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We show that an atomic system in a periodically modulated optical trap displays an ideal mean-field
symmetry-breaking transition. The symmetry is broken with respect to time translation by the modulation
period. We describe experimental observations and develop a full microscopic theory of the observed critical
phenomena. The transition is explained as resulting from the interplay of the long-range interatomic interaction
and nonequilibrium fluctuations in the strongly modulated system. The observations, including anomalous
fluctuations in the symmetry broken phase, are fully described by the theory.
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I. INTRODUCTION

The mean-field approach has been instrumental for devel-
oping an insight into symmetry-breaking transitions in ther-
mal equilibrium systems �1�. It has been broadly applied also
to nonequilibrium systems, the studies of pattern formation
being an example �2�. However, close to the phase-transition
point the mean field approximation usually breaks down.
This happens even in finite-size systems provided they are
sufficiently large.

In this paper we study a nonequilibrium system of �107

particles which, as we show, displays an ideal mean-field
symmetry-breaking transition. It is accompanied by anoma-
lous fluctuations, which are also described by an appropri-
ately extended mean-field theory. The system is formed by
moderately cold atoms in a magneto-optical trap �MOT� in
the classical regime �3,4�. The atoms are periodically modu-
lated in time �5�.

Periodically modulated systems form one of the most im-
portant classes of nonequilibrium systems, both conceptually
and in terms of applications. They have discrete time-
translation symmetry: they are invariant with respect to time
translation by modulation period �F. Nevertheless, they may
have stable vibrational states with periods that are multiples
of �F, in particular 2�F. Period doubling is well known from
parametric resonance, where a system has two identical vi-
brational states shifted in phase by �. It is broadly used in
classical and quantum optics and has attracted significant
attention recently in the context of nano- and micromechani-
cal resonators �6–9�.

It should be emphasized that, in a many-body system,
dynamical period doubling in itself does not break the time-
translation symmetry. This is a consequence of fluctuations.
Even though each vibrational state has a lower symmetry,
fluctuations make the states equally populated and the sys-
tem as a whole remains symmetric. However, if as a result of
the interaction the state populations become different, the

symmetry is broken. It is reminiscent of the Ising transition
where the interaction leads to preferred occupation of one of
the two equivalent spin orientations, except that the symme-
try is broken in time. For atoms in a parametrically modu-
lated MOT spontaneous breaking of the discrete time-
translation symmetry was observed experimentally by Kim
et al. �10�.

Here we show that the time-translation symmetry break-
ing in a modulated MOT results from the cooperation and
competition between the interparticle interaction and the
fluctuations that lead to atom switching between the vibra-
tional states. The interaction has a long-range part, but is
weak. On its own, it cannot change the state populations.
However, it may change the rates of fluctuation induced
switching, which in turn will cause the population change.
We provide a quantitative theory of the phenomenon. We
measure the critical exponents and the frequency dispersion
of the susceptibility. The observations are consistent with the
mean-field behavior and are in good agreement with the
theory.

The paper is organized as follows. In Sec. II, we describe
the experimental observations and provide a brief outline of
the theory. The full theory is described in the remainder of
the paper. In Sec. III, we develop a theory of intercloud
switching. We consider the effect of the interatomic coupling
on the switching rates and show that, even far from thermal
equilibrium, it can be described in simple and general terms.
In Sec. IV, we use the results on the switching rates to de-
scribe the spontaneous breaking of the discrete time-
translation symmetry. We obtain the critical exponents, in-
cluding the exponent pertaining to the nonlinear response to
a resonant high-frequency field at the transition point; we
also find the spectrum of the response to a nearly resonant
field. In Sec. V, we explain anomalous critical fluctuations
due to atom evaporation and recapture into the trap. Section
VI provides explicit results for a simple model of one-
dimensional �1D� motion. The shadow effect in the rotating
frame is described. It is argued that the corresponding inter-
action is responsible for the symmetry-breaking transition.
Section VII contains concluding remarks.
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II. EXPERIMENTAL RESULTS AND A PREVIEW OF THE
THEORY

A. Experimental setup

In the experiment, 85Rb atoms in a MOT were cooled
down to �0.4 mK. Full three-dimensional confinement was
achieved with three pairs of counterpropagating laser beams.
The intensity of the beams along the MOT axis z was
0.19 mW /cm2, the transverse beam intensities were five to
ten times larger. The magnetic field gradient at the trap center
was 10 G/cm. The transverse beams were detuned from the
atomic transition by ��−2.3�p, the longitudinal beams were
further detuned by 5 MHz �the atomic decay rate is �p /2�
�5.9 MHz�. The atomic cloud motion was essentially one-
dimensional, along z axis, with frequency �0 /2��45 Hz
and the damping rate ��36 s−1. The total number of
trapped atoms Ntot was varied by changing the hyperfine-
repumping laser intensity at a decrease rate of 0.5% per sec-
ond. For the order parameter and the variance measurements
very close to criticality, the decrease rate was reduced to
0.03%.

The beam intensities were modulated at frequency �F
=2�0 by acousto-optic modulators. When the modulation
amplitude exceeded a threshold value, after a transient, the
atomic cloud split into two clouds �5�, which were vibrating
in counterphase with frequency �F /2, see Fig. 1�a�. We took
snapshots at the maximum separation of the clouds at the
frame rate of 1–50 Hz to obtain the population of each cloud.
For a small total number of trapped atoms Ntot the popula-
tions were equal and the cloud vibrations had equal ampli-
tudes. This shows that the system as a whole preserved the
symmetry with respect to time translation by the modulation
period.

Once Ntot exceeded a critical value Nc �Nc�107 in our
experiment�, the average populations of the clouds became
different, as observed earlier �10�. We observe that the vibra-
tion amplitudes become different, too, see Fig. 1�b�. This is
spontaneous breaking of the discrete time-translation sym-
metry, the system becomes invariant with respect to time
translation by 2�F, not the modulation period �F.

B. Mechanism of the symmetry breaking

As phase transitions in equilibrium systems, the observed
transition is a many-body effect. This is evidenced by the
required critical number of atoms, which is finite but large,
typical of phase transitions in quantum cold atom systems
�11–15�. In contrast to these systems, atomic dynamics in our
system is classical. More importantly, the system is far from
thermal equilibrium, it is not characterized by the free energy
and has a discrete time-translation symmetry. Remarkably,
there are no long-range correlations of spatial density fluc-
tuations. The intracloud density fluctuations are irrelevant,
they are uncorrelated with the intercloud fluctuations, which,
as we show, are responsible for the transition and display
critical slowing down. As a result, the symmetry breaking is
quantitatively described by the mean-field theory.

The mean-field behavior is ultimately rooted in the time
scale separation and the weakness of the interaction. The

decay of correlations of intracloud density fluctuations is
characterized by the damping rate � of atomic motion, which
is determined by the Doppler effect in the MOT �4� and does
not change at the phase transition. On the other hand, switch-
ing between periodic states generally requires a large fluc-
tuation and involves overcoming an effective activation bar-
rier �8,16–20�. For low temperature, switching is a rare
event. We measured the rates Wnm of intercloud n→m
switching �n ,m=1,2� directly for small Ntot from the decay
time of the difference of the cloud populations, which gave
W12=W21�1 s−1. Therefore, in the experiment there is a
strong inequality between the characteristic reciprocal times,

�F � � � Wnm. �1�

This inequality shows, in particular, that the number of atoms
in each cloud remains almost constant over the period, even
though the cloud shapes can vary, for nonsinusoidal vibra-
tions.

During switching an atom is far from the clouds. The
energy of its interaction with individual atoms in the clouds
is much smaller than kBT. However, the total energy of in-
teraction with all atoms in the clouds may exceed kBT, and
then it changes the intercloud switching rate. The interaction
depends on the individual cloud populations N1,2 and the

FIG. 1. �Color online� �a� The two-dimensional density profiles
of the vibrating clouds for the maximal displacement along the
MOT axis ��4.5 mm�. The lower, middle, and upper panels refer
to the symmetric, close to critical, and broken-symmetry states,
with Ntot�1.5�106, 5.2�106, and 6.7�106, respectively; Nc

�5.6�106. The cloud centers are indicated by the ticks at the
bottom of the panels and are sketched in the right panel. �b� Cloud
vibration amplitudes as functions of the population of the other
cloud as it changes with the increasing Ntot. The �tilted� red dashed
lines show the expected linear dependence, cf. Equation �37�. The
vertical dashed line shows N1=N2=Nc /2. For the cloud with
smaller population beyond the transition, cloud 1, the amplitude
monotonically increases with Ntot, whereas for the larger cloud,
cloud 2, the amplitude is maximal at criticality. The error bars show
the standard deviation for 20 measurements.
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density distribution within the clouds, which changes only
weakly with Ntot.

The switching rates modification by the atom-atom inter-
action is the underlying mechanism of the symmetry break-
ing. Since these are the cloud populations N1,2 that control
the switching rates and that are changed as a result of switch-
ing, we choose their mean relative difference 	= �N2
−N1� /Ntot as the order parameter. A natural control parameter
is the reduced total number of atoms 
= �Ntot−Nc� /Nc. For
the symmetry breaking to occur, the interaction should cor-
respond to the effective attraction between the vibrating
clouds. As we show, an appropriate interaction is provided
by the shadow effect in the trap �3,4,21–23�.

C. Experimental observations

Our main observations are presented in Figs. 2 and 3.
They show that all measured quantities display mean-field
critical behavior. The order parameter scales as 			�
� for


0, with ��1 /2, see Fig. 2�a�, and 	=0 for 
�0. This
scaling was also seen earlier �10�, but now we have come
much closer to the critical point, and the precision is much
higher.

In Fig. 2�b�, we show the results on the variance of fluc-
tuations of the population difference, �2=Ntot

−2��N2−N1�2�

−	2. We find that it scales as �� 	
	−�̃ with �̃�1 for positive
and negative 
.

Equilibrium systems at criticality show a strongly nonlin-
ear response to the symmetry-breaking static field, like a
magnetic field at the Ising transition. For our system an ana-
log of such field is an additional periodic driving at half the
strong-field frequency. With this field, the overall time-
translation period is 2�F, and the vibrational states of period
2�F become nonequivalent �24�. We studied the effect of the
dynamic symmetry-breaking field at criticality, 
=0, by
asymmetrically modulating the counterpropagating beams.
Figure 2�c� shows that the cloud population difference scales
with the additional field amplitude h as 			�h1/� with ��3,
in agreement with the mean field theory.

The critical slowing down should lead to a strong re-
sponse of the population difference to a field detuned by a
small frequency � from �F /2. This is an analog of applying
a weak slowly varying field to thermal equilibrium systems.
The amplitude and phase of the forced oscillations of 	 at
frequency � as functions of 
 are shown in Fig. 3. They
display characteristic asymmetric resonant features, again in
excellent agreement with the mean-field theory.

D. Summary of the theoretical results

In general, one should not expect that our oscillating sys-
tem can be described by the Landau-type theory with stan-
dard critical exponents, and in fact the theory has to be ex-
tended. We explain the observations as due to kinetic many-
body effects. They turn out to be strong as a consequence of
the exponential sensitivity of the intercloud switching rates
Wnm.

If the atom-atom coupling can be disregarded, the switch-
ing rates are equal by symmetry,

W12
�0� = W21

�0� 
 W�0� = CW exp�− R�0�/kBT� �2�

with CW��cl, where �cl is the frequency of small-amplitude
damped atom vibrations about the cloud center �in the ex-
periment, �cl�3��. Of primary interest is the activation en-
ergy R�0�. For weakly nonsinusoidal period-2 vibrations it
was calculated and measured for single-oscillator systems
with cubic nonlinearity �8,16,17�. If we use the same model,
for the present experimental parameters, the theory �16�
gives R�0� /kB�3.4 mK. This is within a factor of 2 of the
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FIG. 2. �Color online� �a� The relative difference of the cloud
populations 	= �N2−N1� /Ntot as a function of the control parameter

= �Ntot−Nc� /Nc; the critical total number of trapped atoms Ntot is
Nc=1.6�107. The solid curves show the mean-field theory, 	
=tanh��
+1�	�. In the experiment 			�
� with �=0.51�0.01 for
0�
�1 �inset�. �b� The variance of the order parameter �̃2

=103�2 and its scaling �inset�. The critical exponents in the sym-
metric and broken-symmetry phases are, respectively, �̃
=1.04�0.21 and �̃=1.11�0.13. The gray line shows the theoreti-
cal result in the absence of fluctuations of Ntot. �c� The order pa-
rameter at criticality �
=0� as a function of amplitude h of the
additional modulation at frequency �F /2; h is scaled by the strong
modulation amplitude. The solid line is 			�h1/�, with �=3; experi-
mentally, �=3.0�0.8. �d� Order parameter 			 as a function of Ntot

�in units of 107 atoms� and the intensity of the additional resonant
radiation �scaled by the saturation intensity, 3.78 mW /cm2�. The
red curve in the �Ires ,Ntot� plane is the phase-transition line. The
error bars in panels �a� and �c� show the standard deviations of ten
measurements.
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FIG. 3. �Color online� The amplitude �a� and phase �b� of oscil-
lations of the order parameter 	 induced by an extra modulation at
frequency �F /2+� with �=0.1 Hz; in �a�, the amplitude is scaled
by its value Am for 
=0. The solid curves show the theory, Eq. �22�,
with the Ntot→0 switching rate used as a fitting parameter. The
error bars show the standard deviations of 100 measurements.
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value extracted from the measured W�0� and estimated T,
which is satisfactory given that in the present case the para-
metric modulation was comparatively strong and therefore
the vibrations were noticeably nonsinusoidal �the squared
MOT eigenfrequency �0

2 was modulated with relative ampli-
tude 0.9�.

The atom-atom interaction changes the switching activa-
tion energy. The change becomes significant only because of
the cumulative effect of the interaction of a switching atom
with the atoms in the clouds. We emphasize the distinction
from the standard Ising model with global coupling: not only
is our system far from equilibrium, but the atom-atom inter-
action is not �1 /Ntot. Symmetry-breaking occurs with in-
creasing Ntot, and even though the system is large, obviously
there is no thermodynamic limit Ntot→�.

For not too strong interaction the rate of 1→2 switching
becomes

W12�N1;Ntot� = W�0� exp�− 2�N1 + �� + ��Ntot� , �3�

see Sec. III; the rate of 2→1 switching is given by the same
expression with N1↔N2. The parameters � ,� are �1 /T, see
Eq. �9�, which shows that the effect of the interaction in-
creases with decreasing temperature; on the other hand, with-
out noise the weak interaction would only weakly perturb the
system and there would be no symmetry-breaking transition.
We will be interested in the effectively attractive interaction
between atoms in different clouds, for which �
0.

The probability P1 to have N1 atoms in cloud 1 for given
Ntot can be found from the balance equation. For Ntot�1, the
stationary probability P1

st�N1� is a function of the reduced
population difference x= �N2−N1� /Ntot and the control pa-
rameter 
=�Ntot−1. It has a sharp maximum whose position
gives the order parameter 	= �x�.

For fixed Ntot, near criticality �	x	 , 	
	�1� the stationary
distribution has a characteristic Landau mean-field form
�25�, P1

st�exp�−Ntot�x4−6
x2� /12�, see Eq. �12�. For 
�0 it
has a peak at x=	=0, which corresponds to equal mean
cloud populations. For 

0 and 	
	�Ntot

−1/2 the symmetry is
broken and �x�=	= � �3
�1/2. This describes the dependence
of 	 on 
 in Fig. 2�a�. The form of P1

st explains also the
scaling �2� 	
	−1 of the variance �2= �x2�− �x�2 in Fig. 2�b�.

The critical total number of atoms �where 
=0� is Nc
=�−1. Thus, Nc�T. This dependence was tested by heating
up the atoms with additional resonant radiation. Indeed, Nc
was found to increase almost linearly with the radiation in-
tensity, see Fig. 2�d�.

An extra modulation of the beam intensities h cos��Ft /2
+�h� leads to factors exp�h12� and exp�−h12� in the switching
rates W12 and W21, with h12�h /T �24�. In calculating these
factors one can disregard the weak atom-atom interaction. As
a result, P1

st is multiplied by exp�Ntoth12x�, Eq. �17�. This
gives 	�h1/3 at criticality �
=0�, in agreement with the ex-
periment. If the frequency of the extra modulation is slightly
detuned from �F /2, the linear response does not diverge at
criticality. The result of the calculation in Sec. IV is in ex-
cellent agreement with the experiment, as seen from Fig. 3.

An independent estimate of the interaction strength can be
obtained from the dependence of the vibration amplitudes of
the clouds on the cloud populations. For comparatively weak

interaction, the interaction-induced change of the amplitude
of an nth cloud should be proportional to the number of
atoms in the other cloud N3−n�n=1,2�. This is indeed seen in
Fig. 1�b�. The main contribution comes from the long-range
interaction, the shadow effect �4,21,22�. This interaction also
gives the main contribution to the parameters � ,� and thus
determines the critical total number of atoms Nc. The value
of Nc obtained in a simple one-dimensional model that as-
sumes sinusoidal vibrations, Sec. VI, is within a factor of 2
from the experimental data, as are also the slopes of the
straight lines in Fig. 1�b�.

In the experiment, the total number of trapped atoms was
slowly fluctuating. The mean-field theory still remains appli-
cable, but needs to be extended, see Sec. V. An important
consequence is that in the symmetric phase the variance does
not change, Nc�

2= 	
	−1, whereas in the low-symmetry phase,
1�
�Nc

−1/2, the variance is modified, Nc�
2= �2
�−1+3�4


+��−1, where �=Wout / �W�0� exp��Nc��, ��1, see Eq. �27�;
here, Wout is the probability for an atom to leave the trap per
unit time. The variance is larger than in the symmetric phase
for the same 	
	 by factor 5/4 for 
�� and is smaller by
factor 2 for smaller 
, i.e., closer to Nc where fluctuations of
Ntot are averaged out �see the gray line in Fig. 2�b��. The
scaling �2�
−1 holds in the both limits. This is the scaling
seen in Fig. 2�b�. In the experiment, it was not possible to
come close enough to Nc to observe the crossover; �2 in the
broken-symmetry phase remained larger than in the symmet-
ric phase.

III. THEORY OF INTERCLOUD SWITCHING

A. Single-atom switching

We now provide a full theory of the critical phenomena in
a parametrically modulated MOT. We start with the single-
atom dynamics for the modulation frequency �F close to
twice the eigenfrequency �0 of atomic vibrations in the
MOT. The modulation can lead to the onset of period-two
vibrations at frequency �F /2. These vibrations are close to
sinusoidal for moderately strong modulation, there is no dy-
namical chaos in the range of phase space of interest. In the
single-atom approximation the equation of motion can be
written as

mar̈ = G�r, ṙ;t� + f�t� , �4�

where r is the position vector of an atom, ma is the atomic
mass, and G is the well-understood force from the laser
beams �4,23,26�; for modulated beams it periodically de-
pends on time, G�t+�F�=G�t�. The force f�t� in Eq. �4� is the
zero-mean noise from spontaneous light emission. Often the
friction force in G is assumed to have the form −2�maṙ,
where � is the effective friction coefficient; then the noise is
modeled by white Gaussian noise,

�f��t�f���t��� = 4�makBT������t − t�� ,

where T is the characteristic gas temperature, and � ,��
=x ,y ,z enumerate the atomic coordinates.

We are interested in the parameter range where, in the
absence of noise, Eq. �4� has two stable periodic solutions
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r1,2�t�, with rn�t+2�F�=rn�t��n=1,2� and r2�t�=r1�t+�F�.
These solutions give the positions of the centers of the vi-
brating atomic clouds, cf. Fig. 1�a�. By linearizing Eq. �4�
about rn�t� one finds the typical frequencies �cl and relax-
ation rates ���� of the intracloud motion. Noise leads to
fluctuations about rn�t� with variance �T that determines the
size of the clouds in Fig. 1.

Switching between the clouds results from large rare fluc-
tuations. It is central for the analysis that the switching rates
are much smaller than �F and than �cl ,�. Therefore of in-
terest are period-averaged rates Wnm of n→m switching,
n ,m=1,2. Quite generally �27,28�

Wnm = CW exp�− Rn/kBT� , �5�

where the prefactor CW�max��cl ,��. The most important in
Wnm is the exponential factor, which has the activation form.
The activation energy Rn of switching from the periodic state
n is given by the solution of a variational problem Rn
=min R, where the functional R is �28�,

R = �8�ma�−1� dtf�t�2 +� dt��t��mar̈ − G − f�t�� . �6�

Here, the term quadratic in f determines the probability den-
sity of a realization of the random force that leads to switch-
ing �29�; ��t� is the Lagrange multiplier that relates the dy-
namics of the atom and the force to each other. For switching
from nth periodic state, the trajectory r�t� should go from
rn�t� for t→−� to the unstable periodic saddle-type state
rb�t� on the boundary of the basin of attraction to rn�t� for
t→�; ��t� , f�t�→0 for t→ ��.

Since in the single-atom case the period-two vibrational
states differ only by phase, the activation energies R1,2 are
equal, R1=R2=R�0�. The variational problem is significantly
simplified if the vibrations rn�t� are almost sinusoidal, which
corresponds to small damping and comparatively weak non-
linearity, see Sec. VI.

B. Switching rate modification by the atom-atom interaction

The interaction between atoms leads to an extra force
Gint�r� in Eq. �4�. This force is weak in the sense that it
weakly affects the intracloud atomic dynamics. In the experi-
ment, the radius of the clouds changed by �10% where the
number of atoms changed by a factor of 2. The change of the
vibration amplitude was also small, see Fig. 1.

The force Gint depends on the positions of all atoms. It
can be separated into the mean-field and fluctuating parts.
The mean-field part is due to the long-range interaction �4�.
The fluctuating part is dominated by short-range elastic col-
lisions. For comparatively low atomic densities and high
temperatures used in the experiment the effect of the fluctu-
ating part of Gint is small compared to that of the thermal
noise and will be disregarded.

Of primary interest to us is the intercloud interaction and
the effect of the interaction on the atoms switching between
the clouds. This effect is determined by the long-range part
of the interaction and can be described in terms of the mean-
field force. Indeed, since on average the interatomic distance
in the cloud is small compared to the distance to the switch-

ing atom or to the other cloud, the force Gint depends on the
intracloud atomic density, individual atoms are not “re-
solved.” This is further strengthened by the fact that short-
range �of the order of the interatomic distance� density fluc-
tuations in the clouds are very fast, with correlation time
��cl

−1Ntot
−1/3��−1, and therefore are averaged out.

From the above arguments, the long-range force on an
atom Gint�r�, can be written as

Gint�r� = �
m=1,2

NmGint�r;m� , �7�

where Nm is the number of atoms in cloud m. The force
Gint�r ;m� is determined by the density distribution in the
cloud m.

Even though Gint is small compared to the overall force
on an atom G, it may strongly affect the switching rate,
leading to the spontaneous symmetry breaking. This is be-
cause Gint changes the switching activation energy Rn. Ex-
tending to the many-atom system the approach of Ref. �30�,
�the justification is given below�, to first order in the interac-
tion we obtain Rn=R�0�+Rn

�1� with

Rn
�1� = �

m

�nmNm,

�nm = − �
−�

�

dt�n
�opt��t�Gint„rn

�opt��t�;m… . �8�

Here, rn
�opt��t� and �n

�opt��t� describe the trajectory that mini-
mizes functional R, Eq. �6�, for switching from periodic
state n �i.e., from nth cloud�. Function rn

�opt��t� gives the most
probable path followed in the switching; for a parametrically
excited oscillator this path has been observed in experiment
�31�. Since the states 1 and 2 differ only in phase, we have
�11=�22 and �12=�21.

In deriving Eq. �8� we used that, first, because the inter-
atomic interaction is weak, atoms switch one by one, not in
groups; switchings of individual atoms are uncorrelated. Sec-
ond, and most importantly, in the optimal fluctuation leading
to switching of an atom the atomic clouds practically do not
change their shape. This is also a consequence of the inter-
atomic interaction being weak: the force from a single atom
in the cloud very weakly affects the motion of the switching
atom, 	�nm	�kBT, and vice versa, the force from the switch-
ing atom on the atoms in the cloud is weak. Only the effect
from all atoms in the cloud on a switching atom is appre-
ciable, the product �nmNm �N1,2�1� can become larger than
kBT.

A significant change of the shapes of the clouds, even
though it would change the switching activation energy, has
an exceedingly small probability. Indeed, if the cloud radius
is a0��kBT /ma�cl

2 �1/2, the probability density to have the
atoms in nth cloud displaced by �rn�a0 is
�exp�−Nn�rn

2 /2a0
2��1. At the same time, the change of �nm

would be proportional to the ratio of �rn to the characteristic
intercloud distance, which is of the order of the vibration
amplitude and largely exceeds a0. Therefore in calculating
Gint(rn

�opt��t� ;m) one should assume that the atoms in clouds
1 and 2 are at their stable equilibrium positions r1�t� and
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r2�t�. In other words, there is no fluctuational barrier prepa-
ration �32,33� for intercloud switching, even though the
switching barrier is strongly affected by the many-body in-
teraction. This significantly simplifies the explicit calcula-
tion.

Equation �8� shows that the effective switching activation
energy linearly depends on the numbers of atoms in the
clouds, for weak interatomic coupling. Even though 	Rn

�1�	 is
small compared to the single-atom activation energy R�0�, it
can largely exceed kBT, in which case the change of the
switching rate will be large. From Eqs. �5� and �8� we obtain
Eq. �3� for the many-atom switching rate W12

W12�N1 ;Ntot�, with

� = ��11 − �12�/2kBT, � = − ��11 + �12�/2kBT . �9�

We have used here the symmetry properties of the param-
eters �nm; as mentioned below Eq. �3�, W21�N2 ;Ntot�
=W12�N2 ;Ntot� with the same Ntot=N1+N2.

In what follows we consider the case �
0, which corre-
sponds to the effective attraction between the clouds. This
means that the interaction lowers the barrier for intercloud
switching where there are more atoms in the cloud into
which the switching occurs.

IV. SYMMETRY-BREAKING TRANSITION

A. Master equation

Because atoms move fast within the clouds compared to
the rate of intercloud switching, on time scale �Wnm

−1 the
state of the system is fully characterized by the numbers of
atoms in each cloud N1 ,N2. For a given Ntot, the system is
described by probability P1�N1� to have N1 atoms in cloud 1
at time t. This probability can be found from the master
equation

Ṗ1�N1� = − ���N1� + ��N1��P1�N1� + ��N1 − 1�P1�N1 − 1�

+ ��N1 + 1�P1�N1 + 1� ,

��N1� = N1W12�N1;Ntot�, ��N1� = �Ntot − N1�

�W12�Ntot − N1;Ntot� . �10�

Here we have taken into account that, as a result of a n
→m transition, the number of atoms in cloud n decreases by
1 and in cloud m increases by 1, and that the total probability
of such a transition per unit time for Nn atoms in cloud n is
NnWnm.

Prior to making a transition the atom will move randomly
within the cloud for a long time and will completely “forget”
its initial state. It is this randomization that makes the many-
particle system zero-dimensional and leads to the mean-field
approximation being exact.

The stationary solution of Eq. �10� is

P1
st�N1� = Z−1
Ntot

N1
�exp�− 2�N1�Ntot − N1�� , �11�

where Z
Z�Ntot� is the normalization constant given by con-
dition �N1

P1�N1�=1.

For large Ntot, the function P1
st�N1� has one or two sharp

peaks. The location of the peak�s� depends on the total num-
ber of atoms. We will study the critical region where Ntot is
close to 1 /�, in which case near the peak�s� 	N1−N2	�Ntot.
It is convenient then to introduce a quasicontinuous variable
x= �N2−N1� /Ntot=1−2N1 /Ntot. For 	x	�1 from Eq. �11� we
find

P1
st�N1� � Z̃−1 exp�− Ntot�x4 − 6
x2�/12� ,


 = �Ntot − 1, �12�

where Z̃ is the normalization constant.
Equation �12� has the standard form of the mean-field

probability distribution near a symmetry-breaking transition
�25�. The parameter 
 is the control parameter, which plays
the role of the deviation from the critical temperature in sys-
tems in thermal equilibrium, whereas x plays the role of the
order parameter. Parameter 
 linearly depends on the total
number of atoms; it also linearly depends on the reciprocal
temperature. The critical number of atoms Nc is determined
by condition 
=0,

Nc = 1/� � T . �13�

B. Critical exponents

The mean reduced difference of the cloud populations 	
= �x� is determined by the position x0 of the maximum of the
distribution P1

st�N1�. For 
�0 the distribution has one maxi-
mum at x0=	=0, whereas at 

0 it has two symmetric
maxima. They are given by equation

x0 = tanh��
 + 1�x0� ,

which can be obtained from Eq. �11� if one does not limit the
analysis to the region 	x	�1. Close to the critical point

	 = Ntot
−1�N2 − N1� = � �3
�1/2 for 0 � 
 � 1, �14�

which is the familiar mean-field scaling with the critical ex-
ponent 1/2. The system occupies one of the states with 			

0, which corresponds to a spontaneous symmetry break-
ing.

For 1� 	
	�Nc
−1/2, from Eq. �12� we obtain for the vari-

ance of the fluctuations of relative populations �2=Ntot
−2��N2

−N1�2�−	2

�2 = �Nc	
	�−1 for 
 � 0;

�2 = �2Nc	
	�−1 for 
 
 0 �15�

�	
	�1�. This shows the familiar 
−1 scaling of the variance
of the order parameter on the both sides of the critical point.
At the critical point, 
=0, we have �2=2��6Nc

−1/2 /��1 /4�2

�1.2Nc
−1/2. Note that �x2� remains finite in a finite-size sys-

tem at the critical point, but its dependence on Ntot�Nc is
given by factor Ntot

−1/2 instead of Ntot
−1 far from criticality.

C. Response to the symmetry-breaking field

The symmetry of the period-two vibrational states can be
lifted if the system is driven by an extra additive force h�t�
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=h cos��Ft /2+�h�. Such force is an analog of a static force
in a thermal equilibrium system, it is “static” in the frame
oscillating at frequency �F /2. In the experiment the force
was produced by modulating the counterpropagating laser
beams at frequency �F /2 with different amplitude; the phase
�h is counted off from the phase of the strong modulation
with period �F.

Response to a period-2�F force becomes strongly nonlin-
ear at the critical point 
=0 even for small amplitude 	h	,
because the force modifies the switching activation energies
R1,2 �24�. In the presence of the force, R1,2 can be found from
Eq. �6� with G→G+h�t�. Extending the analysis of Refs.
�24,30�, we obtain to first order in the interatomic interaction
and the symmetry-lifting field

Rn = R�0� + Rn
�1� + Rn

�h�,

Rn
�h� = −� dt�n

�opt��t�h�t� = h̄ cos �n. �16�

The terms R1,2
�h� are proportional to the field amplitude, h̄

� 	h	. The phases �1,2 were obtained earlier for a weakly
nonlinear parametrically modulated oscillator �24�. In the
general case, �1,2 are linear in �h. In addition, �2=�1+�.
The latter relation can be immediately seen from Eq. �16�,
since by symmetry �2

�opt��t�=�1
�opt��t+�F�, whereas h�t+�F�

=−h�t�. As a consequence, R1
�h�=−R2

�h�.
Even though 	Rn

�h�	�R�0� for small field amplitude 	h	, the
ratio Rn

�h� /kBT should not be small, and therefore the field-
induced change of the switching rates may be substantial. At
the same time, the change of the amplitudes of the cloud
vibrations remains small for small h and will not be dis-
cussed. Equation �16� for Rn

�h� resembles the change of the

free energy of an Ising spin by a magnetic field �h̄ tilted by
an angle �1 with respect to the quantization axis.

The difference in the activation energies R1,2
�h� makes the

transition rates W12 and W21 different, as seen from Eq. �5�,
which in turn lifts the degeneracy of the states 1 and 2 even
in the absence of the interatomic coupling. To find the sta-
tionary probability distribution in the presence of extra
modulation and the interaction, one should multiply the rate
coefficients ��N1� and ��N1� in master Eq. �10� by factors
exp h12 and exp�−h12�, respectively, with

h12 = − �h̄/kBT�cos �1.

As a result P1
st�N1� acquires an extra factor compared to Eq.

�12�,

P1
st�N1� → P1

st�N1�exp�Ntotxh12� �17�

�the normalization constant in P1
st is changed appropriately;

we remind that x= �N2−N1� /Ntot.�.
The equation for the maximum of the distribution x0=	

near criticality now becomes 
x0− 1
3x0

3+h12=0. For small
	h12	�1 and not too close to the phase-transition point, 1
� 	
	�Nc

−1/2, we have

	 � − 
−1h12 �
 � 0� ,

	 � � �3
�1/2 + �2
�−1h12 �
 
 0� . �18�

The generalized resonant linear susceptibility ��0�=

−d	 /dh̄ scales as 	
	−1 on the both sides of the phase-
transition point and diverges for 
→0. We note that, even
though we consider a system far from equilibrium and the
susceptibility is calculated with respect to a time-dependent
field, for Ntot=const it is simply related to the variance of the
order parameter �2 as given by Eq. �15�.

At the phase-transition point, 
=0, there is no linear static

susceptibility, and 	=x0� h̄1/3, as seen in the experiment.

D. Frequency dispersion of the linear susceptibility

The above analysis can be extended also to the case of an
extra additive force with frequency ��F /2�+� that differs
from, but remains close to �F /2, i.e., 	�	����F. The re-
sponse to such field should be strong near the symmetry-
breaking transition because the system displays large slow
fluctuations in this range.

A convenient way of the analysis of the response is based
on transforming Eq. �10� for the probability distribution into
a Fokker-Planck equation by expanding P1�N1�1�− P1�N1�
� ��N1

P1+ �1 /2��N1

2 P1 and using similar expansions for
� ,� �34�. In the absence of extra modulation, for small x
= �N2−N1� /Ntot to leading order in x the equation reads

W̃−1Ṗ1 = L̂P1, W̃ = W�0� exp��Ntot� ,

L̂P1 = − 2�x�

x −
1

3
x3�P1� + 2Ntot

−1�x
2P1. �19�

The stationary solution of Eq. �19� P1
st has the form Eq. �12�.

An extra additive force h cos�� 1
2�F+��t� with small �

adiabatically modulates the rates Wnm of the intercloud tran-
sitions, i.e., one can think of the rates Wnm as parametrically
dependent on time. The major contribution to the rate modu-
lation comes from the modulation of the activation energies,
which is described by Eq. �16� with

R1
�h� 
 R1

�h��t� = − R2
�h��t� = h̄ cos��t�; �20�

we have disregarded a time-independent phase in the argu-
ment of the cosine; it can be eliminated by changing time
origin.

For weak modulation one can linearize the transition rates

Wnm in h̄ and consider the terms �h̄ as a perturbation. Then
the distribution can be sought in the form P1= P1

st+�P1,

where the field-induced term �P1� h̄ is oscillating at fre-
quency �. It is given by equation

W̃−1�Ṗ1 − L̂�P1 = 2
h̄

kBT
cos��t�Ntot

x −

1

3
x3�P1

st. �21�

Equation �21� allows one to find the periodically oscillat-
ing term in the order parameter �	�t�= �x�−x0 �x0 is the po-

sition of the maximum of the distribution for h̄=0� and the
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generalized susceptibility ����, which can be defined by
expression

�	�t� = −
1

2kBT
�����h̄ exp�− i�t� + c.c.� .

Multiplying Eq. �21� by x, integrating over x, and expanding


x−x3 /3 in L̂ about x0, for 1� 	
	�Ntot
−1/2 one finds

���� = 2W̃/�2	
	W̃ − i��, 
 � 0,

���� = 2W̃/�4
W̃ − i��, 
 
 0. �22�

�in Eq. �19� for W̃, one should replace Ntot with Nc�. For �
�0 the susceptibility Eq. �22� remains finite even at the

phase transition, 
=0. Here ����=2iW̃ /�. The susceptibil-
ity diverges with frequency, with critical exponent equal to
−1.

V. FLUCTUATIONS OF THE TOTAL TRAP POPULATION

In the above analysis we disregarded inelastic collisions
between trapped atoms and collisions with atoms outside the
trap. These processes lead to fluctuations of the total number
of atoms in the trap. In the experimental conditions far from
the critical point such fluctuations were slow, with rates an
order of magnitude smaller than the rate of intercloud tran-
sitions W�0�. However, near the critical point intercloud
population fluctuations are slowed down, and then fluctua-
tions of the total number of trapped atoms Ntot may become
important.

In the presence of fluctuations of Ntot the state of the
system should be characterized by the probability P�N� �N

�N1 ,N2�� to have N1 atoms in cloud 1 and N2 atoms in
cloud 2, with Ntot=N1+N2. For comparatively small Ntot and
low temperatures used in the experiment, evaporation from
the trap due to inelastic collisions between trapped atoms
was rare. The major mechanism of the change of Ntot was
collisions with atoms outside the trap. In a simple model of
such collisions, the rate of loss of atoms from an nth cloud
WoutNn is proportional to the number of atoms in the cloud
Nn, whereas the rate of capture of outside atoms by a cloud
WoutN0 /2 is independent of Nn and depends only on the den-
sity of outside atoms �which determines N0� and the cross-
section of their capture. We disregard fluctuations in the den-
sity of outside atoms and choose parameter N0 in such a way
that it provides the typical scale of Ntot, as will be seen be-
low.

A. Fokker-Planck equation near criticality

The master equation for P�N� can be written as a direct
extension of Eq. �10�,

Ṗ�N� = W̃L̂clP + WoutL̂outP, L̂clP = − �
n

���Nn;Ntot�P�N�

+ ���N1 + 1;Ntot�P�N1 + 1,N2 − 1�

+ ���N2 + 1;Ntot�P�N1 − 1,N2 + 1� ,

L̂outP = − �N1 + N2 + N0�P�N� + �
n

�Nn + 1�P�N + �n�

+ �N0/2��
n

P�N − �n� , �23�

where

���Nn;Ntot� = Nn exp��Ntot − 2�Nn� 
 W̃−1��Nn� ,

�1= �1,0�, and �2= �0,1� �the intercloud switching rate W̃ is

defined in Eqs. �3� and �19��. The terms L̂cl and L̂out describe
intercloud transitions and atom exchange with the surround-
ing, respectively. We assume that the typical rate of the ex-

change is Wout�W̃.
We now consider the critical region where Ntot is close to

Nc. We will be interested in the range of N1 ,N2 where
P�N1 ,N2� is close to maximum, 	N1−N2	�Ntot, and intro-
duce quasicontinuous variables

x =
N2 − N1

N0
, u =

N1 + N2

N0
− 1,


 = �N0 − 1. �24�

As we will see, variables x and 
 coincide with the variables
used earlier if fluctuations of the total number of trapped
atoms can be disregarded; variable u gives the deviation of
Ntot from N0.

For 	x	�1, 	
	�1, and 	u	�1 to leading order in x, 
, u,

and N0
−1 the operators L̂cl and L̂out become

L̂clP = − 2�x��x�
 + u� −
1

3
x3�P� + 2N0

−1�x
2P ,

L̂outP = �x�xP� + �u�uP� + N0
−1���x

2 + �u
2�P� . �25�

Equations �23�–�25� allow one to study the stationary dis-
tribution of the modulated system in the presence of fluctua-
tions of the total population. We note first that exchange of
atoms with the surrounding leads to effective exchange of
atoms between the clouds. In turn, this leads to renormaliza-
tion of intercloud transition rates and, effectively, of the con-
trol parameter, which can be found from Eq. �25� by looking
at the terms ��x�xP�.


 → 
 −
Wout

2W̃
, Nc → �−1
1 +

Wout

2W̃
� . �26�

The change of 
 is negative, which should be expected, since
exchange with the surrounding should stabilize the symmet-
ric phase, and therefore a larger number of atoms is required
for the symmetry-breaking transition than in the case where
there is no such exchange.

The parameter Nc in Eq. �26� is the critical value of the
parameter N0. The mean number of trapped atoms is �Ntot�
=N0�1+ �u��. The scaled coefficient of diffusion over x is

also renormalized, 2N0
−1→2N0

−1�1+Wout /2W̃�.
In the stationary regime fluctuations of the total number

of atoms in the trap are small, �u2��1 /N0. However, the
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distribution over the scaled difference of the cloud popula-
tions x differs from the standard Landau-type distribution
�Eq. �12��. This is in spite the fact that the system is de-
scribed by the mean-field theory, no spatial correlations are
involved.

The dynamics of x and u are very different. There is no
critical slowing down for u, and in the critical region 	
	
�Nc

−1/2 the width of the distribution over x is �Nc
−1/4

�Nc
−1/2.

B. Variance of the order parameter

The major effect of the coupling between fluctuations of x
and u is the change of the variance �2= �x2�− �x�2. The latter
occurs in the broken-symmetry state where 
�Nc

−1/2. It can
be calculated in the stationary regime by decoupling the
chain of equations for the moments of the stationary distri-
bution �xkul� with integer k , l. For Nc

−1/2�
�1

Nc�
2 �

1

2

+

3

4
 + �Wout/W̃�
. �27�

Fluctuations of u and x �i.e., of the total population of the
clouds and the population difference� are correlated in the
broken-symmetry phase, with �u�x−x0����2x0 /Nc��4


+ �Wout /W̃��−1, where x0= � �3
�1/2.
In contrast, in the symmetric phase fluctuations of u and x

are uncorrelated; for 1�−
�Nc
−1/2

Nc�
2 � 	
	−1�1 + �Wout/2W̃�� � 	
	−1. �28�

It is seen from Eq. �27� that, for 
�Wout /4W̃, the vari-
ance of the order parameter fluctuations in the broken-
symmetry state scales with the control parameter in the same
way as without fluctuations of the total population, Nc�

2

�5 /4
. However, the factor in front of 1 /
 is now larger
than in the symmetric phase, Eq. �28�. This corresponds to
what was seen in the experiment.

In the broken-symmetry state, as 
 decreases below

Wout /4W̃, there occurs a crossover to �2�1 /2Nc
, i.e., �2

scales with 
 with the same scaling exponent, but with
smaller amplitude than in the symmetric phase. This regime
apparently could not be accessed in the experiment.

We note that there are other fluctuations that can contrib-
ute to the variance �2. For example, slow fluctuations of the
trap parameters may lead to small and slow fluctuations of
the total population, which can be thought of as fluctuations
of the control parameter 
. They give an extra contribution
3���
�2� /4�
� to �2 in Eq. �15� for the broken-symmetry
phase, where ��
2� is the variance of 
. Interestingly, this
contribution also scales as 
−1 away from the critical point. It
further increases the difference between the variance of the
order parameter in the broken-symmetry and symmetric
phase.

VI. ONE-DIMENSIONAL MODEL

A. Rotating wave approximation

The calculation of the switching rates and response coef-
ficients is simplified if the atomic motion in MOT is assumed

one-dimensional, along the MOT axis z. This corresponds to
averaging over the motion transverse to the axis, which is
largely small-amplitude fluctuations about the vibrating cen-
ters of the clouds. In the experiment the radiation that con-
fined the atoms transverse to the axis had large intensity, so
that the correlation time of these fluctuations was short.

In the single-atom approximation the atomic motion can
be modeled by the Duffing oscillator,

z̈ + 2�ż + �0
2�1 + �F cos �Ft�z + �z3 = f�t�/ma, �29�

Here, �0 and � are the MOT eigenfrequency and viscous
friction coefficient, respectively, � is the nonlinearity param-
eter, and �F is determined by the amplitude of the laser beam
modulation �35�. In the experiment �=1.5�105 s−2 cm−2

and �F=0.9; the values of �0 and � were given in Sec. II.
The nonlinear in the velocity terms, which are disregarded in
Eq. �29�, are comparatively small for the experimental con-
ditions. The function f�t� is white thermal Gaussian noise.

For the reduced modulation strength �F�0 /4�
1, reso-
nant modulation �	�F−2�0	��0� can excite period-two
atomic vibrations �36�. The vibrations are nearly sinusoidal
in the absence of noise, if the modulation is not too strong.
The atomic dynamics can be conveniently described by
switching to the rotating frame using a standard transforma-
tion

z = CRWA�q2 cos��Ft/2� − q1 sin��Ft/2�� ,

ż = − CRWA��F/2��q2 sin��Ft/2� + q1 cos��Ft/2�� , �30�

with CRWA= �2�0
2�F /3��1/2 �the modulation phase is chosen

in such a way that �F /�
0�. In the rotating wave approxi-
mation �RWA�, the equations for slow variables q
�q1 ,q2�
in slow time � are

dq

d�
= K�q� + f����, � = �0�Ft/4. �31�

Here, f���� is white Gaussian noise with two asymptotically
independent components,

�f�����f��
� ����� = 2D�kBT������� − ��� ,

D� = 6��/ma�0
5�F

2 ��,�� = 1,2� .

We use vector notations here formally, q is not a vector in
real space, its components are combinations of atomic dis-
placement and momentum along the MOT axis.

Functions K�q� are cubic polynomials and are given ex-
plicitly in Ref. �24�. �they were denoted by K�0��q��. The
zeros of K occur at the stationary states in the rotating frame.
They correspond to the period-two vibrational states in the
laboratory frame. We will be interested in the parameter
range where Eq. �31� has two attractors q1

A=−q2
A. Functions

K are also equal to zero for q=0, which corresponds to the
unstable state of zero-amplitude period-two vibrations in the
laboratory frame.
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For low temperatures, the motion described by Eq. �31� is
primarily small-amplitude fluctuations about states q1,2

A .
Switching between the states requires a large fluctuation. The
single-atom switching rate has the form Eq. �2�, with activa-
tion energy R�0�=min R�0�,

R�0� = �4D��−1� d�f�2��� +� d������dq

d�
− K − f����� .

�32�

The major distinction from the general formulation �Eq. �6��
is that function K does not explicitly depend on time. This
significantly simplifies the variational problem �Eq. �32��.
The corresponding optimal trajectories followed in switching
from nth stable state qn

�opt���� were found in Ref. �16�,
whereas functions �n

�opt���� are equal to the logarithmic sus-
ceptibilities found in Ref. �24� multiplied by −1 /D�.

B. Interatomic interaction

The major interatomic interaction that affects the switch-
ing rate is the long-range interaction, since in switching at-
oms move far away from the clouds. It comes from the
shadow effect, which is due to “shielding” of atoms from the
laser light by other atoms �3,4,21–23�. In the one-
dimensional picture, the force on ith atom with coordinate zi

from other atoms can be approximately modeled as Fi=
−fsh� jsgn�zi−zj�. This force is weak, much smaller than the
Doppler force that confines atoms to the trap. Multiple scat-
tering of light is disregarded in the above expression.

To estimate fsh for a switching atom we have to take into
account that the atomic clouds are three-dimensional. We
consider a simple model in which a laser beam propagating
along z-axis passes on its way through an atomic cloud with
density distribution  �r�. The resulting change of the beam
intensity I as a function of transverse coordinates x ,y is
�I�x ,y�= I�L�dz �r�, where integration is done over the
length of the cloud and �L is the absorption cross-section.
This cross-section depends in the standard way on intensity I
and the frequency detuning. Generally, because of the
magnetic-field induced frequency shift and the Doppler shift,
�L oscillates in time. The light intensity also oscillates in
time. If we disregard these oscillations, we get for typical
experimental conditions �L�5.6�10−15 m2.

The atomic density distribution  �r� can be assumed
Gaussian with the same width wt�1 mm in all directions,
which was achieved in the experiment by tuning the trans-
verse beam intensities. According to the optimal path picture,
during switching atoms most likely move along the MOT
axis, and for such atoms the light intensity change is deter-
mined by  �r� on the axis. The extra force on the switching
atom as it moves between the clouds is then directed toward
the more populated cloud and is equal to fsh	N1−N2	 where,
according to the above arguments,

fsh = !k�p�Ls/4��s + 1�wt
2. �33�

Here, k is the photon wave number, �p is the reciprocal life-
time of the excited state, and s= �I / Is��1+ �2� /�p�2�−1 is the
resonant absorption strength �Is is the saturation intensity and

� is the detuning of the radiation frequency from the atomic
transition frequency�. Equation �33� gives fsh�2.5
�10−32 N. Note that, since the clouds are oscillating, the
force �fsh is oscillating as well, its time dependence is de-
termined by the sgn-function.

C. Shadow effect in the rotating frame

The effect of the shadow force in the many-atomic system
can be conveniently analyzed in the rotating frame by chang-
ing from coordinates and momenta �zi , żi� to slowly varying
two-component vectors qi, Eq. �30� �superscript i enumerates
the atoms�. In the RWA the equation of motion for qi be-
comes

dqi

d�
= Ki�qi� + �̂�qiHsh + f�i��� �34�

with i=1, . . . ,Ntot. Here, f�i��� is the random force on ith
atom �random forces on different atoms are uncorrelated�, �̂
is the permutation tensor, and Hsh is the interaction Hamil-
tonian in the slow variables,

Hsh =
1

2�ij
� Vsh�qi − q j� ,

Vsh�q� =
8fsh

�ma�0
2�FCRWA

	q	 , �35�

where the prime indicates that i� j.
In the RWA, the coefficients �nm in the expression for the

interaction-induced correction to the switching activation en-
ergy Rn, Eq. �8�, are

�nm = �
−�

�

d��n
�opt�����̂�qm

AVsh�qn
�opt���� − qm

A� , �36�

where �n
�opt���� and qn

�opt���� are the solutions of the single-
atom problem of minimizing the functional �32� for switch-
ing from the state n.

Equations �32� and �36� were used to find the coefficients
�nm and the critical value of the total number of atoms Nc
=2kBT / ��11−�12� where the symmetry-breaking transition
occurs. The obtained Nc was within a factor of 2 from the
value of Nc observed in the experiment. This is reasonable
given the uncertainty in the temperature, the renormalization
of Nc by the finite lifetime of atoms in the MOT, cf. Eq. �26�,
and most importantly, the fact that the light intensity modu-
lation was not weak and, respectively, the atomic vibrations
noticeably deviated from sinusoidal.

Change of the vibration amplitude due to the atom-atom
coupling

An important effect that allows one to compare indepen-
dently the many-atomic theory with the experiment is the
change of the vibration amplitudes due to the interaction. It
is determined by the change of the equilibrium positions qn

A

in the rotating frame. For weak interatomic interaction it can
be found by linearizing equations of motion �Eq. �34��. The
average force on an atom from other atoms in the same cloud
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is equal to zero. The shift of the equilibrium position is due
only to the force from the atoms in the other cloud. Disre-
garding small fluctuations about the equilibrium positions,
for the shift of nth attractor in the rotating frame �qn

A we
obtain

��qn
A�qn

A�K�qn
A� + N3−n�̂�qn

AV̄sh�qn
A − q3−n

A � = 0. �37�

Here, V̄sh is given by Eq. �35� for Vsh in which fsh is replaced

with f̄sh. The quantity f̄sh characterizes the force from the
shadow effect which is averaged over the cross section of the
cloud transverse to the MOT axis. Such averaging occurs as
atoms are moving within the cloud. If the density distribu-
tions within the clouds are Gaussian with the same width,

f̄sh= fsh /2.
The shift of the nth attractor �n=1,2� given by Eq. �37�

and the corresponding change of the vibration amplitude of
the nth cloud is proportional to the number of atoms in the
other cloud, N3−n. Therefore the vibration amplitudes of the
clouds become different in the broken-symmetry state. This
prediction and the linear dependence of the amplitude
change on the number of atoms in the other cloud are in full
agreement with the experiment; the numerical estimate for
the simplified model of sinusoidal 1D vibrations is within a
factor of 2 from the measured value.

VII. CONCLUSIONS

We have observed and explained an ideal mean-field tran-
sition far from equilibrium, the spontaneous breaking of the
discrete time-translation symmetry. The transition occurs in a
system of periodically modulated trapped atoms. The mean-
field behavior is evidenced by the critical exponents of the
order parameter and its variance, the nonlinear resonant re-
sponse at criticality, and the linear susceptibility as a function
of the distance to the critical point.

The proposed theory explains the symmetry-breaking
transition as resulting from the interplay of the atom-atom
interaction and the nonequilibrium fluctuations. Both compo-
nents are necessary. The fluctuations, even though they are
small on average, cause transitions between the period-two
states of atomic vibrations in the modulated trap, i.e., be-
tween the two vibrating atomic clouds. The interaction,
which is also small and only slightly affects the vibrational
states, is nevertheless strong enough to compete with the
small-intensity fluctuations and thus change the switching
rates.

In contrast to conventional phase transitions, in our sys-
tem the control parameter 
 is not intensive �as temperature,
for example�, it linearly depends on the total number of at-
oms Ntot. The transition is a many-body effect, but even
though the system is large, with �107 atoms, it is finite.
Once the time-translation symmetry is broken with increas-
ing Ntot, a further increase of Ntot should not change the
symmetry as long as the trap remains stable. We note that the
critical value of Ntot is proportional to temperature.

The ideal mean-field behavior in the many-atom system is
a result of the time scale separation. The intercloud transi-
tions are rare, the transition rate is small compared to the
decay rate and the vibration frequency. This means that the
intracloud fluctuations have a short correlation time com-
pared to the intercloud fluctuations and the behavior of the
system is controlled by the difference in the number of atoms
in the vibrating clouds. The proposed theory is in full agree-
ment with the observations.
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