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Nucleation in periodically driven electrochemical systems
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We calculate both the exponent and the prefactor in the nucleation rate of a periodically driven
system. Nucleation dynamics is described by the Fokker–Planck equation for the probability
distribution of the nuclei over their size. This distribution is found using the concept of the most
probable~optimal! nucleation path. The results apply in a broad range of driving force amplitudes,
from weak to moderately strong forces where the nucleation rate is changed exponentially strongly,
and also in the broad range of the driving frequencies, from low-frequency driving, where the
system follows the force adiabatically, to high-frequency nonadiabatic driving. For strong driving
forces, the time dependence of the nucleation rate changes from strongly nonsinusoidal to a weak
with the increasing frequency of driving. The response of the nucleation rate to the driving force is
described in terms of logarithmic susceptibility~LS!, which can be obtained from the optimal
nucleation path in the absence of the driving. LS is a smooth function of frequency, and therefore
even a driving force with comparatively high frequency can change the modulation rate
exponentially strongly. LS and the Faraday current are calculated for simple models of
electrochemical systems, where the ac driving is produced by modulation of the electrode potential.
We also suggest how to find LS from measurements of the average nucleation rate. ©1999
American Institute of Physics.@S0021-9606~99!50121-9#
n
te
.
t
ti
t

o
ra

d
io

n

on

al
-

e

y

n
ill

en-
al
, in
the
the

the
ise
n-

is
n-

ion
tion

is

ef-
by
tal
ys-
I. INTRODUCTION

The initial stage of electrochemical growth is ofte
nucleation of a sufficiently large atomic cluster of deposi
metal ~a critical nucleus!, which then spontaneously grow
Nucleation occurs via fluctuational attachment of atoms
the growing nucleus accompanied, in case of overpoten
deposition, by electric discharge of metal ions on the me
surface.

A simple theoretical approach to nucleation is based
the assumption that the state of the nucleus is fully cha
terized by the number of atoms in it,g. This approach has
been broadly used in literature1–6 and has been demonstrate
to account for many qualitative features of the nucleat
process in various physical systems.

In quasi-equilibrium conditions, at constant pressure a
temperature, growth of a nucleus of sizeg is determined by
its Gibbs free energyF0(g). In general,F0(g) can be writ-
ten in the form

F052dm0g1A~g!, ~1!

where the first term is the volume energy and the sec
term is the surface energy of the nucleus. The deviationdm0

(dm0.0) of the chemical potential from its equilibrium
value is determined by the deviationh0 of the actual elec-
trode potential from the Nernstian equilibrium potenti
dm05uZeh0u, where2Ze is the charge of cations in elec
trolyte. The value ofdm0 determines the driving force in th
11480021-9606/99/110(23)/11488/17/$15.00
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system and controls the size of a critical nucleusg* . In what
follows we calldm0 supersaturation.

For nuclei of a subcritical size,g,g* , the free energy
F0(g) increases with increasingg. The sizeg* of the critical
nucleus corresponds to the maximum ofF0(g). The super-
critical nuclei withg.g* grow spontaneously. The quantit
F0* 5F(g* ) is the activation energy for nucleation.

In this paper we will analyze the problem of nucleatio
in systems driven by a time-periodic force. The results w
be applied to nucleation in electrodeposition for an ac pot
tial. Analysis of the effects of ac driving on electrochemic
deposition has been done so far for weak ac potentials
which case the quantity of interest was the impedance of
electric double layer between the electrode surface and
electrolyte.7 Some results have also been obtained on
effects of very strong ac driving forces where there ar
spatially nonuniform macroscopic flows, as in convectio
limited growth8 and ultrasonically induced cavitation.9

We will consider the case where the ac driving force
relatively weak, so that it does not give rise to spatially no
uniform macroscopic flows, yet it modulates the nucleat
barrier and thus may very strongly change the nuclea
rate. The effect of barrier modulation is very general and
not limited to electrochemical systems.10 However, electro-
chemical systems are advantageous for analysis of this
fect, since the ac driving force can be easily produced
varying the electrode potential. There is experimen
evidence11 that the nucleation rate in an electrochemical s
8 © 1999 American Institute of Physics
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tem may indeed be strongly changed by a relatively weak
driving.

We will assume that the ac driving force is sufficient
slow as compared to the RC time of the electric double lay
Yet the period of forceT52p/v may still be comparable to
the characteristic decay timet* of a subcritical nucleus
Time t* describes the collective motion ofg;g* @1 atoms,
and therefore it largely exceeds the characteristic dynam
times of individual atoms, like the period of atomic vibr
tions (;10213410214s). In this case the attachmen
detachment rates for individual atoms satisfy the deta
balance condition, and the free energy of the clusterF(g,t)
follows the driving forceadiabatically, i.e., without a time
lag, as also does the cluster size distribution. However,
the driving force frequenciesv*1/t* one may not think of
the nucleation rate as the rate for a givenF(g,t), since
retardation of the collective motion of nucleating monom
becomes substantial.

The expression forF(g,t) in an ac driven system is
formally given by Eq.~1! in which dm5dm(t) is the instan-
taneous chemical potential of the adatoms on the sur
counted off from the equilibrium value,

dm~ t !5dm01h~ t !, h~ t !5 (
nÞ0

hn exp~ ivnt!. ~2!

Here,hn are complex amplitudes of the Fourier harmonics
the periodic driving forceh(t). We assume thath(t) has no
time-independent component,h050.

For sufficiently low supersaturation, whereudm0u!kT,
and for large critical nucleus.g* @1, nucleation kinetics can
be described by the Fokker–Planck equation~FPE! for the
distribution functionf (g,t) of the nuclei over their sizeg,

] f

]t
52

] j

]g
, ~3!

with the flux j (g,t) given by

j 52a~g!S ]F

]g
f ~g,t !1D

] f ~g,t !

]g D , D5kBT. ~4!

Here, Da(g) is the rate of attachment of monomers to t
nucleus of sizeg, and it corresponds to the diffusion coeffi
cient in g-space.

In the steady state,F(g,t)[F0(g) is time independent
then Eqs.~3! and ~4! go over into the familiar Zeldovich–
Frenkel equation of the classical nucleation theory.1 In Ref.
1, the steady-state distribution of subcritical nuclei is close
the Gibbs distribution,

f 0~g!5n0 exp@2F0~g!/D#,
~5!

F0* 2F0~g!@D, F0* 5F0~g* !,

wheren0 is the number density of free monomers.
On the other hand, the distribution in the critical a

supercritical regions is strongly nonequilibrium and cor
sponds to a constant fluxj (g)5J0 over the free-energy bar
rier. For supercritical nuclei away from the critical regio
the diffusion component of flux Eq.~4! can be neglected, an
the steady-state distribution has the form
c

r.
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f 0~g!52
J0

a~g!

1

dF0 /dg
, ug2g* u@~Db* !1/2,

~6!
b* 521/F09~g0* !, F9[d2F/dg2.

Flux J0 is equal to the rate of production of sufficiently larg
supercritical nuclei which most likely will not collapse, i.e
to the nucleation rate. The value ofJ0 is given by the acti-
vation law ~cf. Refs. 1–3!

J05B0 exp@2F0* /D#, F0* @D,
~7!

B05n0a~g* !~2pb* D !21/2,

whereb* is defined in Eq.~6!. Expression~7! is the central
result of the classical droplet theory of nucleation which w
obtained in Ref. 1~a! ~see also Refs. 2 and 3 for details! as an
application of the Kramers theory of escape rates.12

For periodically driven systems, after transient time t
distribution function f (g,t) depends on time periodically
with the period of the driving, and so does the steady-s
nucleation rate. For a sufficiently large driving force th
variation in time ofF(g,t) can exceedD; then the effect of
the driving force on the distribution function and nucleati
rate will beexponentiallystrong. Unlike the stationary case
flux j (g,t) periodically depends on time; it also depends
the size of the nuclei. This dependence is well understoo
the limit of low frequencies of the driving force where th
system adiabatically follows the force, and the nucleat
rate is described by the Frenkel–Zeldovich theory withdm0

replaced by the instantaneousdm(t). A step toward analysis
of the effect of nonadiabatic driving was made in Ref. 13
a specific model whereF(g) is an infinite parabolic barrier
and atoms are ‘‘injected’’ at someg at a constant rate.

In what follows we provide a general explicit solution o
the problem of the nucleation rate in ac driven electroche
cal systems, including both the exponent and the prefac
The solution describes the nucleation rate and Faraday
rent in a broad range of driving force frequencyv. We con-
sider a steady regime where the nucleation rate is period
time with period 2p/v. Aperiodic transients decay within th
characteristic relaxation timet* , which is closely related to
the induction time previously studied in transient nucleat
with constant supersaturation.5

In Sec. II we formulate the problem and relate the nuc
ation rate in a periodically driven system to the current in
supercritical region. In Sec. III we derive the expression
the nucleation rate to logarithmic accuracy~calculate the ef-
fective activation energy of nucleation! in the case of a high-
frequency~nonadiabatic! driving force using the WKB-type
approach to the FPE. In Sec. IV A we calculate explicitly t
exponential factor in the nucleation rate in the case where
driving force is not very strong, and yet it affects the nuc
ation rate exponentially strongly. We show that this occurs
a broad range of amplitudes of the ac driving force where
variation of the logarithm of the nucleation rate is simp
linear in the driving force and therefore can be described
logarithmic susceptibility~LS!. In Sec. IV B we obtain the
explicit expression for the nucleation rate, including the pr
actor, in the cases of nonadiabatic and adiabatic driving,
analyze the crossover between the two regimes. In Sec. V
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calculate LS for several nucleation models relevant to
nucleation in electrochemical deposition. We also anal
how spectral properties of LS affect the nucleation rate
suggest a simple method of experimental analysis of LS
Sec. VI we calculate the Faraday current for several mod
of electrochemical nucleation. Section VII contains conclu
ing remarks.

II. NUCLEATION RATE: GENERAL FORMULATION

We start with the analysis of the nucleus dynamics in
neglect of fluctuations. In this case, time variation of the s
of nuclei g(t) is described by the drift term in the FPE~3!
and~4!. Using the explicit form ofF in Eqs.~1! and~2!, we
obtain

ġ~ t !5K~g,t !, K5a~g!Fdm~ t !2
]A

]gG . ~8!

This equation has an unstable periodic solution:

g* ~ t !5g* ~ t1T!. ~9!

If at time t a nucleus has a sizeg,g* (t), it will collapse,
whereas ifg.g* (t), it will grow. Thus g* (t) corresponds
to a time-dependent size of the critical nucleus. In the lim
of weak driving amplitude,uh(t)/dm0u!1, the value of
g* (t) is close to critical size for the undriven system.

In the presence of fluctuations, a nucleus withg
,g* (t) can grow, in which case the fluctuation work
against the drift forceK(g,t). To do this the fluctuation ha
to be sufficiently large. However, once the nearly critical s
is reached,ug2g* (t)u;(Db* )1/2, the drift force becomes
small, and the dynamics of nuclei is determined by sm
fluctuations. With probability;1/2 the nucleus can go ont
either side ofg* (t). As a result, it will either collapse o
grow. For the nuclei that at some instantt reach a supercriti-
cal size g2g* (t)@(Db* )1/2, the diffusion component o
the flux in Eq. ~4! becomes negligible and they will mos
likely increase in size following the deterministic growth la
Eq. ~8!, i.e.,

j ~g,t !'K~g,t ! f ~g,t !, g2g* ~ t !@~Db* !1/2. ~10!

From Eq.~10!, the instantaneous nucleation rate can
defined as the rate at which there emerge large enough
percritical nuclei. Consider at some timet the number den-
sity n(z,t) of supercritical nuclei with sizesg>g* (t)1z.
We choose the offsetz to be sufficiently large, so that it is
unlikely that any of these nuclei will collapse. However, w
will assume thatz is small compared to the nonlinear scale
the problem given by critical sizeg* (t). We then define the
rate of nucleationJ(z,t) as

J~z,t !5
]n~z,t !

]t
,

~11!

n~z,t !5E
g* ~ t !1z

`

dg f~g,t !, g* @z@~Db* !1/2.

It can be immediately seen from Eqs.~3!, ~4!, and~11! that,
for small z/g* , one obtains

J~z,t !'Kg* ~ t !z f~g* ~ t !1z,t !,
e
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Kg* ~ t !5
]K~g,t !

]g
for g5g* ~ t !. ~12!

To gain a better understanding of expression~12!, we
expand in FPE~3! the drift force K(g,t) and a(g) in the
deviation from the critical statez5g2g* (t). In variables
z,t, FPE takes the form

] f̃ ~z,t !

]t
52

] j̃ ~z,t !

]z
, f̃ ~z,t !5 f ~g* ~ t !1z!,

j̃ ~z,t !5@zKg* 2Dag* ~ t !# f̃ ~z,t !2Da* ~ t !
] f̃ ~z,t !

]z
, ~13!

a* ~ t !5a~g* ~ t !!, ag* 5
]a~g* ~ t !!

]g*
.

For large enoughz, the periodic fluxj̃ (z,t) is given by the
expression@cf. Eq. ~10!#

j̃ ~z,t !5zKg* ~ t ! f̃ ~z,t !, z@~Db* !1/2. ~14!

From Eqs.~14! and ~12! we see that

J~z,t !5 j̃ ~z,t !, ~15!

i.e., the nucleation rate is given by the periodic probabil
flux j̃ (z,t).

In the supercritical rangez@(Db* )1/2 one can neglect
the diffusion term in Eq.~13!, and then the distribution func
tion f̃ (z,t) can be calculated along the trajectories Eq.~8! of
deterministic growth. These trajectories emanate att→2`
from the unstable statez50. From Eq.~13! we obtain:

f̃ s~z,t !'
1

z
P~zu~ t,0!!,

~16!

u~ t,t8!5expF2E
t8

t

Kg* ~t!dtG ,
whereP(x) is an arbitrary function. Substituting the abov
expression in Eq.~12!, we obtain the steady-state nucleatio
rate in the form

J~z,t !5Kg* ~ t !P~zu~ t,0!!. ~17!

The time dependence of the nucleation rateJ(z,t)
comes from the factorKg* and the functionP(c). The latter
function is constant along the deterministic growth pa
z(t,c)5cu21(t,0) given by Eq.~8!, but it varies from path
to path. We note that this function cannot be found just fro
the solution of Eq.~13! in the supercritical range; It is deter
mined by the values of the distribution function at smallz
;(Db* )1/2 where the diffusion is important. To find it on
has to match solution~16! in the supercritical region to the
time-periodic distribution function obtained by the solutio
of FPE in the entire regiong&g* (t).

The boundary condition to FPE~3! on the small-g side
can be established by noticing that the time-dependent d
ing Eq. ~2! affects the volume energy of the nucleus, but n
its surface energyA(g),

A~g!5gg121/d, ~18!
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whereg is the effective surface tension andd is the dimen-
sion of the nucleus. For nuclei much smaller than the criti
sizeg* (t) @more precisely, than the minimal value ofg* (t)
per period#, the surface energy exceeds the volume ene
and the effect of ac driving is not important.

Therefore in the time-periodic regime the distribution
small nuclei is close to the Gibbs distribution Eq.~5!,

f ~g,t !5n0 exp@2A~g!/D#, g!min
t

g* ~ t !. ~19!

irrespective of driving.

Nucleation rate averaged over the period of
modulation

The distribution f (g,t) depends on time periodically
and the left hand side of Eq.~3! equals zero after averagin
over the period of the driving force. Therefore the tim
averaged fluxj (g,t) is constant in steady state. Then, a
cording to Eq.~11!, the average nucleation rateJ̄ just equals
the average flux and does not depend on the choice of
boundary of the supercritical region,

J̃5^J~z,t !&5^ j̃ ~z,t !&5const, ~20!

where^¯& means averaging over the driving force periodT.
We note that thez dependence of the instantaneo

nucleation rateJ(z,t) is due to the dependence onz of the
duration of motion tog* (t)1z along the deterministic tra
jectory Eq.~8! from the vicinity of g* (t) ~where the popu-
lation periodically varies in time!. Clearly, thez dependence
disappears upon time averaging.

III. EXPONENT FOR THE NUCLEATION RATE AND
THE DISTRIBUTION FUNCTION OF NUCLEI

A. The eikonal approximation. Optimal fluctuational
paths

For small fluctuation intensitiesD, function f (g,t) is
concentrated mostly in the range of small nuclei size wh
F(g);D!F* . Distribution of the nuclei in the range
where F(g)@D is formed by large fluctuations. In thi
range the tail off (g,t) is exponentially steep ing, for g
,g* (t). To determine the distribution of large subcritic
nuclei we will look for the solution of Eq.~3! in the form

f ~g,t !5C~g,t !exp@2R~g,t !/D#, R@D. ~21!

This form is analogous to the Gibbs distribution in equili
rium systems Eq.~6!, with R(g,t) being the ‘‘activation en-
ergy’’ of fluctuations to the state with the nucleus sizeg at
the instantt. Equation~21! is similar to the eikonal approxi
mation in optics or the WKB approach in quantum mech
ics. This approach or the equivalent path-integral techni
was applied to analysis of large fluctuations in noisy dyna
cal systems far from equilibrium, including stationary14–19

and periodically driven systems.10,20–23 It was also used in
chemical kinetics.24 The idea of the approach is that, as
first step, one should substitute Eq.~21! into FPE ~3! and
keep the terms of the leading order inD. This gives the
following equation forR(g,t):
l

y,

-
-

he

e

-
e

i-

]R

]t
1HS g,

]R

]g
,t D50,

~22!

H~g,p,t !5K~g,t !p1a~g!p2, p[
]R

]g
,

whereK(g,t) is defined in Eq.~8!.
Equation ~22! has the form of the Hamilton–Jacob

equation for an auxiliary mechanical system with coordin
g, momentump, and HamiltonianH(g,p,t).25 The activa-
tion energyR(g,t) corresponds to the mechanical action
the auxiliary system.

The Hamilton-Jacobi Eq.~22! can be solved by the
method of characteristics. The equations for the characte
tics have the form

ġ5
]H

]p
5K12ap, ~23a!

ṗ52
]H

]g
52

]K

]g
p2

]a

]g
p2, ~23b!

ṡ5ġp2H, s~ t ![R~g~ t !,t !. ~23c!

The physical meaning of the characteristics can be
derstood as follows. A nuclei of sizegf at the instantt f has
been formed as a result of a large fluctuation. Most proba
in this fluctuation the size of the nucleus was evolving in
way close to some optimal way which corresponds tog vary-
ing along the optimal fluctuational pathg(t), which arrives
at gf for t5t f . It is this path that is described by Eq.~23!.
We note that the optimal path begins at some instant of t
t0 whereg(t0) corresponds to a microscopic nucleus and
the continuous theory, is set equal to zero,g50.

From boundary conditions~19! and Eq.~21! it follows
that R(g,t)'A(g) for small-g. Using this relation and Eqs
~22! and~23!, we find the explicit form of the characteristic
in the small-g range,

t2t05E
0

g~ t ! dg

a~g!Ag~g!
, g!min

t
g* ~ t !,

~24!
p5Ag~g!, R~g,t !'A~g!.

The Hamiltonian equations~23! and the initial condi-
tions ~24! define a set of characteristics,

g5g~ t,t0!, p5p~ t,t0!, s5s~ t,t0!, ~25!

that can be parameterized by one parameter, the instant0 .
The set is periodic int0 , with periodT, because the charac
teristics witht0 and t01T coincide with each other.

We emphasize that, in the present paper, we investig
the case wheret0 is finite, i.e., integral~24! converges. This
case is of interest for many models of nucleation. Analy
can be generalized to the case wheret0→2`. In this latter
case the problem of nucleation becomes very similar to
problem of activation escape of a periodically driven Brow
ian particle.26

The activation energyR(gf ,t f) equals the action
s(t f ,t0) in Eq. ~23! along the characteristic Eq.~25! with t0

given by the boundary condition at the end point (gf ,t f),
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R~gf ,t f !5
1

4 Et0

t f 1

a~g~ t !!
@ ġ2K~g~ t !!#2 dt,

~26!
g~ t0!50, g~ t f !5gf .

Generically, the functiont05t0(gf ,t f) is multivalued @cf.
Ref. 22~a! where a related effect was observed for a perio
cally driven dynamical system#. This means that, for given
gf ,t f , there are several characteristics in Eq.~25! with dif-
ferent values oft0 and with different momentum at the fina
point p(t f ,t0). In this case one has to choose the value
t05 t̄ 0 that provides theleastactions(t f , t̄ 0), and the corre-
sponding pathg5g(t, t̄ 0) will be the ‘‘true’’ optimal path
for reaching sizegf at t5t f . The paths that do not corre
spond to the global minimum of action Eq.~26! areextreme
paths of the integral over time in Eq.~26! considered as a
functional of the pathsg(t). Different extreme paths give
different values to the actionR(gf ,t f) in Eq. ~26!, which
then becomes a multivalued function of the end point (qf ,t f)
~see Sec. IV A!. The least actionR̄(qf ,t f)5s(t f , t̄ 0) corre-
sponds to the lowest sheet of this function.

The prefactorC(g,t) in Eq. ~21! can be found next to
the leading order approximation inD by substituting Eq.~21!
into FPE~3!. Using Eq.~23! and the fact that Eq.~21! should
match the Gibbs distribution Eq.~5! at smallg, one obtains,
after a straightforward calculation,

C~gf ,t f !5n0 expF2E
t0

t f
r ~g~ t,t0!,t !Gdt,

~27!

r ~g,t !5
]

]g S K1a
]R

]g D , g~ t f ,t0!5gf

@cf. Refs. 18, 29~c!; and 27; the integral in Eq.~27! is taken
along the optimal path that arrives at end point (gf ,t f)#.

B. Activation energy of nucleation

The activation energy of nucleation is determined by
probability density of reaching critical sizeg* (t). Once the
nucleus size has approached critical value, it has a prob
ity ;1/2 to grow to a supercritical size as a result of a sm
fluctuation; large fluctuations are no longer needed. Res
tively, the activation energy is given byR(g* (t),t). Intu-
itively, one may expect that the latter quantity is independ
of time in the general case of nonadiabatic driving descri
by Eqs. ~23!. This is related to the slowing down of th
motion of the system as its size approachesg* (t). This size
corresponds to the unstable periodic state of the system
the neglect of fluctuations; the closer the system is tog* (t)
the slowerg2g* (t) changes in time, according to the dete
ministic equation~8!. As we show below, slowing down als
occurs for the optimal fluctuational trajectory for nucleati
~this is a very general feature known in the escape prob
and is not limited to Markov processes17~a!!. Over a long time
of motion nearg* (t), small fluctuations will ‘‘smear’’ the
distribution and makeR time independent.

The latter arguments can be put on quantitative bas
one notices that the activation energy of nucleation is gi
by the extremumof R(g* (t),t). The condition forR to be
extremal with respect to the instantt where the critical size is
i-

f

e

il-
ll
c-

t
d

in

m

if
n

reached,dR(g* (t),t)/dt[a* p250, shows that the optima
path of interest hasp→0 when it approachesg* (t). It fol-
lows from Eq.~23b! that the momentum may become equ
to zero only asymptotically ast→`, in agreement with the
qualitative arguments discussed above. For such a trajec
the activation energy for nucleation,

R~g* ~ t !,t !5Rn , ~28!

is indeed independent oft.
To analyze pathsg(t),p(t) near the critical nucleus, we

linearize ing2g* (t) andp the coefficients in the equations
of-motion ~23! and keep only the quadratic terms inp,z
5g2g* (t) in the Hamiltonian Eqs.~22!,

H̃~z,p,t ![H~g* ~ t !1z,p,t !'a* ~ t !p21Kg* ~ t !pz. ~29!

Solving the corresponding linear equations we obtain

p~ t,t0!5k~ t0!, ~30a!

g~ t,t0!2g* ~ t !52b~ t !p~ t,t0!1d~ t0!u21~ t,t0!,

ug2g* u!g* , upu!udmu, ~30b!

wheret0 is the parameter of the set of extreme paths int
duced in Eq.~24!, the functionu(t,t8) is given by Eq.~16!,
and

b~ t !5
2

12u2~T,0!
E

t

t1T

a* ~t!u2~t,t !dt. ~31!

@We note thatb(t) is periodic, with periodT.# Coefficients
k(t0) and d(t0) in Eqs. ~30! are ‘‘global’’; they cannot be
found from local analysis near the unstable periodic orbit a
require integrating Eqs.~23! in the region far away from this
orbit, where Eqs.~23! may not be linearized.

In Eq. ~30!, the functionu(t,t0) decays exponentially in
the limit of larget2t0 , and so does the momentump(t,t0).
Therefore in the expression forg(t)2g* (t) the first term
}p(t,t0) decays at large times, whereas the second t
grows exponentially. This latter term corresponds to pur
deterministic paths in Eq.~8! that diverge from the unstabl
periodic stateg5g* (t). Due to the admixture of this term
the characteristics, in general, willmissthe unstable periodic
orbit. However, the characteristic that satisfies the conditi

d~ t0* !50, ~32!

will not diverge; it will approach the periodic orbit asymp
totically for t→`. This characteristic corresponds to th
most probable nucleation path~MPNP! g(t,t0* ) along which
the system is most likely to evolve when the critical nucle
is formed.

The activation energy for nucleationRn is determined by
the action along the MPNP

f * ~ t !}exp@2Rn /D#,

Rn5
1

4 Et0*

` 1

a~g~ t !!
@ ġ2K~g~ t !!#2dt, ~33!

g~ t0* !50, g~ t→`!→g* ~ t !.

In general, Eq.~32! will have several roots per period o
driving force T. The MPNP corresponds to roott0* which
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provides the least value of action in Eq.~33!. Note that there
is a periodic set of MPNPs which repeat each other with
period of the force,g(t,t0* )5g(t1nT,t0* 1nT).

Equation ~33! provides the basis of thenonadiabatic
theory of nucleation rate in periodically driven systems.
important feature of this theory is the time independence
the nucleation rate, despite the fact that the MPNPs are
chronized with the driving force, as discussed above~cf.
Refs. 10, 20, 21!. One can expect, however, that the effect
the driving force on the nucleation rate substantially depe
on the interrelation between the force periodT and the char-
acteristic relaxation time of the nuclei of a nearly critic
size.

Indeed, for nucleus sizeg close to the critical value
g* (t), the deviationg2g* (t) varies in time exponentially
@cf. Eqs.~8!, ~30!#, and generically a nucleus will leave th
vicinity of g* (t) @whereug2g* (t)u&(b* D)1/2# over a char-
acteristic relaxation timet r;1/Kg* . On the other hand, the
nuclei are ‘‘injected’’ into this vicinity along the MPNP
g(t,t0* 1nT) with the time interval equal to periodT of the
driving force. If this period is small,t r*T, then the number
of nuclei with g'g(t) only slightly oscillates in time, and
the value off * (t) is determined to logarithmic accuracy b
Rn in Eq. ~33!.

For smaller frequencies of the driving force, the nuc
that reached critical size along the MPNP will have left t
vicinity of g* (t) before the next MPNP arrives. As a resu
the amplitude of the oscillations of the population of t
critical size f * (t) ~and therefore the nucleation rate! will
increase as the driving frequency decreases. Eventually t
will be reached a completely adiabatic regime where
population of the critical size at an instantt is determined by
the optimal path that has come closest tog* (t) within a time
interval ;t r!T, i.e., for a given instantaneous value of t
force. Respectively, the nucleation rateJ0(t) will follow the
instantaneous value of the chemical potentialdm(t),

J0~ t !}expF2
F0~ g̃* ~ t !!

kBT
G , F]F0

]g G
g5g̃* ~ t !

50. ~34!

The time dependence of the distribution of supercriti
nuclei also depends extremely strongly on the driving f
quency. Supercritical growth does not require large fluct
tions and therefore deep in the nonadiabatic regimef (g,t)
only weakly depends on time forg2g* (t)@(b* D)1/2. In
contrast, in the adiabatic regime wheref * (t) is oscillating in
time exponentiallystrongly, the distribution of supercritica
nuclei does likewise.

IV. NUCLEATION RATE FOR MODERATELY STRONG
ac MODULATION

In this section, the central section of the paper, we
vestigate the case in which the ac component of supers
ration dm(t) is comparatively small, so that in Eq.~2!

uh~ t !/dm0u!1. ~35!

In this case the ac driving-force-induced changeDR(g,t) of
the activation energy is much less than activation ene
F0(g) in the absence of force. However, the modulati
e
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amplitude can still be sufficiently strong to change the a
vation energy by an amount greater thanD, that is,

R~g,t !5F0~g!1DR~g,t !,
~36!uDRu!F0 , exp@ uDRu/D#@1.

Therefore the ac modulation makes anexponentiallystrong
effect on the distribution functionf (g,t) and the nucleation
rateJ.

In the absence of driving (h(t)50), Eq. ~23! for the
optimal fluctuational paths has solutions which are just
time-reversed paths of the deterministic dynamics of nu
in the neglect of fluctuations Eq.~8!. Time-reversal symme-
try between fluctuational and deterministic paths is a gen
property of thermal equilibrium systems.28 The unperturbed
optimal pathg5g0(t2t0) depends on the initial instant o
growth t0 only through the elapsed timet2t0 ,

t2t052E
0

g0~ t2t0! dg

K0~g!
, K0~g!52a~g!

dF0~g!

dg
. ~37!

Note that this expression is similar to Eq.~24! for the opti-
mal paths at smallg where instead of free energyF0(g) we
used surface energyA(g).

To the first order inh(t), the driving-force-induced
change ofR(gf ,t f) is given by the terms}h(t) in the inte-
grand in Eq.~26! evaluated along the unperturbed optim
path,

DR~gf ,t f !52E
t0

t f
h~ t !ġ0~ t2t0!dt,

~38!
g0~0!50, g0~ t f2t0!5gf .

As in the case of the activation energy for a large flu
tuation, the driving-force-induced correction to the prefac
of the distributionC(g,t) Eq. ~27! is }h; however, in con-
trast to the exponent of the distribution, the correction to
prefactor is not divided by the small noise intensityD.
Therefore, for comparatively weak driving force Eq.~35!,
the prefactorC(g,t) changes only slightly. Functionr (g,t)
in Eq. ~27! vanishes for the unperturbed optimal path E
~37!, and thusC5n0 for h→0. Therefore, for arbitraryh/D
but for smallh/dm0 the steady-state distribution of subcrit
cal nuclei takes the form

f ~g,t !5n0 exp@2R~g,t !/kBT#, ~39!

whereR(g,t) is determined in Eqs.~36! and ~38!.

A. Nonadiabatic theory of nucleation rate: The
activation energy

In the absence of driving, the activation energy of nuc
ation F0* as calculated along the optimal pathsg0(t2t0) is
independent of the instantt0 when nuclei start to grow. The
driving force lifts this time degeneracy. As discussed in S
III B, in general there will be only one most probable nucl
ation path ~MPNP! per force period, with appropriatet0

5t0* . This path will asymptotically approach the critica
nucleus, whereas other paths~with t0Þt0* ! will miss it. Be-
cause of that, the direct perturbation expansion of the ch
acteristics Eq.~25! in powers of the driving force will also
diverge near the unstable periodic state. Physically, this
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consequence of the slowing down of motion near the p
odic state, which gives rise to accumulation of the effect
perturbation. Formally, this can be seen from Eqs.~30! and
~31!.

Function u(t,t0) in Eq. ~30! grows exponentially in
time, and so does the second term in the expression
g(t,t0), which is}d(t0). The first term in this expression i
}p(t,t0) and decays in time exponentially. Therefore it
the second term which describes the deviation of the p
from the MPNP. This term is due to the ac driving force; it
equal to zero forh(t)50, because the unperturbed optim
paths Eq.~37! approach critical sizeg0* for all values oft0 .
The perturbation expansion of pathg(t,t0) in h(t) becomes
inapplicable for sufficiently larget where both terms in Eq
~30b! are of the same order of magnitude.

Based on the results of Refs. 10 and 20 expressions~30!
for the characteristics in the vicinity of the unstable perio
state can be written in explicit form. We note first that, to t
first order in the driving force amplitude, the unstable stat
given by the expression

g* ~ t !5g0* 1a* (
nÞ0

hn

ivn2l*
exp~ ivnt!. ~40!

To zeroth order inh, the functionu(t,t8) in Eq. ~30! is equal
to exp@2l* (t2t8)#, whereas the functionb(t) Eq. ~31! is
equal tob* , where

1

b*
52F09~g0* !, l* 52a~g0* !F09~g0* !, ~41!

with g0* being the critical nucleus size in the absence of
ac driving force,F08(g0* )50.

The idea of the calculation is to solve the equations
the characteristics Eqs.~23! and ~24! perturbatively inh(t)
in the region far from the critical nucleus. On the other ha
we already know the solution Eq.~30! for the characteristics
in the region where deviationg* 2g is much less thang* .
This solution applies for all driving forces. We can no
match these two solutions in the range of small, but not
small, gf2g, where they both apply. Finally, we obtain t
the leading order in the driving force amplitude

p~ t,t0!5k* exp@2l* ~ t2t0!#, ~42a!

g~ t,t0!2g* ~ t !52b* p~ t,t0!1d~ t0!exp@l* ~ t2t0!#,

~42b!

s~ t,t0!5F0* 2
b*

2
p2~ t,t0!1U~ t0!, ~42c!

where

U~ t0!5 (
nÞ0

hnx~nv!exp~ invt0!,

d~ t0!5
1

l* k*
U̇~ t0!, ~43!

and
i-
f

or

th

l

is

e

r

,

o

k* 5
g0*

b*
exp@l* t* #,

t* 5E
0

g0* dgF 1

a~g!dF0~g!/dg
2

1

l* ~g0* 2g!G . ~44!

Function x5x(v) in the expression forU(t) is the
logarithmic susceptibility for nucleation.10,20 It describes the
frequency-dependent change of the activation energy
nucleation, which is linear in the driving force amplitude,
discussed in Sec. V,

x~v!52E
0

`

dtġ0~ t !exp@ ivt#dt, ~45!

whereg0(t) is the unperturbed optimal nucleation path d
fined in Eq.~37!.

It is seen from Eqs.~42! and ~43! that sufficiently close
to the critical state,ug2g* u;uhu1/2, the first and second
terms in the expression forg(t,t0) in Eq. ~42b! are of the
same order of magnitude, which explicitly shows where
perturbation theory inh does not apply.

Function R(g,t) can now be found froms(t,t0) and
g(t,t0) using Eqs. ~23c!, ~42!, and ~43!. In the region
ug2g* u@uhu1/2 the first term in Eq.~42b! largely exceeds the
second term, andR(g,t) is given by the perturbation theor
Eq. ~38!. However, in the regionug2g* u;uhu1/2 the equa-
tion g5g(t,t0) has more than one roott0 for giveng,t. This
gives rise to multivaluednessof the function R(g,t) as
pointed in Sec. III A. The form of actionR(g,t) in this re-
gion can be conveniently studied by making a transformat
to new canonical variables, where the coordinate correspo
to the ‘‘old’’ momentump. The relation betweenR(g,t) and
actionW(p,t) in the new variables is

R~g,t !5p@g2g* ~ t !#1W~p,t !,
~46!

g2g* ~ t !52
]W~p,t !

]p
, p5

]R~g,t !

]g
,

where p(g2g* (t)) is the generating function of the
transformation.25

In the new variables, actionW(p(t,t0),t)[w(t,t0) on
the characteristics Eq.~42! can be found directly, becaus
R(g(t,t0),t)[s(t,t0) is known from Eq.~42c!. Moreover,
the equationp5p(t,t0) has a single roott0 for givenp,t, and
therefore

W~p,t !5F0* 1
b*

2
p21US t1

1

l*
lnS p

k* D D . ~47!

The dependence of the actionW(p,t) on p for a givent
is shown in Fig. 1. The functionW(p,t) is single valued; in
the limit of small p it oscillates with a nearly constant am
plitude and with the frequency which diverges logarithm
cally asp→0. In order to determineR(g,t) one has to ex-
press p in terms of g from the equation g2g* (t)
52]W(p,t)/]p, and then put it into Eq.~46!. Because
function U(t0) is periodic, with the period 2p/v, it is clear
that there will be infinitely many roots,pn , which scale ap-
proximately aspn}exp@22pnl/v# for largen. Eachpn cor-
responds to the extreme pathg5g(t,t0

n), with the initial in-
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stantt0
n which is equal to the argument ofU in Eq. ~47! for a

given pn . All of these paths come through the same poing
at the instantt, but with different momentapn , and they also
provide different values to the actionR(g,t). As we dis-
cussed in Sec. III A, one needs to select the rootp̄n which
provides the global minimum toR(g,t).

We will not investigate here the detailed structure of t
surface of the minimum actionR̄(g,t) ~see Refs. 23, 21!.
Instead, we will be interested in the value ofR̄(g,t) directly
at the periodic unstable state,g5g* (t). This value of R̄
gives the nucleation rate, to logarithmic accuracy, cf. E
~28!. From conditiong5g* (t) and Eq.~46!, it follows thatp
is given by the condition

]W~p,t !/]p50. ~48!

We need to find the root of this equation that provides
global minimum toW(p,t) and, from Eq.~46!, the minimal
value ofW(p,t) is equal toR̃(g* (t),t). It immediately fol-
lows from the form ofW(p,t) in Eq. ~47! ~see also Fig. 1!
that the global minimum ofW(p,t) is achieved in the
asymptotic limit ofp→0 where the second term}p2 can be
neglected. ThenW(p,t) becomes minimal whereU is mini-
mal, that is for

U̇~ t0* !50, ~49!

which precisely corresponds to the condition for the MP
g(t,t0* ) as given by Eqs.~42b!, ~43!, and~32!.

The corresponding activation energy for nucleation
~cf. Refs. 10, 20!

Rn5F0* 1U* , U* [min
t0

U~ t0!5U~ t0* !. ~50!

The quantityU* gives the driving-force-induced correc
tion to the nucleation barrier. It immediately follow
from Eq. ~38! that this quantity is just equal to
limt→` DR(g0(t,t0* ),t) evaluated along the unperturbed o
timal path with the appropriate initial instantt0* .

By construction, functionU(t0) in Eq. ~43! is periodic,
with force periodT and zero mean. Therefore its minim
value is negative,U* ,0, which means that ac modulatio
always exponentiallyincreasesnucleation rate.10,20

FIG. 1. Solid curve: action functionW(p,t) vs momentump in the presence
of the driving, for a given timet ~units are arbitrary!. Dashed curve: action
function W(p,t) for zero driving.
.

e

s

Monochromatic driving
For sinusoidal modulation of the chemical potential,

dm~ t !5dm012dm1 cosvt, ~51!

the functionU(t0) takes a simple form,

U~ t0!52dm1ux~v!ucos@vt01argx~v!#, ~52!

and the initial instantt0* at which the MPNP starts is equal t

t0* 5
1

v
@p~2n11!2argx~v!#. ~53!

The driving-force-induced change of the logarithm
distribution f (g,t) for the critical nucleus sizeg* (t),

ln f * ~ t !'2
F0*

D
12

dm1ux~v!u
D

, ~54!

is linear in the driving force, which explains why we ca
x~v! the logarithmic susceptibility~LS!.10,20

B. Nonadiabatic theory of nucleation rate: The
prefactor

The prefactor Analysis of the prefactor in the nucleati
rate requires calculation of the probability fluxj (g,t) Eq. ~4!
with account taken of the periodic driving. To do this we w
analyze the distribution function in the vicinity of critica
stateg* (t) using the results of the previous section and E
~13! for the functionf̃ (z,t)[ f (g* (t)1z,t). Equation~13! is
linear in z, and this allows us to seek its solution using t
Laplace transformation,

f̃ ~z,t !5E
0

1`

dr expF2
1

D
~rz1V~r,t !!G . ~55!

We assume that exp@2V(r,t)/D# does not diverge forr→0
and decays sufficiently fast forr→` ~these assumptions wil
be verified later!. From Eqs.~13! and ~55! we obtain the
following equation for the functionV(r,t):

]V

]t
2Kg* ~ t !r

]V

]r
1a* ~ t !r25Dag* ~ t !r. ~56!

We are looking for a time-periodic solution of Eq.~56!,
V(r,t)5V(r,t12p/v). The boundary conditions fo
V(r,t) can be found by matching distributionf̃ (z,t) to the
asymptotic expression Eq.~21!. The matching should be
done in the region where, on the one hand,uzu is sufficiently
large so that the integrand in Eq.~55! is a steep function ofr
and the integral overr can be evaluated by the steepest d
scent method, but on the other hand,uzu!g* (t), so that Eq.
~13! is still applicable.

If the integral overr Eq. ~55! can be evaluated by th
steepest descent, then

f̃ ~z,t !5C̃ expF2
1

D
~zrm1V~rm ,t !!G ,

C̃5S 2pD

u]2V/]r2u D
1/2

, ~57!

z52
]V~r,t !

]r
for r5rm ~ uzu!g* !.
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Hererm5rm(z,t) is the position of the global maximum o
the integrand in Eq.~55! for given z and t, and the prefactor
C̃ is evaluated atr5rm .

Function f̃ (z,t) in Eq. ~57! has exactly the same form a
that given by Eqs.~39! and ~46!. In particular, it is immedi-
ately seen that the relation between functionsR(g,t)
[R̃(z,t) andV(r,t) in the exponents of the expressions f
f̃ corresponds to the canonical transformation Eq.~46! to the
basis wherer equals to the momentump. This means that
V(r,t)5W(r,t), with an accuracy to the terms;D.

It follows from the canonical transformation Eq.~46!
that functionW(p,t) obeys the Hamilton–Jacobi equation

]W

]t
1H̃S 2

]W

]p
,p,t D50, ~58!

where the Hamiltonian near critical stateH̃(g2g* (t),p,t) is
given by Eq. ~29!. Clearly, the equations forW(p,t) and
V(p,t) coincide in the neglect of the small termDag* r!D
in Eq. ~56!. This means that, in fact, we know the solution
Eq. ~56!, as functionsV(p,t) andW(p,t) can differ only by
a constant and, from the matching condition, this cons
should go to zero asD→0, so that we can write

V~p,t !5W~p,t !2D ln c0 . ~59!

Constantc0 can be determined by matching the prefactors
Eqs. ~57! and ~39!. With account taken of the explicit form
of W(p,t), this gives

c05n0S b*

2pD D 1/2

. ~60!

The above expression, combined with Eqs.~55!, ~59!,
and ~47!, explicitly determines the steady-state distributi
near the critical nucleus. After changing toj5(D/
b* )21/2r in Eq. ~55!, we finally obtain

f̃ ~z,t !5 f 0* S 2

p D 1/2E
0

`

dj expS 2
zj

zD
2

1

2
j2D

3expF2
1

D
US t2tD1

1

l*
ln j D G , ~61!

f 0* 5
n0

2
expF2

1

D
F0* G .

Here, f 0* is the concentration of the critical nuclei in th
absence of driving, whereas

zD5~Db* !1/2, tD5t* 1
1

l*
lnS g0*

zD
D . ~62!

The parameterzD defines the characteristic region near t
critical nucleus where the motion is dominated by small flu
tuations. TimetD gives the characteristic timet2t0 it takes
for the nucleating system to reach regiong* (t)2g;zD

moving along the optimal path. This time is the sum of t
‘‘fast’’ time t* defined in Eq.~44!, which corresponds to the
motion far from the critical state,g0* 2g@zD , and the char-
acteristic duration of motion near the critical state.

Expression~61! is one of the central results of the pape
It gives the nuclei distribution function in the critical regio
nt

n

-

.

in the presence of ac modulation of the chemical potential
the case of not very strong driving, the effect of modulati
manifests itself entirely through the factor exp@2U/D# in the
integrand, whereU5U(t0) is defined in Eq.~43! and is pro-
portional to the driving amplitude. In the limit of very wea
driving, uU/Du!1, the distributionf̃ (z,t) in Eq. ~61! goes
over into the stationary distributionf̃ 0(z) near the critical
nucleus known from the classical droplet theory of nuc
ation ~cf. Refs. 1–3!.

Time-averaged nucleation rate

A sufficiently strong driving, for whichuUu/D@1 in Eq.
~61!, results in the exponentially strong change of the nuc
ation rate. Using Eq.~61! one can obtain the distribution
function averaged over the force period, and also the ave
value of flux j̃ (g,t). Averaging of the integrand in Eq.~61!
over t gives a factor

A5^e2U~ t !/D&, ~63!

which can be taken outside the integral. For sufficien
strong driving it can be evaluated by the steepest des
method. The dominant contribution to Eq.~63! is given by
the value oft which corresponds to the MPNP. The resu
has the form

^ f̃ ~g,t !&5A f̃0~z!,
~64!

A'S 2pD

T2Ü~ t0* !
D 1/2

expS 2
U*

D
D @1,

where f̃ 0(z) is the stationary distribution function forh(t)
50 @it can be obtained by settingU50 in Eq. ~61!#. Distri-
bution Eq.~64! differs from this stationary distribution by a
exponentially large factor; so does the average nuclea
rate,J̃/J05A.

In the case of monochromatic driving,h(t)52h1

3cos(vt), from Eqs.~52! and~63! we obtain for the average
nucleation rate

J̃
J0

5A5I 0S 1

e1
D , e1[

D

2h1ux~v!u
, ~65a!

A'S e1

2p D 1/2

expS 1

e1
D , e1!1, ~65b!

A'11
1

4e1
2 511S h1ux~v!u

D D 2

, e1@1, ~65c!

whereI 0(x) is the modified Bessel function.29

Equation ~65a! determines the average nucleation ra
for an arbitrarily strong driving and in thegeneralcase of
nonlinear growth law Eq.~37!. The average rate depends o
a single dimensionless parametere1 , in which the only
model-dependent factor is the absolute value of the logar
mic susceptibilityx~v! Eq. ~45!.

C. Distribution function for nuclei of the critical size

In this subsection we consider the distributionf̃ (z,t)
[ f (g* (t)1z,t) in the region dominated by small fluctua
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tions. For simplicity, we will setz50 in Eq. ~61! and ana-
lyze explicitly the distribution functionf * (t) evaluated ex-
actly at the size of the critical nucleus. We will be interest
in the nontrivial case of comparatively strong driving whe
the factor}exp@2U/D# in the integrand in Eq.~61! varies
with j exponentially steeply and the integral can be eva
ated by the steepest descent method.

Remember that the dimensionless variablej in Eq. ~61!
corresponds to the momentump of the auxiliary system Eq
~22! near the critical state. The values ofj can also be pa-
rameterized by the instantt0 at which begins the characte
istic with p(t,t0)5(D/b* )1/2j. From Eq.~42!

j5exp@2l* ~ t2tD2t0!#. ~66!

This parameterization allows us to think of the distributi
f * (t) Eq. ~61! as a sum of the contributions from variou
extreme paths that start at differentt0 and approach the criti
cal regionj;1 ~anduzu5ug2g* (t)u;zD! within finite time.
Changing to integration overt0 in Eq. ~61!, we obtain that,
for the critical nucleus (z50),

f * ~ t !5 f 0* S p

2 D 1/2

l* E
2`

`

dt0G* ~e2l* ~ t2tD2t0!!

3expF2
1

D
U~ t0!G , ~67!

G* ~y!5y expF2
1

2
y2G .

It follows from this expression that the relative pro
abilities for the paths to reach critical statez50 are mostly
determined by the steep exponential factor exp@2U(t0)/D#.
The ‘‘window’’ function G* (j) is comparatively smooth
~for j;1, it varies by a factor of;1 whent0 varies by the
period T, provided lT&1!. This function determines the
time dependence off * (t). In this approximation, the majo
contribution to the integral Eq.~67! comes from the values

t0
n5t0* 1nT, n50,61,62,..., T5

2p

v
, ~68!

for which the factor exp@2U(t0* )/D# is maximal. This pre-
cisely corresponds to the result given by Eqs.~49! and ~50!
for the activation energy of nucleation, witht0* 1nT being
just the initial instants at which the MPNPs start~generically,
there is one MPNP per periodT!.

The corresponding stationary pointsj5jn(t) of the in-
tegral in Eq.~61! for z50 are

jn~ t !5exp@2l* ~ t2tD2t0
n!#. ~69!

Finally, for the functionf * (t) in Eq. ~67! we obtain

f * ~ t !5 f 0* AL* ~ t !,

L* ~ t !5l* T (
n52`

`

G* ~jn~ t !!, ~70!

whereA is given in Eq.~64!.
It follows from Eq. ~70! that, for nonadiabatic driving

the distribution functionf * (t) at the size of the critica
nucleusg* (t) is given by the sum of the contributions from
d

-

different MPNPs and from the paths within the tubes of flu
tuational paths surrounding the MPNPs. Far from the criti
size, the distribution of the paths within the tubes is nea
Gaussian, with variance;D. The contribution from thenth
MPNP is determined by the portion of paths which rea
g* (t) for a given position of the MPNPg(t,t0

n). It is de-
scribed by the functionG* (jn). Clearly, it falls down expo-
nentially for the MPNPs, which are still far away from
g* (t), for given t. We note that the time dependence
f * (t) is fully determined by the factorL* (t). The latter
factor does not depend on the spectrum of the driving for

Low-frequency driving

In the limit of relatively low frequency of the driving
force,

exp@2l* T#!1, ~71!

the functionL* (t) has a form of periodic spikes, with width
!T. In this case the terms with differentn in expression~70!
for L(t) differ exponentially strongly, and at a given insta
of time t there will be, in general, only one term in the su
over n, with n equal to a certain integerp, which will be
dominating,

L* ~ t !'l* TG* ~e2l* ~ t2tD2t0
p
!!. ~72!

This term corresponds to the MPNP that has arrived at
critical region jn;1 at the instantt0

p1tD . Since function
G* (j) is maximal for j51, the maximum ofL(t) is
reached at the instantt5tmax

p , where,

tmax
p 5t0

p1tD , L* ~ tmax
p !5l* T exp~21/2!. ~73!

For t2tmax
p .1/l* , the occupation of the unstable crit

cal state decreases exponentially in time because the sy
moves away from this state. This decay is described by
factor exp@22l* (t2tmax

p )#. At sufficiently larget2tmax
p the

contribution from the next MPNP~the one that starts on
period later! becomes important, and eventuallyL* (t) is
described by Eq.~72! with p replaced byp11.

The time dependence ofL* (t) is strongly asymmetric
with respect tot2tmax

p . For t,tmax
p the occupation of the

critical state is determined not by the relaxation away fro
it, but by the width of the tube of fluctuational paths su
rounding the MPNP. This corresponds to the Gaussian de
of function G* (j) at largej@1. Therefore fort,tmax

p the
occupation of the critical state decreases much faster then
t.tmax

p . The minimatmin
p of function L* (t) are close to its

maxima,tmax
p 2tmin

p !T. The values oftmin
p can be obtained by

taking into account the contribution not only from thepth
MPNP, but also from the MPNP that started a period earl
i.e., att5t0

p21. This gives

tmin
p 5t0

p1tD2
1

2l*
ln~2l* T!,

~74!
L* ~ tmin

p !5~2l* T!3/2exp@2l* T#.

For t,tmin
p the occupation of the critical state is determin

by the MPNP withn5p21 in Eq. ~73!.
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D. Nucleation rate and probability distribution for
supercritical nuclei

We now consider the distribution of supercritical nuc
far away from the small-fluctuation region, i.e., forg2g*
@zD , but forg2g* !g* . The nucleation rateJ(z,l ) can be
obtained by substituting the distribution function Eq.~61!
into Eq. ~14!. Changing in Eq.~61! from j to t0 , we obtain

J~z,t !

J0
5l* E

2`

`

dt0GS z

zD
e2l~ t2tD2t0!D

3expF2
U~ t0!

D G , G~y!5y exp@2y# ~75!

@we have neglected the term2j2/2 in the exponent of the
integrand in Eq.~61!, which is}(zD /z)!1#.

For the moderately strong driving in which we are inte
ested, the probability flux is nearly constant along the de
ministic growth paths, which are given by Eq.~8! with h(t)
set equal to zero. Therefore fluxj (g,t) equalsJ(z,t8) where
points ~g,t! and (z,t8) are connected by the determinist
path Eq. ~8!. The expression for fluxj (g,t) can then be
written as

j ~g,t !

J0
5l* E

2`

`

dt0G~e2l* ~ t2t0~g!2tD2t0!!

3expF2
U~ t0!

D G , t0~g!5E
g0* 1zD

g dg

K0~g!
. ~76!

We have setz5zD in Eq. ~75! and neglected inj (g,t) the
small terms}ġ* (t). The functiont0(g) in Eq. ~76! is the
time it takes for a nucleus to grow from sizeg0* 1zD to size
g.

Equation~76! is one of the central results of the paper.
provides the expression for the nucleation rate in a perio
cally driven system in a broad range of driving for
strengths. Similar to Eq.~65a!, it applies for weak forces
uU(t)/Du!1, as well as for relatively strong force
uU(t)/Du@1. Oscillations of the current for different value
of g have the same form but differ from each other by
time-independent phase factor. The form of these oscillati
is given in terms of the incrementl* in the critical region,
and also LSx~v! which depends on a particular nonline
modelK0(g) and determines the form of functionU(t) for a
given driving forceh(t).

For uU(t)/Du@1, the integral overt0 in Eq. ~76! can be
evaluated by the steepest descent method,

j ~g,t !5J0l* TA (
n52`

`

G~e2l* @ t2t0~g!2t0
n
#!. ~77!

The values oft0
n and A are given in Eqs.~68! and ~64!,

respectively.
In the limit Eq. ~71! of relatively low driving frequency,

the sum in Eq.~77! is, in general, determined by the ter
with n5p,

j ~g,t !5J0l* TAG~e2l* ~ t2t0~g!2tmax
p

!!, ~78!
i

r-

i-

s

wheretmax
p is given by Eq.~73!. The current is maximal for

the deterministic paths that arrive at stateg for t5tmax
p

1t0(g)(p50,61...) and start near the critical state att
5tmax

p , at which the corresponding MPNPs arrives to th
state and the probability densityf * (t) is maximal@Eq. ~73!#.

Thus the value of the nucleation rate varies periodica
taking the maximal value

j max5 j ~ tmax
p 1t0~g!,g!5J0Al* T exp~21!. ~79!

Similar to the analysis in the previous subsection,
minimal value of currentj (g,t) is reached where there oc
curs switching from one MPNP to another and one sho
keep two terms in the sum Eq.~77!,

j min5 j S g,tmax
p 1t0~g!2

1

l*
ln l* TD

52 j maxl* T exp@2l* T#. ~80!

We note that the oscillations of currentj (g,t) in the
supercritical range, as described by Eq.~77!, differ from the
oscillations of the distribution functionf * (t) at the critical
state, although they are closely related to each other.
difference comes from the fact that functionG* (y) in Eq.
~70! describes the diffusion near the critical state where
function G(y) in Eq. ~77! is defined in the supercritical re
gion where growth dominates over diffusion process
However, the supercritical current is also very asymmetric
time near its maxima, because the growth trajectories e
nate from the critical state, and the current is larger for
trajectories that lag the MPNP as compared to the trajecto
that lead the MPNP.

E. Nonadiabatic versus adiabatic driving

Expressions~70! and ~77! correspond to the case o
nonadiabatic driving. The essential feature of this case is
the exponential factor exp@2U(t0)/D# in the integrands in
expressions~67! and ~76! is a much steeper function oft0

than functionsG* and G, respectively. The latter function
vary only slightly within the characteristic widths of th
maxima of exp@2U(t0)/D# in the vicinity of the stationary
points in the integral Eqs.~67! and~76!. This is true provided

l*U D

Ü~ t0* !
U1/2

!1. ~81!

In particular, for sinusoidal driving we obtain

n[
v

l*
@e1

1/2, ~82!

wheree15D/2h1ux(v)u in Eq. ~65a!.
If the period of driving is very large, functionsG* and

G in Eqs. ~67! and ~76! depend on t0 steeper than
exp@2U(t0)/D#, and for all t the major contribution to the
integrals in Eqs.~67! and ~76! comes from the vicinities of
the values oft0 whereG* andG are maximal. In the inter-
esting case where maxU(t)/D@1, this happens if

maxU~ t !/l* TD!l* T@1 ~83!

~i.e., h1ux(v)/D!l* T, for monochromatic driving!.
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For the slowly varying driving force Eq.~83!, the char-
acteristic duration of motion along the MPNP to the sma
fluctuation region near the critical nucleus size istD;1/l*
!1/T, and the time it takes a supercritical nucleus to rea
size g is t0(g)!T for g not too different fromg* . Then
expressions for the probability flux in the supercritical ran
and the population of the critical state are reduced to a pu
adiabatic form

f * ~ t !5 f 0* expFg0* h~ t !

D G , j ~g,t !5J0 expFg0* h~ t !

D G . ~84!

Here,g0* h(t)52x(0)h(t) is the adiabatic time modulatio
of the free energyF0(g* (t)), to the leading order in the
driving force amplitude.

We are now in a position to discuss the numerical
sults. For monochromatic driving, the time dependence
probability flux j (g,t) in Eq. ~76! is shown in Fig. 2. The
flux is a periodic function of phasef,

f5v~ t2t0~g!2tD!1argx~v!,

j ~g,t ![J0k~f!5(
n

j n exp@ inf#. ~85!

Functionk~f! is independent ofg @cf. Eq.~76!#, and depends
only on the dimensionless reciprocal driving force amplitu
e1 and the dimensionless force frequencyn.

Curves 1–6 in Fig. 2 correspond to the samee1 and
different n. Curve 1 corresponds to a very smalln and de-
scribes symmetric oscillations of the exponent ofj in the

FIG. 2. Reduced nucleation ratek5J/J0 as a function of phasef @Eq.
~85!# for different values of the reduced driving frequencyn5v/l* and for
the reduced driving force amplitude 2h1ux(v)u/D51/e1510. Curves 1–6
correspond ton50.1, 0.3, 0.6, 1, 1.3, 3.14.
-

h

e
ly

-
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e

purely adiabatic regime@cf. Eq. ~84!#. Deviations from this
behavior become more and more pronounced asn increases.
We note that the asymmetry of curves 2–4 is immediat
related to the form of functionG(y)5y exp@2y# in Eq. ~76!,
with y}exp@2l* (t2t0)#. To the left from its maximum,
functionG displays a very steep~double-exponential! depen-
dence ont. Therefore the dependence of fluxj on f to the
left of the maxima is similar to the adiabatic behavior f
small n. The deviation from the adiabatic regime initiall
occurs in the regions to the right of the maxima. Indeed,
we discussed above, the maxima ofj correspond to the peri
odic arrivals of MPNPs at the critical state, followed by slo
diffusion near this state. This effect was noticed in Ref. 13
the calculation of the probability flux over a periodical
modulated parabolic barrier. It is clear from our analysis@cf.
Eq. ~80! and the discussion above it# that, for not too largen,
the minima ofj as a function of phasef are located to the
left of the maxima and very close to them, as compared
2p.

It is seen from Fig. 2 that, with increasing reduced fr
quencyn, oscillations in the nucleation rate are suppress
In particular, curve 6 ~where n5p! describes small-
amplitude nearly sinusoidal oscillations of the flux about
average value in Eq.~65!. Such rectification of the flux is
due to the fact that, as the driving frequency increases
system, that has arrived to the ‘‘slow’’ area of smallug
2g* u along one MPNP, it does not have time to leave t
area before the next MPNP approaches it. Respectiv
more and more MPNPs are contributing to the sum in E
~77!. Generally, the amplitudes of nonzero Fourier harmo
ics j n of the flux decrease exponentially withv, for large
v/l* . In particular, for monochromatic driving,

U j n

j 0
U5S pnn

sinh~pnn! D
1/2

, n5
v

l*
. ~86!

Therefore in the limit exp@pn#@1 the nucleation rate is es
sentially rectified.

We note that, since the change ofn corresponds to the
change of the driving frequencyv, LS x~v! will take differ-
ent values for different curves in Fig. 2. On the other ha
e1 depends onx~v! @cf. Eq.~65a!#, and, therefore, in order to
keepe1 constant for different curves in the figure, one has
change the amplitude of the drivingh1 . However, as will be
shown below, for the relevant growth models, LSx~v! is
characterized by a smooth~nonexponential! form of the dis-
persion curve. This is in contrast to LS for escape o
Brownian particle,26,30 which decays exponentially fo
largev.

V. LOGARITHMIC SUSCEPTIBILITY FOR PARTICULAR
MODELS OF NUCLEATION

For weak to moderately strong driving forces, the p
rameters of the dynamical model of nucleation enter the
pression for the nucleation rate only in terms of the funct
U(t) in Eq. ~43!, which is given by LS. For low-frequency
driving, LS x~v! is '2g0* , and thenU(t)52g0* h(t). This
corresponds to simple adiabatic modulation of the nuclea
barrier~however, retardation effects can still be important,
discussed above!. On the other hand, for high-frequenc
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driving, functionU(t) and the driving-force-induced chang
of the activation barrierU* 5minU(t) ~for uU* u@D! are
determined by the frequency dispersion ofx~v!.

We noted earlier that, for a given model, LS can
found by making the Fourier transform in Eq.~45! of the
time-reversed speed at which the size of a subcritical nuc
decreases in the absence of fluctuations. This decrea
described by Eq.~8!. We will analyze LS for the dynamica
models which describe 2D layer-by-layer nucleation dur
overpotential deposition, and also nucleation of conden
monolayers in underpotential deposition. In both ca
nucleation is characterized by small supersaturation,
relatively large sizes of critical nuclei can be expected11

Layer-by-layer nucleation occurs during deposition on nat
metal @e.g., in deposition of Ag on Ag~Refs. 11, 31! or Ag
on Au ~Ref. 32!# or in the case of small crystallograph
overlayer-substrate misfit.

In 2D nucleation, the sizeg of a nucleus is proportiona
to its area, and the surface energy in Eq.~18! is proportional
to the length of the boundary~which is assumed to be circu
lar!, so that in Eq.~18! A(g)5gg1/2. A few simple growth
mechanisms are known in the literature. When diffusion o
surface is much slower than the attachment of ions from
solution to the surface, the ions are most likely attached
the nuclei directly from the electrolyte~direct transfer
mechanism!. In this case the rate at which ions are attach
is proportional to the area of nucleusg,

a~g!5sdtg. ~87!

Using a(g) and A(g), we can explicitly find the optima
nucleation path from Eq.~37! and then obtain LS from Eq
~45!,

g0~ t !5g0* ~12exp@2l* t# !2, l* 5
sdtdm0

2
,

~88!

x~v!5g0* YdtS v

l* D , Ydt~n!52
2

~12 in!~22 in!
.

In the opposite case, where surface diffusion of adato
is fast, whereas the activation barrier for transitions throu
the double layer is high, 2D nuclei grow by attaching ad
toms from the surface rather than directly from the elect
lyte. Such growth can be modeled in two simple ways.
before an atom attaches to a nucleus, it had to ‘‘hit’’ t
boundary of the nucleus~the step on the surface! several
times, then the nuclei grow in the ‘‘ballistic’’ regime wher
the attachment ratea(g) is proportional to the length of the
boundary,

a~g!5sbg1/2. ~89!

Using Eqs.~37! and ~45!, we can write the optimal nucle
ation path and the corresponding LS in the form

s~x!52~x1/21 ln~12x1/2!!,

s5l* t, x5g0~ t !/g0* , l* 5
sbdm0

2~g0* !1/2, ~90!

x~v![g0* YbS v

l* D , Yb~n!52E
0

1

dzexp@ ins~z!#. ~91!
us
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g
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,

In particular, for largen5v/l* ,

Yb~n!;2in21, n→`. ~92!

On the other hand, if an adatom ‘‘sticks’’ to the nucle
once it has approached the nucleus boundary, the attach
rate a(g) is determined by diffusion-limited growth and i
independent of nucleus size in the 2D case,

a~g!5sdl . ~93!

Using Eqs.~37! and ~45!, we can write the optimal nucle
ation path and the corresponding LS in the form

s~x!52~x1/21 1
2x1 ln~12x1/2!!,

s5l* t, x5g0~ t !/g0* , l* 5
sdldm0

2g0*
, ~94!

x~v![g0* YdlS v

l* D , Ydl~n!52E
0

1

dzexp@ ins~z!#. ~95!

In the limit of largen5v/l*

Ydl~n!'zn22/3, z52321/3G21~1/3!. ~96!

The frequency dependence of LS for the above nuc
ation models is plotted in Fig. 3~a! and 3~b!.

The ballistic and diffusion-limited models ofa(g) can
also be relevant for nucleation in underpotential deposit
where a submonolayer, or one or two monolayers of a me
grow on the cathode made from a different metal, with t
potential which is positive with respect to the Nernstian eq
librium potential for bulk deposition. Nucleation in underp
tential deposition corresponds to condensation of adatom
the surface from a disordered low-coverage phase into
dered clusters.33,11 The role of the ion transfer from the so

FIG. 3. Frequency dependence of the absolute value~a! and the phase~b! of
logarithmic susceptibility,x(v)5g0* Y(v/l* ), for different nucleation
models. Curves 1–3 correspond to the direct transfer model Eq.~88!, the
ballistic model Eq.~91!, and the diffusion-limited model Eq.~95!, respec-
tively.
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lution is negligible during surface phase transformations
cause of the large activation barrier for the ion
Supersaturationdm(t) in the case of underpotential depos
tion is the difference in chemical potentials of the atoms
the ordered clusters and in the disordered phase.

The above models correspond to simple limiting case
surface growth. In the general case the growth law will
more complicated. We note, however, that instead of us
particular dynamical models, LS can be determined exp
mentally by measuring the nucleation rate. In the simp
case one can use a monochromatic driving force and mea
the driving-force-induced increment of the average nuc
ation rate,A5J̃/J0 . According to Eq.~65!, this allows us to
determine the absolute value of LSux~v!u. The measurement
can be performed in a broad range of driving force am
tudes, but the most advantageous regime correspondse1

@1 where the force affects the nucleation rate exponenti
strongly,A@1. By measuring the logarithm ofA and using
Eq. ~65!, one can find the change of the nucleation barr
D/e1 and thereforeux~v!u at the driving frequency.

The frequency dependence of the phase of LS can
recovered by measuring the time-averaged nucleation
for a nonsinusoidal periodic driving force. In the simple
case of a biharmonic driving force,

h~ t !5 (
n522

n52

hn exp~ invt !, h2n5~hn!†,

the factorA, which shows the driving-force-induced increa
of the average nucleation rate, is equal to

A5
1

2 (
n50

`

I 2nS 1

e1
D I nS 1

e2
D cos@n~F1Q~v!1p!#,

Q~v!52 argx~v!2argx~2v!, F52 argh12argh2 ,
~97!

ek[
D

2hkux~kv!u
, k51,2.

Here, we used Eq.~63! and the explicit form of the function
U(t) in Eq. ~43!. For strong driving,en!1, Eq. ~97! goes
over into the asymptotic value ofA in Eq. ~64!, with account
taken of the explicit form of the driving-force-induced co
rection to the nucleation barrierU* ,

U* 5min
w

F 1

e1
cosw1

1

e2
cos~2w2F2Q~v!!G . ~98!

The average nucleation rate Eq.~97! depends on the
phase differenceF between the harmonics of the drivin
force. For strong driving this dependence is exponentia
strong and is determined by the variation ofU* with F.
Plots ofA vs F for different driving strengths are shown i
Fig. 4. The amplitudes of the harmonics weighted with
appropriate absolute values of LS are chosen equal to
other,e15e2 , so that the effect of the interference betwe
the harmonics is maximal. It is seen from Fig. 4 that, in t
case of strong driving, the dependence of lnA on F is very
sharp near the minima ofA. In fact, the dependence ofU* on
F is singular at the minima. This effect was analyzed in R
-
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20 and corresponds to the fact that functionU(t) may have
two minima per period, and thenU* is determined by the
global minimum ofU(t) @cf. Eq. ~98!#. The relative depths
of the minima depend onF, and for the values ofF where
the two minima have equal depths, the derivative ofU* with
respect toF changes discontinuously. This singularity
smeared out by noiseD, as seen in Fig. 4.

We note thate1,2 in Eqs. ~97! and ~98! depend on the
absolute value of LSux~v!u, which can be measured using
monochromatic driving force, as described above. There
the relative phase of LSQ~v! can be recovered by measurin
the dependence ofA on F for different driving frequencies.

To find the phase of LS argx(v) from Q~v! one should
solve the equation

2 argx~v!2argx~2v!5Q~v!. ~99!

We now discuss the boundary conditions for this equati
We note first of all that LSx~v! approaches2g0* as v
→0, and therefore argx(v)→0 for v→0. For largev, on the
other hand, the asymptotic form ofx~v! is determined by the
optimal nucleation pathg0(t) for small-g, and ux(v)u→0
for v→`, whereas argx(v) approaches a finite constan
value. Based on these boundary conditions, the solution
Eq. ~99! can be written in two forms:

argx~v!5vt01 (
k50

`

22k21Q~2kv! ~100!

5vt02 (
k50

`

2kQ~22k21v!, ~101!

which relate argx(v) to the values ofQ~V! with V being
overtones 2kv or subharmonics 22kv of frequencyv @in
fact, the values ofQ(2kv) for k.0 andk,0 are interre-
lated via Eq.~99!#.

The first term in Eq.~101! identically satisfies Eq.~99!
with arbitrary realt0 . The occurrence of this term is relate
to the time degeneracy of the unperturbed MPNPsg0(t
2t0), which was discussed earlier. We note that, due

FIG. 4. RatioA of the average nucleation rates with and without driving
Eq. ~97! for a biharmonic driving force vs phase differenceF between the
harmonics. The reduced amplitudes of the harmonics are set equal to
other,e15e2 . Curves 1–4 correspond toe15e250.5, 0.2, 0.11, 0.07.
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analyticity of x~v! for v→0, the functionQ~v! is quadratic
in v for v→0, and therefore the second series for argx(v)
converges.

LS can also be found from measurements of the nu
ation rate in the case of weak modulation where the harm
ics of the nucleation current are linear in the amplitudes
the corresponding harmonics of the driving force,

j ~g,t !

J0
512D21(

n
hnx~vn!GS 11

inv

l* D
3exp@ inv~ t2t0~g!2tD!#. ~102!

Once LS is known, it is possible to find the nucleati
current from Eq.~76! for any profile of the driving force
without specifying the particular nucleation model, and t
suggests how to perform thelearning controlof the nucle-
ation process.

VI. THE FARADAY CURRENT

One of the standard ways to study the kinetics of
nucleation process in electrodeposition is to analyze the
aday current in the electrochemical cell. Attachment to
cathode surface of an ion with the charge2Ze contributesZ
electrons to the Faraday current. In the case of small su
saturation, which is relevant to our analysis, the surface
close to equilibrium. In this case the elementary attachm
detachment processes to and from the surface, as we
fluctuational formation and collapse of small subcritical n
clei, give rise to zero-mean fluctuations of the current. Af
averaging over the time scale of elementary processes
current densityi (t) is determined by the rate of formatio
and subsequent growth of supercritical nuclei. If supersa
ration is created by a voltage pulse att50, and after that is
held at a constant valuedm(t)5dm0 , then in the steady stat
the current densityi 0(t) is proportional to the growth rate o
the supercritical nuclei. The number of atoms in such nu
N0(t) is equal to

N0~ t !5E
0

t

g~ t2s!J0 ds, ~g@g0* !,

~103!
i 0~ t !5eZṄ0~ t !5eZg~ t !J0 .

Here,ġ5K0(g) describes the deterministic growth of supe
critical nuclei @cf. Eq. ~76!#. Equation~103! corresponds to
the qualitative picture in which supercritical nuclei emerge
a rateJ0 , which is independent of time fort.0. By time t
the nuclei, which have emerged at instants, will grow to size
g(t2s). Time t is chosen so that it largely exceeds the tra
sient time, which is of the order of the reciprocal probabil
of creation of a critical nucleus in the system. For sucht, the
characteristic size of nucleig(t) is much larger thang0* .

In the case of periodic modulation of supersaturat
dm(t), the Faraday current densityi (t) has to be calculated
taking into account the periodic modulation of the nucleat
rate. Taking into account that the number of supercriti
nuclei reaching sizeg0* 1z over the time interval (t,t1dt) is
given by j (g0* 1z,t), we can write the expression for th
current as
-
n-
f

s

e
r-
e

r-
is
t/
as
-
r
he

u-

i

t

-

n

n
l

i ~ t !5eZE
0

t

dsġ~ t2suz! j ~g0* 1z,s!, ~g~ t !@g0* !, ~104!

whereg(0uz)[g0* 1z, and the growth of supercritical nucle
ġ is calculated in the neglect of fluctuations. The value ofz is
limited by the condition thatz!g0* , and in what follows we
will assume thatz5zD ~the result is independent of the a
tual value ofz!.

We now investigate this expression for the models
nucleation considered above.

A. Current density for fast surface diffusion

In the diffusion-limited model of 2D nucleation, fo
large nuclei (g@g0* ) the growth rate becomes independe
of their size,ġ'2l* g0* . In this case the Faraday current
Eq. ~104! is merely proportional to the integral over time o
the periodic nucleation rate. At low modulation frequen
v/l* !1 the integral is reduced to the sum over the con
butions from the vicinities of the maxima of nucleation ra
j (g0* 1zD ,s) at s5tmax

n @see Eq.~78!# that correspond to the
arrivals of the MPNPs to the critical region. In this limit on
obtains

i ~ t !52eZg0* l*J0TA(
n50

`

u~ t2tmax
n !,

~105!
i 0~ t !'2eZg0* l*J0t, ~ t@1/l* !.

Here,u(x) is the step function, and the value ofl* is given
by Eq. ~94!.

The current Eq.~105! is approximately time independen
in between the instantstmax

n and the increments by a consta
when t goes through the nexttmax

n . After a long time has
elapsed since the modulated overvoltage is turned onvt
@1), so that many terms in the sum contribute to the c
rent, the increments of the current att5tmax

n are small com-
pared to its magnitude, which is then determined by the
erage nucleation rate,

i ~ t !5Ai0~ t !}t, ~vt@1!.

We note that the above analysis for the Faraday current d
sity applies to the initial state of nucleation when the surfa
fraction covered by the deposit is small.

For the ballistic model of nucleation, the growth of larg
nuclei is parabolic in time,g5g0* (l* t)2 @cf. Eq.~90!#. Simi-
lar to the case of diffusion-limited nucleation after a lon
time has elapsed since the overpotential pulse is turned
the time oscillations of the nucleation rate are averaged
in the expression for Faraday current Eq.~104! at vt@1 and
the average current is determined by the average nuclea
rate,

i ~ t !5Ai0~ t !5AeZJ0~l* t !2, ~vt@1!. ~106!

B. Faraday current for the direct transfer model of
nucleation

In the direct transfer model, the size of the nuclei gro
in time exponentially@cf. Eq. ~88!#, and the Faraday curren
is mostly determined by the nuclei with the size close to
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maximal, for given t. The expression for the current fo
monochromatic driving can be obtained from Eqs.~76! and
~52!, assuming thatg(t)'g* exp@2l* t# in Eq. ~104!,

i ~ t !

i 0~ t !
5(

n
I nS 1

e D G~12 inn!

12 inn/2
exp@2 inw#,

~107!
i 0~ t !5eZJ0g0* exp@2l* t#, w5v~ t2tD!1argYdt~n!.

Here, G(x) is a gamma function,l* and n are defined in
Eqs. ~82! and ~88!, respectively. In Fig. 5 we show the de
pendence of ratioi (t)/ i 0(t) on time for different values of
the reduced frequencyn5v/l* . For small n!1, ratio
i (t)/ i 0(t) is a steep periodic function of time, and curre
i (t) displays modulated exponential behavior. The lo
maxima of the current corresponds to the values oft'tmax

n .
Whenn increases the modulation effect ini (t) decreases and
eventually disappears, and ratioi (t)/ i 0(t)→A5I 0(1/e).

VII. CONCLUSIONS

In the present work we considered the steady-s
nucleation rate in periodically driven systems where the d
ing force modulates in time the deviation of the chemi
potential from the equilibrium value. Analysis was done f
the case of the large size of a critical nucleus and was ba
on the solution of the Fokker–Planck equation~FPE! for the
nuclei distribution function. In obtaining the nonequilibriu
steady-state distribution of subcritical nuclei we relied on
underlying picture of large dynamical fluctuations and us
the WKB-type technique to solve the FPE equation. In
vicinity of the critical state the asymptotic solution wa
matched with the solution of the linearized FPE. As a res
we have obtained the nucleation rate in the closed analy
form in Eq. ~76! which is a generalization of the Zeldovic
formula for the case of periodically driven systems.

The result applies in the broad range of driving for
strengths, from the linear regime where the Fourier harm
ics of nucleation currentj (g,t) are linear in the force ampli
tude to thelogarithmically linear regime, where the driving
force affects j (g,t) exponentially strongly, but lnj(g,t) is

FIG. 5. Periodic oscillations of the ratio of the Faraday currents in
presence and in absence of ac modulation of the electrode potential c
lated for the direct transfer nucleation model@the phase of the oscillations
f5f(t) is defined in Eq.~107!#. Curves a–c correspond to the reduc
driving frequencyn50.1, 1, 3.14.
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linear in the force amplitude. In both linear and logarithm
cally linear regimes~and in the whole intermediate range!
the driving-force-induced change ofj (g,t) is described in
terms of a certain spectral functionx~v! which we call loga-
rithmic susceptibility~LS!. Similar to standard linear suscep
tibility, x~v! is determined by the dynamics of the system
the absence of external driving, but the crucial difference
in the fact thatx~v! is determined by large dynamical fluc
tuations of the system away from the steady state and
pends on the global properties of the evolution of the sys
along the most probable nucleation path~MPNP!. The ex-
plicit form of x~v! is determined by the model of nucleatio

In the case of monochromatic driving, the nucleati
current is determined by the absolute value of LS,ux~v!u,
whereas for the driving force with several harmonics bo
the amplitudes and phases ofx~v! are important. We inves-
tigated the average nucleation rate in the presence of bi
monic driving for various driving force strengths and ha
shown that, in the limit of relatively strong driving, the e
fective nucleation barrier displays singular behavior as
function of the relative phaseF between the force harmon
ics. The singularity is smeared out on the sca
dF}kBT/hnx(nv) ~where n51,2, andT is temperature!.
We have shown how the phase of LS argx(v) can be ob-
tained from measurements of the average nucleation rate
function of F for different v.

Equation~76! describes nucleation for the entire range
driving force frequencies from small~the adiabatic driving!
to high, where the driving is strongly nonadiabatic. T
modulation in time of the nucleation rate is exponentia
strong for low-frequency driving. Here, nucleation is mo
likely to occur where the nucleation barrier is at its min
mum. For larger driving frequencies the nuclei that have
proached critical size will remain in the critical region for
time longer than the force period. This gives rise to rect
cation of the nucleation rate. The nonzero Fourier harmon
of the nucleation current}exp@2nvp/2l* #, wherel* is an
eigenvalue that describes the dynamics of the nuclei in
vicinity of the critical state.

It is important to emphasize that a high-frequency for
can still exponentiallystrongly affect the nucleation rate
provided the force amplitude weighted with LS exceedskBT.
In this case the MPNPs are synchronized with the phas
the driving force, and lnj(g,t) is proportional to thethermo-
dynamic work@cf. Eq. ~38!# done by the driving force during
the formation of the critical nucleus. Thus lnj(g,t) is linear in
the amplitude of the nonadiabatic driving force. Howev
for very high driving frequencies,v@l* . LS becomes smal
~it decays as a power ofv21 for largev!. Then the driving-
force-induced correction to the average nucleation rate
quadratic in the driving force amplitude.

Electrochemical systems are advantageous for stud
effects of ac driving on nucleation rate because of the po
bility to change supersaturation in a well-controlled way f
by varying the electrode potential, without causing enviro
mental changes and dissipative energy transfer. The
quency dispersion of LS is highly sensitive to the underlyi
nucleation mechanism. Measurements of LS allow crea
of optimal driving force profiles for selective control o
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nucleation kinetics, for example, for controlling 2D layer-b
layer nucleation mode at maximum growth rate.

Generally, LSx~v! is a nonanalyticfunction of the fre-
quencyv. This nonanalyticity arises in spite of the expre
sion for x~v! being of the causal form familiar from th
theory of linear susceptibility in statistical physics. It is d
to nonanalytic dependence of the nucleus sizeg(t) on time
for small-g ~in the absence of driving and fluctuations!. Re-
spectively, the nonanalyticity ofx~v! arises for largev. We
have calculatedx~v! for the models of 2D nucleation in elec
trochemical deposition on a metal electrode. The follow
models of attachment of ions to the nucleus were discus
~i! direct transfer from the electrolyte;~ii ! surface diffusion
with multiple reflection from a nucleus; and~iii ! surface dif-
fusion where ions stick to a nucleus once they reach it.

In conclusion we make estimates for a specific elec
chemical system, Ag(hkl)/AgNO3. This is an example of
deposition on a native metal, and the critical nuclei are t
dimensional. The growth of silver on one of the close-pack
Ag(hkl) single crystal faces from an aqueous solution c
taining Ag1 has been experimentally studied in a number
papers~see Ref. 11 and references therein!. In these studies
techniques were developed for growing crystal faces w
very low density of defects and no screw dislocations, an
detailed study of the kinetics of 2D nucleation~at constant
overvoltage! on quasi-perfect crystal faces was performed
particular, it was found that, at room temperatures, the tr
sient timet* is of the order of several milliseconds. At sma
supersaturation,h57 mV, the size of the critical nucleusg0*
was estimated to be;80, and the height of the nucleatio
barrierF0* ;10219J. At room temperatureF0* /kBT;25 and
supersaturationdm0;0.2kBT. Thus it is possible to use th
continuous FPE for the nuclei distribution function and ap
the large fluctuation theory to the analysis of nucleation, a
was done in the present paper. The data on the transien
the Faraday current in potentiostatic experiments indica11

that the current increases quadratically with time at the ini
stage of nucleation. This suggests that the ballistic mode
nucleation in Eq.~89! can apply. Using the amplitude of th
overvoltage modulation;2–3 mV, and keeping the dc valu
of h;6 – 7 mV it may be possible to produce an expone
tially strong modulation of the nucleation rate~by a factor
;exp@2(6410)#). For stronger modulation of supersatur
tion, the numerical evaluation of the nucleation rates~to
logarithmic accuracy! can be done based on the nonpert
bative expression Eq.~33!.
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