et al. 11497

tions. For simplicity, we will sez=0 in Eq.(61) and ana- different MPNPs and from the paths within the tubes of fluc-
lyze explicitly the distribution functiorf* (t) evaluated ex- tuational paths surrounding the MPNPs. Far from the critical
actly at the size of the critical nucleus. We will be interestedsize, the distribution of the paths within the tubes is nearly
in the nontrivial case of comparatively strong driving whereGaussian, with variance D. The contribution from thath
the factorecexd —U/D] in the integrand in Eq(61) varies MPNP is determined by the portion of paths which reach
with £ exponentially steeply and the integral can be evalu-g*(t) for a given position of the MPNR(t,tg). It is de-
ated by the steepest descent method. scribed by the functios* (£,,). Clearly, it falls down expo-
Remember that the dimensionless variabia Eq. (61) nentially for the MPNPs, which are still far away from
corresponds to the momentypof the auxiliary system Eg. g*(t), for givent. We note that the time dependence of
(22) near the critical state. The values §tan also be pa- f*(t) is fully determined by the factoA* (t). The latter
rameterized by the instang at which begins the character- factor does not depend on the spectrum of the driving force.
istic with p(t,to)=(D/B*)¥2%¢. From Eq.(42)

§=eX[{—)\*(t—TD—t0)]. (66)
This parameterization allows us to think of the distribution Low-frequency driving
f*(t) Eq. (61) as a sum of the contributions from various In the limit of relatively low frequency of the driving

extreme paths that start at differégtand approach the criti- force,
cal regioné~1 (and|z|=|g—g* (t)|~zp) within finite time.

Changing to integration ovey, in Eq. (61), we obtain that, ex —A*T]<1, (71)
for the critical nucleusZ=0), the functionA™* (t) has a form of periodic spikes, with width
12 . <T. In this case the terms with differenin expression70)
f*(t)= fS(E) )\*f dt,G* (e M (=70~ 10)) for A(t) differ exponentially strongly, and at a given instant
- of time t there will be, in general, only one term in the sum

1 over n, with n equal to a certain integgy, which will be
xex;{ ) U(to)}, (67)  dominating,
A*()=A*TG* (e M (-0 10), (72)

1
- 2
G*(y)—yexr{ oY This term corresponds to the MPNP that has arrived at the
critical region ¢,~1 at the instantf+ 5. Since function
G*(¢) is maximal for £&=1, the maximum ofA(t) is

reached at the instant=t} ., where,

It follows from this expression that the relative prob-
abilities for the paths to reach critical state0 are mostly
determined by the steep exponential factor[exg(t,)/D].
The “window” function G* (&) is comparatively smooth thac 0+ 70, A*(thad =N*Texp —1/2). (73
(for £~1, it varies by a factor of~1 whent, varies by the
period T, provided AT=<1). This function determines the
time dependence df* (t). In this approximation, the major
contribution to the integral Eq67) comes from the values

Fort—tP _>1/\*, the occupation of the unstable criti-
cal state decreases exponentially in time because the system
moves away from this state. This decay is described by the
factor exp—2n*(t—th)]. At sufficiently larget—th ., the

N 27 contribution from the next MPNRthe one that starts one
to=to +nT, n=0x1x2.., T=—, (68 period latey becomes important, and eventually* (t) is
described by Eq(72) with p replaced byp+ 1.
for which the factor exp-U(t5)/D] is maximal. This pre- The time dependence of*(t) is strongly asymmetric

cisely corresponds to the result given by E@) and(50)  with respect tot—tP .. For t<tP_ the occupation of the

for the activation energy of nucleation, with +nT being  critical state is determined not by the relaxation away from
just the initial instants at which the MPNPs stagenerically, it pyt by the width of the tube of fluctuational paths sur-

there is one MPNP per perioD. _ _ rounding the MPNP. This corresponds to the Gaussian decay
The corresponding stationary poirs-£,(t) of the in-  of function G* (¢) at large£s1. Therefore fort<tP, the
tegral in Eq.(61) for z=0 are occupation of the critical state decreases much faster then for
£n() =exd —\* (t— 75— tD)]. (69) t>t%ax. The minimatp;, of function A*(t) are closg to its
_ o . maxima,th ..—th. <T. The values off,,, can be obtained by
Finally, for the functionf* (t) in Eqg. (67) we obtain taking into account the contribution not only from tpéh
£ (1) =X AA* (1), MPNP, but_allso fr_om _the MPNP that started a period earlier,
i.e., att=tf~~. This gives
A*(O)=NT 2 G*(£,(1), (70 b _ip - ]
n=—o tmin_t0+ TD_WIn(Z)\ T),

whereA is given in Eq.(64). (74)
It follows from Eq. (70) that, for nonadiabatic driving,
the distribution functionf*(t) at the size of the critical Fort<tp,, the occupation of the critical state is determined

nucleusg* (t) is given by the sum of the contributions from by the MPNP withn=p—1 in Eq.(793).

A*(tRi)=(2\*T)%2exd —\*T1.
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D. Nucleation rate and probability distribution for wheretP  is given by Eq.(73). The current is maximal for
supercritical nuclei the deterministic paths that arrive at stagefor t=tp

We now consider the distribution of supercritical nuclei T 7o(@(P=0,=1...) and start near the critical state &t
far away from the small-fluctuation region, i.e., fgr-g* = tmax &t which the corresponding MPNPs arrives to this
>75, but forg—g* <g*. The nucleation ratgf(z,1) can be state and the probability densrtii(_t) is maX|m<_3|I[Eq. (_73)_].
obtained by substituting the distribution function E61) _Thus the ve_llue of the nucleation rate varies periodically,
into Eq. (14). Changing in Eq(61) from £ to t,, we obtain  t@king the maximal value

Jz,t) - 7 jmax:j(tr%ax"_ 70(9),9) = JoAN* T exp(—1). (79

A =\* f_wdtoG(ge_"“_TD_to)) Similar to the analysis in the previous subsection, the

minimal value of currenj(g,t) is reached where there oc-
curs switching from one MPNP to another and one should
» Gly)=yexd—-y]l (79  keep two terms in the sum EGZ7),

Xexr{ - USO)

1
[we have neglected the term¢2/2 in the exponent of the Jmin=J| 9thaxt T0(@) — = INN*T
integrand in Eq(61), which is(zp/2)<1]. A
For the moderately strong driving in which we are inter- =2jmah* Texd —A*T]. (80)

ested, the probability flux is nearly constant along the deter-
ministic growth paths, which are given by E®) with h(t)
set equal to zero. Therefore fljkg,t) equals/(z,t’) where
points (g,t) and (z,t') are connected by the deterministic
path Eq.(8). The expression for flux(g,t) can then be

We note that the oscillations of currepfg,t) in the
supercritical range, as described by E#j), differ from the
oscillations of the distribution functiof* (t) at the critical
state, although they are closely related to each other. The
difference comes from the fact that functi@t (y) in Eq.

written as ) o e

(70) describes the diffusion near the critical state whereas,

i(g,t) w . function G(y) in Eq. (77) is defined in the supercritical re-
7 =\* J_ dtoG(e™" (1709~ 10) gion where growth dominates over diffusion processes.
0 However, the supercritical current is also very asymmetric in
U(tg) 9 dg time near its maxima, because the growth trajectories ema-
xexpg ——5—| 70(Q)= J v Ko(@) (76)  nate from the critical state, and the current is larger for the

g5 +zpK0ld

trajectories that lag the MPNP as compared to the trajectories
We have set=2zp in Eq. (75) and neglected ifj(g,t) the thatlead the MPNP.

small termsecg* (t). The functionro(g) in Eq. (76) is the
time it takes for a nucleus to grow from sig§ +zp to size  E. Nonadiabatic versus adiabatic driving

9 £ ion(76) i fth | its of th | Expressions(70) and (77) correspond to the case of
.(;quailﬁn( ) is one Oft ?hcentral ret':j,u ts Ot t 1€ paper. J,nonadiabatic driving. The essential feature of this case is that
provides the expression for the nucieation rate In a periodiy, exponential factor ekp U(ty)/D] in the integrands in

cally driven system in a broad range of driving force ex : ; :
L , . pressiong67) and (76) is a much steeper function of
strengths. Similar 1o Eq653, it applies for weak forces, than functionsG* and G, respectively. The latter functions

|3(t);g|<i’ Oas .”W(.a“ an Lor relativefly dS.IErrong forlces vary only slightly within the characteristic widths of the
[U(t)/D|>1. Oscillations of the current for different values maxima of exp—U(ty)/D] in the vicinity of the stationary

of g have the same form but differ from each other by a_ . ts in the int | Ea<6 d(76). This is t ided
time-independent phase factor. The form of these oscillationgOln s in the integral Eq$67) and(76). This is true provide

is given in terms of the increment* in the critical region, . 12
and also LSx(w) which depends on a particular nonlinear ~ A |7——| <L (81)
modelKy(g) and determines the form of functidn(t) for a U(to)
given driving forceh(t). In particular, for sinusoidal driving we obtain
For |U(t)/D|>1, the integral ovet, in Eq. (76) can be
w
evaluated by the steepest descent method, = )\_*> 61/2, (82)
i(9.0)=TJA*TA G(e M It=70(9) -5y 7 where e;=D/2h,| x(w)]| in Eq. (653.
(=T nzz—oc ( ) (77 If the period of driving is very large, functionrS* and

G in Egs. (67) and (76) depend ont, steeper than

The values ofty and A are given in Egs(68) and (64),  exg—U(t,)/D], and for allt the major contribution to the

respectively. integrals in Egqs(67) and (76) comes from the vicinities of

In the limit Eq.(71) of relatively low driving frequency, the values ot, whereG* andG are maximal. In the inter-
the sum in Eq(77) is, in general, determined by the term esting case where maxt)/D>1, this happens if

with n=p,
P maxU (t)/A\*TD<A*T>1 (83
j(g,t):jo)\*TAG(e_)\*(t_TO(g)_tpmax))’ (78 (i.e.,hy|x(w)/D<\*T, for monochromatic driving
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purely adiabatic regimécf. Eq. (84)]. Deviations from this
behavior become more and more pronounced m&reases.
We note that the asymmetry of curves 2—4 is immediately
related to the form of functioG(y) =y exd —y] in Eq. (76),

with yocexg —\*(t—tp)]. To the left from its maximum,
function G displays a very steef@ouble-exponentialdepen-
dence ont. Therefore the dependence of flipon ¢ to the

left of the maxima is similar to the adiabatic behavior for
small v. The deviation from the adiabatic regime initially
occurs in the regions to the right of the maxima. Indeed, as
we discussed above, the maximaj aorrespond to the peri-
odic arrivals of MPNPs at the critical state, followed by slow
diffusion near this state. This effect was noticed in Ref. 13 in
the calculation of the probability flux over a periodically
modulated parabolic barrier. It is clear from our analysfs

Eq. (80) and the discussion abové that, for not too large,

the minima ofj as a function of phase are located to the
left of the maxima and very close to them, as compared to
21r.

It is seen from Fig. 2 that, with increasing reduced fre-
quencyw, oscillations in the nucleation rate are suppressed.
In particular, curve 6 (where v=m) describes small-

- - - amplitude nearly sinusoidal oscillations of the flux about its

0 T 2n 3n 4 average value in Eq65). Suchrectification of the flux is
0 due to the fact that, as the driving frequency increases the
FIG. 2. Reduced nucleation rate=7.7, as a function of phase [Eq.  System, that has amveq to the “slow” area of sméd _
(85)] for different values of the reduced driving frequeney w/\* and for ~ —g*| along one MPNP, it does not have time to leave this

the reduced driving force amplitudehg| x(w)|/D=1/e;=10. Curves 1-6  grea before the next MPNP approaches it. Respectively,
correspond ta=0.1, 0.3, 0.6, 1, 1.3, 3.14. more and more MPNPs are contributing to the sum in Eq.
(77). Generally, the amplitudes of nonzero Fourier harmon-

For the slowly varying driving force Eq83), the char- ics j, of the flux decrease exponentially with, for large

acteristic duration of motion along the MPNP to the small-“’/)\*' In particular, for monochromatic driving,
fluctuation region near the critical nucleus sizerjs~1/\* in mhy 172 )

<1/T, and the time it takes a supercritical nucleus to reach R = (W) AN (86)
size g is 7o(g)<T for g not too different fromg*. Then ) o ) )
expressions for the probability flux in the supercritical range herefore in the limit exprv]>1 the nucleation rate is es-

and the population of the critical state are reduced to a purel§entially rectified.
adiabatic form We note that, since the change mtorresponds to the

. . change of the driving frequenay, LS y(w) will take differ-
goh(t) go h(t)
D

ent values for different curves in Fig. 2. On the other hand,
€, depends ony(w) [cf. Eq.(653], and, therefore, in order to
keepe, constant for different curves in the figure, one has to
change the amplitude of the drividg . However, as will be

f*(t)=f3ex;{ } j(g,t)=j0exr{ } (84)

Here,gg h(t)=— x(0)h(t) is the adiabatic time modulation

* . .
g];i\t,?ne ffrgzrieeger:gﬁ%(g (1)), to the leading order in the shown below, for the relevant growth models, &w) is
g P X characterized by a smoothonexponentialform of the dis-

We are now in a position to discuss the numerical re- ; R
. . . ersion curve. This is in contrast to LS for escape of a
sults. For monochromatic driving, the time dependence o . . 9630 . .

rownian particle®3 which decays exponentially for

probability flux j(g,t) in Eq. (76) is shown in Fig. 2. The

flux is a periodic function of phase, large o.
d=w(t—19(g)— 7p) +argy(w), V. LOGARITHMIC SUSCEPTIBILITY FOR PARTICULAR
MODELS OF NUCLEATION
J(9.0)=Tox($)=2, jnexding]. (85 For weak to moderately strong driving forces, the pa-
n

rameters of the dynamical model of nucleation enter the ex-
Functionk(¢) is independent of [cf. Eq.(76)], and depends pression for the nucleation rate only in terms of the function
only on the dimensionless reciprocal driving force amplitudeU(t) in Eq. (43), which is given by LS. For low-frequency
€, and the dimensionless force frequency driving, LS x(w) is ~—gg , and therlJ(t) = —gg h(t). This
Curves 1-6 in Fig. 2 correspond to the sameand corresponds to simple adiabatic modulation of the nucleation
different ». Curve 1 corresponds to a very smallnd de-  barrier(however, retardation effects can still be important, as
scribes symmetric oscillations of the exponentjah the  discussed aboye On the other hand, for high-frequency
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driving, functionU(t) and the driving-force-induced change !
of the activation barrielU* =minU(t) (for |U*|>D) are @)
determined by the frequency dispersionydi). Yl
We noted earlier that, for a given model, LS can be
found by making the Fourier transform in EG5) of the 05
time-reversed speed at which the size of a subcritical nucleus 3
decreases in the absence of fluctuations. This decrease is
described by Eq(8). We will analyze LS for the dynamical
models which describe 2D layer-by-layer nucleation during
overpotential deposition, and also nucleation of condensed 0 : s ' .
monolayers in underpotential deposition. In both cases v
nucleation is characterized by small supersaturation, and 0
relatively large sizes of critical nuclei can be expected.
Layer-by-layer nucleation occurs during deposition on native
metal[e.g., in deposition of Ag on AdgRefs. 11, 31 or Ag
on Au (Ref. 32] or in the case of small crystallographic
overlayer-substrate misfit.
In 2D nucleation, the sizg of a nucleus is proportional
to its area, and the surface energy in EB) is proportional
to the length of the boundaryvhich is assumed to be circu-
lar), so that in Eq(18) A(g)=yg*2 A few simple growth
mechanisms are known in the literature. When diffusion on &!G. 3. Frequency dependence of the absolute vauand the phaséb) of
surface is much slower than the attachment of ions from thégarithmic susceptibility, x(w) =g5 Y(w/A*), for different nucleation
. . . models. Curves 1-3 correspond to the direct transfer mode(88y. the
solution to the surface, the ions are most I'kely attached t%allistic model Eq.(91), and the diffusion-limited model Eq95), respec-
the nuclei directly from the electrolytédirect transfer tively.
mechanism In this case the rate at which ions are attached
is proportional to the area of nuclegs

In particular, for largev= w/\*,

a(g9)=oqg- (87) v - 92
~ — 00,
Using a(g) and A(g), we can explicitly find the optimal o(v)=2iv 5w . _ %2
nucleation path from Eq37) and then obtain LS from Eq. On the other hand, if an adatom “sticks” to the nucleus
(45), once it has approached the nucleus boundary, the attachment
rate a(g) is determined by diffusion-limited growth and is
gD =g (1—exf —\*t])%,  A*= ‘Tdtj'“O, independent of nucleus size in the 2D case,
® 2 . . .
y(w)=g*Y (_ C Yg(v)=— ——— . Using Egs.(37) and (45), we can write the optimal nucle-
0 dN ¢ (1-iv)(2—iv) ation path and the corresponding LS in the form

In the opposite case, where surface diffusion of adatomgx) = — (x¥2+ ix+ In(1—x?)),

is fast, whereas the activation barrier for transitions through
the double layer is high, 2D nuclei grow by attaching ada-__ , « _ * . 041010
toms from the surface rather than directly from the electro>~ M b X 9o()/g5 . A 295 (04
lyte. Such growth can be modeled in two simple ways. If, .
before an atom attaches to a nucleus, it had to “hit” the — % “’) _ J' ;

' =g5Yal =/, Y =— | dzexdivs(z)]. (95
boundary of the nucleugthe step on the surfagpeseveral X(©)=0g d'(k* al(v) 0 Hivs(2)]. (99
times, then the nuclei grow in the “ballistic” regime where
the attachment rata(g) is proportional to the length of the
boundary, Ya(v)=¢v= 23 =23r-11/3). (96)

a(g)=o,g"2 (89) The frequency dependence of LS for the above nucle-
ation models is plotted in Fig.(8 and 3b).

The ballistic and diffusion-limited models @f(g) can
also be relevant for nucleation in underpotential deposition

In the limit of largev= w/\*

Using Egs.(37) and (45), we can write the optimal nucle-
ation path and the corresponding LS in the form

s(x)= — (x"?+In(1—x%?), where a submonolayer, or one or two monolayers of a metal,
5 grow on the cathode made from a different metal, with the

o ; o o . . Ny

S=AM, x=go()/gh, A*= bOMo (90) potential which is positive with respect to the Nernstian equi

B 2(93)1’2’ librium potential for bulk deposition. Nucleation in underpo-
tential deposition corresponds to condensation of adatoms on

[0} 1 . .
o)=a* Y (_) Yoy :_f dzexdivs(z)]. 91 the surface from a disordered low-coverage phase into or-
X(@)=0o Yo 3 b() 0 Hivs()). (91 dered cluster8®!! The role of the ion transfer from the so-
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lution is negligible during surface phase transformations be- 10%

cause of the large activation barrier for the ions.

Supersaturatiodw(t) in the case of underpotential deposi-

tion is the difference in chemical potentials of the atoms in

the ordered clusters and in the disordered phase. i
The above models correspond to simple limiting cases of

surface growth. In the general case the growth law will be A

more complicated. We note, however, that instead of using .

particular dynamical models, LS can be determined experi- 10

mentally by measuring the nucleation rate. In the simplest W
case one can use a monochromatic driving force and measure "

the driving-force-induced increment of the average nucle- ST ]
ation rate A= 7/.7,. According to Eq(65), this allows us to 0 n 2n 3n 4n

determine the absolute value of L§w)|. The measurements
can be performed in a broad range of driving force ampli-FIG. 4. RatioA of the average nucleation rates with and without driving in
tudes, but the most advantageous regime correspones to Eg.(97) for a biharmonic driving force vs phase differenbebetween the
> 1 where the force affects the nucleation rate exponentia”)parmonics. The reduced amplitudes of the harmonics are set equal to each
strongly,A»l. By measuring the Iogarithm o and using other,e;=¢€,. Curves 1-4 correspond {9 =¢,=0.5, 0.2, 0.11, 0.07.
Eq. (65), one can find the change of the nucleation barrier
D/e€; and thereforéy(w)| at the driving frequency.

The frequency dependence of the phase of LS can b0 and corresponds to the fact that functld(t) may have
recovered by measuring the time-averaged nucleation rat&vo minima per period, and thed* is determined by the
for a nonsinusoidal periodic driving force. In the simplestglobal minimum ofU(t) [cf. Eq. (98)]. The relative depths

case of a biharmonic driving force, of the minima depend o, and for the values o where
n=2 the two minima have equal depths, the derivativ&dfwith
h(t)= 2 h,expiinwt), h_,=(h,)", respect tod changes discontingou§ly. This singularity is
n=—2 smeared out by noisB, as seen in Fig. 4.

We note thate; , in Egs. (97) and (98) depend on the
absolute value of L$y(w)|, which can be measured using a
monochromatic driving force, as described above. Therefore

1> 1 1 the relative phase of L®(w) can be recovered by measuring
A= > > I2n<—) I n(—) cogn(®+0(w)+m)], the dependence & on @ for different driving frequencies.

n=0 €1 €2 To find the phase of LS arg(w) from O(w) one should
0(w)=2 argy(w)—argx(2w), P=2argh;—argh,, solve the equation

97) 2 argy(w) — argy(2e) = O (o). (99)

the factorA, which shows the driving-force-induced increase
of the average nucleation rate, is equal to

D k=1,2. We now discuss the boundary conditions for this equation.

- 2hy|x(ko)|’ We note first of all that LSy(w) approaches-g} as o

Here, we used Eq63) and the explicit form of the function — 0, @nd therefore arg(w)—0 for o— 0. For largew, on the
U(t) in Eq. (43). For strong driving,e, <1, Eq.(97) goes oth_er hand, the _asymptotlc form gfw) is determined by the
over into the asymptotic value @in Eq. (64), with account  OPtimal nucleation patigo(t) for smallg, and |x(w)[—0

taken of the explicit form of the driving-force-induced cor- fOf @—, whereas arg(w) approaches a finite constant
rection to the nucleation barriéi* value. Based on these boundary conditions, the solution of

Eqg. (99 can be written in two forms:

€k

1 1
* =min| —cose+ —cog2¢—D—0O(w))]|. (98)
o LE€1 €2

argy(w)=oty+ >, 27X 10(2Xw) (100
k=0

The average nucleation rate E(7) depends on the
phase differencab between the harmonics of the driving K ko1
force. For strong driving this dependence is exponentially :wto_go 2°0(27" "w), (107)
strong and is determined by the variation Bf with ®.

Plots of A vs @ for different driving strengths are shown in which relate arg(w) to the values of®({}) with Q) being
Fig. 4. The amplitudes of the harmonics weighted with theovertones ¥» or subharmonics 2w of frequencyw [in
appropriate absolute values of LS are chosen equal to eadhct, the values oP (2Xw) for k>0 andk<O0 are interre-
other, ;= €,, so that the effect of the interference betweenlated via Eq.(99)].

the harmonics is maximal. It is seen from Fig. 4 that, in the  The first term in Eq(101) identically satisfies Eq(99)
case of strong driving, the dependence of\lan ® is very  with arbitrary realty. The occurrence of this term is related
sharp near the minima &. In fact, the dependence bf* on  to the time degeneracy of the unperturbed MPNRét

@ is singular at the minima. This effect was analyzed in Ref.—ty), which was discussed earlier. We note that, due to

o
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analyticity of y(w) for w— 0, the function®(w) is quadratic
in w for w—0, and therefore the second series for i) i(t)=ezf
converges.

LS can also be found from measurements of the nuclewhereg(0|z)=gg +2, and the growth of supercritical nuclei
ation rate in the case of weak modulation where the harmong is calculated in the neglect of fluctuations. The value isf
ics of the nucleation current are linear in the amplitudes olimited by the condition thaz<gg , and in what follows we

to.
Odsg(t—s|z)j(g’5+z,s), (9(h)>gg), (109

the corresponding harmonics of the driving force, will assume thatz=z, (the result is independent of the ac-
i(g,t) inw tual value ofz).
: =1—D‘1E hox(on)I'| 1+ — ) We now investigate this expression for the models of
To n A nucleation considered above.
Xexdinw(t—79(9)—)]. (102

Once LS is known, it is possible to find the nucleation A. Current density for fast surface diffusion
current from Eq.(76) for any profile of the driving force
without specifying the particular nucleation model, and this
suggests how to perform tHearning controlof the nucle-
ation process.

In the diffusion-limited model of 2D nucleation, for
large nuclei §>gg) the growth rate becomes independent

of their size,QwZ)\*gg . In this case the Faraday current in
Eq. (104) is merely proportional to the integral over time of
the periodic nucleation rate. At low modulation frequency
VI. THE FARADAY CURRENT w/\* <1 the integral is reduced to the sum over the contri-
o butions from the vicinities of the maxima of nucleation rate
Ong of the standard ways to §Fudy the kinetics of the-(gg +7p,5) ats=t"_ [see Eq(78)] that correspond to the
nucleation process in electrodeposition is to analyze the Fagyrivals of the MPNPs to the critical region. In this limit one
aday current in the electrochemical cell. Attachment to theyptaing

cathode surface of an ion with the charg& e contributesZ .
electrons to the Faraday current. In the case of small super- .

saturation, which is relevant to our analysis, the surfac: is |(t)=2e2@)\*joTAn§0 6= tma),

close to equilibrium. In this case the elementary attachment/ (105
detachment processes to and from the surface, as well as To(t)~2ZGN\* Jot, (t>1N*).

fluctuational formation and collapse of small subcritical NU-Here, 4(x) is the step function, and the value Xt is given
clei, give rise to zero-mean fluctuations of the current. Afterby Eq. (94).

averaging over the time scale of elementary processes, thé Tne current Eq(105) is approximately time independent
current densityi(t) is determined by the rate of formation ;, petween the instantd ., and the increments by a constant
and subsequent growth of supercritical nuclei. If supersatughen t goes through the nexf.... After a long time has

ration is created by a voltage pulsetaio,_ and after that is elapsed since the modulated overvoltage is turned @ (
held at a constant valugu(t) = o, then in the steady state 5.1y gg that many terms in the sum contribute to the cur-

the current densityy(t) is proportional to the growth rate of rent, the increments of the currenttatt” _ are small com-

the supercritical nuclei. The number of atoms in such ”UClebared to its magnitude, which is then determined by the av-
No(t) is equal to erage nucleation rate,

t . .
NO(t):f g(t—S)deS, (g>g~!0<), I(t)ZAIO(t)OCt, (wt>1).
0 We note that the above analysis for the Faraday current den-
io(1)=eZNy(t)=eZgt)Jo. sity gpplies to the initial state qf pucleation when the surface

_ fraction covered by the deposit is small.

Here,g=K(g) describes the deterministic growth of super-  For the ballistic model of nucleation, the growth of large
critical nuclei[cf. Eq. (76)]. Equation(103) corresponds to nuclei is parabolic in timeg= g (\*t)? [cf. EqQ.(90)]. Simi-
the qualitative picture in which supercritical nuclei emerge atlar to the case of diffusion-limited nucleation after a long
a rate.Jp, which is independent of time fdr>0. By timet  time has elapsed since the overpotential pulse is turned on,
the nuclei, which have emerged at instanwill grow to size  the time oscillations of the nucleation rate are averaged out,
g(t—s). Timet is chosen so that it largely exceeds the tran-in the expression for Faraday current Et04) at wt>1 and
sient time, which is of the order of the reciprocal probability the average current is determined by the average nucleation
of creation of a critical nucleus in the system. For syaghe  rate,
characteristic size of nuclgj(t) is much larger thamgy . . .

In the case of periodic modulation of supersoaturation (D =Ai()=AZRHMN D?,  (0t>1). (106
Su(t), the Faraday current densitft) has to be calculated
taking into account the periodic modulation of the nucleation )
rate. Taking into account that the number of supercriticaInUCleat'on
nuclei reaching sizgg +z over the time intervalt(t+dt) is In the direct transfer model, the size of the nuclei grows
given by j(g§ +2z,t), we can write the expression for the in time exponentially{cf. Eq. (88)], and the Faraday current
current as is mostly determined by the nuclei with the size close to the

(103

B. Faraday current for the direct transfer model of
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4.4 . . . linear in the force amplitude. In both linear and logarithmi-
cally linear regimegand in the whole intermediate range
the driving-force-induced change ¢fg,t) is described in
terms of a certain spectral functigfiw) which we call loga-
rithmic susceptibility(LS). Similar to standard linear suscep-
tibility, x(w) is determined by the dynamics of the system in
the absence of external driving, but the crucial difference lies
in the fact thaty(w) is determined by large dynamical fluc-
tuations of the system away from the steady state and de-
pends on the global properties of the evolution of the system
along the most probable nucleation paMPNP). The ex-
34 . . . plicit form of x(w) is determined by the model of nucleation.
0 w 2n 3n 4n In the case of monochromatic driving, the nucleation
current is determined by the absolute value of L&w)|,
FIG. 5. Period_ic oscillations of the ratip of the Faraday currents in theywhereas for the driving force with several harmonics both
peserce 1 absence of o odualon f e sectode poterel e ampliudes and phases ) are important. W inves-
b= (1) is defined in Eq(107)]. Curves a—c correspond to the reduced tigated the average nucleation rate in the presence of bihar-
driving frequencyr=0.1, 1, 3.14. monic driving for various driving force strengths and have
shown that, in the limit of relatively strong driving, the ef-
) ) . fective nucleation barrier displays singular behavior as a
maximal, for givent. The expression for the current for fynction of the relative phas® between the force harmon-
monochromatic driving can be obtained from EG&6) and .5 The singularity is smeared out on the scale

log li

39

(52), assuming thag(t)~g* exg2\*t] in Eq. (104), 5D xkgT/h,x(Nw) (Wheren=1,2, andT is temperature
i(t) 1\ T'(1—inv) _ We have shown how the phase of LS gfg) can be ob-
W = ; |n(;)mexﬂ— ing], tained from measurements of the average nucleation rate as a

function of ® for different w.

Equation(76) describes nucleation for the entire range of
driving force frequencies from smalthe adiabatic driving
to high, where the driving is strongly nonadiabatic. The
modulation in time of the nucleation rate is exponentially
strong for low-frequency driving. Here, nucleation is most

S ; - . : likely to occur where the nucleation barrier is at its mini-
(1)/io(t) is a steep periodic function of time, and Currentmum For larger driving frequencies the nuclei that have ap-
i(t) displays modulated exponential behavior. The local X 9 g Ireq P

maxima of the current corresponds to the values-of” proached critical size will remain in the critical region for a
P max*  time longer than the force period. This gives rise to rectifi-

Whenv increases the modulation effectiift) decreases and ) : . .
eventually disappears, and rati)/i o(t)— A= o( 1/e) cation of the nucleation rate. The nonzero Fourier h-armomcs
’ 0 0 ' of the nucleation currert ex —nw=/2\* ], where\* is an

eigenvalue that describes the dynamics of the nuclei in the
VIl. CONCLUSIONS vicinity of the critical state.

In the present work we considered the steady-state It is important to emphasize that a high-frequency force
nucleation rate in periodically driven systems where the drivcan still exponentiallystrongly affect the nucleation rate,
ing force modulates in time the deviation of the chemicalprovided the force amplitude weighted with LS excekgls.
potential from the equilibrium value. Analysis was done forIn this case the MPNPs are synchronized with the phase of
the case of the large size of a critical nucleus and was basdte driving force, and If(g,t) is proportional to théhermo-
on the solution of the Fokker—Planck equati@®E for the  dynamic worKcf. Eq.(38)] done by the driving force during
nuclei distribution function. In obtaining the nonequilibrium the formation of the critical nucleus. Thusijli,t) is linear in
steady-state distribution of subcritical nuclei we relied on thethe amplitude of the nonadiabatic driving force. However,
underlying picture of large dynamical fluctuations and usedor very high driving frequenciesy>\*. LS becomes small
the WKB-type technique to solve the FPE equation. In the(it decays as a power @~ for large ). Then the driving-
vicinity of the critical state the asymptotic solution was force-induced correction to the average nucleation rate is
matched with the solution of the linearized FPE. As a resulguadratic in the driving force amplitude.
we have obtained the nucleation rate in the closed analytical Electrochemical systems are advantageous for studying
form in Eq. (76) which is a generalization of the Zeldovich effects of ac driving on nucleation rate because of the possi-
formula for the case of periodically driven systems. bility to change supersaturation in a well-controlled way for

The result applies in the broad range of driving forceby varying the electrode potential, without causing environ-
strengths, from the linear regime where the Fourier harmonmental changes and dissipative energy transfer. The fre-
ics of nucleation current(g,t) are linear in the force ampli- quency dispersion of LS is highly sensitive to the underlying
tude to thelogarithmically linearregime, where the driving nucleation mechanism. Measurements of LS allow creation
force affectsj(g,t) exponentially strongly, but Ij(g,t) is  of optimal driving force profiles for selective control of

io(t)=eZJo08 exd 2 \*t], ¢=w(t—1p)+argy gl #07)
Here,I'(x) is a gamma function\* and » are defined in
Egs. (82 and(88), respectively. In Fig. 5 we show the de-
pendence of ratio(t)/iy(t) on time for different values of
the reduced frequency=w/\*. For small v<1, ratio
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nucleation kinetics, for example, for controlling 2D layer-by- 2J. S. Langer, inSolids Far From Equilibrium edited by C. Godreche
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